-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearnability.html
50 lines (38 loc) · 2.29 KB
/
learnability.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
<!DOCTYPE html>
<html lang="en">
<head>
<title>Arghya Dutta</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="apple-touch-icon" sizes="180x180" href="../assets/favicon_io/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="../assets/favicon_io/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="../assets/favicon_io/favicon-16x16.png">
<link rel="manifest" href="../assets/favicon_io/site.webmanifest">
<link rel="stylesheet" href="../assets/style.css">
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"> </script>
<script>window.MathJax = { tex: { inlineMath: [['$', '$'], ['\\(', '\\)']] } };</script>
</head>
<em><a href="../notebooks.html">Notebooks</a></em>
<h1>Learnability in Machine Learning</h1>
<dl>
<dt> Input : $\mathbf{x}$ (customer application)</dt>
<dt> Output : $y$ (good/bad customer)</dt>
<dt> Target function : $f:\mathcal{X}\rightarrow\mathcal{Y}$ (ideal credit approval formula)</dt>
<dt> Data : $(\mathbf{x}_1, y_1),(\mathbf{x}_2, y_2),\cdots,(\mathbf{x}_N, y_N)$ (historical records of credit customers)</dt>
<dt> Hypothesis set : $\mathcal{H}={h}$. It plays a pivotal role. It can be a linear regression, a neural network, a support vector machine…</dt>
<dt> Hypothesis : $g:\mathcal{X}\rightarrow\mathcal{Y}$, $g \in \mathcal{H}$. <em>We hope that $g$ approximates $f$ well, that is the goal of learning.</em></dt>
<dt> Learning algorithm: $\mathcal{A}$ (e.g. back-propagation for neural network.) It does the searching and produces $g$.</dt>
<dt> The hypothesis set and the learning algorithm $(\mathcal{H}, \mathcal{A})$ together are known as the **learning model**.</dt>
<dt> <em>We don't know $f$, we can only guess what it is from the data. The learning algorithm picks $g\simeq f$ from the hypothesis set $\mathcal{H}$.</em></dt>
</dl>
<h2>Online Resources</h2>
<dl>
<dt>
<a href="https://www.youtube.com/playlist?list=PLD63A284B7615313A">Machine learning course</a> by Yaser Abu-Mostafa.
</dt>
<dd>
Especially useful for its introductory discussion on learnability and VC dimension.
</dd>
</dl>
</body>
</html>