@@ -2628,7 +2628,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
26282628 return [(self .map_tensor_name (name ), data_torch )]
26292629
26302630
2631- @Model .register ("BertModel" , "CamembertModel" , "RobertaModel" )
2631+ @Model .register ("BertModel" , "CamembertModel" )
26322632class BertModel (Model ):
26332633 model_arch = gguf .MODEL_ARCH .BERT
26342634
@@ -2701,6 +2701,51 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
27012701 return [(self .map_tensor_name (name ), data_torch )]
27022702
27032703
2704+ @Model .register ("RobertaModel" )
2705+ class RobertaModel (BertModel ):
2706+ model_arch = gguf .MODEL_ARCH .BERT
2707+
2708+ def __init__ (self , * args , ** kwargs ):
2709+ super ().__init__ (* args , ** kwargs )
2710+
2711+ # we need the pad_token_id to know how to chop down position_embd matrix
2712+ if (pad_token_id := self .hparams .get ("pad_token_id" )) is not None :
2713+ self ._position_offset = 1 + pad_token_id
2714+ if "max_position_embeddings" in self .hparams :
2715+ self .hparams ["max_position_embeddings" ] -= self ._position_offset
2716+ else :
2717+ self ._position_offset = None
2718+
2719+ def set_vocab (self ):
2720+ """Support BPE tokenizers for roberta models"""
2721+ bpe_tok_path = self .dir_model / "tokenizer.json"
2722+ if bpe_tok_path .exists ():
2723+ self ._set_vocab_gpt2 ()
2724+ self .gguf_writer .add_add_bos_token (True )
2725+ self .gguf_writer .add_add_eos_token (True )
2726+
2727+ # we need this to validate the size of the token_type embeddings
2728+ # though currently we are passing all zeros to the token_type embeddings
2729+ # "Sequence A" or "Sequence B"
2730+ self .gguf_writer .add_token_type_count (self .hparams .get ("type_vocab_size" , 1 ))
2731+
2732+ else :
2733+ return super ().set_vocab ()
2734+
2735+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
2736+ # if name starts with "roberta.", remove the prefix
2737+ # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
2738+ if name .startswith ("roberta." ):
2739+ name = name [8 :]
2740+
2741+ # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
2742+ if name == "embeddings.position_embeddings.weight" :
2743+ if self ._position_offset is not None :
2744+ data_torch = data_torch [self ._position_offset :,:]
2745+
2746+ return super ().modify_tensors (data_torch , name , bid )
2747+
2748+
27042749@Model .register ("NomicBertModel" )
27052750class NomicBertModel (BertModel ):
27062751 model_arch = gguf .MODEL_ARCH .NOMIC_BERT
0 commit comments