-
Notifications
You must be signed in to change notification settings - Fork 17
/
datasets.py
157 lines (130 loc) · 5.55 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import json
import os
import warnings
from continuum import ClassIncremental
from continuum.datasets import CIFAR100, ImageNet100, ImageFolderDataset
from timm.data import create_transform
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision import transforms
from torchvision.datasets.folder import ImageFolder, default_loader
from torchvision.transforms import functional as Fv
try:
interpolation = Fv.InterpolationMode.BICUBIC
except:
interpolation = 3
class ImageNet1000(ImageFolderDataset):
"""Continuum dataset for datasets with tree-like structure.
:param train_folder: The folder of the train data.
:param test_folder: The folder of the test data.
:param download: Dummy parameter.
"""
def __init__(
self,
data_path: str,
train: bool = True,
download: bool = False,
):
super().__init__(data_path=data_path, train=train, download=download)
def get_data(self):
if self.train:
self.data_path = os.path.join(self.data_path, "train")
else:
self.data_path = os.path.join(self.data_path, "val")
return super().get_data()
class INatDataset(ImageFolder):
def __init__(self, root, train=True, year=2018, transform=None, target_transform=None,
category='name', loader=default_loader):
self.transform = transform
self.loader = loader
self.target_transform = target_transform
self.year = year
# assert category in ['kingdom','phylum','class','order','supercategory','family','genus','name']
path_json = os.path.join(root, f'{"train" if train else "val"}{year}.json')
with open(path_json) as json_file:
data = json.load(json_file)
with open(os.path.join(root, 'categories.json')) as json_file:
data_catg = json.load(json_file)
path_json_for_targeter = os.path.join(root, f"train{year}.json")
with open(path_json_for_targeter) as json_file:
data_for_targeter = json.load(json_file)
targeter = {}
indexer = 0
for elem in data_for_targeter['annotations']:
king = []
king.append(data_catg[int(elem['category_id'])][category])
if king[0] not in targeter.keys():
targeter[king[0]] = indexer
indexer += 1
self.nb_classes = len(targeter)
self.samples = []
for elem in data['images']:
cut = elem['file_name'].split('/')
target_current = int(cut[2])
path_current = os.path.join(root, cut[0], cut[2], cut[3])
categors = data_catg[target_current]
target_current_true = targeter[categors[category]]
self.samples.append((path_current, target_current_true))
# __getitem__ and __len__ inherited from ImageFolder
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set.lower() == 'cifar':
dataset = CIFAR100(args.data_path, train=is_train, download=True)
elif args.data_set.lower() == 'imagenet100':
dataset = ImageNet100(
args.data_path, train=is_train,
data_subset=os.path.join('./imagenet100_splits', "train_100.txt" if is_train else "val_100.txt")
)
elif args.data_set.lower() == 'imagenet1000':
dataset = ImageNet1000(args.data_path, train=is_train)
else:
raise ValueError(f'Unknown dataset {args.data_set}.')
scenario = ClassIncremental(
dataset,
initial_increment=args.initial_increment,
increment=args.increment,
transformations=transform.transforms,
class_order=args.class_order
)
nb_classes = scenario.nb_classes
return scenario, nb_classes
def build_transform(is_train, args):
if args.aa == 'none':
args.aa = None
with warnings.catch_warnings():
resize_im = args.input_size > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation='bicubic',
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
if args.input_size == 32 and args.data_set == 'CIFAR':
transform.transforms[-1] = transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=interpolation), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
if args.input_size == 32 and args.data_set == 'CIFAR':
# Normalization values for CIFAR100
t.append(transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)))
else:
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)