-
Notifications
You must be signed in to change notification settings - Fork 3
/
baseline.py
213 lines (190 loc) · 9.4 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import numpy as np
import torch.nn as nn
from dataset import data_generator
from torch.optim import Adam
import time
import math
from utils import *
from monotonic_gru import MonotonicGru
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Baseline(nn.Module):
def __init__(self, mapper, embedding_dimensions, data_dir=None, use_loc_ind=False, shared_layer_dim=512, hidden_dim=512, dropout=0.25, model='nemo', num_gru_layers=1, pre_trained=False):
super().__init__()
# model can be 'gru', 'm_gru'
self.use_loc_ind = use_loc_ind
self.embedding_dimensions = embedding_dimensions
self.company_embed = nn.Embedding(
max(mapper['companies'].values())+1, embedding_dimensions['companies'])
self.school_embed = nn.Embedding(
max(mapper['schools'].values())+1, embedding_dimensions['schools'])
self.degree_embed = nn.Embedding(
max(mapper['degrees'].values())+1, embedding_dimensions['degrees'])
self.time_embed = nn.Linear(1, embedding_dimensions['times'])
self.interval_embed = nn.Linear(1, embedding_dimensions['intervals'])
if use_loc_ind:
self.locality_embed = nn.Embedding(
max(mapper['localities'].values())+1, embedding_dimensions['locality'])
self.industry_embed = nn.Embedding(
max(mapper['industries'].values())+1, embedding_dimensions['industry'])
self.majors_embed = nn.Embedding(
max(mapper['majors'].values())+1, embedding_dimensions['majors'])
self.titles_embed = nn.Embedding(
max(mapper['occupations'].values())+1, embedding_dimensions['occupations'])
temp_dim = embedding_dimensions['industry'] + \
embedding_dimensions['locality']
self.total_input_dimension = sum(
embedding_dimensions.values()) - temp_dim-embedding_dimensions['skills']
self.total_fixed_dimension = temp_dim if use_loc_ind else 0
self.num_gru_layers = num_gru_layers
# Model parameter
self.model = model
if self.model == 'nemo':
self.rnn = nn.GRU(input_size=self.total_input_dimension, hidden_size=hidden_dim,
num_layers=num_gru_layers, batch_first=False, bidirectional=False)
elif self.model in {'nss'}:
self.rnn = MonotonicGru(input_size=self.total_input_dimension,
hidden_size=hidden_dim, num_layers=num_gru_layers, batch_first=False)
# Final Parameters
self.intermediate_layers = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(hidden_dim+self.total_fixed_dimension, shared_layer_dim),
nn.Dropout(dropout),
nn.ReLU()
)
self.company_final_layers = nn.Sequential(
nn.Linear(shared_layer_dim, 256),
nn.Dropout(dropout),
nn.ReLU(),
nn.Linear(256, embedding_dimensions['companies'])
)
self.title_final_layers = nn.Sequential(
nn.Linear(shared_layer_dim, 256),
nn.Dropout(dropout),
nn.ReLU(),
nn.Linear(256, embedding_dimensions['occupations'])
)
if self.model == 'nemo':
self.skill_final_layers = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(hidden_dim+self.total_fixed_dimension,
embedding_dimensions['skills'])
)
self.skill_embed = nn.Linear(
embedding_dimensions['skills'], max(mapper['skills'].values())+1)
elif self.model == 'nss':
self.skill_final_layers = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(hidden_dim+self.total_fixed_dimension,
embedding_dimensions['skills'])
)
self.skill_embed = nn.Linear(
embedding_dimensions['skills'], max(mapper['skills'].values())+1)
self.num_skill_label = max(mapper['skills'].values())+1
if pre_trained:
self.company_embed.weight.data = torch.load(
data_dir+'company_pretrained.pt')
self.titles_embed.weight.data = torch.load(
data_dir+'title_pretrained.pt')
self.skill_embed.weight.data = torch.load(
data_dir+'skill_pretrained.pt')
self.skill_embed.bias.data = torch.zeros(
max(mapper['skills'].values())+1)
def forward(self, batch, negative_batch):
# unpack data
L, T, B, job_mask, edu_mask, locality, industry, times, intervals, schools, degrees, majors, companies, titles, skill_label = tuple(
i.to(device) if isinstance(i, torch.Tensor) else i for i in batch)
# setup mask
company_mask = companies > 0 # T, B
title_mask = titles > 0 # T, B
total_time_steps = job_mask.sum()
if self.use_loc_ind is False:
del locality, industry
# unpack negative data
negative_companies, negative_titles, company_qt, title_qt = tuple(
i.to(device) if isinstance(i, torch.Tensor) else i for i in negative_batch)
# Majors
majors_embed = self.majors_embed(majors) # T, B, 20
# Occupation
titles_embed = self.titles_embed(titles) # T,B, 20
negative_titles_embed = self.titles_embed(
negative_titles) # T, B, N, 20
all_titles_embed = torch.cat([titles_embed.unsqueeze(
2), negative_titles_embed], dim=2) # T, B, N+1, 20
# companies
companies_embed = self.company_embed(companies) # T, B, 20
negative_companies_embed = self.company_embed(
negative_companies) # T, B, N , 20
all_companies_embed = torch.cat([companies_embed.unsqueeze(
2), negative_companies_embed], dim=2) # T, B, N+1, 20
# Embed
if self.use_loc_ind:
# locality
locality_embed = self.locality_embed(locality).expand(T, B, -1)
industry_embed = self.industry_embed(industry).expand(T, B, -1)
#locality_embed, industry_embed
input_fixed_embeddings = torch.cat(
[locality_embed, industry_embed], dim=-1) # T, B, H1
# schools
schools_embed = self.school_embed(schools)
degrees_embed = self.degree_embed(degrees)
times = (times.float().unsqueeze(2)-180.)/30.
times_embed = self.time_embed(times)
intervals_ = (intervals.float().unsqueeze(2) - 5.)/5.
intervals_embed = self.interval_embed(intervals_)
# input Embedding
input_edu_embeddings = torch.cat(
[degrees_embed, schools_embed, majors_embed], dim=-1)*edu_mask.unsqueeze(2) # T, B, H1
input_job_embeddings = torch.cat(
[companies_embed, titles_embed], dim=-1)*job_mask.unsqueeze(2) # T, B, H1
input_embeddings = torch.cat(
[input_edu_embeddings, input_job_embeddings, intervals_embed, times_embed], dim=-1)
# Run RNN #T,B, H and B,H
hidden_states, last_states = self.run_rnn(
input_embeddings, self.rnn, L, B, T, self.model)
# Add fixed info
if self.use_loc_ind:
augmented_hidden_states = torch.cat(
[hidden_states, input_fixed_embeddings], dim=-1)
augmented_last_states = torch.cat(
[last_states, input_fixed_embeddings[0, :, :]], dim=-1)
else:
augmented_hidden_states = hidden_states
augmented_last_states = last_states
shared_output = self.intermediate_layers(
augmented_hidden_states) # T, B, 100
# predict companies (T, B, 100)
company_shared_layer = self.company_final_layers(
shared_output) # T, B , 100
# loss
company_loss = (restricted_sigmoid(company_shared_layer,
all_companies_embed, company_qt, company_mask)).sum()
# predict title (T, B, 100)
title_shared_layer = self.title_final_layers(
shared_output) # T, B , 100
# loss
title_loss = (restricted_sigmoid(title_shared_layer,
all_titles_embed, title_qt, title_mask)).sum()
# predict skills (B, 100)
skill_shared_layer = self.skill_embed(
self.skill_final_layers(augmented_last_states)) # B, number_skills
# loss
skill_loss_fn = torch.nn.BCEWithLogitsLoss(reduction='none')
skill_loss = (skill_loss_fn(skill_shared_layer, skill_label)).mean(
dim=-1).sum() # B, S
total_loss = (company_loss+title_loss)/total_time_steps+skill_loss/B
return total_loss
def run_rnn(self, data_embed, rnn, data_length, batch_size, max_len, model):
if model == 'nemo':
packed_data = torch.nn.utils.rnn.pack_padded_sequence(
data_embed, lengths=(data_length), batch_first=False, enforce_sorted=False)
packed_output, ht = rnn(packed_data)
ht = ht.permute(1, 2, 0).contiguous().reshape(batch_size, -1)
output, input_sizes = torch.nn.utils.rnn.pad_packed_sequence(
packed_output, batch_first=False)
elif model in {'nss'}:
output, ht = rnn(data_embed, data_length)
init_state = torch.zeros(1, batch_size, output.shape[-1]).to(device)
# append init states
output = torch.cat([init_state, output[:-1, :, :]], dim=0)
return output, ht