-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathperftest_for.cu
149 lines (121 loc) · 4.17 KB
/
perftest_for.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
** Author: Tapas Kanungo, kanungo@cfar.umd.edu
** Date: 4 May 1999
** File: testfor.c
** Purpose: driver for testing the Forward, ForwardWithScale code.
** Organization: University of Maryland
**
** $Id$
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <sys/types.h>
#include <cuda_runtime.h>
#include "nrutil.h"
#include "hmm.h"
//static char rcsid[] = "$Id: testvit.c,v 1.3 1998/02/23 07:39:07 kanungo Exp kanungo $";
int main (int argc, char **argv)
{
int t, T;
HMM hmm;
int *O; /* observation sequence O[1..T] */
real **alpha;
real *scale;
real proba, logproba;
FILE *fp;
if (argc != 4) {
printf("Usage error \n");
printf("Usage: testfor <obs.seq> N M\n");
exit (1);
}
/* fp = fopen(argv[1], "r"); */
/* if (fp == NULL) { */
/* fprintf(stderr, "Error: File %s not found\n", argv[1]); */
/* exit (1); */
/* } */
/* ReadHMM(fp, &hmm); */
/* fclose(fp); */
/* fp = fopen(argv[1], "r"); */
/* if (fp == NULL) { */
/* fprintf(stderr, "Error: File %s not found\n", argv[2]); */
/* exit (1); */
/* } */
/* ReadSequence(fp, &T, &O); */
/* fclose(fp); */
fp = fopen(argv[1], "r");
if (fp == NULL) {
fprintf(stderr, "Error: File %s not found\n", argv[2]);
exit (1);
}
ReadSequence(fp, &T, &O);
fclose(fp);
///TODO: generate a HMM model with the given parameters
hmm.N = atoi(argv[2]);
hmm.M = atoi(argv[3]);
hmm.A = dmatrix(1, hmm.N, 1, hmm.N);
hmm.B = dmatrix(1, hmm.N, 1, hmm.M);
hmm.pi = dvector(1, hmm.N);
GenRandHMM(&hmm);
//alpha = dmatrix(1, T, 1, hmm.N);
//scale = dvector(1, T);
alpha = matrix(1, T, 1, hmm.N);
/* printf("------------------------------------\n"); */
printf("%d\t %d\t %d\t ", T, hmm.N, hmm.M);
int deviceCount = 0;
if ( cudaGetDeviceCount(&deviceCount) != cudaSuccess )
{
fprintf(stderr, "Error: can't query devices on this machine");
return;
}
if ( deviceCount == 0 )
{
fprintf(stderr, "Error: can't find CUDA capable devices on this machine");
return;
}
int dev;
for (dev = 0; dev < deviceCount; ++dev)
{
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
fprintf(stderr,"Device %d\t %s\n",deviceProp.name);
}
/* printf("Forward without scaling with CUDA \n"); */
//double gpu_time = wallclock();
ForwardGPU(&hmm, T, O, alpha, &proba);
//gpu_time = wallclock() - gpu_time;
real gpu_res = log(proba);
//fprintf(stderr, "log prob(O| model) = %E\n", log(proba));
free_dmatrix(alpha, 1, T, 1, hmm.N);
alpha = matrix(1, T, 1, hmm.N);
/* printf("------------------------------------\n"); */
/* printf("Forward without scaling with MKL\n"); */
//double cpu_time = wallclock();
Forward(&hmm, T, O, alpha, &proba);
//cpu_time = wallclock() - cpu_time;
real cpu_res = log(proba);
//fprintf(stdout, "log prob(O| model) = %E\n", log(proba));
/* printf("------------------------------------\n"); */
/* printf("Forward with scaling using MKL\n"); */
scale = vector(1, T);
/* double cpu_scale_time = wallclock(); */
ForwardWithScale(&hmm, T, O, alpha, scale, &logproba);
/* cpu_scale_time = wallclock() - cpu_scale_time; */
real cpu_scale_res = logproba;
//printf("%d\t %d\t %d\t %f\t %f\t %f\t", T, hmm.N, hmm.M, gpu_time, cpu_time, cpu_scale_time);
//printf("\n\t\t\t %f GFLOPS\t %f GFLOPS\t %f GFLOPS\t", (T*(hmm.N+1)*(hmm.N)*1e-6)/gpu_time, (T*(hmm.N+1)*(hmm.N)*1e-6)/cpu_time, (T*(hmm.N+1)*(hmm.N)*1e-6)/cpu_scale_time);
if ( (fabs(cpu_res-gpu_res) < 1e-4) && (fabs(gpu_res-cpu_scale_res) < 1e-4) )
printf("passed\n");
else
printf("failed\n gpu_res %f, cpu_res %f, cpu_scale_res %f\n", gpu_res, cpu_res, cpu_scale_res);
/* fprintf(stdout, "log prob(O| model) = %E\n", logproba); */
/* printf("------------------------------------\n"); */
/* printf("The two log probabilites should identical \n"); */
/* printf("(within numerical precision). When observation\n"); */
/* printf("sequence is very large, use scaling. \n"); */
free_ivector(O, 1, T);
free_dmatrix(alpha, 1, T, 1, hmm.N);
//free_dvector(scale, 1, T);
FreeHMM(&hmm);
}