-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmri-dqa-2D-resnet101.py
245 lines (202 loc) · 8.52 KB
/
mri-dqa-2D-resnet101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""
mri-dqa
"""
# DL Library
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch import optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from torch.autograd import Variable
import torch.nn.functional as F
from torchvision import datasets
from torchvision import transforms
from torchvision import models
import numpy as np
import os
import random
import pandas as pd
import matplotlib.pyplot as plt
import math
import scipy.misc
import scipy.ndimage
import time
import copy
# Nifti I/O
import warnings
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
import nibabel
train_csv = 'train-office.csv'
val_csv = 'val-office.csv'
n_epoch = 250
patch_h = 56
patch_w = 56
checkpoint_dir = './checkpoints/'
ckpt_path = checkpoint_dir+'mri-dqa-2d-resnet-100.pth'
perf_path = checkpoint_dir+'mri-dqa-2d-resnet-100.perf'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# -- DataSet Class -----------------------------------
class MRIData(Dataset):
def __init__(self, phase='train'):
self.phase = phase
if self.phase=='train':
self.data_list_path = train_csv
elif self.phase=='val':
self.data_list_path = val_csv
else:
assert False, 'Invalid argument for phase. Choose from (train, val)'
data_list_df = pd.read_csv(self.data_list_path, header=None)
data_list_df.columns = ['path', 'label']
self.image_path_list = list(data_list_df['path'])
self.image_label_list = list(data_list_df['label'])
def _get_acceptable(self, patch):
[img_h, img_w, img_d] = patch.shape
# extract random slice and random patch
acceptable = False
while not acceptable:
h_l = int(random.randint(0, img_h - patch_h))
h_u = int(h_l + patch_h - 1)
w_l = int(random.randint(0, img_w - patch_w))
w_u = int(w_l + patch_w - 1)
d = int(random.randint(0, img_d - 1))
patch_t = patch[h_l:h_u, w_l:w_u, d]
# select patch if overlapping sufficient region of brain
patch_bg = patch_t < 64
if patch_bg.sum() < 0.075 * patch_w * patch_h:
acceptable = True
return patch_t
def __getitem__(self, index):
"""
Returns a patch of a slice from MRI volume
The volume is selected by the inpurt argument index. The slice is randomly selected.
The cropped patch is randomly selected.
"""
nii = nibabel.load(self.image_path_list[index])
label = self.image_label_list[index]
nii = nii.get_fdata()
[img_h, img_w, img_d] = nii.shape
# drop the bottom 25% and top 10% of the slices
nii = nii[:,:,int(img_d/4):int(9*img_d/10)]
nii = self._get_acceptable(nii)
# random rotation to the patch
rot_angle = 45*random.randint(0, 3)
nii = scipy.ndimage.rotate(nii, angle=rot_angle, reshape=True)
# resize
nii = scipy.misc.imresize(nii, (224, 224))
# convert to pytorch tensor
nii = torch.tensor(nii)
nii.unsqueeze_(0)
nii = nii.repeat(3, 1, 1)
# return the mri patch and associated label
return nii, label
def __len__(self):
return len(self.image_label_list)
# -- DataSet Class -----------------------------------
def train_model(model, criterion, optimizer, scheduler, epoch, perf, num_epochs=n_epoch):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
while epoch < num_epochs:
epoch += 1
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
dataset = MRIData(phase)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=1, drop_last=True)
else:
model.eval() # Set model to evaluate mode
dataset = MRIData(phase)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=1, drop_last=True)
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for ibatch, (inputs, labels) in enumerate(dataloader):
inputs = inputs.to(device, dtype=torch.float)
labels = labels.to(device, dtype=torch.long)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / (ibatch*32)
epoch_acc = running_corrects.double() / (ibatch*32)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
if phase=='train':
perf['train_loss'].append(epoch_loss)
perf['train_acc'].append(epoch_acc)
else:
perf['val_loss'].append(epoch_loss)
perf['val_acc'].append(epoch_acc)
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
# save performance
torch.save({'train_loss': perf['train_loss'],
'train_acc': perf['train_acc'], 'val_loss': perf['val_loss'],
'val_acc': perf['val_acc']}, perf_path)
# save checkpoint every 10 epochs
if epoch%10 == 0:
print(' -- writing checkpoint and performance files -- ')
torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(),
'optimizer_state_dict':optimizer.state_dict(), 'loss': loss,
'scheduler': scheduler.state_dict()}, ckpt_path)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def main():
# If pretrained model is saved, use it
if not os.path.exists(ckpt_path):
model_ft = models.resnet101(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=50, gamma=0.1)
epoch = 0
perf = {'train_loss': [], 'train_acc': [], 'val_loss': [], 'val_acc': []}
else:
model_ft = models.resnet101(pretrained=False)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=50, gamma=0.1)
checkpoint = torch.load(ckpt_path)
model_ft.load_state_dict(checkpoint['model_state_dict'])
optimizer_ft.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
exp_lr_scheduler.load_state_dict(checkpoint['scheduler'])
perf = torch.load(perf_path)
# resolving CPU vs GPU issue for optimzer.cuda()
for state in optimizer_ft.state.values():
for k,v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
criterion = nn.CrossEntropyLoss()
model_ft = model_ft.to(device)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, epoch, perf, num_epochs=n_epoch)
if __name__ == '__main__':
main()