-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathmulti_lrr_gpu.m
222 lines (205 loc) · 4.74 KB
/
multi_lrr_gpu.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
function [ZZ,Z,E] = multi_lrr(X,lambda,alpha)
% implement the algorithm described in paper "Multi-task Low-rank Affinity Pursuit for Image Segmentation"
% for test use, hard code the affinity matrix number
k=size(X,1); % k*1 cell array, k views
[m,n]=size(X{1}); % every view has the same dimension
% initial matrix cell array
E=cell(k,1);
for i=1:k
E{i}=zeros(m,n);
end
J=cell(k,1);
for i=1:k
J{i}=zeros(n,n);
end
S=cell(k,1);
for i=1:k
S{i}=zeros(n,n);
end
Z=cell(k,1);
for i=1:k
Z{i}=zeros(n,n);
end
W=cell(k,1);
for i=1:k
W{i}=zeros(n,n);
end
Y=cell(k,1);
for i=1:k
Y{i}=zeros(m,n);
end
V=cell(k,1);
for i=1:k
V{i}=zeros(n,n);
end
ZZ=zeros(k,n*n);
% k's iteration vars
Ek=cell(k,1);
for i=1:k
Ek{i}=zeros(m,n);
end
Jk=cell(k,1);
for i=1:k
Jk{i}=zeros(n,n);
end
Sk=cell(k,1);
for i=1:k
Sk{i}=zeros(n,n);
end
Zk=cell(k,1);
for i=1:k
Zk{i}=zeros(n,n);
end
% parameters
mu=1e-6;
max_mu=10^10;
rho=1.9;
epsilon=1e-4;
epsilon2=1e-5; % must be small!
% pre caculate matrix value
xtx=cell(k,1);
for i=1:k
xtx{i}=X{i}'*X{i};
end
invx=cell(k,1);
for i=1:k
invx{i}=inv(xtx{i}+eye(n));
end
Xf=cell(k,1);
for i=1:k
Xf{i}=norm(X{i},'fro');
end
% the residual error and the error between Z,J,S
Xc=cell(k,1);
ZJc=cell(k,1);
ZSc=cell(k,1);
sv=cell(k,1);
for i=1:k
sv{i}=0;
end
svp=cell(k,1);
for i=1:k
svp{i}=0;
end
F=cell(k,1);
MAX_ITER=1000;
iter=0;
convergenced=false;
while ~convergenced
if iter>MAX_ITER
fprintf(1,'max iter num reached!\n');
break;
end
tic
% update J_i
for i=1:k
Jk{i}=J{i};
[JT,svpt]=singular_value_shrinkage_gpu(Z{i}+W{i}/mu,1/mu);
% [JT,svpt]=singular_value_shrinkage(Z{i}+W{i}/mu,1/mu);
J{i}=JT;
svp{i}=svpt;
end
t=toc;
fprintf(1,'singular_value_shrinkage takes %f\n',t);
% update S_i
tic
for i=1:k
Sk{i}=S{i};
S{i}=invx{i}*(xtx{i}-X{i}'*E{i}+Z{i}+(X{i}'*Y{i}+V{i}-W{i})/mu);
end
t=toc;
fprintf(1,'update S takes %f\n',t);
% update Z
for i=1:k
Zk{i}=Z{i};
F{i}=(J{i}+S{i}-(W{i}+V{i})*mu)/2;
end
M=[];
for i=1:k
M=[M;reshape(F{i}',1,n*n)];
end
% update ZZ
ZZ=l21(M,alpha/(2*mu));
% update Z_i
for i=1:k
Zk{i}=Z{i};
Z{i}=reshape(ZZ(i,:),n,n)';
end
% update E_i
for i=1:k
Ek{i}=E{i};
E{i}=l21(X{i}-X{i}*S{i}+Y{i}/mu,lambda/(2*mu)); % bug fixed, parameter should be lambda/(2*mu), not lambda/mu
end
for i=1:k
Xc{i}=X{i}-X{i}*S{i}-E{i};
ZJc{i}=Z{i}-J{i};
ZSc{i}=Z{i}-S{i};
end
% check convergence
% find the max error in multi views
vals=zeros(k,1);
for i=1:k
vals(i)=norm(Xc{i},'fro')/Xf{i};
end
changeX=max(vals);
for i=1:k
vals(i)=norm(ZJc{i},'fro')/Xf{i};
end
changeZJ=max(vals);
for i=1:k
vals(i)=norm(ZSc{i},'fro')/Xf{i};
end
changeZS=max(vals);
for i=1:k
vals(i)=norm(Zk{i}-Z{i},'fro')/Xf{i};
end
changeZ=max(vals);
for i=1:k
vals(i)=norm(Jk{i}-J{i},'fro')/Xf{i};
end
changeJ=max(vals);
for i=1:k
vals(i)=norm(Sk{i}-S{i},'fro')/Xf{i};
end
changeS=max(vals);
for i=1:k
vals(i)=norm(Ek{i}-E{i},'fro')/Xf{i};
end
changeE=max(vals);
tmp=[changeZ changeJ changeS changeE ];
gap=mu*max(tmp);
if mod(iter,50)==0
fprintf(1,'===========================================================================================================\n');
fprintf(1,'gap between two iteration is %f,mu is %f\n',gap,mu);
fprintf(1,'iter %d,mu is %f,ResidualX is %f,changeZJ is %f,changeZS is %f\n',iter,mu,changeX,changeZJ,changeZS);
for i=1:k
fprintf(1,'svp%d %d,',i,svp{i});
end
fprintf(1,'\n');
end
% if changeX <= epsilon && changeZJ <= epsilon && changeZS <= epsilon
if changeX <= epsilon && gap <=epsilon2 && changeZJ <= epsilon && changeZS <= epsilon
convergenced=true;
fprintf(2,'convergenced, iter is %d\n',iter);
fprintf(2,'iter %d,mu is %f,ResidualX is %f,changeZJ is %f,changeZS is %f\n',iter,mu,changeX,changeZJ,changeZS);
for i=1:k
fprintf(1,'svp%d %d,',i,svp{i});
end
fprintf(1,'\n');
end
% update multipliers
for i=1:k
Y{i}=Y{i}+mu*Xc{i};
end
for i=1:k
W{i}=W{i}+mu*ZJc{i};
end
for i=1:k
V{i}=V{i}+mu*ZSc{i};
end
% update parameters
if gap < epsilon2
mu=min(rho*mu,max_mu);
end
iter=iter+1;
end