diff --git a/README.md b/README.md index 619cffb4bf..3fa9701f65 100644 --- a/README.md +++ b/README.md @@ -23,6 +23,18 @@ I'm fortunate to be able to dedicate significant time and money of my own suppor ## What's New +### Jan 14, 2022 +* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... +* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features +* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way... + * `mnasnet_small` - 65.6 top-1 + * `mobilenetv2_050` - 65.9 + * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1 + * `semnasnet_075` - 73 + * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0 +* TinyNet models added by [rsomani95](https://github.com/rsomani95) +* LCNet added via MobileNetV3 architecture + ### Nov 22, 2021 * A number of updated weights anew new model defs * `eca_halonext26ts` - 79.5 @ 256 @@ -255,10 +267,12 @@ All model architecture families include variants with pretrained weights. There A full version of the list below with source links can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/models/). * Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723 +* BEiT - https://arxiv.org/abs/2106.08254 * Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 * Bottleneck Transformers - https://arxiv.org/abs/2101.11605 * CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239 * CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399 +* ConvNeXt - https://arxiv.org/abs/2201.03545 * ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697 * CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 * DeiT (Vision Transformer) - https://arxiv.org/abs/2012.12877 @@ -276,11 +290,11 @@ A full version of the list below with source links can be found in the [document * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 * MobileNet-V2 - https://arxiv.org/abs/1801.04381 * Single-Path NAS - https://arxiv.org/abs/1904.02877 + * TinyNet - https://arxiv.org/abs/2010.14819 * GhostNet - https://arxiv.org/abs/1911.11907 * gMLP - https://arxiv.org/abs/2105.08050 * GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 * Halo Nets - https://arxiv.org/abs/2103.12731 -* HardCoRe-NAS - https://arxiv.org/abs/2102.11646 * HRNet - https://arxiv.org/abs/1908.07919 * Inception-V3 - https://arxiv.org/abs/1512.00567 * Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 @@ -288,7 +302,11 @@ A full version of the list below with source links can be found in the [document * LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136 * MLP-Mixer - https://arxiv.org/abs/2105.01601 * MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 + * FBNet-V3 - https://arxiv.org/abs/2006.02049 + * HardCoRe-NAS - https://arxiv.org/abs/2102.11646 + * LCNet - https://arxiv.org/abs/2109.15099 * NASNet-A - https://arxiv.org/abs/1707.07012 +* NesT - https://arxiv.org/abs/2105.12723 * NFNet-F - https://arxiv.org/abs/2102.06171 * NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692 * PNasNet - https://arxiv.org/abs/1712.00559 @@ -314,6 +332,7 @@ A full version of the list below with source links can be found in the [document * Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112 * TResNet - https://arxiv.org/abs/2003.13630 * Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf +* Visformer - https://arxiv.org/abs/2104.12533 * Vision Transformer - https://arxiv.org/abs/2010.11929 * VovNet V2 and V1 - https://arxiv.org/abs/1911.06667 * Xception - https://arxiv.org/abs/1610.02357 diff --git a/benchmark.py b/benchmark.py index f1604a0474..06f23a72e6 100755 --- a/benchmark.py +++ b/benchmark.py @@ -21,7 +21,7 @@ from timm.models import create_model, is_model, list_models from timm.optim import create_optimizer_v2 from timm.data import resolve_data_config -from timm.utils import AverageMeter, setup_default_logging +from timm.utils import setup_default_logging, set_jit_fuser has_apex = False @@ -95,7 +95,8 @@ help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') - +parser.add_argument('--fuser', default='', type=str, + help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") # train optimizer parameters @@ -186,7 +187,7 @@ def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False class BenchmarkRunner: def __init__( self, model_name, detail=False, device='cuda', torchscript=False, precision='float32', - num_warm_iter=10, num_bench_iter=50, use_train_size=False, **kwargs): + fuser='', num_warm_iter=10, num_bench_iter=50, use_train_size=False, **kwargs): self.model_name = model_name self.detail = detail self.device = device @@ -194,6 +195,8 @@ def __init__( self.channels_last = kwargs.pop('channels_last', False) self.amp_autocast = torch.cuda.amp.autocast if self.use_amp else suppress + if fuser: + set_jit_fuser(fuser) self.model = create_model( model_name, num_classes=kwargs.pop('num_classes', None), @@ -311,10 +314,7 @@ def __init__(self, model_name, device='cuda', torchscript=False, **kwargs): super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) self.model.train() - if kwargs.pop('smoothing', 0) > 0: - self.loss = nn.CrossEntropyLoss().to(self.device) - else: - self.loss = nn.CrossEntropyLoss().to(self.device) + self.loss = nn.CrossEntropyLoss().to(self.device) self.target_shape = tuple() self.optimizer = create_optimizer_v2( @@ -477,6 +477,7 @@ def decay_batch_exp(batch_size, factor=0.5, divisor=16): def _try_run(model_name, bench_fn, initial_batch_size, bench_kwargs): batch_size = initial_batch_size results = dict() + error_str = 'Unknown' while batch_size >= 1: torch.cuda.empty_cache() try: @@ -484,13 +485,13 @@ def _try_run(model_name, bench_fn, initial_batch_size, bench_kwargs): results = bench.run() return results except RuntimeError as e: - e_str = str(e) - print(e_str) - if 'channels_last' in e_str: - print(f'Error: {model_name} not supported in channels_last, skipping.') + error_str = str(e) + if 'channels_last' in error_str: + _logger.error(f'{model_name} not supported in channels_last, skipping.') break - print(f'Error: "{e_str}" while running benchmark. Reducing batch size to {batch_size} for retry.') + _logger.warning(f'"{error_str}" while running benchmark. Reducing batch size to {batch_size} for retry.') batch_size = decay_batch_exp(batch_size) + results['error'] = error_str return results @@ -532,13 +533,14 @@ def benchmark(args): model_results = OrderedDict(model=model) for prefix, bench_fn in zip(prefixes, bench_fns): run_results = _try_run(model, bench_fn, initial_batch_size=batch_size, bench_kwargs=bench_kwargs) - if prefix: + if prefix and 'error' not in run_results: run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()} model_results.update(run_results) - param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) - model_results.setdefault('param_count', param_count) - model_results.pop('train_param_count', 0) - return model_results if model_results['param_count'] else dict() + if 'error' not in model_results: + param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) + model_results.setdefault('param_count', param_count) + model_results.pop('train_param_count', 0) + return model_results def main(): @@ -582,13 +584,15 @@ def main(): sort_key = 'train_samples_per_sec' elif 'profile' in args.bench: sort_key = 'infer_gmacs' + results = filter(lambda x: sort_key in x, results) results = sorted(results, key=lambda x: x[sort_key], reverse=True) if len(results): write_results(results_file, results) else: results = benchmark(args) - json_str = json.dumps(results, indent=4) - print(json_str) + + # output results in JSON to stdout w/ delimiter for runner script + print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results): diff --git a/docs/training_hparam_examples.md b/docs/training_hparam_examples.md index c2afc2b108..74b9790e76 100644 --- a/docs/training_hparam_examples.md +++ b/docs/training_hparam_examples.md @@ -3,12 +3,12 @@ ## EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5 These params are for dual Titan RTX cards with NVIDIA Apex installed: -`./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016` +`./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016` ## MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5 This params are for dual Titan RTX cards with NVIDIA Apex installed: -`./distributed_train.sh 2 /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce` +`./distributed_train.sh 2 /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce` ## SE-ResNeXt-26-D and SE-ResNeXt-26-T These hparams (or similar) work well for a wide range of ResNet architecture, generally a good idea to increase the epoch # as the model size increases... ie approx 180-200 for ResNe(X)t50, and 220+ for larger. Increase batch size and LR proportionally for better GPUs or with AMP enabled. These params were for 2 1080Ti cards: @@ -21,7 +21,7 @@ The training of this model started with the same command line as EfficientNet-B2 ## EfficientNet-B0 with RandAugment - 77.7 top-1, 95.3 top-5 [Michael Klachko](https://github.com/michaelklachko) achieved these results with the command line for B2 adapted for larger batch size, with the recommended B0 dropout rate of 0.2. -`./distributed_train.sh 2 /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048` +`./distributed_train.sh 2 /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048` ## ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5 @@ -32,11 +32,11 @@ Trained on two older 1080Ti cards, this took a while. Only slightly, non statist ## EfficientNet-ES (EdgeTPU-Small) with RandAugment - 78.066 top-1, 93.926 top-5 Trained by [Andrew Lavin](https://github.com/andravin) with 8 V100 cards. Model EMA was not used, final checkpoint is the average of 8 best checkpoints during training. -`./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064` +`./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064` ## MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5 -`./distributed_train.sh 2 /imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9` +`./distributed_train.sh 2 /imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9` ## ResNeXt-50 32x4d w/ RandAugment - 79.762 top-1, 94.60 top-5 diff --git a/results/benchmark-infer-amp-nchw-pt110-cu113-rtx3090.csv b/results/benchmark-infer-amp-nchw-pt110-cu113-rtx3090.csv new file mode 100644 index 0000000000..12f3505bfc --- /dev/null +++ b/results/benchmark-infer-amp-nchw-pt110-cu113-rtx3090.csv @@ -0,0 +1,704 @@ +model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count +tinynet_e,38522.1,6.633,256,106,0.03,0.69,2.04 +mobilenetv3_small_050,32214.84,7.935,256,224,0.03,0.92,1.59 +lcnet_035,31434.42,8.133,256,224,0.03,1.04,1.64 +lcnet_050,27990.74,9.135,256,224,0.05,1.26,1.88 +tf_mobilenetv3_small_minimal_100,24613.65,10.389,256,224,0.06,1.41,2.04 +mobilenetv3_small_075,23970.62,10.668,256,224,0.05,1.3,2.04 +tinynet_d,22226.54,11.506,256,152,0.05,1.42,2.34 +mobilenetv3_small_100,20961.66,12.202,256,224,0.06,1.42,2.54 +tf_mobilenetv3_small_075,20346.43,12.57,256,224,0.05,1.3,2.04 +tf_mobilenetv3_small_100,18514.72,13.814,256,224,0.06,1.42,2.54 +lcnet_075,18250.57,14.016,256,224,0.1,1.99,2.36 +levit_128s,17514.74,14.605,256,224,0.31,1.88,7.78 +mnasnet_small,16174.2,15.817,256,224,0.07,2.16,2.03 +mobilenetv2_035,16065.18,15.924,256,224,0.07,2.86,1.68 +regnetx_002,15056.58,16.991,256,224,0.2,2.16,2.68 +ghostnet_050,14915.33,17.152,256,224,0.05,1.77,2.59 +lcnet_100,14745.93,17.35,256,224,0.16,2.52,2.95 +regnety_002,13600.49,18.812,256,224,0.2,2.17,3.16 +mobilenetv2_050,12921.59,19.8,256,224,0.1,3.64,1.97 +mnasnet_050,12170.95,21.022,256,224,0.11,3.07,2.22 +levit_128,12112.09,21.125,256,224,0.41,2.71,9.21 +semnasnet_050,11653.92,21.956,256,224,0.11,3.44,2.08 +tinynet_c,11441.66,22.362,256,184,0.11,2.87,2.46 +levit_192,10512.15,24.341,256,224,0.66,3.2,10.95 +gernet_s,10252.23,24.96,256,224,0.75,2.65,8.17 +mixer_s32_224,9991.39,25.611,256,224,1.0,2.28,19.1 +mobilenetv3_large_075,9848.53,25.983,256,224,0.16,4.0,3.99 +ese_vovnet19b_slim_dw,9567.57,26.746,256,224,0.4,5.28,1.9 +lcnet_150,9561.66,26.763,256,224,0.34,3.79,4.5 +vit_small_patch32_224,9406.05,27.206,256,224,1.15,2.5,22.88 +regnetx_004,9291.08,27.542,256,224,0.4,3.14,5.16 +tf_mobilenetv3_large_minimal_100,9242.84,27.684,256,224,0.22,4.4,3.92 +tf_mobilenetv3_large_075,8812.22,29.037,256,224,0.16,4.0,3.99 +mobilenetv3_rw,8698.97,29.417,256,224,0.23,4.41,5.48 +vit_tiny_r_s16_p8_224,8636.97,29.629,256,224,0.44,2.06,6.34 +mobilenetv3_large_100,8617.52,29.696,256,224,0.23,4.41,5.48 +mobilenetv3_large_100_miil,8613.51,29.709,256,224,0.23,4.41,5.48 +ssl_resnet18,8520.11,30.036,256,224,1.82,2.48,11.69 +gluon_resnet18_v1b,8514.08,30.057,256,224,1.82,2.48,11.69 +resnet18,8481.72,30.171,256,224,1.82,2.48,11.69 +swsl_resnet18,8383.36,30.526,256,224,1.82,2.48,11.69 +ghostnet_100,8302.41,30.823,256,224,0.15,3.55,5.18 +mobilenetv2_075,8284.54,30.89,256,224,0.22,5.86,2.64 +mnasnet_075,8193.74,31.233,256,224,0.23,4.77,3.17 +seresnet18,7935.21,32.25,256,224,1.82,2.49,11.78 +levit_256,7830.25,32.682,256,224,1.13,4.23,18.89 +tf_mobilenetv3_large_100,7782.64,32.881,256,224,0.23,4.41,5.48 +legacy_seresnet18,7750.12,33.02,256,224,1.82,2.49,11.78 +regnetx_006,7679.18,33.326,256,224,0.61,3.98,6.2 +semnasnet_075,7673.81,33.35,256,224,0.23,5.54,2.91 +mobilenetv2_100,7580.19,33.761,256,224,0.31,6.68,3.5 +regnety_004,7520.0,34.031,256,224,0.41,3.89,4.34 +tinynet_b,7462.13,34.294,256,188,0.21,4.44,3.73 +hardcorenas_a,7310.63,35.006,256,224,0.23,4.38,5.26 +hardcorenas_b,7243.65,35.33,256,224,0.26,5.09,5.18 +mnasnet_100,7211.43,35.488,256,224,0.33,5.46,4.38 +mnasnet_b1,7197.57,35.556,256,224,0.33,5.46,4.38 +resnet18d,7139.78,35.845,256,224,2.06,3.29,11.71 +mnasnet_a1,6803.23,37.618,256,224,0.32,6.23,3.89 +ghostnet_130,6799.96,37.636,256,224,0.24,4.6,7.36 +semnasnet_100,6798.37,37.645,256,224,0.32,6.23,3.89 +hardcorenas_c,6791.21,37.684,256,224,0.28,5.01,5.52 +spnasnet_100,6742.99,37.955,256,224,0.35,6.03,4.42 +regnety_006,6741.6,37.962,256,224,0.61,4.33,6.06 +ese_vovnet19b_slim,6727.44,38.04,256,224,1.69,3.52,3.17 +hardcorenas_d,6616.74,38.678,256,224,0.3,4.93,7.5 +tf_efficientnetv2_b0,6404.53,39.959,256,224,0.73,4.77,7.14 +regnetx_008,6126.62,41.774,256,224,0.81,5.15,7.26 +efficientnet_lite0,5820.53,43.971,256,224,0.4,6.74,4.65 +dla46_c,5815.5,44.006,256,224,0.58,4.5,1.3 +resnetblur18,5731.2,44.657,256,224,2.34,3.39,11.69 +mobilenetv2_110d,5728.31,44.679,256,224,0.45,8.71,4.52 +tinynet_a,5715.04,44.781,256,192,0.35,5.41,6.19 +rexnet_100,5705.81,44.855,256,224,0.41,7.44,4.8 +rexnetr_100,5702.38,44.882,256,224,0.43,7.72,4.88 +hardcorenas_f,5633.4,45.432,256,224,0.35,5.57,8.2 +regnety_008,5562.41,46.011,256,224,0.81,5.25,6.26 +hardcorenas_e,5407.35,47.331,256,224,0.35,5.65,8.07 +fbnetc_100,5335.41,47.97,256,224,0.4,6.51,5.57 +skresnet18,5314.32,48.161,256,224,1.82,3.24,11.96 +tf_efficientnet_lite0,5277.93,48.492,256,224,0.4,6.74,4.65 +efficientnet_b0,5118.94,50.0,256,224,0.4,6.75,5.29 +mobilenetv2_140,5111.46,50.073,256,224,0.6,9.57,6.11 +ese_vovnet19b_dw,5070.62,50.475,256,224,1.34,8.25,6.54 +mnasnet_140,5006.18,51.125,256,224,0.6,7.71,7.12 +efficientnet_b1_pruned,5001.01,51.178,256,240,0.4,6.21,6.33 +resnet34,4971.16,51.486,256,224,3.67,3.74,21.8 +gluon_resnet34_v1b,4968.4,51.515,256,224,3.67,3.74,21.8 +tv_resnet34,4947.3,51.734,256,224,3.67,3.74,21.8 +visformer_tiny,4922.23,51.997,256,224,1.27,5.72,10.32 +hrnet_w18_small,4823.01,53.067,256,224,1.61,5.72,13.19 +semnasnet_140,4792.63,53.404,256,224,0.6,8.87,6.11 +levit_384,4732.88,54.078,256,224,2.36,6.26,39.13 +tf_efficientnet_b0_ns,4689.2,54.583,256,224,0.4,6.75,5.29 +tf_efficientnet_b0_ap,4677.78,54.715,256,224,0.4,6.75,5.29 +tf_efficientnet_b0,4677.33,54.72,256,224,0.4,6.75,5.29 +seresnet34,4638.93,55.174,256,224,3.67,3.74,21.96 +selecsls42b,4636.17,55.206,256,224,2.98,4.62,32.46 +dla46x_c,4631.52,55.26,256,224,0.54,5.66,1.07 +selecsls42,4604.3,55.589,256,224,2.94,4.62,30.35 +deit_tiny_patch16_224,4580.12,55.882,256,224,1.26,5.97,5.72 +vit_tiny_patch16_224,4575.68,55.937,256,224,1.26,5.97,5.72 +gernet_m,4537.32,56.41,256,224,3.02,5.24,21.14 +deit_tiny_distilled_patch16_224,4513.87,56.702,256,224,1.27,6.01,5.91 +nf_regnet_b0,4512.73,56.717,256,256,0.64,5.58,8.76 +legacy_seresnet34,4498.05,56.902,256,224,3.67,3.74,21.96 +resnet34d,4471.13,57.245,256,224,3.91,4.54,21.82 +rexnetr_130,4425.1,57.84,256,224,0.68,9.81,7.61 +pit_ti_distilled_224,4357.18,58.742,256,224,0.71,6.23,5.1 +pit_ti_224,4345.5,58.9,256,224,0.7,6.19,4.85 +mixnet_s,4322.59,59.212,256,224,0.25,6.25,4.13 +dla60x_c,4316.36,59.296,256,224,0.59,6.01,1.32 +tf_efficientnetv2_b1,4297.02,59.563,256,240,1.21,7.34,8.14 +rexnet_130,4232.23,60.476,256,224,0.68,9.71,7.56 +xcit_nano_12_p16_224_dist,4222.67,60.614,256,224,0.56,4.17,3.05 +xcit_nano_12_p16_224,4207.85,60.827,256,224,0.56,4.17,3.05 +resnet26,4180.52,61.224,256,224,2.36,7.35,16.0 +resmlp_12_distilled_224,4174.74,61.31,256,224,3.01,5.5,15.35 +resmlp_12_224,4169.39,61.389,256,224,3.01,5.5,15.35 +mobilenetv2_120d,4149.08,61.689,256,224,0.69,11.97,5.83 +vit_base_patch32_224_sam,4128.66,61.994,256,224,4.41,5.01,88.22 +vit_base_patch32_224,4107.27,62.317,256,224,4.41,5.01,88.22 +tf_mixnet_s,4070.89,62.873,256,224,0.25,6.25,4.13 +repvgg_b0,4034.35,63.443,256,224,3.41,6.15,15.82 +mixer_b32_224,3992.12,64.115,256,224,3.24,6.29,60.29 +selecsls60,3976.19,64.371,256,224,3.59,5.52,30.67 +selecsls60b,3972.94,64.425,256,224,3.63,5.52,32.77 +rexnetr_150,3836.3,66.719,256,224,0.89,11.13,9.78 +efficientnet_lite1,3836.28,66.719,256,240,0.62,10.14,5.42 +resnet26d,3798.91,67.377,256,224,2.6,8.15,16.01 +dla34,3769.64,67.899,256,224,3.07,5.02,15.74 +rexnet_150,3681.94,69.516,256,224,0.9,11.21,9.73 +ecaresnet50d_pruned,3648.06,70.162,256,224,2.53,6.43,19.94 +nf_resnet26,3644.75,70.227,256,224,2.41,7.35,16.0 +tf_efficientnet_lite1,3554.59,72.006,256,240,0.62,10.14,5.42 +pit_xs_224,3526.31,72.586,256,224,1.4,7.71,10.62 +regnetx_016,3513.85,72.844,256,224,1.62,7.93,9.19 +pit_xs_distilled_224,3500.42,73.123,256,224,1.41,7.76,11.0 +fbnetv3_d,3391.58,75.47,256,256,0.68,11.1,10.31 +efficientnet_es_pruned,3370.79,75.934,256,224,1.81,8.73,5.44 +fbnetv3_b,3370.57,75.939,256,256,0.55,9.1,8.6 +efficientnet_es,3367.33,76.013,256,224,1.81,8.73,5.44 +efficientnet_b2_pruned,3361.3,76.15,256,260,0.73,9.13,8.31 +efficientnet_cc_b0_8e,3277.21,78.103,256,224,0.42,9.42,24.01 +mixer_s16_224,3266.14,78.369,256,224,3.79,5.97,18.53 +efficientnet_cc_b0_4e,3265.3,78.389,256,224,0.41,9.42,13.31 +tf_efficientnet_es,3259.95,78.516,256,224,1.81,8.73,5.44 +tf_efficientnetv2_b2,3255.37,78.626,256,260,1.72,9.84,10.1 +resnest14d,3217.37,79.556,256,224,2.76,7.33,10.61 +nf_seresnet26,3202.97,79.914,256,224,2.41,7.36,17.4 +nf_ecaresnet26,3189.01,80.265,256,224,2.41,7.36,16.0 +gernet_l,3181.93,80.443,256,256,4.57,8.0,31.08 +regnety_016,3102.97,82.489,256,224,1.63,8.04,11.2 +tf_efficientnet_cc_b0_8e,3093.44,82.743,256,224,0.42,9.42,24.01 +tf_efficientnet_cc_b0_4e,3085.55,82.954,256,224,0.41,9.42,13.31 +mixnet_m,3056.44,83.746,256,224,0.36,8.19,5.01 +skresnet34,3030.56,84.459,256,224,3.67,5.13,22.28 +resnext26ts,3023.16,84.668,256,256,2.43,10.52,10.3 +repvgg_a2,3004.59,85.192,256,224,5.7,6.26,28.21 +vit_tiny_r_s16_p8_384,3002.92,85.238,256,384,1.34,6.49,6.36 +legacy_seresnext26_32x4d,3001.06,85.291,256,224,2.49,9.39,16.79 +vit_small_patch32_384,2997.9,85.382,256,384,3.45,8.25,22.92 +xcit_tiny_12_p16_224_dist,2978.68,85.929,256,224,1.24,6.29,6.72 +xcit_tiny_12_p16_224,2968.51,86.225,256,224,1.24,6.29,6.72 +resnet26t,2964.54,86.343,256,256,3.35,10.52,16.01 +gmixer_12_224,2952.25,86.702,256,224,2.67,7.26,12.7 +seresnext26ts,2943.83,86.951,256,256,2.43,10.52,10.39 +eca_resnext26ts,2943.35,86.964,256,256,2.43,10.52,10.3 +efficientnet_lite2,2941.13,87.03,256,260,0.89,12.9,6.09 +tf_efficientnet_b1_ap,2928.7,87.399,256,240,0.71,10.88,7.79 +tf_efficientnet_b1,2924.32,87.53,256,240,0.71,10.88,7.79 +tf_efficientnet_b1_ns,2924.08,87.537,256,240,0.71,10.88,7.79 +tf_mixnet_m,2922.35,87.587,256,224,0.36,8.19,5.01 +gcresnext26ts,2878.37,88.928,256,256,2.43,10.53,10.48 +efficientnet_b1,2842.35,90.055,256,256,0.77,12.22,7.79 +ecaresnet101d_pruned,2827.84,90.516,256,224,3.48,7.69,24.88 +seresnext26tn_32x4d,2809.03,91.123,256,224,2.7,10.09,16.81 +ecaresnext50t_32x4d,2808.18,91.151,256,224,2.7,10.09,15.41 +seresnext26t_32x4d,2807.76,91.164,256,224,2.7,10.09,16.81 +ecaresnext26t_32x4d,2799.26,91.441,256,224,2.7,10.09,15.41 +seresnext26d_32x4d,2790.46,91.729,256,224,2.73,10.19,16.81 +ecaresnetlight,2759.56,92.757,256,224,4.11,8.42,30.16 +rexnetr_200,2747.9,93.151,256,224,1.59,15.11,16.52 +nf_regnet_b2,2743.38,93.303,256,272,1.22,9.27,14.31 +tf_efficientnet_lite2,2742.42,93.334,256,260,0.89,12.9,6.09 +nf_regnet_b1,2740.87,93.389,256,288,1.02,9.2,10.22 +crossvit_tiny_240,2729.62,93.771,256,240,1.57,9.08,7.01 +resnetv2_50,2688.33,95.214,256,224,4.11,11.11,25.55 +rexnet_200,2686.43,95.282,256,224,1.56,14.91,16.37 +crossvit_9_240,2684.97,95.332,256,240,1.85,9.52,8.55 +eca_botnext26ts_256,2675.06,95.687,256,256,2.46,11.6,10.59 +vgg11,2663.05,96.12,256,224,7.61,7.44,132.86 +botnet26t_256,2660.83,96.197,256,256,3.32,11.98,12.49 +tresnet_m,2657.08,96.334,256,224,5.74,7.31,31.39 +eca_halonext26ts,2619.52,97.716,256,256,2.44,11.46,10.76 +halonet26t,2612.17,97.992,256,256,3.19,11.69,12.48 +crossvit_9_dagger_240,2602.86,98.339,256,240,1.99,9.97,8.78 +efficientnet_b3_pruned,2602.84,98.342,256,300,1.04,11.86,9.86 +resnet50,2602.03,98.373,256,224,4.11,11.11,25.56 +tv_resnet50,2597.64,98.539,256,224,4.11,11.11,25.56 +gluon_resnet50_v1b,2593.37,98.702,256,224,4.11,11.11,25.56 +ssl_resnet50,2588.68,98.881,256,224,4.11,11.11,25.56 +swsl_resnet50,2588.5,98.887,256,224,4.11,11.11,25.56 +convit_tiny,2557.96,100.066,256,224,1.26,7.94,5.71 +vovnet39a,2552.48,100.283,256,224,7.09,6.73,22.6 +resnetv2_50t,2536.73,100.905,256,224,4.32,11.82,25.57 +resnetv2_50d,2523.31,101.442,256,224,4.35,11.92,25.57 +resnet32ts,2520.72,101.547,256,256,4.63,11.58,17.96 +resnet33ts,2487.04,102.921,256,256,4.76,11.66,19.68 +bat_resnext26ts,2486.58,102.938,256,256,2.53,12.51,10.73 +vit_small_resnet26d_224,2484.66,103.019,256,224,5.07,11.12,63.61 +ese_vovnet39b,2483.84,103.055,256,224,7.09,6.74,24.57 +cspresnet50,2476.24,103.369,256,256,4.54,11.5,21.62 +eca_vovnet39b,2474.83,103.43,256,224,7.09,6.74,22.6 +hrnet_w18_small_v2,2473.49,103.485,256,224,2.62,9.65,15.6 +gluon_resnet50_v1c,2461.53,103.989,256,224,4.35,11.92,25.58 +cspresnext50,2459.33,104.08,256,224,3.1,12.14,20.57 +resnet50t,2452.68,104.364,256,224,4.32,11.82,25.57 +gluon_resnet50_v1d,2447.81,104.572,256,224,4.35,11.92,25.58 +resnet50d,2444.17,104.728,256,224,4.35,11.92,25.58 +dpn68b,2437.01,105.034,256,224,2.35,10.47,12.61 +legacy_seresnet50,2425.37,105.54,256,224,3.88,10.6,28.09 +gmlp_ti16_224,2422.83,105.65,256,224,1.34,7.55,5.87 +seresnet33ts,2418.32,105.847,256,256,4.76,11.66,19.78 +eca_resnet33ts,2414.21,106.028,256,256,4.76,11.66,19.68 +dpn68,2412.98,106.079,256,224,2.35,10.47,12.61 +selecsls84,2409.11,106.251,256,224,5.9,7.57,50.95 +vgg11_bn,2392.35,106.996,256,224,7.62,7.44,132.87 +mixnet_l,2360.8,108.426,256,224,0.58,10.84,7.33 +gcresnet33ts,2355.59,108.666,256,256,4.76,11.68,19.88 +lambda_resnet26t,2353.44,108.765,256,256,3.02,11.87,10.96 +pit_s_224,2338.74,109.449,256,224,2.88,11.56,23.46 +dla60,2331.19,109.802,256,224,4.26,10.16,22.04 +cspresnet50w,2330.53,109.833,256,256,5.04,12.19,28.12 +seresnet50,2324.39,110.125,256,224,4.11,11.13,28.09 +resnest26d,2321.38,110.267,256,224,3.64,9.97,17.07 +pit_s_distilled_224,2320.78,110.295,256,224,2.9,11.64,24.04 +cspresnet50d,2313.66,110.634,256,256,4.86,12.55,21.64 +deit_small_patch16_224,2312.17,110.706,256,224,4.61,11.95,22.05 +vit_small_patch16_224,2301.45,111.22,256,224,4.61,11.95,22.05 +deit_small_distilled_patch16_224,2273.38,112.595,256,224,4.63,12.02,22.44 +tf_efficientnet_b2_ap,2266.39,112.943,256,260,1.02,13.83,9.11 +tf_efficientnet_b2,2265.35,112.996,256,260,1.02,13.83,9.11 +tf_efficientnet_b2_ns,2264.55,113.035,256,260,1.02,13.83,9.11 +tf_mixnet_l,2263.46,113.087,256,224,0.58,10.84,7.33 +densenet121,2251.23,113.702,256,224,2.87,6.9,7.98 +res2net50_48w_2s,2244.59,114.041,256,224,4.18,11.72,25.29 +tv_densenet121,2243.68,114.087,256,224,2.87,6.9,7.98 +resnetaa50d,2224.41,115.074,256,224,5.39,12.44,25.58 +seresnet50t,2204.01,116.141,256,224,4.32,11.83,28.1 +resnetblur50,2197.45,116.486,256,224,5.16,12.02,25.56 +haloregnetz_b,2191.27,116.814,256,224,1.97,11.94,11.68 +ecaresnet50d,2187.04,117.042,256,224,4.35,11.93,25.58 +resnetrs50,2155.43,118.757,256,224,4.48,12.14,35.69 +densenet121d,2152.18,118.936,256,224,3.11,7.7,8.0 +gluon_resnet50_v1s,2129.0,120.233,256,224,5.47,13.52,25.68 +visformer_small,2128.36,120.269,256,224,4.88,11.43,40.22 +resmlp_24_224,2126.97,120.348,256,224,5.96,10.91,30.02 +efficientnet_b2a,2125.57,120.427,256,288,1.12,16.2,9.11 +resmlp_24_distilled_224,2124.32,120.497,256,224,5.96,10.91,30.02 +efficientnet_b2,2121.96,120.632,256,288,1.12,16.2,9.11 +regnetx_032,2121.9,120.635,256,224,3.2,11.37,15.3 +adv_inception_v3,2116.52,120.939,256,299,5.73,8.97,23.83 +gluon_inception_v3,2110.53,121.285,256,299,5.73,8.97,23.83 +inception_v3,2106.47,121.518,256,299,5.73,8.97,23.83 +tf_inception_v3,2102.15,121.765,256,299,5.73,8.97,23.83 +vovnet57a,2101.83,121.786,256,224,8.95,7.52,36.64 +resnetblur50d,2086.08,122.707,256,224,5.4,12.82,25.58 +efficientnet_em,2080.04,123.062,256,240,3.04,14.34,6.9 +efficientnet_cc_b1_8e,2060.35,124.238,256,240,0.75,15.44,39.72 +cspresnext50_iabn,2046.67,125.068,256,256,4.02,15.86,20.57 +densenetblur121d,2045.46,125.142,256,224,3.11,7.9,8.0 +tf_efficientnet_em,2031.54,125.998,256,240,3.04,14.34,6.9 +vit_base_resnet26d_224,2020.03,126.719,256,224,6.97,13.16,101.4 +ese_vovnet57b,2017.2,126.896,256,224,8.95,7.52,38.61 +ssl_resnext50_32x4d,2016.48,126.942,256,224,4.26,14.4,25.03 +swsl_resnext50_32x4d,2014.9,127.042,256,224,4.26,14.4,25.03 +seresnetaa50d,2014.43,127.071,256,224,5.4,12.46,28.11 +gluon_resnext50_32x4d,2013.28,127.144,256,224,4.26,14.4,25.03 +tv_resnext50_32x4d,2010.77,127.303,256,224,4.26,14.4,25.03 +resnext50_32x4d,2010.4,127.325,256,224,4.26,14.4,25.03 +tf_efficientnet_cc_b1_8e,1970.45,129.905,256,240,0.75,15.44,39.72 +cspdarknet53_iabn,1958.85,130.675,256,256,6.53,16.81,27.64 +dla60x,1947.14,131.46,256,224,3.54,13.8,17.35 +regnetx_040,1940.97,131.881,256,224,3.99,12.2,22.12 +skresnet50,1940.94,131.882,256,224,4.11,12.5,25.8 +nf_seresnet50,1937.18,132.139,256,224,4.21,11.13,28.09 +nf_ecaresnet50,1931.32,132.54,256,224,4.21,11.13,25.56 +res2net50_26w_4s,1927.67,132.79,256,224,4.28,12.61,25.7 +tf_efficientnetv2_b3,1921.68,133.203,256,300,3.04,15.74,14.36 +resnext50d_32x4d,1917.13,133.521,256,224,4.5,15.2,25.05 +regnety_040,1911.7,133.9,256,224,4.0,12.29,20.65 +gcresnet50t,1897.82,134.88,256,256,5.42,14.67,25.9 +efficientnetv2_rw_t,1893.97,135.153,256,288,3.19,16.42,13.65 +sehalonet33ts,1881.49,136.051,256,256,3.55,14.7,13.69 +lambda_resnet26rpt_256,1854.82,138.007,256,256,3.16,11.87,10.99 +skresnet50d,1849.16,138.429,256,224,4.36,13.31,25.82 +gcresnext50ts,1842.39,138.938,256,256,3.75,15.46,15.67 +seresnext50_32x4d,1842.11,138.958,256,224,4.26,14.42,27.56 +gluon_seresnext50_32x4d,1836.43,139.388,256,224,4.26,14.42,27.56 +dla60_res2net,1834.89,139.503,256,224,4.15,12.34,20.85 +legacy_seresnext50_32x4d,1833.54,139.608,256,224,4.26,14.42,27.56 +resnest50d_1s4x24d,1830.82,139.816,256,224,4.43,13.57,25.68 +repvgg_b1g4,1821.65,140.52,256,224,8.15,10.64,39.97 +darknet53,1820.66,140.594,256,256,9.31,12.39,41.61 +densenet169,1814.76,141.051,256,224,3.4,7.3,14.15 +gc_efficientnetv2_rw_t,1812.58,141.223,256,288,3.2,16.45,13.68 +res2net50_14w_8s,1809.09,141.495,256,224,4.21,13.28,25.06 +coat_lite_tiny,1803.47,141.935,256,224,1.6,11.65,5.72 +res2next50,1798.23,142.351,256,224,4.2,13.71,24.67 +cspdarknet53,1759.27,145.502,256,256,6.57,16.81,27.64 +ecaresnet26t,1753.56,145.977,256,320,5.24,16.44,16.01 +dla60_res2next,1751.16,146.174,256,224,3.49,13.17,17.03 +efficientnet_lite3,1747.68,146.468,256,300,1.65,21.85,8.2 +nf_regnet_b3,1737.85,147.296,256,320,2.05,14.61,18.59 +vgg13,1734.82,147.554,256,224,11.31,12.25,133.05 +regnetz_b16,1724.03,148.477,256,288,2.39,16.43,9.72 +coat_lite_mini,1717.28,149.059,256,224,2.0,12.25,11.01 +mixnet_xl,1685.34,151.886,256,224,0.93,14.57,11.9 +vit_small_r26_s32_224,1673.77,152.936,256,224,3.56,9.85,36.43 +sebotnet33ts_256,1634.05,156.655,256,256,3.89,17.46,13.7 +resnetv2_101,1630.31,157.012,256,224,7.83,16.23,44.54 +tf_efficientnet_lite3,1628.65,157.171,256,300,1.65,21.85,8.2 +convnext_tiny,1599.8,160.006,256,224,4.47,13.44,28.59 +tv_resnet101,1599.73,160.015,256,224,7.83,16.23,44.55 +gluon_resnet101_v1b,1599.19,160.07,256,224,7.83,16.23,44.55 +convnext_tiny_hnf,1598.61,160.125,256,224,4.47,13.44,28.59 +resnet101,1594.14,160.576,256,224,7.83,16.23,44.55 +xcit_tiny_24_p16_224_dist,1587.39,161.257,256,224,2.34,11.82,12.12 +xcit_tiny_24_p16_224,1582.27,161.779,256,224,2.34,11.82,12.12 +repvgg_b1,1574.77,162.553,256,224,13.16,10.64,57.42 +resnetv2_101d,1569.58,163.088,256,224,8.07,17.04,44.56 +xcit_small_12_p16_224_dist,1568.96,163.153,256,224,4.82,12.58,26.25 +xcit_small_12_p16_224,1566.49,163.411,256,224,4.82,12.58,26.25 +vit_base_resnet50d_224,1557.57,164.346,256,224,8.73,16.92,110.97 +resnest50d,1550.54,165.09,256,224,5.4,14.36,27.48 +gluon_resnet101_v1c,1550.28,165.12,256,224,8.08,17.04,44.57 +lambda_resnet50ts,1550.05,165.145,256,256,5.07,17.48,21.54 +vgg13_bn,1545.09,165.675,256,224,11.33,12.25,133.05 +gluon_resnet101_v1d,1542.32,165.972,256,224,8.08,17.04,44.57 +dla102,1542.08,165.995,256,224,7.19,14.18,33.27 +twins_svt_small,1526.51,167.691,256,224,2.94,13.75,24.06 +wide_resnet50_2,1515.12,168.952,256,224,11.43,14.4,68.88 +gmixer_24_224,1503.65,170.24,256,224,5.28,14.45,24.72 +resnetv2_50x1_bit_distilled,1496.53,171.051,256,224,4.23,11.11,25.55 +regnetx_080,1491.93,171.578,256,224,8.02,14.06,39.57 +xcit_nano_12_p16_384_dist,1489.5,171.858,256,384,1.64,12.15,3.05 +crossvit_small_240,1472.6,173.826,256,240,5.63,18.17,26.86 +res2net50_26w_6s,1468.77,174.282,256,224,6.33,15.28,37.05 +legacy_seresnet101,1466.72,174.527,256,224,7.61,15.74,49.33 +halonet50ts,1459.14,175.434,256,256,5.3,19.2,22.73 +resnetaa101d,1449.52,176.598,256,224,9.12,17.56,44.57 +fbnetv3_g,1435.53,178.32,256,288,1.77,21.09,16.62 +seresnet101,1425.31,179.597,256,224,7.84,16.27,49.33 +resmlp_36_224,1423.79,179.791,256,224,8.91,16.33,44.69 +resmlp_36_distilled_224,1422.98,179.892,256,224,8.91,16.33,44.69 +regnetx_064,1422.54,179.948,256,224,6.49,16.37,26.21 +resnetv2_50d_gn,1422.29,179.98,256,224,4.38,11.92,25.57 +densenet201,1416.58,180.704,256,224,4.34,7.85,20.01 +vit_large_patch32_224,1414.43,180.979,256,224,15.39,13.3,306.54 +gluon_resnet101_v1s,1407.4,181.883,256,224,9.19,18.64,44.67 +vgg16,1399.33,182.931,256,224,15.47,13.56,138.36 +lamhalobotnet50ts_256,1392.5,183.829,256,256,5.02,18.44,22.57 +resnetblur101d,1390.53,184.088,256,224,9.12,17.94,44.57 +nf_resnet50,1387.13,184.542,256,288,6.88,18.37,25.56 +nf_resnet101,1387.03,184.555,256,224,8.01,16.23,44.55 +ecaresnet101d,1375.85,186.054,256,224,8.08,17.07,44.57 +vit_base_r26_s32_224,1374.54,186.232,256,224,6.81,12.36,101.38 +regnety_032,1353.73,189.095,256,288,5.29,18.61,19.44 +crossvit_15_240,1351.08,189.465,256,240,5.81,19.77,27.53 +tresnet_l,1350.23,189.586,256,224,10.88,11.9,55.99 +gmlp_s16_224,1343.26,190.569,256,224,4.42,15.1,19.42 +tf_efficientnet_b3,1341.98,190.75,256,300,1.87,23.83,12.23 +tf_efficientnet_b3_ns,1340.42,190.973,256,300,1.87,23.83,12.23 +tf_efficientnet_b3_ap,1339.36,191.124,256,300,1.87,23.83,12.23 +resnet51q,1338.83,191.2,256,288,8.07,20.94,35.7 +hrnet_w18,1335.83,191.629,256,224,4.32,16.31,21.3 +vit_base_patch32_384,1328.33,192.713,256,384,13.06,16.5,88.3 +resnet50_gn,1327.88,192.777,256,224,4.14,11.11,25.56 +mixer_l32_224,1318.62,194.131,256,224,11.27,19.86,206.94 +xception,1316.52,194.441,256,299,8.4,35.83,22.86 +crossvit_15_dagger_240,1308.42,195.641,256,240,6.13,20.43,28.21 +dla102x,1302.91,196.468,256,224,5.89,19.42,26.31 +efficientnet_b3a,1302.53,196.528,256,320,2.01,26.52,12.23 +efficientnet_b3,1301.42,196.696,256,320,2.01,26.52,12.23 +botnet50ts_256,1288.18,198.716,256,256,5.54,22.23,22.74 +cait_xxs24_224,1287.06,198.889,256,224,2.53,20.29,11.96 +mixer_b16_224_miil,1283.42,199.455,256,224,12.62,14.53,59.88 +mixer_b16_224,1283.22,199.487,256,224,12.62,14.53,59.88 +skresnext50_32x4d,1276.26,200.574,256,224,4.5,17.18,27.48 +regnety_064,1272.95,201.095,256,224,6.39,16.41,30.58 +swsl_resnext101_32x4d,1266.33,202.147,256,224,8.01,21.23,44.18 +ssl_resnext101_32x4d,1265.67,202.252,256,224,8.01,21.23,44.18 +gluon_resnext101_32x4d,1265.25,202.319,256,224,8.01,21.23,44.18 +resnext101_32x4d,1264.74,202.401,256,224,8.01,21.23,44.18 +vgg16_bn,1261.15,202.977,256,224,15.5,13.56,138.37 +repvgg_b2g4,1251.52,204.539,256,224,12.63,12.9,61.76 +halo2botnet50ts_256,1248.54,205.028,256,256,5.02,21.78,22.64 +swin_tiny_patch4_window7_224,1248.01,205.115,256,224,4.51,17.06,28.29 +twins_pcpvt_small,1232.89,207.63,256,224,3.83,18.08,24.11 +regnety_080,1232.57,207.684,256,224,8.0,17.97,39.18 +resnest50d_4s2x40d,1216.47,210.433,256,224,4.4,17.94,30.42 +resnet61q,1209.86,211.583,256,288,9.87,21.52,36.85 +nf_seresnet101,1194.71,214.265,256,224,8.02,16.27,49.33 +ese_vovnet99b_iabn,1193.74,214.438,256,224,16.49,11.27,63.2 +nf_ecaresnet101,1193.13,214.55,256,224,8.01,16.27,44.55 +res2net50_26w_8s,1192.34,214.692,256,224,8.37,17.95,48.4 +eca_nfnet_l0,1189.26,215.246,256,288,7.12,17.29,24.14 +res2net101_26w_4s,1189.12,215.272,256,224,8.1,18.45,45.21 +nfnet_l0,1185.85,215.867,256,288,7.13,17.29,35.07 +dpn92,1179.85,216.965,256,224,6.54,18.21,37.67 +vit_tiny_patch16_384,1177.29,217.437,256,384,4.7,25.39,5.79 +convit_small,1173.71,218.096,256,224,5.76,17.87,27.78 +ese_vovnet99b,1158.79,220.908,256,224,16.51,11.27,63.2 +vgg19,1152.83,222.048,256,224,19.63,14.86,143.67 +seresnext101_32x4d,1152.16,222.18,256,224,8.02,21.26,48.96 +resnetv2_50d_evob,1150.91,222.42,256,224,4.33,11.92,25.59 +gluon_seresnext101_32x4d,1150.75,222.451,256,224,8.02,21.26,48.96 +legacy_seresnext101_32x4d,1150.68,222.464,256,224,8.02,21.26,48.96 +ese_vovnet39b_evos,1144.38,223.689,256,224,7.07,6.74,24.58 +hrnet_w32,1140.5,224.45,256,224,8.97,22.02,41.23 +resnetv2_152,1132.73,225.989,256,224,11.55,22.56,60.19 +xcit_nano_12_p8_224_dist,1129.67,226.602,256,224,2.16,15.71,3.05 +xcit_nano_12_p8_224,1124.18,227.71,256,224,2.16,15.71,3.05 +hrnet_w30,1121.05,228.345,256,224,8.15,21.21,37.71 +tv_resnet152,1117.27,229.117,256,224,11.56,22.56,60.19 +resnet152,1114.93,229.598,256,224,11.56,22.56,60.19 +gluon_resnet152_v1b,1112.41,230.118,256,224,11.56,22.56,60.19 +ecaresnet50t,1109.44,230.735,256,320,8.82,24.13,25.57 +regnetz_c16,1104.72,231.72,256,320,3.92,25.88,13.46 +resnetv2_152d,1101.83,232.328,256,224,11.8,23.36,60.2 +gluon_resnet152_v1c,1092.12,234.395,256,224,11.8,23.36,60.21 +repvgg_b2,1089.82,234.89,256,224,20.45,12.9,89.02 +gluon_resnet152_v1d,1082.98,236.373,256,224,11.8,23.36,60.21 +vgg19_bn,1079.7,237.091,256,224,19.66,14.86,143.68 +densenet161,1075.45,238.026,256,224,7.79,11.06,28.68 +xception41,1067.64,239.769,256,299,9.28,39.86,26.97 +mixnet_xxl,1054.35,242.792,256,224,2.04,23.43,23.96 +inception_v4,1054.27,242.81,256,299,12.28,15.09,42.68 +vit_small_resnet50d_s16_224,1053.44,243.001,256,224,13.48,24.82,57.53 +convmixer_1024_20_ks9_p14,1045.16,244.926,256,224,5.55,5.51,24.38 +dla169,1043.58,245.295,256,224,11.6,20.2,53.39 +nfnet_f0s,1043.56,245.302,256,256,12.62,18.05,71.49 +xcit_tiny_12_p16_384_dist,1043.38,245.342,256,384,3.64,18.26,6.72 +convnext_small,1038.48,246.501,256,224,8.7,21.56,50.22 +nfnet_f0,1038.01,246.613,256,256,12.62,18.05,71.49 +regnetx_120,1028.4,248.918,256,224,12.13,21.37,46.11 +nest_tiny,1021.17,250.679,256,224,5.83,25.48,17.06 +gluon_resnet152_v1s,1020.83,250.763,256,224,12.92,24.96,60.32 +coat_lite_small,1016.77,251.763,256,224,3.96,22.09,19.84 +legacy_seresnet152,1013.05,252.688,256,224,11.33,22.08,66.82 +repvgg_b3g4,1008.62,253.799,256,224,17.89,15.1,83.83 +jx_nest_tiny,1008.04,253.946,256,224,5.83,25.48,17.06 +vit_base_patch16_224_miil,1007.66,254.043,256,224,17.58,23.9,86.54 +crossvit_18_240,995.59,257.12,256,240,9.05,26.26,43.27 +seresnet152,990.73,258.382,256,224,11.57,22.61,66.82 +resnetv2_50d_evos,987.09,259.336,256,224,4.33,11.92,25.59 +vit_base_patch16_224_sam,982.02,260.673,256,224,17.58,23.9,86.57 +tresnet_xl,981.28,260.87,256,224,15.17,15.34,78.44 +regnety_120,981.1,260.919,256,224,12.14,21.38,51.82 +deit_base_patch16_224,980.91,260.97,256,224,17.58,23.9,86.57 +vit_base_patch16_224,978.17,261.701,256,224,17.58,23.9,86.57 +deit_base_distilled_patch16_224,975.08,262.528,256,224,17.68,24.05,87.34 +crossvit_18_dagger_240,969.31,264.09,256,240,9.5,27.03,44.27 +efficientnet_el,926.41,276.325,256,300,8.0,30.7,10.59 +efficientnet_el_pruned,925.7,276.536,256,300,8.0,30.7,10.59 +tf_efficientnet_el,907.79,281.986,256,300,8.0,30.7,10.59 +dm_nfnet_f0,904.97,282.867,256,256,12.62,18.05,71.49 +beit_base_patch16_224,904.15,283.123,256,224,17.58,23.9,86.53 +twins_pcpvt_base,902.77,283.561,256,224,6.68,25.25,43.83 +dla102x2,892.56,286.801,256,224,9.34,29.91,41.28 +efficientnetv2_s,884.22,289.51,256,384,8.44,35.77,21.46 +twins_svt_base,881.96,290.252,256,224,8.59,26.33,56.07 +wide_resnet101_2,875.33,292.449,256,224,22.8,21.23,126.89 +tf_efficientnetv2_s_in21ft1k,864.32,296.172,256,384,8.44,35.77,21.46 +cait_xxs36_224,863.8,296.351,256,224,3.77,30.34,17.3 +tf_efficientnetv2_s,863.76,296.365,256,384,8.44,35.77,21.46 +resnetrs101,852.6,300.247,256,288,13.56,28.53,63.62 +repvgg_b3,844.81,303.013,256,224,29.16,15.1,123.09 +efficientnetv2_rw_s,841.56,304.183,256,384,8.72,38.03,23.94 +dpn98,838.93,305.139,256,224,11.73,25.2,61.57 +pit_b_distilled_224,837.59,305.628,256,224,12.5,33.07,74.79 +pit_b_224,836.04,306.193,256,224,12.42,32.94,73.76 +regnetx_160,833.81,307.013,256,224,15.99,25.52,54.28 +xcit_small_24_p16_224_dist,833.22,307.225,256,224,9.1,23.64,47.67 +xcit_small_24_p16_224,831.56,307.841,256,224,9.1,23.64,47.67 +inception_resnet_v2,830.74,308.147,256,299,13.18,25.06,55.84 +ens_adv_inception_resnet_v2,830.17,308.358,256,299,13.18,25.06,55.84 +regnetz_d8,827.41,309.386,256,320,6.19,37.08,23.37 +nf_regnet_b4,822.49,311.237,256,384,4.7,28.61,30.21 +swin_small_patch4_window7_224,808.44,316.649,256,224,8.77,27.47,49.61 +efficientnet_lite4,804.5,318.199,256,380,4.04,45.66,13.01 +gluon_resnext101_64x4d,802.95,318.813,256,224,15.52,31.21,83.46 +resnext101_64x4d,801.6,319.349,256,224,15.52,31.21,83.46 +resnet200,795.01,321.996,256,224,15.07,32.19,64.67 +xcit_tiny_12_p8_224_dist,792.9,322.851,256,224,4.81,23.6,6.71 +xcit_tiny_12_p8_224,791.66,323.355,256,224,4.81,23.6,6.71 +gluon_xception65,782.06,327.33,256,299,13.96,52.48,39.92 +convnext_base_in22ft1k,778.5,328.824,256,224,15.38,28.75,88.59 +convnext_base,777.8,329.119,256,224,15.38,28.75,88.59 +xception65,776.49,329.678,256,299,13.96,52.48,39.92 +ssl_resnext101_32x8d,773.95,330.757,256,224,16.48,31.21,88.79 +swsl_resnext101_32x8d,773.24,331.062,256,224,16.48,31.21,88.79 +resnext101_32x8d,772.71,331.288,256,224,16.48,31.21,88.79 +ig_resnext101_32x8d,772.07,331.562,256,224,16.48,31.21,88.79 +resnet101d,769.32,332.747,256,320,16.48,34.77,44.57 +hrnet_w40,767.4,333.582,256,224,12.75,25.29,57.56 +tf_efficientnet_lite4,762.16,335.871,256,380,4.04,45.66,13.01 +resnest101e,757.06,338.138,256,256,13.38,28.66,48.28 +gluon_seresnext101_64x4d,754.82,339.139,256,224,15.53,31.25,88.23 +seresnext101_32x8d,729.3,351.006,256,224,16.48,31.25,93.57 +cait_s24_224,717.85,356.607,256,224,9.35,40.58,46.92 +hrnet_w48,714.5,358.278,256,224,17.34,28.56,77.47 +hrnet_w44,713.57,358.746,256,224,14.94,26.92,67.06 +tresnet_m_448,711.59,359.746,256,448,22.94,29.21,31.39 +regnetz_d32,706.63,362.269,256,320,9.33,37.08,27.58 +coat_tiny,706.1,362.539,256,224,4.35,27.2,5.5 +nest_small,681.35,375.712,256,224,10.35,40.04,38.35 +vit_large_r50_s32_224,679.9,376.512,256,224,19.58,24.41,328.99 +jx_nest_small,675.59,378.914,256,224,10.35,40.04,38.35 +twins_svt_large,672.39,380.718,256,224,15.15,35.1,99.27 +crossvit_base_240,669.47,382.378,256,240,21.22,36.33,105.03 +efficientnet_b4,667.37,383.583,256,384,4.51,50.04,19.34 +twins_pcpvt_large,655.12,390.752,256,224,9.84,35.82,60.99 +gmlp_b16_224,643.01,398.116,256,224,15.78,30.21,73.08 +densenet264d_iabn,638.28,401.062,256,224,13.47,14.0,72.74 +tf_efficientnet_b4,637.3,401.68,256,380,4.49,49.49,19.34 +tf_efficientnet_b4_ap,636.89,401.944,256,380,4.49,49.49,19.34 +tf_efficientnet_b4_ns,636.28,402.323,256,380,4.49,49.49,19.34 +convit_base,621.54,411.866,256,224,17.52,31.77,86.54 +densenet264,620.68,412.433,256,224,12.95,12.8,72.69 +dpn131,617.53,414.539,256,224,16.09,32.97,79.25 +swin_base_patch4_window7_224,616.27,415.39,256,224,15.47,36.63,87.77 +xcit_medium_24_p16_224_dist,612.37,418.035,256,224,16.13,31.71,84.4 +xcit_medium_24_p16_224,612.25,418.117,256,224,16.13,31.71,84.4 +vit_small_patch16_384,593.83,431.086,256,384,15.52,50.78,22.2 +coat_mini,591.16,433.03,256,224,6.82,33.68,10.34 +xception71,588.93,434.671,256,299,18.09,69.92,42.34 +vit_small_r26_s32_384,574.79,445.365,256,384,10.43,29.85,36.47 +hrnet_w64,567.27,451.268,256,224,28.97,35.09,128.06 +dpn107,564.61,453.398,256,224,18.38,33.46,86.92 +eca_nfnet_l1,558.87,458.051,256,320,14.92,34.42,41.41 +senet154,557.21,459.42,256,224,20.77,38.69,115.09 +vit_base_r50_s16_224,556.92,459.655,256,224,21.66,35.29,98.66 +gluon_senet154,556.63,459.899,256,224,20.77,38.69,115.09 +legacy_senet154,554.67,461.525,256,224,20.77,38.69,115.09 +xcit_tiny_24_p16_384_dist,554.63,461.554,256,384,6.87,34.29,12.12 +xcit_small_12_p16_384_dist,546.42,468.488,256,384,14.14,36.51,26.25 +resnet152d,540.83,473.331,256,320,24.08,47.67,60.21 +seresnet200d,537.6,476.175,256,256,20.01,43.15,71.86 +ecaresnet200d,537.5,476.265,256,256,20.0,43.15,64.69 +regnety_320,520.96,491.382,256,224,32.34,30.26,145.05 +nest_base,514.48,497.58,256,224,17.96,53.39,67.72 +regnety_160,513.33,498.688,256,288,26.37,38.07,83.59 +jx_nest_base,510.61,501.344,256,224,17.96,53.39,67.72 +tnt_s_patch16_224,491.14,521.218,256,224,5.24,24.37,23.76 +seresnet152d,484.32,528.565,256,320,24.09,47.72,66.84 +resnetrs152,479.63,533.736,256,320,24.34,48.14,86.62 +convnext_large,469.79,544.914,256,224,34.4,43.13,197.77 +convnext_large_in22ft1k,468.89,545.96,256,224,34.4,43.13,197.77 +regnetx_320,458.91,557.836,256,224,31.81,36.3,107.81 +halonet_h1,456.22,561.121,256,256,3.0,51.17,8.1 +vit_large_patch32_384,455.24,562.325,256,384,45.31,43.86,306.63 +efficientnetv2_m,448.05,571.353,256,416,18.6,67.5,54.14 +regnetz_e8,441.39,579.972,256,320,15.46,63.94,57.7 +mixer_l16_224,428.45,597.494,256,224,44.6,41.69,208.2 +seresnet269d,419.5,610.23,256,256,26.59,53.6,113.67 +nf_regnet_b5,418.97,611.004,256,456,11.7,61.95,49.74 +xcit_tiny_24_p8_224,417.22,613.573,256,224,9.21,45.39,12.11 +xcit_tiny_24_p8_224_dist,416.09,615.239,256,224,9.21,45.39,12.11 +xcit_small_12_p8_224,415.7,615.812,256,224,18.69,47.21,26.21 +xcit_small_12_p8_224_dist,414.47,617.648,256,224,18.69,47.21,26.21 +efficientnetv2_rw_m,401.01,638.372,256,416,21.49,79.62,53.24 +resnet200d,390.11,656.216,256,320,31.25,67.33,64.69 +resnetv2_50x1_bitm,388.79,658.439,256,448,16.62,44.46,25.55 +tnt_b_patch16_224,387.0,661.483,256,224,14.09,39.01,65.41 +xcit_nano_12_p8_384_dist,385.68,663.749,256,384,6.34,46.08,3.05 +swin_large_patch4_window7_224,383.12,668.188,256,224,34.53,54.94,196.53 +nfnet_f1s,376.13,680.6,256,320,35.97,46.77,132.63 +nfnet_f1,374.75,683.103,256,320,35.97,46.77,132.63 +xcit_large_24_p16_224,373.32,685.729,256,224,35.86,47.27,189.1 +xcit_large_24_p16_224_dist,372.9,686.493,256,224,35.86,47.27,189.1 +ssl_resnext101_32x16d,364.85,701.653,256,224,36.27,51.18,194.03 +ig_resnext101_32x16d,364.28,702.733,256,224,36.27,51.18,194.03 +swsl_resnext101_32x16d,364.28,702.739,256,224,36.27,51.18,194.03 +tresnet_l_448,351.48,728.329,256,448,43.5,47.56,55.99 +resnetrs200,347.71,736.231,256,320,31.51,67.81,93.21 +tf_efficientnetv2_m,339.44,754.17,256,480,24.76,89.84,54.14 +tf_efficientnetv2_m_in21ft1k,338.69,755.846,256,480,24.76,89.84,54.14 +regnetz_d8_evob,337.57,758.355,256,320,6.12,37.08,23.41 +efficientnet_b5,330.43,774.739,256,456,10.46,98.86,30.39 +vit_large_patch16_224,328.99,778.119,256,224,61.6,63.52,304.33 +dm_nfnet_f1,328.44,779.437,256,320,35.97,46.77,132.63 +convnext_xlarge_in22ft1k,319.16,802.079,256,224,60.97,57.5,350.2 +tf_efficientnet_b5,318.33,804.192,256,456,10.46,98.86,30.39 +tf_efficientnet_b5_ap,317.92,805.231,256,456,10.46,98.86,30.39 +tf_efficientnet_b5_ns,317.77,805.609,256,456,10.46,98.86,30.39 +crossvit_15_dagger_408,307.3,833.049,256,408,21.45,95.05,28.5 +beit_large_patch16_224,302.42,846.497,256,224,61.6,63.52,304.43 +xcit_small_24_p16_384_dist,290.22,882.071,256,384,26.72,68.58,47.67 +convmixer_768_32,283.01,904.552,256,224,19.55,25.95,21.11 +eca_nfnet_l2,276.43,926.087,256,384,30.05,68.28,56.72 +regnetz_d8_evos,272.53,939.333,256,320,7.03,38.92,23.46 +resnetv2_152x2_bit_teacher,270.79,945.382,256,224,46.95,45.11,236.34 +xcit_tiny_12_p8_384_dist,269.38,950.319,256,384,14.13,69.14,6.71 +convnext_base_384_in22ft1k,268.35,953.955,256,384,45.2,84.49,88.59 +tresnet_xl_448,264.06,969.471,256,448,60.65,61.31,78.44 +deit_base_patch16_384,258.82,989.071,256,384,55.54,101.56,86.86 +vit_base_patch16_384,258.72,989.47,256,384,55.54,101.56,86.86 +resnest200e,257.74,993.222,256,320,35.69,82.78,70.2 +deit_base_distilled_patch16_384,255.57,1001.681,256,384,55.65,101.82,87.63 +resnetv2_101x1_bitm,242.52,1055.587,256,448,31.65,64.93,44.54 +cait_xxs24_384,236.82,1080.978,256,384,9.63,122.66,12.03 +crossvit_18_dagger_408,228.68,559.729,128,408,32.47,124.87,44.61 +ecaresnet269d,228.16,1122.012,256,352,50.25,101.25,102.09 +vit_large_r50_s32_384,228.16,1121.984,256,384,57.43,76.52,329.09 +nasnetalarge,224.77,1138.915,256,331,23.89,90.56,88.75 +pnasnet5large,224.27,1141.456,256,331,25.04,92.89,86.06 +beit_base_patch16_384,222.85,1148.718,256,384,55.54,101.56,86.74 +resnetrs270,221.37,1156.398,256,352,51.13,105.48,129.86 +xcit_small_24_p8_224,217.0,1179.688,256,224,35.81,90.78,47.63 +xcit_small_24_p8_224_dist,216.72,1181.234,256,224,35.81,90.78,47.63 +nfnet_f2s,212.63,1203.934,256,352,63.22,79.06,193.78 +nfnet_f2,211.38,1211.098,256,352,63.22,79.06,193.78 +xcit_medium_24_p16_384_dist,210.86,1214.056,256,384,47.39,91.64,84.4 +resmlp_big_24_224,198.74,1288.096,256,224,100.23,87.31,129.14 +resmlp_big_24_224_in22ft1k,197.93,1293.386,256,224,100.23,87.31,129.14 +resmlp_big_24_distilled_224,197.54,1295.901,256,224,100.23,87.31,129.14 +efficientnetv2_l,196.77,1301.027,256,480,56.4,157.99,118.52 +tf_efficientnetv2_l,194.85,1313.812,256,480,56.4,157.99,118.52 +tf_efficientnetv2_l_in21ft1k,194.51,1316.142,256,480,56.4,157.99,118.52 +efficientnet_b6,189.94,673.894,128,528,19.4,167.39,43.04 +dm_nfnet_f2,186.3,1374.105,256,352,63.22,79.06,193.78 +tf_efficientnet_b6_ns,183.84,696.254,128,528,19.4,167.39,43.04 +tf_efficientnet_b6_ap,183.67,696.899,128,528,19.4,167.39,43.04 +tf_efficientnet_b6,183.44,697.757,128,528,19.4,167.39,43.04 +swin_base_patch4_window12_384,171.35,746.981,128,384,47.19,134.78,87.9 +vit_base_patch8_224,170.3,1503.253,256,224,78.22,161.69,86.58 +cait_xs24_384,168.32,1520.881,256,384,19.28,183.98,26.67 +vit_base_r50_s16_384,163.47,1566.011,256,384,67.43,135.03,98.95 +vit_base_resnet50_384,163.26,1568.003,256,384,67.43,135.03,98.95 +convmixer_1536_20,162.04,1579.822,256,224,48.68,33.03,51.63 +convnext_large_384_in22ft1k,160.02,1599.775,256,384,101.09,126.74,197.77 +cait_xxs36_384,158.26,1617.553,256,384,14.35,183.7,17.37 +xcit_medium_24_p8_224,157.17,1628.769,256,224,63.53,121.23,84.32 +xcit_medium_24_p8_224_dist,157.13,1629.205,256,224,63.53,121.23,84.32 +eca_nfnet_l3,156.17,1639.21,256,448,52.55,118.4,72.04 +resnetrs350,147.0,1741.501,256,384,77.59,154.74,163.96 +ig_resnext101_32x32d,144.49,1771.686,256,224,87.29,91.12,468.53 +xcit_tiny_24_p8_384_dist,141.04,1815.079,256,384,27.05,132.95,12.11 +xcit_small_12_p8_384_dist,137.26,1865.112,256,384,54.92,138.29,26.21 +vit_huge_patch14_224,131.97,1939.888,256,224,167.4,139.41,632.05 +cait_s24_384,129.91,1970.595,256,384,32.17,245.31,47.06 +xcit_large_24_p16_384_dist,127.3,2011.004,256,384,105.35,137.17,189.1 +efficientnetv2_xl,125.14,2045.696,256,512,93.85,247.32,208.12 +tf_efficientnetv2_xl_in21ft1k,124.18,2061.565,256,512,93.85,247.32,208.12 +resnest269e,119.71,2138.483,256,416,77.69,171.98,110.93 +nfnet_f3s,116.49,2197.633,256,416,115.58,141.78,254.92 +nfnet_f3,115.68,2213.012,256,416,115.58,141.78,254.92 +convnext_xlarge_384_in22ft1k,109.41,1169.883,128,384,179.18,168.99,350.2 +efficientnet_b7,108.34,590.697,64,600,38.33,289.94,66.35 +swin_large_patch4_window12_384,107.91,1186.161,128,384,104.08,202.16,196.74 +resnetrs420,106.92,2394.315,256,416,108.45,213.79,191.89 +tf_efficientnet_b7_ap,105.47,606.819,64,600,38.33,289.94,66.35 +tf_efficientnet_b7_ns,105.47,606.797,64,600,38.33,289.94,66.35 +tf_efficientnet_b7,105.43,607.002,64,600,38.33,289.94,66.35 +dm_nfnet_f3,102.2,2504.865,256,416,115.58,141.78,254.92 +xcit_large_24_p8_224_dist,94.99,2695.138,256,224,141.23,181.56,188.93 +xcit_large_24_p8_224,94.97,2695.444,256,224,141.23,181.56,188.93 +resnetv2_152x2_bit_teacher_384,94.51,2708.696,256,384,136.16,132.56,236.34 +resnetv2_50x3_bitm,93.18,1373.716,128,448,145.7,133.37,217.32 +vit_large_patch16_384,88.86,2880.826,256,384,191.21,270.24,304.72 +vit_giant_patch14_224,87.24,2934.557,256,224,267.18,192.64,1012.61 +cait_s36_384,87.06,2940.456,256,384,47.99,367.4,68.37 +ig_resnext101_32x48d,85.45,1497.919,128,224,153.57,131.06,828.41 +beit_large_patch16_384,77.25,3314.013,256,384,191.21,270.24,305.0 +xcit_small_24_p8_384_dist,72.02,3554.648,256,384,105.24,265.91,47.63 +resnetv2_152x2_bitm,69.3,1847.055,128,448,184.99,180.43,236.34 +efficientnet_b8,67.89,942.729,64,672,63.48,442.89,87.41 +tf_efficientnet_b8,66.48,962.617,64,672,63.48,442.89,87.41 +tf_efficientnet_b8_ap,66.47,962.833,64,672,63.48,442.89,87.41 +nfnet_f4s,65.05,3935.454,256,512,216.26,262.26,316.07 +nfnet_f4,64.4,3975.384,256,512,216.26,262.26,316.07 +resnetv2_101x3_bitm,57.01,2245.355,128,448,280.33,194.78,387.93 +dm_nfnet_f4,56.77,4509.206,256,512,216.26,262.26,316.07 +xcit_medium_24_p8_384_dist,53.32,4800.797,256,384,186.67,354.73,84.32 +vit_gigantic_patch14_224,53.03,4827.242,256,224,483.95,275.37,1844.44 +nfnet_f5s,47.06,5439.402,256,544,290.97,349.71,377.21 +nfnet_f5,46.62,5491.767,256,544,290.97,349.71,377.21 +dm_nfnet_f5,41.31,6196.83,256,544,290.97,349.71,377.21 +tf_efficientnet_l2_ns_475,38.18,1676.113,64,475,172.11,609.89,480.31 +nfnet_f6s,33.85,7563.356,256,576,378.69,452.2,438.36 +nfnet_f6,33.53,7634.937,256,576,378.69,452.2,438.36 +xcit_large_24_p8_384_dist,32.23,7943.828,256,384,415.0,531.82,188.93 +beit_large_patch16_512,31.3,2044.665,64,512,362.24,656.39,305.67 +cait_m36_384,30.09,8507.481,256,384,173.11,734.81,271.22 +dm_nfnet_f6,30.02,8526.734,256,576,378.69,452.2,438.36 +nfnet_f7s,26.4,9698.058,256,608,480.39,570.85,499.5 +nfnet_f7,26.15,9791.252,256,608,480.39,570.85,499.5 +resnetv2_152x4_bitm,18.07,3541.734,64,480,844.84,414.26,936.53 +efficientnet_l2,13.68,2266.184,31,800,479.12,1707.39,480.31 +tf_efficientnet_l2_ns,13.51,2295.302,31,800,479.12,1707.39,480.31 +cait_m48_448,13.05,9810.688,128,448,329.41,1708.23,356.46 diff --git a/results/benchmark-infer-amp-nhwc-pt110-cu113-rtx3090.csv b/results/benchmark-infer-amp-nhwc-pt110-cu113-rtx3090.csv new file mode 100644 index 0000000000..ff620b785e --- /dev/null +++ b/results/benchmark-infer-amp-nhwc-pt110-cu113-rtx3090.csv @@ -0,0 +1,696 @@ +model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count +tinynet_e,52443.33,4.87,256,106,0.03,0.69,2.04 +lcnet_035,41836.65,6.108,256,224,0.03,1.04,1.64 +mobilenetv3_small_050,40675.32,6.283,256,224,0.03,0.92,1.59 +lcnet_050,37031.22,6.902,256,224,0.05,1.26,1.88 +mobilenetv3_small_075,33134.36,7.715,256,224,0.05,1.3,2.04 +mobilenetv3_small_100,30332.75,8.428,256,224,0.06,1.42,2.54 +tinynet_d,29729.64,8.599,256,152,0.05,1.42,2.34 +tf_mobilenetv3_small_minimal_100,28698.97,8.909,256,224,0.06,1.41,2.04 +tf_mobilenetv3_small_075,27515.61,9.292,256,224,0.05,1.3,2.04 +tf_mobilenetv3_small_100,25529.73,10.016,256,224,0.06,1.42,2.54 +lcnet_075,25351.21,10.087,256,224,0.1,1.99,2.36 +lcnet_100,21251.26,12.035,256,224,0.16,2.52,2.95 +mnasnet_small,20610.12,12.41,256,224,0.07,2.16,2.03 +levit_128s,18679.12,13.694,256,224,0.31,1.88,7.78 +mobilenetv2_035,18422.82,13.885,256,224,0.07,2.86,1.68 +ghostnet_050,17065.19,14.99,256,224,0.05,1.77,2.59 +regnetx_002,17008.51,15.04,256,224,0.2,2.16,2.68 +mnasnet_050,16943.72,15.098,256,224,0.11,3.07,2.22 +tinynet_c,16089.67,15.9,256,184,0.11,2.87,2.46 +mobilenetv2_050,15226.35,16.802,256,224,0.1,3.64,1.97 +regnety_002,15182.41,16.851,256,224,0.2,2.17,3.16 +semnasnet_050,14956.97,17.104,256,224,0.11,3.44,2.08 +lcnet_150,14301.96,17.889,256,224,0.34,3.79,4.5 +regnetx_004,13656.57,18.735,256,224,0.4,3.14,5.16 +gernet_s,13307.64,19.226,256,224,0.75,2.65,8.17 +mobilenetv3_large_075,12875.59,19.872,256,224,0.16,4.0,3.99 +levit_128,12869.05,19.881,256,224,0.41,2.71,9.21 +mnasnet_075,11851.07,21.591,256,224,0.23,4.77,3.17 +mobilenetv3_rw,11749.18,21.778,256,224,0.23,4.41,5.48 +hardcorenas_a,11724.1,21.825,256,224,0.23,4.38,5.26 +mobilenetv3_large_100,11546.8,22.16,256,224,0.23,4.41,5.48 +mobilenetv3_large_100_miil,11527.85,22.196,256,224,0.23,4.41,5.48 +levit_192,11521.32,22.208,256,224,0.66,3.2,10.95 +tf_mobilenetv3_large_075,11097.44,23.056,256,224,0.16,4.0,3.99 +ese_vovnet19b_slim_dw,11011.34,23.237,256,224,0.4,5.28,1.9 +tf_mobilenetv3_large_minimal_100,10807.48,23.676,256,224,0.22,4.4,3.92 +tinynet_b,10794.3,23.705,256,188,0.21,4.44,3.73 +hardcorenas_b,10649.59,24.027,256,224,0.26,5.09,5.18 +hardcorenas_c,10616.11,24.103,256,224,0.28,5.01,5.52 +mnasnet_100,10429.97,24.534,256,224,0.33,5.46,4.38 +mnasnet_b1,10405.42,24.591,256,224,0.33,5.46,4.38 +mixer_s32_224,10314.02,24.809,256,224,1.0,2.28,19.1 +ssl_resnet18,10228.31,25.016,256,224,1.82,2.48,11.69 +gluon_resnet18_v1b,10218.86,25.04,256,224,1.82,2.48,11.69 +swsl_resnet18,10183.71,25.126,256,224,1.82,2.48,11.69 +resnet18,10180.53,25.135,256,224,1.82,2.48,11.69 +tf_mobilenetv3_large_100,10049.81,25.462,256,224,0.23,4.41,5.48 +ghostnet_100,9984.48,25.628,256,224,0.15,3.55,5.18 +mobilenetv2_075,9980.04,25.64,256,224,0.22,5.86,2.64 +semnasnet_075,9964.54,25.68,256,224,0.23,5.54,2.91 +hardcorenas_d,9736.47,26.282,256,224,0.3,4.93,7.5 +seresnet18,9448.37,27.084,256,224,1.82,2.49,11.78 +spnasnet_100,9378.19,27.285,256,224,0.35,6.03,4.42 +vit_small_patch32_224,9330.47,27.426,256,224,1.15,2.5,22.88 +regnety_006,9290.2,27.545,256,224,0.61,4.33,6.06 +legacy_seresnet18,9195.77,27.828,256,224,1.82,2.49,11.78 +mobilenetv2_100,8931.8,28.65,256,224,0.31,6.68,3.5 +regnety_004,8913.44,28.71,256,224,0.41,3.89,4.34 +semnasnet_100,8878.3,28.823,256,224,0.32,6.23,3.89 +mnasnet_a1,8872.5,28.841,256,224,0.32,6.23,3.89 +hardcorenas_f,8746.45,29.258,256,224,0.35,5.57,8.2 +tinynet_a,8705.83,29.394,256,192,0.35,5.41,6.19 +efficientnet_lite0,8678.08,29.489,256,224,0.4,6.74,4.65 +levit_256,8605.17,29.738,256,224,1.13,4.23,18.89 +fbnetc_100,8589.17,29.794,256,224,0.4,6.51,5.57 +hardcorenas_e,8587.1,29.801,256,224,0.35,5.65,8.07 +resnet18d,8454.18,30.27,256,224,2.06,3.29,11.71 +tf_efficientnetv2_b0,8451.14,30.28,256,224,0.73,4.77,7.14 +ese_vovnet19b_slim,8409.91,30.429,256,224,1.69,3.52,3.17 +regnetx_008,8190.92,31.242,256,224,0.81,5.15,7.26 +vit_tiny_r_s16_p8_224,8188.54,31.252,256,224,0.44,2.06,6.34 +regnetx_006,7654.81,33.432,256,224,0.61,3.98,6.2 +ghostnet_130,7516.11,34.049,256,224,0.24,4.6,7.36 +tf_efficientnet_lite0,7513.34,34.061,256,224,0.4,6.74,4.65 +regnety_008,7334.93,34.89,256,224,0.81,5.25,6.26 +mnasnet_140,7212.43,35.483,256,224,0.6,7.71,7.12 +efficientnet_b0,7189.76,35.595,256,224,0.4,6.75,5.29 +rexnetr_100,6816.78,37.543,256,224,0.43,7.72,4.88 +mobilenetv2_110d,6785.21,37.718,256,224,0.45,8.71,4.52 +tf_efficientnet_b0_ns,6397.82,40.002,256,224,0.4,6.75,5.29 +tf_efficientnet_b0_ap,6366.01,40.201,256,224,0.4,6.75,5.29 +tf_efficientnet_b0,6345.74,40.33,256,224,0.4,6.75,5.29 +hrnet_w18_small,6240.1,41.014,256,224,1.61,5.72,13.19 +semnasnet_140,6194.36,41.317,256,224,0.6,8.87,6.11 +ese_vovnet19b_dw,6016.74,42.537,256,224,1.34,8.25,6.54 +mobilenetv2_140,6010.52,42.581,256,224,0.6,9.57,6.11 +resnet34,5949.09,43.021,256,224,3.67,3.74,21.8 +gluon_resnet34_v1b,5944.0,43.057,256,224,3.67,3.74,21.8 +tv_resnet34,5920.52,43.227,256,224,3.67,3.74,21.8 +gernet_m,5909.18,43.311,256,224,3.02,5.24,21.14 +efficientnet_lite1,5815.72,44.007,256,240,0.62,10.14,5.42 +selecsls42,5752.79,44.489,256,224,2.94,4.62,30.35 +selecsls42b,5752.33,44.492,256,224,2.98,4.62,32.46 +fbnetv3_b,5567.33,45.971,256,256,0.55,9.1,8.6 +efficientnet_b1_pruned,5558.39,46.045,256,240,0.4,6.21,6.33 +resnet26,5532.69,46.26,256,224,2.36,7.35,16.0 +skresnet18,5529.57,46.284,256,224,1.82,3.24,11.96 +efficientnet_es_pruned,5519.91,46.366,256,224,1.81,8.73,5.44 +efficientnet_es,5518.49,46.378,256,224,1.81,8.73,5.44 +tf_efficientnetv2_b1,5515.51,46.402,256,240,1.21,7.34,8.14 +rexnet_100,5500.83,46.527,256,224,0.41,7.44,4.8 +dla46_c,5464.03,46.84,256,224,0.58,4.5,1.3 +seresnet34,5439.78,47.05,256,224,3.67,3.74,21.96 +resnet34d,5325.4,48.06,256,224,3.91,4.54,21.82 +resnetblur18,5301.3,48.279,256,224,2.34,3.39,11.69 +legacy_seresnet34,5280.08,48.473,256,224,3.67,3.74,21.96 +rexnetr_130,5239.92,48.845,256,224,0.68,9.81,7.61 +tf_efficientnet_es,5226.26,48.971,256,224,1.81,8.73,5.44 +tf_efficientnet_lite1,5192.67,49.288,256,240,0.62,10.14,5.42 +levit_384,5136.88,49.824,256,224,2.36,6.26,39.13 +nf_regnet_b0,5081.73,50.365,256,256,0.64,5.58,8.76 +selecsls60,5015.37,51.032,256,224,3.59,5.52,30.67 +selecsls60b,5008.51,51.102,256,224,3.63,5.52,32.77 +mobilenetv2_120d,5006.42,51.123,256,224,0.69,11.97,5.83 +repvgg_b0,4831.81,52.969,256,224,3.41,6.15,15.82 +resnet26d,4774.01,53.612,256,224,2.6,8.15,16.01 +rexnetr_150,4621.39,55.383,256,224,0.89,11.13,9.78 +fbnetv3_d,4543.95,56.327,256,256,0.68,11.1,10.31 +nf_resnet26,4522.01,56.601,256,224,2.41,7.35,16.0 +deit_tiny_patch16_224,4516.94,56.664,256,224,1.26,5.97,5.72 +visformer_tiny,4514.36,56.695,256,224,1.27,5.72,10.32 +vit_tiny_patch16_224,4509.39,56.76,256,224,1.26,5.97,5.72 +efficientnet_lite2,4476.87,57.171,256,260,0.89,12.9,6.09 +xcit_nano_12_p16_224_dist,4461.13,57.373,256,224,0.56,4.17,3.05 +deit_tiny_distilled_patch16_224,4450.37,57.513,256,224,1.27,6.01,5.91 +xcit_nano_12_p16_224,4443.48,57.6,256,224,0.56,4.17,3.05 +pit_ti_distilled_224,4267.82,59.972,256,224,0.71,6.23,5.1 +pit_ti_224,4256.93,60.125,256,224,0.7,6.19,4.85 +resmlp_12_distilled_224,4163.6,61.475,256,224,3.01,5.5,15.35 +resmlp_12_224,4160.41,61.521,256,224,3.01,5.5,15.35 +gernet_l,4096.96,62.474,256,256,4.57,8.0,31.08 +tf_efficientnetv2_b2,4081.75,62.706,256,260,1.72,9.84,10.1 +legacy_seresnext26_32x4d,4060.33,63.037,256,224,2.49,9.39,16.79 +tf_efficientnet_b1,4046.06,63.259,256,240,0.71,10.88,7.79 +tf_efficientnet_b1_ap,4044.6,63.282,256,240,0.71,10.88,7.79 +tf_efficientnet_b1_ns,4042.64,63.313,256,240,0.71,10.88,7.79 +tf_efficientnet_lite2,4027.76,63.547,256,260,0.89,12.9,6.09 +resnext26ts,3956.89,64.685,256,256,2.43,10.52,10.3 +dla46x_c,3913.74,65.398,256,224,0.54,5.66,1.07 +efficientnet_b1,3903.13,65.577,256,256,0.77,12.22,7.79 +dla34,3901.31,65.607,256,224,3.07,5.02,15.74 +mixer_b32_224,3872.36,66.099,256,224,3.24,6.29,60.29 +rexnet_130,3847.96,66.517,256,224,0.68,9.71,7.56 +vit_base_patch32_224_sam,3843.13,66.599,256,224,4.41,5.01,88.22 +nf_seresnet26,3833.86,66.763,256,224,2.41,7.36,17.4 +eca_resnext26ts,3823.14,66.95,256,256,2.43,10.52,10.3 +vit_base_patch32_224,3821.26,66.98,256,224,4.41,5.01,88.22 +nf_ecaresnet26,3821.0,66.987,256,224,2.41,7.36,16.0 +seresnext26ts,3814.04,67.108,256,256,2.43,10.52,10.39 +dla60x_c,3762.66,68.025,256,224,0.59,6.01,1.32 +efficientnet_b2_pruned,3734.36,68.542,256,260,0.73,9.13,8.31 +regnetx_016,3682.98,69.498,256,224,1.62,7.93,9.19 +resnet26t,3677.69,69.597,256,256,3.35,10.52,16.01 +gcresnext26ts,3645.26,70.216,256,256,2.43,10.53,10.48 +rexnet_150,3639.9,70.32,256,224,0.9,11.21,9.73 +seresnext26tn_32x4d,3635.04,70.413,256,224,2.7,10.09,16.81 +seresnext26t_32x4d,3629.32,70.524,256,224,2.7,10.09,16.81 +ecaresnext50t_32x4d,3625.17,70.606,256,224,2.7,10.09,15.41 +seresnext26d_32x4d,3620.48,70.696,256,224,2.73,10.19,16.81 +ecaresnet50d_pruned,3618.55,70.735,256,224,2.53,6.43,19.94 +ecaresnext26t_32x4d,3617.96,70.747,256,224,2.7,10.09,15.41 +resnetv2_50,3573.69,71.622,256,224,4.11,11.11,25.55 +eca_botnext26ts_256,3538.36,72.339,256,256,2.46,11.6,10.59 +repvgg_a2,3525.89,72.594,256,224,5.7,6.26,28.21 +pit_xs_224,3490.24,73.336,256,224,1.4,7.71,10.62 +mixer_s16_224,3485.97,73.426,256,224,3.79,5.97,18.53 +pit_xs_distilled_224,3470.1,73.761,256,224,1.41,7.76,11.0 +eca_halonext26ts,3433.36,74.552,256,256,2.44,11.46,10.76 +gluon_resnet50_v1b,3424.93,74.734,256,224,4.11,11.11,25.56 +rexnetr_200,3422.25,74.791,256,224,1.59,15.11,16.52 +ssl_resnet50,3418.93,74.864,256,224,4.11,11.11,25.56 +resnet50,3416.87,74.911,256,224,4.11,11.11,25.56 +tv_resnet50,3416.58,74.915,256,224,4.11,11.11,25.56 +swsl_resnet50,3415.95,74.931,256,224,4.11,11.11,25.56 +ecaresnetlight,3410.59,75.049,256,224,4.11,8.42,30.16 +efficientnet_em,3345.86,76.5,256,240,3.04,14.34,6.9 +dpn68b,3321.6,77.058,256,224,2.35,10.47,12.61 +dpn68,3321.37,77.064,256,224,2.35,10.47,12.61 +resnet32ts,3318.56,77.131,256,256,4.63,11.58,17.96 +botnet26t_256,3309.73,77.335,256,256,3.32,11.98,12.49 +resnet33ts,3269.93,78.278,256,256,4.76,11.66,19.68 +resnetv2_50t,3252.33,78.701,256,224,4.32,11.82,25.57 +halonet26t,3247.75,78.812,256,256,3.19,11.69,12.48 +resnetv2_50d,3238.36,79.041,256,224,4.35,11.92,25.57 +gluon_resnet50_v1c,3234.34,79.139,256,224,4.35,11.92,25.58 +nf_regnet_b1,3220.71,79.473,256,288,1.02,9.2,10.22 +tf_efficientnet_em,3211.19,79.71,256,240,3.04,14.34,6.9 +nf_regnet_b2,3198.33,80.03,256,272,1.22,9.27,14.31 +xcit_tiny_12_p16_224_dist,3183.42,80.405,256,224,1.24,6.29,6.72 +xcit_tiny_12_p16_224,3177.02,80.567,256,224,1.24,6.29,6.72 +regnety_016,3168.83,80.775,256,224,1.63,8.04,11.2 +gmixer_12_224,3164.43,80.888,256,224,2.67,7.26,12.7 +tf_efficientnet_b2_ap,3144.11,81.41,256,260,1.02,13.83,9.11 +tf_efficientnet_b2,3133.02,81.698,256,260,1.02,13.83,9.11 +eca_resnet33ts,3132.75,81.706,256,256,4.76,11.66,19.68 +seresnet33ts,3132.5,81.713,256,256,4.76,11.66,19.78 +skresnet34,3122.38,81.975,256,224,3.67,5.13,22.28 +resnet50t,3114.92,82.173,256,224,4.32,11.82,25.57 +tf_efficientnet_b2_ns,3112.24,82.244,256,260,1.02,13.83,9.11 +gluon_resnet50_v1d,3111.66,82.259,256,224,4.35,11.92,25.58 +resnet50d,3107.36,82.374,256,224,4.35,11.92,25.58 +vovnet39a,3097.06,82.648,256,224,7.09,6.73,22.6 +bat_resnext26ts,3052.18,83.861,256,256,2.53,12.51,10.73 +legacy_seresnet50,3043.79,84.094,256,224,3.88,10.6,28.09 +cspresnext50,3003.53,85.222,256,224,3.1,12.14,20.57 +gcresnet33ts,2986.89,85.696,256,256,4.76,11.68,19.88 +selecsls84,2981.3,85.857,256,224,5.9,7.57,50.95 +vit_small_patch32_384,2981.2,85.86,256,384,3.45,8.25,22.92 +ese_vovnet39b,2975.03,86.038,256,224,7.09,6.74,24.57 +efficientnet_b2a,2964.53,86.343,256,288,1.12,16.2,9.11 +efficientnet_b2,2962.37,86.406,256,288,1.12,16.2,9.11 +eca_vovnet39b,2962.13,86.413,256,224,7.09,6.74,22.6 +res2net50_48w_2s,2946.94,86.858,256,224,4.18,11.72,25.29 +seresnet50,2942.22,86.998,256,224,4.11,11.13,28.09 +efficientnet_b3_pruned,2917.98,87.72,256,300,1.04,11.86,9.86 +haloregnetz_b,2882.69,88.795,256,224,1.97,11.94,11.68 +vit_small_resnet26d_224,2880.85,88.851,256,224,5.07,11.12,63.61 +vgg11,2809.5,91.106,256,224,7.61,7.44,132.86 +gluon_resnext50_32x4d,2797.04,91.514,256,224,4.26,14.4,25.03 +swsl_resnext50_32x4d,2795.88,91.552,256,224,4.26,14.4,25.03 +tv_resnext50_32x4d,2795.77,91.554,256,224,4.26,14.4,25.03 +mixnet_s,2795.45,91.566,256,224,0.25,6.25,4.13 +ssl_resnext50_32x4d,2795.35,91.567,256,224,4.26,14.4,25.03 +resnext50_32x4d,2795.04,91.578,256,224,4.26,14.4,25.03 +resnetaa50d,2786.19,91.87,256,224,5.39,12.44,25.58 +ecaresnet101d_pruned,2770.2,92.4,256,224,3.48,7.69,24.88 +densenet121,2765.59,92.554,256,224,2.87,6.9,7.98 +tv_densenet121,2754.97,92.91,256,224,2.87,6.9,7.98 +gluon_resnet50_v1s,2746.47,93.198,256,224,5.47,13.52,25.68 +rexnet_200,2741.96,93.353,256,224,1.56,14.91,16.37 +cspresnet50,2739.95,93.42,256,256,4.54,11.5,21.62 +seresnet50t,2715.96,94.246,256,224,4.32,11.83,28.1 +resnetrs50,2709.47,94.471,256,224,4.48,12.14,35.69 +crossvit_tiny_240,2698.8,94.845,256,240,1.57,9.08,7.01 +ecaresnet50d,2695.97,94.946,256,224,4.35,11.93,25.58 +tf_mixnet_s,2668.56,95.92,256,224,0.25,6.25,4.13 +dla60,2658.15,96.295,256,224,4.26,10.16,22.04 +crossvit_9_240,2646.19,96.732,256,240,1.85,9.52,8.55 +densenet121d,2643.5,96.83,256,224,3.11,7.7,8.0 +efficientnet_lite3,2630.67,97.302,256,300,1.65,21.85,8.2 +convit_tiny,2612.77,97.969,256,224,1.26,7.94,5.71 +hrnet_w18_small_v2,2612.23,97.989,256,224,2.62,9.65,15.6 +crossvit_9_dagger_240,2607.67,98.16,256,240,1.99,9.97,8.78 +regnetz_b16,2592.86,98.722,256,288,2.39,16.43,9.72 +resnext50d_32x4d,2582.77,99.107,256,224,4.5,15.2,25.05 +cspresnet50d,2577.78,99.299,256,256,4.86,12.55,21.64 +cspresnet50w,2560.3,99.977,256,256,5.04,12.19,28.12 +vgg11_bn,2537.64,100.869,256,224,7.62,7.44,132.87 +vovnet57a,2533.31,101.041,256,224,8.95,7.52,36.64 +resnetblur50,2528.53,101.233,256,224,5.16,12.02,25.56 +gmlp_ti16_224,2479.86,103.22,256,224,1.34,7.55,5.87 +seresnext50_32x4d,2470.29,103.618,256,224,4.26,14.42,27.56 +legacy_seresnext50_32x4d,2466.47,103.78,256,224,4.26,14.42,27.56 +seresnetaa50d,2460.49,104.031,256,224,5.4,12.46,28.11 +gluon_seresnext50_32x4d,2457.31,104.168,256,224,4.26,14.42,27.56 +fbnetv3_g,2441.71,104.833,256,288,1.77,21.09,16.62 +res2net50_26w_4s,2439.77,104.916,256,224,4.28,12.61,25.7 +ese_vovnet57b,2429.1,105.377,256,224,8.95,7.52,38.61 +vit_tiny_r_s16_p8_384,2420.04,105.772,256,384,1.34,6.49,6.36 +gcresnet50t,2406.95,106.347,256,256,5.42,14.67,25.9 +adv_inception_v3,2387.53,107.209,256,299,5.73,8.97,23.83 +inception_v3,2378.4,107.624,256,299,5.73,8.97,23.83 +gluon_inception_v3,2378.14,107.635,256,299,5.73,8.97,23.83 +dla60x,2376.48,107.71,256,224,3.54,13.8,17.35 +efficientnetv2_rw_t,2371.59,107.933,256,288,3.19,16.42,13.65 +tf_inception_v3,2369.67,108.018,256,299,5.73,8.97,23.83 +densenetblur121d,2366.44,108.168,256,224,3.11,7.9,8.0 +tf_efficientnet_lite3,2359.22,108.498,256,300,1.65,21.85,8.2 +resnetblur50d,2356.51,108.624,256,224,5.4,12.82,25.58 +nf_seresnet50,2321.05,110.283,256,224,4.21,11.13,28.09 +lambda_resnet26rpt_256,2319.42,110.361,256,256,3.16,11.87,10.99 +tf_efficientnetv2_b3,2313.61,110.636,256,300,3.04,15.74,14.36 +nf_ecaresnet50,2312.19,110.706,256,224,4.21,11.13,25.56 +resnest14d,2311.92,110.718,256,224,2.76,7.33,10.61 +deit_small_patch16_224,2305.42,111.031,256,224,4.61,11.95,22.05 +pit_s_224,2300.71,111.258,256,224,2.88,11.56,23.46 +vit_small_patch16_224,2295.85,111.494,256,224,4.61,11.95,22.05 +pit_s_distilled_224,2281.8,112.18,256,224,2.9,11.64,24.04 +densenet169,2278.65,112.335,256,224,3.4,7.3,14.15 +vit_base_resnet26d_224,2268.07,112.857,256,224,6.97,13.16,101.4 +deit_small_distilled_patch16_224,2267.44,112.892,256,224,4.63,12.02,22.44 +skresnet50,2244.08,114.064,256,224,4.11,12.5,25.8 +darknet53,2213.23,115.656,256,256,9.31,12.39,41.61 +sehalonet33ts,2208.53,115.902,256,256,3.55,14.7,13.69 +res2net50_14w_8s,2201.46,116.274,256,224,4.21,13.28,25.06 +gc_efficientnetv2_rw_t,2198.9,116.41,256,288,3.2,16.45,13.68 +gcresnext50ts,2187.09,117.039,256,256,3.75,15.46,15.67 +resnetv2_101,2146.17,119.27,256,224,7.83,16.23,44.54 +resmlp_24_224,2127.24,120.334,256,224,5.96,10.91,30.02 +resmlp_24_distilled_224,2125.15,120.451,256,224,5.96,10.91,30.02 +skresnet50d,2105.03,121.599,256,224,4.36,13.31,25.82 +gluon_resnet101_v1b,2098.13,122.001,256,224,7.83,16.23,44.55 +tv_resnet101,2095.51,122.152,256,224,7.83,16.23,44.55 +resnet101,2094.89,122.19,256,224,7.83,16.23,44.55 +res2next50,2089.9,122.482,256,224,4.2,13.71,24.67 +ecaresnet26t,2087.45,122.626,256,320,5.24,16.44,16.01 +dla60_res2net,2078.29,123.165,256,224,4.15,12.34,20.85 +nf_regnet_b3,2039.85,125.487,256,320,2.05,14.61,18.59 +gluon_resnet101_v1c,2026.41,126.32,256,224,8.08,17.04,44.57 +resnetv2_101d,2021.62,126.619,256,224,8.07,17.04,44.56 +gluon_resnet101_v1d,1976.83,129.488,256,224,8.08,17.04,44.57 +vgg13,1972.22,129.79,256,224,11.31,12.25,133.05 +wide_resnet50_2,1932.56,132.455,256,224,11.43,14.4,68.88 +sebotnet33ts_256,1892.63,135.25,256,256,3.89,17.46,13.7 +repvgg_b1,1864.64,137.281,256,224,13.16,10.64,57.42 +resnetaa101d,1840.38,139.09,256,224,9.12,17.56,44.57 +legacy_seresnet101,1838.54,139.229,256,224,7.61,15.74,49.33 +resnet51q,1828.83,139.968,256,288,8.07,20.94,35.7 +gluon_resnet101_v1s,1822.02,140.491,256,224,9.19,18.64,44.67 +dla102,1820.91,140.577,256,224,7.19,14.18,33.27 +dla60_res2next,1817.78,140.818,256,224,3.49,13.17,17.03 +coat_lite_tiny,1811.49,141.309,256,224,1.6,11.65,5.72 +vit_base_resnet50d_224,1807.55,141.614,256,224,8.73,16.92,110.97 +tf_efficientnet_b3,1803.3,141.948,256,300,1.87,23.83,12.23 +tf_efficientnet_b3_ap,1802.94,141.978,256,300,1.87,23.83,12.23 +tf_efficientnet_b3_ns,1802.1,142.043,256,300,1.87,23.83,12.23 +cspdarknet53,1801.31,142.107,256,256,6.57,16.81,27.64 +seresnet101,1796.92,142.453,256,224,7.84,16.27,49.33 +efficientnet_b3,1780.99,143.727,256,320,2.01,26.52,12.23 +efficientnet_b3a,1780.57,143.761,256,320,2.01,26.52,12.23 +densenet201,1754.6,145.89,256,224,4.34,7.85,20.01 +vgg13_bn,1750.09,146.264,256,224,11.33,12.25,133.05 +ssl_resnext101_32x4d,1737.01,147.366,256,224,8.01,21.23,44.18 +resnext101_32x4d,1736.55,147.407,256,224,8.01,21.23,44.18 +gluon_resnext101_32x4d,1736.42,147.419,256,224,8.01,21.23,44.18 +swsl_resnext101_32x4d,1735.28,147.514,256,224,8.01,21.23,44.18 +halonet50ts,1731.56,147.831,256,256,5.3,19.2,22.73 +res2net50_26w_6s,1726.13,148.297,256,224,6.33,15.28,37.05 +nf_resnet101,1725.55,148.347,256,224,8.01,16.23,44.55 +coat_lite_mini,1724.07,148.474,256,224,2.0,12.25,11.01 +regnetz_c16,1702.47,150.358,256,320,3.92,25.88,13.46 +nf_resnet50,1701.7,150.426,256,288,6.88,18.37,25.56 +ecaresnet101d,1699.81,150.594,256,224,8.08,17.07,44.57 +xcit_tiny_24_p16_224_dist,1697.25,150.82,256,224,2.34,11.82,12.12 +xcit_tiny_24_p16_224,1694.56,151.06,256,224,2.34,11.82,12.12 +xcit_small_12_p16_224_dist,1690.19,151.45,256,224,4.82,12.58,26.25 +xcit_small_12_p16_224,1687.09,151.729,256,224,4.82,12.58,26.25 +resnest26d,1686.65,151.769,256,224,3.64,9.97,17.07 +convnext_tiny,1676.02,152.729,256,224,4.47,13.44,28.59 +convnext_tiny_hnf,1674.55,152.865,256,224,4.47,13.44,28.59 +vit_small_r26_s32_224,1656.11,154.567,256,224,3.56,9.85,36.43 +resnetblur101d,1639.84,156.101,256,224,9.12,17.94,44.57 +dla102x,1638.98,156.183,256,224,5.89,19.42,26.31 +resnet61q,1638.11,156.265,256,288,9.87,21.52,36.85 +gmixer_24_224,1615.83,158.42,256,224,5.28,14.45,24.72 +vgg16,1592.01,160.79,256,224,15.47,13.56,138.36 +xcit_nano_12_p16_384_dist,1580.63,161.949,256,384,1.64,12.15,3.05 +regnetx_032,1571.21,162.919,256,224,3.2,11.37,15.3 +repvgg_b1g4,1566.48,163.412,256,224,8.15,10.64,39.97 +regnetx_040,1550.05,165.143,256,224,3.99,12.2,22.12 +twins_svt_small,1531.98,167.089,256,224,2.94,13.75,24.06 +seresnext101_32x4d,1528.6,167.459,256,224,8.02,21.26,48.96 +gluon_seresnext101_32x4d,1525.5,167.801,256,224,8.02,21.26,48.96 +legacy_seresnext101_32x4d,1523.33,168.041,256,224,8.02,21.26,48.96 +res2net101_26w_4s,1522.04,168.183,256,224,8.1,18.45,45.21 +xception,1515.79,168.877,256,299,8.4,35.83,22.86 +visformer_small,1505.04,170.081,256,224,4.88,11.43,40.22 +botnet50ts_256,1504.07,170.19,256,256,5.54,22.23,22.74 +resnest50d_1s4x24d,1495.52,171.166,256,224,4.43,13.57,25.68 +resnetv2_50x1_bit_distilled,1491.91,171.579,256,224,4.23,11.11,25.55 +resnetv2_152,1488.31,171.994,256,224,11.55,22.56,60.19 +efficientnet_el,1485.73,172.293,256,300,8.0,30.7,10.59 +efficientnet_el_pruned,1484.88,172.392,256,300,8.0,30.7,10.59 +gluon_resnet152_v1b,1466.32,174.574,256,224,11.56,22.56,60.19 +crossvit_small_240,1465.43,174.68,256,240,5.63,18.17,26.86 +tv_resnet152,1464.76,174.758,256,224,11.56,22.56,60.19 +resnet152,1463.7,174.886,256,224,11.56,22.56,60.19 +res2net50_26w_8s,1440.77,177.671,256,224,8.37,17.95,48.4 +tf_efficientnet_el,1439.79,177.79,256,300,8.0,30.7,10.59 +halo2botnet50ts_256,1435.45,178.33,256,256,5.02,21.78,22.64 +hrnet_w32,1431.59,178.81,256,224,8.97,22.02,41.23 +gluon_resnet152_v1c,1431.14,178.867,256,224,11.8,23.36,60.21 +nf_seresnet101,1430.41,178.958,256,224,8.02,16.27,49.33 +vgg16_bn,1430.18,178.985,256,224,15.5,13.56,138.37 +resnetv2_152d,1427.39,179.335,256,224,11.8,23.36,60.2 +resmlp_36_224,1426.81,179.41,256,224,8.91,16.33,44.69 +resmlp_36_distilled_224,1426.22,179.484,256,224,8.91,16.33,44.69 +nf_ecaresnet101,1423.4,179.839,256,224,8.01,16.27,44.55 +mixnet_m,1415.37,180.859,256,224,0.36,8.19,5.01 +gluon_resnet152_v1d,1405.52,182.126,256,224,11.8,23.36,60.21 +ese_vovnet99b,1395.24,183.468,256,224,16.51,11.27,63.2 +gmlp_s16_224,1389.58,184.216,256,224,4.42,15.1,19.42 +tf_mixnet_m,1379.18,185.603,256,224,0.36,8.19,5.01 +regnety_040,1367.09,187.246,256,224,4.0,12.29,20.65 +vit_large_patch32_224,1365.88,187.414,256,224,15.39,13.3,306.54 +hrnet_w18,1363.25,187.774,256,224,4.32,16.31,21.3 +vit_base_r26_s32_224,1359.83,188.244,256,224,6.81,12.36,101.38 +crossvit_15_240,1344.51,190.391,256,240,5.81,19.77,27.53 +resnetv2_50d_evob,1343.28,190.567,256,224,4.33,11.92,25.59 +ecaresnet50t,1341.42,190.83,256,320,8.82,24.13,25.57 +mixer_b16_224,1341.1,190.877,256,224,12.62,14.53,59.88 +mixer_b16_224_miil,1340.95,190.898,256,224,12.62,14.53,59.88 +vgg19,1334.38,191.835,256,224,19.63,14.86,143.67 +regnety_032,1331.17,192.299,256,288,5.29,18.61,19.44 +cait_xxs24_224,1325.98,193.051,256,224,2.53,20.29,11.96 +gluon_resnet152_v1s,1323.82,193.367,256,224,12.92,24.96,60.32 +mixer_l32_224,1320.53,193.849,256,224,11.27,19.86,206.94 +skresnext50_32x4d,1317.3,194.322,256,224,4.5,17.18,27.48 +xception41,1314.21,194.782,256,299,9.28,39.86,26.97 +crossvit_15_dagger_240,1313.12,194.944,256,240,6.13,20.43,28.21 +densenet161,1297.86,197.236,256,224,7.79,11.06,28.68 +dpn92,1283.16,199.496,256,224,6.54,18.21,37.67 +efficientnet_lite4,1279.6,200.05,256,380,4.04,45.66,13.01 +tresnet_m,1272.03,201.24,256,224,5.74,7.31,31.39 +legacy_seresnet152,1268.99,201.723,256,224,11.33,22.08,66.82 +dla169,1257.87,203.505,256,224,11.6,20.2,53.39 +seresnet152,1252.8,204.325,256,224,11.57,22.61,66.82 +swin_tiny_patch4_window7_224,1250.47,204.71,256,224,4.51,17.06,28.29 +vit_base_patch32_384,1245.01,205.608,256,384,13.06,16.5,88.3 +repvgg_b2,1240.95,206.281,256,224,20.45,12.9,89.02 +twins_pcpvt_small,1237.75,206.812,256,224,3.83,18.08,24.11 +inception_v4,1232.0,207.78,256,299,12.28,15.09,42.68 +regnetx_080,1230.26,208.073,256,224,8.02,14.06,39.57 +convit_small,1215.14,210.662,256,224,5.76,17.87,27.78 +vgg19_bn,1208.18,211.876,256,224,19.66,14.86,143.68 +xcit_nano_12_p8_224_dist,1199.12,213.478,256,224,2.16,15.71,3.05 +xcit_nano_12_p8_224,1193.48,214.486,256,224,2.16,15.71,3.05 +hrnet_w30,1182.47,216.483,256,224,8.15,21.21,37.71 +tf_efficientnet_lite4,1173.72,218.096,256,380,4.04,45.66,13.01 +resnetv2_50d_gn,1171.09,218.587,256,224,4.38,11.92,25.57 +vit_tiny_patch16_384,1165.29,219.677,256,384,4.7,25.39,5.79 +dla102x2,1162.53,220.196,256,224,9.34,29.91,41.28 +regnetx_064,1154.46,221.737,256,224,6.49,16.37,26.21 +vit_small_resnet50d_s16_224,1148.12,222.96,256,224,13.48,24.82,57.53 +resnest50d,1142.3,224.096,256,224,5.4,14.36,27.48 +xcit_tiny_12_p16_384_dist,1120.72,228.412,256,384,3.64,18.26,6.72 +nf_regnet_b4,1118.05,228.958,256,384,4.7,28.61,30.21 +mixnet_l,1111.69,230.267,256,224,0.58,10.84,7.33 +efficientnetv2_s,1109.52,230.718,256,384,8.44,35.77,21.46 +resnet50_gn,1084.83,235.97,256,224,4.14,11.11,25.56 +tf_efficientnetv2_s,1082.56,236.462,256,384,8.44,35.77,21.46 +tf_efficientnetv2_s_in21ft1k,1080.83,236.841,256,384,8.44,35.77,21.46 +tf_mixnet_l,1080.28,236.961,256,224,0.58,10.84,7.33 +wide_resnet101_2,1080.17,236.987,256,224,22.8,21.23,126.89 +gluon_resnext101_64x4d,1075.35,238.048,256,224,15.52,31.21,83.46 +dpn98,1075.31,238.059,256,224,11.73,25.2,61.57 +eca_nfnet_l0,1073.57,238.443,256,288,7.12,17.29,24.14 +resnext101_64x4d,1073.4,238.483,256,224,15.52,31.21,83.46 +regnetz_d8,1072.66,238.647,256,320,6.19,37.08,23.37 +convnext_small,1068.35,239.61,256,224,8.7,21.56,50.22 +nfnet_l0,1067.0,239.911,256,288,7.13,17.29,35.07 +resnet200,1062.15,241.009,256,224,15.07,32.19,64.67 +resnetrs101,1051.01,243.563,256,288,13.56,28.53,63.62 +inception_resnet_v2,1033.59,247.668,256,299,13.18,25.06,55.84 +ens_adv_inception_resnet_v2,1033.26,247.747,256,299,13.18,25.06,55.84 +efficientnetv2_rw_s,1032.33,247.972,256,384,8.72,38.03,23.94 +nest_tiny,1020.47,250.854,256,224,5.83,25.48,17.06 +coat_lite_small,1020.33,250.888,256,224,3.96,22.09,19.84 +jx_nest_tiny,1008.4,253.854,256,224,5.83,25.48,17.06 +vit_base_patch16_224_miil,996.21,256.96,256,224,17.58,23.9,86.54 +crossvit_18_240,991.56,258.167,256,240,9.05,26.26,43.27 +gluon_seresnext101_64x4d,990.21,258.518,256,224,15.53,31.25,88.23 +swsl_resnext101_32x8d,977.82,261.793,256,224,16.48,31.21,88.79 +ssl_resnext101_32x8d,977.78,261.803,256,224,16.48,31.21,88.79 +resnext101_32x8d,976.71,262.092,256,224,16.48,31.21,88.79 +resnet101d,976.38,262.181,256,320,16.48,34.77,44.57 +ig_resnext101_32x8d,976.0,262.282,256,224,16.48,31.21,88.79 +crossvit_18_dagger_240,971.37,263.533,256,240,9.5,27.03,44.27 +regnetz_d32,970.52,263.764,256,320,9.33,37.08,27.58 +vit_base_patch16_224_sam,969.72,263.98,256,224,17.58,23.9,86.57 +deit_base_patch16_224,967.9,264.478,256,224,17.58,23.9,86.57 +vit_base_patch16_224,966.99,264.723,256,224,17.58,23.9,86.57 +deit_base_distilled_patch16_224,962.72,265.901,256,224,17.68,24.05,87.34 +repvgg_b3,962.17,266.052,256,224,29.16,15.1,123.09 +resnest50d_4s2x40d,957.24,267.424,256,224,4.4,17.94,30.42 +gluon_xception65,952.59,268.729,256,299,13.96,52.48,39.92 +efficientnet_b4,950.53,269.31,256,384,4.51,50.04,19.34 +xception65,944.4,271.059,256,299,13.96,52.48,39.92 +ese_vovnet39b_evos,937.23,273.135,256,224,7.07,6.74,24.58 +hrnet_w40,919.71,278.336,256,224,12.75,25.29,57.56 +seresnext101_32x8d,905.52,282.696,256,224,16.48,31.25,93.57 +twins_pcpvt_base,904.7,282.951,256,224,6.68,25.25,43.83 +tf_efficientnet_b4,899.69,284.527,256,380,4.49,49.49,19.34 +tf_efficientnet_b4_ap,899.17,284.692,256,380,4.49,49.49,19.34 +tf_efficientnet_b4_ns,898.81,284.808,256,380,4.49,49.49,19.34 +xcit_small_24_p16_224_dist,897.88,285.104,256,224,9.1,23.64,47.67 +xcit_small_24_p16_224,897.08,285.357,256,224,9.1,23.64,47.67 +beit_base_patch16_224,894.85,286.068,256,224,17.58,23.9,86.53 +cait_xxs36_224,891.78,287.055,256,224,3.77,30.34,17.3 +twins_svt_base,885.5,289.087,256,224,8.59,26.33,56.07 +regnety_080,865.03,295.931,256,224,8.0,17.97,39.18 +hrnet_w48,862.23,296.892,256,224,17.34,28.56,77.47 +xcit_tiny_12_p8_224_dist,851.38,300.676,256,224,4.81,23.6,6.71 +xcit_tiny_12_p8_224,850.38,301.029,256,224,4.81,23.6,6.71 +pit_b_224,831.73,307.778,256,224,12.42,32.94,73.76 +pit_b_distilled_224,829.76,308.512,256,224,12.5,33.07,74.79 +nfnet_f0s,822.42,311.265,256,256,12.62,18.05,71.49 +nfnet_f0,820.01,312.18,256,256,12.62,18.05,71.49 +swin_small_patch4_window7_224,808.39,316.666,256,224,8.77,27.47,49.61 +repvgg_b2g4,805.1,317.961,256,224,12.63,12.9,61.76 +resnetv2_50d_evos,799.75,320.087,256,224,4.33,11.92,25.59 +convnext_base,795.35,321.858,256,224,15.38,28.75,88.59 +convnext_base_in22ft1k,795.35,321.856,256,224,15.38,28.75,88.59 +dpn131,790.54,323.815,256,224,16.09,32.97,79.25 +regnetx_120,762.35,335.792,256,224,12.13,21.37,46.11 +regnety_064,760.83,336.463,256,224,6.39,16.41,30.58 +hrnet_w44,758.65,337.428,256,224,14.94,26.92,67.06 +densenet264,753.54,339.715,256,224,12.95,12.8,72.69 +mixnet_xl,746.77,342.795,256,224,0.93,14.57,11.9 +cait_s24_224,746.74,342.81,256,224,9.35,40.58,46.92 +regnety_120,732.77,349.348,256,224,12.14,21.38,51.82 +dm_nfnet_f0,732.71,349.374,256,256,12.62,18.05,71.49 +xception71,724.87,353.154,256,299,18.09,69.92,42.34 +coat_tiny,707.44,361.857,256,224,4.35,27.2,5.5 +resnet152d,694.55,368.574,256,320,24.08,47.67,60.21 +dpn107,691.54,370.175,256,224,18.38,33.46,86.92 +hrnet_w64,684.53,373.966,256,224,28.97,35.09,128.06 +nest_small,681.18,375.805,256,224,10.35,40.04,38.35 +vit_large_r50_s32_224,676.89,378.187,256,224,19.58,24.41,328.99 +jx_nest_small,675.63,378.895,256,224,10.35,40.04,38.35 +twins_svt_large,674.75,379.385,256,224,15.15,35.1,99.27 +seresnet200d,673.13,380.295,256,256,20.01,43.15,71.86 +ecaresnet200d,672.08,380.893,256,256,20.0,43.15,64.69 +repvgg_b3g4,671.77,381.071,256,224,17.89,15.1,83.83 +cspresnext50_iabn,667.96,383.242,256,256,4.02,15.86,20.57 +gmlp_b16_224,667.23,383.66,256,224,15.78,30.21,73.08 +crossvit_base_240,662.98,386.123,256,240,21.22,36.33,105.03 +xcit_medium_24_p16_224_dist,661.18,387.174,256,224,16.13,31.71,84.4 +xcit_medium_24_p16_224,660.34,387.669,256,224,16.13,31.71,84.4 +tresnet_l,657.41,389.391,256,224,10.88,11.9,55.99 +twins_pcpvt_large,657.27,389.474,256,224,9.84,35.82,60.99 +gluon_senet154,656.15,390.143,256,224,20.77,38.69,115.09 +senet154,655.06,390.791,256,224,20.77,38.69,115.09 +legacy_senet154,654.75,390.977,256,224,20.77,38.69,115.09 +convit_base,638.4,400.989,256,224,17.52,31.77,86.54 +swin_base_patch4_window7_224,617.48,414.571,256,224,15.47,36.63,87.77 +ese_vovnet99b_iabn,611.75,418.46,256,224,16.49,11.27,63.2 +regnetx_160,608.26,420.859,256,224,15.99,25.52,54.28 +cspdarknet53_iabn,603.85,423.936,256,256,6.53,16.81,27.64 +resnetrs152,602.36,424.984,256,320,24.34,48.14,86.62 +seresnet152d,600.43,426.343,256,320,24.09,47.72,66.84 +xcit_tiny_24_p16_384_dist,596.99,428.807,256,384,6.87,34.29,12.12 +xcit_small_12_p16_384_dist,594.31,430.737,256,384,14.14,36.51,26.25 +coat_mini,592.69,431.92,256,224,6.82,33.68,10.34 +vit_small_patch16_384,592.64,431.956,256,384,15.52,50.78,22.2 +regnetz_e8,575.64,444.705,256,320,15.46,63.94,57.7 +convmixer_768_32,563.29,454.463,256,224,19.55,25.95,21.11 +resnest101e,556.07,460.362,256,256,13.38,28.66,48.28 +efficientnetv2_m,555.39,460.921,256,416,18.6,67.5,54.14 +vit_base_r50_s16_224,554.34,461.796,256,224,21.66,35.29,98.66 +vit_small_r26_s32_384,549.37,465.972,256,384,10.43,29.85,36.47 +nf_regnet_b5,533.77,479.592,256,456,11.7,61.95,49.74 +seresnet269d,524.13,488.41,256,256,26.59,53.6,113.67 +nest_base,514.16,497.89,256,224,17.96,53.39,67.72 +jx_nest_base,510.9,501.061,256,224,17.96,53.39,67.72 +resnet200d,509.84,502.105,256,320,31.25,67.33,64.69 +tnt_s_patch16_224,490.75,521.641,256,224,5.24,24.37,23.76 +mixnet_xxl,486.35,526.355,256,224,2.04,23.43,23.96 +tresnet_xl,476.44,537.307,256,224,15.17,15.34,78.44 +convnext_large,476.21,537.564,256,224,34.4,43.13,197.77 +eca_nfnet_l1,475.22,538.689,256,320,14.92,34.42,41.41 +convnext_large_in22ft1k,475.1,538.817,256,224,34.4,43.13,197.77 +efficientnetv2_rw_m,464.7,550.875,256,416,21.49,79.62,53.24 +efficientnet_b5,456.59,560.666,256,456,10.46,98.86,30.39 +xcit_small_12_p8_224,453.25,564.8,256,224,18.69,47.21,26.21 +xcit_small_12_p8_224_dist,452.33,565.946,256,224,18.69,47.21,26.21 +xcit_tiny_24_p8_224,450.37,568.411,256,224,9.21,45.39,12.11 +mixer_l16_224,449.08,570.035,256,224,44.6,41.69,208.2 +xcit_tiny_24_p8_224_dist,448.81,570.379,256,224,9.21,45.39,12.11 +halonet_h1,448.78,570.426,256,256,3.0,51.17,8.1 +vit_large_patch32_384,441.35,580.019,256,384,45.31,43.86,306.63 +resnetrs200,436.51,586.457,256,320,31.51,67.81,93.21 +tf_efficientnet_b5,434.35,589.365,256,456,10.46,98.86,30.39 +tf_efficientnet_b5_ap,433.75,590.18,256,456,10.46,98.86,30.39 +tf_efficientnet_b5_ns,433.48,590.557,256,456,10.46,98.86,30.39 +tf_efficientnetv2_m_in21ft1k,410.56,623.518,256,480,24.76,89.84,54.14 +tf_efficientnetv2_m,410.47,623.661,256,480,24.76,89.84,54.14 +xcit_nano_12_p8_384_dist,410.15,624.154,256,384,6.34,46.08,3.05 +regnety_320,406.99,628.99,256,224,32.34,30.26,145.05 +regnety_160,405.46,631.367,256,288,26.37,38.07,83.59 +xcit_large_24_p16_224_dist,400.4,639.34,256,224,35.86,47.27,189.1 +xcit_large_24_p16_224,400.19,639.684,256,224,35.86,47.27,189.1 +regnetz_d8_evob,388.06,659.67,256,320,6.12,37.08,23.41 +tnt_b_patch16_224,385.58,663.922,256,224,14.09,39.01,65.41 +swin_large_patch4_window7_224,383.73,667.122,256,224,34.53,54.94,196.53 +resnetv2_50x1_bitm,374.41,683.729,256,448,16.62,44.46,25.55 +ssl_resnext101_32x16d,338.57,756.102,256,224,36.27,51.18,194.03 +swsl_resnext101_32x16d,338.32,756.674,256,224,36.27,51.18,194.03 +ig_resnext101_32x16d,338.18,756.969,256,224,36.27,51.18,194.03 +vit_large_patch16_224,326.85,783.223,256,224,61.6,63.52,304.33 +convnext_xlarge_in22ft1k,321.97,795.088,256,224,60.97,57.5,350.2 +tresnet_m_448,321.59,796.023,256,448,22.94,29.21,31.39 +xcit_small_24_p16_384_dist,315.9,810.38,256,384,26.72,68.58,47.67 +crossvit_15_dagger_408,307.27,833.13,256,408,21.45,95.05,28.5 +nasnetalarge,305.09,839.069,256,331,23.89,90.56,88.75 +beit_large_patch16_224,301.03,850.396,256,224,61.6,63.52,304.43 +pnasnet5large,294.97,867.879,256,331,25.04,92.89,86.06 +xcit_tiny_12_p8_384_dist,290.12,882.382,256,384,14.13,69.14,6.71 +ecaresnet269d,282.41,906.484,256,352,50.25,101.25,102.09 +nfnet_f1s,278.33,919.751,256,320,35.97,46.77,132.63 +nfnet_f1,277.93,921.079,256,320,35.97,46.77,132.63 +resnetrs270,274.74,931.762,256,352,51.13,105.48,129.86 +convnext_base_384_in22ft1k,274.29,933.296,256,384,45.2,84.49,88.59 +resnetv2_152x2_bit_teacher,268.11,954.835,256,224,46.95,45.11,236.34 +efficientnet_b6,261.2,490.039,128,528,19.4,167.39,43.04 +regnetx_320,257.17,995.447,256,224,31.81,36.3,107.81 +vit_base_patch16_384,256.27,998.923,256,384,55.54,101.56,86.86 +deit_base_patch16_384,256.23,999.078,256,384,55.54,101.56,86.86 +deit_base_distilled_patch16_384,253.03,1011.71,256,384,55.65,101.82,87.63 +dm_nfnet_f1,251.34,1018.532,256,320,35.97,46.77,132.63 +tf_efficientnet_b6_ns,249.3,513.425,128,528,19.4,167.39,43.04 +tf_efficientnet_b6_ap,249.28,513.468,128,528,19.4,167.39,43.04 +tf_efficientnet_b6,249.27,513.475,128,528,19.4,167.39,43.04 +cait_xxs24_384,240.96,1062.389,256,384,9.63,122.66,12.03 +resnetv2_101x1_bitm,237.63,1077.288,256,448,31.65,64.93,44.54 +xcit_small_24_p8_224,236.59,1082.038,256,224,35.81,90.78,47.63 +xcit_small_24_p8_224_dist,236.51,1082.395,256,224,35.81,90.78,47.63 +efficientnetv2_l,230.67,1109.79,256,480,56.4,157.99,118.52 +xcit_medium_24_p16_384_dist,229.71,1114.433,256,384,47.39,91.64,84.4 +crossvit_18_dagger_408,228.55,560.041,128,408,32.47,124.87,44.61 +tf_efficientnetv2_l,228.05,1122.527,256,480,56.4,157.99,118.52 +eca_nfnet_l2,227.63,1124.623,256,384,30.05,68.28,56.72 +tf_efficientnetv2_l_in21ft1k,227.22,1126.624,256,480,56.4,157.99,118.52 +vit_large_r50_s32_384,223.83,1143.726,256,384,57.43,76.52,329.09 +beit_base_patch16_384,221.26,1157.006,256,384,55.54,101.56,86.74 +regnetz_d8_evos,211.13,1212.504,256,320,7.03,38.92,23.46 +resmlp_big_24_224,198.32,1290.833,256,224,100.23,87.31,129.14 +resmlp_big_24_224_in22ft1k,197.59,1295.599,256,224,100.23,87.31,129.14 +resmlp_big_24_distilled_224,197.33,1297.278,256,224,100.23,87.31,129.14 +resnest200e,191.82,1334.548,256,320,35.69,82.78,70.2 +resnetrs350,182.63,1401.718,256,384,77.59,154.74,163.96 +swin_base_patch4_window12_384,171.61,745.879,128,384,47.19,134.78,87.9 +cait_xs24_384,171.6,1491.866,256,384,19.28,183.98,26.67 +xcit_medium_24_p8_224,171.09,1496.317,256,224,63.53,121.23,84.32 +xcit_medium_24_p8_224_dist,171.08,1496.368,256,224,63.53,121.23,84.32 +vit_base_patch8_224,170.14,1504.628,256,224,78.22,161.69,86.58 +tresnet_l_448,163.98,1561.153,256,448,43.5,47.56,55.99 +convnext_large_384_in22ft1k,162.15,1578.727,256,384,101.09,126.74,197.77 +cait_xxs36_384,161.38,1586.306,256,384,14.35,183.7,17.37 +vit_base_r50_s16_384,161.14,1588.636,256,384,67.43,135.03,98.95 +vit_base_resnet50_384,161.06,1589.462,256,384,67.43,135.03,98.95 +nfnet_f2s,156.52,1635.579,256,352,63.22,79.06,193.78 +efficientnet_b7,156.11,409.945,64,600,38.33,289.94,66.35 +nfnet_f2,155.79,1643.217,256,352,63.22,79.06,193.78 +xcit_tiny_24_p8_384_dist,152.9,1674.228,256,384,27.05,132.95,12.11 +densenet264d_iabn,151.23,1692.723,256,224,13.47,14.0,72.74 +xcit_small_12_p8_384_dist,150.53,1700.627,256,384,54.92,138.29,26.21 +tf_efficientnet_b7_ns,150.44,425.41,64,600,38.33,289.94,66.35 +tf_efficientnet_b7_ap,150.35,425.668,64,600,38.33,289.94,66.35 +tf_efficientnet_b7,150.33,425.703,64,600,38.33,289.94,66.35 +efficientnetv2_xl,146.15,1751.589,256,512,93.85,247.32,208.12 +tf_efficientnetv2_xl_in21ft1k,144.77,1768.278,256,512,93.85,247.32,208.12 +dm_nfnet_f2,141.71,1806.539,256,352,63.22,79.06,193.78 +xcit_large_24_p16_384_dist,138.32,1850.744,256,384,105.35,137.17,189.1 +cait_s24_384,132.94,1925.665,256,384,32.17,245.31,47.06 +resnetrs420,132.69,1929.303,256,416,108.45,213.79,191.89 +vit_huge_patch14_224,131.53,1946.246,256,224,167.4,139.41,632.05 +eca_nfnet_l3,127.14,2013.536,256,448,52.55,118.4,72.04 +tresnet_xl_448,120.79,2119.391,256,448,60.65,61.31,78.44 +efficientnet_cc_b0_8e,117.25,8.519,1,224,0.42,9.42,24.01 +efficientnet_cc_b0_4e,114.89,8.693,1,224,0.41,9.42,13.31 +convnext_xlarge_384_in22ft1k,110.42,1159.152,128,384,179.18,168.99,350.2 +tf_efficientnet_cc_b0_8e,109.13,9.153,1,224,0.42,9.42,24.01 +swin_large_patch4_window12_384,108.07,1184.415,128,384,104.08,202.16,196.74 +tf_efficientnet_cc_b0_4e,106.38,9.39,1,224,0.41,9.42,13.31 +xcit_large_24_p8_224,103.21,2480.29,256,224,141.23,181.56,188.93 +xcit_large_24_p8_224_dist,103.09,2483.315,256,224,141.23,181.56,188.93 +efficientnet_b8,95.86,667.618,64,672,63.48,442.89,87.41 +resnetv2_152x2_bit_teacher_384,93.91,2726.129,256,384,136.16,132.56,236.34 +tf_efficientnet_b8,93.03,687.97,64,672,63.48,442.89,87.41 +tf_efficientnet_b8_ap,92.99,688.234,64,672,63.48,442.89,87.41 +resnetv2_50x3_bitm,90.18,1419.305,128,448,145.7,133.37,217.32 +resnest269e,90.1,2841.126,256,416,77.69,171.98,110.93 +cait_s36_384,88.82,2882.347,256,384,47.99,367.4,68.37 +vit_large_patch16_384,88.44,2894.698,256,384,191.21,270.24,304.72 +vit_giant_patch14_224,87.02,2941.98,256,224,267.18,192.64,1012.61 +nfnet_f3s,85.07,3009.339,256,416,115.58,141.78,254.92 +nfnet_f3,84.65,3024.233,256,416,115.58,141.78,254.92 +efficientnet_cc_b1_8e,83.46,11.971,1,240,0.75,15.44,39.72 +convmixer_1024_20_ks9_p14,81.44,3143.542,256,224,5.55,5.51,24.38 +xcit_small_24_p8_384_dist,78.98,3241.259,256,384,105.24,265.91,47.63 +beit_large_patch16_384,77.03,3323.174,256,384,191.21,270.24,305.0 +dm_nfnet_f3,76.93,3327.777,256,416,115.58,141.78,254.92 +tf_efficientnet_cc_b1_8e,76.09,13.131,1,240,0.75,15.44,39.72 +resnetv2_152x2_bitm,68.83,1859.681,128,448,184.99,180.43,236.34 +xcit_medium_24_p8_384_dist,58.64,4365.679,256,384,186.67,354.73,84.32 +resnetv2_101x3_bitm,55.09,2323.244,128,448,280.33,194.78,387.93 +vit_gigantic_patch14_224,52.92,4837.231,256,224,483.95,275.37,1844.44 +nfnet_f4s,45.21,5662.39,256,512,216.26,262.26,316.07 +nfnet_f4,45.13,5672.08,256,512,216.26,262.26,316.07 +dm_nfnet_f4,41.12,6225.397,256,512,216.26,262.26,316.07 +xcit_large_24_p8_384_dist,35.18,3638.243,128,384,415.0,531.82,188.93 +nfnet_f5s,33.4,7663.628,256,544,290.97,349.71,377.21 +nfnet_f5,33.22,7705.647,256,544,290.97,349.71,377.21 +beit_large_patch16_512,31.23,2049.459,64,512,362.24,656.39,305.67 +cait_m36_384,30.6,8365.416,256,384,173.11,734.81,271.22 +dm_nfnet_f5,30.51,8392.012,256,544,290.97,349.71,377.21 +nfnet_f6s,24.87,10292.837,256,576,378.69,452.2,438.36 +nfnet_f6,24.74,10346.138,256,576,378.69,452.2,438.36 +dm_nfnet_f6,23.05,11108.286,256,576,378.69,452.2,438.36 +nfnet_f7s,19.54,13099.713,256,608,480.39,570.85,499.5 +nfnet_f7,19.47,13146.917,256,608,480.39,570.85,499.5 +resnetv2_152x4_bitm,17.96,3562.952,64,480,844.84,414.26,936.53 +cait_m48_448,13.23,9672.182,128,448,329.41,1708.23,356.46 +convmixer_1536_20,13.15,19467.539,256,224,48.68,33.03,51.63 diff --git a/results/benchmark-train-amp-nchw-pt110-cu113-rtx3090.csv b/results/benchmark-train-amp-nchw-pt110-cu113-rtx3090.csv new file mode 100644 index 0000000000..9337f18989 --- /dev/null +++ b/results/benchmark-train-amp-nchw-pt110-cu113-rtx3090.csv @@ -0,0 +1,703 @@ +model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count +tinynet_e,8788.08,57.613,512,106,2.04 +mobilenetv3_small_050,6451.43,78.69,512,224,1.59 +tf_mobilenetv3_small_minimal_100,6231.46,81.639,512,224,2.04 +levit_128s,5345.65,94.962,512,224,7.78 +lcnet_035,5326.51,95.668,512,224,1.64 +mobilenetv3_small_075,5149.15,98.754,512,224,2.04 +lcnet_050,4879.43,104.466,512,224,1.88 +tf_mobilenetv3_small_075,4839.2,105.1,512,224,2.04 +mobilenetv3_small_100,4741.69,107.315,512,224,2.54 +tf_mobilenetv3_small_100,4474.54,113.738,512,224,2.54 +tinynet_d,4465.05,113.942,512,152,2.34 +mixer_s32_224,3957.52,128.859,512,224,19.1 +levit_128,3868.72,131.359,512,224,9.21 +lcnet_075,3674.09,138.887,512,224,2.36 +vit_small_patch32_224,3657.34,139.252,512,224,22.88 +vit_tiny_r_s16_p8_224,3407.13,149.506,512,224,6.34 +regnetx_002,3372.01,151.204,512,224,2.68 +levit_192,3357.19,151.505,512,224,10.95 +mnasnet_small,3158.42,161.274,512,224,2.03 +regnety_002,3119.2,163.263,512,224,3.16 +lcnet_100,3075.72,165.994,512,224,2.95 +mobilenetv2_035,3007.95,169.496,512,224,1.68 +gernet_s,2901.28,175.82,512,224,8.17 +gluon_resnet18_v1b,2671.91,191.302,512,224,11.69 +swsl_resnet18,2669.15,191.488,512,224,11.69 +ssl_resnet18,2668.71,191.54,512,224,11.69 +resnet18,2662.83,191.947,512,224,11.69 +mobilenetv2_050,2596.25,196.482,512,224,1.97 +levit_256,2559.67,199.033,512,224,18.89 +regnetx_004,2499.65,203.84,512,224,5.16 +mnasnet_050,2494.39,204.524,512,224,2.22 +semnasnet_050,2494.01,204.433,512,224,2.08 +seresnet18,2463.7,207.356,512,224,11.78 +ese_vovnet19b_slim_dw,2437.98,209.545,512,224,1.9 +legacy_seresnet18,2413.99,211.632,512,224,11.78 +tinynet_c,2389.53,213.326,512,184,2.46 +tf_mobilenetv3_large_minimal_100,2278.25,224.06,512,224,3.92 +lcnet_150,2248.73,227.214,512,224,4.5 +mobilenetv3_large_075,2139.42,238.494,512,224,3.99 +ghostnet_050,2137.33,238.296,512,224,2.59 +resnet18d,2046.03,249.892,512,224,11.71 +tf_mobilenetv3_large_075,2027.78,251.65,512,224,3.99 +regnetx_006,2023.49,252.29,512,224,6.2 +ese_vovnet19b_slim,1970.7,259.464,512,224,3.17 +mobilenetv3_rw,1940.58,263.024,512,224,5.48 +mobilenetv3_large_100,1936.66,263.562,512,224,5.48 +mobilenetv3_large_100_miil,1936.5,263.563,512,224,5.48 +mnasnet_075,1879.23,271.718,512,224,3.17 +mobilenetv2_075,1868.15,273.318,512,224,2.64 +tf_efficientnetv2_b0,1853.32,275.137,512,224,7.14 +tf_mobilenetv3_large_100,1838.66,277.647,512,224,5.48 +regnety_004,1819.61,280.334,512,224,4.34 +resnetblur18,1808.21,282.828,512,224,11.69 +semnasnet_075,1791.94,284.855,512,224,2.91 +regnety_006,1780.58,286.558,512,224,6.06 +mobilenetv2_100,1744.9,292.687,512,224,3.5 +skresnet18,1742.33,293.29,512,224,11.96 +mnasnet_b1,1686.64,302.825,512,224,4.38 +mnasnet_100,1686.2,302.919,512,224,4.38 +deit_tiny_patch16_224,1678.5,304.281,512,224,5.72 +vit_tiny_patch16_224,1673.2,305.238,512,224,5.72 +tinynet_b,1669.81,305.621,512,188,3.73 +hardcorenas_a,1656.9,308.354,512,224,5.26 +deit_tiny_distilled_patch16_224,1654.85,308.608,512,224,5.91 +hardcorenas_b,1648.45,309.73,512,224,5.18 +regnetx_008,1647.09,310.092,512,224,7.26 +mnasnet_a1,1641.47,311.08,512,224,3.89 +semnasnet_100,1640.14,311.319,512,224,3.89 +levit_384,1616.42,315.722,512,224,39.13 +gluon_resnet34_v1b,1598.5,319.781,512,224,21.8 +resnet34,1593.87,320.693,512,224,21.8 +tv_resnet34,1592.81,320.898,512,224,21.8 +mixer_b32_224,1579.25,323.449,512,224,60.29 +hardcorenas_c,1569.06,325.387,512,224,5.52 +visformer_tiny,1563.94,326.764,512,224,10.32 +spnasnet_100,1551.19,329.16,512,224,4.42 +pit_ti_distilled_224,1547.24,330.092,512,224,5.1 +pit_ti_224,1546.92,330.186,512,224,4.85 +hardcorenas_d,1543.77,330.549,512,224,7.5 +ghostnet_100,1541.6,330.868,512,224,5.18 +vit_base_patch32_224,1529.64,333.95,512,224,88.22 +vit_base_patch32_224_sam,1527.96,334.33,512,224,88.22 +regnety_008,1525.57,334.693,512,224,6.26 +resmlp_12_224,1513.1,337.634,512,224,15.35 +resmlp_12_distilled_224,1513.05,337.643,512,224,15.35 +seresnet34,1461.69,349.453,512,224,21.96 +nf_regnet_b0,1450.04,351.967,512,256,8.76 +legacy_seresnet34,1428.59,357.543,512,224,21.96 +gernet_m,1427.9,357.926,512,224,21.14 +ese_vovnet19b_dw,1411.33,362.322,512,224,6.54 +nf_resnet26,1408.11,363.145,512,224,16.0 +dla46_c,1390.48,367.526,512,224,1.3 +tinynet_a,1383.86,368.826,512,192,6.19 +efficientnet_lite0,1368.92,373.303,512,224,4.65 +mobilenetv2_110d,1368.66,279.598,384,224,4.52 +rexnetr_100,1367.14,279.805,384,224,4.88 +rexnet_100,1361.11,281.051,384,224,4.8 +resnet34d,1349.98,378.71,512,224,21.82 +xcit_nano_12_p16_224_dist,1340.16,380.375,512,224,3.05 +xcit_nano_12_p16_224,1338.66,380.8,512,224,3.05 +hardcorenas_f,1338.06,381.608,512,224,8.2 +selecsls42,1328.24,384.874,512,224,30.35 +ghostnet_130,1326.71,384.661,512,224,7.36 +selecsls42b,1324.18,386.065,512,224,32.46 +mixer_s16_224,1308.0,390.939,512,224,18.53 +resnet26,1305.0,391.896,512,224,16.0 +tf_efficientnet_lite0,1300.06,393.134,512,224,4.65 +hardcorenas_e,1287.59,396.566,512,224,8.07 +hrnet_w18_small,1275.09,400.255,512,224,13.19 +pit_xs_distilled_224,1245.81,410.186,512,224,11.0 +pit_xs_224,1244.79,410.521,512,224,10.62 +mnasnet_140,1243.07,411.14,512,224,7.12 +fbnetc_100,1241.42,411.527,512,224,5.57 +mobilenetv2_140,1236.2,309.893,384,224,6.11 +vit_small_patch32_384,1210.76,422.138,512,384,22.92 +efficientnet_b0,1207.97,316.872,384,224,5.29 +semnasnet_140,1199.21,426.076,512,224,6.11 +nf_seresnet26,1183.4,432.047,512,224,17.4 +tf_efficientnetv2_b1,1182.26,323.455,384,240,8.14 +vit_tiny_r_s16_p8_384,1176.2,325.707,384,384,6.36 +repvgg_b0,1166.7,437.858,512,224,15.82 +gmixer_12_224,1164.26,439.045,512,224,12.7 +tf_efficientnet_b0_ns,1155.19,331.423,384,224,5.29 +tf_efficientnet_b0,1155.11,331.42,384,224,5.29 +tf_efficientnet_b0_ap,1154.21,331.702,384,224,5.29 +efficientnet_b1_pruned,1141.45,447.176,512,240,6.33 +selecsls60,1132.77,451.165,512,224,30.67 +selecsls60b,1130.1,452.225,512,224,32.77 +resnet26d,1110.35,460.655,512,224,16.01 +nf_ecaresnet26,1108.5,461.384,512,224,16.0 +rexnetr_130,1084.92,234.909,256,224,7.61 +mixnet_s,1079.62,473.081,512,224,4.13 +dla34,1055.21,484.649,512,224,15.74 +dla46x_c,1044.64,489.413,512,224,1.07 +rexnet_130,1038.12,245.54,256,224,7.56 +regnetx_016,1027.51,497.437,512,224,9.19 +mobilenetv2_120d,1026.61,248.294,256,224,5.83 +ecaresnet50d_pruned,1019.51,501.3,512,224,19.94 +tf_mixnet_s,1018.74,501.408,512,224,4.13 +skresnet34,1008.77,506.519,512,224,22.28 +dla60x_c,999.33,511.452,512,224,1.32 +gernet_l,994.19,514.18,512,256,31.08 +xcit_tiny_12_p16_224,974.89,523.578,512,224,6.72 +xcit_tiny_12_p16_224_dist,974.56,523.762,512,224,6.72 +rexnetr_150,962.03,265.059,256,224,9.78 +crossvit_tiny_240,946.09,404.397,384,240,7.01 +crossvit_9_240,942.0,406.34,384,240,8.55 +rexnet_150,920.27,277.114,256,224,9.73 +repvgg_a2,916.8,557.644,512,224,28.21 +legacy_seresnext26_32x4d,911.29,561.256,512,224,16.79 +efficientnet_lite1,907.6,281.167,256,240,5.42 +crossvit_9_dagger_240,907.56,421.794,384,240,8.78 +regnety_016,905.38,563.868,512,224,11.2 +convit_tiny,905.04,423.366,384,224,5.71 +gmlp_ti16_224,895.37,427.435,384,224,5.87 +efficientnet_es_pruned,894.51,571.683,512,224,5.44 +efficientnet_es,894.06,571.94,512,224,5.44 +resnest14d,890.17,574.739,512,224,10.61 +deit_small_patch16_224,879.08,436.051,384,224,22.05 +vit_small_patch16_224,877.74,436.745,384,224,22.05 +tf_efficientnet_es,877.36,582.875,512,224,5.44 +resnetv2_50,874.29,584.904,512,224,25.55 +resnext26ts,872.05,439.874,384,256,10.3 +tf_efficientnet_lite1,870.75,293.088,256,240,5.42 +resnet26t,867.6,589.639,512,256,16.01 +tf_efficientnetv2_b2,866.58,294.02,256,260,10.1 +deit_small_distilled_patch16_224,865.21,443.046,384,224,22.44 +nf_regnet_b1,863.6,591.527,512,288,10.22 +nf_regnet_b2,857.0,595.977,512,272,14.31 +eca_resnext26ts,843.14,303.098,256,256,10.3 +seresnext26ts,838.62,304.653,256,256,10.39 +resnet50,826.48,463.878,384,224,25.56 +ssl_resnet50,826.14,464.04,384,224,25.56 +botnet26t_256,825.99,464.363,384,256,12.49 +tv_resnet50,825.99,464.131,384,224,25.56 +swsl_resnet50,825.61,464.367,384,224,25.56 +gluon_resnet50_v1b,825.26,464.548,384,224,25.56 +gcresnext26ts,820.94,311.077,256,256,10.48 +seresnext26t_32x4d,819.08,468.216,384,224,16.81 +seresnext26tn_32x4d,818.65,468.46,384,224,16.81 +seresnext26d_32x4d,816.35,469.756,384,224,16.81 +pit_s_224,814.17,313.637,256,224,23.46 +pit_s_distilled_224,813.41,313.92,256,224,24.04 +vgg11,798.47,641.065,512,224,132.86 +halonet26t,796.75,481.425,384,256,12.48 +eca_botnext26ts_256,794.14,321.819,256,256,10.59 +resnetv2_50t,783.96,652.33,512,224,25.57 +vit_small_resnet26d_224,783.75,488.981,384,224,63.61 +ecaresnext26t_32x4d,782.53,490.179,384,224,15.41 +ecaresnext50t_32x4d,782.45,490.233,384,224,15.41 +resnetv2_50d,781.21,654.649,512,224,25.57 +tresnet_m,773.27,659.381,512,224,31.39 +fbnetv3_d,771.82,329.985,256,256,10.31 +eca_halonext26ts,770.01,331.906,256,256,10.76 +cspresnet50,766.64,500.094,384,256,21.62 +fbnetv3_b,765.95,499.824,384,256,8.6 +ecaresnet101d_pruned,765.08,667.536,512,224,24.88 +vovnet39a,764.37,669.255,512,224,22.6 +gluon_resnet50_v1c,761.03,503.811,384,224,25.58 +cspresnext50,757.53,506.115,384,224,20.57 +efficientnet_cc_b0_4e,755.85,506.911,384,224,13.31 +ecaresnetlight,754.13,678.075,512,224,30.16 +efficientnet_cc_b0_8e,750.91,510.273,384,224,24.01 +mixnet_m,749.54,510.912,384,224,5.01 +efficientnet_b2_pruned,748.23,340.751,256,260,8.31 +resnet50t,745.06,514.605,384,224,25.57 +resmlp_24_distilled_224,744.01,342.726,256,224,30.02 +gluon_resnet50_v1d,743.98,515.37,384,224,25.58 +resnet50d,743.76,515.521,384,224,25.58 +resmlp_24_224,743.43,342.965,256,224,30.02 +legacy_seresnet50,739.53,518.192,384,224,28.09 +resnet32ts,736.71,346.942,256,256,17.96 +ese_vovnet39b,733.2,523.109,384,224,24.57 +tf_efficientnet_cc_b0_4e,732.92,522.856,384,224,13.31 +tf_efficientnet_cc_b0_8e,731.1,524.143,384,224,24.01 +dpn68b,728.18,526.241,384,224,12.61 +resnet33ts,727.42,351.376,256,256,19.68 +selecsls84,719.68,710.264,512,224,50.95 +nf_seresnet50,718.4,533.452,384,224,28.09 +rexnetr_200,715.44,267.313,192,224,16.52 +visformer_small,713.57,537.5,384,224,40.22 +res2net50_48w_2s,712.35,538.286,384,224,25.29 +tf_mixnet_m,711.23,538.464,384,224,5.01 +dpn68,711.07,539.016,384,224,12.61 +seresnet50,710.55,539.38,384,224,28.09 +lambda_resnet26t,708.6,541.35,384,256,10.96 +bat_resnext26ts,706.1,361.453,256,256,10.73 +tf_efficientnet_b1,705.85,361.254,256,240,7.79 +tf_efficientnet_b1_ns,705.53,361.468,256,240,7.79 +tf_efficientnet_b1_ap,705.49,361.504,256,240,7.79 +seresnet33ts,700.84,364.51,256,256,19.78 +eca_resnet33ts,700.22,364.953,256,256,19.68 +resnetblur50,694.99,551.777,384,224,25.56 +cspresnet50d,694.84,551.823,384,256,21.64 +rexnet_200,693.57,275.752,192,224,16.37 +cspresnet50w,686.88,558.19,384,256,28.12 +eca_vovnet39b,683.56,748.398,512,224,22.6 +densenet121,682.9,373.209,256,224,7.98 +dla60,682.79,561.488,384,224,22.04 +efficientnet_b1,682.7,373.555,256,256,7.79 +tv_densenet121,681.14,374.178,256,224,7.98 +gcresnet33ts,680.99,374.966,256,256,19.88 +efficientnet_lite2,680.43,375.329,256,260,6.09 +resnest26d,672.85,570.012,384,224,17.07 +resnetaa50d,669.52,572.758,384,224,25.58 +vgg11_bn,669.19,382.326,256,224,132.87 +gluon_resnet50_v1s,664.71,576.903,384,224,25.68 +nf_ecaresnet50,663.54,577.843,384,224,25.56 +hrnet_w18_small_v2,663.05,769.959,512,224,15.6 +tf_efficientnet_lite2,656.12,389.28,256,260,6.09 +vit_small_r26_s32_224,654.12,390.216,256,224,36.43 +lambda_resnet26rpt_256,650.73,196.144,128,256,10.99 +vit_base_resnet26d_224,650.56,589.099,384,224,101.4 +seresnet50t,645.62,395.439,256,224,28.1 +gluon_resnext50_32x4d,643.1,596.344,384,224,25.03 +ssl_resnext50_32x4d,642.69,596.753,384,224,25.03 +resnext50_32x4d,642.56,596.871,384,224,25.03 +tv_resnext50_32x4d,642.26,597.116,384,224,25.03 +swsl_resnext50_32x4d,642.22,597.166,384,224,25.03 +haloregnetz_b,639.45,398.971,256,224,11.68 +resnetrs50,639.32,599.548,384,224,35.69 +densenet121d,637.87,399.654,256,224,8.0 +regnetx_032,635.48,603.11,384,224,15.3 +resnetblur50d,634.6,402.62,256,224,25.58 +res2net50_26w_4s,625.68,407.946,256,224,25.7 +skresnet50,620.44,411.364,256,224,25.8 +ese_vovnet57b,618.38,620.149,384,224,38.61 +densenetblur121d,611.64,416.815,256,224,8.0 +ecaresnet50d,601.62,424.614,256,224,25.58 +adv_inception_v3,592.83,646.406,384,299,23.83 +resnext50d_32x4d,590.58,432.684,256,224,25.05 +gluon_inception_v3,589.45,650.157,384,299,23.83 +inception_v3,588.55,651.172,384,299,23.83 +tf_inception_v3,588.36,651.336,384,299,23.83 +seresnetaa50d,587.38,434.758,256,224,28.11 +sehalonet33ts,585.23,436.688,256,256,13.69 +coat_lite_tiny,580.33,660.876,384,224,5.72 +gmixer_24_224,577.9,441.611,256,224,24.72 +gcresnet50t,577.25,442.093,256,256,25.9 +efficientnet_b3_pruned,576.96,442.1,256,300,9.86 +mixnet_l,576.91,442.34,256,224,7.33 +resnetv2_50x1_bit_distilled,575.09,333.113,192,224,25.55 +skresnet50d,572.85,445.576,256,224,25.82 +vovnet57a,569.57,898.133,512,224,36.64 +res2next50,568.73,448.924,256,224,24.67 +seresnext50_32x4d,567.85,449.777,256,224,27.56 +gluon_seresnext50_32x4d,567.27,450.224,256,224,27.56 +cspresnext50_iabn,565.5,676.906,384,256,20.57 +legacy_seresnext50_32x4d,565.44,451.632,256,224,27.56 +resnest50d_1s4x24d,561.18,454.967,256,224,25.68 +res2net50_14w_8s,560.86,454.355,256,224,25.06 +repvgg_b1g4,560.47,912.475,512,224,39.97 +densenet169,558.29,456.216,256,224,14.15 +convnext_tiny,558.25,457.708,256,224,28.59 +convnext_tiny_hnf,555.94,459.59,256,224,28.59 +coat_lite_mini,554.95,691.16,384,224,11.01 +regnety_040,554.71,690.835,384,224,20.65 +dla60_res2net,550.65,463.555,256,224,20.85 +darknet53,549.0,465.546,256,256,41.61 +vgg13,548.68,699.681,384,224,133.05 +tf_mixnet_l,547.03,466.516,256,224,7.33 +dla60x,544.8,469.001,256,224,17.35 +efficientnet_em,542.04,707.524,384,240,6.9 +regnetx_040,541.76,707.76,384,224,22.12 +nf_resnet101,541.63,707.493,384,224,44.55 +tf_efficientnet_em,539.79,473.368,256,240,6.9 +nf_regnet_b3,535.57,476.345,256,320,18.59 +resnetv2_101,535.41,476.74,256,224,44.54 +resnetv2_50d_gn,535.21,357.946,192,224,25.57 +tf_efficientnet_b2_ns,534.14,358.079,192,260,9.11 +tf_efficientnet_b2,533.77,358.295,192,260,9.11 +tf_efficientnet_b2_ap,533.7,358.382,192,260,9.11 +gcresnext50ts,533.26,358.674,192,256,15.67 +tf_efficientnetv2_b3,532.84,358.667,192,300,14.36 +nf_resnet50,527.83,726.718,384,288,25.56 +sebotnet33ts_256,526.55,242.351,128,256,13.7 +xcit_small_12_p16_224,524.79,486.162,256,224,26.25 +xcit_small_12_p16_224_dist,524.65,486.278,256,224,26.25 +resnet50_gn,521.4,367.482,192,224,25.56 +efficientnetv2_rw_t,520.2,367.035,192,288,13.65 +resnet101,518.79,491.983,256,224,44.55 +tv_resnet101,518.57,492.187,256,224,44.55 +gluon_resnet101_v1b,518.13,492.648,256,224,44.55 +crossvit_small_240,516.01,370.633,192,240,26.86 +twins_svt_small,514.62,496.02,256,224,24.06 +vit_base_r26_s32_224,510.65,374.824,192,224,101.38 +xcit_tiny_24_p16_224_dist,510.27,498.69,256,224,12.12 +xcit_tiny_24_p16_224,510.13,498.896,256,224,12.12 +gmlp_s16_224,504.22,379.373,192,224,19.42 +resnetv2_101d,500.13,510.457,256,224,44.56 +mixer_b16_224,499.95,511.32,256,224,59.88 +mixer_b16_224_miil,499.11,512.204,256,224,59.88 +vit_base_resnet50d_224,497.25,513.299,256,224,110.97 +dla60_res2next,494.84,516.012,256,224,17.03 +gluon_resnet101_v1c,492.43,518.398,256,224,44.57 +vit_base_patch32_384,491.61,519.97,256,384,88.3 +repvgg_b1,491.0,1041.743,512,224,57.42 +resmlp_36_224,490.1,389.77,192,224,44.69 +resmlp_36_distilled_224,490.1,389.707,192,224,44.69 +efficientnet_b2,489.47,390.855,192,288,9.11 +efficientnet_b2a,489.25,391.025,192,288,9.11 +vit_large_patch32_224,487.93,523.265,256,224,306.54 +gluon_resnet101_v1d,484.72,526.651,256,224,44.57 +gc_efficientnetv2_rw_t,482.91,395.05,192,288,13.68 +wide_resnet50_2,482.59,529.718,256,224,68.88 +mixer_l32_224,479.14,399.369,192,224,206.94 +cait_xxs24_224,478.85,532.347,256,224,11.96 +cspdarknet53,478.49,534.051,256,256,27.64 +efficientnet_cc_b1_8e,478.04,534.008,256,240,39.72 +crossvit_15_240,474.46,403.054,192,240,27.53 +resnest50d,473.17,539.784,256,224,27.48 +res2net50_26w_6s,470.73,542.208,256,224,37.05 +ecaresnet26t,470.49,543.574,256,320,16.01 +dla102,468.81,544.602,256,224,33.27 +regnetz_b16,467.13,409.622,192,288,9.72 +xcit_nano_12_p16_384_dist,466.59,547.027,256,384,3.05 +tf_efficientnet_cc_b1_8e,466.17,547.634,256,240,39.72 +cspdarknet53_iabn,464.37,824.482,384,256,27.64 +crossvit_15_dagger_240,458.06,417.527,192,240,28.21 +regnetx_080,454.82,843.271,384,224,39.57 +vgg13_bn,453.43,564.307,256,224,133.05 +halonet50ts,453.0,422.945,192,256,22.73 +lambda_resnet50ts,451.97,423.868,192,256,21.54 +legacy_seresnet101,451.72,564.699,256,224,49.33 +resnetaa101d,451.69,565.275,256,224,44.57 +gluon_resnet101_v1s,450.48,566.841,256,224,44.67 +vgg16,449.51,854.057,384,224,138.36 +densenet201,445.52,428.155,192,224,20.01 +swin_tiny_patch4_window7_224,443.41,576.481,256,224,28.29 +seresnet101,441.23,578.213,256,224,49.33 +nf_seresnet101,438.29,581.969,256,224,49.33 +resnetblur101d,436.36,585.216,256,224,44.57 +mixnet_xl,424.84,450.181,192,224,11.9 +twins_pcpvt_small,421.68,605.595,256,224,24.11 +nfnet_l0,417.1,612.673,256,288,35.07 +botnet50ts_256,413.47,308.688,128,256,22.74 +skresnext50_32x4d,412.36,619.54,256,224,27.48 +gluon_resnext101_32x4d,412.2,619.638,256,224,44.18 +swsl_resnext101_32x4d,412.03,619.892,256,224,44.18 +resnext101_32x4d,411.85,620.12,256,224,44.18 +ssl_resnext101_32x4d,411.66,620.437,256,224,44.18 +vit_tiny_patch16_384,409.64,311.71,128,384,5.79 +convit_small,402.9,475.62,192,224,27.78 +halo2botnet50ts_256,398.01,320.711,128,256,22.64 +res2net101_26w_4s,397.75,480.37,192,224,45.21 +efficientnet_lite3,397.55,320.952,128,300,8.2 +tresnet_l,396.67,1287.459,512,224,55.99 +eca_nfnet_l0,396.55,644.544,256,288,24.14 +resnet51q,393.31,487.375,192,288,35.7 +nf_ecaresnet101,390.17,654.38,256,224,44.55 +dla102x,386.87,494.82,192,224,26.31 +res2net50_26w_8s,386.73,494.414,192,224,48.4 +lamhalobotnet50ts_256,386.04,330.65,128,256,22.57 +regnetx_064,385.03,664.106,256,224,26.21 +regnety_032,384.2,665.001,256,288,19.44 +tf_efficientnet_lite3,383.37,332.84,128,300,8.2 +vgg19,381.34,1006.734,384,224,143.67 +xception,378.7,337.254,128,299,22.86 +vgg16_bn,376.28,680.016,256,224,138.37 +ecaresnet101d,375.12,680.773,256,224,44.57 +resnetv2_152,373.91,682.585,256,224,60.19 +resnest50d_4s2x40d,372.15,686.672,256,224,30.42 +regnety_064,370.51,689.324,256,224,30.58 +repvgg_b2g4,370.32,1381.565,512,224,61.76 +gluon_resnet152_v1b,366.03,522.463,192,224,60.19 +tv_resnet152,365.47,523.229,192,224,60.19 +resnet152,365.43,523.289,192,224,60.19 +convnext_small,365.2,524.035,192,224,50.22 +ese_vovnet99b,363.8,702.311,256,224,63.2 +xcit_nano_12_p8_224,362.09,705.393,256,224,3.05 +xcit_nano_12_p8_224_dist,361.89,705.792,256,224,3.05 +gluon_seresnext101_32x4d,361.32,529.345,192,224,48.96 +seresnext101_32x4d,361.3,529.348,192,224,48.96 +legacy_seresnext101_32x4d,359.71,531.693,192,224,48.96 +nfnet_f0,359.11,711.802,256,256,71.49 +vit_base_patch16_224_miil,357.29,357.529,128,224,86.54 +nest_tiny,356.86,357.893,128,224,17.06 +nfnet_f0s,355.27,719.527,256,256,71.49 +resnet61q,355.26,359.368,128,288,36.85 +resnetv2_152d,355.12,538.597,192,224,60.2 +jx_nest_tiny,353.84,360.954,128,224,17.06 +vit_small_resnet50d_s16_224,353.26,542.366,192,224,57.53 +hrnet_w18,352.9,721.041,256,224,21.3 +deit_base_patch16_224,352.4,362.443,128,224,86.57 +gluon_resnet152_v1c,352.05,543.263,192,224,60.21 +vit_base_patch16_224_sam,351.83,363.047,128,224,86.57 +vit_base_patch16_224,351.68,363.189,128,224,86.57 +ese_vovnet99b_iabn,349.3,1096.435,384,224,63.2 +gluon_resnet152_v1d,348.27,549.187,192,224,60.21 +deit_base_distilled_patch16_224,347.05,368.041,128,224,87.34 +crossvit_18_240,345.05,369.11,128,240,43.27 +xcit_tiny_12_p16_384_dist,335.91,569.966,192,384,6.72 +fbnetv3_g,335.24,379.926,128,288,16.62 +regnety_080,335.22,762.533,256,224,39.18 +crossvit_18_dagger_240,333.95,381.492,128,240,44.27 +repvgg_b2,331.54,1543.333,512,224,89.02 +gluon_resnet152_v1s,330.47,578.863,192,224,60.32 +densenet161,327.93,388.08,128,224,28.68 +dla169,324.94,588.567,192,224,53.39 +beit_base_patch16_224,323.79,394.303,128,224,86.53 +coat_lite_small,323.43,592.328,192,224,19.84 +vgg19_bn,322.88,792.477,256,224,143.68 +dm_nfnet_f0,322.48,792.711,256,256,71.49 +repvgg_b3g4,313.61,1223.425,384,224,83.83 +tf_efficientnet_b3,313.56,406.655,128,300,12.23 +tf_efficientnet_b3_ns,313.33,406.959,128,300,12.23 +tf_efficientnet_b3_ap,313.29,407.029,128,300,12.23 +legacy_seresnet152,311.06,614.195,192,224,66.82 +ese_vovnet39b_evos,310.12,411.897,128,224,24.58 +dpn92,308.99,827.182,256,224,37.67 +efficientnet_b3,306.79,415.635,128,320,12.23 +efficientnet_b3a,306.46,416.067,128,320,12.23 +cait_xxs36_224,306.42,414.392,128,224,17.3 +inception_v4,305.84,625.702,192,299,42.68 +twins_pcpvt_base,304.9,627.165,192,224,43.83 +regnetx_120,304.64,839.453,256,224,46.11 +ecaresnet50t,303.47,420.896,128,320,25.57 +hrnet_w32,302.01,631.305,192,224,41.23 +seresnet152,300.58,422.864,128,224,66.82 +hrnet_w30,299.22,851.13,256,224,37.71 +convmixer_1024_20_ks9_p14,299.07,855.183,256,224,24.38 +regnetz_c16,296.99,429.626,128,320,13.46 +twins_svt_base,296.14,430.333,128,224,56.07 +tresnet_xl,289.45,1323.227,384,224,78.44 +swin_small_patch4_window7_224,288.11,442.639,128,224,49.61 +xception41,287.58,443.922,128,299,26.97 +regnety_120,286.74,668.36,192,224,51.82 +pit_b_224,286.53,334.205,96,224,73.76 +pit_b_distilled_224,285.98,334.794,96,224,74.79 +nf_regnet_b4,282.38,451.32,128,384,30.21 +wide_resnet101_2,281.79,679.914,192,224,126.89 +mixnet_xxl,275.31,463.133,128,224,23.96 +resnetv2_50d_evob,273.52,700.95,192,224,25.59 +xcit_small_24_p16_224_dist,271.4,468.703,128,224,47.67 +xcit_small_24_p16_224,271.18,469.033,128,224,47.67 +repvgg_b3,269.71,1422.719,384,224,123.09 +convnext_base,268.96,474.28,128,224,88.59 +convnext_base_in22ft1k,268.69,474.728,128,224,88.59 +resnetv2_50d_evos,264.08,483.67,128,224,25.59 +resnext101_64x4d,263.45,484.429,128,224,83.46 +gluon_resnext101_64x4d,263.28,484.77,128,224,83.46 +cait_s24_224,262.8,484.707,128,224,46.92 +dla102x2,261.95,487.178,128,224,41.28 +resnet200,261.21,487.362,128,224,64.67 +xcit_tiny_12_p8_224_dist,256.95,496.557,128,224,6.71 +xcit_tiny_12_p8_224,256.64,497.116,128,224,6.71 +regnetx_160,256.42,747.752,192,224,54.28 +inception_resnet_v2,251.21,761.158,192,299,55.84 +ens_adv_inception_resnet_v2,251.14,761.388,192,299,55.84 +resnetrs101,248.83,512.362,128,288,63.62 +efficientnet_el,248.41,514.229,128,300,10.59 +efficientnet_el_pruned,248.32,514.423,128,300,10.59 +swsl_resnext101_32x8d,247.35,516.019,128,224,88.79 +ssl_resnext101_32x8d,247.27,516.22,128,224,88.79 +ig_resnext101_32x8d,247.19,516.409,128,224,88.79 +resnext101_32x8d,247.05,516.7,128,224,88.79 +dpn98,245.05,520.932,128,224,61.57 +tf_efficientnet_el,244.21,523.119,128,300,10.59 +efficientnetv2_s,241.82,394.917,96,384,21.46 +tf_efficientnetv2_s_in21ft1k,240.69,396.775,96,384,21.46 +tf_efficientnetv2_s,239.59,398.639,96,384,21.46 +gluon_seresnext101_64x4d,239.24,533.021,128,224,88.23 +gmlp_b16_224,238.08,401.808,96,224,73.08 +resnet101d,236.98,538.626,128,320,44.57 +nest_small,234.62,407.715,96,224,38.35 +resnest101e,234.0,544.633,128,256,48.28 +jx_nest_small,233.02,410.534,96,224,38.35 +crossvit_base_240,230.08,415.793,96,240,105.03 +efficientnetv2_rw_s,228.99,277.434,64,384,23.94 +twins_svt_large,227.78,560.084,128,224,99.27 +coat_tiny,226.98,562.116,128,224,5.5 +seresnext101_32x8d,225.04,566.768,128,224,93.57 +vit_large_r50_s32_224,220.85,432.537,96,224,328.99 +swin_base_patch4_window7_224,220.19,579.694,128,224,87.77 +gluon_xception65,220.18,434.23,96,299,39.92 +xception65,219.22,436.124,96,299,39.92 +hrnet_w40,218.29,875.173,192,224,57.56 +twins_pcpvt_large,217.89,583.814,128,224,60.99 +vit_small_r26_s32_384,215.21,296.22,64,384,36.47 +convit_base,210.68,454.737,96,224,86.54 +vit_small_patch16_384,209.29,305.058,64,384,22.2 +hrnet_w44,203.55,938.867,192,224,67.06 +hrnet_w48,203.33,625.151,128,224,77.47 +tresnet_m_448,203.05,943.084,192,448,31.39 +efficientnet_lite4,198.26,321.517,64,380,13.01 +xcit_medium_24_p16_224,197.63,482.811,96,224,84.4 +xcit_medium_24_p16_224_dist,197.58,482.902,96,224,84.4 +vit_base_r50_s16_224,195.39,326.034,64,224,98.66 +densenet264,194.98,488.653,96,224,72.69 +regnetz_d8,194.31,327.837,64,320,23.37 +tf_efficientnet_lite4,192.8,330.742,64,380,13.01 +coat_mini,192.49,663.128,128,224,10.34 +eca_nfnet_l1,186.17,685.824,128,320,41.41 +regnetz_d32,182.61,348.904,64,320,27.58 +dpn131,182.53,699.301,128,224,79.25 +xcit_small_12_p16_384_dist,180.8,529.313,96,384,26.25 +nest_base,176.01,362.129,64,224,67.72 +xcit_tiny_24_p16_384_dist,175.08,545.374,96,384,12.12 +jx_nest_base,174.7,364.806,64,224,67.72 +dpn107,171.15,746.299,128,224,86.92 +resnet152d,170.12,562.135,96,320,60.21 +hrnet_w64,167.69,758.827,128,224,128.06 +efficientnet_b4,167.63,379.88,64,384,19.34 +xception71,165.9,383.797,64,299,42.34 +densenet264d_iabn,163.71,1168.658,192,224,72.74 +regnety_320,163.11,783.43,128,224,145.05 +halonet_h1,161.83,394.259,64,256,8.1 +convnext_large,159.74,599.371,96,224,197.77 +convnext_large_in22ft1k,159.74,599.406,96,224,197.77 +tnt_s_patch16_224,158.13,807.71,128,224,23.76 +tf_efficientnet_b4,157.41,404.653,64,380,19.34 +tf_efficientnet_b4_ap,157.35,404.822,64,380,19.34 +tf_efficientnet_b4_ns,157.32,404.855,64,380,19.34 +mixer_l16_224,155.84,614.71,96,224,208.2 +seresnet200d,155.16,614.74,96,256,71.86 +ecaresnet200d,149.12,640.536,96,256,64.69 +vit_large_patch32_384,146.32,435.992,64,384,306.63 +regnetx_320,143.56,890.603,128,224,107.81 +seresnet152d,141.0,450.755,64,320,66.84 +resnetrs152,139.45,455.893,64,320,86.62 +resnetv2_50x1_bitm,138.96,344.659,48,448,25.55 +gluon_senet154,138.12,691.987,96,224,115.09 +senet154,138.03,692.329,96,224,115.09 +xcit_small_12_p8_224_dist,137.35,464.322,64,224,26.21 +xcit_small_12_p8_224,137.29,464.503,64,224,26.21 +legacy_senet154,136.93,698.045,96,224,115.09 +regnety_160,133.17,719.682,96,288,83.59 +xcit_tiny_24_p8_224,132.53,721.469,96,224,12.11 +xcit_tiny_24_p8_224_dist,132.41,722.018,96,224,12.11 +swin_large_patch4_window7_224,132.32,482.098,64,224,196.53 +tnt_b_patch16_224,126.43,757.574,96,224,65.41 +resnet200d,123.09,517.162,64,320,64.69 +nfnet_f1,122.2,783.645,96,320,132.63 +xcit_nano_12_p8_384_dist,122.19,522.144,64,384,3.05 +nfnet_f1s,121.0,791.465,96,320,132.63 +xcit_large_24_p16_224_dist,119.24,533.65,64,224,189.1 +xcit_large_24_p16_224,119.19,534.033,64,224,189.1 +efficientnetv2_m,117.91,404.134,48,416,54.14 +seresnet269d,115.13,550.403,64,256,113.67 +nf_regnet_b5,109.6,581.496,64,456,49.74 +dm_nfnet_f1,109.28,583.486,64,320,132.63 +vit_large_patch16_224,106.61,448.786,48,224,304.33 +convnext_xlarge_in22ft1k,104.28,612.171,64,224,350.2 +crossvit_15_dagger_408,103.01,308.973,32,408,28.5 +efficientnetv2_rw_m,101.82,311.114,32,416,53.24 +regnetz_e8,100.87,473.939,48,320,57.7 +tresnet_l_448,99.64,1281.316,128,448,55.99 +beit_large_patch16_224,98.41,485.874,48,224,304.43 +resnetrs200,97.6,487.799,48,320,93.21 +ig_resnext101_32x16d,96.96,988.697,96,224,194.03 +swsl_resnext101_32x16d,96.88,989.444,96,224,194.03 +ssl_resnext101_32x16d,96.83,989.971,96,224,194.03 +xcit_small_24_p16_384_dist,92.8,514.221,48,384,47.67 +eca_nfnet_l2,92.75,687.481,64,384,56.72 +convnext_base_384_in22ft1k,92.09,519.541,48,384,88.59 +deit_base_patch16_384,90.25,353.802,32,384,86.86 +vit_base_patch16_384,90.2,353.987,32,384,86.86 +deit_base_distilled_patch16_384,88.49,360.855,32,384,87.63 +tf_efficientnetv2_m,88.2,359.811,32,480,54.14 +tf_efficientnetv2_m_in21ft1k,88.09,360.345,32,480,54.14 +xcit_tiny_12_p8_384_dist,87.2,548.793,48,384,6.71 +cait_xxs24_384,86.38,368.153,32,384,12.03 +resnetv2_101x1_bitm,85.15,374.386,32,448,44.54 +resnetv2_152x2_bit_teacher,85.01,374.341,32,224,236.34 +convmixer_768_32,84.46,1135.466,96,224,21.11 +resnest200e,77.86,611.828,48,320,70.2 +crossvit_18_dagger_408,77.59,307.496,24,408,44.61 +beit_base_patch16_384,76.84,311.346,24,384,86.74 +tresnet_xl_448,75.89,1261.775,96,448,78.44 +efficientnet_b5,75.33,422.385,32,456,30.39 +vit_large_r50_s32_384,73.95,430.573,32,384,329.09 +tf_efficientnet_b5_ap,73.87,430.874,32,456,30.39 +tf_efficientnet_b5_ns,73.84,431.06,32,456,30.39 +tf_efficientnet_b5,73.76,431.443,32,456,30.39 +regnetz_d8_evob,69.9,684.907,48,320,23.41 +nfnet_f2,69.7,685.799,48,352,193.78 +xcit_small_24_p8_224,69.53,457.315,32,224,47.63 +xcit_small_24_p8_224_dist,69.49,457.517,32,224,47.63 +nfnet_f2s,69.09,691.894,48,352,193.78 +xcit_medium_24_p16_384_dist,67.17,473.231,32,384,84.4 +resmlp_big_24_distilled_224,65.96,483.773,32,224,129.14 +resmlp_big_24_224,65.95,483.848,32,224,129.14 +resmlp_big_24_224_in22ft1k,65.95,483.866,32,224,129.14 +regnetz_d8_evos,64.24,496.339,32,320,23.46 +dm_nfnet_f2,62.49,765.031,48,352,193.78 +ecaresnet269d,60.75,522.332,32,352,102.09 +swin_base_patch4_window12_384,60.1,397.741,24,384,87.9 +cait_xs24_384,59.89,398.428,24,384,26.67 +pnasnet5large,59.35,535.626,32,331,86.06 +resnetrs270,58.4,542.338,32,352,129.86 +vit_base_patch8_224,58.07,274.782,16,224,86.58 +nasnetalarge,57.07,556.194,32,331,88.75 +cait_xxs36_384,56.42,422.115,24,384,17.37 +convnext_large_384_in22ft1k,54.47,585.847,32,384,197.77 +vit_base_r50_s16_384,54.27,293.3,16,384,98.95 +vit_base_resnet50_384,54.19,293.736,16,384,98.95 +xcit_medium_24_p8_224,51.72,615.776,32,224,84.32 +xcit_medium_24_p8_224_dist,51.69,616.066,32,224,84.32 +ig_resnext101_32x32d,51.67,617.889,32,224,468.53 +eca_nfnet_l3,49.71,640.359,32,448,72.04 +convmixer_1536_20,48.09,997.399,48,224,51.63 +xcit_small_12_p8_384_dist,46.72,512.057,24,384,26.21 +efficientnetv2_l,46.55,339.739,16,480,118.52 +tf_efficientnetv2_l_in21ft1k,46.43,340.391,16,480,118.52 +tf_efficientnetv2_l,46.41,340.685,16,480,118.52 +xcit_tiny_24_p8_384_dist,44.75,712.159,32,384,12.11 +cait_s24_384,44.7,355.627,16,384,47.06 +efficientnet_b6,41.67,381.28,16,528,43.04 +tf_efficientnet_b6_ap,41.13,386.3,16,528,43.04 +tf_efficientnet_b6,41.11,386.574,16,528,43.04 +tf_efficientnet_b6_ns,40.99,387.676,16,528,43.04 +xcit_large_24_p16_384_dist,40.96,582.937,24,384,189.1 +vit_huge_patch14_224,37.91,420.175,16,224,632.05 +resnetrs350,36.74,646.103,24,384,163.96 +swin_large_patch4_window12_384,36.6,435.55,16,384,196.74 +nfnet_f3,34.36,694.502,24,416,254.92 +nfnet_f3s,34.26,696.883,24,416,254.92 +convnext_xlarge_384_in22ft1k,34.01,468.853,16,384,350.2 +resnest269e,32.96,721.9,24,416,110.93 +dm_nfnet_f3,31.6,755.444,24,416,254.92 +resnetv2_50x3_bitm,31.14,513.017,16,448,217.32 +xcit_large_24_p8_224_dist,30.37,523.887,16,224,188.93 +xcit_large_24_p8_224,30.32,524.75,16,224,188.93 +cait_s36_384,29.46,404.043,12,384,68.37 +resnetv2_152x2_bit_teacher_384,29.25,408.083,12,384,236.34 +tf_efficientnetv2_xl_in21ft1k,28.52,415.17,12,512,208.12 +efficientnetv2_xl,28.5,415.628,12,512,208.12 +ig_resnext101_32x48d,27.26,585.456,16,224,828.41 +vit_large_patch16_384,26.62,299.076,8,384,304.72 +efficientnet_b7,25.52,310.186,8,600,66.35 +tf_efficientnet_b7,25.25,313.569,8,600,66.35 +tf_efficientnet_b7_ap,25.18,314.571,8,600,66.35 +tf_efficientnet_b7_ns,25.12,315.222,8,600,66.35 +resnetrs420,24.94,632.993,16,416,191.89 +xcit_small_24_p8_384_dist,23.58,505.912,12,384,47.63 +beit_large_patch16_384,22.66,351.145,8,384,305.0 +vit_giant_patch14_224,21.59,368.118,8,224,1012.61 +resnetv2_152x2_bitm,21.27,373.944,8,448,236.34 +nfnet_f4,18.45,645.682,12,512,316.07 +nfnet_f4s,18.35,649.188,12,512,316.07 +resnetv2_101x3_bitm,17.19,464.077,8,448,387.93 +xcit_medium_24_p8_384_dist,17.03,466.878,8,384,84.32 +dm_nfnet_f4,16.71,713.246,12,512,316.07 +efficientnet_b8,12.85,463.389,6,672,87.41 +tf_efficientnet_b8_ap,12.75,466.866,6,672,87.41 +tf_efficientnet_b8,12.73,467.671,6,672,87.41 +nfnet_f5,12.01,660.317,8,544,377.21 +nfnet_f5s,11.94,664.267,8,544,377.21 +cait_m36_384,11.32,526.589,6,384,271.22 +dm_nfnet_f5,10.99,722.011,8,544,377.21 +xcit_large_24_p8_384_dist,10.37,575.649,6,384,188.93 +nfnet_f6,9.06,655.713,6,576,438.36 +nfnet_f6s,9.04,657.589,6,576,438.36 +tf_efficientnet_l2_ns_475,8.8,449.624,4,475,480.31 +beit_large_patch16_512,8.36,356.829,3,512,305.67 +dm_nfnet_f6,8.32,713.582,6,576,438.36 +nfnet_f7,6.44,613.323,4,608,499.5 +nfnet_f7s,6.38,619.793,4,608,499.5 +cait_m48_448,4.6,430.517,2,448,356.46 +resnetv2_152x4_bitm,4.42,450.22,2,480,936.53 +tf_efficientnet_l2_ns,2.55,387.178,1,800,480.31 +efficientnet_l2,2.52,391.57,1,800,480.31 diff --git a/results/benchmark-train-amp-nhwc-pt110-cu113-rtx3090.csv b/results/benchmark-train-amp-nhwc-pt110-cu113-rtx3090.csv new file mode 100644 index 0000000000..82689dc120 --- /dev/null +++ b/results/benchmark-train-amp-nhwc-pt110-cu113-rtx3090.csv @@ -0,0 +1,699 @@ +model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count +mobilenetv3_small_050,10124.2,49.732,512,224,1.59 +lcnet_035,9556.39,53.122,512,224,1.64 +tinynet_e,9259.87,53.163,512,106,2.04 +lcnet_050,8204.13,61.959,512,224,1.88 +tf_mobilenetv3_small_minimal_100,8115.25,62.582,512,224,2.04 +tinynet_d,7842.33,64.591,512,152,2.34 +mobilenetv3_small_075,7645.76,66.298,512,224,2.04 +mobilenetv3_small_100,7391.62,68.594,512,224,2.54 +tf_mobilenetv3_small_075,7004.36,72.432,512,224,2.04 +tf_mobilenetv3_small_100,6775.26,74.902,512,224,2.54 +levit_128s,6249.41,81.115,512,224,7.78 +lcnet_075,5706.1,89.275,512,224,2.36 +lcnet_100,5288.36,96.356,512,224,2.95 +mnasnet_small,4565.41,111.287,512,224,2.03 +mnasnet_050,4479.4,113.569,512,224,2.22 +levit_128,4339.94,116.946,512,224,9.21 +mobilenetv2_035,4152.95,122.551,512,224,1.68 +mixer_s32_224,4131.98,123.414,512,224,19.1 +tinynet_c,4071.23,124.835,512,184,2.46 +gernet_s,4039.7,126.102,512,224,8.17 +semnasnet_050,3974.04,127.989,512,224,2.08 +levit_192,3756.95,135.269,512,224,10.95 +vit_small_patch32_224,3671.47,138.697,512,224,22.88 +lcnet_150,3645.88,139.972,512,224,4.5 +ssl_resnet18,3513.72,145.398,512,224,11.69 +gluon_resnet18_v1b,3512.34,145.445,512,224,11.69 +swsl_resnet18,3508.0,145.642,512,224,11.69 +mobilenetv2_050,3501.31,145.498,512,224,1.97 +resnet18,3496.86,146.104,512,224,11.69 +vit_tiny_r_s16_p8_224,3335.03,152.754,512,224,6.34 +mobilenetv3_large_075,3296.24,154.517,512,224,3.99 +ese_vovnet19b_slim_dw,3204.84,159.295,512,224,1.9 +tf_mobilenetv3_large_minimal_100,3175.97,160.546,512,224,3.92 +seresnet18,3165.67,161.261,512,224,11.78 +legacy_seresnet18,3081.19,165.707,512,224,11.78 +mnasnet_075,3078.06,165.602,512,224,3.17 +tf_mobilenetv3_large_075,3052.6,166.905,512,224,3.99 +ghostnet_050,2997.88,169.549,512,224,2.59 +mobilenetv3_rw,2978.91,171.068,512,224,5.48 +mobilenetv3_large_100_miil,2954.41,172.485,512,224,5.48 +mobilenetv3_large_100,2949.17,172.802,512,224,5.48 +levit_256,2853.53,178.318,512,224,18.89 +hardcorenas_a,2833.05,180.061,512,224,5.26 +mnasnet_100,2794.45,182.489,512,224,4.38 +mnasnet_b1,2793.42,182.553,512,224,4.38 +resnet18d,2767.22,184.677,512,224,11.71 +tf_mobilenetv3_large_100,2745.99,185.646,512,224,5.48 +tinynet_b,2724.35,186.966,512,188,3.73 +hardcorenas_b,2641.84,192.939,512,224,5.18 +semnasnet_075,2627.64,193.989,512,224,2.91 +hardcorenas_c,2601.15,195.937,512,224,5.52 +ese_vovnet19b_slim,2546.07,200.754,512,224,3.17 +mobilenetv2_075,2520.15,202.421,512,224,2.64 +spnasnet_100,2483.13,205.29,512,224,4.42 +tf_efficientnetv2_b0,2462.53,206.791,512,224,7.14 +hardcorenas_d,2435.65,209.09,512,224,7.5 +mnasnet_a1,2380.33,214.252,512,224,3.89 +semnasnet_100,2377.81,214.477,512,224,3.89 +mobilenetv2_100,2363.97,215.837,512,224,3.5 +regnetx_002,2307.34,221.263,512,224,2.68 +tinynet_a,2237.07,227.684,512,192,6.19 +fbnetc_100,2225.25,229.187,512,224,5.57 +ghostnet_100,2211.89,230.191,512,224,5.18 +regnety_002,2204.25,231.393,512,224,3.16 +efficientnet_lite0,2189.09,233.188,512,224,4.65 +hardcorenas_f,2163.36,235.624,512,224,8.2 +hardcorenas_e,2139.96,238.217,512,224,8.07 +tf_efficientnet_lite0,2037.27,250.609,512,224,4.65 +resnet34,2037.12,250.805,512,224,21.8 +tv_resnet34,2035.85,250.969,512,224,21.8 +gluon_resnet34_v1b,2035.71,250.984,512,224,21.8 +skresnet18,2026.36,252.064,512,224,11.96 +resnet26,1936.86,263.917,512,224,16.0 +resnetblur18,1923.61,265.837,512,224,11.69 +gernet_m,1870.52,273.071,512,224,21.14 +ese_vovnet19b_dw,1864.29,274.174,512,224,6.54 +nf_resnet26,1859.82,274.839,512,224,16.0 +mnasnet_140,1826.42,279.575,512,224,7.12 +hrnet_w18_small,1825.55,279.196,512,224,13.19 +seresnet34,1821.14,280.321,512,224,21.96 +legacy_seresnet34,1770.27,288.393,512,224,21.96 +efficientnet_b0,1763.31,216.796,384,224,5.29 +resnet34d,1762.59,289.926,512,224,21.82 +mobilenetv2_110d,1752.61,218.148,384,224,4.52 +levit_384,1748.52,291.817,512,224,39.13 +rexnetr_100,1739.4,219.681,384,224,4.88 +selecsls42,1711.06,298.631,512,224,30.35 +selecsls42b,1703.95,299.892,512,224,32.46 +vit_tiny_patch16_224,1668.2,306.156,512,224,5.72 +deit_tiny_patch16_224,1666.4,306.494,512,224,5.72 +tf_efficientnet_b0_ap,1660.27,230.299,384,224,5.29 +tf_efficientnet_b0_ns,1659.78,230.359,384,224,5.29 +tf_efficientnet_b0,1659.12,230.455,384,224,5.29 +deit_tiny_distilled_patch16_224,1644.53,310.585,512,224,5.91 +semnasnet_140,1620.0,315.219,512,224,6.11 +efficientnet_es_pruned,1595.68,320.161,512,224,5.44 +efficientnet_es,1595.53,320.205,512,224,5.44 +mixer_b32_224,1593.71,320.545,512,224,60.29 +tf_efficientnet_es,1592.03,320.904,512,224,5.44 +resnet26d,1580.82,323.426,512,224,16.01 +tf_efficientnetv2_b1,1573.77,242.663,384,240,8.14 +ghostnet_130,1567.24,325.459,512,224,7.36 +repvgg_b0,1556.65,327.916,512,224,15.82 +pit_ti_distilled_224,1537.82,332.146,512,224,5.1 +pit_ti_224,1535.4,332.663,512,224,4.85 +mobilenetv2_140,1525.48,250.968,384,224,6.11 +resmlp_12_224,1516.23,336.972,512,224,15.35 +resmlp_12_distilled_224,1515.94,336.996,512,224,15.35 +vit_base_patch32_224,1491.42,342.538,512,224,88.22 +vit_base_patch32_224_sam,1490.35,342.802,512,224,88.22 +selecsls60,1450.31,352.185,512,224,30.67 +selecsls60b,1447.33,352.935,512,224,32.77 +nf_seresnet26,1446.95,353.243,512,224,17.4 +xcit_nano_12_p16_224,1428.16,356.892,512,224,3.05 +xcit_nano_12_p16_224_dist,1427.07,357.115,512,224,3.05 +efficientnet_lite1,1402.56,181.634,256,240,5.42 +mixer_s16_224,1387.35,368.544,512,224,18.53 +efficientnet_b1_pruned,1356.21,376.138,512,240,6.33 +dla46_c,1347.45,379.298,512,224,1.3 +rexnetr_130,1335.58,190.622,256,224,7.61 +nf_ecaresnet26,1333.44,383.458,512,224,16.0 +tf_efficientnet_lite1,1330.92,191.449,256,240,5.42 +mobilenetv2_120d,1299.02,195.983,256,224,5.83 +resnetv2_50,1277.54,400.053,512,224,25.55 +rexnet_100,1259.4,303.853,384,224,4.8 +gernet_l,1250.61,408.582,512,256,31.08 +pit_xs_224,1243.31,411.016,512,224,10.62 +pit_xs_distilled_224,1243.18,411.013,512,224,11.0 +gmixer_12_224,1232.53,414.68,512,224,12.7 +resnet26t,1208.16,423.321,512,256,16.01 +vit_small_patch32_384,1207.26,423.36,512,384,22.92 +tv_resnet50,1193.37,321.016,384,224,25.56 +ssl_resnet50,1193.18,321.076,384,224,25.56 +gluon_resnet50_v1b,1192.95,321.138,384,224,25.56 +resnet50,1192.59,321.245,384,224,25.56 +swsl_resnet50,1191.64,321.479,384,224,25.56 +rexnetr_150,1171.61,217.431,256,224,9.78 +fbnetv3_b,1163.46,328.537,384,256,8.6 +regnetx_004,1151.84,443.491,512,224,5.16 +botnet26t_256,1146.74,334.32,384,256,12.49 +skresnet34,1146.67,445.45,512,224,22.28 +tf_efficientnetv2_b2,1137.18,223.699,256,260,10.1 +fbnetv3_d,1123.37,226.192,256,256,10.31 +resnetv2_50t,1114.22,458.774,512,224,25.57 +gluon_resnet50_v1c,1114.01,343.942,384,224,25.58 +repvgg_a2,1113.97,458.853,512,224,28.21 +resnetv2_50d,1111.46,459.91,512,224,25.57 +halonet26t,1094.74,350.238,384,256,12.48 +efficientnet_lite2,1085.96,234.846,256,260,6.09 +dla34,1074.06,476.134,512,224,15.74 +mixnet_s,1060.15,481.782,512,224,4.13 +resnet50d,1054.46,363.395,384,224,25.58 +gluon_resnet50_v1d,1053.62,363.691,384,224,25.58 +resnet50t,1052.26,364.133,384,224,25.57 +vit_tiny_r_s16_p8_384,1046.6,366.108,384,384,6.36 +xcit_tiny_12_p16_224_dist,1038.68,491.328,512,224,6.72 +xcit_tiny_12_p16_224,1038.06,491.593,512,224,6.72 +tf_efficientnet_lite2,1032.64,247.013,256,260,6.09 +legacy_seresnext26_32x4d,1027.19,497.849,512,224,16.79 +resnet32ts,1007.64,253.517,256,256,17.96 +tf_efficientnet_b1_ap,1002.39,253.996,256,240,7.79 +tf_efficientnet_b1,1001.08,254.315,256,240,7.79 +tf_efficientnet_b1_ns,1000.92,254.412,256,240,7.79 +res2net50_48w_2s,999.09,383.596,384,224,25.29 +vit_small_resnet26d_224,998.6,383.579,384,224,63.61 +resnet33ts,996.53,256.337,256,256,19.68 +seresnext26d_32x4d,978.97,391.64,384,224,16.81 +vovnet39a,977.19,523.377,512,224,22.6 +seresnext26tn_32x4d,976.94,392.442,384,224,16.81 +seresnext26t_32x4d,976.02,392.82,384,224,16.81 +legacy_seresnet50,965.33,396.753,384,224,28.09 +tf_efficientnet_em,961.83,265.228,256,240,6.9 +efficientnet_em,961.29,265.407,256,240,6.9 +tf_mixnet_s,959.89,532.224,512,224,4.13 +dla46x_c,958.36,533.526,512,224,1.07 +eca_resnet33ts,943.71,270.653,256,256,19.68 +seresnet33ts,943.39,270.622,256,256,19.78 +crossvit_tiny_240,940.57,406.823,384,240,7.01 +crossvit_9_240,937.22,408.452,384,240,8.55 +efficientnet_b1,935.15,272.379,256,256,7.79 +seresnet50,934.74,409.786,384,224,28.09 +regnety_004,931.71,548.466,512,224,4.34 +gluon_resnet50_v1s,928.8,412.664,384,224,25.68 +ecaresnetlight,928.23,550.753,512,224,30.16 +resnetaa50d,926.64,413.614,384,224,25.58 +dla60,926.01,413.77,384,224,22.04 +ecaresnext26t_32x4d,925.94,414.209,384,224,15.41 +ecaresnext50t_32x4d,924.8,414.714,384,224,15.41 +ese_vovnet39b,919.92,555.952,512,224,24.57 +convit_tiny,917.45,417.618,384,224,5.71 +crossvit_9_dagger_240,912.87,419.313,384,240,8.78 +gcresnet33ts,912.73,279.541,256,256,19.88 +eca_vovnet39b,910.35,561.796,512,224,22.6 +gmlp_ti16_224,908.97,421.011,384,224,5.87 +dla60x_c,908.47,562.709,512,224,1.32 +cspresnet50,908.32,421.991,384,256,21.62 +vgg11,905.72,565.146,512,224,132.86 +resnetblur50,901.02,425.435,384,224,25.56 +ecaresnet50d_pruned,892.5,572.812,512,224,19.94 +rexnetr_200,885.64,215.704,192,224,16.52 +lambda_resnet26rpt_256,881.41,217.279,192,256,10.99 +vit_small_patch16_224,879.33,435.939,384,224,22.05 +deit_small_patch16_224,876.6,437.293,384,224,22.05 +nf_seresnet50,866.69,441.953,384,224,28.09 +dpn68b,864.02,443.325,384,224,12.61 +cspresnext50,863.58,443.862,384,224,20.57 +cspresnet50w,858.14,446.674,384,256,28.12 +selecsls84,852.15,599.694,512,224,50.95 +hrnet_w18_small_v2,849.12,600.799,512,224,15.6 +cspresnet50d,847.29,452.406,384,256,21.64 +deit_small_distilled_patch16_224,846.66,301.609,256,224,22.44 +seresnet50t,844.69,453.54,384,224,28.1 +resnetrs50,843.24,454.312,384,224,35.69 +densenet121,835.01,304.929,256,224,7.98 +tv_densenet121,832.77,305.766,256,224,7.98 +rexnet_150,829.93,307.376,256,224,9.73 +gluon_resnext50_32x4d,824.86,464.778,384,224,25.03 +tv_resnext50_32x4d,824.06,465.237,384,224,25.03 +ssl_resnext50_32x4d,823.91,465.298,384,224,25.03 +swsl_resnext50_32x4d,823.16,465.728,384,224,25.03 +resnext50_32x4d,823.01,465.815,384,224,25.03 +dpn68,816.18,469.476,384,224,12.61 +res2net50_26w_4s,812.07,314.023,256,224,25.7 +efficientnet_b2_pruned,811.6,314.06,256,260,8.31 +resnetblur50d,810.86,314.915,256,224,25.58 +pit_s_224,809.09,315.601,256,224,23.46 +pit_s_distilled_224,808.91,315.694,256,224,24.04 +vovnet57a,808.86,473.9,384,224,36.64 +skresnet50,802.36,317.782,256,224,25.8 +densenet121d,795.36,320.183,256,224,8.0 +vit_base_resnet26d_224,792.88,483.157,384,224,101.4 +rexnet_130,792.23,322.087,256,224,7.56 +tf_efficientnet_b2_ns,791.33,241.259,192,260,9.11 +tf_efficientnet_b2_ap,790.24,241.588,192,260,9.11 +regnetx_006,788.72,648.389,512,224,6.2 +tf_efficientnet_b2,788.26,242.2,192,260,9.11 +vgg11_bn,788.01,487.085,384,224,132.87 +nf_ecaresnet50,787.45,486.772,384,224,25.56 +regnety_006,779.2,656.099,512,224,6.06 +gcresnet50t,776.26,328.367,256,256,25.9 +ese_vovnet57b,765.66,500.673,384,224,38.61 +ecaresnet50d,761.68,335.218,256,224,25.58 +resnext50d_32x4d,757.82,337.002,256,224,25.05 +adv_inception_v3,756.25,506.326,384,299,23.83 +tf_inception_v3,754.65,507.545,384,299,23.83 +gluon_inception_v3,754.57,507.572,384,299,23.83 +inception_v3,753.64,508.224,384,299,23.83 +seresnetaa50d,751.96,339.385,256,224,28.11 +res2net50_14w_8s,748.86,339.851,256,224,25.06 +resmlp_24_distilled_224,743.59,342.912,256,224,30.02 +resmlp_24_224,743.53,342.937,256,224,30.02 +resnetv2_101,742.52,343.363,256,224,44.54 +skresnet50d,738.05,345.557,256,224,25.82 +sehalonet33ts,731.23,349.345,256,256,13.69 +dla60_res2net,730.56,349.091,256,224,20.85 +densenetblur121d,729.66,349.185,256,224,8.0 +resnet101,719.46,354.412,256,224,44.55 +tv_resnet101,719.29,354.488,256,224,44.55 +gluon_resnet101_v1b,719.28,354.459,256,224,44.55 +efficientnet_b2a,707.95,269.81,192,288,9.11 +efficientnet_b2,707.16,270.111,192,288,9.11 +nf_resnet50,703.13,545.338,384,288,25.56 +nf_resnet101,702.76,544.906,384,224,44.55 +ecaresnet101d_pruned,698.97,730.858,512,224,24.88 +densenet169,691.74,367.774,256,224,14.15 +gluon_resnet101_v1c,690.21,369.47,256,224,44.57 +gluon_seresnext50_32x4d,689.84,370.073,256,224,27.56 +legacy_seresnext50_32x4d,688.18,370.947,256,224,27.56 +seresnext50_32x4d,688.18,370.943,256,224,27.56 +resnetv2_101d,686.94,371.274,256,224,44.56 +darknet53,683.71,373.676,256,256,41.61 +dla60x,680.87,375.081,256,224,17.35 +nf_regnet_b0,680.47,751.331,512,256,8.76 +efficientnetv2_rw_t,669.58,284.789,192,288,13.65 +gluon_resnet101_v1d,666.43,382.723,256,224,44.57 +regnety_008,657.21,778.104,512,224,6.26 +rexnet_200,656.53,291.353,192,224,16.37 +tf_efficientnetv2_b3,655.17,291.405,192,300,14.36 +vit_small_r26_s32_224,652.39,391.27,256,224,36.43 +sebotnet33ts_256,650.1,196.14,128,256,13.7 +wide_resnet50_2,646.12,593.536,384,224,68.88 +vgg13,645.37,594.836,384,224,133.05 +dla102,640.56,398.166,256,224,33.27 +vit_base_resnet50d_224,619.99,411.439,256,224,110.97 +gluon_resnet101_v1s,614.53,415.124,256,224,44.67 +resnext26ts,613.38,625.548,384,256,10.3 +resnetaa101d,612.93,416.224,256,224,44.57 +ecaresnet26t,610.98,418.477,256,320,16.01 +gmixer_24_224,610.59,417.896,256,224,24.72 +repvgg_b1,609.77,838.686,512,224,57.42 +eca_botnext26ts_256,609.21,419.672,256,256,10.59 +eca_halonext26ts,598.72,427.016,256,256,10.76 +gc_efficientnetv2_rw_t,597.14,319.011,192,288,13.68 +eca_resnext26ts,593.02,431.168,256,256,10.3 +seresnext26ts,592.35,431.553,256,256,10.39 +regnetx_008,587.44,870.811,512,224,7.26 +convnext_tiny,584.52,437.049,256,224,28.59 +coat_lite_tiny,583.0,657.845,384,224,5.72 +convnext_tiny_hnf,582.18,438.813,256,224,28.59 +gcresnext26ts,581.42,439.532,256,256,10.48 +mixnet_m,576.71,664.443,384,224,5.01 +resnetv2_50x1_bit_distilled,575.65,332.777,192,224,25.55 +cspdarknet53,570.42,447.825,256,256,27.64 +legacy_seresnet101,570.04,447.058,256,224,49.33 +halonet50ts,568.71,336.701,192,256,22.73 +res2net50_26w_6s,565.22,451.306,256,224,37.05 +resnetblur101d,562.81,453.413,256,224,44.57 +seresnet101,560.51,454.74,256,224,49.33 +coat_lite_mini,559.21,685.884,384,224,11.01 +xcit_small_12_p16_224,558.21,456.962,256,224,26.25 +xcit_small_12_p16_224_dist,557.95,457.219,256,224,26.25 +vgg13_bn,555.55,460.55,256,224,133.05 +tf_efficientnet_lite3,555.29,229.476,128,300,8.2 +efficientnet_lite3,554.26,229.924,128,300,8.2 +tf_mixnet_m,541.25,708.06,384,224,5.01 +ssl_resnext101_32x4d,539.66,472.944,256,224,44.18 +gluon_resnext101_32x4d,539.41,473.189,256,224,44.18 +xcit_tiny_24_p16_224_dist,538.89,472.126,256,224,12.12 +resnext101_32x4d,538.71,473.739,256,224,44.18 +xcit_tiny_24_p16_224,538.48,472.477,256,224,12.12 +swsl_resnext101_32x4d,538.39,474.037,256,224,44.18 +densenet201,535.33,355.953,192,224,20.01 +bat_resnext26ts,534.3,478.021,256,256,10.73 +twins_svt_small,529.33,482.243,256,224,24.06 +mixer_b16_224,521.89,489.791,256,224,59.88 +mixer_b16_224_miil,521.33,490.33,256,224,59.88 +vgg16,519.79,738.569,384,224,138.36 +nf_seresnet101,519.55,490.612,256,224,49.33 +gmlp_s16_224,514.57,371.708,192,224,19.42 +crossvit_small_240,514.25,371.914,192,240,26.86 +resnetv2_152,514.07,495.927,256,224,60.19 +res2net101_26w_4s,512.94,372.022,192,224,45.21 +resnetv2_50d_gn,512.21,374.104,192,224,25.57 +botnet50ts_256,511.02,249.57,128,256,22.74 +vit_base_r26_s32_224,509.73,375.506,192,224,101.38 +efficientnet_b3_pruned,508.52,501.852,256,300,9.86 +nf_regnet_b3,507.41,502.895,256,320,18.59 +res2next50,500.31,510.5,256,224,24.67 +xcit_nano_12_p16_384_dist,497.26,513.197,256,384,3.05 +dla102x,495.72,385.887,192,224,26.31 +resnet50_gn,494.95,387.141,192,224,25.56 +mixnet_l,494.74,516.045,256,224,7.33 +resnet152,490.44,389.409,192,224,60.19 +gluon_resnet152_v1b,490.37,389.44,192,224,60.19 +tv_resnet152,490.23,389.552,192,224,60.19 +resmlp_36_224,489.84,389.965,192,224,44.69 +resmlp_36_distilled_224,489.66,390.129,192,224,44.69 +cait_xxs24_224,487.15,523.231,256,224,11.96 +mixer_l32_224,486.19,393.553,192,224,206.94 +halo2botnet50ts_256,485.95,262.504,128,256,22.64 +xception,485.66,262.809,128,299,22.86 +visformer_tiny,484.78,1055.527,512,224,10.32 +vit_large_patch32_224,484.04,527.472,256,224,306.54 +vit_base_patch32_384,478.93,533.779,256,384,88.3 +gluon_resnet152_v1c,476.8,400.507,192,224,60.21 +resnetv2_152d,475.38,401.77,192,224,60.2 +crossvit_15_240,472.73,404.523,192,240,27.53 +res2net50_26w_8s,468.77,407.558,192,224,48.4 +tf_mixnet_l,466.85,546.936,256,224,7.33 +gluon_resnet152_v1d,465.06,410.759,192,224,60.21 +ecaresnet101d,462.22,552.191,256,224,44.57 +crossvit_15_dagger_240,459.76,415.927,192,240,28.21 +vgg16_bn,457.66,559.065,256,224,138.37 +nf_ecaresnet101,455.3,560.589,256,224,44.55 +efficientnet_el,446.2,285.844,128,300,10.59 +efficientnet_el_pruned,445.59,286.28,128,300,10.59 +swin_tiny_patch4_window7_224,445.53,573.708,256,224,28.29 +fbnetv3_g,442.28,287.506,128,288,16.62 +gluon_resnet152_v1s,441.14,433.129,192,224,60.32 +gluon_seresnext101_32x4d,437.16,437.191,192,224,48.96 +tf_efficientnet_el,436.28,292.36,128,300,10.59 +vgg19,436.15,880.196,384,224,143.67 +seresnext101_32x4d,435.91,438.42,192,224,48.96 +legacy_seresnext101_32x4d,435.08,439.246,192,224,48.96 +ese_vovnet99b,434.62,587.614,256,224,63.2 +skresnext50_32x4d,434.44,587.996,256,224,27.48 +twins_pcpvt_small,433.1,589.648,256,224,24.11 +dla60_res2next,431.53,591.928,256,224,17.03 +dla169,427.18,447.18,192,224,53.39 +hrnet_w32,426.75,445.609,192,224,41.23 +hrnet_w18,413.83,614.275,256,224,21.3 +convit_small,409.81,467.592,192,224,27.78 +vit_tiny_patch16_384,409.3,311.972,128,384,5.79 +vit_small_resnet50d_s16_224,407.06,470.553,192,224,57.53 +vgg19_bn,388.74,658.182,256,224,143.68 +ecaresnet50t,388.23,328.837,128,320,25.57 +inception_v4,387.4,493.551,192,299,42.68 +tf_efficientnet_b3_ap,384.58,331.269,128,300,12.23 +tf_efficientnet_b3_ns,384.22,331.517,128,300,12.23 +tf_efficientnet_b3,384.13,331.655,128,300,12.23 +legacy_seresnet152,382.75,498.635,192,224,66.82 +xcit_nano_12_p8_224,378.83,674.154,256,224,3.05 +xcit_nano_12_p8_224_dist,378.65,674.433,256,224,3.05 +convnext_small,375.68,509.406,192,224,50.22 +regnetx_016,374.21,1367.378,512,224,9.19 +haloregnetz_b,372.27,686.285,256,224,11.68 +densenet161,371.62,342.252,128,224,28.68 +repvgg_b2,368.23,1389.47,512,224,89.02 +seresnet152,362.95,349.646,128,224,66.82 +nest_tiny,356.9,357.853,128,224,17.06 +dla102x2,355.19,358.924,128,224,41.28 +vit_base_patch16_224_miil,354.79,360.089,128,224,86.54 +jx_nest_tiny,353.97,360.795,128,224,17.06 +gluon_resnext101_64x4d,352.72,361.493,128,224,83.46 +resnext101_64x4d,352.52,361.632,128,224,83.46 +wide_resnet101_2,350.85,545.834,192,224,126.89 +regnety_016,350.64,1458.484,512,224,11.2 +vit_base_patch16_224,349.4,365.598,128,224,86.57 +deit_base_patch16_224,349.3,365.691,128,224,86.57 +vit_base_patch16_224_sam,349.14,365.832,128,224,86.57 +resnet200,348.81,364.208,128,224,64.67 +resnest14d,348.25,1469.78,512,224,10.61 +efficientnet_b3a,345.42,368.96,128,320,12.23 +efficientnet_b3,345.06,369.413,128,320,12.23 +deit_base_distilled_patch16_224,344.74,370.536,128,224,87.34 +crossvit_18_240,343.92,370.408,128,240,43.27 +hrnet_w30,341.47,745.312,256,224,37.71 +crossvit_18_dagger_240,335.19,380.045,128,240,44.27 +ens_adv_inception_resnet_v2,334.4,571.029,192,299,55.84 +inception_resnet_v2,334.03,571.741,192,299,55.84 +efficientnet_lite4,332.63,191.154,64,380,13.01 +nf_regnet_b1,327.56,1561.741,512,288,10.22 +coat_lite_small,324.96,589.506,192,224,19.84 +dpn92,324.94,786.493,256,224,37.67 +resnet101d,323.43,394.33,128,320,44.57 +mixnet_xl,322.47,593.686,192,224,11.9 +beit_base_patch16_224,320.26,398.682,128,224,86.53 +tf_efficientnet_lite4,319.09,199.328,64,380,13.01 +gcresnext50ts,314.79,608.558,192,256,15.67 +resnetrs101,314.59,404.798,128,288,63.62 +twins_pcpvt_base,313.15,610.712,192,224,43.83 +cait_xxs36_224,311.89,407.079,128,224,17.3 +gluon_seresnext101_64x4d,306.13,416.102,128,224,88.23 +twins_svt_base,305.99,416.477,128,224,56.07 +repvgg_b3,305.95,1254.102,384,224,123.09 +regnetz_d8,301.65,210.668,64,320,23.37 +xception41,300.49,424.83,128,299,26.97 +efficientnetv2_s,292.99,325.601,96,384,21.46 +ese_vovnet39b_evos,292.82,436.279,128,224,24.58 +efficientnetv2_rw_s,289.9,218.715,64,384,23.94 +tf_efficientnetv2_s,289.31,329.828,96,384,21.46 +swin_small_patch4_window7_224,289.15,441.029,128,224,49.61 +tf_efficientnetv2_s_in21ft1k,288.88,330.272,96,384,21.46 +xcit_small_24_p16_224_dist,286.23,444.237,128,224,47.67 +xcit_small_24_p16_224,286.12,444.416,128,224,47.67 +hrnet_w40,285.91,667.227,192,224,57.56 +pit_b_224,285.13,335.829,96,224,73.76 +pit_b_distilled_224,284.45,336.631,96,224,74.79 +nf_regnet_b2,282.04,1813.867,512,272,14.31 +gluon_xception65,276.41,345.52,96,299,39.92 +dpn98,275.63,462.928,128,224,61.57 +xception65,275.32,346.928,96,299,39.92 +resnet51q,274.2,699.442,192,288,35.7 +convnext_base_in22ft1k,273.43,466.529,128,224,88.59 +convnext_base,272.92,467.434,128,224,88.59 +nf_regnet_b4,271.03,470.306,128,384,30.21 +xcit_tiny_12_p8_224,270.45,471.679,128,224,6.71 +xcit_tiny_12_p8_224_dist,270.45,471.621,128,224,6.71 +cait_s24_224,268.53,474.373,128,224,46.92 +hrnet_w48,262.05,484.085,128,224,77.47 +resnest26d,254.99,1505.218,384,224,17.07 +resnest50d_1s4x24d,252.9,1011.055,256,224,25.68 +resnetv2_50d_evob,247.25,775.496,192,224,25.59 +regnetz_c16,246.47,517.947,128,320,13.46 +gmlp_b16_224,243.4,392.966,96,224,73.08 +hrnet_w44,236.76,806.557,192,224,67.06 +twins_svt_large,235.13,542.578,128,224,99.27 +efficientnet_b4,234.85,270.618,64,384,19.34 +nest_small,234.57,407.797,96,224,38.35 +resnetv2_50d_evos,233.18,410.671,96,224,25.59 +jx_nest_small,233.1,410.378,96,224,38.35 +tf_efficientnet_b4_ap,230.34,275.916,64,380,19.34 +tresnet_m,230.07,2222.819,512,224,31.39 +tf_efficientnet_b4,229.98,276.378,64,380,19.34 +tf_efficientnet_b4_ns,229.78,276.586,64,380,19.34 +visformer_small,229.49,1672.652,384,224,40.22 +crossvit_base_240,228.79,418.11,96,240,105.03 +nfnet_l0,228.47,1119.415,256,288,35.07 +coat_tiny,228.08,559.427,128,224,5.5 +twins_pcpvt_large,223.01,570.431,128,224,60.99 +eca_nfnet_l0,221.69,1153.795,256,288,24.14 +vit_large_r50_s32_224,220.98,432.297,96,224,328.99 +swin_base_patch4_window7_224,220.89,577.812,128,224,87.77 +densenet264,217.72,437.317,96,224,72.69 +hrnet_w64,216.27,587.374,128,224,128.06 +convit_base,213.62,448.479,96,224,86.54 +xception71,212.24,299.632,64,299,42.34 +vit_small_r26_s32_384,211.98,300.724,64,384,36.47 +resnet152d,211.82,451.04,96,320,60.21 +vit_small_patch16_384,209.76,304.352,64,384,22.2 +xcit_medium_24_p16_224,207.55,459.61,96,224,84.4 +xcit_medium_24_p16_224_dist,207.03,460.529,96,224,84.4 +resnet61q,206.68,618.373,128,288,36.85 +dpn131,205.78,620.133,128,224,79.25 +mixnet_xxl,204.23,624.949,128,224,23.96 +vit_base_r50_s16_224,195.65,325.59,64,224,98.66 +coat_mini,193.15,660.874,128,224,10.34 +regnety_040,193.14,1986.785,384,224,20.65 +xcit_small_12_p16_384_dist,191.88,498.659,96,384,26.25 +xcit_tiny_24_p16_384_dist,186.09,512.939,96,384,12.12 +seresnet200d,185.21,514.398,96,256,71.86 +regnetz_b16,179.85,1066.235,192,288,9.72 +repvgg_b1g4,177.2,2888.374,512,224,39.97 +ecaresnet200d,176.34,541.265,96,256,64.69 +nest_base,176.15,361.868,64,224,67.72 +convmixer_768_32,176.07,543.988,96,224,21.11 +resnest50d,175.35,1458.742,256,224,27.48 +regnety_032,175.25,1459.459,256,288,19.44 +jx_nest_base,174.95,364.333,64,224,67.72 +regnetx_032,174.19,2203.311,384,224,15.3 +senet154,172.45,553.616,96,224,115.09 +gluon_senet154,172.38,553.858,96,224,115.09 +legacy_senet154,171.96,555.183,96,224,115.09 +seresnet152d,169.43,374.655,64,320,66.84 +resnetrs152,167.98,377.927,64,320,86.62 +dpn107,167.97,570.011,96,224,86.92 +halonet_h1,167.27,381.366,64,256,8.1 +resnest50d_4s2x40d,163.46,1564.906,256,224,30.42 +resnet200d,163.41,388.892,64,320,64.69 +mixer_l16_224,161.74,592.23,96,224,208.2 +convnext_large_in22ft1k,160.8,595.418,96,224,197.77 +convnext_large,160.72,595.739,96,224,197.77 +regnetx_040,160.66,2389.077,384,224,22.12 +tnt_s_patch16_224,157.73,809.855,128,224,23.76 +regnetx_080,148.64,1721.236,256,224,39.57 +efficientnetv2_m,147.13,323.331,48,416,54.14 +resnext101_32x8d,145.87,876.049,128,224,88.79 +ssl_resnext101_32x8d,145.3,879.52,128,224,88.79 +vit_large_patch32_384,145.15,439.536,64,384,306.63 +xcit_small_12_p8_224_dist,145.04,439.625,64,224,26.21 +xcit_small_12_p8_224,144.99,439.796,64,224,26.21 +ig_resnext101_32x8d,144.47,884.578,128,224,88.79 +swsl_resnext101_32x8d,144.29,885.69,128,224,88.79 +regnetz_e8,140.91,338.814,48,320,57.7 +xcit_tiny_24_p8_224,139.28,686.242,96,224,12.11 +xcit_tiny_24_p8_224_dist,139.16,686.889,96,224,12.11 +resnetv2_50x1_bitm,137.88,347.358,48,448,25.55 +seresnext101_32x8d,136.74,934.059,128,224,93.57 +seresnet269d,134.18,471.701,64,256,113.67 +swin_large_patch4_window7_224,132.61,480.998,64,224,196.53 +xcit_nano_12_p8_384_dist,128.43,496.705,64,384,3.05 +tnt_b_patch16_224,126.43,757.626,96,224,65.41 +xcit_large_24_p16_224,124.67,510.437,64,224,189.1 +xcit_large_24_p16_224_dist,124.62,510.639,64,224,189.1 +efficientnetv2_rw_m,123.91,255.105,32,416,53.24 +regnetx_064,123.53,2071.55,256,224,26.21 +regnety_064,121.34,2108.152,256,224,30.58 +resnetrs200,119.86,396.447,48,320,93.21 +nfnet_f0,119.25,2145.698,256,256,71.49 +nfnet_f0s,118.17,2165.276,256,256,71.49 +ese_vovnet99b_iabn,116.31,3298.583,384,224,63.2 +regnety_080,108.46,2359.307,256,224,39.18 +tf_efficientnetv2_m_in21ft1k,107.43,294.9,32,480,54.14 +vit_large_patch16_224,106.81,447.947,48,224,304.33 +tf_efficientnetv2_m,106.77,296.673,32,480,54.14 +convnext_xlarge_in22ft1k,104.57,610.376,64,224,350.2 +crossvit_15_dagger_408,103.52,307.452,32,408,28.5 +tresnet_l,102.9,4972.484,512,224,55.99 +repvgg_b2g4,101.39,5048.708,512,224,61.76 +eca_nfnet_l1,99.64,1282.96,128,320,41.41 +xcit_small_24_p16_384_dist,98.62,483.709,48,384,47.67 +beit_large_patch16_224,98.03,487.815,48,224,304.43 +cspdarknet53_iabn,97.55,3934.064,384,256,27.64 +efficientnet_b5,94.83,335.072,32,456,30.39 +convnext_base_384_in22ft1k,93.76,510.323,48,384,88.59 +tf_efficientnet_b5_ap,93.42,340.255,32,456,30.39 +tf_efficientnet_b5_ns,93.39,340.338,32,456,30.39 +tf_efficientnet_b5,93.26,340.852,32,456,30.39 +xcit_tiny_12_p8_384_dist,92.1,519.585,48,384,6.71 +tresnet_xl,89.9,4267.972,384,224,78.44 +vit_base_patch16_384,89.9,355.185,32,384,86.86 +deit_base_patch16_384,89.87,355.331,32,384,86.86 +cspresnext50_iabn,89.4,4293.09,384,256,20.57 +resnest101e,88.34,1446.581,128,256,48.28 +deit_base_distilled_patch16_384,88.07,362.54,32,384,87.63 +cait_xxs24_384,87.17,364.76,32,384,12.03 +nf_regnet_b5,85.26,748.171,64,456,49.74 +resnetv2_101x1_bitm,84.86,375.607,32,448,44.54 +resnetv2_152x2_bit_teacher,84.71,375.537,32,224,236.34 +repvgg_b3g4,83.61,4591.876,384,224,83.83 +crossvit_18_dagger_408,77.92,306.154,24,408,44.61 +regnetx_120,77.0,3323.571,256,224,46.11 +beit_base_patch16_384,76.44,313.03,24,384,86.74 +ecaresnet269d,75.74,418.332,32,352,102.09 +regnety_120,75.43,2544.024,192,224,51.82 +pnasnet5large,75.01,423.127,32,331,86.06 +vit_large_r50_s32_384,73.58,432.769,32,384,329.09 +xcit_small_24_p8_224_dist,73.31,433.498,32,224,47.63 +xcit_small_24_p8_224,73.25,433.859,32,224,47.63 +resnetrs270,73.04,432.615,32,352,129.86 +regnetz_d32,71.19,897.484,64,320,27.58 +dm_nfnet_f0,71.06,3601.578,256,256,71.49 +xcit_medium_24_p16_384_dist,70.95,448.036,32,384,84.4 +regnetz_d8_evob,68.84,695.406,48,320,23.41 +regnety_320,66.69,1917.907,128,224,145.05 +nasnetalarge,65.99,480.339,32,331,88.75 +resmlp_big_24_distilled_224,65.96,483.761,32,224,129.14 +resmlp_big_24_224,65.94,483.953,32,224,129.14 +resmlp_big_24_224_in22ft1k,65.9,484.194,32,224,129.14 +regnetx_160,65.04,2951.208,192,224,54.28 +regnetz_d8_evos,62.47,510.384,32,320,23.46 +cait_xs24_384,60.56,393.982,24,384,26.67 +swin_base_patch4_window12_384,60.23,396.845,24,384,87.9 +efficientnetv2_l,60.16,261.949,16,480,118.52 +convmixer_1024_20_ks9_p14,59.76,4282.918,256,224,24.38 +tf_efficientnetv2_l,59.73,263.768,16,480,118.52 +tf_efficientnetv2_l_in21ft1k,59.31,265.732,16,480,118.52 +vit_base_patch8_224,57.86,275.754,16,224,86.58 +cait_xxs36_384,56.92,418.29,24,384,17.37 +convnext_large_384_in22ft1k,54.87,581.624,32,384,197.77 +xcit_medium_24_p8_224,54.52,584.052,32,224,84.32 +xcit_medium_24_p8_224_dist,54.51,583.988,32,224,84.32 +vit_base_resnet50_384,54.07,294.48,16,384,98.95 +vit_base_r50_s16_384,54.05,294.543,16,384,98.95 +tresnet_m_448,52.97,3622.14,192,448,31.39 +xcit_small_12_p8_384_dist,49.7,481.259,24,384,26.21 +regnety_160,48.21,1990.283,96,288,83.59 +xcit_tiny_24_p8_384_dist,47.11,676.387,32,384,12.11 +ssl_resnext101_32x16d,46.89,2045.721,96,224,194.03 +swsl_resnext101_32x16d,46.82,2049.006,96,224,194.03 +ig_resnext101_32x16d,46.52,2062.16,96,224,194.03 +resnetrs350,46.21,512.496,24,384,163.96 +regnetx_320,45.87,2789.512,128,224,107.81 +cait_s24_384,45.29,350.995,16,384,47.06 +eca_nfnet_l2,44.43,1438.009,64,384,56.72 +xcit_large_24_p16_384_dist,43.19,552.749,24,384,189.1 +efficientnet_b6,42.65,372.523,16,528,43.04 +tf_efficientnet_b6,41.27,384.949,16,528,43.04 +tf_efficientnet_b6_ap,41.07,386.945,16,528,43.04 +tf_efficientnet_b6_ns,41.05,387.133,16,528,43.04 +nfnet_f1,39.56,2424.624,96,320,132.63 +nfnet_f1s,39.31,2439.907,96,320,132.63 +vit_huge_patch14_224,38.12,417.919,16,224,632.05 +dm_nfnet_f1,37.77,1692.371,64,320,132.63 +swin_large_patch4_window12_384,36.73,433.938,16,384,196.74 +efficientnet_b7,35.91,219.519,8,600,66.35 +efficientnetv2_xl,35.88,329.245,12,512,208.12 +tf_efficientnetv2_xl_in21ft1k,35.79,329.897,12,512,208.12 +tf_efficientnet_b7,35.55,221.854,8,600,66.35 +tf_efficientnet_b7_ns,35.4,222.801,8,600,66.35 +tf_efficientnet_b7_ap,35.26,223.637,8,600,66.35 +convnext_xlarge_384_in22ft1k,34.11,467.466,16,384,350.2 +resnetrs420,31.93,492.311,16,416,191.89 +xcit_large_24_p8_224_dist,31.85,499.415,16,224,188.93 +xcit_large_24_p8_224,31.84,499.581,16,224,188.93 +resnest200e,31.57,1515.738,48,320,70.2 +densenet264d_iabn,31.46,4064.91,128,224,72.74 +resnetv2_50x3_bitm,30.97,515.904,16,448,217.32 +cait_s36_384,29.83,399.013,12,384,68.37 +resnetv2_152x2_bit_teacher_384,29.16,409.309,12,384,236.34 +vit_large_patch16_384,26.62,299.125,8,384,304.72 +tresnet_l_448,25.11,5094.194,128,448,55.99 +xcit_small_24_p8_384_dist,25.02,476.66,12,384,47.63 +eca_nfnet_l3,23.96,1332.494,32,448,72.04 +efficientnet_cc_b0_4e,23.7,40.469,1,224,13.31 +efficientnet_cc_b0_8e,22.94,41.864,1,224,24.01 +tresnet_xl_448,22.71,4223.097,96,448,78.44 +beit_large_patch16_384,22.62,351.795,8,384,305.0 +tf_efficientnet_cc_b0_8e,22.37,43.033,1,224,24.01 +nfnet_f2,21.97,2181.861,48,352,193.78 +nfnet_f2s,21.86,2193.026,48,352,193.78 +vit_giant_patch14_224,21.57,368.599,8,224,1012.61 +dm_nfnet_f2,21.42,1490.949,32,352,193.78 +tf_efficientnet_cc_b0_4e,21.27,45.221,1,224,13.31 +resnetv2_152x2_bitm,21.19,375.422,8,448,236.34 +efficientnet_cc_b1_8e,18.42,52.102,1,240,39.72 +xcit_medium_24_p8_384_dist,17.99,441.849,8,384,84.32 +ig_resnext101_32x32d,17.78,1798.209,32,224,468.53 +tf_efficientnet_cc_b1_8e,17.44,55.209,1,240,39.72 +resnetv2_101x3_bitm,17.08,466.831,8,448,387.93 +resnest269e,12.91,1852.797,24,416,110.93 +nfnet_f3,11.98,1999.215,24,416,254.92 +nfnet_f3s,11.88,2016.77,24,416,254.92 +dm_nfnet_f3,11.64,2058.707,24,416,254.92 +cait_m36_384,11.45,520.837,6,384,271.22 +efficientnet_b8,11.27,528.827,6,672,87.41 +tf_efficientnet_b8_ap,11.23,530.563,6,672,87.41 +tf_efficientnet_b8,11.1,537.074,6,672,87.41 +xcit_large_24_p8_384_dist,10.94,545.597,6,384,188.93 +convmixer_1536_20,9.34,5136.027,48,224,51.63 +tf_efficientnet_l2_ns_475,8.79,336.325,3,475,480.31 +ig_resnext101_32x48d,8.38,1908.292,16,224,828.41 +beit_large_patch16_512,8.36,357.133,3,512,305.67 +nfnet_f4s,6.37,1879.688,12,512,316.07 +nfnet_f4,6.34,1889.493,12,512,316.07 +dm_nfnet_f4,6.16,1941.969,12,512,316.07 +cait_m48_448,4.64,426.785,2,448,356.46 +nfnet_f5,4.56,1747.564,8,544,377.21 +nfnet_f5s,4.56,1750.367,8,544,377.21 +dm_nfnet_f5,4.43,1800.804,8,544,377.21 +nfnet_f6,3.47,1722.95,6,576,438.36 +nfnet_f6s,3.47,1723.469,6,576,438.36 +dm_nfnet_f6,3.34,1791.721,6,576,438.36 +resnetv2_152x4_bitm,3.17,313.58,1,480,936.53 +nfnet_f7,2.64,1507.256,4,608,499.5 +nfnet_f7s,2.63,1515.779,4,608,499.5 +efficientnet_l2,2.07,477.813,1,800,480.31 +tf_efficientnet_l2_ns,2.03,488.22,1,800,480.31 diff --git a/results/model_benchmark_amp_nchw_rtx3090.csv b/results/model_benchmark_amp_nchw_rtx3090.csv deleted file mode 100644 index f13b032edc..0000000000 --- a/results/model_benchmark_amp_nchw_rtx3090.csv +++ /dev/null @@ -1,528 +0,0 @@ -model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count -tf_mobilenetv3_small_minimal_100,23813.47,10.741,256,224,0.06,1.41,2.04 -tf_mobilenetv3_small_075,20226.39,12.646,256,224,0.05,1.3,2.04 -tf_mobilenetv3_small_100,18228.81,14.034,256,224,0.06,1.42,2.54 -levit_128s,17210.0,14.865,256,224,0.31,1.88,7.78 -regnetx_002,14906.56,17.164,256,224,0.2,2.16,2.68 -regnety_002,13464.5,19.003,256,224,0.2,2.17,3.16 -levit_128,11979.62,21.36,256,224,0.41,2.71,9.21 -levit_192,10405.48,24.593,256,224,0.66,3.2,10.95 -gernet_s,10172.35,25.156,256,224,0.75,2.65,8.17 -vit_small_patch32_224,9285.97,27.555,256,224,1.15,2.5,22.88 -regnetx_004,9188.53,27.851,256,224,0.4,3.14,5.16 -tf_mobilenetv3_large_minimal_100,9164.35,27.924,256,224,0.22,4.4,3.92 -tf_mobilenetv3_large_075,8667.81,29.525,256,224,0.16,4.0,3.99 -mobilenetv3_rw,8631.08,29.65,256,224,0.23,4.41,5.48 -vit_tiny_r_s16_p8_224,8546.38,29.942,256,224,0.44,2.06,6.34 -mobilenetv3_large_100_miil,8526.13,30.015,256,224,0.23,4.41,5.48 -mobilenetv3_large_100,8496.93,30.118,256,224,0.23,4.41,5.48 -gluon_resnet18_v1b,8461.63,30.244,256,224,1.82,2.48,11.69 -ssl_resnet18,8460.21,30.249,256,224,1.82,2.48,11.69 -resnet18,8386.36,30.514,256,224,1.82,2.48,11.69 -swsl_resnet18,8382.52,30.528,256,224,1.82,2.48,11.69 -ghostnet_100,8276.88,30.92,256,224,0.15,3.55,5.18 -levit_256,7773.58,32.922,256,224,1.13,4.23,18.89 -legacy_seresnet18,7701.78,33.229,256,224,1.82,2.49,11.78 -tf_mobilenetv3_large_100,7680.05,33.323,256,224,0.23,4.41,5.48 -regnetx_006,7603.45,33.658,256,224,0.61,3.98,6.2 -mobilenetv2_100,7541.65,33.934,256,224,0.31,6.68,3.5 -regnety_004,7368.29,34.733,256,224,0.41,3.89,4.34 -hardcorenas_a,7264.93,35.227,256,224,0.23,4.38,5.26 -hardcorenas_b,7208.11,35.505,256,224,0.26,5.09,5.18 -mnasnet_100,7142.85,35.829,256,224,0.33,5.46,4.38 -resnet18d,7065.39,36.221,256,224,2.06,3.29,11.71 -semnasnet_100,6753.19,37.897,256,224,0.32,6.23,3.89 -hardcorenas_c,6746.84,37.933,256,224,0.28,5.01,5.52 -spnasnet_100,6739.75,37.973,256,224,0.35,6.03,4.42 -regnety_006,6693.6,38.235,256,224,0.61,4.33,6.06 -hardcorenas_d,6572.55,38.939,256,224,0.3,4.93,7.5 -tf_efficientnetv2_b0,6314.13,40.533,256,224,0.73,4.77,7.14 -regnetx_008,6079.04,42.101,256,224,0.81,5.15,7.26 -efficientnet_lite0,5804.98,44.09,256,224,0.4,6.74,4.65 -dla46_c,5780.94,44.273,256,224,0.58,4.5,1.3 -mobilenetv2_110d,5723.57,44.717,256,224,0.45,8.71,4.52 -rexnet_100,5717.93,44.761,256,224,0.41,7.44,4.8 -hardcorenas_f,5617.23,45.564,256,224,0.35,5.57,8.2 -regnety_008,5508.59,46.462,256,224,0.81,5.25,6.26 -hardcorenas_e,5410.0,47.31,256,224,0.35,5.65,8.07 -fbnetc_100,5329.99,48.02,256,224,0.4,6.51,5.57 -skresnet18,5316.12,48.145,256,224,1.82,3.24,11.96 -tf_efficientnet_lite0,5240.32,48.842,256,224,0.4,6.74,4.65 -mobilenetv2_140,5070.12,50.481,256,224,0.6,9.57,6.11 -efficientnet_b0,5059.78,50.585,256,224,0.4,6.75,5.29 -ese_vovnet19b_dw,5050.16,50.68,256,224,1.34,8.25,6.54 -gluon_resnet34_v1b,4958.52,51.618,256,224,3.67,3.74,21.8 -efficientnet_b1_pruned,4954.57,51.658,256,240,0.4,6.21,6.33 -tv_resnet34,4937.29,51.84,256,224,3.67,3.74,21.8 -resnet34,4928.32,51.933,256,224,3.67,3.74,21.8 -hrnet_w18_small,4869.58,52.561,256,224,1.61,5.72,13.19 -levit_384,4654.29,54.993,256,224,2.36,6.26,39.13 -tf_efficientnet_b0_ap,4650.22,55.039,256,224,0.4,6.75,5.29 -tf_efficientnet_b0_ns,4646.91,55.076,256,224,0.4,6.75,5.29 -tf_efficientnet_b0,4644.25,55.108,256,224,0.4,6.75,5.29 -dla46x_c,4605.94,55.57,256,224,0.54,5.66,1.07 -selecsls42b,4570.17,56.005,256,224,2.98,4.62,32.46 -deit_tiny_patch16_224,4543.82,56.329,256,224,1.26,5.97,5.72 -vit_tiny_patch16_224,4538.07,56.399,256,224,1.26,5.97,5.72 -gernet_m,4516.03,56.676,256,224,3.02,5.24,21.14 -deit_tiny_distilled_patch16_224,4481.69,57.11,256,224,1.27,6.01,5.91 -legacy_seresnet34,4474.42,57.204,256,224,3.67,3.74,21.96 -resnet34d,4448.37,57.538,256,224,3.91,4.54,21.82 -pit_ti_distilled_224,4332.05,59.084,256,224,0.71,6.23,5.1 -pit_ti_224,4322.46,59.215,256,224,0.7,6.19,4.85 -dla60x_c,4302.12,59.495,256,224,0.59,6.01,1.32 -mixnet_s,4297.51,59.559,256,224,0.25,6.25,4.13 -rexnet_130,4236.61,60.415,256,224,0.68,9.71,7.56 -tf_efficientnetv2_b1,4231.93,60.481,256,240,1.21,7.34,8.14 -xcit_nano_12_p16_224_dist,4191.2,61.067,256,224,0.56,4.17,3.05 -xcit_nano_12_p16_224,4188.12,61.112,256,224,0.56,4.17,3.05 -resmlp_12_distilled_224,4137.96,61.855,256,224,3.01,5.5,15.35 -resmlp_12_224,4137.2,61.867,256,224,3.01,5.5,15.35 -resnet26,4135.23,61.895,256,224,2.36,7.35,16.0 -vit_base_patch32_sam_224,4111.04,62.261,256,224,4.41,5.01,88.22 -mobilenetv2_120d,4108.55,62.299,256,224,0.69,11.97,5.83 -vit_base_patch32_224,4102.94,62.384,256,224,4.41,5.01,88.22 -tf_mixnet_s,4033.2,63.462,256,224,0.25,6.25,4.13 -repvgg_b0,4020.07,63.669,256,224,3.41,6.15,15.82 -selecsls60b,3957.1,64.683,256,224,3.63,5.52,32.77 -selecsls60,3955.58,64.708,256,224,3.59,5.52,30.67 -resnet26d,3771.71,67.862,256,224,2.6,8.15,16.01 -dla34,3751.8,68.222,256,224,3.07,5.02,15.74 -rexnet_150,3693.73,69.295,256,224,0.9,11.21,9.73 -ecaresnet50d_pruned,3635.83,70.4,256,224,2.53,6.43,19.94 -tf_efficientnet_lite1,3541.96,72.266,256,240,0.62,10.14,5.42 -pit_xs_224,3506.77,72.991,256,224,1.4,7.71,10.62 -regnetx_016,3495.21,73.233,256,224,1.62,7.93,9.19 -pit_xs_distilled_224,3481.48,73.522,256,224,1.41,7.76,11.0 -efficientnet_es_pruned,3365.67,76.052,256,224,1.81,8.73,5.44 -efficientnet_es,3358.26,76.219,256,224,1.81,8.73,5.44 -efficientnet_b2_pruned,3344.4,76.535,256,260,0.73,9.13,8.31 -tf_efficientnet_es,3248.35,78.797,256,224,1.81,8.73,5.44 -tf_efficientnetv2_b2,3221.93,79.444,256,260,1.72,9.84,10.1 -resnest14d,3200.62,79.966,256,224,2.76,7.33,10.61 -gernet_l,3173.09,80.669,256,256,4.57,8.0,31.08 -regnety_016,3082.19,83.046,256,224,1.63,8.04,11.2 -tf_efficientnet_cc_b0_8e,3079.83,83.109,256,224,0.42,9.42,24.01 -tf_efficientnet_cc_b0_4e,3072.34,83.31,256,224,0.41,9.42,13.31 -mixnet_m,3041.78,84.15,256,224,0.36,8.19,5.01 -skresnet34,3025.8,84.595,256,224,3.67,5.13,22.28 -resnext26ts,2999.56,85.335,256,256,2.43,10.52,10.3 -repvgg_a2,2997.36,85.397,256,224,5.7,6.26,28.21 -legacy_seresnext26_32x4d,2982.2,85.832,256,224,2.49,9.39,16.79 -vit_tiny_r_s16_p8_384,2981.27,85.856,256,384,1.34,6.49,6.36 -vit_small_patch32_384,2975.01,86.035,256,384,3.45,8.25,22.92 -xcit_tiny_12_p16_224_dist,2962.26,86.406,256,224,1.24,6.29,6.72 -xcit_tiny_12_p16_224,2958.87,86.506,256,224,1.24,6.29,6.72 -resnet26t,2949.15,86.793,256,256,3.35,10.52,16.01 -seresnext26ts,2930.19,87.355,256,256,2.43,10.52,10.39 -eca_resnext26ts,2927.39,87.439,256,256,2.43,10.52,10.3 -tf_mixnet_m,2918.13,87.716,256,224,0.36,8.19,5.01 -tf_efficientnet_b1_ap,2909.55,87.973,256,240,0.71,10.88,7.79 -tf_efficientnet_b1_ns,2907.96,88.021,256,240,0.71,10.88,7.79 -tf_efficientnet_b1,2906.46,88.066,256,240,0.71,10.88,7.79 -gcresnext26ts,2860.35,89.489,256,256,2.43,10.53,10.48 -ecaresnet101d_pruned,2832.39,90.373,256,224,3.48,7.69,24.88 -efficientnet_b1,2816.51,90.881,256,256,0.77,12.22,7.79 -seresnext26t_32x4d,2803.22,91.313,256,224,2.7,10.09,16.81 -seresnext26d_32x4d,2791.34,91.701,256,224,2.73,10.19,16.81 -ecaresnetlight,2748.62,93.127,256,224,4.11,8.42,30.16 -tf_efficientnet_lite2,2734.03,93.624,256,260,0.89,12.9,6.09 -nf_regnet_b1,2722.26,94.028,256,288,1.02,9.2,10.22 -crossvit_tiny_240,2719.71,94.117,256,240,1.57,9.08,7.01 -rexnet_200,2697.36,94.896,256,224,1.56,14.91,16.37 -resnetv2_50,2678.82,95.552,256,224,4.11,11.11,25.55 -crossvit_9_240,2675.71,95.665,256,240,1.85,9.52,8.55 -eca_botnext26ts_256,2660.24,96.221,256,256,2.46,11.6,10.59 -tresnet_m,2657.69,96.314,256,224,5.74,7.31,31.39 -botnet26t_256,2648.39,96.646,256,256,3.32,11.98,12.49 -halonet26t,2611.82,98.005,256,256,3.19,11.69,12.48 -vgg11,2609.78,98.082,256,224,7.61,7.44,132.86 -eca_halonext26ts,2603.27,98.327,256,256,2.44,11.46,10.76 -gluon_resnet50_v1b,2595.8,98.61,256,224,4.11,11.11,25.56 -ssl_resnet50,2595.55,98.619,256,224,4.11,11.11,25.56 -efficientnet_b3_pruned,2594.03,98.677,256,300,1.04,11.86,9.86 -tv_resnet50,2591.78,98.763,256,224,4.11,11.11,25.56 -crossvit_9_dagger_240,2589.88,98.836,256,240,1.99,9.97,8.78 -resnet50,2584.36,99.039,256,224,4.11,11.11,25.56 -swsl_resnet50,2581.65,99.146,256,224,4.11,11.11,25.56 -convit_tiny,2544.18,100.61,256,224,1.26,7.94,5.71 -hrnet_w18_small_v2,2509.11,102.017,256,224,2.62,9.65,15.6 -resnet32ts,2503.04,102.263,256,256,4.63,11.58,17.96 -bat_resnext26ts,2479.68,103.219,256,256,2.53,12.51,10.73 -resnet33ts,2467.72,103.728,256,256,4.76,11.66,19.68 -gluon_resnet50_v1c,2464.02,103.884,256,224,4.35,11.92,25.58 -ese_vovnet39b,2457.44,104.162,256,224,7.09,6.74,24.57 -cspresnet50,2453.31,104.338,256,256,4.54,11.5,21.62 -cspresnext50,2451.69,104.407,256,224,3.1,12.14,20.57 -gluon_resnet50_v1d,2445.69,104.663,256,224,4.35,11.92,25.58 -resnet50d,2441.21,104.85,256,224,4.35,11.92,25.58 -dpn68b,2432.24,105.242,256,224,2.35,10.47,12.61 -legacy_seresnet50,2426.52,105.49,256,224,3.88,10.6,28.09 -dpn68,2406.35,106.374,256,224,2.35,10.47,12.61 -eca_resnet33ts,2405.01,106.434,256,256,4.76,11.66,19.68 -seresnet33ts,2402.61,106.54,256,256,4.76,11.66,19.78 -vgg11_bn,2383.08,107.413,256,224,7.62,7.44,132.87 -mixnet_l,2358.59,108.528,256,224,0.58,10.84,7.33 -lambda_resnet26t,2358.23,108.545,256,256,3.02,11.87,10.96 -gcresnet33ts,2347.52,109.04,256,256,4.76,11.68,19.88 -pit_s_224,2332.08,109.763,256,224,2.88,11.56,23.46 -dla60,2324.78,110.106,256,224,4.26,10.16,22.04 -seresnet50,2316.85,110.484,256,224,4.11,11.13,28.09 -resnest26d,2313.67,110.634,256,224,3.64,9.97,17.07 -pit_s_distilled_224,2311.97,110.718,256,224,2.9,11.64,24.04 -deit_small_patch16_224,2297.25,111.426,256,224,4.61,11.95,22.05 -vit_small_patch16_224,2293.15,111.622,256,224,4.61,11.95,22.05 -deit_small_distilled_patch16_224,2268.28,112.85,256,224,4.63,12.02,22.44 -tf_mixnet_l,2264.19,113.053,256,224,0.58,10.84,7.33 -tf_efficientnet_b2_ns,2256.47,113.438,256,260,1.02,13.83,9.11 -tf_efficientnet_b2_ap,2256.28,113.446,256,260,1.02,13.83,9.11 -tf_efficientnet_b2,2253.15,113.605,256,260,1.02,13.83,9.11 -tv_densenet121,2246.15,113.963,256,224,2.87,6.9,7.98 -densenet121,2241.22,114.212,256,224,2.87,6.9,7.98 -res2net50_48w_2s,2234.19,114.57,256,224,4.18,11.72,25.29 -ecaresnet50d,2188.72,116.953,256,224,4.35,11.93,25.58 -resnetblur50,2181.37,117.342,256,224,5.16,12.02,25.56 -haloregnetz_b,2181.01,117.365,256,224,1.97,11.94,11.68 -resnetrs50,2148.74,119.126,256,224,4.48,12.14,35.69 -gluon_resnet50_v1s,2124.85,120.469,256,224,5.47,13.52,25.68 -visformer_small,2123.42,120.549,256,224,4.88,11.43,40.22 -gluon_inception_v3,2118.5,120.829,256,299,5.73,8.97,23.83 -regnetx_032,2117.36,120.894,256,224,3.2,11.37,15.3 -resmlp_24_distilled_224,2109.62,121.337,256,224,5.96,10.91,30.02 -efficientnet_b2,2109.39,121.351,256,288,1.12,16.2,9.11 -inception_v3,2109.39,121.351,256,299,5.73,8.97,23.83 -resmlp_24_224,2108.77,121.386,256,224,5.96,10.91,30.02 -tf_inception_v3,2108.49,121.403,256,299,5.73,8.97,23.83 -adv_inception_v3,2107.2,121.474,256,299,5.73,8.97,23.83 -efficientnet_em,2078.91,123.131,256,240,3.04,14.34,6.9 -densenetblur121d,2047.01,125.05,256,224,3.11,7.9,8.0 -tf_efficientnet_em,2016.96,126.911,256,240,3.04,14.34,6.9 -ssl_resnext50_32x4d,2014.12,127.092,256,224,4.26,14.4,25.03 -tv_resnext50_32x4d,2011.71,127.243,256,224,4.26,14.4,25.03 -gluon_resnext50_32x4d,2008.79,127.428,256,224,4.26,14.4,25.03 -swsl_resnext50_32x4d,2003.89,127.736,256,224,4.26,14.4,25.03 -resnext50_32x4d,2003.33,127.776,256,224,4.26,14.4,25.03 -tf_efficientnet_cc_b1_8e,1964.78,130.28,256,240,0.75,15.44,39.72 -dla60x,1943.55,131.706,256,224,3.54,13.8,17.35 -regnetx_040,1936.18,132.208,256,224,3.99,12.2,22.12 -resnext50d_32x4d,1913.78,133.755,256,224,4.5,15.2,25.05 -res2net50_26w_4s,1909.57,134.046,256,224,4.28,12.61,25.7 -tf_efficientnetv2_b3,1906.95,134.234,256,300,3.04,15.74,14.36 -regnety_040,1904.74,134.39,256,224,4.0,12.29,20.65 -gcresnet50t,1896.24,134.993,256,256,5.42,14.67,25.9 -efficientnetv2_rw_t,1892.3,135.274,256,288,3.19,16.42,13.65 -sehalonet33ts,1872.56,136.7,256,256,3.55,14.7,13.69 -lambda_resnet26rpt_256,1852.61,138.171,256,256,3.16,11.87,10.99 -seresnext50_32x4d,1837.91,139.277,256,224,4.26,14.42,27.56 -gcresnext50ts,1836.72,139.369,256,256,3.75,15.46,15.67 -dla60_res2net,1835.75,139.44,256,224,4.15,12.34,20.85 -gluon_seresnext50_32x4d,1834.84,139.511,256,224,4.26,14.42,27.56 -legacy_seresnext50_32x4d,1831.03,139.801,256,224,4.26,14.42,27.56 -resnest50d_1s4x24d,1825.82,140.197,256,224,4.43,13.57,25.68 -repvgg_b1g4,1816.81,140.887,256,224,8.15,10.64,39.97 -densenet169,1814.19,141.099,256,224,3.4,7.3,14.15 -gc_efficientnetv2_rw_t,1807.69,141.606,256,288,3.2,16.45,13.68 -coat_lite_tiny,1802.74,141.995,256,224,1.6,11.65,5.72 -res2net50_14w_8s,1801.06,142.125,256,224,4.21,13.28,25.06 -res2next50,1791.13,142.906,256,224,4.2,13.71,24.67 -cspdarknet53,1752.54,146.063,256,256,6.57,16.81,27.64 -ecaresnet26t,1748.79,146.375,256,320,5.24,16.44,16.01 -dla60_res2next,1747.0,146.526,256,224,3.49,13.17,17.03 -regnetz_b,1724.41,148.443,256,288,2.39,16.43,9.72 -coat_lite_mini,1717.23,149.066,256,224,2.0,12.25,11.01 -vgg13,1708.54,149.824,256,224,11.31,12.25,133.05 -mixnet_xl,1689.17,151.542,256,224,0.93,14.57,11.9 -vit_small_r26_s32_224,1664.97,153.742,256,224,3.56,9.85,36.43 -resnetv2_101,1630.91,156.956,256,224,7.83,16.23,44.54 -tf_efficientnet_lite3,1624.63,157.563,256,300,1.65,21.85,8.2 -gluon_resnet101_v1b,1601.1,159.88,256,224,7.83,16.23,44.55 -tv_resnet101,1599.29,160.06,256,224,7.83,16.23,44.55 -repvgg_b1,1595.1,160.478,256,224,13.16,10.64,57.42 -xcit_tiny_24_p16_224_dist,1586.68,161.331,256,224,2.34,11.82,12.12 -xcit_tiny_24_p16_224,1585.43,161.458,256,224,2.34,11.82,12.12 -xcit_small_12_p16_224_dist,1555.24,164.59,256,224,4.82,12.58,26.25 -lambda_resnet50ts,1554.98,164.616,256,256,5.07,17.48,21.54 -xcit_small_12_p16_224,1551.41,164.997,256,224,4.82,12.58,26.25 -gluon_resnet101_v1c,1549.68,165.185,256,224,8.08,17.04,44.57 -resnest50d,1546.83,165.485,256,224,5.4,14.36,27.48 -vgg13_bn,1545.98,165.579,256,224,11.33,12.25,133.05 -gluon_resnet101_v1d,1542.35,165.971,256,224,8.08,17.04,44.57 -dla102,1540.91,166.124,256,224,7.19,14.18,33.27 -twins_svt_small,1527.64,167.568,256,224,2.94,13.75,24.06 -wide_resnet50_2,1520.69,168.321,256,224,11.43,14.4,68.88 -gmixer_24_224,1499.34,170.73,256,224,5.28,14.45,24.72 -resnetv2_50x1_bit_distilled,1491.85,171.586,256,224,4.23,11.11,25.55 -regnetx_080,1490.15,171.784,256,224,8.02,14.06,39.57 -xcit_nano_12_p16_384_dist,1485.24,172.347,256,384,1.64,12.15,3.05 -crossvit_small_240,1471.27,173.987,256,240,5.63,18.17,26.86 -legacy_seresnet101,1468.28,174.342,256,224,7.61,15.74,49.33 -halonet50ts,1455.95,175.819,256,256,5.3,19.2,22.73 -res2net50_26w_6s,1449.56,176.589,256,224,6.33,15.28,37.05 -regnetx_064,1419.83,180.292,256,224,6.49,16.37,26.21 -densenet201,1416.48,180.718,256,224,4.34,7.85,20.01 -resmlp_36_224,1415.51,180.84,256,224,8.91,16.33,44.69 -resmlp_36_distilled_224,1415.35,180.86,256,224,8.91,16.33,44.69 -gluon_resnet101_v1s,1409.69,181.589,256,224,9.19,18.64,44.67 -lamhalobotnet50ts_256,1390.79,184.054,256,256,5.02,18.44,22.57 -nf_resnet50,1387.87,184.443,256,288,6.88,18.37,25.56 -ecaresnet101d,1376.05,186.03,256,224,8.08,17.07,44.57 -vgg16,1375.43,186.112,256,224,15.47,13.56,138.36 -hrnet_w18,1354.53,188.983,256,224,4.32,16.31,21.3 -regnety_032,1350.9,189.492,256,288,5.29,18.61,19.44 -crossvit_15_240,1346.42,190.123,256,240,5.81,19.77,27.53 -tresnet_l,1344.95,190.33,256,224,10.88,11.9,55.99 -gmlp_s16_224,1341.95,190.757,256,224,4.42,15.1,19.42 -tf_efficientnet_b3_ap,1337.77,191.35,256,300,1.87,23.83,12.23 -tf_efficientnet_b3_ns,1337.21,191.429,256,300,1.87,23.83,12.23 -tf_efficientnet_b3,1336.96,191.464,256,300,1.87,23.83,12.23 -resnet51q,1335.36,191.695,256,288,8.07,20.94,35.7 -vit_base_patch32_384,1326.76,192.939,256,384,13.06,16.5,88.3 -xception,1314.05,194.804,256,299,8.4,35.83,22.86 -crossvit_15_dagger_240,1305.29,196.113,256,240,6.13,20.43,28.21 -dla102x,1302.51,196.531,256,224,5.89,19.42,26.31 -efficientnet_b3,1297.94,197.224,256,320,2.01,26.52,12.23 -mixer_b16_224,1285.59,199.119,256,224,12.62,14.53,59.88 -mixer_b16_224_miil,1283.81,199.396,256,224,12.62,14.53,59.88 -cait_xxs24_224,1283.41,199.457,256,224,2.53,20.29,11.96 -skresnext50_32x4d,1277.72,200.346,256,224,4.5,17.18,27.48 -regnety_064,1270.37,201.504,256,224,6.39,16.41,30.58 -ssl_resnext101_32x4d,1267.29,201.994,256,224,8.01,21.23,44.18 -gluon_resnext101_32x4d,1262.61,202.744,256,224,8.01,21.23,44.18 -swsl_resnext101_32x4d,1261.41,202.934,256,224,8.01,21.23,44.18 -vgg16_bn,1259.82,203.192,256,224,15.5,13.56,138.37 -repvgg_b2g4,1250.78,204.659,256,224,12.63,12.9,61.76 -halo2botnet50ts_256,1247.07,205.268,256,256,5.02,21.78,22.64 -swin_tiny_patch4_window7_224,1247.03,205.273,256,224,4.51,17.06,28.29 -twins_pcpvt_small,1237.18,206.911,256,224,3.83,18.08,24.11 -regnety_080,1231.05,207.941,256,224,8.0,17.97,39.18 -resnest50d_4s2x40d,1214.34,210.797,256,224,4.4,17.94,30.42 -resnet61q,1207.53,211.987,256,288,9.87,21.52,36.85 -eca_nfnet_l0,1191.71,214.805,256,288,7.12,17.29,24.14 -nfnet_l0,1190.26,215.067,256,288,7.13,17.29,35.07 -res2net101_26w_4s,1183.89,216.22,256,224,8.1,18.45,45.21 -dpn92,1178.74,217.169,256,224,6.54,18.21,37.67 -res2net50_26w_8s,1178.7,217.174,256,224,8.37,17.95,48.4 -vit_tiny_patch16_384,1172.78,218.271,256,384,4.7,25.39,5.79 -convit_small,1169.52,218.881,256,224,5.76,17.87,27.78 -vgg19,1152.13,222.185,256,224,19.63,14.86,143.67 -gluon_seresnext101_32x4d,1150.11,222.576,256,224,8.02,21.26,48.96 -legacy_seresnext101_32x4d,1149.76,222.644,256,224,8.02,21.26,48.96 -hrnet_w32,1142.24,224.109,256,224,8.97,22.02,41.23 -xcit_nano_12_p8_224,1127.98,226.94,256,224,2.16,15.71,3.05 -xcit_nano_12_p8_224_dist,1127.81,226.974,256,224,2.16,15.71,3.05 -hrnet_w30,1123.84,227.778,256,224,8.15,21.21,37.71 -tv_resnet152,1116.24,229.331,256,224,11.56,22.56,60.19 -gluon_resnet152_v1b,1115.71,229.44,256,224,11.56,22.56,60.19 -ecaresnet50t,1110.54,230.506,256,320,8.82,24.13,25.57 -regnetz_c,1099.38,232.841,256,320,3.92,25.88,13.46 -gluon_resnet152_v1c,1090.66,234.708,256,224,11.8,23.36,60.21 -gluon_resnet152_v1d,1087.27,235.441,256,224,11.8,23.36,60.21 -repvgg_b2,1087.24,235.444,256,224,20.45,12.9,89.02 -xception41,1068.11,239.655,256,299,9.28,39.86,26.97 -densenet161,1067.45,239.812,256,224,7.79,11.06,28.68 -vgg19_bn,1061.8,241.089,256,224,19.66,14.86,143.68 -inception_v4,1057.29,242.117,256,299,12.28,15.09,42.68 -convmixer_1024_20_ks9_p14,1048.55,244.135,256,224,5.55,5.51,24.38 -dla169,1043.9,245.223,256,224,11.6,20.2,53.39 -xcit_tiny_12_p16_384_dist,1041.14,245.869,256,384,3.64,18.26,6.72 -regnetx_120,1028.54,248.883,256,224,12.13,21.37,46.11 -gluon_resnet152_v1s,1019.74,251.033,256,224,12.92,24.96,60.32 -coat_lite_small,1019.01,251.211,256,224,3.96,22.09,19.84 -vit_base_patch16_224_miil,1015.29,252.134,256,224,17.58,23.9,86.54 -legacy_seresnet152,1014.16,252.414,256,224,11.33,22.08,66.82 -repvgg_b3g4,1009.72,253.523,256,224,17.89,15.1,83.83 -jx_nest_tiny,1009.0,253.705,256,224,5.83,25.48,17.06 -crossvit_18_240,995.7,257.092,256,240,9.05,26.26,43.27 -vit_base_patch16_224,987.74,259.165,256,224,17.58,23.9,86.57 -vit_base_patch16_sam_224,983.41,260.307,256,224,17.58,23.9,86.57 -tresnet_xl,983.24,260.352,256,224,15.17,15.34,78.44 -deit_base_patch16_224,981.95,260.694,256,224,17.58,23.9,86.57 -regnety_120,981.03,260.937,256,224,12.14,21.38,51.82 -deit_base_distilled_patch16_224,972.1,263.335,256,224,17.68,24.05,87.34 -crossvit_18_dagger_240,968.8,264.234,256,240,9.5,27.03,44.27 -efficientnet_el_pruned,927.76,275.921,256,300,8.0,30.7,10.59 -efficientnet_el,927.59,275.971,256,300,8.0,30.7,10.59 -tf_efficientnet_el,908.45,281.783,256,300,8.0,30.7,10.59 -beit_base_patch16_224,907.03,282.225,256,224,17.58,23.9,86.53 -dm_nfnet_f0,906.74,282.318,256,256,12.62,18.05,71.49 -beit_base_patch16_224_in22k,904.43,283.033,256,224,17.6,23.92,102.56 -twins_pcpvt_base,903.59,283.303,256,224,6.68,25.25,43.83 -dla102x2,892.39,286.858,256,224,9.34,29.91,41.28 -twins_svt_base,884.1,289.548,256,224,8.59,26.33,56.07 -wide_resnet101_2,879.83,290.95,256,224,22.8,21.23,126.89 -tf_efficientnetv2_s_in21ft1k,867.65,295.037,256,384,8.44,35.77,21.46 -tf_efficientnetv2_s,866.61,295.392,256,384,8.44,35.77,21.46 -cait_xxs36_224,864.05,296.268,256,224,3.77,30.34,17.3 -resnetrs101,850.72,300.905,256,288,13.56,28.53,63.62 -repvgg_b3,845.91,302.619,256,224,29.16,15.1,123.09 -efficientnetv2_rw_s,844.69,303.059,256,384,8.72,38.03,23.94 -dpn98,840.2,304.675,256,224,11.73,25.2,61.57 -pit_b_distilled_224,838.63,305.249,256,224,12.5,33.07,74.79 -pit_b_224,837.02,305.836,256,224,12.42,32.94,73.76 -ens_adv_inception_resnet_v2,834.35,306.814,256,299,13.18,25.06,55.84 -regnetx_160,833.02,307.301,256,224,15.99,25.52,54.28 -inception_resnet_v2,832.69,307.427,256,299,13.18,25.06,55.84 -xcit_small_24_p16_224_dist,830.32,308.297,256,224,9.1,23.64,47.67 -xcit_small_24_p16_224,828.74,308.886,256,224,9.1,23.64,47.67 -swin_small_patch4_window7_224,809.9,316.074,256,224,8.77,27.47,49.61 -gluon_resnext101_64x4d,803.65,318.536,256,224,15.52,31.21,83.46 -xcit_tiny_12_p8_224_dist,791.87,323.27,256,224,4.81,23.6,6.71 -xcit_tiny_12_p8_224,791.64,323.364,256,224,4.81,23.6,6.71 -gluon_xception65,784.11,326.474,256,299,13.96,52.48,39.92 -xception65,777.91,329.074,256,299,13.96,52.48,39.92 -resnet101d,776.37,329.723,256,320,16.48,34.77,44.57 -ig_resnext101_32x8d,775.21,330.222,256,224,16.48,31.21,88.79 -swsl_resnext101_32x8d,773.83,330.808,256,224,16.48,31.21,88.79 -resnext101_32x8d,773.08,331.13,256,224,16.48,31.21,88.79 -ssl_resnext101_32x8d,769.28,332.765,256,224,16.48,31.21,88.79 -tf_efficientnet_lite4,764.13,335.01,256,380,4.04,45.66,13.01 -hrnet_w40,760.18,336.752,256,224,12.75,25.29,57.56 -gluon_seresnext101_64x4d,756.43,338.418,256,224,15.53,31.25,88.23 -resnest101e,755.07,339.024,256,256,13.38,28.66,48.28 -hrnet_w48,716.4,357.329,256,224,17.34,28.56,77.47 -cait_s24_224,714.86,358.098,256,224,9.35,40.58,46.92 -tresnet_m_448,713.55,358.758,256,448,22.94,29.21,31.39 -coat_tiny,707.04,362.062,256,224,4.35,27.2,5.5 -regnetz_d,704.94,363.138,256,320,9.33,37.08,27.58 -hrnet_w44,702.53,364.385,256,224,14.94,26.92,67.06 -vit_large_r50_s32_224,680.11,376.394,256,224,19.58,24.41,328.99 -jx_nest_small,676.97,378.142,256,224,10.35,40.04,38.35 -twins_svt_large,673.22,380.252,256,224,15.15,35.1,99.27 -crossvit_base_240,671.16,381.416,256,240,21.22,36.33,105.03 -efficientnet_b4,667.18,383.692,256,384,4.51,50.04,19.34 -twins_pcpvt_large,657.69,389.226,256,224,9.84,35.82,60.99 -tf_efficientnet_b4,637.24,401.719,256,380,4.49,49.49,19.34 -tf_efficientnet_b4_ap,636.68,402.068,256,380,4.49,49.49,19.34 -tf_efficientnet_b4_ns,636.62,402.109,256,380,4.49,49.49,19.34 -convit_base,621.76,411.725,256,224,17.52,31.77,86.54 -dpn131,619.15,413.454,256,224,16.09,32.97,79.25 -swin_base_patch4_window7_224,617.4,414.625,256,224,15.47,36.63,87.77 -swin_base_patch4_window7_224_in22k,616.51,415.228,256,224,15.49,36.65,109.13 -xcit_medium_24_p16_224_dist,613.3,417.401,256,224,16.13,31.71,84.4 -xcit_medium_24_p16_224,612.89,417.675,256,224,16.13,31.71,84.4 -vit_small_patch16_384,594.17,430.838,256,384,15.52,50.78,22.2 -coat_mini,592.46,432.084,256,224,6.82,33.68,10.34 -xception71,590.14,433.78,256,299,18.09,69.92,42.34 -vit_small_r26_s32_384,574.75,445.396,256,384,10.43,29.85,36.47 -hrnet_w64,570.22,448.937,256,224,28.97,35.09,128.06 -dpn107,566.19,452.128,256,224,18.38,33.46,86.92 -eca_nfnet_l1,559.71,457.367,256,320,14.92,34.42,41.41 -gluon_senet154,559.51,457.529,256,224,20.77,38.69,115.09 -legacy_senet154,558.72,458.178,256,224,20.77,38.69,115.09 -xcit_tiny_24_p16_384_dist,556.09,460.342,256,384,6.87,34.29,12.12 -xcit_small_12_p16_384_dist,546.87,468.099,256,384,14.14,36.51,26.25 -resnet152d,546.29,468.597,256,320,24.08,47.67,60.21 -regnety_320,522.26,490.163,256,224,32.34,30.26,145.05 -jx_nest_base,511.39,500.584,256,224,17.96,53.39,67.72 -regnety_160,509.43,502.501,256,288,26.37,38.07,83.59 -tnt_s_patch16_224,497.77,514.282,256,224,5.24,24.37,23.76 -seresnet152d,489.63,522.829,256,320,24.09,47.72,66.84 -resnetrs152,483.98,528.928,256,320,24.34,48.14,86.62 -regnetx_320,460.34,556.1,256,224,31.81,36.3,107.81 -vit_large_patch32_384,457.67,559.348,256,384,45.31,43.86,306.63 -mixer_l16_224,429.82,595.582,256,224,44.6,41.69,208.2 -xcit_tiny_24_p8_224,417.75,612.797,256,224,9.21,45.39,12.11 -xcit_tiny_24_p8_224_dist,417.56,613.068,256,224,9.21,45.39,12.11 -xcit_small_12_p8_224,416.17,615.111,256,224,18.69,47.21,26.21 -xcit_small_12_p8_224_dist,415.93,615.473,256,224,18.69,47.21,26.21 -efficientnetv2_rw_m,404.25,633.263,256,416,21.49,79.62,53.24 -resnet200d,391.43,653.991,256,320,31.25,67.33,64.69 -resnetv2_50x1_bitm,388.67,658.636,256,448,16.62,44.46,25.55 -xcit_nano_12_p8_384_dist,387.79,660.138,256,384,6.34,46.08,3.05 -swin_large_patch4_window7_224,385.11,664.722,256,224,34.53,54.94,196.53 -swin_large_patch4_window7_224_in22k,384.77,665.318,256,224,34.56,54.96,228.57 -xcit_large_24_p16_224,374.96,682.722,256,224,35.86,47.27,189.1 -xcit_large_24_p16_224_dist,374.65,683.281,256,224,35.86,47.27,189.1 -ssl_resnext101_32x16d,366.28,698.897,256,224,36.27,51.18,194.03 -ig_resnext101_32x16d,365.74,699.945,256,224,36.27,51.18,194.03 -swsl_resnext101_32x16d,365.46,700.478,256,224,36.27,51.18,194.03 -tresnet_l_448,350.13,731.146,256,448,43.5,47.56,55.99 -resnetrs200,346.06,739.735,256,320,31.51,67.81,93.21 -tf_efficientnetv2_m,339.58,753.868,256,480,24.76,89.84,54.14 -tf_efficientnetv2_m_in21ft1k,339.57,753.879,256,480,24.76,89.84,54.14 -vit_large_patch16_224,332.37,770.202,256,224,61.6,63.52,304.33 -dm_nfnet_f1,329.67,776.526,256,320,35.97,46.77,132.63 -tf_efficientnet_b5,319.74,800.623,256,456,10.46,98.86,30.39 -tf_efficientnet_b5_ap,319.51,801.207,256,456,10.46,98.86,30.39 -tf_efficientnet_b5_ns,319.48,801.287,256,456,10.46,98.86,30.39 -crossvit_15_dagger_408,308.22,830.557,256,408,21.45,95.05,28.5 -beit_large_patch16_224,304.41,840.964,256,224,61.6,63.52,304.43 -beit_large_patch16_224_in22k,303.89,842.402,256,224,61.62,63.54,325.79 -xcit_small_24_p16_384_dist,291.33,878.717,256,384,26.72,68.58,47.67 -convmixer_768_32,284.41,900.105,256,224,19.55,25.95,21.11 -eca_nfnet_l2,277.7,921.837,256,384,30.05,68.28,56.72 -resnetv2_152x2_bit_teacher,272.08,940.888,256,224,46.95,45.11,236.34 -xcit_tiny_12_p8_384_dist,271.29,943.618,256,384,14.13,69.14,6.71 -tresnet_xl_448,265.72,963.421,256,448,60.65,61.31,78.44 -vit_base_patch16_384,260.82,981.51,256,384,55.54,101.56,86.86 -deit_base_patch16_384,260.27,983.563,256,384,55.54,101.56,86.86 -resnest200e,257.06,995.856,256,320,35.69,82.78,70.2 -deit_base_distilled_patch16_384,256.78,996.936,256,384,55.65,101.82,87.63 -resnetv2_101x1_bitm,243.19,1052.661,256,448,31.65,64.93,44.54 -cait_xxs24_384,238.44,1073.626,256,384,9.63,122.66,12.03 -ecaresnet269d,229.27,1116.568,256,352,50.25,101.25,102.09 -crossvit_18_dagger_408,229.17,558.535,128,408,32.47,124.87,44.61 -vit_large_r50_s32_384,229.1,1117.419,256,384,57.43,76.52,329.09 -nasnetalarge,226.47,1130.365,256,331,23.89,90.56,88.75 -pnasnet5large,225.65,1134.478,256,331,25.04,92.89,86.06 -beit_base_patch16_384,223.91,1143.322,256,384,55.54,101.56,86.74 -resnetrs270,222.05,1152.857,256,352,51.13,105.48,129.86 -xcit_small_24_p8_224,218.32,1172.571,256,224,35.81,90.78,47.63 -xcit_small_24_p8_224_dist,218.2,1173.193,256,224,35.81,90.78,47.63 -xcit_medium_24_p16_384_dist,212.67,1203.725,256,384,47.39,91.64,84.4 -resmlp_big_24_224,199.99,1280.033,256,224,100.23,87.31,129.14 -resmlp_big_24_224_in22ft1k,199.55,1282.862,256,224,100.23,87.31,129.14 -resmlp_big_24_distilled_224,199.5,1283.208,256,224,100.23,87.31,129.14 -tf_efficientnetv2_l,196.16,1305.054,256,480,56.4,157.99,118.52 -tf_efficientnetv2_l_in21ft1k,195.97,1306.333,256,480,56.4,157.99,118.52 -dm_nfnet_f2,187.32,1366.603,256,352,63.22,79.06,193.78 -tf_efficientnet_b6_ns,184.64,693.239,128,528,19.4,167.39,43.04 -tf_efficientnet_b6_ap,184.63,693.254,128,528,19.4,167.39,43.04 -tf_efficientnet_b6,184.56,693.543,128,528,19.4,167.39,43.04 -swin_base_patch4_window12_384,172.29,742.9,128,384,47.19,134.78,87.9 -swin_base_patch4_window12_384_in22k,172.09,743.782,128,384,47.21,134.8,109.27 -cait_xs24_384,168.76,1516.911,256,384,19.28,183.98,26.67 -vit_base_r50_s16_384,164.61,1555.149,256,384,67.43,135.03,98.95 -convmixer_1536_20,163.58,1564.936,256,224,48.68,33.03,51.63 -cait_xxs36_384,159.38,1606.206,256,384,14.35,183.7,17.37 -xcit_medium_24_p8_224,158.47,1615.434,256,224,63.53,121.23,84.32 -xcit_medium_24_p8_224_dist,158.47,1615.404,256,224,63.53,121.23,84.32 -resnetrs350,147.45,1736.143,256,384,77.59,154.74,163.96 -ig_resnext101_32x32d,144.94,1766.221,256,224,87.29,91.12,468.53 -xcit_tiny_24_p8_384_dist,140.02,1828.249,256,384,27.05,132.95,12.11 -xcit_small_12_p8_384_dist,138.32,1850.769,256,384,54.92,138.29,26.21 -cait_s24_384,130.37,1963.692,256,384,32.17,245.31,47.06 -xcit_large_24_p16_384_dist,128.67,1989.551,256,384,105.35,137.17,189.1 -tf_efficientnetv2_xl_in21ft1k,125.28,2043.358,256,512,93.85,247.32,208.12 -resnest269e,119.95,2134.143,256,416,77.69,171.98,110.93 -swin_large_patch4_window12_384,108.71,1177.454,128,384,104.08,202.16,196.74 -swin_large_patch4_window12_384_in22k,108.63,1178.305,128,384,104.11,202.18,228.77 -resnetrs420,107.0,2392.495,256,416,108.45,213.79,191.89 -tf_efficientnet_b7_ns,106.07,603.375,64,600,38.33,289.94,66.35 -tf_efficientnet_b7_ap,105.98,603.889,64,600,38.33,289.94,66.35 -tf_efficientnet_b7,105.95,604.03,64,600,38.33,289.94,66.35 -dm_nfnet_f3,102.63,2494.386,256,416,115.58,141.78,254.92 -xcit_large_24_p8_224,95.99,2666.968,256,224,141.23,181.56,188.93 -xcit_large_24_p8_224_dist,95.77,2673.153,256,224,141.23,181.56,188.93 -resnetv2_152x2_bit_teacher_384,94.95,2696.08,256,384,136.16,132.56,236.34 -resnetv2_50x3_bitm,93.71,1365.901,128,448,145.7,133.37,217.32 -vit_large_patch16_384,89.71,2853.476,256,384,191.21,270.24,304.72 -cait_s36_384,87.22,2935.166,256,384,47.99,367.4,68.37 -ig_resnext101_32x48d,85.91,1489.933,128,224,153.57,131.06,828.41 -beit_large_patch16_384,77.75,3292.734,256,384,191.21,270.24,305.0 -xcit_small_24_p8_384_dist,72.45,3533.673,256,384,105.24,265.91,47.63 -resnetv2_152x2_bitm,69.73,1835.714,128,448,184.99,180.43,236.34 -tf_efficientnet_b8,66.92,956.333,64,672,63.48,442.89,87.41 -tf_efficientnet_b8_ap,66.91,956.434,64,672,63.48,442.89,87.41 -dm_nfnet_f4,57.01,4490.519,256,512,216.26,262.26,316.07 -resnetv2_101x3_bitm,56.17,2278.772,128,448,280.33,194.78,387.93 -xcit_medium_24_p8_384_dist,53.81,4757.31,256,384,186.67,354.73,84.32 -dm_nfnet_f5,41.46,6174.452,256,544,290.97,349.71,377.21 -tf_efficientnet_l2_ns_475,38.52,1661.585,64,475,172.11,609.89,480.31 -xcit_large_24_p8_384_dist,32.44,7891.525,256,384,415.0,531.82,188.93 -beit_large_patch16_512,31.38,2039.285,64,512,362.24,656.39,305.67 -cait_m36_384,30.16,8488.214,256,384,173.11,734.81,271.22 -dm_nfnet_f6,30.03,8525.766,256,576,378.69,452.2,438.36 -resnetv2_152x4_bitm,18.21,3515.177,64,480,844.84,414.26,936.53 -tf_efficientnet_l2_ns,13.56,1770.059,24,800,479.12,1707.39,480.31 -cait_m48_448,13.08,9784.533,128,448,329.41,1708.23,356.46 diff --git a/results/model_metadata_in1k.csv b/results/model_metadata-in1k.csv similarity index 99% rename from results/model_metadata_in1k.csv rename to results/model_metadata-in1k.csv index bbb160f965..7647ea5a9b 100644 --- a/results/model_metadata_in1k.csv +++ b/results/model_metadata-in1k.csv @@ -452,10 +452,10 @@ visformer_small,in1k vit_base_patch16_224,in21k vit_base_patch16_224_miil,in21k vit_base_patch16_384,in21k -vit_base_patch16_sam_224,in1k +vit_base_patch16_224_sam,in1k vit_base_patch32_224,in21k vit_base_patch32_384,in21k -vit_base_patch32_sam_224,in1k +vit_base_patch32_224_sam,in1k vit_base_r50_s16_384,in21k vit_large_patch16_224,in21k vit_large_patch16_384,in21k diff --git a/results/results-imagenet-a-clean.csv b/results/results-imagenet-a-clean.csv index 635db4457c..9db7cd091f 100644 --- a/results/results-imagenet-a-clean.csv +++ b/results/results-imagenet-a-clean.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation beit_large_patch16_512,98.560,1.440,99.840,0.160,305.67,512,1.000,bicubic -tf_efficientnet_l2_ns,98.540,1.460,99.820,0.180,480.31,800,0.960,bicubic -beit_large_patch16_384,98.500,1.500,99.820,0.180,305.00,384,1.000,bicubic -tf_efficientnet_l2_ns_475,98.490,1.510,99.830,0.170,480.31,475,0.936,bicubic +tf_efficientnet_l2_ns,98.550,1.450,99.820,0.180,480.31,800,0.960,bicubic +beit_large_patch16_384,98.520,1.480,99.820,0.180,305.00,384,1.000,bicubic +tf_efficientnet_l2_ns_475,98.500,1.500,99.830,0.170,480.31,475,0.936,bicubic +convnext_xlarge_384_in22ft1k,98.350,1.650,99.800,0.200,350.20,384,1.000,bicubic +convnext_large_384_in22ft1k,98.220,1.780,99.730,0.270,197.77,384,1.000,bicubic vit_large_patch16_384,98.210,1.790,99.800,0.200,304.72,384,1.000,bicubic -beit_large_patch16_224,98.170,1.830,99.760,0.240,304.43,224,0.900,bicubic -swin_large_patch4_window12_384,98.020,1.980,99.690,0.310,196.74,384,1.000,bicubic -tf_efficientnet_b7_ns,97.880,2.120,99.720,0.280,66.35,600,0.949,bicubic -swin_base_patch4_window12_384,97.870,2.130,99.710,0.290,87.90,384,1.000,bicubic +beit_large_patch16_224,98.180,1.820,99.760,0.240,304.43,224,0.900,bicubic +swin_large_patch4_window12_384,98.040,1.960,99.690,0.310,196.74,384,1.000,bicubic +convnext_base_384_in22ft1k,97.950,2.050,99.650,0.350,88.59,384,1.000,bicubic +convnext_xlarge_in22ft1k,97.920,2.080,99.680,0.320,350.20,224,0.875,bicubic +tf_efficientnet_b7_ns,97.910,2.090,99.720,0.280,66.35,600,0.949,bicubic +swin_base_patch4_window12_384,97.890,2.110,99.710,0.290,87.90,384,1.000,bicubic vit_large_r50_s32_384,97.860,2.140,99.670,0.330,329.09,384,1.000,bicubic -beit_base_patch16_384,97.830,2.170,99.700,0.300,86.74,384,1.000,bicubic -vit_base_patch16_384,97.830,2.170,99.670,0.330,86.86,384,1.000,bicubic -tf_efficientnetv2_l_in21ft1k,97.680,2.320,99.670,0.330,118.52,480,1.000,bicubic -tf_efficientnetv2_xl_in21ft1k,97.670,2.330,99.490,0.510,208.12,512,1.000,bicubic -swin_large_patch4_window7_224,97.660,2.340,99.580,0.420,196.53,224,0.900,bicubic +vit_base_patch16_384,97.840,2.160,99.670,0.330,86.86,384,1.000,bicubic +convnext_large_in22ft1k,97.830,2.170,99.690,0.310,197.77,224,0.875,bicubic +beit_base_patch16_384,97.810,2.190,99.700,0.300,86.74,384,1.000,bicubic +tf_efficientnetv2_l_in21ft1k,97.700,2.300,99.670,0.330,118.52,480,1.000,bicubic +swin_large_patch4_window7_224,97.650,2.350,99.580,0.420,196.53,224,0.900,bicubic +tf_efficientnetv2_xl_in21ft1k,97.650,2.350,99.490,0.510,208.12,512,1.000,bicubic vit_large_patch16_224,97.640,2.360,99.590,0.410,304.33,224,0.900,bicubic -ig_resnext101_32x48d,97.640,2.360,99.710,0.290,828.41,224,0.875,bilinear tf_efficientnet_b6_ns,97.630,2.370,99.580,0.420,43.04,528,0.942,bicubic -dm_nfnet_f6,97.610,2.390,99.550,0.450,438.36,576,0.956,bicubic -dm_nfnet_f4,97.570,2.430,99.510,0.490,316.07,512,0.951,bicubic +ig_resnext101_32x48d,97.620,2.380,99.710,0.290,828.41,224,0.875,bilinear +dm_nfnet_f6,97.600,2.400,99.550,0.450,438.36,576,0.956,bicubic +dm_nfnet_f4,97.580,2.420,99.510,0.490,316.07,512,0.951,bicubic +vit_base_patch8_224,97.580,2.420,99.670,0.330,86.58,224,0.900,bicubic dm_nfnet_f5,97.540,2.460,99.570,0.430,377.21,544,0.954,bicubic -xcit_large_24_p8_384_dist,97.530,2.470,99.540,0.460,188.93,384,1.000,bicubic -xcit_large_24_p16_384_dist,97.530,2.470,99.480,0.520,189.10,384,1.000,bicubic -resnetv2_152x4_bitm,97.490,2.510,99.620,0.380,936.53,480,1.000,bilinear -tf_efficientnet_b5_ns,97.490,2.510,99.630,0.370,30.39,456,0.934,bicubic +xcit_large_24_p8_384_dist,97.520,2.480,99.540,0.460,188.93,384,1.000,bicubic +xcit_large_24_p16_384_dist,97.520,2.480,99.480,0.520,189.10,384,1.000,bicubic +tf_efficientnet_b5_ns,97.500,2.500,99.630,0.370,30.39,456,0.934,bicubic +resnetv2_152x4_bitm,97.490,2.510,99.610,0.390,936.53,480,1.000,bilinear cait_m48_448,97.480,2.520,99.550,0.450,356.46,448,1.000,bicubic tf_efficientnetv2_m_in21ft1k,97.480,2.520,99.530,0.470,54.14,480,1.000,bicubic +convnext_base_in22ft1k,97.470,2.530,99.610,0.390,88.59,224,0.875,bicubic cait_m36_384,97.400,2.600,99.510,0.490,271.22,384,1.000,bicubic -ig_resnext101_32x32d,97.360,2.640,99.680,0.320,468.53,224,0.875,bilinear +ig_resnext101_32x32d,97.370,2.630,99.680,0.320,468.53,224,0.875,bilinear dm_nfnet_f3,97.350,2.650,99.560,0.440,254.92,416,0.940,bicubic -cait_s36_384,97.340,2.660,99.530,0.470,68.37,384,1.000,bicubic -xcit_medium_24_p8_384_dist,97.300,2.700,99.510,0.490,84.32,384,1.000,bicubic +cait_s36_384,97.330,2.670,99.530,0.470,68.37,384,1.000,bicubic +xcit_medium_24_p8_384_dist,97.290,2.710,99.510,0.490,84.32,384,1.000,bicubic +tf_efficientnetv2_l,97.280,2.720,99.550,0.450,118.52,480,1.000,bicubic xcit_medium_24_p16_384_dist,97.280,2.720,99.460,0.540,84.40,384,1.000,bicubic -tf_efficientnetv2_l,97.270,2.730,99.550,0.450,118.52,480,1.000,bicubic -swin_base_patch4_window7_224,97.260,2.740,99.530,0.470,87.77,224,0.900,bicubic -xcit_small_24_p8_384_dist,97.250,2.750,99.610,0.390,47.63,384,1.000,bicubic +swin_base_patch4_window7_224,97.250,2.750,99.530,0.470,87.77,224,0.900,bicubic +xcit_small_24_p8_384_dist,97.240,2.760,99.610,0.390,47.63,384,1.000,bicubic xcit_small_12_p8_384_dist,97.230,2.770,99.480,0.520,26.21,384,1.000,bicubic -tf_efficientnet_b8,97.210,2.790,99.500,0.500,87.41,672,0.954,bicubic swsl_resnext101_32x8d,97.200,2.800,99.570,0.430,88.79,224,0.875,bilinear tf_efficientnet_b7_ap,97.200,2.800,99.540,0.460,66.35,600,0.949,bicubic +tf_efficientnet_b8,97.200,2.800,99.500,0.500,87.41,672,0.954,bicubic +regnetz_e8,97.200,2.800,99.500,0.500,57.70,320,1.000,bicubic vit_base_r50_s16_384,97.180,2.820,99.560,0.440,98.95,384,1.000,bicubic tf_efficientnetv2_m,97.140,2.860,99.410,0.590,54.14,480,1.000,bicubic -xcit_small_24_p16_384_dist,97.130,2.870,99.450,0.550,47.67,384,1.000,bicubic +xcit_small_24_p16_384_dist,97.120,2.880,99.460,0.540,47.67,384,1.000,bicubic tf_efficientnet_b8_ap,97.110,2.890,99.660,0.340,87.41,672,0.954,bicubic eca_nfnet_l2,97.090,2.910,99.510,0.490,56.72,384,1.000,bicubic -ecaresnet269d,97.090,2.910,99.470,0.530,102.09,352,1.000,bicubic -cait_s24_384,97.080,2.920,99.430,0.570,47.06,384,1.000,bicubic +beit_base_patch16_224,97.090,2.910,99.610,0.390,86.53,224,0.900,bicubic +ecaresnet269d,97.080,2.920,99.470,0.530,102.09,352,1.000,bicubic tf_efficientnet_b6_ap,97.080,2.920,99.620,0.380,43.04,528,0.942,bicubic -beit_base_patch16_224,97.080,2.920,99.610,0.390,86.53,224,0.900,bicubic -xcit_large_24_p8_224_dist,97.060,2.940,99.420,0.580,188.93,224,1.000,bicubic -resnetv2_152x2_bitm,97.030,2.970,99.590,0.410,236.34,448,1.000,bilinear -dm_nfnet_f2,97.030,2.970,99.440,0.560,193.78,352,0.920,bicubic -resnetv2_101x3_bitm,97.020,2.980,99.490,0.510,387.93,448,1.000,bilinear +cait_s24_384,97.070,2.930,99.430,0.570,47.06,384,1.000,bicubic +xcit_large_24_p8_224_dist,97.070,2.930,99.420,0.580,188.93,224,1.000,bicubic +dm_nfnet_f2,97.020,2.980,99.440,0.560,193.78,352,0.920,bicubic +resnetv2_152x2_bitm,97.010,2.990,99.590,0.410,236.34,448,1.000,bilinear tf_efficientnet_b7,97.010,2.990,99.520,0.480,66.35,600,0.949,bicubic -efficientnetv2_rw_m,96.990,3.010,99.530,0.470,53.24,416,1.000,bicubic -deit_base_distilled_patch16_384,96.970,3.030,99.490,0.510,87.63,384,1.000,bicubic -xcit_small_12_p16_384_dist,96.940,3.060,99.400,0.600,26.25,384,1.000,bicubic -tf_efficientnet_b4_ns,96.930,3.070,99.580,0.420,19.34,380,0.922,bicubic -xcit_medium_24_p8_224_dist,96.930,3.070,99.390,0.610,84.32,224,1.000,bicubic -resnetrs420,96.910,3.090,99.460,0.540,191.89,416,1.000,bicubic -dm_nfnet_f1,96.890,3.110,99.410,0.590,132.63,320,0.910,bicubic -vit_base_patch16_224,96.870,3.130,99.530,0.470,86.57,224,0.900,bicubic +resnetv2_101x3_bitm,96.990,3.010,99.490,0.510,387.93,448,1.000,bilinear +efficientnetv2_rw_m,96.980,3.020,99.530,0.470,53.24,416,1.000,bicubic +deit_base_distilled_patch16_384,96.960,3.040,99.480,0.520,87.63,384,1.000,bicubic +tf_efficientnet_b4_ns,96.950,3.050,99.580,0.420,19.34,380,0.922,bicubic +xcit_small_12_p16_384_dist,96.930,3.070,99.400,0.600,26.25,384,1.000,bicubic +resnetrs420,96.920,3.080,99.460,0.540,191.89,416,1.000,bicubic +xcit_medium_24_p8_224_dist,96.920,3.080,99.390,0.610,84.32,224,1.000,bicubic +dm_nfnet_f1,96.910,3.090,99.410,0.590,132.63,320,0.910,bicubic +vit_base_patch16_224,96.880,3.120,99.530,0.470,86.57,224,0.900,bicubic xcit_small_24_p8_224_dist,96.870,3.130,99.480,0.520,47.63,224,1.000,bicubic -ig_resnext101_32x16d,96.820,3.180,99.600,0.400,194.03,224,0.875,bilinear -resnetv2_152x2_bit_teacher_384,96.810,3.190,99.450,0.550,236.34,384,1.000,bicubic +resnetv2_152x2_bit_teacher_384,96.830,3.170,99.450,0.550,236.34,384,1.000,bicubic +ig_resnext101_32x16d,96.810,3.190,99.600,0.400,194.03,224,0.875,bilinear xcit_large_24_p16_224_dist,96.800,3.200,99.350,0.650,189.10,224,1.000,bicubic vit_large_r50_s32_224,96.790,3.210,99.350,0.650,328.99,224,0.900,bicubic +convnext_large,96.770,3.230,99.310,0.690,197.77,224,0.875,bicubic seresnet152d,96.770,3.230,99.450,0.550,66.84,320,1.000,bicubic -resnetrs350,96.760,3.240,99.360,0.640,163.96,384,1.000,bicubic -resnet200d,96.740,3.260,99.340,0.660,64.69,320,1.000,bicubic -tf_efficientnetv2_s_in21ft1k,96.740,3.260,99.420,0.580,21.46,384,1.000,bicubic -resnetv2_50x3_bitm,96.730,3.270,99.540,0.460,217.32,448,1.000,bilinear +resnetrs350,96.760,3.240,99.370,0.630,163.96,384,1.000,bicubic +resnet200d,96.720,3.280,99.330,0.670,64.69,320,1.000,bicubic +tf_efficientnetv2_s_in21ft1k,96.720,3.280,99.420,0.580,21.46,384,1.000,bicubic +resnetv2_50x3_bitm,96.710,3.290,99.550,0.450,217.32,448,1.000,bilinear eca_nfnet_l1,96.700,3.300,99.290,0.710,41.41,320,1.000,bicubic xcit_small_12_p8_224_dist,96.700,3.300,99.390,0.610,26.21,224,1.000,bicubic resnetrs270,96.690,3.310,99.350,0.650,129.86,352,1.000,bicubic vit_small_patch16_384,96.690,3.310,99.480,0.520,22.20,384,1.000,bicubic -tf_efficientnet_b5_ap,96.680,3.320,99.460,0.540,30.39,456,0.934,bicubic vit_small_r26_s32_384,96.680,3.320,99.570,0.430,36.47,384,1.000,bicubic -pit_b_distilled_224,96.670,3.330,99.350,0.650,74.79,224,0.900,bicubic tf_efficientnet_b6,96.670,3.330,99.370,0.630,43.04,528,0.942,bicubic -resnest200e,96.620,3.380,99.350,0.650,70.20,320,0.909,bicubic +tf_efficientnet_b5_ap,96.670,3.330,99.460,0.540,30.39,456,0.934,bicubic +pit_b_distilled_224,96.670,3.330,99.350,0.650,74.79,224,0.900,bicubic +regnetz_d8,96.620,3.380,99.450,0.550,23.37,320,1.000,bicubic resmlp_big_24_224_in22ft1k,96.620,3.380,99.510,0.490,129.14,224,0.875,bicubic -xcit_medium_24_p16_224_dist,96.600,3.400,99.270,0.730,84.40,224,1.000,bicubic +resnest200e,96.610,3.390,99.350,0.650,70.20,320,0.909,bicubic +regnetz_d32,96.600,3.400,99.380,0.620,27.58,320,0.950,bicubic swsl_resnext101_32x16d,96.600,3.400,99.530,0.470,194.03,224,0.875,bilinear -regnetz_d,96.590,3.410,99.380,0.620,27.58,320,0.950,bicubic -resnetrs152,96.570,3.430,99.240,0.760,86.62,320,1.000,bicubic -cait_xs24_384,96.560,3.440,99.420,0.580,26.67,384,1.000,bicubic -xcit_tiny_24_p8_384_dist,96.550,3.450,99.320,0.680,12.11,384,1.000,bicubic +xcit_medium_24_p16_224_dist,96.590,3.410,99.270,0.730,84.40,224,1.000,bicubic +resnetrs152,96.580,3.420,99.240,0.760,86.62,320,1.000,bicubic +cait_xs24_384,96.550,3.450,99.420,0.580,26.67,384,1.000,bicubic efficientnetv2_rw_s,96.540,3.460,99.360,0.640,23.94,384,1.000,bicubic +xcit_tiny_24_p8_384_dist,96.540,3.460,99.320,0.680,12.11,384,1.000,bicubic crossvit_18_dagger_408,96.530,3.470,99.260,0.740,44.61,408,1.000,bicubic +resnetrs200,96.530,3.470,99.350,0.650,93.21,320,1.000,bicubic resnest269e,96.520,3.480,99.350,0.650,110.93,416,0.928,bicubic -resnetrs200,96.520,3.480,99.350,0.650,93.21,320,1.000,bicubic -vit_base_patch32_384,96.500,3.500,99.410,0.590,88.30,384,1.000,bicubic -resmlp_big_24_distilled_224,96.470,3.530,99.310,0.690,129.14,224,0.875,bicubic -vit_base_patch16_224_miil,96.440,3.560,99.310,0.690,86.54,224,0.875,bilinear -swsl_resnext101_32x4d,96.420,3.580,99.470,0.530,44.18,224,0.875,bilinear -xcit_small_24_p8_224,96.400,3.600,99.140,0.860,47.63,224,1.000,bicubic -xcit_large_24_p8_224,96.400,3.600,98.980,1.020,188.93,224,1.000,bicubic -cait_s24_224,96.390,3.610,99.150,0.850,46.92,224,1.000,bicubic +vit_base_patch32_384,96.490,3.510,99.410,0.590,88.30,384,1.000,bicubic +resmlp_big_24_distilled_224,96.450,3.550,99.310,0.690,129.14,224,0.875,bicubic +vit_base_patch16_224_miil,96.440,3.560,99.300,0.700,86.54,224,0.875,bilinear +convnext_base,96.440,3.560,99.230,0.770,88.59,224,0.875,bicubic +swsl_resnext101_32x4d,96.440,3.560,99.470,0.530,44.18,224,0.875,bilinear +xcit_large_24_p8_224,96.410,3.590,98.980,1.020,188.93,224,1.000,bicubic +xcit_small_24_p8_224,96.400,3.600,99.150,0.850,47.63,224,1.000,bicubic crossvit_15_dagger_408,96.390,3.610,99.160,0.840,28.50,408,1.000,bicubic -tf_efficientnet_b3_ns,96.370,3.630,99.350,0.650,12.23,300,0.904,bicubic -resnet152d,96.350,3.650,99.390,0.610,60.21,320,1.000,bicubic -regnety_160,96.340,3.660,99.330,0.670,83.59,288,1.000,bicubic -tf_efficientnet_b5,96.340,3.660,99.310,0.690,30.39,456,0.934,bicubic +tf_efficientnet_b3_ns,96.390,3.610,99.350,0.650,12.23,300,0.904,bicubic +cait_s24_224,96.380,3.620,99.150,0.850,46.92,224,1.000,bicubic +resnet152d,96.360,3.640,99.390,0.610,60.21,320,1.000,bicubic +regnety_160,96.350,3.650,99.330,0.670,83.59,288,1.000,bicubic +tf_efficientnet_b5,96.350,3.650,99.310,0.690,30.39,456,0.934,bicubic tf_efficientnetv2_s,96.340,3.660,99.200,0.800,21.46,384,1.000,bicubic ig_resnext101_32x8d,96.310,3.690,99.430,0.570,88.79,224,0.875,bilinear resnet101d,96.300,3.700,99.230,0.770,44.57,320,1.000,bicubic -twins_svt_large,96.250,3.750,99.170,0.830,99.27,224,0.900,bicubic +twins_svt_large,96.270,3.730,99.170,0.830,99.27,224,0.900,bicubic jx_nest_base,96.240,3.760,99.210,0.790,67.72,224,0.875,bicubic xcit_small_24_p16_224_dist,96.210,3.790,99.210,0.790,47.67,224,1.000,bicubic tf_efficientnet_b4_ap,96.170,3.830,99.280,0.720,19.34,380,0.922,bicubic -efficientnet_b4,96.160,3.840,99.200,0.800,19.34,384,1.000,bicubic +convnext_small,96.170,3.830,99.110,0.890,50.22,224,0.875,bicubic twins_svt_base,96.160,3.840,99.060,0.940,56.07,224,0.900,bicubic -twins_pcpvt_large,96.150,3.850,99.190,0.810,60.99,224,0.900,bicubic deit_base_patch16_384,96.150,3.850,99.140,0.860,86.86,384,1.000,bicubic -dm_nfnet_f0,96.140,3.860,99.250,0.750,71.49,256,0.900,bicubic -nfnet_l0,96.130,3.870,99.240,0.760,35.07,288,1.000,bicubic -resnetv2_50x1_bit_distilled,96.110,3.890,99.280,0.720,25.55,224,0.875,bicubic +dm_nfnet_f0,96.150,3.850,99.250,0.750,71.49,256,0.900,bicubic +efficientnet_b4,96.150,3.850,99.190,0.810,19.34,384,1.000,bicubic +twins_pcpvt_large,96.150,3.850,99.180,0.820,60.99,224,0.900,bicubic +nfnet_l0,96.120,3.880,99.240,0.760,35.07,288,1.000,bicubic +resnetv2_50x1_bit_distilled,96.120,3.880,99.280,0.720,25.55,224,0.875,bicubic xcit_medium_24_p8_224,96.110,3.890,98.890,1.110,84.32,224,1.000,bicubic xcit_small_12_p8_224,96.110,3.890,99.160,0.840,26.21,224,1.000,bicubic -deit_base_distilled_patch16_224,96.100,3.900,99.190,0.810,87.34,224,0.900,bicubic resnetv2_101x1_bitm,96.100,3.900,99.280,0.720,44.54,448,1.000,bilinear -resnetv2_152x2_bit_teacher,96.090,3.910,99.270,0.730,236.34,224,0.875,bicubic -xcit_tiny_12_p8_384_dist,96.060,3.940,99.140,0.860,6.71,384,1.000,bicubic -xcit_small_12_p16_224_dist,96.030,3.970,99.130,0.870,26.25,224,1.000,bicubic -regnety_032,95.980,4.020,99.190,0.810,19.44,288,1.000,bicubic -jx_nest_small,95.970,4.030,99.040,0.960,38.35,224,0.875,bicubic -tresnet_xl_448,95.970,4.030,99.120,0.880,78.44,448,0.875,bilinear -eca_nfnet_l0,95.960,4.040,99.210,0.790,24.14,288,1.000,bicubic -xcit_tiny_24_p16_384_dist,95.920,4.080,99.220,0.780,12.12,384,1.000,bicubic -tf_efficientnet_b4,95.890,4.110,99.170,0.830,19.34,380,0.922,bicubic -resnet51q,95.880,4.120,99.120,0.880,35.70,288,1.000,bilinear -swsl_resnext50_32x4d,95.880,4.120,99.250,0.750,25.03,224,0.875,bilinear -swin_small_patch4_window7_224,95.880,4.120,99.020,0.980,49.61,224,0.900,bicubic -tresnet_l_448,95.870,4.130,99.120,0.880,55.99,448,0.875,bilinear -cait_xxs36_384,95.860,4.140,99.090,0.910,17.37,384,1.000,bicubic +resnetv2_152x2_bit_teacher,96.100,3.900,99.270,0.730,236.34,224,0.875,bicubic +deit_base_distilled_patch16_224,96.090,3.910,99.190,0.810,87.34,224,0.900,bicubic +xcit_tiny_12_p8_384_dist,96.080,3.920,99.140,0.860,6.71,384,1.000,bicubic +xcit_small_12_p16_224_dist,96.030,3.970,99.140,0.860,26.25,224,1.000,bicubic +tresnet_xl_448,95.970,4.030,99.130,0.870,78.44,448,0.875,bilinear +regnety_032,95.970,4.030,99.190,0.810,19.44,288,1.000,bicubic +jx_nest_small,95.970,4.030,99.030,0.970,38.35,224,0.875,bicubic +eca_nfnet_l0,95.950,4.050,99.210,0.790,24.14,288,1.000,bicubic +xcit_tiny_24_p16_384_dist,95.930,4.070,99.220,0.780,12.12,384,1.000,bicubic +swin_small_patch4_window7_224,95.910,4.090,99.020,0.980,49.61,224,0.900,bicubic +resnet152,95.900,4.100,99.080,0.920,60.19,224,0.950,bicubic +tf_efficientnet_b4,95.900,4.100,99.170,0.830,19.34,380,0.922,bicubic +resnet51q,95.870,4.130,99.120,0.880,35.70,288,1.000,bilinear +tresnet_l_448,95.860,4.140,99.120,0.880,55.99,448,0.875,bilinear +swsl_resnext50_32x4d,95.860,4.140,99.250,0.750,25.03,224,0.875,bilinear resnest101e,95.860,4.140,99.210,0.790,48.28,256,0.875,bilinear +cait_xxs36_384,95.850,4.150,99.090,0.910,17.37,384,1.000,bicubic vit_large_patch32_384,95.830,4.170,99.150,0.850,306.63,384,1.000,bicubic -xcit_tiny_24_p8_224_dist,95.820,4.180,99.210,0.790,12.11,224,1.000,bicubic -regnetz_c,95.800,4.200,99.100,0.900,13.46,320,0.940,bicubic -ssl_resnext101_32x16d,95.800,4.200,99.180,0.820,194.03,224,0.875,bilinear +xcit_tiny_24_p8_224_dist,95.810,4.190,99.210,0.790,12.11,224,1.000,bicubic +regnetz_c16,95.800,4.200,99.100,0.900,13.46,320,0.940,bicubic +ssl_resnext101_32x16d,95.790,4.210,99.180,0.820,194.03,224,0.875,bilinear twins_pcpvt_base,95.790,4.210,99.130,0.870,43.83,224,0.900,bicubic -resnet61q,95.790,4.210,98.990,1.010,36.85,288,1.000,bicubic -tf_efficientnet_b2_ns,95.750,4.250,99.120,0.880,9.11,260,0.890,bicubic +resnet61q,95.780,4.220,98.990,1.010,36.85,288,1.000,bicubic +tf_efficientnet_b2_ns,95.770,4.230,99.120,0.880,9.11,260,0.890,bicubic gc_efficientnetv2_rw_t,95.740,4.260,99.020,0.980,13.68,288,1.000,bicubic -tresnet_m,95.730,4.270,99.030,0.970,31.39,224,0.875,bilinear -pnasnet5large,95.720,4.280,98.920,1.080,86.06,331,0.911,bicubic -efficientnet_b3,95.720,4.280,99.040,0.960,12.23,320,1.000,bicubic +tresnet_m,95.720,4.280,99.030,0.970,31.39,224,0.875,bilinear +efficientnet_b3,95.710,4.290,99.040,0.960,12.23,320,1.000,bicubic +pnasnet5large,95.710,4.290,98.920,1.080,86.06,331,0.911,bicubic +crossvit_15_dagger_240,95.690,4.310,98.830,1.170,28.21,240,0.875,bicubic nasnetalarge,95.680,4.320,98.930,1.070,88.75,331,0.911,bicubic xcit_tiny_24_p8_224,95.670,4.330,99.050,0.950,12.11,224,1.000,bicubic -crossvit_15_dagger_240,95.670,4.330,98.820,1.180,28.21,240,0.875,bicubic vit_small_r26_s32_224,95.640,4.360,99.190,0.810,36.43,224,0.900,bicubic -pit_b_224,95.630,4.370,98.670,1.330,73.76,224,0.900,bicubic +pit_b_224,95.640,4.360,98.670,1.330,73.76,224,0.900,bicubic resnetv2_101,95.630,4.370,98.990,1.010,44.54,224,0.950,bicubic efficientnetv2_rw_t,95.610,4.390,99.070,0.930,13.65,288,1.000,bicubic -crossvit_18_dagger_240,95.560,4.440,99.060,0.940,44.27,240,0.875,bicubic -convit_base,95.550,4.450,98.890,1.110,86.54,224,0.875,bicubic -ecaresnet101d,95.540,4.460,99.130,0.870,44.57,224,0.875,bicubic -coat_lite_small,95.530,4.470,98.860,1.140,19.84,224,0.900,bicubic +crossvit_18_dagger_240,95.570,4.430,99.060,0.940,44.27,240,0.875,bicubic +convit_base,95.550,4.450,98.870,1.130,86.54,224,0.875,bicubic +convnext_tiny,95.550,4.450,99.020,0.980,28.59,224,0.875,bicubic +coat_lite_small,95.540,4.460,98.860,1.140,19.84,224,0.900,bicubic +xcit_medium_24_p16_224,95.530,4.470,98.740,1.260,84.40,224,1.000,bicubic +xcit_small_24_p16_224,95.530,4.470,98.760,1.240,47.67,224,1.000,bicubic +ecaresnet101d,95.530,4.470,99.130,0.870,44.57,224,0.875,bicubic levit_384,95.530,4.470,99.050,0.950,39.13,224,0.900,bicubic -xcit_small_24_p16_224,95.530,4.470,98.770,1.230,47.67,224,1.000,bicubic -xcit_medium_24_p16_224,95.520,4.480,98.770,1.230,84.40,224,1.000,bicubic crossvit_base_240,95.520,4.480,98.820,1.180,105.03,240,0.875,bicubic -visformer_small,95.500,4.500,98.900,1.100,40.22,224,0.900,bicubic -ecaresnet50t,95.500,4.500,99.120,0.880,25.57,320,0.950,bicubic -ssl_resnext101_32x8d,95.470,4.530,99.120,0.880,88.79,224,0.875,bilinear -crossvit_18_240,95.450,4.550,98.790,1.210,43.27,240,0.875,bicubic +ecaresnet50t,95.510,4.490,99.120,0.880,25.57,320,0.950,bicubic +fbnetv3_g,95.510,4.490,98.990,1.010,16.62,288,0.950,bilinear +ssl_resnext101_32x8d,95.490,4.510,99.120,0.880,88.79,224,0.875,bilinear +visformer_small,95.480,4.520,98.900,1.100,40.22,224,0.900,bicubic +crossvit_18_240,95.440,4.560,98.790,1.210,43.27,240,0.875,bicubic deit_base_patch16_224,95.440,4.560,98.840,1.160,86.57,224,0.900,bicubic -tresnet_xl,95.440,4.560,99.060,0.940,78.44,224,0.875,bilinear -ssl_resnext101_32x4d,95.430,4.570,99.130,0.870,44.18,224,0.875,bilinear -resnetrs101,95.420,4.580,99.030,0.970,63.62,288,0.940,bicubic -xcit_large_24_p16_224,95.410,4.590,98.630,1.370,189.10,224,1.000,bicubic +ssl_resnext101_32x4d,95.440,4.560,99.130,0.870,44.18,224,0.875,bilinear +tresnet_xl,95.440,4.560,99.050,0.950,78.44,224,0.875,bilinear +resnetrs101,95.430,4.570,99.030,0.970,63.62,288,0.940,bicubic +halo2botnet50ts_256,95.420,4.580,99.010,0.990,22.64,256,0.950,bicubic +xcit_large_24_p16_224,95.420,4.580,98.620,1.380,189.10,224,1.000,bicubic +xcit_small_12_p16_224,95.420,4.580,98.840,1.160,26.25,224,1.000,bicubic swsl_resnet50,95.400,4.600,99.290,0.710,25.56,224,0.875,bilinear -xcit_small_12_p16_224,95.400,4.600,98.830,1.170,26.25,224,1.000,bicubic vit_small_patch16_224,95.370,4.630,99.150,0.850,22.05,224,0.900,bicubic +resnet101,95.360,4.640,98.860,1.140,44.55,224,0.950,bicubic tf_efficientnet_b3_ap,95.320,4.680,98.900,1.100,12.23,300,0.904,bicubic -mixer_b16_224_miil,95.310,4.690,98.890,1.110,59.88,224,0.875,bilinear +mixer_b16_224_miil,95.300,4.700,98.880,1.120,59.88,224,0.875,bilinear tresnet_l,95.290,4.710,99.010,0.990,55.99,224,0.875,bilinear -cait_xxs24_384,95.270,4.730,98.960,1.040,12.03,384,1.000,bicubic +cait_xxs24_384,95.280,4.720,98.960,1.040,12.03,384,1.000,bicubic jx_nest_tiny,95.250,4.750,98.980,1.020,17.06,224,0.875,bicubic pit_s_distilled_224,95.240,4.760,99.050,0.950,24.04,224,0.900,bicubic -twins_pcpvt_small,95.230,4.770,98.880,1.120,24.11,224,0.900,bicubic -twins_svt_small,95.210,4.790,98.890,1.110,24.06,224,0.900,bicubic -convit_small,95.180,4.820,98.920,1.080,27.78,224,0.875,bicubic +twins_pcpvt_small,95.210,4.790,98.880,1.120,24.11,224,0.900,bicubic +convit_small,95.200,4.800,98.900,1.100,27.78,224,0.875,bicubic +twins_svt_small,95.200,4.800,98.880,1.120,24.06,224,0.900,bicubic tf_efficientnet_b1_ns,95.170,4.830,99.120,0.880,7.79,240,0.882,bicubic -tf_efficientnetv2_b3,95.170,4.830,98.820,1.180,14.36,300,0.904,bicubic +halonet50ts,95.160,4.840,98.770,1.230,22.73,256,0.940,bicubic +tf_efficientnetv2_b3,95.160,4.840,98.820,1.180,14.36,300,0.904,bicubic +lamhalobotnet50ts_256,95.150,4.850,98.880,1.120,22.57,256,0.950,bicubic +crossvit_15_240,95.140,4.860,98.930,1.070,27.53,240,0.875,bicubic +xcit_tiny_12_p16_384_dist,95.130,4.870,99.020,0.980,6.72,384,1.000,bicubic swin_tiny_patch4_window7_224,95.130,4.870,98.850,1.150,28.29,224,0.900,bicubic -crossvit_15_240,95.120,4.880,98.930,1.070,27.53,240,0.875,bicubic efficientnet_el,95.120,4.880,98.980,1.020,10.59,300,0.904,bicubic -gernet_l,95.110,4.890,98.900,1.100,31.08,256,0.875,bilinear -xcit_tiny_12_p16_384_dist,95.110,4.890,99.020,0.980,6.72,384,1.000,bicubic -convmixer_1536_20,95.080,4.920,99.030,0.970,51.63,224,0.960,bicubic -xcit_tiny_12_p8_224_dist,95.080,4.920,98.910,1.090,6.71,224,1.000,bicubic -ecaresnet101d_pruned,95.070,4.930,98.980,1.020,24.88,224,0.875,bicubic -vit_small_patch32_384,95.060,4.940,98.990,1.010,22.92,384,1.000,bicubic -legacy_senet154,95.060,4.940,98.830,1.170,115.09,224,0.875,bilinear -regnetz_b,95.060,4.940,99.050,0.950,9.72,288,0.940,bicubic -gluon_resnet152_v1s,95.050,4.950,98.930,1.070,60.32,224,0.875,bicubic -halonet50ts,95.050,4.950,98.590,1.410,22.73,256,0.940,bicubic -wide_resnet50_2,95.050,4.950,98.970,1.030,68.88,224,0.875,bicubic +gernet_l,95.100,4.900,98.900,1.100,31.08,256,0.875,bilinear +xcit_tiny_12_p8_224_dist,95.090,4.910,98.910,1.090,6.71,224,1.000,bicubic +ecaresnet101d_pruned,95.080,4.920,98.980,1.020,24.88,224,0.875,bicubic +legacy_senet154,95.070,4.930,98.830,1.170,115.09,224,0.875,bilinear +regnetz_b16,95.070,4.930,99.050,0.950,9.72,288,0.940,bicubic +wide_resnet50_2,95.070,4.930,98.970,1.030,68.88,224,0.875,bicubic +convmixer_1536_20,95.060,4.940,99.030,0.970,51.63,224,0.960,bicubic +vit_small_patch32_384,95.050,4.950,98.990,1.010,22.92,384,1.000,bicubic +gluon_resnet152_v1s,95.040,4.960,98.930,1.070,60.32,224,0.875,bicubic tnt_s_patch16_224,95.040,4.960,98.840,1.160,23.76,224,0.900,bicubic -seresnext50_32x4d,95.030,4.970,98.890,1.110,27.56,224,0.875,bicubic -levit_256,95.030,4.970,98.890,1.110,18.89,224,0.900,bicubic +seresnext50_32x4d,95.030,4.970,98.880,1.120,27.56,224,0.875,bicubic +levit_256,95.020,4.980,98.890,1.110,18.89,224,0.900,bicubic tf_efficientnet_b3,95.020,4.980,98.910,1.090,12.23,300,0.904,bicubic -resnetv2_50x1_bitm,95.020,4.980,99.050,0.950,25.55,448,1.000,bilinear -vit_base_patch32_224,95.010,4.990,99.020,0.980,88.22,224,0.900,bicubic -coat_mini,94.990,5.010,98.780,1.220,10.34,224,0.900,bicubic +resnetv2_50x1_bitm,95.010,4.990,99.060,0.940,25.55,448,1.000,bilinear +vit_base_patch32_224,95.000,5.000,99.030,0.970,88.22,224,0.900,bicubic tresnet_m_448,94.990,5.010,98.980,1.020,31.39,448,0.875,bilinear -resnest50d_4s2x40d,94.950,5.050,99.070,0.930,30.42,224,0.875,bicubic -rexnet_200,94.940,5.060,99.000,1.000,16.37,224,0.875,bicubic -gluon_seresnext101_64x4d,94.940,5.060,98.820,1.180,88.23,224,0.875,bicubic -gluon_senet154,94.930,5.070,98.770,1.230,115.09,224,0.875,bicubic +coat_mini,94.970,5.030,98.780,1.220,10.34,224,0.900,bicubic +resnest50d_4s2x40d,94.960,5.040,99.070,0.930,30.42,224,0.875,bicubic +rexnet_200,94.950,5.050,99.010,0.990,16.37,224,0.875,bicubic +gluon_senet154,94.920,5.080,98.760,1.240,115.09,224,0.875,bicubic gluon_seresnext101_32x4d,94.920,5.080,98.810,1.190,48.96,224,0.875,bicubic -seresnet33ts,94.870,5.130,98.790,1.210,19.78,256,0.900,bicubic -resmlp_36_distilled_224,94.870,5.130,98.860,1.140,44.69,224,0.875,bicubic +gluon_seresnext101_64x4d,94.920,5.080,98.830,1.170,88.23,224,0.875,bicubic +tf_efficientnet_lite4,94.890,5.110,99.020,0.980,13.01,380,0.920,bilinear +resmlp_36_distilled_224,94.880,5.120,98.840,1.160,44.69,224,0.875,bicubic +ssl_resnext50_32x4d,94.870,5.130,98.890,1.110,25.03,224,0.875,bilinear gcresnet50t,94.860,5.140,98.800,1.200,25.90,256,0.900,bicubic -ssl_resnext50_32x4d,94.860,5.140,98.870,1.130,25.03,224,0.875,bilinear -tf_efficientnet_lite4,94.860,5.140,99.020,0.980,13.01,380,0.920,bilinear +resnest50d,94.850,5.150,98.880,1.120,27.48,224,0.875,bilinear +seresnet33ts,94.850,5.150,98.790,1.210,19.78,256,0.900,bicubic crossvit_small_240,94.830,5.170,99.020,0.980,26.86,240,0.875,bicubic -resnest50d,94.830,5.170,98.880,1.120,27.48,224,0.875,bilinear -lamhalobotnet50ts_256,94.800,5.200,98.550,1.450,22.57,256,0.950,bicubic -sehalonet33ts,94.780,5.220,98.570,1.430,13.69,256,0.940,bicubic -resnest50d_1s4x24d,94.770,5.230,98.980,1.020,25.68,224,0.875,bicubic +lambda_resnet50ts,94.790,5.210,98.460,1.540,21.54,256,0.950,bicubic ecaresnetlight,94.770,5.230,98.800,1.200,30.16,224,0.875,bicubic -lambda_resnet50ts,94.770,5.230,98.470,1.530,21.54,256,0.950,bicubic -halo2botnet50ts_256,94.760,5.240,98.660,1.340,22.64,256,0.950,bicubic -gluon_resnet152_v1d,94.750,5.250,98.740,1.260,60.21,224,0.875,bicubic -xcit_tiny_12_p8_224,94.710,5.290,98.830,1.170,6.71,224,1.000,bicubic +sehalonet33ts,94.770,5.230,98.570,1.430,13.69,256,0.940,bicubic +resnest50d_1s4x24d,94.750,5.250,98.980,1.020,25.68,224,0.875,bicubic +gluon_resnet152_v1d,94.740,5.260,98.740,1.260,60.21,224,0.875,bicubic +gluon_resnet101_v1s,94.720,5.280,98.820,1.180,44.67,224,0.875,bicubic deit_small_distilled_patch16_224,94.710,5.290,99.030,0.970,22.44,224,0.900,bicubic -haloregnetz_b,94.710,5.290,98.660,1.340,11.68,224,0.940,bicubic -gluon_resnet101_v1s,94.700,5.300,98.820,1.180,44.67,224,0.875,bicubic -cspdarknet53,94.670,5.330,98.810,1.190,27.64,256,0.887,bilinear -resmlp_big_24_224,94.650,5.350,98.490,1.510,129.14,224,0.875,bicubic -gluon_resnext101_64x4d,94.640,5.360,98.670,1.330,83.46,224,0.875,bicubic -efficientnet_b2,94.630,5.370,98.710,1.290,9.11,288,1.000,bicubic -ecaresnet50d,94.620,5.380,98.890,1.110,25.58,224,0.875,bicubic -efficientnet_b3_pruned,94.620,5.380,98.770,1.230,9.86,300,0.904,bicubic +haloregnetz_b,94.700,5.300,98.660,1.340,11.68,224,0.940,bicubic +xcit_tiny_12_p8_224,94.690,5.310,98.830,1.170,6.71,224,1.000,bicubic +resmlp_big_24_224,94.670,5.330,98.480,1.520,129.14,224,0.875,bicubic +cspdarknet53,94.660,5.340,98.800,1.200,27.64,256,0.887,bilinear +gluon_resnext101_64x4d,94.660,5.340,98.650,1.350,83.46,224,0.875,bicubic +efficientnet_b3_pruned,94.630,5.370,98.760,1.240,9.86,300,0.904,bicubic +ecaresnet50d,94.630,5.370,98.890,1.110,25.58,224,0.875,bicubic gernet_m,94.620,5.380,98.860,1.140,21.14,224,0.875,bilinear -pit_s_224,94.580,5.420,98.720,1.280,23.46,224,0.900,bicubic -repvgg_b3,94.570,5.430,98.790,1.210,123.09,224,0.875,bilinear -nf_resnet50,94.560,5.440,98.790,1.210,25.56,288,0.940,bicubic -seresnet50,94.560,5.440,98.750,1.250,28.09,224,0.875,bicubic -regnety_320,94.550,5.450,98.850,1.150,145.05,224,0.875,bicubic -inception_resnet_v2,94.540,5.460,98.790,1.210,55.84,299,0.897,bicubic +efficientnet_b2,94.610,5.390,98.710,1.290,9.11,288,1.000,bicubic +pit_s_224,94.590,5.410,98.700,1.300,23.46,224,0.900,bicubic +repvgg_b3,94.570,5.430,98.780,1.220,123.09,224,0.875,bilinear +sebotnet33ts_256,94.570,5.430,98.500,1.500,13.70,256,0.940,bicubic +nf_resnet50,94.550,5.450,98.790,1.210,25.56,288,0.940,bicubic +seresnet50,94.550,5.450,98.750,1.250,28.09,224,0.875,bicubic +regnety_320,94.540,5.460,98.850,1.150,145.05,224,0.875,bicubic +resnext50_32x4d,94.540,5.460,98.610,1.390,25.03,224,0.950,bicubic gluon_resnext101_32x4d,94.540,5.460,98.630,1.370,44.18,224,0.875,bicubic -repvgg_b3g4,94.530,5.470,98.960,1.040,83.83,224,0.875,bilinear -xcit_tiny_24_p16_224_dist,94.520,5.480,98.790,1.210,12.12,224,1.000,bicubic -convmixer_768_32,94.490,5.510,98.850,1.150,21.11,224,0.960,bicubic +inception_resnet_v2,94.540,5.460,98.790,1.210,55.84,299,0.897,bicubic +xcit_tiny_24_p16_224_dist,94.530,5.470,98.780,1.220,12.12,224,1.000,bicubic +repvgg_b3g4,94.520,5.480,98.970,1.030,83.83,224,0.875,bilinear +convmixer_768_32,94.500,5.500,98.850,1.150,21.11,224,0.960,bicubic +gcresnext50ts,94.490,5.510,98.670,1.330,15.67,256,0.900,bicubic tf_efficientnet_b2_ap,94.490,5.510,98.620,1.380,9.11,260,0.890,bicubic regnety_120,94.480,5.520,98.810,1.190,51.82,224,0.875,bicubic -gcresnext50ts,94.480,5.520,98.670,1.330,15.67,256,0.900,bicubic -gcresnet33ts,94.480,5.520,98.780,1.220,19.88,256,0.900,bicubic +rexnet_150,94.480,5.520,98.790,1.210,9.73,224,0.875,bicubic cspresnext50,94.470,5.530,98.680,1.320,20.57,224,0.875,bilinear -ssl_resnet50,94.470,5.530,98.920,1.080,25.56,224,0.875,bilinear -rexnet_150,94.470,5.530,98.790,1.210,9.73,224,0.875,bicubic -resmlp_24_distilled_224,94.450,5.550,98.770,1.230,30.02,224,0.875,bicubic -resnetv2_50,94.440,5.560,98.730,1.270,25.55,224,0.950,bicubic -regnetx_320,94.440,5.560,98.730,1.270,107.81,224,0.875,bicubic -tf_efficientnetv2_b2,94.410,5.590,98.570,1.430,10.10,260,0.890,bicubic -deit_small_patch16_224,94.400,5.600,98.690,1.310,22.05,224,0.900,bicubic +gcresnet33ts,94.470,5.530,98.770,1.230,19.88,256,0.900,bicubic +regnetx_320,94.460,5.540,98.740,1.260,107.81,224,0.875,bicubic +resmlp_24_distilled_224,94.460,5.540,98.770,1.230,30.02,224,0.875,bicubic +ssl_resnet50,94.450,5.550,98.920,1.080,25.56,224,0.875,bilinear +resnetv2_50,94.440,5.560,98.740,1.260,25.55,224,0.950,bicubic +tf_efficientnetv2_b2,94.420,5.580,98.570,1.430,10.10,260,0.890,bicubic +efficientnet_el_pruned,94.400,5.600,98.740,1.260,10.59,300,0.904,bicubic tf_efficientnet_el,94.400,5.600,98.710,1.290,10.59,300,0.904,bicubic -efficientnet_el_pruned,94.390,5.610,98.750,1.250,10.59,300,0.904,bicubic -inception_v4,94.370,5.630,98.580,1.420,42.68,299,0.875,bicubic -tf_efficientnet_b2,94.370,5.630,98.610,1.390,9.11,260,0.890,bicubic -legacy_seresnext101_32x4d,94.350,5.650,98.630,1.370,48.96,224,0.875,bilinear +deit_small_patch16_224,94.390,5.610,98.690,1.310,22.05,224,0.900,bicubic +inception_v4,94.380,5.620,98.580,1.420,42.68,299,0.875,bicubic +legacy_seresnext101_32x4d,94.360,5.640,98.650,1.350,48.96,224,0.875,bilinear +resnet50_gn,94.360,5.640,98.710,1.290,25.56,224,0.940,bicubic +tf_efficientnet_b2,94.360,5.640,98.610,1.390,9.11,260,0.890,bicubic +gluon_seresnext50_32x4d,94.330,5.670,98.610,1.390,27.56,224,0.875,bicubic resnet50,94.330,5.670,98.440,1.560,25.56,224,0.950,bicubic -gluon_seresnext50_32x4d,94.330,5.670,98.620,1.380,27.56,224,0.875,bicubic -ecaresnet26t,94.300,5.700,98.710,1.290,16.01,320,0.950,bicubic +ecaresnet26t,94.310,5.690,98.720,1.280,16.01,320,0.950,bicubic dpn107,94.300,5.700,98.470,1.530,86.92,224,0.875,bicubic -xception71,94.290,5.710,98.640,1.360,42.34,299,0.903,bicubic -resnetrs50,94.290,5.710,98.640,1.360,35.69,224,0.910,bicubic -resnet50d,94.270,5.730,98.720,1.280,25.58,224,0.875,bicubic +resnetrs50,94.300,5.700,98.640,1.360,35.69,224,0.910,bicubic +xception71,94.280,5.720,98.640,1.360,42.34,299,0.903,bicubic +cait_xxs36_224,94.260,5.740,98.720,1.280,17.30,224,1.000,bicubic gluon_xception65,94.260,5.740,98.570,1.430,39.92,299,0.903,bicubic -cait_xxs36_224,94.260,5.740,98.710,1.290,17.30,224,1.000,bicubic -skresnext50_32x4d,94.260,5.740,98.470,1.530,27.48,224,0.875,bicubic -regnetx_120,94.240,5.760,98.670,1.330,46.11,224,0.875,bicubic -dpn92,94.220,5.780,98.730,1.270,37.67,224,0.875,bicubic -ecaresnet50d_pruned,94.210,5.790,98.730,1.270,19.94,224,0.875,bicubic -mixnet_xl,94.200,5.800,98.340,1.660,11.90,224,0.875,bicubic -eca_resnet33ts,94.200,5.800,98.770,1.230,19.68,256,0.900,bicubic -gluon_resnet101_v1d,94.200,5.800,98.570,1.430,44.57,224,0.875,bicubic -resmlp_36_224,94.190,5.810,98.660,1.340,44.69,224,0.875,bicubic -resnext50d_32x4d,94.190,5.810,98.570,1.430,25.05,224,0.875,bicubic -tf_efficientnet_lite3,94.190,5.810,98.640,1.360,8.20,300,0.904,bilinear -levit_192,94.180,5.820,98.560,1.440,10.95,224,0.900,bicubic -regnety_080,94.180,5.820,98.680,1.320,39.18,224,0.875,bicubic -ens_adv_inception_resnet_v2,94.160,5.840,98.610,1.390,55.84,299,0.897,bicubic +resnet50d,94.260,5.740,98.720,1.280,25.58,224,0.875,bicubic +skresnext50_32x4d,94.260,5.740,98.460,1.540,27.48,224,0.875,bicubic +regnetx_120,94.240,5.760,98.650,1.350,46.11,224,0.875,bicubic +gluon_resnet101_v1d,94.240,5.760,98.560,1.440,44.57,224,0.875,bicubic +dpn92,94.230,5.770,98.730,1.270,37.67,224,0.875,bicubic +ecaresnet50d_pruned,94.220,5.780,98.730,1.270,19.94,224,0.875,bicubic +resmlp_36_224,94.200,5.800,98.660,1.340,44.69,224,0.875,bicubic +tf_efficientnet_lite3,94.200,5.800,98.640,1.360,8.20,300,0.904,bilinear +eca_resnet33ts,94.190,5.810,98.770,1.230,19.68,256,0.900,bicubic +mixnet_xl,94.190,5.810,98.340,1.660,11.90,224,0.875,bicubic +resnext50d_32x4d,94.180,5.820,98.570,1.430,25.05,224,0.875,bicubic +regnety_080,94.170,5.830,98.680,1.320,39.18,224,0.875,bicubic +levit_192,94.170,5.830,98.550,1.450,10.95,224,0.900,bicubic +ens_adv_inception_resnet_v2,94.160,5.840,98.600,1.400,55.84,299,0.897,bicubic gluon_resnet152_v1c,94.160,5.840,98.640,1.360,60.21,224,0.875,bicubic gmlp_s16_224,94.150,5.850,98.500,1.500,19.42,224,0.875,bicubic -regnety_064,94.150,5.850,98.740,1.260,30.58,224,0.875,bicubic -vit_base_patch16_sam_224,94.150,5.850,98.670,1.330,86.57,224,0.900,bicubic -efficientnet_b2_pruned,94.140,5.860,98.520,1.480,8.31,260,0.890,bicubic -dpn98,94.120,5.880,98.580,1.420,61.57,224,0.875,bicubic +efficientnet_b2_pruned,94.140,5.860,98.530,1.470,8.31,260,0.890,bicubic +regnety_064,94.140,5.860,98.730,1.270,30.58,224,0.875,bicubic +vit_base_patch16_224_sam,94.140,5.860,98.670,1.330,86.57,224,0.900,bicubic regnetx_160,94.120,5.880,98.740,1.260,54.28,224,0.875,bicubic -nf_regnet_b1,94.120,5.880,98.620,1.380,10.22,288,0.900,bicubic -resnext50_32x4d,94.110,5.890,98.350,1.650,25.03,224,0.875,bicubic +nf_regnet_b1,94.120,5.880,98.630,1.370,10.22,288,0.900,bicubic +dpn98,94.110,5.890,98.580,1.420,61.57,224,0.875,bicubic ese_vovnet39b,94.090,5.910,98.660,1.340,24.57,224,0.875,bicubic gluon_resnet152_v1b,94.080,5.920,98.460,1.540,60.19,224,0.875,bicubic -xcit_tiny_24_p16_224,94.080,5.920,98.510,1.490,12.12,224,1.000,bicubic -coat_lite_mini,94.050,5.950,98.540,1.460,11.01,224,0.900,bicubic +xcit_tiny_24_p16_224,94.070,5.930,98.510,1.490,12.12,224,1.000,bicubic +coat_lite_mini,94.060,5.940,98.550,1.450,11.01,224,0.900,bicubic +eca_halonext26ts,94.050,5.950,98.500,1.500,10.76,256,0.940,bicubic +halonet26t,94.020,5.980,98.500,1.500,12.48,256,0.950,bicubic resmlp_24_224,94.020,5.980,98.330,1.670,30.02,224,0.875,bicubic +hrnet_w64,94.010,5.990,98.620,1.380,128.06,224,0.875,bilinear dpn131,93.990,6.010,98.720,1.280,79.25,224,0.875,bicubic -hrnet_w64,93.990,6.010,98.620,1.380,128.06,224,0.875,bilinear -halonet26t,93.980,6.020,98.490,1.510,12.48,256,0.950,bicubic dla102x2,93.960,6.040,98.480,1.520,41.28,224,0.875,bilinear -hrnet_w48,93.940,6.060,98.610,1.390,77.47,224,0.875,bilinear +fbnetv3_b,93.960,6.040,98.630,1.370,8.60,256,0.950,bilinear +resnetblur50,93.950,6.050,98.580,1.420,25.56,224,0.875,bicubic tf_efficientnetv2_b1,93.940,6.060,98.620,1.380,8.14,240,0.882,bicubic -resnetblur50,93.930,6.070,98.580,1.420,25.56,224,0.875,bicubic -tf_efficientnet_cc_b1_8e,93.920,6.080,98.250,1.750,39.72,240,0.882,bicubic +fbnetv3_d,93.930,6.070,98.740,1.260,10.31,256,0.950,bilinear +hrnet_w48,93.920,6.080,98.610,1.390,77.47,224,0.875,bilinear +tf_efficientnet_cc_b1_8e,93.910,6.090,98.260,1.740,39.72,240,0.882,bicubic rexnet_130,93.900,6.100,98.400,1.600,7.56,224,0.875,bicubic regnetx_064,93.890,6.110,98.630,1.370,26.21,224,0.875,bicubic regnetx_080,93.870,6.130,98.520,1.480,39.57,224,0.875,bicubic -regnety_040,93.860,6.140,98.640,1.360,20.65,224,0.875,bicubic -repvgg_b2g4,93.840,6.160,98.600,1.400,61.76,224,0.875,bilinear -efficientnet_em,93.840,6.160,98.810,1.190,6.90,240,0.882,bicubic -gluon_resnext50_32x4d,93.820,6.180,98.410,1.590,25.03,224,0.875,bicubic -lambda_resnet26t,93.820,6.180,98.650,1.350,10.96,256,0.940,bicubic +regnety_040,93.860,6.140,98.650,1.350,20.65,224,0.875,bicubic +repvgg_b2g4,93.840,6.160,98.590,1.410,61.76,224,0.875,bilinear +efficientnet_em,93.830,6.170,98.810,1.190,6.90,240,0.882,bicubic +lambda_resnet26t,93.830,6.170,98.650,1.350,10.96,256,0.940,bicubic pit_xs_distilled_224,93.820,6.180,98.670,1.330,11.00,224,0.900,bicubic -eca_botnext26ts_256,93.790,6.210,98.500,1.500,10.59,256,0.950,bicubic -resnext101_32x8d,93.790,6.210,98.580,1.420,88.79,224,0.875,bilinear -gluon_resnet50_v1d,93.780,6.220,98.400,1.600,25.58,224,0.875,bicubic -xception65,93.770,6.230,98.360,1.640,39.92,299,0.903,bicubic -cspresnet50,93.750,6.250,98.630,1.370,21.62,256,0.887,bilinear -gluon_resnet101_v1b,93.730,6.270,98.400,1.600,44.55,224,0.875,bicubic +resnext101_32x8d,93.820,6.180,98.580,1.420,88.79,224,0.875,bilinear +gluon_resnext50_32x4d,93.810,6.190,98.410,1.590,25.03,224,0.875,bicubic +eca_botnext26ts_256,93.780,6.220,98.500,1.500,10.59,256,0.950,bicubic +gluon_resnet50_v1d,93.770,6.230,98.390,1.610,25.58,224,0.875,bicubic +xception65,93.760,6.240,98.370,1.630,39.92,299,0.903,bicubic +gluon_resnet101_v1b,93.750,6.250,98.380,1.620,44.55,224,0.875,bicubic +res2net101_26w_4s,93.750,6.250,98.310,1.690,45.21,224,0.875,bilinear +cspresnet50,93.740,6.260,98.640,1.360,21.62,256,0.887,bilinear +legacy_seresnext50_32x4d,93.730,6.270,98.580,1.420,27.56,224,0.875,bilinear wide_resnet101_2,93.720,6.280,98.540,1.460,126.89,224,0.875,bilinear -res2net101_26w_4s,93.720,6.280,98.320,1.680,45.21,224,0.875,bilinear -legacy_seresnext50_32x4d,93.720,6.280,98.580,1.420,27.56,224,0.875,bilinear -lambda_resnet26rpt_256,93.720,6.280,98.500,1.500,10.99,256,0.940,bicubic -tf_efficientnet_b1_ap,93.710,6.290,98.360,1.640,7.79,240,0.882,bicubic -dpn68b,93.680,6.320,98.530,1.470,12.61,224,0.875,bicubic -gluon_resnet101_v1c,93.660,6.340,98.410,1.590,44.57,224,0.875,bicubic +lambda_resnet26rpt_256,93.710,6.290,98.510,1.490,10.99,256,0.940,bicubic +dpn68b,93.690,6.310,98.520,1.480,12.61,224,0.875,bicubic +tf_efficientnet_b1_ap,93.690,6.310,98.360,1.640,7.79,240,0.882,bicubic +gluon_resnet101_v1c,93.660,6.340,98.420,1.580,44.57,224,0.875,bicubic vit_tiny_patch16_384,93.650,6.350,98.600,1.400,5.79,384,1.000,bicubic -gluon_resnet50_v1s,93.630,6.370,98.470,1.530,25.68,224,0.875,bicubic -tf_efficientnet_b0_ns,93.620,6.380,98.640,1.360,5.29,224,0.875,bicubic -resnet33ts,93.600,6.400,98.530,1.470,19.68,256,0.900,bicubic -cait_xxs24_224,93.590,6.410,98.440,1.560,11.96,224,1.000,bicubic -hrnet_w44,93.580,6.420,98.700,1.300,67.06,224,0.875,bilinear -coat_tiny,93.580,6.420,98.410,1.590,5.50,224,0.900,bicubic -regnetx_040,93.550,6.450,98.560,1.440,22.12,224,0.875,bicubic -hrnet_w32,93.520,6.480,98.440,1.560,41.23,224,0.875,bilinear -eca_halonext26ts,93.510,6.490,98.280,1.720,10.76,256,0.940,bicubic -tf_efficientnet_b1,93.510,6.490,98.360,1.640,7.79,240,0.882,bicubic -dla102x,93.510,6.490,98.500,1.500,26.31,224,0.875,bilinear +tf_efficientnet_b0_ns,93.630,6.370,98.640,1.360,5.29,224,0.875,bicubic +gluon_resnet50_v1s,93.620,6.380,98.460,1.540,25.68,224,0.875,bicubic +cait_xxs24_224,93.600,6.400,98.440,1.560,11.96,224,1.000,bicubic +resnet33ts,93.600,6.400,98.540,1.460,19.68,256,0.900,bicubic +coat_tiny,93.590,6.410,98.420,1.580,5.50,224,0.900,bicubic +hrnet_w44,93.550,6.450,98.700,1.300,67.06,224,0.875,bilinear +regnetx_040,93.550,6.450,98.550,1.450,22.12,224,0.875,bicubic +hrnet_w32,93.530,6.470,98.460,1.540,41.23,224,0.875,bilinear +dla102x,93.520,6.480,98.510,1.490,26.31,224,0.875,bilinear +xcit_nano_12_p8_384_dist,93.520,6.480,98.540,1.460,3.05,384,1.000,bicubic +tf_efficientnet_b1,93.500,6.500,98.360,1.640,7.79,240,0.882,bicubic botnet26t_256,93.500,6.500,98.300,1.700,12.49,256,0.950,bicubic repvgg_b2,93.490,6.510,98.730,1.270,89.02,224,0.875,bilinear -hrnet_w40,93.490,6.510,98.590,1.410,57.56,224,0.875,bilinear -xcit_nano_12_p8_384_dist,93.480,6.520,98.520,1.480,3.05,384,1.000,bicubic -xception,93.480,6.520,98.530,1.470,22.86,299,0.897,bicubic +hrnet_w40,93.490,6.510,98.580,1.420,57.56,224,0.875,bilinear resnet32ts,93.470,6.530,98.490,1.510,17.96,256,0.900,bicubic -gluon_inception_v3,93.460,6.540,98.560,1.440,23.83,299,0.875,bicubic -res2net50_26w_8s,93.430,6.570,98.180,1.820,48.40,224,0.875,bilinear -mixnet_l,93.430,6.570,98.220,1.780,7.33,224,0.875,bicubic -legacy_seresnet152,93.420,6.580,98.340,1.660,66.82,224,0.875,bilinear -xception41,93.410,6.590,98.420,1.580,26.97,299,0.903,bicubic +xception,93.470,6.530,98.530,1.470,22.86,299,0.897,bicubic +gluon_inception_v3,93.460,6.540,98.570,1.430,23.83,299,0.875,bicubic +mixnet_l,93.450,6.550,98.220,1.780,7.33,224,0.875,bicubic +xception41,93.430,6.570,98.430,1.570,26.97,299,0.903,bicubic +res2net50_26w_8s,93.410,6.590,98.180,1.820,48.40,224,0.875,bilinear +res2net50_26w_6s,93.410,6.590,98.280,1.720,37.05,224,0.875,bilinear +legacy_seresnet152,93.400,6.600,98.340,1.660,66.82,224,0.875,bilinear xcit_tiny_12_p16_224_dist,93.400,6.600,98.490,1.510,6.72,224,1.000,bicubic -res2net50_26w_6s,93.400,6.600,98.280,1.720,37.05,224,0.875,bilinear -resnest26d,93.360,6.640,98.640,1.360,17.07,224,0.875,bilinear -levit_128,93.340,6.660,98.380,1.620,9.21,224,0.900,bicubic -dla169,93.340,6.660,98.600,1.400,53.39,224,0.875,bilinear +dla169,93.340,6.660,98.590,1.410,53.39,224,0.875,bilinear +bat_resnext26ts,93.330,6.670,98.350,1.650,10.73,256,0.900,bicubic +levit_128,93.330,6.670,98.380,1.620,9.21,224,0.900,bicubic repvgg_b1,93.330,6.670,98.510,1.490,57.42,224,0.875,bilinear -tf_inception_v3,93.330,6.670,98.040,1.960,23.83,299,0.875,bicubic -tv_resnet152,93.330,6.670,98.390,1.610,60.19,224,0.875,bilinear -tf_mixnet_l,93.310,6.690,98.030,1.970,7.33,224,0.875,bicubic -bat_resnext26ts,93.310,6.690,98.350,1.650,10.73,256,0.900,bicubic -legacy_seresnet101,93.300,6.700,98.500,1.500,49.33,224,0.875,bilinear -selecsls60b,93.290,6.710,98.280,1.720,32.77,224,0.875,bicubic -efficientnet_b1,93.240,6.760,98.290,1.710,7.79,256,1.000,bicubic -coat_lite_tiny,93.220,6.780,98.270,1.730,5.72,224,0.900,bicubic -efficientnet_es,93.200,6.800,98.400,1.600,5.44,224,0.875,bicubic -hrnet_w30,93.200,6.800,98.410,1.590,37.71,224,0.875,bilinear +tf_mixnet_l,93.320,6.680,98.030,1.970,7.33,224,0.875,bicubic +resnest26d,93.320,6.680,98.630,1.370,17.07,224,0.875,bilinear +tf_inception_v3,93.320,6.680,98.030,1.970,23.83,299,0.875,bicubic +tv_resnet152,93.310,6.690,98.390,1.610,60.19,224,0.875,bilinear +legacy_seresnet101,93.300,6.700,98.510,1.490,49.33,224,0.875,bilinear +selecsls60b,93.300,6.700,98.280,1.720,32.77,224,0.875,bicubic +efficientnet_b1,93.250,6.750,98.290,1.710,7.79,256,1.000,bicubic +coat_lite_tiny,93.230,6.770,98.260,1.740,5.72,224,0.900,bicubic +hrnet_w30,93.190,6.810,98.410,1.590,37.71,224,0.875,bilinear +dla60_res2net,93.180,6.820,98.420,1.580,20.85,224,0.875,bilinear dla60_res2next,93.180,6.820,98.410,1.590,17.03,224,0.875,bilinear -dla60_res2net,93.160,6.840,98.410,1.590,20.85,224,0.875,bilinear +efficientnet_es,93.140,6.860,98.420,1.580,5.44,224,0.875,bicubic +dla60x,93.120,6.880,98.510,1.490,17.35,224,0.875,bilinear regnetx_032,93.120,6.880,98.390,1.610,15.30,224,0.875,bicubic -pit_xs_224,93.120,6.880,98.320,1.680,10.62,224,0.900,bicubic +pit_xs_224,93.110,6.890,98.320,1.680,10.62,224,0.900,bicubic tf_efficientnetv2_b0,93.110,6.890,98.390,1.610,7.14,224,0.875,bicubic -dla60x,93.090,6.910,98.490,1.510,17.35,224,0.875,bilinear -dla102,93.080,6.920,98.540,1.460,33.27,224,0.875,bilinear -gluon_resnet50_v1c,93.030,6.970,98.370,1.630,25.58,224,0.875,bicubic -regnety_016,93.030,6.970,98.360,1.640,11.20,224,0.875,bicubic +dla102,93.060,6.940,98.550,1.450,33.27,224,0.875,bilinear rexnet_100,93.030,6.970,98.190,1.810,4.80,224,0.875,bicubic +regnety_016,93.030,6.970,98.360,1.640,11.20,224,0.875,bicubic +gluon_resnet50_v1c,93.030,6.970,98.390,1.610,25.58,224,0.875,bicubic selecsls60,93.020,6.980,98.310,1.690,30.67,224,0.875,bicubic -repvgg_b1g4,93.000,7.000,98.430,1.570,39.97,224,0.875,bilinear -legacy_seresnet50,92.950,7.050,98.190,1.810,28.09,224,0.875,bilinear +repvgg_b1g4,92.980,7.020,98.430,1.570,39.97,224,0.875,bilinear +legacy_seresnet50,92.960,7.040,98.190,1.810,28.09,224,0.875,bilinear hardcorenas_f,92.950,7.050,98.160,1.840,8.20,224,0.875,bilinear -tf_efficientnet_em,92.950,7.050,98.210,1.790,6.90,240,0.882,bicubic -crossvit_9_dagger_240,92.920,7.080,98.250,1.750,8.78,240,0.875,bicubic -adv_inception_v3,92.890,7.110,98.130,1.870,23.83,299,0.875,bicubic -res2next50,92.850,7.150,98.180,1.820,24.67,224,0.875,bilinear -gmixer_24_224,92.840,7.160,97.880,2.120,24.72,224,0.875,bicubic +tf_efficientnet_em,92.930,7.070,98.200,1.800,6.90,240,0.882,bicubic +adv_inception_v3,92.890,7.110,98.140,1.860,23.83,299,0.875,bicubic +crossvit_9_dagger_240,92.890,7.110,98.230,1.770,8.78,240,0.875,bicubic +res2next50,92.860,7.140,98.190,1.810,24.67,224,0.875,bilinear +gmixer_24_224,92.830,7.170,97.880,2.120,24.72,224,0.875,bicubic resmlp_12_distilled_224,92.830,7.170,98.140,1.860,15.35,224,0.875,bicubic -tf_efficientnet_cc_b0_8e,92.820,7.180,98.180,1.820,24.01,224,0.875,bicubic -seresnext26t_32x4d,92.810,7.190,98.370,1.630,16.81,224,0.875,bicubic -tv_resnet101,92.810,7.190,98.230,1.770,44.55,224,0.875,bilinear +tf_efficientnet_cc_b0_8e,92.830,7.170,98.180,1.820,24.01,224,0.875,bicubic +seresnext26t_32x4d,92.820,7.180,98.370,1.630,16.81,224,0.875,bicubic +tv_resnet101,92.820,7.180,98.250,1.750,44.55,224,0.875,bilinear +gcresnext26ts,92.780,7.220,98.260,1.740,10.48,256,0.900,bicubic efficientnet_b1_pruned,92.770,7.230,98.040,1.960,6.33,240,0.882,bicubic -gcresnext26ts,92.770,7.230,98.270,1.730,10.48,256,0.900,bicubic -tv_resnext50_32x4d,92.760,7.240,98.280,1.720,25.03,224,0.875,bilinear -densenet201,92.750,7.250,98.240,1.760,20.01,224,0.875,bicubic -resnet26t,92.750,7.250,98.240,1.760,16.01,256,0.940,bicubic -seresnext26d_32x4d,92.740,7.260,98.150,1.850,16.81,224,0.875,bicubic -inception_v3,92.720,7.280,97.960,2.040,23.83,299,0.875,bicubic -res2net50_14w_8s,92.720,7.280,98.190,1.810,25.06,224,0.875,bilinear -resnet34d,92.700,7.300,98.300,1.700,21.82,224,0.875,bicubic -seresnext26ts,92.680,7.320,98.300,1.700,10.39,256,0.900,bicubic -efficientnet_b0,92.670,7.330,98.080,1.920,5.29,224,0.875,bicubic -eca_resnext26ts,92.660,7.340,98.260,1.740,10.30,256,0.900,bicubic -tf_efficientnet_lite2,92.660,7.340,98.230,1.770,6.09,260,0.890,bicubic -legacy_seresnext26_32x4d,92.630,7.370,98.120,1.880,16.79,224,0.875,bicubic -tf_efficientnet_cc_b0_4e,92.620,7.380,98.080,1.920,13.31,224,0.875,bicubic -tf_efficientnet_lite1,92.620,7.380,98.080,1.920,5.42,240,0.882,bicubic -hardcorenas_e,92.580,7.420,98.110,1.890,8.07,224,0.875,bilinear -res2net50_48w_2s,92.550,7.450,98.080,1.920,25.29,224,0.875,bilinear -gluon_resnet50_v1b,92.540,7.460,98.190,1.810,25.56,224,0.875,bicubic -densenet161,92.500,7.500,98.290,1.710,28.68,224,0.875,bicubic -xcit_tiny_12_p16_224,92.490,7.510,98.250,1.750,6.72,224,1.000,bicubic -res2net50_26w_4s,92.480,7.520,98.070,1.930,25.70,224,0.875,bilinear -mixnet_m,92.440,7.560,97.870,2.130,5.01,224,0.875,bicubic -convmixer_1024_20_ks9_p14,92.430,7.570,98.270,1.730,24.38,224,0.960,bicubic -hardcorenas_d,92.420,7.580,98.070,1.930,7.50,224,0.875,bilinear +densenet201,92.750,7.250,98.230,1.770,20.01,224,0.875,bicubic +resnet26t,92.750,7.250,98.230,1.770,16.01,256,0.940,bicubic +tv_resnext50_32x4d,92.750,7.250,98.270,1.730,25.03,224,0.875,bilinear +res2net50_14w_8s,92.740,7.260,98.180,1.820,25.06,224,0.875,bilinear +inception_v3,92.720,7.280,97.970,2.030,23.83,299,0.875,bicubic +efficientnet_b0,92.690,7.310,98.070,1.930,5.29,224,0.875,bicubic +seresnext26d_32x4d,92.690,7.310,98.150,1.850,16.81,224,0.875,bicubic +seresnext26ts,92.690,7.310,98.290,1.710,10.39,256,0.900,bicubic +resnet34d,92.680,7.320,98.310,1.690,21.82,224,0.875,bicubic +tf_efficientnet_lite2,92.650,7.350,98.230,1.770,6.09,260,0.890,bicubic +legacy_seresnext26_32x4d,92.640,7.360,98.130,1.870,16.79,224,0.875,bicubic +tf_efficientnet_lite1,92.620,7.380,98.070,1.930,5.42,240,0.882,bicubic +eca_resnext26ts,92.610,7.390,98.260,1.740,10.30,256,0.900,bicubic +tf_efficientnet_cc_b0_4e,92.600,7.400,98.080,1.920,13.31,224,0.875,bicubic +hardcorenas_e,92.570,7.430,98.110,1.890,8.07,224,0.875,bilinear +gluon_resnet50_v1b,92.540,7.460,98.170,1.830,25.56,224,0.875,bicubic +res2net50_48w_2s,92.540,7.460,98.090,1.910,25.29,224,0.875,bilinear +xcit_tiny_12_p16_224,92.500,7.500,98.240,1.760,6.72,224,1.000,bicubic +densenet161,92.490,7.510,98.290,1.710,28.68,224,0.875,bicubic +res2net50_26w_4s,92.490,7.510,98.060,1.940,25.70,224,0.875,bilinear +tinynet_a,92.440,7.560,98.080,1.920,6.19,192,0.875,bicubic +mixnet_m,92.430,7.570,97.870,2.130,5.01,224,0.875,bicubic +convmixer_1024_20_ks9_p14,92.420,7.580,98.270,1.730,24.38,224,0.960,bicubic +hardcorenas_d,92.400,7.600,98.070,1.930,7.50,224,0.875,bilinear mobilenetv2_120d,92.400,7.600,98.050,1.950,5.83,224,0.875,bicubic -skresnet34,92.380,7.620,98.140,1.860,22.28,224,0.875,bicubic +skresnet34,92.390,7.610,98.150,1.850,22.28,224,0.875,bicubic tf_mixnet_m,92.330,7.670,97.890,2.110,5.01,224,0.875,bicubic -hrnet_w18,92.310,7.690,98.250,1.750,21.30,224,0.875,bilinear -selecsls42b,92.300,7.700,98.140,1.860,32.46,224,0.875,bicubic -mobilenetv3_large_100_miil,92.270,7.730,97.640,2.360,5.48,224,0.875,bilinear -ese_vovnet19b_dw,92.270,7.730,98.100,1.900,6.54,224,0.875,bicubic -tf_efficientnet_b0,92.230,7.770,98.000,2.000,5.29,224,0.875,bicubic -tf_efficientnet_b0_ap,92.220,7.780,98.020,1.980,5.29,224,0.875,bicubic -dla60,92.220,7.780,98.110,1.890,22.04,224,0.875,bilinear -resmlp_12_224,92.190,7.810,98.160,1.840,15.35,224,0.875,bicubic +hrnet_w18,92.320,7.680,98.250,1.750,21.30,224,0.875,bilinear +ese_vovnet19b_dw,92.280,7.720,98.090,1.910,6.54,224,0.875,bicubic +selecsls42b,92.280,7.720,98.140,1.860,32.46,224,0.875,bicubic +mobilenetv3_large_100_miil,92.260,7.740,97.640,2.360,5.48,224,0.875,bilinear +tf_efficientnet_b0,92.260,7.740,98.000,2.000,5.29,224,0.875,bicubic +dla60,92.230,7.770,98.110,1.890,22.04,224,0.875,bilinear +resmlp_12_224,92.210,7.790,98.160,1.840,15.35,224,0.875,bicubic +tf_efficientnet_b0_ap,92.200,7.800,98.020,1.980,5.29,224,0.875,bicubic regnetx_016,92.160,7.840,98.210,1.790,9.19,224,0.875,bicubic gernet_s,92.140,7.860,98.190,1.810,8.17,224,0.875,bilinear xcit_nano_12_p8_224_dist,92.100,7.900,98.160,1.840,3.05,224,1.000,bicubic -resnet26d,92.050,7.950,97.960,2.040,16.01,224,0.875,bicubic -vit_small_patch32_224,92.030,7.970,98.230,1.770,22.88,224,0.900,bicubic -vit_tiny_r_s16_p8_384,92.030,7.970,98.290,1.710,6.36,384,1.000,bicubic -dpn68,92.020,7.980,98.040,1.960,12.61,224,0.875,bicubic +resnet26d,92.070,7.930,97.970,2.030,16.01,224,0.875,bicubic +vit_small_patch32_224,92.040,7.960,98.230,1.770,22.88,224,0.900,bicubic +vit_tiny_r_s16_p8_384,92.040,7.960,98.290,1.710,6.36,384,1.000,bicubic +dpn68,92.030,7.970,98.050,1.950,12.61,224,0.875,bicubic hardcorenas_c,92.020,7.980,97.840,2.160,5.52,224,0.875,bilinear -tf_efficientnet_es,91.990,8.010,97.870,2.130,5.44,224,0.875,bicubic -levit_128s,91.950,8.050,98.060,1.940,7.78,224,0.900,bicubic +tf_efficientnet_es,91.980,8.020,97.870,2.130,5.44,224,0.875,bicubic +levit_128s,91.960,8.040,98.060,1.940,7.78,224,0.900,bicubic repvgg_a2,91.940,8.060,98.150,1.850,28.21,224,0.875,bilinear -densenet169,91.910,8.090,98.100,1.900,14.15,224,0.875,bicubic -densenetblur121d,91.910,8.090,98.090,1.910,8.00,224,0.875,bicubic -tv_resnet50,91.890,8.110,98.040,1.960,25.56,224,0.875,bilinear -mixer_b16_224,91.860,8.140,97.230,2.770,59.88,224,0.875,bicubic -resnext26ts,91.860,8.140,97.930,2.070,10.30,256,0.900,bicubic -xcit_nano_12_p16_384_dist,91.830,8.170,98.010,1.990,3.05,384,1.000,bicubic -mobilenetv2_140,91.830,8.170,97.860,2.140,6.11,224,0.875,bicubic -mixnet_s,91.820,8.180,97.690,2.310,4.13,224,0.875,bicubic +densenet169,91.920,8.080,98.100,1.900,14.15,224,0.875,bicubic +densenetblur121d,91.910,8.090,98.070,1.930,8.00,224,0.875,bicubic +tv_resnet50,91.880,8.120,98.040,1.960,25.56,224,0.875,bilinear +resnext26ts,91.870,8.130,97.920,2.080,10.30,256,0.900,bicubic +mixer_b16_224,91.860,8.140,97.250,2.750,59.88,224,0.875,bicubic +mobilenetv2_140,91.840,8.160,97.850,2.150,6.11,224,0.875,bicubic +mixnet_s,91.830,8.170,97.690,2.310,4.13,224,0.875,bicubic +xcit_nano_12_p16_384_dist,91.830,8.170,98.020,1.980,3.05,384,1.000,bicubic +hardcorenas_b,91.780,8.220,97.780,2.220,5.18,224,0.875,bilinear vit_tiny_patch16_224,91.760,8.240,98.040,1.960,5.72,224,0.900,bicubic -hardcorenas_b,91.740,8.260,97.780,2.220,5.18,224,0.875,bilinear -resnest14d,91.730,8.270,97.870,2.130,10.61,224,0.875,bilinear -regnety_008,91.710,8.290,98.180,1.820,6.26,224,0.875,bicubic -densenet121,91.570,8.430,98.030,1.970,7.98,224,0.875,bicubic -tf_mixnet_s,91.510,8.490,97.610,2.390,4.13,224,0.875,bicubic -repvgg_b0,91.450,8.550,97.980,2.020,15.82,224,0.875,bilinear +regnety_008,91.720,8.280,98.180,1.820,6.26,224,0.875,bicubic +resnest14d,91.720,8.280,97.870,2.130,10.61,224,0.875,bilinear +densenet121,91.580,8.420,98.030,1.970,7.98,224,0.875,bicubic +tf_mixnet_s,91.510,8.490,97.620,2.380,4.13,224,0.875,bicubic +repvgg_b0,91.420,8.580,97.990,2.010,15.82,224,0.875,bilinear regnety_006,91.380,8.620,97.710,2.290,6.06,224,0.875,bicubic -mobilenetv3_large_100,91.340,8.660,97.710,2.290,5.48,224,0.875,bicubic -hardcorenas_a,91.340,8.660,97.860,2.140,5.26,224,0.875,bilinear -semnasnet_100,91.280,8.720,97.570,2.430,3.89,224,0.875,bicubic -tf_mobilenetv3_large_100,91.230,8.770,97.660,2.340,5.48,224,0.875,bilinear +hardcorenas_a,91.350,8.650,97.860,2.140,5.26,224,0.875,bilinear +mobilenetv3_large_100,91.330,8.670,97.710,2.290,5.48,224,0.875,bicubic +semnasnet_100,91.270,8.730,97.560,2.440,3.89,224,0.875,bicubic +tf_mobilenetv3_large_100,91.240,8.760,97.660,2.340,5.48,224,0.875,bilinear mobilenetv3_rw,91.210,8.790,97.660,2.340,5.48,224,0.875,bicubic -efficientnet_es_pruned,91.190,8.810,97.740,2.260,5.44,224,0.875,bicubic hrnet_w18_small_v2,91.190,8.810,97.900,2.100,15.60,224,0.875,bilinear -efficientnet_lite0,91.140,8.860,97.630,2.370,4.65,224,0.875,bicubic -resnet26,91.130,8.870,97.740,2.260,16.00,224,0.875,bicubic -resnet34,91.120,8.880,97.630,2.370,21.80,224,0.875,bilinear +efficientnet_es_pruned,91.180,8.820,97.750,2.250,5.44,224,0.875,bicubic +efficientnet_lite0,91.130,8.870,97.620,2.380,4.65,224,0.875,bicubic +resnet34,91.130,8.870,97.620,2.380,21.80,224,0.875,bilinear +resnet26,91.120,8.880,97.750,2.250,16.00,224,0.875,bicubic regnetx_008,91.050,8.950,97.710,2.290,7.26,224,0.875,bicubic -tf_efficientnet_lite0,91.050,8.950,97.570,2.430,4.65,224,0.875,bicubic -xcit_nano_12_p8_224,90.990,9.010,97.800,2.200,3.05,224,1.000,bicubic -gluon_resnet34_v1b,90.990,9.010,97.650,2.350,21.80,224,0.875,bicubic -mobilenetv2_110d,90.970,9.030,97.560,2.440,4.52,224,0.875,bicubic +tf_efficientnet_lite0,91.050,8.950,97.590,2.410,4.65,224,0.875,bicubic +xcit_nano_12_p8_224,91.010,8.990,97.800,2.200,3.05,224,1.000,bicubic +gluon_resnet34_v1b,90.960,9.040,97.640,2.360,21.80,224,0.875,bicubic +mobilenetv2_110d,90.960,9.040,97.560,2.440,4.52,224,0.875,bicubic +tinynet_b,90.930,9.070,97.670,2.330,3.73,188,0.875,bicubic legacy_seresnet34,90.900,9.100,97.580,2.420,21.96,224,0.875,bilinear -tv_densenet121,90.900,9.100,97.700,2.300,7.98,224,0.875,bicubic -pit_ti_distilled_224,90.880,9.120,97.720,2.280,5.10,224,0.900,bicubic -dla34,90.770,9.230,97.650,2.350,15.74,224,0.875,bilinear -deit_tiny_distilled_patch16_224,90.730,9.270,97.580,2.420,5.91,224,0.900,bicubic -fbnetc_100,90.720,9.280,97.210,2.790,5.57,224,0.875,bilinear -swsl_resnet18,90.680,9.320,97.710,2.290,11.69,224,0.875,bilinear -crossvit_9_240,90.660,9.340,97.740,2.260,8.55,240,0.875,bicubic -convit_tiny,90.610,9.390,97.730,2.270,5.71,224,0.875,bicubic +pit_ti_distilled_224,90.900,9.100,97.710,2.290,5.10,224,0.900,bicubic +tv_densenet121,90.890,9.110,97.710,2.290,7.98,224,0.875,bicubic +dla34,90.770,9.230,97.660,2.340,15.74,224,0.875,bilinear +deit_tiny_distilled_patch16_224,90.710,9.290,97.570,2.430,5.91,224,0.900,bicubic +fbnetc_100,90.710,9.290,97.210,2.790,5.57,224,0.875,bilinear +swsl_resnet18,90.690,9.310,97.700,2.300,11.69,224,0.875,bilinear +crossvit_9_240,90.640,9.360,97.740,2.260,8.55,240,0.875,bicubic +convit_tiny,90.640,9.360,97.740,2.260,5.71,224,0.875,bicubic mnasnet_100,90.510,9.490,97.470,2.530,4.38,224,0.875,bicubic -regnety_004,90.480,9.520,97.560,2.440,4.34,224,0.875,bicubic +regnety_004,90.490,9.510,97.540,2.460,4.34,224,0.875,bicubic +regnetx_006,90.350,9.650,97.430,2.570,6.20,224,0.875,bicubic spnasnet_100,90.350,9.650,97.190,2.810,4.42,224,0.875,bilinear -regnetx_006,90.320,9.680,97.430,2.570,6.20,224,0.875,bicubic -crossvit_tiny_240,90.250,9.750,97.610,2.390,7.01,240,0.875,bicubic -ssl_resnet18,90.230,9.770,97.560,2.440,11.69,224,0.875,bilinear -vgg19_bn,90.100,9.900,97.580,2.420,143.68,224,0.875,bilinear +crossvit_tiny_240,90.250,9.750,97.590,2.410,7.01,240,0.875,bicubic +ssl_resnet18,90.220,9.780,97.550,2.450,11.69,224,0.875,bilinear vgg16_bn,90.090,9.910,97.370,2.630,138.37,224,0.875,bilinear +vgg19_bn,90.080,9.920,97.580,2.420,143.68,224,0.875,bilinear +semnasnet_075,90.080,9.920,97.430,2.570,2.91,224,0.875,bicubic ghostnet_100,90.030,9.970,97.370,2.630,5.18,224,0.875,bilinear -pit_ti_224,89.930,10.070,97.440,2.560,4.85,224,0.900,bicubic -tv_resnet34,89.920,10.080,97.340,2.660,21.80,224,0.875,bilinear -vit_base_patch32_sam_224,89.750,10.250,97.000,3.000,88.22,224,0.900,bicubic -tf_mobilenetv3_large_075,89.710,10.290,97.220,2.780,3.99,224,0.875,bilinear +pit_ti_224,89.950,10.050,97.450,2.550,4.85,224,0.900,bicubic +tv_resnet34,89.930,10.070,97.340,2.660,21.80,224,0.875,bilinear +vit_base_patch32_224_sam,89.750,10.250,97.000,3.000,88.22,224,0.900,bicubic +tf_mobilenetv3_large_075,89.680,10.320,97.210,2.790,3.99,224,0.875,bilinear xcit_nano_12_p16_224_dist,89.680,10.320,97.090,2.910,3.05,224,1.000,bicubic deit_tiny_patch16_224,89.670,10.330,97.440,2.560,5.72,224,0.900,bicubic -skresnet18,89.660,10.340,97.220,2.780,11.96,224,0.875,bicubic +skresnet18,89.660,10.340,97.230,2.770,11.96,224,0.875,bicubic mobilenetv2_100,89.610,10.390,97.150,2.850,3.50,224,0.875,bicubic -resnet18d,89.290,10.710,97.140,2.860,11.71,224,0.875,bicubic -vit_tiny_r_s16_p8_224,89.190,10.810,97.230,2.770,6.34,224,0.900,bicubic -vgg19,89.060,10.940,96.870,3.130,143.67,224,0.875,bilinear -hrnet_w18_small,89.060,10.940,97.100,2.900,13.19,224,0.875,bilinear -tf_mobilenetv3_large_minimal_100,88.950,11.050,96.870,3.130,3.92,224,0.875,bilinear -legacy_seresnet18,88.880,11.120,96.970,3.030,11.78,224,0.875,bicubic -regnetx_004,88.880,11.120,97.120,2.880,5.16,224,0.875,bicubic -vgg13_bn,88.780,11.220,96.970,3.030,133.05,224,0.875,bilinear -xcit_nano_12_p16_224,88.590,11.410,96.790,3.210,3.05,224,1.000,bicubic +resnet18d,89.270,10.730,97.140,2.860,11.71,224,0.875,bicubic +vit_tiny_r_s16_p8_224,89.170,10.830,97.230,2.770,6.34,224,0.900,bicubic +hrnet_w18_small,89.050,10.950,97.110,2.890,13.19,224,0.875,bilinear +vgg19,89.040,10.960,96.870,3.130,143.67,224,0.875,bilinear +tf_mobilenetv3_large_minimal_100,88.960,11.040,96.860,3.140,3.92,224,0.875,bilinear +regnetx_004,88.900,11.100,97.120,2.880,5.16,224,0.875,bicubic +legacy_seresnet18,88.880,11.120,96.980,3.020,11.78,224,0.875,bicubic +lcnet_100,88.790,11.210,96.730,3.270,2.95,224,0.875,bicubic +vgg13_bn,88.760,11.240,96.970,3.030,133.05,224,0.875,bilinear +xcit_nano_12_p16_224,88.610,11.390,96.790,3.210,3.05,224,1.000,bicubic vgg16,88.550,11.450,96.790,3.210,138.36,224,0.875,bilinear -gluon_resnet18_v1b,88.380,11.620,96.700,3.300,11.69,224,0.875,bicubic -vgg11_bn,87.520,12.480,96.810,3.190,132.87,224,0.875,bilinear -resnet18,87.370,12.630,96.260,3.740,11.69,224,0.875,bilinear -regnety_002,87.360,12.640,96.570,3.430,3.16,224,0.875,bicubic -mixer_l16_224,87.160,12.840,93.530,6.470,208.20,224,0.875,bicubic -vgg13,87.030,12.970,96.310,3.690,133.05,224,0.875,bilinear -vgg11,86.580,13.420,96.290,3.710,132.86,224,0.875,bilinear -dla60x_c,86.280,13.720,96.160,3.840,1.32,224,0.875,bilinear -regnetx_002,86.200,13.800,95.970,4.030,2.68,224,0.875,bicubic -tf_mobilenetv3_small_100,85.210,14.790,95.780,4.220,2.54,224,0.875,bilinear -dla46x_c,84.250,15.750,95.280,4.720,1.07,224,0.875,bilinear -dla46_c,83.640,16.360,94.910,5.090,1.30,224,0.875,bilinear -tf_mobilenetv3_small_075,83.480,16.520,94.800,5.200,2.04,224,0.875,bilinear -tf_mobilenetv3_small_minimal_100,81.390,18.610,93.670,6.330,2.04,224,0.875,bilinear +gluon_resnet18_v1b,88.400,11.600,96.680,3.320,11.69,224,0.875,bicubic +tinynet_c,87.770,12.230,96.370,3.630,2.46,184,0.875,bicubic +vgg11_bn,87.500,12.500,96.820,3.180,132.87,224,0.875,bilinear +resnet18,87.390,12.610,96.290,3.710,11.69,224,0.875,bilinear +regnety_002,87.380,12.620,96.590,3.410,3.16,224,0.875,bicubic +mixer_l16_224,87.150,12.850,93.510,6.490,208.20,224,0.875,bicubic +vgg13,87.050,12.950,96.320,3.680,133.05,224,0.875,bilinear +vgg11,86.550,13.450,96.280,3.720,132.86,224,0.875,bilinear +dla60x_c,86.290,13.710,96.160,3.840,1.32,224,0.875,bilinear +regnetx_002,86.190,13.810,95.980,4.020,2.68,224,0.875,bicubic +lcnet_075,85.990,14.010,95.680,4.320,2.36,224,0.875,bicubic +tf_mobilenetv3_small_100,85.210,14.790,95.770,4.230,2.54,224,0.875,bilinear +tinynet_d,84.750,15.250,95.180,4.820,2.34,152,0.875,bicubic +dla46x_c,84.250,15.750,95.270,4.730,1.07,224,0.875,bilinear +mnasnet_small,83.990,16.010,94.920,5.080,2.03,224,0.875,bicubic +mobilenetv2_050,83.890,16.110,94.710,5.290,1.97,224,0.875,bicubic +dla46_c,83.650,16.350,94.920,5.080,1.30,224,0.875,bilinear +tf_mobilenetv3_small_075,83.510,16.490,94.800,5.200,2.04,224,0.875,bilinear +lcnet_050,81.780,18.220,93.710,6.290,1.88,224,0.875,bicubic +tf_mobilenetv3_small_minimal_100,81.380,18.620,93.670,6.330,2.04,224,0.875,bilinear +tinynet_e,78.900,21.100,92.560,7.440,2.04,106,0.875,bicubic diff --git a/results/results-imagenet-a.csv b/results/results-imagenet-a.csv index aa1409c45f..900004d5f4 100644 --- a/results/results-imagenet-a.csv +++ b/results/results-imagenet-a.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation,top1_diff,top5_diff,rank_diff -tf_efficientnet_l2_ns,84.707,15.293,96.027,3.973,480.31,800,0.960,bicubic,-13.833,-3.793,+1 -tf_efficientnet_l2_ns_475,83.360,16.640,95.480,4.520,480.31,475,0.936,bicubic,-15.130,-4.350,+2 -beit_large_patch16_512,82.893,17.107,95.693,4.307,305.67,512,1.000,bicubic,-15.667,-4.147,-2 -beit_large_patch16_384,80.187,19.813,94.787,5.213,305.00,384,1.000,bicubic,-18.313,-5.033,-1 -vit_large_patch16_384,71.067,28.933,89.667,10.333,304.72,384,1.000,bicubic,-27.143,-10.133,0 -swin_large_patch4_window12_384,70.773,29.227,90.600,9.400,196.74,384,1.000,bicubic,-27.247,-9.090,+1 -beit_large_patch16_224,69.013,30.987,89.947,10.053,304.43,224,0.900,bicubic,-29.157,-9.813,-1 -beit_base_patch16_384,66.947,33.053,89.080,10.920,86.74,384,1.000,bicubic,-30.883,-10.620,+3 -tf_efficientnet_b7_ns,66.880,33.120,88.507,11.493,66.35,600,0.949,bicubic,-31.000,-11.213,-1 -tf_efficientnetv2_xl_in21ft1k,66.480,33.520,86.773,13.227,208.12,512,1.000,bicubic,-31.190,-12.717,+4 -tf_efficientnetv2_l_in21ft1k,65.907,34.093,87.693,12.307,118.52,480,1.000,bicubic,-31.773,-11.977,+2 -swin_base_patch4_window12_384,65.333,34.667,88.600,11.400,87.90,384,1.000,bicubic,-32.537,-11.110,-3 -vit_base_patch16_384,62.947,37.053,86.093,13.907,86.86,384,1.000,bicubic,-34.883,-13.577,-1 -cait_m48_448,62.093,37.907,86.440,13.560,356.46,448,1.000,bicubic,-35.387,-13.110,+12 -tf_efficientnet_b6_ns,61.640,38.360,84.787,15.213,43.04,528,0.942,bicubic,-35.990,-14.793,+3 -swin_large_patch4_window7_224,61.293,38.707,86.520,13.480,196.53,224,0.900,bicubic,-36.367,-13.060,-1 -vit_large_r50_s32_384,61.147,38.853,83.773,16.227,329.09,384,1.000,bicubic,-36.713,-15.897,-7 -ig_resnext101_32x48d,61.040,38.960,83.227,16.773,828.41,224,0.875,bilinear,-36.600,-16.363,-1 -tf_efficientnetv2_m_in21ft1k,60.853,39.147,85.267,14.733,54.14,480,1.000,bicubic,-36.627,-14.263,+8 -tf_efficientnet_b5_ns,59.800,40.200,84.213,15.787,30.39,456,0.934,bicubic,-37.690,-15.417,+5 -xcit_large_24_p8_384_dist,59.787,40.213,85.333,14.667,188.93,384,1.000,bicubic,-37.743,-14.207,+1 -resnetv2_152x4_bitm,59.587,40.413,83.133,16.867,936.53,480,1.000,bilinear,-37.903,-16.487,+2 -dm_nfnet_f5,58.307,41.693,82.533,17.467,377.21,544,0.954,bicubic,-39.233,-17.037,-2 -dm_nfnet_f6,58.280,41.720,81.907,18.093,438.36,576,0.956,bicubic,-39.330,-17.643,-5 -ig_resnext101_32x32d,57.960,42.040,80.733,19.267,468.53,224,0.875,bilinear,-39.400,-18.947,+4 -dm_nfnet_f4,57.787,42.213,81.507,18.493,316.07,512,0.951,bicubic,-39.783,-18.003,-6 -cait_m36_384,57.667,42.333,84.693,15.307,271.22,384,1.000,bicubic,-39.733,-14.817,+1 -xcit_medium_24_p8_384_dist,56.587,43.413,83.440,16.560,84.32,384,1.000,bicubic,-40.713,-16.070,+4 -dm_nfnet_f3,55.333,44.667,80.480,19.520,254.92,416,0.940,bicubic,-42.017,-19.080,+1 -vit_large_patch16_224,55.333,44.667,79.840,20.160,304.33,224,0.900,bicubic,-42.307,-19.870,-14 -xcit_small_24_p8_384_dist,54.400,45.600,81.720,18.280,47.63,384,1.000,bicubic,-42.850,-17.890,+5 -vit_base_r50_s16_384,54.333,45.667,80.840,19.160,98.95,384,1.000,bicubic,-42.847,-18.720,+9 -cait_s36_384,54.240,45.760,81.267,18.733,68.37,384,1.000,bicubic,-43.100,-18.263,-2 -ig_resnext101_32x16d,53.053,46.947,76.867,23.133,194.03,224,0.875,bilinear,-43.767,-22.733,+30 -tf_efficientnetv2_l,52.933,47.067,79.000,21.000,118.52,480,1.000,bicubic,-44.337,-20.550,-1 -xcit_large_24_p16_384_dist,52.813,47.187,81.720,18.280,189.10,384,1.000,bicubic,-44.717,-17.760,-13 -resnetv2_152x2_bitm,52.733,47.267,81.187,18.813,236.34,448,1.000,bilinear,-44.297,-18.403,+14 -resnetv2_101x3_bitm,52.400,47.600,79.867,20.133,387.93,448,1.000,bilinear,-44.620,-19.623,+15 -swin_base_patch4_window7_224,51.827,48.173,80.427,19.573,87.77,224,0.900,bicubic,-45.433,-19.103,-4 -swsl_resnext101_32x8d,51.187,48.813,78.200,21.800,88.79,224,0.875,bilinear,-46.013,-21.370,-1 -tf_efficientnet_b4_ns,50.893,49.107,79.040,20.960,19.34,380,0.922,bicubic,-46.037,-20.540,+17 -beit_base_patch16_224,50.707,49.293,79.893,20.107,86.53,224,0.900,bicubic,-46.373,-19.727,+7 -xcit_small_12_p8_384_dist,50.533,49.467,79.600,20.400,26.21,384,1.000,bicubic,-46.697,-19.880,-6 -resnetv2_152x2_bit_teacher_384,50.067,49.933,77.733,22.267,236.34,384,1.000,bicubic,-46.743,-21.717,+21 -cait_s24_384,49.400,50.600,78.640,21.360,47.06,384,1.000,bicubic,-47.680,-20.970,+2 -xcit_medium_24_p16_384_dist,49.227,50.773,79.720,20.280,84.40,384,1.000,bicubic,-48.053,-19.740,-13 -deit_base_distilled_patch16_384,49.040,50.960,79.000,21.000,87.63,384,1.000,bicubic,-47.930,-20.490,+9 -dm_nfnet_f2,48.387,51.613,76.760,23.240,193.78,352,0.920,bicubic,-48.643,-22.680,+4 -tf_efficientnetv2_s_in21ft1k,48.053,51.947,77.720,22.280,21.46,384,1.000,bicubic,-48.687,-21.700,+22 -tf_efficientnet_b8,47.987,52.013,76.467,23.533,87.41,672,0.954,bicubic,-49.223,-23.033,-12 -xcit_large_24_p8_224_dist,47.893,52.107,79.133,20.867,188.93,224,1.000,bicubic,-49.167,-20.287,-1 -resnest269e,47.653,52.347,74.000,26.000,110.93,416,0.928,bicubic,-48.867,-25.350,+39 -xcit_large_24_p8_224,46.867,53.133,74.400,25.600,188.93,224,1.000,bicubic,-49.533,-24.740,+45 -xcit_small_24_p16_384_dist,46.773,53.227,77.013,22.987,47.67,384,1.000,bicubic,-50.357,-22.437,-11 -tf_efficientnet_b8_ap,46.453,53.547,76.160,23.840,87.41,672,0.954,bicubic,-50.657,-23.500,-11 -resnetv2_50x3_bitm,46.293,53.707,76.627,23.373,217.32,448,1.000,bilinear,-50.437,-22.913,+16 -efficientnetv2_rw_m,46.160,53.840,75.827,24.173,53.24,416,1.000,bicubic,-50.830,-23.703,-2 -swsl_resnext101_32x16d,45.933,54.067,72.053,27.947,194.03,224,0.875,bilinear,-50.667,-27.477,+26 -ecaresnet269d,45.720,54.280,74.920,25.080,102.09,352,1.000,bicubic,-51.370,-24.550,-13 -vit_small_patch16_384,45.360,54.640,76.160,23.840,22.20,384,1.000,bicubic,-51.330,-23.320,+16 -tf_efficientnet_b7_ap,45.267,54.733,74.027,25.973,66.35,600,0.949,bicubic,-51.933,-25.513,-21 -tf_efficientnetv2_m,45.253,54.747,74.267,25.733,54.14,480,1.000,bicubic,-51.887,-25.143,-20 -vit_small_r26_s32_384,45.240,54.760,75.427,24.573,36.47,384,1.000,bicubic,-51.440,-24.143,+15 -ig_resnext101_32x8d,45.213,54.787,70.840,29.160,88.79,224,0.875,bilinear,-51.097,-28.590,+42 -xcit_medium_24_p8_224_dist,45.160,54.840,76.720,23.280,84.32,224,1.000,bicubic,-51.770,-22.670,-6 -dm_nfnet_f1,44.853,55.147,73.653,26.347,132.63,320,0.910,bicubic,-52.037,-25.757,-5 -eca_nfnet_l2,44.627,55.373,75.773,24.227,56.72,384,1.000,bicubic,-52.463,-23.737,-22 -crossvit_18_dagger_408,43.867,56.133,73.600,26.400,44.61,408,1.000,bicubic,-52.663,-25.660,+22 -resnest200e,43.867,56.133,73.293,26.707,70.20,320,0.909,bicubic,-52.753,-26.217,+12 -cait_xs24_384,43.640,56.360,74.907,25.093,26.67,384,1.000,bicubic,-52.920,-24.513,+17 -tresnet_xl_448,43.187,56.813,72.120,27.880,78.44,448,0.875,bilinear,-52.783,-27.000,+57 -vit_base_patch16_224,43.107,56.893,72.547,27.453,86.57,224,0.900,bicubic,-53.763,-26.983,-10 -xcit_small_12_p16_384_dist,43.067,56.933,73.787,26.213,26.25,384,1.000,bicubic,-53.873,-25.613,-16 -xcit_medium_24_p8_224,43.027,56.973,70.080,29.920,84.32,224,1.000,bicubic,-53.083,-28.810,+45 -resnetrs420,42.440,57.560,70.120,29.880,191.89,416,1.000,bicubic,-54.470,-29.340,-15 -xcit_tiny_24_p8_384_dist,42.253,57.747,72.773,27.227,12.11,384,1.000,bicubic,-54.297,-26.547,+12 -tf_efficientnet_b7,42.200,57.800,72.547,27.453,66.35,600,0.949,bicubic,-54.810,-26.973,-23 -crossvit_15_dagger_408,41.773,58.227,71.973,28.027,28.50,408,1.000,bicubic,-54.617,-27.177,+22 -swsl_resnext101_32x4d,41.653,58.347,71.867,28.133,44.18,224,0.875,bilinear,-54.767,-27.603,+17 -xcit_small_24_p8_224,41.640,58.360,70.840,29.160,47.63,224,1.000,bicubic,-54.760,-28.140,+17 -vit_large_r50_s32_224,41.520,58.480,70.360,29.640,328.99,224,0.900,bicubic,-55.270,-28.990,-14 -xcit_small_24_p8_224_dist,41.467,58.533,73.707,26.293,47.63,224,1.000,bicubic,-55.403,-25.773,-19 -resmlp_big_24_224_in22ft1k,40.453,59.547,74.653,25.347,129.14,224,0.875,bicubic,-56.167,-24.697,-1 -tf_efficientnet_b6_ap,40.333,59.667,71.400,28.600,43.04,528,0.942,bicubic,-56.747,-28.030,-36 -tresnet_l_448,40.133,59.867,69.707,30.293,55.99,448,0.875,bilinear,-55.737,-29.413,+50 -deit_base_patch16_384,39.880,60.120,70.440,29.560,86.86,384,1.000,bicubic,-56.270,-28.750,+29 -resnetrs350,39.347,60.653,68.293,31.707,163.96,384,1.000,bicubic,-57.413,-31.067,-18 -vit_large_patch32_384,38.867,61.133,68.573,31.427,306.63,384,1.000,bicubic,-56.963,-30.577,+50 -resnetv2_101x1_bitm,38.240,61.760,70.267,29.733,44.54,448,1.000,bilinear,-57.860,-29.013,+33 -xcit_small_12_p8_224_dist,38.173,61.827,71.320,28.680,26.21,224,1.000,bicubic,-58.527,-28.070,-16 -resnet200d,37.827,62.173,68.200,31.800,64.69,320,1.000,bicubic,-58.913,-31.140,-21 -seresnet152d,37.440,62.560,69.053,30.947,66.84,320,1.000,bicubic,-59.330,-30.397,-24 -xcit_large_24_p16_224_dist,37.307,62.693,71.427,28.573,189.10,224,1.000,bicubic,-59.493,-27.923,-27 -twins_svt_large,37.253,62.747,69.320,30.680,99.27,224,0.900,bicubic,-58.997,-29.850,+14 -xcit_small_12_p8_224,37.200,62.800,68.200,31.800,26.21,224,1.000,bicubic,-58.910,-30.960,+25 -eca_nfnet_l1,37.013,62.987,70.560,29.440,41.41,320,1.000,bicubic,-59.687,-28.730,-23 -regnetz_d,36.760,63.240,70.080,29.920,27.58,320,0.950,bicubic,-59.830,-29.300,-12 -efficientnetv2_rw_s,36.547,63.453,68.040,31.960,23.94,384,1.000,bicubic,-59.993,-31.320,-9 -vit_base_patch32_384,36.507,63.493,69.147,30.853,88.30,384,1.000,bicubic,-59.993,-30.263,-6 -regnety_160,36.440,63.560,68.773,31.227,83.59,288,1.000,bicubic,-59.900,-30.557,+3 -cait_xxs36_384,35.933,64.067,67.293,32.707,17.37,384,1.000,bicubic,-59.927,-31.797,+35 -jx_nest_base,35.920,64.080,66.613,33.387,67.72,224,0.875,bicubic,-60.320,-32.597,+7 -pit_b_distilled_224,35.507,64.493,68.840,31.160,74.79,224,0.900,bicubic,-61.163,-30.510,-24 -tf_efficientnet_b3_ns,35.493,64.507,67.720,32.280,12.23,300,0.904,bicubic,-60.877,-31.630,-3 -tf_efficientnet_b6,34.947,65.053,67.293,32.707,43.04,528,0.942,bicubic,-61.723,-32.077,-25 -resnetrs270,34.587,65.413,65.133,34.867,129.86,352,1.000,bicubic,-62.103,-34.217,-31 -tf_efficientnet_b5_ap,34.347,65.653,67.040,32.960,30.39,456,0.934,bicubic,-62.333,-32.420,-30 -xcit_tiny_12_p8_384_dist,34.213,65.787,66.160,33.840,6.71,384,1.000,bicubic,-61.847,-32.980,+16 -vit_base_patch16_224_miil,34.133,65.867,64.547,35.453,86.54,224,0.875,bilinear,-62.307,-34.763,-14 -xcit_medium_24_p16_224_dist,34.013,65.987,67.627,32.373,84.40,224,1.000,bicubic,-62.587,-31.643,-27 -resmlp_big_24_distilled_224,33.787,66.213,69.293,30.707,129.14,224,0.875,bicubic,-62.683,-30.017,-17 -resnet152d,33.707,66.293,65.480,34.520,60.21,320,1.000,bicubic,-62.643,-33.910,-10 -tresnet_m_448,33.627,66.373,64.280,35.720,31.39,448,0.875,bilinear,-61.363,-34.700,+95 -xcit_tiny_24_p16_384_dist,33.573,66.427,65.227,34.773,12.12,384,1.000,bicubic,-62.347,-33.993,+16 -twins_pcpvt_large,33.133,66.867,67.920,32.080,60.99,224,0.900,bicubic,-63.017,-31.220,-1 -swsl_resnext50_32x4d,33.053,66.947,65.187,34.813,25.03,224,0.875,bilinear,-62.827,-33.833,+17 -twins_svt_base,33.000,67.000,65.613,34.387,56.07,224,0.900,bicubic,-63.160,-33.447,-4 -pit_b_224,32.760,67.240,62.227,37.773,73.76,224,0.900,bicubic,-62.870,-36.443,+35 -xcit_large_24_p16_224,32.653,67.347,61.667,38.333,189.10,224,1.000,bicubic,-62.757,-36.963,+53 -ssl_resnext101_32x16d,32.400,67.600,63.707,36.293,194.03,224,0.875,bilinear,-63.400,-35.473,+21 -swin_small_patch4_window7_224,32.347,67.653,65.200,34.800,49.61,224,0.900,bicubic,-63.533,-33.920,+13 -jx_nest_small,32.307,67.693,63.813,36.187,38.35,224,0.875,bicubic,-63.663,-35.227,+5 -resnetv2_152x2_bit_teacher,31.973,68.027,63.600,36.400,236.34,224,0.875,bicubic,-64.117,-35.670,0 -resnest101e,31.587,68.413,64.040,35.960,48.28,256,0.875,bilinear,-64.273,-35.170,+13 -cait_s24_224,31.107,68.893,64.200,35.800,46.92,224,1.000,bicubic,-65.283,-34.960,-26 -tf_efficientnet_b5,31.107,68.893,64.493,35.507,30.39,456,0.934,bicubic,-65.233,-34.817,-22 -crossvit_base_240,31.040,68.960,60.960,39.040,105.03,240,0.875,bicubic,-64.480,-37.810,+36 -efficientnet_b4,30.547,69.453,64.333,35.667,19.34,384,1.000,bicubic,-65.613,-34.867,-16 -crossvit_18_240,30.387,69.613,61.547,38.453,43.27,240,0.875,bicubic,-65.063,-37.243,+38 -xcit_small_24_p16_224_dist,30.347,69.653,64.440,35.560,47.67,224,1.000,bicubic,-65.863,-34.770,-20 -resnetrs200,30.187,69.813,62.773,37.227,93.21,320,1.000,bicubic,-66.333,-36.577,-39 -dm_nfnet_f0,30.173,69.827,62.360,37.640,71.49,256,0.900,bicubic,-65.967,-36.890,-16 -crossvit_18_dagger_240,30.120,69.880,61.613,38.387,44.27,240,0.875,bicubic,-65.440,-37.447,+23 -xcit_medium_24_p16_224,29.920,70.080,59.213,40.787,84.40,224,1.000,bicubic,-65.600,-39.607,+28 -swsl_resnet50,29.773,70.227,63.720,36.280,25.56,224,0.875,bilinear,-65.627,-35.570,+38 -twins_pcpvt_base,29.773,70.227,64.467,35.533,43.83,224,0.900,bicubic,-66.017,-34.663,+6 -cait_xxs24_384,29.693,70.307,63.733,36.267,12.03,384,1.000,bicubic,-65.577,-35.227,+42 -convit_base,29.333,70.667,61.520,38.480,86.54,224,0.875,bicubic,-66.217,-37.370,+19 -deit_base_distilled_patch16_224,29.320,70.680,64.093,35.907,87.34,224,0.900,bicubic,-66.780,-35.097,-18 -tf_efficientnetv2_s,29.000,71.000,61.120,38.880,21.46,384,1.000,bicubic,-67.340,-38.080,-35 -ssl_resnext101_32x8d,28.893,71.107,60.613,39.387,88.79,224,0.875,bilinear,-66.577,-38.507,+25 -resnet101d,28.747,71.253,62.013,37.987,44.57,320,1.000,bicubic,-67.553,-37.217,-35 -resnetrs152,28.640,71.360,60.000,40.000,86.62,320,1.000,bicubic,-67.930,-39.240,-57 -xcit_tiny_24_p8_224,28.507,71.493,60.253,39.747,12.11,224,1.000,bicubic,-67.163,-38.797,+6 -xcit_tiny_24_p8_224_dist,28.467,71.533,61.173,38.827,12.11,224,1.000,bicubic,-67.353,-38.037,-6 -regnetz_c,28.453,71.547,63.160,36.840,13.46,320,0.940,bicubic,-67.347,-35.940,-6 -crossvit_15_dagger_240,28.227,71.773,60.013,39.987,28.21,240,0.875,bicubic,-67.443,-38.807,+4 -xcit_small_24_p16_224,28.040,71.960,58.467,41.533,47.67,224,1.000,bicubic,-67.490,-40.303,+13 -coat_lite_small,27.453,72.547,58.427,41.573,19.84,224,0.900,bicubic,-68.077,-40.433,+10 -deit_base_patch16_224,27.147,72.853,58.693,41.307,86.57,224,0.900,bicubic,-68.293,-40.147,+18 -resnetv2_50x1_bitm,27.093,72.907,62.600,37.400,25.55,448,1.000,bilinear,-67.927,-36.450,+54 -xcit_small_12_p16_224_dist,26.867,73.133,59.587,40.413,26.25,224,1.000,bicubic,-69.163,-39.543,-27 -vit_small_patch16_224,26.760,73.240,58.880,41.120,22.05,224,0.900,bicubic,-68.610,-40.270,+22 -regnety_032,26.067,73.933,60.880,39.120,19.44,288,1.000,bicubic,-69.913,-38.310,-28 -nfnet_l0,25.960,74.040,61.653,38.347,35.07,288,1.000,bicubic,-70.170,-37.587,-38 -tf_efficientnet_b4,25.853,74.147,59.880,40.120,19.34,380,0.922,bicubic,-70.037,-39.290,-25 -tf_efficientnet_b4_ap,25.840,74.160,59.640,40.360,19.34,380,0.922,bicubic,-70.330,-39.640,-46 -ecaresnet101d,25.760,74.240,58.707,41.293,44.57,224,0.875,bicubic,-69.780,-40.423,0 -ecaresnet50t,25.640,74.360,59.720,40.280,25.57,320,0.950,bicubic,-69.860,-39.180,+6 -visformer_small,25.480,74.520,58.520,41.480,40.22,224,0.900,bicubic,-70.020,-40.600,+4 -crossvit_15_240,25.440,74.560,57.320,42.680,27.53,240,0.875,bicubic,-69.680,-41.610,+27 -coat_mini,25.387,74.613,57.413,42.587,10.34,224,0.900,bicubic,-69.603,-41.367,+45 -resnetv2_50x1_bit_distilled,25.107,74.893,59.373,40.627,25.55,224,0.875,bicubic,-71.003,-39.907,-45 -xcit_small_12_p16_224,25.080,74.920,55.653,44.347,26.25,224,1.000,bicubic,-70.320,-43.177,+10 -convit_small,24.773,75.227,56.947,43.053,27.78,224,0.875,bicubic,-70.407,-41.973,+19 -gc_efficientnetv2_rw_t,24.560,75.440,57.533,42.467,13.68,288,1.000,bicubic,-71.180,-41.487,-21 -tnt_s_patch16_224,24.547,75.453,57.773,42.227,23.76,224,0.900,bicubic,-70.493,-41.067,+34 -eca_nfnet_l0,24.493,75.507,59.600,40.400,24.14,288,1.000,bicubic,-71.467,-39.610,-39 -efficientnetv2_rw_t,24.240,75.760,57.187,42.813,13.65,288,1.000,bicubic,-71.370,-41.883,-14 -xcit_tiny_12_p16_384_dist,24.160,75.840,57.000,43.000,6.72,384,1.000,bicubic,-70.950,-42.020,+21 -tf_efficientnet_b2_ns,24.120,75.880,57.480,42.520,9.11,260,0.890,bicubic,-71.630,-41.640,-27 -vit_small_r26_s32_224,23.933,76.067,55.960,44.040,36.43,224,0.900,bicubic,-71.707,-43.230,-20 -twins_svt_small,23.800,76.200,57.253,42.747,24.06,224,0.900,bicubic,-71.410,-41.637,+10 -ssl_resnext101_32x4d,23.760,76.240,57.133,42.867,44.18,224,0.875,bilinear,-71.670,-41.997,-4 -vit_small_patch32_384,23.547,76.453,56.907,43.093,22.92,384,1.000,bicubic,-71.513,-41.923,+20 -crossvit_small_240,23.413,76.587,56.400,43.600,26.86,240,0.875,bicubic,-71.417,-42.620,+43 -jx_nest_tiny,23.133,76.867,56.053,43.947,17.06,224,0.875,bicubic,-72.117,-42.927,+3 -efficientnet_b3,23.120,76.880,55.813,44.187,12.23,320,1.000,bicubic,-72.600,-43.107,-30 -nasnetalarge,23.120,76.880,54.533,45.467,88.75,331,0.911,bicubic,-72.560,-44.397,-30 -pnasnet5large,23.107,76.893,53.320,46.680,86.06,331,0.911,bicubic,-72.613,-45.720,-33 -levit_384,23.013,76.987,55.840,44.160,39.13,224,0.900,bicubic,-72.517,-43.210,-21 -halo2botnet50ts_256,22.893,77.107,52.707,47.293,22.64,256,0.950,bicubic,-71.867,-45.953,+44 -resnet61q,22.693,77.307,55.440,44.560,36.85,288,1.000,bicubic,-73.097,-43.550,-40 -resmlp_big_24_224,22.627,77.373,54.067,45.933,129.14,224,0.875,bicubic,-72.023,-44.423,+49 -twins_pcpvt_small,22.440,77.560,56.547,43.453,24.11,224,0.900,bicubic,-72.790,-42.333,-3 -vit_base_patch32_224,22.253,77.747,53.760,46.240,88.22,224,0.900,bicubic,-72.757,-45.260,+20 -pit_s_distilled_224,22.147,77.853,56.867,43.133,24.04,224,0.900,bicubic,-73.093,-42.183,-6 -lamhalobotnet50ts_256,22.080,77.920,51.360,48.640,22.57,256,0.950,bicubic,-72.720,-47.190,+33 -xcit_tiny_12_p8_224_dist,22.040,77.960,53.920,46.080,6.71,224,1.000,bicubic,-73.040,-44.990,+4 -halonet50ts,21.667,78.333,52.507,47.493,22.73,256,0.940,bicubic,-73.383,-46.463,+9 -tresnet_m,21.267,78.733,53.480,46.520,31.39,224,0.875,bilinear,-74.463,-45.550,-45 -pit_s_224,21.040,78.960,53.520,46.480,23.46,224,0.900,bicubic,-73.540,-45.200,+47 -swin_tiny_patch4_window7_224,21.027,78.973,55.627,44.373,28.29,224,0.900,bicubic,-74.103,-43.223,-6 -convmixer_1536_20,20.907,79.093,55.267,44.733,51.63,224,0.960,bicubic,-74.173,-43.763,-2 -xcit_tiny_12_p8_224,20.893,79.107,52.307,47.693,6.71,224,1.000,bicubic,-73.817,-46.723,+33 -regnetz_b,20.787,79.213,53.453,46.547,9.72,288,0.940,bicubic,-74.273,-45.537,+1 -deit_small_distilled_patch16_224,20.680,79.320,54.853,45.147,22.44,224,0.900,bicubic,-74.030,-43.807,+32 -resnet51q,20.533,79.467,55.133,44.867,35.70,288,1.000,bilinear,-75.347,-44.117,-66 -resnetrs101,20.280,79.720,52.533,47.467,63.62,288,0.940,bicubic,-75.140,-46.497,-28 -resnest50d_4s2x40d,20.080,79.920,52.920,47.080,30.42,224,0.875,bicubic,-74.870,-46.150,+9 -xcit_nano_12_p8_384_dist,19.680,80.320,50.413,49.587,3.05,384,1.000,bicubic,-73.800,-48.107,+146 -ssl_resnext50_32x4d,19.680,80.320,53.213,46.787,25.03,224,0.875,bilinear,-75.180,-45.657,+15 -haloregnetz_b,19.560,80.440,49.720,50.280,11.68,224,0.940,bicubic,-75.150,-49.110,+27 -tresnet_xl,19.320,80.680,52.867,47.133,78.44,224,0.875,bilinear,-76.120,-46.193,-35 -resnetv2_101,19.307,80.693,48.800,51.200,44.54,224,0.950,bicubic,-76.323,-50.190,-51 -lambda_resnet50ts,19.120,80.880,49.307,50.693,21.54,256,0.950,bicubic,-75.650,-49.163,+19 -gluon_senet154,19.067,80.933,47.160,52.840,115.09,224,0.875,bicubic,-75.863,-51.610,+5 -gluon_seresnext101_64x4d,18.960,81.040,48.960,51.040,88.23,224,0.875,bicubic,-75.980,-49.860,+3 -tf_efficientnet_b1_ns,18.920,81.080,51.707,48.293,7.79,240,0.882,bicubic,-76.250,-47.413,-24 -legacy_senet154,18.920,81.080,47.627,52.373,115.09,224,0.875,bilinear,-76.140,-51.423,-14 -levit_256,18.893,81.107,49.653,50.347,18.89,224,0.900,bicubic,-76.137,-49.237,-8 -rexnet_200,18.880,81.120,52.587,47.413,16.37,224,0.875,bicubic,-76.060,-46.413,-3 -repvgg_b3,18.880,81.120,49.800,50.200,123.09,224,0.875,bilinear,-75.690,-48.990,+28 -deit_small_patch16_224,18.720,81.280,51.093,48.907,22.05,224,0.900,bicubic,-75.680,-47.617,+46 -mixer_b16_224_miil,18.480,81.520,50.987,49.013,59.88,224,0.875,bilinear,-76.830,-47.903,-38 -seresnext50_32x4d,18.227,81.773,50.907,49.093,27.56,224,0.875,bicubic,-76.803,-47.983,-14 -cait_xxs36_224,18.053,81.947,49.267,50.733,17.30,224,1.000,bicubic,-76.207,-49.443,+57 -ecaresnet50d,17.960,82.040,51.453,48.547,25.58,224,0.875,bicubic,-76.660,-47.437,+18 -sehalonet33ts,17.827,82.173,47.347,52.653,13.69,256,0.940,bicubic,-76.953,-51.223,+3 -resnest50d_1s4x24d,17.640,82.360,49.613,50.387,25.68,224,0.875,bicubic,-77.130,-49.367,+3 -tf_efficientnet_lite4,17.627,82.373,50.253,49.747,13.01,380,0.920,bilinear,-77.233,-48.767,-3 -vit_tiny_patch16_384,17.547,82.453,49.920,50.080,5.79,384,1.000,bicubic,-76.103,-48.680,+110 -gluon_seresnext101_32x4d,17.373,82.627,46.467,53.533,48.96,224,0.875,bicubic,-77.547,-52.343,-10 -resnest50d,17.293,82.707,50.533,49.467,27.48,224,0.875,bilinear,-77.537,-48.347,-4 -inception_v4,17.293,82.707,45.387,54.613,42.68,299,0.875,bicubic,-77.077,-53.193,+38 -efficientnet_el,17.013,82.987,49.933,50.067,10.59,300,0.904,bicubic,-78.107,-49.047,-37 -tf_efficientnet_b3_ap,17.000,83.000,49.387,50.613,12.23,300,0.904,bicubic,-78.320,-49.513,-51 -xcit_tiny_24_p16_224_dist,16.960,83.040,47.253,52.747,12.12,224,1.000,bicubic,-77.560,-51.537,+19 -resmlp_36_distilled_224,16.707,83.293,51.093,48.907,44.69,224,0.875,bicubic,-78.163,-47.697,-15 -gluon_resnext101_64x4d,16.707,83.293,43.933,56.067,83.46,224,0.875,bicubic,-77.933,-54.737,+5 -tf_efficientnet_b3,16.680,83.320,49.107,50.893,12.23,300,0.904,bicubic,-78.340,-49.803,-27 -xception71,16.600,83.400,45.240,54.760,42.34,299,0.903,bicubic,-77.690,-53.400,+38 -tf_efficientnetv2_b3,16.493,83.507,48.400,51.600,14.36,300,0.904,bicubic,-78.677,-50.420,-47 -inception_resnet_v2,16.467,83.533,44.720,55.280,55.84,299,0.897,bicubic,-78.073,-53.910,+10 -gluon_resnet152_v1s,16.467,83.533,44.227,55.773,60.32,224,0.875,bicubic,-78.583,-54.363,-37 -tresnet_l,16.413,83.587,49.587,50.413,55.99,224,0.875,bilinear,-78.877,-49.423,-58 -resmlp_24_distilled_224,16.253,83.747,49.960,50.040,30.02,224,0.875,bicubic,-78.197,-48.810,+19 -gluon_xception65,16.240,83.760,45.933,54.067,39.92,299,0.903,bicubic,-78.020,-52.637,+35 -gcresnet50t,16.227,83.773,48.107,51.893,25.90,256,0.900,bicubic,-78.633,-50.693,-23 -gernet_l,16.187,83.813,46.973,53.027,31.08,256,0.875,bilinear,-78.923,-51.927,-50 -wide_resnet50_2,16.187,83.813,48.053,51.947,68.88,224,0.875,bicubic,-78.863,-50.877,-41 -gluon_resnet152_v1d,16.160,83.840,44.107,55.893,60.21,224,0.875,bicubic,-78.590,-54.633,-15 -gmlp_s16_224,16.093,83.907,44.693,55.307,19.42,224,0.875,bicubic,-78.057,-53.807,+46 -ens_adv_inception_resnet_v2,16.093,83.907,43.413,56.587,55.84,299,0.897,bicubic,-78.067,-55.197,+43 -gcresnext50ts,16.040,83.960,46.080,53.920,15.67,256,0.900,bicubic,-78.440,-52.590,+6 -xcit_tiny_24_p16_224,16.027,83.973,45.600,54.400,12.12,224,1.000,bicubic,-78.053,-52.910,+53 -xception65,15.907,84.093,43.467,56.533,39.92,299,0.903,bicubic,-77.863,-54.893,+75 -ssl_resnet50,15.840,84.160,49.280,50.720,25.56,224,0.875,bilinear,-78.630,-49.640,+6 -repvgg_b3g4,15.813,84.187,47.373,52.627,83.83,224,0.875,bilinear,-78.717,-51.587,-3 -ecaresnet26t,15.480,84.520,47.800,52.200,16.01,320,0.950,bicubic,-78.820,-50.910,+18 -ecaresnet101d_pruned,15.480,84.520,47.933,52.067,24.88,224,0.875,bicubic,-79.590,-51.047,-57 -regnety_320,15.453,84.547,44.560,55.440,145.05,224,0.875,bicubic,-79.097,-54.290,-9 -coat_tiny,15.440,84.560,45.560,54.440,5.50,224,0.900,bicubic,-78.140,-52.850,+85 -convmixer_768_32,15.360,84.640,47.667,52.333,21.11,224,0.960,bicubic,-79.130,-51.183,-6 -ecaresnetlight,15.160,84.840,45.680,54.320,30.16,224,0.875,bicubic,-79.610,-53.120,-31 -skresnext50_32x4d,15.107,84.893,44.467,55.533,27.48,224,0.875,bicubic,-79.153,-54.003,+19 -cait_xxs24_224,14.893,85.107,44.547,55.453,11.96,224,1.000,bicubic,-78.697,-53.893,+79 -levit_192,14.667,85.333,44.627,55.373,10.95,224,0.900,bicubic,-79.513,-53.933,+27 -efficientnet_el_pruned,14.373,85.627,45.853,54.147,10.59,300,0.904,bicubic,-80.017,-52.897,+3 -rexnet_150,14.347,85.653,46.587,53.413,9.73,224,0.875,bicubic,-80.123,-52.203,-5 -efficientnet_b2,14.307,85.693,45.773,54.227,9.11,288,1.000,bicubic,-80.323,-52.937,-26 -coat_lite_mini,14.280,85.720,44.347,55.653,11.01,224,0.900,bicubic,-79.770,-54.193,+38 -seresnet33ts,14.267,85.733,45.707,54.293,19.78,256,0.900,bicubic,-80.603,-53.153,-49 -seresnet50,14.040,85.960,45.347,54.653,28.09,224,0.875,bicubic,-80.520,-53.403,-22 -eca_resnet33ts,14.013,85.987,46.907,53.093,19.68,256,0.900,bicubic,-80.187,-51.863,+15 -gernet_m,14.000,86.000,45.853,54.147,21.14,224,0.875,bilinear,-80.620,-53.007,-28 -legacy_seresnext101_32x4d,13.867,86.133,42.653,57.347,48.96,224,0.875,bilinear,-80.483,-55.977,-2 -gluon_resnext101_32x4d,13.667,86.333,41.480,58.520,44.18,224,0.875,bicubic,-80.873,-57.310,-23 -gluon_seresnext50_32x4d,13.453,86.547,43.507,56.493,27.56,224,0.875,bicubic,-80.877,-55.113,-2 -resmlp_36_224,13.400,86.600,46.267,53.733,44.69,224,0.875,bicubic,-80.790,-52.393,+12 -gcresnet33ts,13.360,86.640,44.480,55.520,19.88,256,0.900,bicubic,-81.120,-54.300,-19 -eca_botnext26ts_256,13.320,86.680,42.147,57.853,10.59,256,0.950,bicubic,-80.470,-56.353,+47 -repvgg_b2g4,13.240,86.760,43.453,56.547,61.76,224,0.875,bilinear,-80.600,-55.147,+41 -regnetx_320,13.187,86.813,40.240,59.760,107.81,224,0.875,bicubic,-81.253,-58.490,-16 -ese_vovnet39b,13.147,86.853,43.667,56.333,24.57,224,0.875,bicubic,-80.943,-54.993,+22 -pit_xs_distilled_224,13.120,86.880,44.440,55.560,11.00,224,0.900,bicubic,-80.700,-54.230,+42 -mixnet_xl,13.000,87.000,43.133,56.867,11.90,224,0.875,bicubic,-81.200,-55.207,+2 -efficientnet_b3_pruned,12.987,87.013,44.813,55.187,9.86,300,0.904,bicubic,-81.633,-53.957,-41 -nf_regnet_b1,12.840,87.160,44.027,55.973,10.22,288,0.900,bicubic,-81.280,-54.553,+16 -gluon_resnet101_v1d,12.747,87.253,41.280,58.720,44.57,224,0.875,bicubic,-81.453,-57.290,+1 -pit_xs_224,12.747,87.253,42.627,57.373,10.62,224,0.900,bicubic,-80.373,-55.693,+93 -crossvit_9_dagger_240,12.560,87.440,41.480,58.520,8.78,240,0.875,bicubic,-80.360,-56.770,+104 -gluon_inception_v3,12.520,87.480,40.187,59.813,23.83,299,0.875,bicubic,-80.940,-58.373,+67 -resmlp_24_224,12.387,87.613,43.133,56.867,30.02,224,0.875,bicubic,-81.633,-55.197,+17 -coat_lite_tiny,12.267,87.733,41.067,58.933,5.72,224,0.900,bicubic,-80.953,-57.203,+83 -regnety_120,12.240,87.760,41.880,58.120,51.82,224,0.875,bicubic,-82.240,-56.930,-36 -gluon_resnet101_v1s,12.000,88.000,40.773,59.227,44.67,224,0.875,bicubic,-82.700,-58.047,-56 -efficientnet_em,11.960,88.040,43.667,56.333,6.90,240,0.882,bicubic,-81.880,-55.143,+27 -hrnet_w64,11.867,88.133,40.560,59.440,128.06,224,0.875,bilinear,-82.123,-58.060,+14 -xcit_tiny_12_p16_224_dist,11.707,88.293,39.840,60.160,6.72,224,1.000,bicubic,-81.693,-58.650,+65 -cspdarknet53,11.680,88.320,42.880,57.120,27.64,256,0.887,bilinear,-82.990,-55.930,-59 -nf_resnet50,11.680,88.320,45.320,54.680,25.56,288,0.940,bicubic,-82.880,-53.470,-51 -resnet50d,11.640,88.360,42.080,57.920,25.58,224,0.875,bicubic,-82.630,-56.640,-21 -botnet26t_256,11.613,88.387,40.133,59.867,12.49,256,0.950,bicubic,-81.887,-58.167,+50 -gmixer_24_224,11.600,88.400,37.173,62.827,24.72,224,0.875,bicubic,-81.240,-60.707,+94 -xception41,11.547,88.453,38.760,61.240,26.97,299,0.903,bicubic,-81.863,-59.660,+58 -vit_small_patch32_224,11.507,88.493,39.453,60.547,22.88,224,0.900,bicubic,-80.523,-58.777,+137 -dla102x2,11.400,88.600,41.240,58.760,41.28,224,0.875,bilinear,-82.560,-57.240,+7 -dpn92,11.333,88.667,39.507,60.493,37.67,224,0.875,bicubic,-82.887,-59.223,-22 -lambda_resnet26t,11.293,88.707,39.987,60.013,10.96,256,0.940,bicubic,-82.527,-58.663,+17 -regnety_080,11.253,88.747,40.627,59.373,39.18,224,0.875,bicubic,-82.927,-58.053,-15 -efficientnet_b2_pruned,11.253,88.747,41.773,58.227,8.31,260,0.890,bicubic,-82.887,-56.747,-10 -levit_128,11.213,88.787,40.053,59.947,9.21,224,0.900,bicubic,-82.127,-58.547,+55 -xcit_nano_12_p16_384_dist,11.187,88.813,39.560,60.440,3.05,384,1.000,bicubic,-80.643,-58.450,+142 -tf_efficientnet_el,11.173,88.827,41.360,58.640,10.59,300,0.904,bicubic,-83.227,-57.330,-44 -tf_efficientnet_b0_ns,11.080,88.920,39.880,60.120,5.29,224,0.875,bicubic,-82.540,-58.760,+28 -ecaresnet50d_pruned,11.000,89.000,42.013,57.987,19.94,224,0.875,bicubic,-83.210,-56.717,-29 -vit_tiny_r_s16_p8_384,10.933,89.067,39.427,60.573,6.36,384,1.000,bicubic,-81.097,-58.863,+127 -xcit_tiny_12_p16_224,10.920,89.080,36.840,63.160,6.72,224,1.000,bicubic,-81.570,-61.410,+105 -eca_halonext26ts,10.867,89.133,39.560,60.440,10.76,256,0.940,bicubic,-82.643,-58.940,+31 -hrnet_w48,10.853,89.147,39.973,60.027,77.47,224,0.875,bilinear,-83.087,-58.637,-6 -tf_efficientnetv2_b2,10.853,89.147,39.493,60.507,10.10,260,0.890,bicubic,-83.557,-59.077,-52 -dpn107,10.827,89.173,38.453,61.547,86.92,224,0.875,bicubic,-83.473,-60.017,-44 -tf_inception_v3,10.827,89.173,36.680,63.320,23.83,299,0.875,bicubic,-82.503,-61.360,+47 -adv_inception_v3,10.827,89.173,36.480,63.520,23.83,299,0.875,bicubic,-82.063,-61.650,+72 -halonet26t,10.813,89.187,38.587,61.413,12.48,256,0.950,bicubic,-83.167,-59.903,-12 -gluon_resnet152_v1c,10.747,89.253,36.840,63.160,60.21,224,0.875,bicubic,-83.413,-61.800,-29 -resnext50_32x4d,10.640,89.360,40.213,59.787,25.03,224,0.875,bicubic,-83.470,-58.137,-22 -xcit_nano_12_p8_224_dist,10.573,89.427,38.053,61.947,3.05,224,1.000,bicubic,-81.527,-60.107,+113 -dpn131,10.560,89.440,37.000,63.000,79.25,224,0.875,bicubic,-83.430,-61.720,-18 -resnetv2_50,10.547,89.453,39.173,60.827,25.55,224,0.950,bicubic,-83.893,-59.557,-64 -resnext50d_32x4d,10.427,89.573,39.333,60.667,25.05,224,0.875,bicubic,-83.763,-59.237,-39 -tf_efficientnet_b2_ap,10.413,89.587,39.760,60.240,9.11,260,0.890,bicubic,-84.077,-58.860,-74 -hrnet_w44,10.333,89.667,39.200,60.800,67.06,224,0.875,bilinear,-83.247,-59.500,+13 -rexnet_130,10.333,89.667,41.387,58.613,7.56,224,0.875,bicubic,-83.567,-57.013,-15 -xcit_nano_12_p8_224,10.213,89.787,37.200,62.800,3.05,224,1.000,bicubic,-80.777,-60.600,+143 -cspresnext50,10.133,89.867,40.213,59.787,20.57,224,0.875,bilinear,-84.337,-58.467,-74 -dpn98,10.120,89.880,36.440,63.560,61.57,224,0.875,bicubic,-84.000,-62.180,-35 -resnetrs50,10.067,89.933,37.227,62.773,35.69,224,0.910,bicubic,-84.223,-61.413,-58 -regnety_064,10.000,90.000,38.960,61.040,30.58,224,0.875,bicubic,-84.150,-59.780,-40 -resnet50,10.000,90.000,37.947,62.053,25.56,224,0.950,bicubic,-84.330,-60.493,-65 -regnetx_160,9.973,90.027,37.760,62.240,54.28,224,0.875,bicubic,-84.147,-60.980,-38 -resnext101_32x8d,9.947,90.053,37.453,62.547,88.79,224,0.875,bilinear,-83.843,-61.127,-13 -lambda_resnet26rpt_256,9.907,90.093,37.520,62.480,10.99,256,0.940,bicubic,-83.813,-61.020,-6 -legacy_seresnext50_32x4d,9.880,90.120,39.013,60.987,27.56,224,0.875,bilinear,-83.840,-59.307,-8 -efficientnet_b1,9.867,90.133,37.293,62.707,7.79,256,1.000,bicubic,-83.373,-60.997,+31 -xception,9.853,90.147,37.920,62.080,22.86,299,0.897,bicubic,-83.627,-60.610,+11 -inception_v3,9.827,90.173,35.040,64.960,23.83,299,0.875,bicubic,-82.893,-62.920,+62 -tf_efficientnet_b2,9.653,90.347,38.640,61.360,9.11,260,0.890,bicubic,-84.717,-59.970,-75 -tf_efficientnet_cc_b1_8e,9.613,90.387,36.867,63.133,39.72,240,0.882,bicubic,-84.307,-61.383,-31 -dpn68b,9.587,90.413,37.720,62.280,12.61,224,0.875,bicubic,-84.093,-60.810,-11 -gluon_resnet152_v1b,9.573,90.427,35.707,64.293,60.19,224,0.875,bicubic,-84.507,-62.753,-44 -tf_efficientnet_lite3,9.480,90.520,38.947,61.053,8.20,300,0.904,bilinear,-84.710,-59.693,-59 -res2net101_26w_4s,9.413,90.587,34.440,65.560,45.21,224,0.875,bilinear,-84.307,-64.140,-18 -legacy_seresnet152,9.240,90.760,37.093,62.907,66.82,224,0.875,bilinear,-84.180,-61.247,+8 -cspresnet50,9.227,90.773,39.493,60.507,21.62,256,0.887,bilinear,-84.523,-59.137,-23 -hrnet_w40,9.120,90.880,36.533,63.467,57.56,224,0.875,bilinear,-84.370,-62.057,-1 -regnetx_120,9.067,90.933,36.947,63.053,46.11,224,0.875,bicubic,-85.173,-61.723,-72 -vit_tiny_patch16_224,9.040,90.960,34.267,65.733,5.72,224,0.900,bicubic,-82.720,-63.773,+100 -gluon_resnext50_32x4d,9.027,90.973,36.307,63.693,25.03,224,0.875,bicubic,-84.793,-62.103,-34 -vit_base_patch16_sam_224,9.013,90.987,36.080,63.920,86.57,224,0.900,bicubic,-85.137,-62.590,-60 -resnet33ts,9.000,91.000,38.240,61.760,19.68,256,0.900,bicubic,-84.600,-60.290,-17 -resnest26d,9.000,91.000,37.533,62.467,17.07,224,0.875,bilinear,-84.360,-61.107,+4 -crossvit_tiny_240,8.893,91.107,34.320,65.680,7.01,240,0.875,bicubic,-81.357,-63.290,+131 -bat_resnext26ts,8.867,91.133,35.987,64.013,10.73,256,0.900,bicubic,-84.443,-62.363,+9 -regnety_040,8.853,91.147,37.000,63.000,20.65,224,0.875,bicubic,-85.007,-61.640,-43 -rexnet_100,8.827,91.173,36.240,63.760,4.80,224,0.875,bicubic,-84.203,-61.950,+23 -seresnext26t_32x4d,8.813,91.187,36.573,63.427,16.81,224,0.875,bicubic,-83.997,-61.797,+34 -seresnext26d_32x4d,8.800,91.200,36.467,63.533,16.81,224,0.875,bicubic,-83.940,-61.683,+40 -mixnet_l,8.733,91.267,36.173,63.827,7.33,224,0.875,bicubic,-84.697,-62.047,-8 -mobilenetv3_large_100_miil,8.720,91.280,32.893,67.107,5.48,224,0.875,bilinear,-83.550,-65.207,+63 -convit_tiny,8.693,91.307,33.987,66.013,5.71,224,0.875,bicubic,-81.917,-63.743,+118 -levit_128s,8.667,91.333,32.800,67.200,7.78,224,0.900,bicubic,-83.283,-65.260,+76 -gcresnext26ts,8.560,91.440,35.547,64.453,10.48,256,0.900,bicubic,-84.210,-62.723,+31 -hrnet_w30,8.533,91.467,36.800,63.200,37.71,224,0.875,bilinear,-84.667,-61.610,+5 -resnet32ts,8.480,91.520,36.880,63.120,17.96,256,0.900,bicubic,-84.990,-61.610,-17 -dla169,8.373,91.627,35.867,64.133,53.39,224,0.875,bilinear,-84.967,-62.513,-8 -mixer_b16_224,8.360,91.640,29.320,70.680,59.88,224,0.875,bicubic,-83.500,-67.910,+76 -tf_efficientnet_b1_ap,8.333,91.667,35.160,64.840,7.79,240,0.882,bicubic,-85.377,-63.200,-40 -legacy_seresnet101,8.253,91.747,35.747,64.253,49.33,224,0.875,bilinear,-85.047,-62.753,-5 -resnetblur50,8.213,91.787,37.360,62.640,25.56,224,0.875,bicubic,-85.717,-61.220,-63 -repvgg_b2,8.173,91.827,36.040,63.960,89.02,224,0.875,bilinear,-85.317,-62.690,-27 -dla102x,8.160,91.840,36.787,63.213,26.31,224,0.875,bilinear,-85.350,-61.573,-30 -crossvit_9_240,8.147,91.853,34.027,65.973,8.55,240,0.875,bicubic,-82.513,-63.713,+105 -eca_resnext26ts,8.120,91.880,35.747,64.253,10.30,256,0.900,bicubic,-84.540,-62.513,+30 -resmlp_12_distilled_224,8.080,91.920,36.573,63.427,15.35,224,0.875,bicubic,-84.750,-61.567,+14 -hrnet_w32,7.947,92.053,37.267,62.733,41.23,224,0.875,bilinear,-85.573,-61.173,-37 -gluon_resnet50_v1d,7.840,92.160,34.773,65.227,25.58,224,0.875,bicubic,-85.940,-63.627,-57 -res2net50_26w_8s,7.813,92.187,33.147,66.853,48.40,224,0.875,bilinear,-85.617,-65.033,-28 -gluon_resnet101_v1c,7.800,92.200,32.973,67.027,44.57,224,0.875,bicubic,-85.860,-65.437,-49 -dla60_res2next,7.733,92.267,34.653,65.347,17.03,224,0.875,bilinear,-85.447,-63.757,-10 -tf_efficientnetv2_b1,7.720,92.280,34.360,65.640,8.14,240,0.882,bicubic,-86.220,-64.260,-75 -deit_tiny_distilled_patch16_224,7.707,92.293,33.520,66.480,5.91,224,0.900,bicubic,-83.023,-64.060,+93 -densenetblur121d,7.573,92.427,34.587,65.413,8.00,224,0.875,bicubic,-84.337,-63.513,+58 -dla60_res2net,7.373,92.627,34.400,65.600,20.85,224,0.875,bilinear,-85.787,-64.010,-13 -regnetx_064,7.333,92.667,34.360,65.640,26.21,224,0.875,bicubic,-86.557,-64.270,-75 -wide_resnet101_2,7.307,92.693,33.693,66.307,126.89,224,0.875,bilinear,-86.413,-64.807,-62 -efficientnet_b1_pruned,7.280,92.720,34.427,65.573,6.33,240,0.882,bicubic,-85.490,-63.613,+6 -hardcorenas_e,7.227,92.773,33.160,66.840,8.07,224,0.875,bilinear,-85.353,-64.950,+21 -deit_tiny_patch16_224,7.227,92.773,30.667,69.333,5.72,224,0.900,bicubic,-82.443,-66.773,+105 -efficientnet_b0,7.213,92.787,33.840,66.160,5.29,224,0.875,bicubic,-85.457,-64.240,+13 -gluon_resnet101_v1b,7.160,92.840,32.720,67.280,44.55,224,0.875,bicubic,-86.570,-65.680,-68 -tf_efficientnet_cc_b0_8e,7.120,92.880,31.653,68.347,24.01,224,0.875,bicubic,-85.700,-66.527,-2 -tf_efficientnet_b1,7.120,92.880,33.107,66.893,7.79,240,0.882,bicubic,-86.390,-65.173,-52 -tf_mixnet_l,7.080,92.920,31.587,68.413,7.33,224,0.875,bicubic,-86.230,-66.443,-32 -gluon_resnet50_v1s,7.080,92.920,33.200,66.800,25.68,224,0.875,bicubic,-86.550,-65.270,-63 -resmlp_12_224,7.067,92.933,33.853,66.147,15.35,224,0.875,bicubic,-85.123,-64.307,+32 -convmixer_1024_20_ks9_p14,7.027,92.973,32.693,67.307,24.38,224,0.960,bicubic,-85.403,-65.577,+19 -seresnext26ts,6.933,93.067,34.600,65.400,10.39,256,0.900,bicubic,-85.747,-63.700,+4 -hardcorenas_f,6.853,93.147,33.907,66.093,8.20,224,0.875,bilinear,-86.097,-64.253,-16 -mixnet_m,6.667,93.333,32.040,67.960,5.01,224,0.875,bicubic,-85.773,-65.830,+15 -ese_vovnet19b_dw,6.627,93.373,33.107,66.893,6.54,224,0.875,bicubic,-85.643,-64.533,+23 -selecsls60b,6.613,93.387,33.133,66.867,32.77,224,0.875,bicubic,-86.677,-65.147,-37 -efficientnet_es,6.560,93.440,33.693,66.307,5.44,224,0.875,bicubic,-86.640,-64.707,-35 -pit_ti_distilled_224,6.547,93.453,30.507,69.493,5.10,224,0.900,bicubic,-84.333,-67.213,+69 -res2net50_26w_6s,6.507,93.493,31.467,68.533,37.05,224,0.875,bilinear,-86.893,-66.813,-50 -hardcorenas_d,6.453,93.547,32.053,67.947,7.50,224,0.875,bilinear,-85.967,-66.017,+11 -legacy_seresnext26_32x4d,6.440,93.560,32.920,67.080,16.79,224,0.875,bicubic,-86.190,-65.200,-1 -skresnet34,6.387,93.613,31.493,68.507,22.28,224,0.875,bicubic,-85.993,-66.647,+11 -regnetx_080,6.360,93.640,32.213,67.787,39.57,224,0.875,bicubic,-87.510,-66.307,-98 -resnet34d,6.347,93.653,31.680,68.320,21.82,224,0.875,bicubic,-86.353,-66.620,-9 -dla60x,6.307,93.693,33.787,66.213,17.35,224,0.875,bilinear,-86.783,-64.703,-36 -repvgg_b1,6.240,93.760,33.307,66.693,57.42,224,0.875,bilinear,-87.090,-65.203,-53 -swsl_resnet18,6.213,93.787,31.347,68.653,11.69,224,0.875,bilinear,-84.467,-66.363,+64 -legacy_seresnet50,6.067,93.933,32.453,67.547,28.09,224,0.875,bilinear,-86.883,-65.737,-32 -pit_ti_224,6.053,93.947,30.053,69.947,4.85,224,0.900,bicubic,-83.877,-67.387,+74 -tv_resnet152,6.000,94.000,31.640,68.360,60.19,224,0.875,bilinear,-87.330,-66.750,-55 -resnet26t,5.987,94.013,31.720,68.280,16.01,256,0.940,bicubic,-86.763,-66.520,-20 -tf_efficientnet_cc_b0_4e,5.960,94.040,29.533,70.467,13.31,224,0.875,bicubic,-86.660,-68.547,-11 -tf_efficientnetv2_b0,5.893,94.107,30.613,69.387,7.14,224,0.875,bicubic,-87.217,-67.777,-45 -mixer_l16_224,5.853,94.147,18.200,81.800,208.20,224,0.875,bicubic,-81.307,-75.330,+91 -dla102,5.840,94.160,32.453,67.547,33.27,224,0.875,bilinear,-87.240,-66.087,-45 -regnetx_040,5.800,94.200,31.187,68.813,22.12,224,0.875,bicubic,-87.750,-67.373,-84 -selecsls60,5.720,94.280,32.280,67.720,30.67,224,0.875,bicubic,-87.300,-66.030,-43 -hardcorenas_c,5.600,94.400,30.213,69.787,5.52,224,0.875,bilinear,-86.420,-67.627,+12 -regnety_016,5.573,94.427,30.280,69.720,11.20,224,0.875,bicubic,-87.457,-68.080,-47 -res2next50,5.520,94.480,30.600,69.400,24.67,224,0.875,bilinear,-87.330,-67.580,-39 -hrnet_w18,5.453,94.547,30.813,69.187,21.30,224,0.875,bilinear,-86.857,-67.437,-6 -tf_efficientnet_lite2,5.373,94.627,30.907,69.093,6.09,260,0.890,bicubic,-87.287,-67.323,-23 -resnest14d,5.333,94.667,28.547,71.453,10.61,224,0.875,bilinear,-86.397,-69.323,+21 -tf_efficientnet_b0_ap,5.320,94.680,28.707,71.293,5.29,224,0.875,bicubic,-86.900,-69.313,-4 -tf_efficientnet_em,5.200,94.800,30.653,69.347,6.90,240,0.882,bicubic,-87.750,-67.557,-47 -gernet_s,5.200,94.800,30.067,69.933,8.17,224,0.875,bilinear,-86.940,-68.123,-2 -repvgg_b1g4,5.107,94.893,30.467,69.533,39.97,224,0.875,bilinear,-87.893,-67.963,-52 -mobilenetv3_large_100,5.107,94.893,28.053,71.947,5.48,224,0.875,bicubic,-86.233,-69.807,+22 -xcit_nano_12_p16_224_dist,5.107,94.893,26.280,73.720,3.05,224,1.000,bicubic,-84.573,-70.810,+58 -densenet121,5.080,94.920,29.627,70.373,7.98,224,0.875,bicubic,-86.490,-68.403,+16 -res2net50_26w_4s,5.053,94.947,28.987,71.013,25.70,224,0.875,bilinear,-87.427,-69.083,-23 -tf_mixnet_m,5.040,94.960,28.093,71.907,5.01,224,0.875,bicubic,-87.290,-69.797,-18 -tf_efficientnet_b0,5.040,94.960,28.907,71.093,5.29,224,0.875,bicubic,-87.190,-69.093,-14 -vit_tiny_r_s16_p8_224,4.947,95.053,26.707,73.293,6.34,224,0.900,bicubic,-84.243,-70.523,+58 -hardcorenas_a,4.893,95.107,27.987,72.013,5.26,224,0.875,bilinear,-86.447,-69.723,+16 -regnetx_032,4.880,95.120,29.893,70.107,15.30,224,0.875,bicubic,-88.240,-68.497,-70 -res2net50_14w_8s,4.880,95.120,28.320,71.680,25.06,224,0.875,bilinear,-87.840,-69.870,-43 -mixnet_s,4.840,95.160,28.507,71.493,4.13,224,0.875,bicubic,-86.980,-69.183,+3 -hardcorenas_b,4.827,95.173,27.800,72.200,5.18,224,0.875,bilinear,-86.913,-69.980,+4 -mobilenetv3_rw,4.813,95.187,29.507,70.493,5.48,224,0.875,bicubic,-86.397,-68.153,+14 -xcit_nano_12_p16_224,4.800,95.200,25.253,74.747,3.05,224,1.000,bicubic,-83.790,-71.537,+58 -gluon_resnet50_v1c,4.773,95.227,27.787,72.213,25.58,224,0.875,bicubic,-88.257,-70.583,-71 -selecsls42b,4.707,95.293,28.333,71.667,32.46,224,0.875,bicubic,-87.593,-69.807,-27 -tv_resnext50_32x4d,4.693,95.307,29.813,70.187,25.03,224,0.875,bilinear,-88.067,-68.467,-55 -resnext26ts,4.640,95.360,28.733,71.267,10.30,256,0.900,bicubic,-87.220,-69.197,-7 -densenet161,4.573,95.427,29.520,70.480,28.68,224,0.875,bicubic,-87.927,-68.770,-40 -tv_resnet101,4.573,95.427,28.867,71.133,44.55,224,0.875,bilinear,-88.237,-69.363,-61 -tf_efficientnet_lite1,4.467,95.533,28.360,71.640,5.42,240,0.882,bicubic,-88.153,-69.720,-46 -mobilenetv2_120d,4.440,95.560,29.067,70.933,5.83,224,0.875,bicubic,-87.960,-68.983,-37 -vit_base_patch32_sam_224,4.307,95.693,24.347,75.653,88.22,224,0.900,bicubic,-85.443,-72.653,+35 -efficientnet_es_pruned,4.120,95.880,26.547,73.453,5.44,224,0.875,bicubic,-87.070,-71.193,+4 -fbnetc_100,4.093,95.907,25.493,74.507,5.57,224,0.875,bilinear,-86.627,-71.717,+18 -gluon_resnet50_v1b,4.027,95.973,26.827,73.173,25.56,224,0.875,bicubic,-88.513,-71.363,-48 -densenet201,3.973,96.027,27.280,72.720,20.01,224,0.875,bicubic,-88.777,-70.960,-64 -dpn68,3.933,96.067,26.000,74.000,12.61,224,0.875,bicubic,-88.087,-72.040,-26 -tf_mixnet_s,3.920,96.080,25.200,74.800,4.13,224,0.875,bicubic,-87.590,-72.410,-9 -resnet26d,3.920,96.080,28.240,71.760,16.01,224,0.875,bicubic,-88.130,-69.720,-31 -semnasnet_100,3.880,96.120,26.840,73.160,3.89,224,0.875,bicubic,-87.400,-70.730,-6 -repvgg_a2,3.800,96.200,27.293,72.707,28.21,224,0.875,bilinear,-88.140,-70.857,-26 -tf_efficientnet_es,3.747,96.253,25.973,74.027,5.44,224,0.875,bicubic,-88.243,-71.897,-29 -regnety_008,3.707,96.293,26.853,73.147,6.26,224,0.875,bicubic,-88.003,-71.327,-16 -ssl_resnet18,3.693,96.307,25.280,74.720,11.69,224,0.875,bilinear,-86.537,-72.280,+17 -densenet169,3.680,96.320,25.520,74.480,14.15,224,0.875,bicubic,-88.230,-72.570,-29 -mobilenetv2_140,3.667,96.333,26.507,73.493,6.11,224,0.875,bicubic,-88.163,-71.353,-24 -tf_mobilenetv3_large_100,3.653,96.347,24.987,75.013,5.48,224,0.875,bilinear,-87.577,-72.673,-12 -dla60,3.587,96.413,27.920,72.080,22.04,224,0.875,bilinear,-88.633,-70.190,-45 -res2net50_48w_2s,3.573,96.427,26.333,73.667,25.29,224,0.875,bilinear,-88.977,-71.747,-63 -spnasnet_100,3.533,96.467,24.213,75.787,4.42,224,0.875,bilinear,-86.817,-72.977,+8 -regnety_006,3.507,96.493,24.893,75.107,6.06,224,0.875,bicubic,-87.873,-72.817,-20 -regnetx_016,3.467,96.533,26.373,73.627,9.19,224,0.875,bicubic,-88.693,-71.837,-47 -legacy_seresnet34,3.293,96.707,23.613,76.387,21.96,224,0.875,bilinear,-87.607,-73.967,-6 -efficientnet_lite0,3.280,96.720,25.720,74.280,4.65,224,0.875,bicubic,-87.860,-71.910,-15 -ghostnet_100,3.253,96.747,24.720,75.280,5.18,224,0.875,bilinear,-86.777,-72.650,+9 -dla34,3.173,96.827,23.587,76.413,15.74,224,0.875,bilinear,-87.597,-74.063,-6 -mobilenetv2_110d,3.107,96.893,24.387,75.613,4.52,224,0.875,bicubic,-87.863,-73.173,-11 -mnasnet_100,3.093,96.907,24.227,75.773,4.38,224,0.875,bicubic,-87.417,-73.243,-2 -regnety_004,3.067,96.933,22.587,77.413,4.34,224,0.875,bicubic,-87.413,-74.973,-2 -tf_efficientnet_lite0,3.067,96.933,22.827,77.173,4.65,224,0.875,bicubic,-87.983,-74.743,-17 -skresnet18,2.960,97.040,22.733,77.267,11.96,224,0.875,bicubic,-86.700,-74.487,+10 -resnet34,2.893,97.107,23.560,76.440,21.80,224,0.875,bilinear,-88.227,-74.070,-21 -tf_mobilenetv3_large_075,2.867,97.133,21.600,78.400,3.99,224,0.875,bilinear,-86.843,-75.620,+5 -vgg19_bn,2.867,97.133,23.547,76.453,143.68,224,0.875,bilinear,-87.233,-74.033,-2 -regnetx_008,2.733,97.267,22.333,77.667,7.26,224,0.875,bicubic,-88.317,-75.377,-23 -gluon_resnet34_v1b,2.653,97.347,21.533,78.467,21.80,224,0.875,bicubic,-88.337,-76.117,-21 -hrnet_w18_small_v2,2.627,97.373,23.587,76.413,15.60,224,0.875,bilinear,-88.563,-74.313,-29 -vgg16,2.560,97.440,19.960,80.040,138.36,224,0.875,bilinear,-85.990,-76.830,+14 -vgg16_bn,2.547,97.453,23.587,76.413,138.37,224,0.875,bilinear,-87.543,-73.783,-6 -repvgg_b0,2.533,97.467,23.920,76.080,15.82,224,0.875,bilinear,-88.917,-74.060,-40 -resnet18d,2.493,97.507,21.600,78.400,11.71,224,0.875,bicubic,-86.797,-75.540,+2 -tv_densenet121,2.453,97.547,22.533,77.467,7.98,224,0.875,bicubic,-88.447,-75.167,-24 -regnetx_006,2.453,97.547,20.600,79.400,6.20,224,0.875,bicubic,-87.867,-76.830,-14 -legacy_seresnet18,2.440,97.560,19.827,80.173,11.78,224,0.875,bicubic,-86.440,-77.143,+4 -resnet26,2.387,97.613,22.733,77.267,16.00,224,0.875,bicubic,-88.743,-75.007,-35 -mobilenetv2_100,2.147,97.853,19.653,80.347,3.50,224,0.875,bicubic,-87.463,-77.497,-4 -regnety_002,2.080,97.920,18.600,81.400,3.16,224,0.875,bicubic,-85.280,-77.970,+9 -vgg13_bn,2.080,97.920,20.040,79.960,133.05,224,0.875,bilinear,-86.700,-76.930,+2 -vgg19,2.027,97.973,20.480,79.520,143.67,224,0.875,bilinear,-87.033,-76.390,-4 -tf_mobilenetv3_small_100,2.000,98.000,15.880,84.120,2.54,224,0.875,bilinear,-83.210,-79.900,+12 -tf_mobilenetv3_small_075,1.973,98.027,14.840,85.160,2.04,224,0.875,bilinear,-81.507,-79.960,+14 -regnetx_004,1.960,98.040,19.067,80.933,5.16,224,0.875,bicubic,-86.920,-78.053,-3 -vgg13,1.840,98.160,17.880,82.120,133.05,224,0.875,bilinear,-85.190,-78.430,+5 -tv_resnet34,1.840,98.160,19.800,80.200,21.80,224,0.875,bilinear,-88.080,-77.540,-18 -vgg11_bn,1.720,98.280,18.000,82.000,132.87,224,0.875,bilinear,-85.800,-78.810,-1 -dla46x_c,1.693,98.307,16.373,83.627,1.07,224,0.875,bilinear,-82.557,-78.907,+7 -tf_mobilenetv3_large_minimal_100,1.627,98.373,17.187,82.813,3.92,224,0.875,bilinear,-87.323,-79.683,-10 -vgg11,1.587,98.413,15.907,84.093,132.86,224,0.875,bilinear,-84.993,-80.383,+1 -dla60x_c,1.587,98.413,17.800,82.200,1.32,224,0.875,bilinear,-84.693,-78.360,+1 -gluon_resnet18_v1b,1.547,98.453,16.600,83.400,11.69,224,0.875,bicubic,-86.833,-80.100,-7 -hrnet_w18_small,1.507,98.493,18.107,81.893,13.19,224,0.875,bilinear,-87.553,-78.993,-15 -dla46_c,1.453,98.547,15.027,84.973,1.30,224,0.875,bilinear,-82.187,-79.883,+2 -regnetx_002,1.253,98.747,14.827,85.173,2.68,224,0.875,bicubic,-84.947,-81.143,-2 -resnet18,1.120,98.880,16.173,83.827,11.69,224,0.875,bilinear,-86.250,-80.087,-9 -tf_mobilenetv3_small_minimal_100,1.027,98.973,11.400,88.600,2.04,224,0.875,bilinear,-80.363,-82.270,+1 -tv_resnet50,0.027,99.973,14.320,85.680,25.56,224,0.875,bilinear,-91.863,-83.720,-78 +tf_efficientnet_l2_ns,84.760,15.240,96.147,3.853,480.31,800,0.960,bicubic,-13.790,-3.673,+1 +tf_efficientnet_l2_ns_475,83.400,16.600,95.453,4.547,480.31,475,0.936,bicubic,-15.100,-4.377,+2 +beit_large_patch16_512,81.640,18.360,94.893,5.107,305.67,512,1.000,bicubic,-16.920,-4.947,-2 +beit_large_patch16_384,79.133,20.867,94.280,5.720,305.00,384,1.000,bicubic,-19.387,-5.540,-1 +vit_large_patch16_384,71.227,28.773,89.853,10.147,304.72,384,1.000,bicubic,-26.983,-9.947,+2 +convnext_xlarge_384_in22ft1k,70.813,29.187,90.387,9.613,350.20,384,1.000,bicubic,-27.537,-9.413,-1 +swin_large_patch4_window12_384,69.613,30.387,89.573,10.427,196.74,384,1.000,bicubic,-28.427,-10.117,+2 +beit_large_patch16_224,68.520,31.480,89.560,10.440,304.43,224,0.900,bicubic,-29.660,-10.200,0 +convnext_large_384_in22ft1k,68.000,32.000,89.227,10.773,197.77,384,1.000,bicubic,-30.220,-10.503,-3 +tf_efficientnet_b7_ns,67.040,32.960,88.667,11.333,66.35,600,0.949,bicubic,-30.870,-11.053,+2 +tf_efficientnetv2_xl_in21ft1k,67.000,33.000,86.867,13.133,208.12,512,1.000,bicubic,-30.650,-12.623,+9 +tf_efficientnetv2_l_in21ft1k,66.320,33.680,87.840,12.160,118.52,480,1.000,bicubic,-31.380,-11.830,+6 +beit_base_patch16_384,65.893,34.107,88.507,11.493,86.74,384,1.000,bicubic,-31.917,-11.193,+4 +convnext_base_384_in22ft1k,64.960,35.040,87.827,12.173,88.59,384,1.000,bicubic,-32.990,-11.823,-4 +swin_base_patch4_window12_384,64.440,35.560,87.493,12.507,87.90,384,1.000,bicubic,-33.450,-12.217,-2 +vit_base_patch16_384,63.680,36.320,86.707,13.293,86.86,384,1.000,bicubic,-34.160,-12.963,-1 +convnext_xlarge_in22ft1k,62.613,37.387,86.000,14.000,350.20,224,0.875,bicubic,-35.307,-13.680,-6 +cait_m48_448,62.333,37.667,86.453,13.547,356.46,448,1.000,bicubic,-35.147,-13.097,+14 +tf_efficientnet_b6_ns,62.267,37.733,85.173,14.827,43.04,528,0.942,bicubic,-35.363,-14.407,+3 +vit_large_r50_s32_384,61.493,38.507,83.960,16.040,329.09,384,1.000,bicubic,-36.367,-15.710,-6 +tf_efficientnetv2_m_in21ft1k,61.373,38.627,85.400,14.600,54.14,480,1.000,bicubic,-36.107,-14.130,+12 +ig_resnext101_32x48d,61.027,38.973,83.320,16.680,828.41,224,0.875,bilinear,-36.593,-16.390,+1 +swin_large_patch4_window7_224,60.920,39.080,85.867,14.133,196.53,224,0.900,bicubic,-36.730,-13.713,-4 +resnetv2_152x4_bitm,60.787,39.213,83.560,16.440,936.53,480,1.000,bilinear,-36.703,-16.050,+7 +tf_efficientnet_b5_ns,60.320,39.680,84.467,15.533,30.39,456,0.934,bicubic,-37.180,-15.163,+5 +xcit_large_24_p8_384_dist,59.880,40.120,85.480,14.520,188.93,384,1.000,bicubic,-37.640,-14.060,+2 +convnext_large_in22ft1k,59.773,40.227,84.000,16.000,197.77,224,0.875,bicubic,-38.057,-15.690,-11 +dm_nfnet_f6,59.173,40.827,82.333,17.667,438.36,576,0.956,bicubic,-38.427,-17.217,-4 +vit_base_patch8_224,58.933,41.067,82.733,17.267,86.58,224,0.900,bicubic,-38.647,-16.937,-3 +dm_nfnet_f5,58.573,41.427,82.773,17.227,377.21,544,0.954,bicubic,-38.967,-16.797,-3 +dm_nfnet_f4,58.120,41.880,81.973,18.027,316.07,512,0.951,bicubic,-39.460,-17.537,-6 +ig_resnext101_32x32d,58.053,41.947,80.600,19.400,468.53,224,0.875,bilinear,-39.317,-19.080,+4 +cait_m36_384,57.813,42.187,84.813,15.187,271.22,384,1.000,bicubic,-39.587,-14.697,+2 +xcit_medium_24_p8_384_dist,56.707,43.293,83.400,16.600,84.32,384,1.000,bicubic,-40.583,-16.110,+5 +dm_nfnet_f3,55.813,44.187,80.947,19.053,254.92,416,0.940,bicubic,-41.537,-18.613,+2 +vit_large_patch16_224,55.613,44.387,80.080,19.920,304.33,224,0.900,bicubic,-42.027,-19.510,-15 +vit_base_r50_s16_384,54.640,45.360,81.227,18.773,98.95,384,1.000,bicubic,-42.540,-18.333,+12 +convnext_base_in22ft1k,54.547,45.453,82.147,17.853,88.59,224,0.875,bicubic,-42.923,-17.463,-4 +cait_s36_384,54.400,45.600,81.360,18.640,68.37,384,1.000,bicubic,-42.930,-18.170,-1 +xcit_small_24_p8_384_dist,54.253,45.747,81.533,18.467,47.63,384,1.000,bicubic,-42.987,-18.077,+3 +resnetv2_101x3_bitm,54.027,45.973,81.027,18.973,387.93,448,1.000,bilinear,-42.963,-18.463,+21 +resnetv2_152x2_bitm,54.013,45.987,82.013,17.987,236.34,448,1.000,bilinear,-42.997,-17.577,+18 +tf_efficientnetv2_l,53.173,46.827,79.147,20.853,118.52,480,1.000,bicubic,-44.107,-20.403,-3 +ig_resnext101_32x16d,53.093,46.907,76.933,23.067,194.03,224,0.875,bilinear,-43.717,-22.667,+29 +xcit_large_24_p16_384_dist,52.840,47.160,81.827,18.173,189.10,384,1.000,bicubic,-44.680,-17.653,-16 +swin_base_patch4_window7_224,51.427,48.573,79.987,20.013,87.77,224,0.900,bicubic,-45.823,-19.543,-4 +swsl_resnext101_32x8d,51.227,48.773,78.240,21.760,88.79,224,0.875,bilinear,-45.973,-21.260,-2 +tf_efficientnet_b4_ns,51.227,48.773,79.187,20.813,19.34,380,0.922,bicubic,-45.723,-20.393,+17 +resnetv2_152x2_bit_teacher_384,51.187,48.813,78.480,21.520,236.34,384,1.000,bicubic,-45.643,-20.970,+23 +beit_base_patch16_224,50.680,49.320,79.693,20.307,86.53,224,0.900,bicubic,-46.410,-19.817,+4 +xcit_small_12_p8_384_dist,50.573,49.427,79.587,20.413,26.21,384,1.000,bicubic,-46.657,-19.893,-7 +cait_s24_384,49.720,50.280,78.747,21.253,47.06,384,1.000,bicubic,-47.350,-20.683,+5 +xcit_medium_24_p16_384_dist,49.333,50.667,79.827,20.173,84.40,384,1.000,bicubic,-47.947,-19.633,-13 +deit_base_distilled_patch16_384,49.333,50.667,79.240,20.760,87.63,384,1.000,bicubic,-47.627,-20.240,+11 +tf_efficientnet_b8,48.947,51.053,77.240,22.760,87.41,672,0.954,bicubic,-48.253,-22.300,-8 +dm_nfnet_f2,48.920,51.080,77.133,22.867,193.78,352,0.920,bicubic,-48.100,-22.307,+3 +tf_efficientnetv2_s_in21ft1k,48.507,51.493,77.893,22.107,21.46,384,1.000,bicubic,-48.213,-21.527,+23 +resnest269e,48.200,51.800,74.333,25.667,110.93,416,0.928,bicubic,-48.320,-25.017,+44 +xcit_large_24_p8_224_dist,48.120,51.880,79.107,20.893,188.93,224,1.000,bicubic,-48.950,-20.313,-1 +regnetz_e8,47.827,52.173,76.200,23.800,57.70,320,1.000,bicubic,-49.373,-23.300,-12 +resnetv2_50x3_bitm,47.280,52.720,77.333,22.667,217.32,448,1.000,bilinear,-49.430,-22.217,+20 +xcit_large_24_p8_224,47.160,52.840,74.400,25.600,188.93,224,1.000,bicubic,-49.250,-24.580,+46 +xcit_small_24_p16_384_dist,46.960,53.040,77.187,22.813,47.67,384,1.000,bicubic,-50.160,-22.273,-12 +tf_efficientnet_b8_ap,46.893,53.107,76.507,23.493,87.41,672,0.954,bicubic,-50.217,-23.153,-12 +efficientnetv2_rw_m,46.280,53.720,75.720,24.280,53.24,416,1.000,bicubic,-50.700,-23.810,-2 +swsl_resnext101_32x16d,46.147,53.853,72.253,27.747,194.03,224,0.875,bilinear,-50.453,-27.277,+28 +vit_small_patch16_384,45.920,54.080,76.707,23.293,22.20,384,1.000,bicubic,-50.770,-22.773,+18 +ecaresnet269d,45.880,54.120,75.133,24.867,102.09,352,1.000,bicubic,-51.200,-24.337,-13 +vit_small_r26_s32_384,45.733,54.267,76.080,23.920,36.47,384,1.000,bicubic,-50.947,-23.490,+17 +tf_efficientnetv2_m,45.533,54.467,74.547,25.453,54.14,480,1.000,bicubic,-51.607,-24.863,-20 +tf_efficientnet_b7_ap,45.373,54.627,74.213,25.787,66.35,600,0.949,bicubic,-51.827,-25.357,-25 +dm_nfnet_f1,45.320,54.680,74.107,25.893,132.63,320,0.910,bicubic,-51.590,-25.303,-3 +ig_resnext101_32x8d,45.293,54.707,70.853,29.147,88.79,224,0.875,bilinear,-51.017,-28.577,+44 +xcit_medium_24_p8_224_dist,45.213,54.787,76.720,23.280,84.32,224,1.000,bicubic,-51.707,-22.670,-6 +eca_nfnet_l2,44.960,55.040,75.893,24.107,56.72,384,1.000,bicubic,-52.130,-23.717,-22 +crossvit_18_dagger_408,44.307,55.693,73.840,26.160,44.61,408,1.000,bicubic,-52.223,-25.420,+24 +resnest200e,44.133,55.867,73.467,26.533,70.20,320,0.909,bicubic,-52.477,-25.883,+15 +cait_xs24_384,43.947,56.053,75.173,24.827,26.67,384,1.000,bicubic,-52.603,-24.247,+19 +tresnet_xl_448,43.467,56.533,72.440,27.560,78.44,448,0.875,bilinear,-52.503,-26.590,+59 +xcit_small_12_p16_384_dist,43.293,56.707,73.867,26.133,26.25,384,1.000,bicubic,-53.637,-25.533,-14 +vit_base_patch16_224,43.253,56.747,72.907,27.093,86.57,224,0.900,bicubic,-53.627,-26.623,-11 +resnetrs420,43.147,56.853,70.440,29.560,191.89,416,1.000,bicubic,-53.773,-29.020,-15 +xcit_medium_24_p8_224,43.093,56.907,70.360,29.640,84.32,224,1.000,bicubic,-53.017,-28.530,+48 +tf_efficientnet_b7,42.947,57.053,73.133,26.867,66.35,600,0.949,bicubic,-54.063,-26.387,-23 +xcit_tiny_24_p8_384_dist,42.453,57.547,72.867,27.133,12.11,384,1.000,bicubic,-54.087,-26.453,+14 +crossvit_15_dagger_408,41.907,58.093,72.080,27.920,28.50,408,1.000,bicubic,-54.483,-27.080,+24 +xcit_small_24_p8_224_dist,41.893,58.107,73.680,26.320,47.63,224,1.000,bicubic,-54.977,-25.800,-16 +xcit_small_24_p8_224,41.747,58.253,71.013,28.987,47.63,224,1.000,bicubic,-54.653,-28.137,+21 +vit_large_r50_s32_224,41.653,58.347,70.240,29.760,328.99,224,0.900,bicubic,-55.137,-29.110,-14 +swsl_resnext101_32x4d,41.547,58.453,71.760,28.240,44.18,224,0.875,bilinear,-54.893,-27.540,+17 +convnext_large,41.413,58.587,73.293,26.707,197.77,224,0.875,bicubic,-55.357,-26.017,-15 +tf_efficientnet_b6_ap,40.800,59.200,71.627,28.373,43.04,528,0.942,bicubic,-56.280,-27.993,-36 +resmlp_big_24_224_in22ft1k,40.373,59.627,74.773,25.227,129.14,224,0.875,bicubic,-56.247,-24.737,-2 +tresnet_l_448,40.213,59.787,69.893,30.107,55.99,448,0.875,bilinear,-55.647,-29.317,+53 +deit_base_patch16_384,40.173,59.827,70.760,29.240,86.86,384,1.000,bicubic,-55.977,-28.380,+30 +resnetrs350,39.947,60.053,68.920,31.080,163.96,384,1.000,bicubic,-56.813,-30.450,-18 +regnetz_d8,39.933,60.067,71.640,28.360,23.37,320,1.000,bicubic,-56.687,-27.810,-7 +resnetv2_101x1_bitm,38.933,61.067,71.040,28.960,44.54,448,1.000,bilinear,-57.167,-28.240,+35 +vit_large_patch32_384,38.933,61.067,68.920,31.080,306.63,384,1.000,bicubic,-56.897,-30.230,+52 +xcit_small_12_p8_224_dist,38.213,61.787,71.293,28.707,26.21,224,1.000,bicubic,-58.487,-28.097,-17 +resnet200d,38.147,61.853,68.613,31.387,64.69,320,1.000,bicubic,-58.573,-30.717,-22 +xcit_large_24_p16_224_dist,37.680,62.320,71.587,28.413,189.10,224,1.000,bicubic,-59.120,-27.763,-28 +seresnet152d,37.653,62.347,69.480,30.520,66.84,320,1.000,bicubic,-59.117,-29.970,-26 +xcit_small_12_p8_224,37.533,62.467,68.213,31.787,26.21,224,1.000,bicubic,-58.577,-30.947,+27 +eca_nfnet_l1,37.533,62.467,70.947,29.053,41.41,320,1.000,bicubic,-59.167,-28.343,-22 +twins_svt_large,37.213,62.787,69.253,30.747,99.27,224,0.900,bicubic,-59.057,-29.917,+13 +regnetz_d32,37.147,62.853,70.480,29.520,27.58,320,0.950,bicubic,-59.453,-28.900,-14 +vit_base_patch32_384,37.093,62.907,69.773,30.227,88.30,384,1.000,bicubic,-59.397,-29.637,-5 +efficientnetv2_rw_s,36.787,63.213,68.320,31.680,23.94,384,1.000,bicubic,-59.753,-31.040,-11 +regnety_160,36.787,63.213,69.093,30.907,83.59,288,1.000,bicubic,-59.563,-30.237,+4 +convnext_base,36.693,63.307,70.307,29.693,88.59,224,0.875,bicubic,-59.747,-29.163,-5 +cait_xxs36_384,36.240,63.760,67.813,32.187,17.37,384,1.000,bicubic,-59.610,-31.277,+38 +jx_nest_base,36.067,63.933,66.773,33.227,67.72,224,0.875,bicubic,-60.173,-32.437,+7 +pit_b_distilled_224,35.627,64.373,69.120,30.880,74.79,224,0.900,bicubic,-61.043,-30.250,-25 +tf_efficientnet_b3_ns,35.520,64.480,67.760,32.240,12.23,300,0.904,bicubic,-60.870,-31.590,-4 +tf_efficientnet_b6,35.213,64.787,67.733,32.267,43.04,528,0.942,bicubic,-61.457,-31.617,-29 +resnetrs270,35.040,64.960,65.480,34.520,129.86,352,1.000,bicubic,-61.650,-33.870,-33 +tf_efficientnet_b5_ap,34.800,65.200,67.480,32.520,30.39,456,0.934,bicubic,-61.870,-31.980,-30 +xcit_tiny_12_p8_384_dist,34.640,65.360,66.293,33.707,6.71,384,1.000,bicubic,-61.440,-32.847,+17 +vit_base_patch16_224_miil,34.520,65.480,64.987,35.013,86.54,224,0.875,bilinear,-61.920,-34.243,-15 +xcit_medium_24_p16_224_dist,34.333,65.667,67.893,32.107,84.40,224,1.000,bicubic,-62.257,-31.377,-26 +resnet152d,34.320,65.680,65.907,34.093,60.21,320,1.000,bicubic,-62.040,-33.483,-9 +tresnet_m_448,34.107,65.893,64.507,35.493,31.39,448,0.875,bilinear,-60.883,-34.473,+102 +resmlp_big_24_distilled_224,34.067,65.933,69.587,30.413,129.14,224,0.875,bicubic,-62.383,-29.723,-20 +xcit_tiny_24_p16_384_dist,33.827,66.173,65.347,34.653,12.12,384,1.000,bicubic,-62.103,-33.873,+17 +twins_pcpvt_large,33.413,66.587,67.947,32.053,60.99,224,0.900,bicubic,-62.737,-31.233,+2 +twins_svt_base,33.173,66.827,65.773,34.227,56.07,224,0.900,bicubic,-62.987,-33.287,-3 +pit_b_224,33.147,66.853,62.333,37.667,73.76,224,0.900,bicubic,-62.493,-36.857,+38 +resnetv2_152x2_bit_teacher,33.053,66.947,64.267,35.733,236.34,224,0.875,bicubic,-63.047,-35.003,+5 +swsl_resnext50_32x4d,33.027,66.973,65.067,34.933,25.03,224,0.875,bilinear,-62.833,-34.183,+18 +xcit_large_24_p16_224,32.773,67.227,62.133,37.867,189.10,224,1.000,bicubic,-62.647,-36.487,+57 +ssl_resnext101_32x16d,32.653,67.347,64.027,35.973,194.03,224,0.875,bilinear,-63.137,-35.153,+22 +swin_small_patch4_window7_224,32.600,67.400,65.467,34.533,49.61,224,0.900,bicubic,-63.310,-33.553,+10 +jx_nest_small,32.267,67.733,63.720,36.280,38.35,224,0.875,bicubic,-63.703,-35.410,+6 +tf_efficientnet_b5,31.827,68.173,65.280,34.720,30.39,456,0.934,bicubic,-64.523,-34.030,-20 +resnest101e,31.400,68.600,64.360,35.640,48.28,256,0.875,bilinear,-64.460,-34.760,+13 +crossvit_base_240,31.333,68.667,61.280,38.720,105.03,240,0.875,bicubic,-64.187,-37.540,+40 +convnext_small,31.240,68.760,66.093,33.907,50.22,224,0.875,bicubic,-64.930,-33.187,-15 +cait_s24_224,31.213,68.787,64.560,35.440,46.92,224,1.000,bicubic,-65.167,-34.590,-27 +efficientnet_b4,30.840,69.160,64.600,35.400,19.34,384,1.000,bicubic,-65.310,-34.590,-13 +resnetrs200,30.773,69.227,63.320,36.680,93.21,320,1.000,bicubic,-65.757,-36.030,-40 +crossvit_18_240,30.587,69.413,61.960,38.040,43.27,240,0.875,bicubic,-64.853,-36.830,+40 +dm_nfnet_f0,30.547,69.453,62.867,37.133,71.49,256,0.900,bicubic,-65.603,-36.383,-17 +crossvit_18_dagger_240,30.520,69.480,61.827,38.173,44.27,240,0.875,bicubic,-65.050,-37.233,+25 +xcit_small_24_p16_224_dist,30.427,69.573,64.707,35.293,47.67,224,1.000,bicubic,-65.783,-34.503,-24 +xcit_medium_24_p16_224,30.187,69.813,59.333,40.667,84.40,224,1.000,bicubic,-65.343,-39.797,+27 +cait_xxs24_384,30.027,69.973,63.920,36.080,12.03,384,1.000,bicubic,-65.253,-35.040,+49 +twins_pcpvt_base,29.960,70.040,64.587,35.413,43.83,224,0.900,bicubic,-65.830,-34.543,+7 +swsl_resnet50,29.840,70.160,63.853,36.147,25.56,224,0.875,bilinear,-65.560,-35.437,+41 +deit_base_distilled_patch16_224,29.600,70.400,64.440,35.560,87.34,224,0.900,bicubic,-66.490,-34.750,-15 +convit_base,29.547,70.453,61.787,38.213,86.54,224,0.875,bicubic,-66.003,-37.083,+19 +ssl_resnext101_32x8d,29.120,70.880,61.013,38.987,88.79,224,0.875,bilinear,-66.370,-38.107,+28 +tf_efficientnetv2_s,29.040,70.960,61.227,38.773,21.46,384,1.000,bicubic,-67.300,-37.973,-37 +resnet101d,28.987,71.013,62.040,37.960,44.57,320,1.000,bicubic,-67.313,-37.190,-36 +resnetrs152,28.920,71.080,60.507,39.493,86.62,320,1.000,bicubic,-67.660,-38.733,-59 +regnetz_c16,28.907,71.093,63.347,36.653,13.46,320,0.940,bicubic,-66.893,-35.753,-3 +xcit_tiny_24_p8_224_dist,28.733,71.267,61.400,38.600,12.11,224,1.000,bicubic,-67.077,-37.810,-5 +xcit_tiny_24_p8_224,28.707,71.293,60.440,39.560,12.11,224,1.000,bicubic,-66.963,-38.610,+6 +crossvit_15_dagger_240,28.533,71.467,60.320,39.680,28.21,240,0.875,bicubic,-67.157,-38.510,+3 +xcit_small_24_p16_224,28.347,71.653,58.827,41.173,47.67,224,1.000,bicubic,-67.183,-40.223,+14 +coat_lite_small,27.547,72.453,58.547,41.453,19.84,224,0.900,bicubic,-67.993,-40.313,+11 +deit_base_patch16_224,27.453,72.547,58.893,41.107,86.57,224,0.900,bicubic,-67.987,-39.947,+21 +resnetv2_50x1_bitm,27.293,72.707,62.867,37.133,25.55,448,1.000,bilinear,-67.717,-36.193,+60 +xcit_small_12_p16_224_dist,27.120,72.880,59.813,40.187,26.25,224,1.000,bicubic,-68.910,-39.327,-27 +vit_small_patch16_224,27.027,72.973,59.173,40.827,22.05,224,0.900,bicubic,-68.343,-39.977,+26 +tf_efficientnet_b4,26.293,73.707,60.107,39.893,19.34,380,0.922,bicubic,-69.607,-39.063,-21 +tf_efficientnet_b4_ap,26.253,73.747,60.213,39.787,19.34,380,0.922,bicubic,-69.917,-38.897,-45 +nfnet_l0,26.227,73.773,61.760,38.240,35.07,288,1.000,bicubic,-69.893,-37.480,-39 +regnety_032,26.213,73.787,60.987,39.013,19.44,288,1.000,bicubic,-69.757,-38.203,-30 +ecaresnet50t,26.107,73.893,60.040,39.960,25.57,320,0.950,bicubic,-69.403,-39.080,+8 +fbnetv3_g,26.093,73.907,61.040,38.960,16.62,288,0.950,bilinear,-69.417,-37.950,+8 +ecaresnet101d,26.027,73.973,59.000,41.000,44.57,224,0.875,bicubic,-69.503,-39.740,+3 +visformer_small,25.840,74.160,58.880,41.120,40.22,224,0.900,bicubic,-69.640,-40.020,+8 +halo2botnet50ts_256,25.573,74.427,56.840,43.160,22.64,256,0.950,bicubic,-69.847,-42.170,+13 +coat_mini,25.493,74.507,57.693,42.307,10.34,224,0.900,bicubic,-69.477,-41.087,+51 +crossvit_15_240,25.467,74.533,57.573,42.427,27.53,240,0.875,bicubic,-69.673,-41.357,+30 +xcit_small_12_p16_224,25.133,74.867,56.040,43.960,26.25,224,1.000,bicubic,-70.287,-42.800,+12 +resnetv2_50x1_bit_distilled,25.107,74.893,59.640,40.360,25.55,224,0.875,bicubic,-71.013,-39.640,-48 +convit_small,25.093,74.907,57.280,42.720,27.78,224,0.875,bicubic,-70.107,-41.620,+21 +gc_efficientnetv2_rw_t,25.040,74.960,57.707,42.293,13.68,288,1.000,bicubic,-70.700,-41.313,-22 +eca_nfnet_l0,24.827,75.173,60.093,39.907,24.14,288,1.000,bicubic,-71.123,-39.117,-40 +tnt_s_patch16_224,24.747,75.253,58.173,41.827,23.76,224,0.900,bicubic,-70.293,-40.667,+37 +xcit_tiny_12_p16_384_dist,24.440,75.560,57.080,42.920,6.72,384,1.000,bicubic,-70.690,-41.770,+24 +efficientnetv2_rw_t,24.333,75.667,57.400,42.600,13.65,288,1.000,bicubic,-71.277,-41.670,-16 +convnext_tiny,24.253,75.747,59.187,40.813,28.59,224,0.875,bicubic,-71.297,-39.833,-14 +ssl_resnext101_32x4d,24.187,75.813,57.400,42.600,44.18,224,0.875,bilinear,-71.253,-41.730,-2 +twins_svt_small,24.120,75.880,57.147,42.853,24.06,224,0.900,bicubic,-71.080,-41.733,+14 +vit_small_r26_s32_224,24.067,75.933,56.187,43.813,36.43,224,0.900,bicubic,-71.573,-42.483,-23 +tf_efficientnet_b2_ns,24.013,75.987,57.293,42.707,9.11,260,0.890,bicubic,-71.757,-41.827,-32 +vit_small_patch32_384,23.773,76.227,57.293,42.707,22.92,384,1.000,bicubic,-71.277,-41.697,+27 +lamhalobotnet50ts_256,23.587,76.413,55.293,44.707,22.57,256,0.950,bicubic,-71.563,-43.587,+14 +resnet152,23.533,76.467,53.680,46.320,60.19,224,0.950,bicubic,-72.367,-45.400,-48 +nasnetalarge,23.480,76.520,55.013,44.987,88.75,331,0.911,bicubic,-72.200,-43.917,-30 +crossvit_small_240,23.440,76.560,56.827,43.173,26.86,240,0.875,bicubic,-71.390,-42.193,+44 +levit_384,23.413,76.587,56.373,43.627,39.13,224,0.900,bicubic,-72.117,-42.387,-19 +pnasnet5large,23.333,76.667,53.640,46.360,86.06,331,0.911,bicubic,-72.377,-45.280,-35 +efficientnet_b3,23.213,76.787,55.933,44.067,12.23,320,1.000,bicubic,-72.497,-43.107,-37 +jx_nest_tiny,23.173,76.827,56.227,43.773,17.06,224,0.875,bicubic,-72.077,-42.753,-1 +resnet61q,22.987,77.013,55.760,44.240,36.85,288,1.000,bicubic,-72.793,-43.230,-43 +halonet50ts,22.893,77.107,53.987,46.013,22.73,256,0.940,bicubic,-72.267,-44.783,+3 +resmlp_big_24_224,22.853,77.147,54.307,45.693,129.14,224,0.875,bicubic,-71.817,-44.173,+47 +twins_pcpvt_small,22.707,77.293,56.867,43.133,24.11,224,0.900,bicubic,-72.503,-42.013,-3 +vit_base_patch32_224,22.387,77.613,54.013,45.987,88.22,224,0.900,bicubic,-72.613,-45.017,+21 +pit_s_distilled_224,22.347,77.653,57.080,42.920,24.04,224,0.900,bicubic,-72.893,-41.970,-6 +xcit_tiny_12_p8_224_dist,22.067,77.933,54.307,45.693,6.71,224,1.000,bicubic,-73.023,-44.603,+6 +tresnet_m,21.680,78.320,53.853,46.147,31.39,224,0.875,bilinear,-74.040,-45.177,-47 +convmixer_1536_20,21.200,78.800,55.520,44.480,51.63,224,0.960,bicubic,-73.860,-43.510,+9 +swin_tiny_patch4_window7_224,21.147,78.853,55.987,44.013,28.29,224,0.900,bicubic,-73.983,-43.033,0 +pit_s_224,21.107,78.893,53.560,46.440,23.46,224,0.900,bicubic,-73.483,-45.140,+46 +xcit_tiny_12_p8_224,21.013,78.987,52.440,47.560,6.71,224,1.000,bicubic,-73.677,-46.390,+37 +resnet51q,20.960,79.040,55.693,44.307,35.70,288,1.000,bilinear,-74.910,-43.427,-65 +regnetz_b16,20.947,79.053,53.840,46.160,9.72,288,0.940,bicubic,-74.123,-45.210,+2 +resnetrs101,20.867,79.133,52.813,47.187,63.62,288,0.940,bicubic,-74.563,-46.217,-27 +sebotnet33ts_256,20.760,79.240,48.800,51.200,13.70,256,0.940,bicubic,-73.810,-49.700,+43 +deit_small_distilled_patch16_224,20.707,79.293,55.133,44.867,22.44,224,0.900,bicubic,-74.003,-43.897,+30 +resnest50d_4s2x40d,20.373,79.627,52.827,47.173,30.42,224,0.875,bicubic,-74.587,-46.243,+11 +ssl_resnext50_32x4d,20.027,79.973,53.613,46.387,25.03,224,0.875,bilinear,-74.843,-45.277,+17 +haloregnetz_b,20.000,80.000,50.000,50.000,11.68,224,0.940,bicubic,-74.700,-48.660,+28 +resnetv2_101,19.907,80.093,49.187,50.813,44.54,224,0.950,bicubic,-75.723,-49.803,-52 +xcit_nano_12_p8_384_dist,19.813,80.187,50.547,49.453,3.05,384,1.000,bicubic,-73.707,-47.993,+143 +tresnet_xl,19.640,80.360,53.147,46.853,78.44,224,0.875,bilinear,-75.800,-45.903,-36 +gluon_senet154,19.333,80.667,47.560,52.440,115.09,224,0.875,bicubic,-75.587,-51.200,+7 +resnet101,19.333,80.667,49.613,50.387,44.55,224,0.950,bicubic,-76.027,-49.247,-31 +levit_256,19.200,80.800,50.067,49.933,18.89,224,0.900,bicubic,-75.820,-48.823,-3 +rexnet_200,19.200,80.800,52.720,47.280,16.37,224,0.875,bicubic,-75.750,-46.290,+3 +repvgg_b3,19.133,80.867,50.293,49.707,123.09,224,0.875,bilinear,-75.437,-48.487,+30 +lambda_resnet50ts,19.120,80.880,49.307,50.693,21.54,256,0.950,bicubic,-75.670,-49.153,+12 +legacy_senet154,19.040,80.960,47.960,52.040,115.09,224,0.875,bilinear,-76.030,-50.870,-15 +mixer_b16_224_miil,19.027,80.973,51.253,48.747,59.88,224,0.875,bilinear,-76.273,-47.627,-35 +gluon_seresnext101_64x4d,18.933,81.067,49.160,50.840,88.23,224,0.875,bicubic,-75.987,-49.670,+1 +deit_small_patch16_224,18.920,81.080,51.413,48.587,22.05,224,0.900,bicubic,-75.470,-47.277,+49 +tf_efficientnet_b1_ns,18.693,81.307,51.693,48.307,7.79,240,0.882,bicubic,-76.477,-47.427,-30 +seresnext50_32x4d,18.373,81.627,50.973,49.027,27.56,224,0.875,bicubic,-76.657,-47.907,-13 +cait_xxs36_224,18.253,81.747,49.440,50.560,17.30,224,1.000,bicubic,-76.007,-49.280,+57 +ecaresnet50d,18.240,81.760,51.840,48.160,25.58,224,0.875,bicubic,-76.390,-46.920,+17 +sehalonet33ts,18.240,81.760,47.800,52.200,13.69,256,0.940,bicubic,-76.530,-50.770,+5 +tf_efficientnet_lite4,18.147,81.853,50.720,49.280,13.01,380,0.920,bilinear,-76.743,-48.300,-5 +vit_tiny_patch16_384,18.027,81.973,50.333,49.667,5.79,384,1.000,bicubic,-75.623,-48.267,+115 +resnest50d_1s4x24d,17.693,82.307,49.787,50.213,25.68,224,0.875,bicubic,-77.057,-49.193,+3 +gluon_seresnext101_32x4d,17.373,82.627,46.373,53.627,48.96,224,0.875,bicubic,-77.547,-52.437,-10 +resnest50d,17.373,82.627,50.733,49.267,27.48,224,0.875,bilinear,-77.477,-48.147,-5 +efficientnet_el,17.333,82.667,50.013,49.987,10.59,300,0.904,bicubic,-77.787,-48.967,-33 +inception_v4,17.267,82.733,45.933,54.067,42.68,299,0.875,bicubic,-77.113,-52.647,+38 +tf_efficientnet_b3_ap,17.213,82.787,49.680,50.320,12.23,300,0.904,bicubic,-78.107,-49.220,-51 +xcit_tiny_24_p16_224_dist,17.173,82.827,47.480,52.520,12.12,224,1.000,bicubic,-77.357,-51.300,+19 +xception71,17.000,83.000,45.533,54.467,42.34,299,0.903,bicubic,-77.280,-53.107,+44 +tf_efficientnet_b3,16.987,83.013,49.267,50.733,12.23,300,0.904,bicubic,-78.033,-49.643,-25 +gluon_resnext101_64x4d,16.880,83.120,44.173,55.827,83.46,224,0.875,bicubic,-77.780,-54.477,+2 +resmlp_36_distilled_224,16.880,83.120,51.480,48.520,44.69,224,0.875,bicubic,-78.000,-47.360,-16 +tf_efficientnetv2_b3,16.653,83.347,48.680,51.320,14.36,300,0.904,bicubic,-78.507,-50.140,-46 +tresnet_l,16.600,83.400,49.920,50.080,55.99,224,0.875,bilinear,-78.690,-49.090,-56 +inception_resnet_v2,16.573,83.427,44.947,55.053,55.84,299,0.897,bicubic,-77.967,-53.663,+11 +gluon_resnet152_v1d,16.560,83.440,44.267,55.733,60.21,224,0.875,bicubic,-78.180,-54.473,-10 +gluon_resnet152_v1s,16.560,83.440,44.520,55.480,60.32,224,0.875,bicubic,-78.480,-54.410,-36 +gmlp_s16_224,16.547,83.453,45.120,54.880,19.42,224,0.875,bicubic,-77.603,-53.380,+53 +resmlp_24_distilled_224,16.453,83.547,50.387,49.613,30.02,224,0.875,bicubic,-78.007,-48.383,+18 +gluon_xception65,16.427,83.573,46.053,53.947,39.92,299,0.903,bicubic,-77.833,-52.517,+35 +gcresnet50t,16.360,83.640,48.213,51.787,25.90,256,0.900,bicubic,-78.500,-50.587,-23 +xcit_tiny_24_p16_224,16.320,83.680,45.973,54.027,12.12,224,1.000,bicubic,-77.750,-52.537,+58 +wide_resnet50_2,16.307,83.693,48.413,51.587,68.88,224,0.875,bicubic,-78.763,-50.557,-46 +gernet_l,16.307,83.693,47.200,52.800,31.08,256,0.875,bilinear,-78.793,-51.700,-50 +ens_adv_inception_resnet_v2,16.240,83.760,43.653,56.347,55.84,299,0.897,bicubic,-77.920,-54.947,+44 +repvgg_b3g4,16.240,83.760,47.640,52.360,83.83,224,0.875,bilinear,-78.280,-51.330,+2 +gcresnext50ts,16.213,83.787,46.533,53.467,15.67,256,0.900,bicubic,-78.277,-52.137,+3 +xception65,16.040,83.960,43.773,56.227,39.92,299,0.903,bicubic,-77.720,-54.597,+78 +ssl_resnet50,15.920,84.080,49.413,50.587,25.56,224,0.875,bilinear,-78.530,-49.507,+9 +regnety_320,15.627,84.373,44.827,55.173,145.05,224,0.875,bicubic,-78.913,-53.803,-7 +ecaresnet101d_pruned,15.600,84.400,48.027,51.973,24.88,224,0.875,bicubic,-79.480,-50.953,-56 +convmixer_768_32,15.533,84.467,47.960,52.040,21.11,224,0.960,bicubic,-78.967,-50.890,-3 +ecaresnet26t,15.467,84.533,47.933,52.067,16.01,320,0.950,bicubic,-78.843,-50.787,+17 +coat_tiny,15.400,84.600,45.640,54.360,5.50,224,0.900,bicubic,-78.190,-52.780,+87 +skresnext50_32x4d,15.360,84.640,44.507,55.493,27.48,224,0.875,bicubic,-78.900,-53.953,+22 +cait_xxs24_224,15.160,84.840,44.920,55.080,11.96,224,1.000,bicubic,-78.440,-53.520,+83 +ecaresnetlight,15.160,84.840,45.813,54.187,30.16,224,0.875,bicubic,-79.610,-52.987,-34 +levit_192,14.893,85.107,44.973,55.027,10.95,224,0.900,bicubic,-79.277,-53.707,+30 +rexnet_150,14.720,85.280,46.933,53.067,9.73,224,0.875,bicubic,-79.760,-51.857,-6 +resnext50_32x4d,14.533,85.467,44.173,55.827,25.03,224,0.950,bicubic,-80.007,-54.617,-16 +coat_lite_mini,14.480,85.520,44.520,55.480,11.01,224,0.900,bicubic,-79.580,-54.030,+40 +efficientnet_el_pruned,14.467,85.533,46.067,53.933,10.59,300,0.904,bicubic,-79.933,-52.673,-1 +efficientnet_b2,14.440,85.560,46.080,53.920,9.11,288,1.000,bicubic,-80.170,-52.630,-26 +seresnet33ts,14.427,85.573,46.160,53.840,19.78,256,0.900,bicubic,-80.423,-52.630,-44 +legacy_seresnext101_32x4d,14.147,85.853,43.000,57.000,48.96,224,0.875,bilinear,-80.213,-55.650,0 +seresnet50,14.147,85.853,45.520,54.480,28.09,224,0.875,bicubic,-80.403,-53.230,-24 +fbnetv3_d,14.120,85.880,46.453,53.547,10.31,256,0.950,bilinear,-79.810,-52.287,+44 +eca_resnet33ts,14.107,85.893,47.387,52.613,19.68,256,0.900,bicubic,-80.083,-51.383,+16 +gernet_m,14.080,85.920,46.053,53.947,21.14,224,0.875,bilinear,-80.540,-52.807,-33 +gluon_resnext101_32x4d,13.867,86.133,41.667,58.333,44.18,224,0.875,bicubic,-80.673,-57.183,-25 +gcresnet33ts,13.760,86.240,45.040,54.960,19.88,256,0.900,bicubic,-80.710,-53.730,-16 +gluon_seresnext50_32x4d,13.613,86.387,43.733,56.267,27.56,224,0.875,bicubic,-80.717,-54.877,-4 +resmlp_36_224,13.507,86.493,46.693,53.307,44.69,224,0.875,bicubic,-80.693,-51.967,+9 +resnet50_gn,13.453,86.547,42.747,57.253,25.56,224,0.940,bicubic,-80.907,-55.963,-8 +repvgg_b2g4,13.427,86.573,43.840,56.160,61.76,224,0.875,bilinear,-80.413,-54.750,+43 +eca_botnext26ts_256,13.360,86.640,42.173,57.827,10.59,256,0.950,bicubic,-80.420,-56.327,+48 +regnetx_320,13.333,86.667,40.707,59.293,107.81,224,0.875,bicubic,-81.127,-58.033,-22 +ese_vovnet39b,13.333,86.667,43.813,56.187,24.57,224,0.875,bicubic,-80.757,-54.847,+21 +pit_xs_distilled_224,13.267,86.733,44.560,55.440,11.00,224,0.900,bicubic,-80.553,-54.110,+42 +efficientnet_b3_pruned,13.173,86.827,45.213,54.787,9.86,300,0.904,bicubic,-81.457,-53.677,-46 +gluon_resnet101_v1d,13.173,86.827,41.507,58.493,44.57,224,0.875,bicubic,-81.067,-57.143,-2 +mixnet_xl,13.107,86.893,43.253,56.747,11.90,224,0.875,bicubic,-81.083,-55.087,+3 +nf_regnet_b1,12.947,87.053,44.400,55.600,10.22,288,0.900,bicubic,-81.173,-54.340,+13 +eca_halonext26ts,12.933,87.067,42.760,57.240,10.76,256,0.940,bicubic,-81.117,-55.740,+18 +pit_xs_224,12.813,87.187,42.827,57.173,10.62,224,0.900,bicubic,-80.297,-55.493,+93 +gluon_inception_v3,12.640,87.360,40.507,59.493,23.83,299,0.875,bicubic,-80.820,-58.063,+67 +crossvit_9_dagger_240,12.560,87.440,41.787,58.213,8.78,240,0.875,bicubic,-80.330,-56.443,+103 +coat_lite_tiny,12.547,87.453,41.147,58.853,5.72,224,0.900,bicubic,-80.683,-57.113,+83 +resmlp_24_224,12.493,87.507,43.427,56.573,30.02,224,0.875,bicubic,-81.527,-54.903,+15 +regnety_120,12.400,87.600,42.200,57.800,51.82,224,0.875,bicubic,-82.080,-56.610,-38 +efficientnet_em,12.360,87.640,43.867,56.133,6.90,240,0.882,bicubic,-81.470,-54.943,+28 +cspdarknet53,12.027,87.973,43.267,56.733,27.64,256,0.887,bilinear,-82.633,-55.533,-60 +hrnet_w64,12.013,87.987,40.800,59.200,128.06,224,0.875,bilinear,-81.997,-57.820,+12 +xcit_tiny_12_p16_224_dist,11.973,88.027,40.120,59.880,6.72,224,1.000,bicubic,-81.427,-58.370,+65 +gluon_resnet101_v1s,11.880,88.120,40.987,59.013,44.67,224,0.875,bicubic,-82.840,-57.833,-68 +gmixer_24_224,11.867,88.133,37.787,62.213,24.72,224,0.875,bicubic,-80.963,-60.093,+96 +nf_resnet50,11.760,88.240,45.947,54.053,25.56,288,0.940,bicubic,-82.790,-52.843,-56 +fbnetv3_b,11.747,88.253,44.387,55.613,8.60,256,0.950,bilinear,-82.213,-54.243,+10 +resnet50d,11.707,88.293,42.453,57.547,25.58,224,0.875,bicubic,-82.553,-56.267,-23 +dpn92,11.627,88.373,40.293,59.707,37.67,224,0.875,bicubic,-82.603,-58.437,-20 +xception41,11.600,88.400,39.147,60.853,26.97,299,0.903,bicubic,-81.830,-59.283,+54 +botnet26t_256,11.587,88.413,40.133,59.867,12.49,256,0.950,bicubic,-81.913,-58.227,+46 +dla102x2,11.560,88.440,41.320,58.680,41.28,224,0.875,bilinear,-82.400,-57.160,+4 +vit_small_patch32_224,11.480,88.520,39.547,60.453,22.88,224,0.900,bicubic,-80.560,-58.683,+134 +levit_128,11.440,88.560,40.227,59.773,9.21,224,0.900,bicubic,-81.890,-58.153,+57 +regnety_080,11.413,88.587,40.613,59.387,39.18,224,0.875,bicubic,-82.757,-57.937,-19 +lambda_resnet26t,11.373,88.627,40.200,59.800,10.96,256,0.940,bicubic,-82.457,-58.450,+13 +efficientnet_b2_pruned,11.347,88.653,42.027,57.973,8.31,260,0.890,bicubic,-82.793,-56.503,-16 +tf_efficientnet_el,11.347,88.653,42.053,57.947,10.59,300,0.904,bicubic,-83.053,-56.657,-47 +xcit_nano_12_p16_384_dist,11.253,88.747,39.867,60.133,3.05,384,1.000,bicubic,-80.577,-58.153,+142 +halonet26t,11.133,88.867,38.800,61.200,12.48,256,0.950,bicubic,-82.887,-59.700,-8 +gluon_resnet152_v1c,11.093,88.907,37.120,62.880,60.21,224,0.875,bicubic,-83.067,-61.520,-22 +vit_tiny_r_s16_p8_384,11.080,88.920,40.000,60.000,6.36,384,1.000,bicubic,-80.960,-58.290,+126 +hrnet_w48,11.067,88.933,40.320,59.680,77.47,224,0.875,bilinear,-82.853,-58.290,-2 +dpn107,11.053,88.947,38.627,61.373,86.92,224,0.875,bicubic,-83.247,-59.843,-44 +tf_efficientnetv2_b2,11.027,88.973,39.760,60.240,10.10,260,0.890,bicubic,-83.393,-58.810,-56 +ecaresnet50d_pruned,11.013,88.987,41.947,58.053,19.94,224,0.875,bicubic,-83.207,-56.783,-36 +adv_inception_v3,11.000,89.000,36.720,63.280,23.83,299,0.875,bicubic,-81.890,-61.420,+71 +xcit_tiny_12_p16_224,10.973,89.027,37.027,62.973,6.72,224,1.000,bicubic,-81.527,-61.213,+97 +resnetv2_50,10.960,89.040,39.347,60.653,25.55,224,0.950,bicubic,-83.480,-59.393,-61 +tf_efficientnet_b0_ns,10.933,89.067,40.067,59.933,5.29,224,0.875,bicubic,-82.697,-58.573,+16 +tf_inception_v3,10.827,89.173,36.840,63.160,23.83,299,0.875,bicubic,-82.493,-61.190,+44 +xcit_nano_12_p8_224_dist,10.787,89.213,38.133,61.867,3.05,224,1.000,bicubic,-81.313,-60.027,+113 +dpn131,10.720,89.280,37.187,62.813,79.25,224,0.875,bicubic,-83.270,-61.533,-18 +tf_efficientnet_b2_ap,10.533,89.467,40.107,59.893,9.11,260,0.890,bicubic,-83.957,-58.513,-74 +resnext50d_32x4d,10.400,89.600,39.733,60.267,25.05,224,0.875,bicubic,-83.780,-58.837,-40 +rexnet_130,10.400,89.600,41.560,58.440,7.56,224,0.875,bicubic,-83.500,-56.840,-13 +hrnet_w44,10.333,89.667,39.493,60.507,67.06,224,0.875,bilinear,-83.217,-59.207,+14 +xcit_nano_12_p8_224,10.280,89.720,37.000,63.000,3.05,224,1.000,bicubic,-80.730,-60.800,+144 +lambda_resnet26rpt_256,10.253,89.747,38.093,61.907,10.99,256,0.940,bicubic,-83.457,-60.417,+2 +resnext101_32x8d,10.173,89.827,37.800,62.200,88.79,224,0.875,bilinear,-83.647,-60.780,-9 +dpn98,10.147,89.853,36.613,63.387,61.57,224,0.875,bicubic,-83.963,-61.967,-35 +regnetx_160,10.147,89.853,38.000,62.000,54.28,224,0.875,bicubic,-83.973,-60.630,-38 +cspresnext50,10.133,89.867,40.307,59.693,20.57,224,0.875,bilinear,-84.337,-58.373,-80 +resnet50,10.120,89.880,37.947,62.053,25.56,224,0.950,bicubic,-84.210,-60.493,-66 +legacy_seresnext50_32x4d,10.093,89.907,39.187,60.813,27.56,224,0.875,bilinear,-83.637,-59.393,-6 +resnetrs50,10.053,89.947,37.507,62.493,35.69,224,0.910,bicubic,-84.247,-61.133,-65 +inception_v3,10.027,89.973,35.213,64.787,23.83,299,0.875,bicubic,-82.693,-62.757,+65 +efficientnet_b1,10.000,90.000,37.560,62.440,7.79,256,1.000,bicubic,-83.250,-60.730,+31 +xception,9.960,90.040,38.040,61.960,22.86,299,0.897,bicubic,-83.510,-60.490,+12 +regnety_064,9.947,90.053,39.093,60.907,30.58,224,0.875,bicubic,-84.193,-59.637,-48 +dpn68b,9.787,90.213,38.027,61.973,12.61,224,0.875,bicubic,-83.903,-60.493,-9 +gluon_resnet152_v1b,9.747,90.253,36.067,63.933,60.19,224,0.875,bicubic,-84.333,-62.393,-44 +tf_efficientnet_lite3,9.667,90.333,38.987,61.013,8.20,300,0.904,bilinear,-84.533,-59.653,-61 +tf_efficientnet_b2,9.653,90.347,38.880,61.120,9.11,260,0.890,bicubic,-84.707,-59.730,-78 +tf_efficientnet_cc_b1_8e,9.587,90.413,36.773,63.227,39.72,240,0.882,bicubic,-84.323,-61.487,-33 +res2net101_26w_4s,9.520,90.480,35.027,64.973,45.21,224,0.875,bilinear,-84.230,-63.283,-19 +legacy_seresnet152,9.333,90.667,37.413,62.587,66.82,224,0.875,bilinear,-84.067,-60.927,+10 +cspresnet50,9.267,90.733,39.627,60.373,21.62,256,0.887,bilinear,-84.473,-59.013,-20 +hrnet_w40,9.240,90.760,36.893,63.107,57.56,224,0.875,bilinear,-84.250,-61.837,0 +resnet33ts,9.240,90.760,38.680,61.320,19.68,256,0.900,bicubic,-84.360,-59.860,-11 +regnetx_120,9.187,90.813,37.187,62.813,46.11,224,0.875,bicubic,-85.053,-61.373,-74 +seresnext26d_32x4d,9.160,90.840,36.827,63.173,16.81,224,0.875,bicubic,-83.530,-61.323,+52 +crossvit_tiny_240,9.107,90.893,34.587,65.413,7.01,240,0.875,bicubic,-81.143,-63.003,+136 +resnest26d,9.080,90.920,37.840,62.160,17.07,224,0.875,bilinear,-84.240,-60.190,+10 +vit_tiny_patch16_224,9.067,90.933,34.600,65.400,5.72,224,0.900,bicubic,-82.693,-63.440,+98 +regnety_040,9.013,90.987,37.040,62.960,20.65,224,0.875,bicubic,-84.847,-61.610,-40 +vit_base_patch16_224_sam,8.987,91.013,36.160,63.840,86.57,224,0.900,bicubic,-85.153,-62.510,-64 +gluon_resnext50_32x4d,8.973,91.027,36.307,63.693,25.03,224,0.875,bicubic,-84.837,-62.103,-36 +rexnet_100,8.907,91.093,36.373,63.627,4.80,224,0.875,bicubic,-84.123,-62.017,+21 +seresnext26t_32x4d,8.893,91.107,36.920,63.080,16.81,224,0.875,bicubic,-83.927,-61.450,+34 +bat_resnext26ts,8.867,91.133,36.413,63.587,10.73,256,0.900,bicubic,-84.463,-61.937,-1 +mobilenetv3_large_100_miil,8.853,91.147,33.000,67.000,5.48,224,0.875,bilinear,-83.407,-64.640,+66 +mixnet_l,8.840,91.160,36.200,63.800,7.33,224,0.875,bicubic,-84.610,-62.020,-10 +convit_tiny,8.813,91.187,34.360,65.640,5.71,224,0.875,bicubic,-81.827,-63.380,+120 +resnet32ts,8.760,91.240,37.213,62.787,17.96,256,0.900,bicubic,-84.710,-61.277,-15 +levit_128s,8.720,91.280,33.120,66.880,7.78,224,0.900,bicubic,-83.240,-64.940,+76 +gcresnext26ts,8.693,91.307,35.720,64.280,10.48,256,0.900,bicubic,-84.087,-62.540,+29 +dla169,8.640,91.360,36.040,63.960,53.39,224,0.875,bilinear,-84.700,-62.550,-9 +mixer_b16_224,8.600,91.400,29.400,70.600,59.88,224,0.875,bicubic,-83.260,-67.850,+79 +hrnet_w30,8.587,91.413,37.040,62.960,37.71,224,0.875,bilinear,-84.603,-61.370,+1 +legacy_seresnet101,8.547,91.453,36.000,64.000,49.33,224,0.875,bilinear,-84.753,-62.510,-4 +tf_efficientnet_b1_ap,8.453,91.547,35.253,64.747,7.79,240,0.882,bicubic,-85.237,-63.107,-39 +repvgg_b2,8.427,91.573,36.453,63.547,89.02,224,0.875,bilinear,-85.063,-62.127,-25 +resmlp_12_distilled_224,8.307,91.693,36.853,63.147,15.35,224,0.875,bicubic,-84.523,-61.287,+18 +crossvit_9_240,8.267,91.733,34.107,65.893,8.55,240,0.875,bicubic,-82.373,-63.633,+108 +resnetblur50,8.253,91.747,37.360,62.640,25.56,224,0.875,bicubic,-85.697,-61.220,-68 +dla102x,8.200,91.800,37.013,62.987,26.31,224,0.875,bilinear,-85.320,-61.497,-33 +eca_resnext26ts,8.080,91.920,35.960,64.040,10.30,256,0.900,bicubic,-84.530,-62.300,+32 +hrnet_w32,8.040,91.960,37.507,62.493,41.23,224,0.875,bilinear,-85.490,-60.953,-36 +gluon_resnet101_v1c,7.987,92.013,33.373,66.627,44.57,224,0.875,bicubic,-85.673,-65.047,-46 +gluon_resnet50_v1d,7.933,92.067,35.000,65.000,25.58,224,0.875,bicubic,-85.837,-63.390,-57 +res2net50_26w_8s,7.853,92.147,33.747,66.253,48.40,224,0.875,bilinear,-85.557,-64.533,-27 +dla60_res2next,7.787,92.213,34.973,65.027,17.03,224,0.875,bilinear,-85.393,-63.437,-10 +densenetblur121d,7.733,92.267,34.747,65.253,8.00,224,0.875,bicubic,-84.177,-63.323,+61 +deit_tiny_distilled_patch16_224,7.693,92.307,33.560,66.440,5.91,224,0.900,bicubic,-83.017,-64.010,+95 +tf_efficientnetv2_b1,7.693,92.307,34.627,65.373,8.14,240,0.882,bicubic,-86.247,-63.993,-77 +dla60_res2net,7.560,92.440,34.627,65.373,20.85,224,0.875,bilinear,-85.620,-63.793,-15 +efficientnet_b1_pruned,7.440,92.560,34.533,65.467,6.33,240,0.882,bicubic,-85.330,-63.507,+9 +wide_resnet101_2,7.360,92.640,34.133,65.867,126.89,224,0.875,bilinear,-86.360,-64.407,-59 +regnetx_064,7.347,92.653,34.347,65.653,26.21,224,0.875,bicubic,-86.543,-64.283,-76 +deit_tiny_patch16_224,7.320,92.680,30.733,69.267,5.72,224,0.900,bicubic,-82.350,-66.707,+109 +gluon_resnet101_v1b,7.253,92.747,32.760,67.240,44.55,224,0.875,bicubic,-86.497,-65.620,-66 +hardcorenas_e,7.240,92.760,33.320,66.680,8.07,224,0.875,bilinear,-85.330,-64.790,+19 +efficientnet_b0,7.213,92.787,34.013,65.987,5.29,224,0.875,bicubic,-85.477,-64.057,+9 +gluon_resnet50_v1s,7.213,92.787,33.507,66.493,25.68,224,0.875,bicubic,-86.407,-64.953,-58 +tf_mixnet_l,7.133,92.867,31.600,68.400,7.33,224,0.875,bicubic,-86.187,-67.030,-34 +tf_efficientnet_b1,7.133,92.867,33.040,66.960,7.79,240,0.882,bicubic,-86.367,-65.260,-50 +tf_efficientnet_cc_b0_8e,7.120,92.880,31.787,68.213,24.01,224,0.875,bicubic,-85.710,-66.393,-5 +convmixer_1024_20_ks9_p14,7.080,92.920,33.053,66.947,24.38,224,0.960,bicubic,-85.340,-65.217,+21 +seresnext26ts,7.053,92.947,34.920,65.080,10.39,256,0.900,bicubic,-85.637,-63.370,+5 +resmlp_12_224,7.000,93.000,33.933,66.067,15.35,224,0.875,bicubic,-85.210,-64.227,+30 +hardcorenas_f,6.827,93.173,34.120,65.880,8.20,224,0.875,bilinear,-86.123,-64.040,-16 +ese_vovnet19b_dw,6.733,93.267,33.400,66.600,6.54,224,0.875,bicubic,-85.547,-64.690,+23 +selecsls60b,6.720,93.280,33.293,66.707,32.77,224,0.875,bicubic,-86.580,-64.987,-36 +res2net50_26w_6s,6.707,93.293,31.640,68.360,37.05,224,0.875,bilinear,-86.703,-66.540,-49 +efficientnet_es,6.680,93.320,33.840,66.160,5.44,224,0.875,bicubic,-86.460,-64.580,-32 +legacy_seresnext26_32x4d,6.627,93.373,33.240,66.760,16.79,224,0.875,bicubic,-86.013,-64.890,+1 +mixnet_m,6.627,93.373,32.053,67.947,5.01,224,0.875,bicubic,-85.803,-65.817,+11 +pit_ti_distilled_224,6.627,93.373,30.720,69.280,5.10,224,0.900,bicubic,-84.273,-66.990,+68 +tinynet_a,6.627,93.373,32.213,67.787,6.19,192,0.875,bicubic,-85.813,-65.867,+8 +skresnet34,6.480,93.520,31.573,68.427,22.28,224,0.875,bicubic,-85.910,-66.577,+12 +repvgg_b1,6.453,93.547,33.787,66.213,57.42,224,0.875,bilinear,-86.877,-64.723,-50 +hardcorenas_d,6.427,93.573,32.200,67.800,7.50,224,0.875,bilinear,-85.973,-65.870,+8 +dla60x,6.413,93.587,34.120,65.880,17.35,224,0.875,bilinear,-86.707,-64.390,-39 +resnet34d,6.400,93.600,31.480,68.520,21.82,224,0.875,bicubic,-86.280,-66.830,-9 +regnetx_080,6.307,93.693,32.307,67.693,39.57,224,0.875,bicubic,-87.563,-66.213,-101 +swsl_resnet18,6.240,93.760,31.613,68.387,11.69,224,0.875,bilinear,-84.450,-66.087,+65 +legacy_seresnet50,6.187,93.813,32.667,67.333,28.09,224,0.875,bilinear,-86.773,-65.523,-33 +resnet26t,6.120,93.880,32.240,67.760,16.01,256,0.940,bicubic,-86.630,-65.990,-20 +pit_ti_224,6.107,93.893,30.253,69.747,4.85,224,0.900,bicubic,-83.843,-67.197,+75 +tv_resnet152,6.027,93.973,32.053,67.947,60.19,224,0.875,bilinear,-87.283,-66.337,-55 +regnetx_040,5.973,94.027,31.587,68.413,22.12,224,0.875,bicubic,-87.577,-66.963,-80 +tf_efficientnet_cc_b0_4e,5.973,94.027,29.600,70.400,13.31,224,0.875,bicubic,-86.627,-68.480,-12 +tf_efficientnetv2_b0,5.907,94.093,30.787,69.213,7.14,224,0.875,bicubic,-87.203,-67.603,-46 +dla102,5.880,94.120,32.760,67.240,33.27,224,0.875,bilinear,-87.180,-65.790,-46 +mixer_l16_224,5.867,94.133,18.533,81.467,208.20,224,0.875,bicubic,-81.283,-74.977,+93 +regnety_016,5.680,94.320,30.440,69.560,11.20,224,0.875,bicubic,-87.350,-67.920,-46 +selecsls60,5.653,94.347,32.493,67.507,30.67,224,0.875,bicubic,-87.367,-65.817,-45 +hardcorenas_c,5.640,94.360,30.400,69.600,5.52,224,0.875,bilinear,-86.380,-67.440,+11 +res2next50,5.640,94.360,30.867,69.133,24.67,224,0.875,bilinear,-87.220,-67.323,-40 +hrnet_w18,5.480,94.520,30.947,69.053,21.30,224,0.875,bilinear,-86.840,-67.303,-6 +resnest14d,5.467,94.533,28.560,71.440,10.61,224,0.875,bilinear,-86.253,-69.310,+23 +tf_efficientnet_lite2,5.360,94.640,30.893,69.107,6.09,260,0.890,bicubic,-87.290,-67.337,-26 +tf_efficientnet_em,5.347,94.653,31.093,68.907,6.90,240,0.882,bicubic,-87.583,-67.107,-47 +gernet_s,5.307,94.693,30.120,69.880,8.17,224,0.875,bilinear,-86.833,-68.070,-1 +densenet121,5.293,94.707,29.893,70.107,7.98,224,0.875,bicubic,-86.287,-68.137,+20 +tf_efficientnet_b0_ap,5.293,94.707,28.813,71.187,5.29,224,0.875,bicubic,-86.907,-69.207,-5 +repvgg_b1g4,5.280,94.720,30.813,69.187,39.97,224,0.875,bilinear,-87.700,-67.617,-54 +xcit_nano_12_p16_224_dist,5.213,94.787,26.560,73.440,3.05,224,1.000,bicubic,-84.467,-70.530,+60 +res2net50_26w_4s,5.160,94.840,29.360,70.640,25.70,224,0.875,bilinear,-87.330,-68.700,-23 +tf_mixnet_m,5.080,94.920,28.133,71.867,5.01,224,0.875,bicubic,-87.250,-69.757,-17 +vit_tiny_r_s16_p8_224,5.080,94.920,27.040,72.960,6.34,224,0.900,bicubic,-84.090,-70.190,+62 +mobilenetv3_large_100,5.067,94.933,28.200,71.800,5.48,224,0.875,bicubic,-86.263,-69.510,+18 +tf_efficientnet_b0,5.053,94.947,28.787,71.213,5.29,224,0.875,bicubic,-87.207,-69.213,-15 +res2net50_14w_8s,5.040,94.960,28.773,71.227,25.06,224,0.875,bilinear,-87.700,-69.407,-44 +hardcorenas_b,4.947,95.053,28.120,71.880,5.18,224,0.875,bilinear,-86.833,-69.660,+6 +mixnet_s,4.907,95.093,28.573,71.427,4.13,224,0.875,bicubic,-86.923,-69.117,+3 +mobilenetv3_rw,4.907,95.093,29.853,70.147,5.48,224,0.875,bicubic,-86.303,-67.807,+16 +gluon_resnet50_v1c,4.893,95.107,28.133,71.867,25.58,224,0.875,bicubic,-88.137,-70.057,-67 +hardcorenas_a,4.867,95.133,28.120,71.880,5.26,224,0.875,bilinear,-86.483,-69.740,+10 +regnetx_032,4.853,95.147,30.280,69.720,15.30,224,0.875,bicubic,-88.267,-68.110,-75 +xcit_nano_12_p16_224,4.853,95.147,25.453,74.547,3.05,224,1.000,bicubic,-83.757,-71.337,+60 +tv_resnext50_32x4d,4.840,95.160,30.307,69.693,25.03,224,0.875,bilinear,-87.910,-67.963,-53 +densenet161,4.720,95.280,29.533,70.467,28.68,224,0.875,bicubic,-87.770,-68.757,-38 +tv_resnet101,4.707,95.293,29.347,70.653,44.55,224,0.875,bilinear,-88.113,-68.903,-60 +resnext26ts,4.680,95.320,29.013,70.987,10.30,256,0.900,bicubic,-87.190,-68.907,-9 +selecsls42b,4.667,95.333,28.587,71.413,32.46,224,0.875,bicubic,-87.613,-69.553,-30 +tf_efficientnet_lite1,4.613,95.387,28.387,71.613,5.42,240,0.882,bicubic,-88.007,-69.683,-49 +mobilenetv2_120d,4.533,95.467,29.280,70.720,5.83,224,0.875,bicubic,-87.867,-68.770,-37 +vit_base_patch32_224_sam,4.333,95.667,24.387,75.613,88.22,224,0.900,bicubic,-85.417,-72.613,+37 +efficientnet_es_pruned,4.213,95.787,26.533,73.467,5.44,224,0.875,bicubic,-86.967,-71.217,+5 +tinynet_b,4.187,95.813,26.707,73.293,3.73,188,0.875,bicubic,-86.743,-70.963,+13 +fbnetc_100,4.133,95.867,25.933,74.067,5.57,224,0.875,bilinear,-86.577,-71.277,+18 +densenet201,4.120,95.880,27.547,72.453,20.01,224,0.875,bicubic,-88.630,-70.683,-66 +gluon_resnet50_v1b,4.120,95.880,26.920,73.080,25.56,224,0.875,bicubic,-88.420,-71.250,-52 +resnet26d,4.040,95.960,28.507,71.493,16.01,224,0.875,bicubic,-88.030,-69.463,-30 +semnasnet_100,3.960,96.040,26.947,73.053,3.89,224,0.875,bicubic,-87.310,-70.613,-5 +repvgg_a2,3.947,96.053,27.240,72.760,28.21,224,0.875,bilinear,-87.993,-70.910,-25 +tf_mixnet_s,3.880,96.120,25.267,74.733,4.13,224,0.875,bicubic,-87.630,-72.353,-12 +dpn68,3.853,96.147,26.080,73.920,12.61,224,0.875,bicubic,-88.177,-71.970,-31 +semnasnet_075,3.853,96.147,27.013,72.987,2.91,224,0.875,bicubic,-86.227,-70.567,+22 +regnety_008,3.813,96.187,27.133,72.867,6.26,224,0.875,bicubic,-87.907,-71.047,-18 +tf_efficientnet_es,3.813,96.187,26.093,73.907,5.44,224,0.875,bicubic,-88.167,-71.777,-32 +dla60,3.773,96.227,27.973,72.027,22.04,224,0.875,bilinear,-88.457,-70.137,-44 +ssl_resnet18,3.747,96.253,25.440,74.560,11.69,224,0.875,bilinear,-86.473,-72.110,+15 +mobilenetv2_140,3.720,96.280,26.787,73.213,6.11,224,0.875,bicubic,-88.120,-71.063,-27 +densenet169,3.707,96.293,25.613,74.387,14.15,224,0.875,bicubic,-88.213,-72.487,-33 +regnetx_016,3.627,96.373,26.293,73.707,9.19,224,0.875,bicubic,-88.533,-71.917,-45 +res2net50_48w_2s,3.587,96.413,26.600,73.400,25.29,224,0.875,bilinear,-88.953,-71.490,-65 +spnasnet_100,3.547,96.453,24.293,75.707,4.42,224,0.875,bilinear,-86.803,-72.897,+8 +tf_mobilenetv3_large_100,3.547,96.453,25.053,74.947,5.48,224,0.875,bilinear,-87.693,-72.607,-18 +regnety_006,3.453,96.547,24.893,75.107,6.06,224,0.875,bicubic,-87.927,-72.817,-23 +legacy_seresnet34,3.333,96.667,23.813,76.187,21.96,224,0.875,bilinear,-87.567,-73.767,-7 +efficientnet_lite0,3.253,96.747,25.867,74.133,4.65,224,0.875,bicubic,-87.877,-71.753,-17 +dla34,3.240,96.760,23.573,76.427,15.74,224,0.875,bilinear,-87.530,-74.087,-6 +ghostnet_100,3.213,96.787,24.853,75.147,5.18,224,0.875,bilinear,-86.817,-72.517,+8 +regnety_004,3.200,96.800,22.653,77.347,4.34,224,0.875,bicubic,-87.290,-74.887,-1 +mobilenetv2_110d,3.173,96.827,24.587,75.413,4.52,224,0.875,bicubic,-87.787,-72.973,-14 +mnasnet_100,3.120,96.880,24.227,75.773,4.38,224,0.875,bicubic,-87.390,-73.243,-4 +tinynet_c,3.107,96.893,21.520,78.480,2.46,184,0.875,bicubic,-84.663,-74.850,+25 +tf_efficientnet_lite0,3.093,96.907,22.933,77.067,4.65,224,0.875,bicubic,-87.957,-74.657,-20 +skresnet18,3.000,97.000,22.813,77.187,11.96,224,0.875,bicubic,-86.660,-74.417,+9 +vgg19_bn,2.947,97.053,23.480,76.520,143.68,224,0.875,bilinear,-87.133,-73.950,-1 +resnet34,2.920,97.080,23.680,76.320,21.80,224,0.875,bilinear,-88.210,-73.940,-26 +tf_mobilenetv3_large_075,2.867,97.133,21.587,78.413,3.99,224,0.875,bilinear,-86.813,-75.623,+3 +tinynet_d,2.867,97.133,17.787,82.213,2.34,152,0.875,bicubic,-81.883,-77.393,+30 +hrnet_w18_small_v2,2.707,97.293,23.707,76.293,15.60,224,0.875,bilinear,-88.483,-74.193,-32 +gluon_resnet34_v1b,2.667,97.333,21.667,78.333,21.80,224,0.875,bicubic,-88.293,-75.973,-25 +regnetx_008,2.653,97.347,22.467,77.533,7.26,224,0.875,bicubic,-88.397,-75.243,-29 +vgg16_bn,2.653,97.347,23.787,76.213,138.37,224,0.875,bilinear,-87.437,-73.583,-9 +vgg16,2.627,97.373,20.427,79.573,138.36,224,0.875,bilinear,-85.923,-76.363,+12 +lcnet_100,2.613,97.387,20.880,79.120,2.95,224,0.875,bicubic,-86.177,-75.850,+8 +resnet18d,2.600,97.400,21.600,78.400,11.71,224,0.875,bicubic,-86.670,-75.540,0 +tv_densenet121,2.560,97.440,22.667,77.333,7.98,224,0.875,bicubic,-88.330,-75.043,-26 +repvgg_b0,2.547,97.453,24.027,75.973,15.82,224,0.875,bilinear,-88.873,-73.963,-47 +regnetx_006,2.520,97.480,20.627,79.373,6.20,224,0.875,bicubic,-87.830,-76.803,-19 +legacy_seresnet18,2.493,97.507,20.080,79.920,11.78,224,0.875,bicubic,-86.387,-76.900,+2 +resnet26,2.480,97.520,23.027,76.973,16.00,224,0.875,bicubic,-88.640,-74.723,-39 +lcnet_075,2.320,97.680,17.147,82.853,2.36,224,0.875,bicubic,-83.670,-78.533,+15 +regnety_002,2.160,97.840,18.893,81.107,3.16,224,0.875,bicubic,-85.220,-77.697,+8 +mobilenetv2_100,2.147,97.853,19.907,80.093,3.50,224,0.875,bicubic,-87.463,-77.243,-9 +vgg19,2.107,97.893,20.747,79.253,143.67,224,0.875,bilinear,-86.933,-76.123,-6 +vgg13_bn,2.093,97.907,20.307,79.693,133.05,224,0.875,bilinear,-86.667,-76.663,-2 +mnasnet_small,2.040,97.960,14.973,85.027,2.03,224,0.875,bicubic,-81.950,-79.947,+14 +tf_mobilenetv3_small_100,2.013,97.987,15.853,84.147,2.54,224,0.875,bilinear,-83.197,-79.917,+10 +tf_mobilenetv3_small_075,2.000,98.000,14.813,85.187,2.04,224,0.875,bilinear,-81.510,-79.987,+15 +regnetx_004,1.960,98.040,19.173,80.827,5.16,224,0.875,bicubic,-86.940,-77.947,-9 +vgg13,1.867,98.133,17.960,82.040,133.05,224,0.875,bilinear,-85.183,-78.360,+1 +tv_resnet34,1.867,98.133,20.000,80.000,21.80,224,0.875,bilinear,-88.063,-77.340,-22 +tinynet_e,1.853,98.147,14.013,85.987,2.04,106,0.875,bicubic,-77.047,-78.547,+14 +lcnet_050,1.813,98.187,13.880,86.120,1.88,224,0.875,bicubic,-79.967,-79.830,+11 +dla46x_c,1.760,98.240,16.480,83.520,1.07,224,0.875,bilinear,-82.490,-78.790,+5 +vgg11_bn,1.720,98.280,18.093,81.907,132.87,224,0.875,bilinear,-85.780,-78.727,-7 +tf_mobilenetv3_large_minimal_100,1.627,98.373,17.133,82.867,3.92,224,0.875,bilinear,-87.333,-79.727,-17 +dla60x_c,1.613,98.387,18.040,81.960,1.32,224,0.875,bilinear,-84.677,-78.120,-3 +mobilenetv2_050,1.613,98.387,14.200,85.800,1.97,224,0.875,bicubic,-82.277,-80.510,+3 +vgg11,1.560,98.440,16.227,83.773,132.86,224,0.875,bilinear,-84.990,-80.053,-6 +gluon_resnet18_v1b,1.547,98.453,16.613,83.387,11.69,224,0.875,bicubic,-86.853,-80.067,-14 +hrnet_w18_small,1.547,98.453,18.147,81.853,13.19,224,0.875,bilinear,-87.503,-78.963,-24 +dla46_c,1.507,98.493,15.267,84.733,1.30,224,0.875,bilinear,-82.143,-79.653,0 +regnetx_002,1.373,98.627,15.027,84.973,2.68,224,0.875,bicubic,-84.817,-80.953,-8 +resnet18,1.160,98.840,16.227,83.773,11.69,224,0.875,bilinear,-86.230,-80.063,-15 +tf_mobilenetv3_small_minimal_100,1.013,98.987,11.493,88.507,2.04,224,0.875,bilinear,-80.367,-82.177,0 +tv_resnet50,0.000,100.000,14.453,85.547,25.56,224,0.875,bilinear,-91.880,-83.587,-88 diff --git a/results/results-imagenet-r-clean.csv b/results/results-imagenet-r-clean.csv index 7f15e0235c..415c8e070f 100644 --- a/results/results-imagenet-r-clean.csv +++ b/results/results-imagenet-r-clean.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation -beit_large_patch16_384,97.820,2.180,99.790,0.210,305.00,384,1.000,bicubic -beit_large_patch16_512,97.770,2.230,99.810,0.190,305.67,512,1.000,bicubic -tf_efficientnet_l2_ns,97.770,2.230,99.890,0.110,480.31,800,0.960,bicubic +beit_large_patch16_384,97.810,2.190,99.790,0.210,305.00,384,1.000,bicubic +beit_large_patch16_512,97.780,2.220,99.820,0.180,305.67,512,1.000,bicubic +tf_efficientnet_l2_ns,97.780,2.220,99.890,0.110,480.31,800,0.960,bicubic tf_efficientnet_l2_ns_475,97.750,2.250,99.820,0.180,480.31,475,0.936,bicubic -beit_large_patch16_224,97.470,2.530,99.690,0.310,304.43,224,0.900,bicubic +convnext_xlarge_384_in22ft1k,97.550,2.450,99.800,0.200,350.20,384,1.000,bicubic +beit_large_patch16_224,97.480,2.520,99.690,0.310,304.43,224,0.900,bicubic +convnext_large_384_in22ft1k,97.440,2.560,99.780,0.220,197.77,384,1.000,bicubic vit_large_patch16_384,97.420,2.580,99.780,0.220,304.72,384,1.000,bicubic -beit_base_patch16_384,97.350,2.650,99.710,0.290,86.74,384,1.000,bicubic -tf_efficientnet_b7_ns,97.210,2.790,99.700,0.300,66.35,600,0.949,bicubic -swin_large_patch4_window12_384,97.180,2.820,99.690,0.310,196.74,384,1.000,bicubic +beit_base_patch16_384,97.330,2.670,99.720,0.280,86.74,384,1.000,bicubic +convnext_base_384_in22ft1k,97.280,2.720,99.770,0.230,88.59,384,1.000,bicubic +convnext_large_in22ft1k,97.260,2.740,99.650,0.350,197.77,224,0.875,bicubic +convnext_xlarge_in22ft1k,97.240,2.760,99.730,0.270,350.20,224,0.875,bicubic +tf_efficientnet_b7_ns,97.200,2.800,99.700,0.300,66.35,600,0.949,bicubic +swin_large_patch4_window12_384,97.180,2.820,99.680,0.320,196.74,384,1.000,bicubic tf_efficientnetv2_xl_in21ft1k,97.150,2.850,99.620,0.380,208.12,512,1.000,bicubic -tf_efficientnetv2_l_in21ft1k,97.110,2.890,99.700,0.300,118.52,480,1.000,bicubic -swin_base_patch4_window12_384,97.070,2.930,99.770,0.230,87.90,384,1.000,bicubic -tf_efficientnet_b6_ns,97.030,2.970,99.710,0.290,43.04,528,0.942,bicubic -vit_base_patch16_384,97.020,2.980,99.700,0.300,86.86,384,1.000,bicubic -ig_resnext101_32x48d,96.960,3.040,99.670,0.330,828.41,224,0.875,bilinear +swin_base_patch4_window12_384,97.120,2.880,99.780,0.220,87.90,384,1.000,bicubic +tf_efficientnetv2_l_in21ft1k,97.110,2.890,99.710,0.290,118.52,480,1.000,bicubic +vit_base_patch8_224,97.080,2.920,99.620,0.380,86.58,224,0.900,bicubic +tf_efficientnet_b6_ns,97.020,2.980,99.710,0.290,43.04,528,0.942,bicubic +vit_base_patch16_384,97.020,2.980,99.710,0.290,86.86,384,1.000,bicubic +ig_resnext101_32x48d,96.970,3.030,99.670,0.330,828.41,224,0.875,bilinear +tf_efficientnetv2_m_in21ft1k,96.970,3.030,99.610,0.390,54.14,480,1.000,bicubic swin_large_patch4_window7_224,96.950,3.050,99.660,0.340,196.53,224,0.900,bicubic -tf_efficientnetv2_m_in21ft1k,96.950,3.050,99.610,0.390,54.14,480,1.000,bicubic -vit_large_r50_s32_384,96.950,3.050,99.720,0.280,329.09,384,1.000,bicubic -xcit_large_24_p16_384_dist,96.930,3.070,99.510,0.490,189.10,384,1.000,bicubic -dm_nfnet_f6,96.910,3.090,99.720,0.280,438.36,576,0.956,bicubic +vit_large_r50_s32_384,96.950,3.050,99.710,0.290,329.09,384,1.000,bicubic +xcit_large_24_p16_384_dist,96.940,3.060,99.510,0.490,189.10,384,1.000,bicubic +dm_nfnet_f6,96.920,3.080,99.720,0.280,438.36,576,0.956,bicubic +cait_m48_448,96.880,3.120,99.620,0.380,356.46,448,1.000,bicubic resnetv2_152x4_bitm,96.880,3.120,99.660,0.340,936.53,480,1.000,bilinear -tf_efficientnet_b5_ns,96.880,3.120,99.640,0.360,30.39,456,0.934,bicubic -cait_m48_448,96.870,3.130,99.620,0.380,356.46,448,1.000,bicubic -xcit_small_24_p8_384_dist,96.830,3.170,99.630,0.370,47.63,384,1.000,bicubic -cait_m36_384,96.820,3.180,99.660,0.340,271.22,384,1.000,bicubic -dm_nfnet_f5,96.800,3.200,99.670,0.330,377.21,544,0.954,bicubic -dm_nfnet_f4,96.780,3.220,99.620,0.380,316.07,512,0.951,bicubic +tf_efficientnet_b5_ns,96.870,3.130,99.640,0.360,30.39,456,0.934,bicubic +convnext_base_in22ft1k,96.860,3.140,99.650,0.350,88.59,224,0.875,bicubic +cait_m36_384,96.830,3.170,99.660,0.340,271.22,384,1.000,bicubic +dm_nfnet_f5,96.810,3.190,99.670,0.330,377.21,544,0.954,bicubic +xcit_small_24_p8_384_dist,96.810,3.190,99.630,0.370,47.63,384,1.000,bicubic +xcit_medium_24_p8_384_dist,96.780,3.220,99.610,0.390,84.32,384,1.000,bicubic ig_resnext101_32x32d,96.780,3.220,99.530,0.470,468.53,224,0.875,bilinear -xcit_medium_24_p8_384_dist,96.780,3.220,99.620,0.380,84.32,384,1.000,bicubic +dm_nfnet_f4,96.780,3.220,99.620,0.380,316.07,512,0.951,bicubic xcit_large_24_p8_384_dist,96.760,3.240,99.560,0.440,188.93,384,1.000,bicubic -dm_nfnet_f3,96.720,3.280,99.630,0.370,254.92,416,0.940,bicubic +dm_nfnet_f3,96.730,3.270,99.630,0.370,254.92,416,0.940,bicubic tf_efficientnet_b4_ns,96.710,3.290,99.640,0.360,19.34,380,0.922,bicubic vit_large_patch16_224,96.710,3.290,99.650,0.350,304.33,224,0.900,bicubic -tf_efficientnet_b8,96.700,3.300,99.550,0.450,87.41,672,0.954,bicubic -xcit_medium_24_p16_384_dist,96.690,3.310,99.600,0.400,84.40,384,1.000,bicubic -swin_base_patch4_window7_224,96.670,3.330,99.670,0.330,87.77,224,0.900,bicubic -beit_base_patch16_224,96.650,3.350,99.660,0.340,86.53,224,0.900,bicubic -tf_efficientnetv2_l,96.650,3.350,99.570,0.430,118.52,480,1.000,bicubic -cait_s36_384,96.630,3.370,99.590,0.410,68.37,384,1.000,bicubic -xcit_large_24_p8_224_dist,96.620,3.380,99.460,0.540,188.93,224,1.000,bicubic -cait_s24_384,96.580,3.420,99.550,0.450,47.06,384,1.000,bicubic +tf_efficientnet_b8,96.700,3.300,99.530,0.470,87.41,672,0.954,bicubic +xcit_medium_24_p16_384_dist,96.700,3.300,99.600,0.400,84.40,384,1.000,bicubic +swin_base_patch4_window7_224,96.680,3.320,99.660,0.340,87.77,224,0.900,bicubic +beit_base_patch16_224,96.660,3.340,99.660,0.340,86.53,224,0.900,bicubic +tf_efficientnetv2_l,96.650,3.350,99.560,0.440,118.52,480,1.000,bicubic +xcit_large_24_p8_224_dist,96.640,3.360,99.460,0.540,188.93,224,1.000,bicubic +cait_s36_384,96.630,3.370,99.600,0.400,68.37,384,1.000,bicubic +regnetz_e8,96.600,3.400,99.610,0.390,57.70,320,1.000,bicubic tf_efficientnet_b7,96.580,3.420,99.510,0.490,66.35,600,0.949,bicubic -tf_efficientnet_b8_ap,96.560,3.440,99.550,0.450,87.41,672,0.954,bicubic -tf_efficientnetv2_m,96.550,3.450,99.570,0.430,54.14,480,1.000,bicubic -xcit_small_24_p8_224_dist,96.550,3.450,99.560,0.440,47.63,224,1.000,bicubic +cait_s24_384,96.570,3.430,99.550,0.450,47.06,384,1.000,bicubic +tf_efficientnet_b8_ap,96.550,3.450,99.540,0.460,87.41,672,0.954,bicubic +xcit_small_24_p8_224_dist,96.550,3.450,99.570,0.430,47.63,224,1.000,bicubic +tf_efficientnetv2_m,96.540,3.460,99.570,0.430,54.14,480,1.000,bicubic resnetv2_152x2_bitm,96.520,3.480,99.590,0.410,236.34,448,1.000,bilinear -xcit_medium_24_p8_224_dist,96.500,3.500,99.500,0.500,84.32,224,1.000,bicubic -deit_base_distilled_patch16_384,96.490,3.510,99.590,0.410,87.63,384,1.000,bicubic -xcit_small_12_p8_384_dist,96.480,3.520,99.480,0.520,26.21,384,1.000,bicubic -vit_base_r50_s16_384,96.470,3.530,99.660,0.340,98.95,384,1.000,bicubic +xcit_medium_24_p8_224_dist,96.520,3.480,99.510,0.490,84.32,224,1.000,bicubic +deit_base_distilled_patch16_384,96.510,3.490,99.590,0.410,87.63,384,1.000,bicubic +xcit_small_12_p8_384_dist,96.480,3.520,99.490,0.510,26.21,384,1.000,bicubic +tf_efficientnetv2_s_in21ft1k,96.470,3.530,99.570,0.430,21.46,384,1.000,bicubic +dm_nfnet_f2,96.460,3.540,99.540,0.460,193.78,352,0.920,bicubic ecaresnet269d,96.460,3.540,99.610,0.390,102.09,352,1.000,bicubic -tf_efficientnetv2_s_in21ft1k,96.460,3.540,99.570,0.430,21.46,384,1.000,bicubic -eca_nfnet_l2,96.460,3.540,99.630,0.370,56.72,384,1.000,bicubic -dm_nfnet_f2,96.450,3.550,99.540,0.460,193.78,352,0.920,bicubic -ig_resnext101_32x16d,96.430,3.570,99.540,0.460,194.03,224,0.875,bilinear +eca_nfnet_l2,96.450,3.550,99.630,0.370,56.72,384,1.000,bicubic +vit_base_r50_s16_384,96.450,3.550,99.660,0.340,98.95,384,1.000,bicubic +ig_resnext101_32x16d,96.440,3.560,99.540,0.460,194.03,224,0.875,bilinear resnetrs420,96.400,3.600,99.540,0.460,191.89,416,1.000,bicubic -dm_nfnet_f1,96.370,3.630,99.480,0.520,132.63,320,0.910,bicubic -tf_efficientnet_b6_ap,96.360,3.640,99.550,0.450,43.04,528,0.942,bicubic -xcit_small_24_p16_384_dist,96.360,3.640,99.590,0.410,47.67,384,1.000,bicubic -tf_efficientnet_b7_ap,96.350,3.650,99.600,0.400,66.35,600,0.949,bicubic -resmlp_big_24_224_in22ft1k,96.340,3.660,99.510,0.490,129.14,224,0.875,bicubic -seresnet152d,96.330,3.670,99.510,0.490,66.84,320,1.000,bicubic +dm_nfnet_f1,96.380,3.620,99.470,0.530,132.63,320,0.910,bicubic +tf_efficientnet_b6_ap,96.370,3.630,99.550,0.450,43.04,528,0.942,bicubic +resmlp_big_24_224_in22ft1k,96.350,3.650,99.520,0.480,129.14,224,0.875,bicubic +tf_efficientnet_b7_ap,96.350,3.650,99.590,0.410,66.35,600,0.949,bicubic +xcit_small_24_p16_384_dist,96.340,3.660,99.580,0.420,47.67,384,1.000,bicubic xcit_small_12_p16_384_dist,96.330,3.670,99.490,0.510,26.25,384,1.000,bicubic -xcit_large_24_p16_224_dist,96.310,3.690,99.500,0.500,189.10,224,1.000,bicubic +xcit_large_24_p16_224_dist,96.320,3.680,99.500,0.500,189.10,224,1.000,bicubic +seresnet152d,96.310,3.690,99.510,0.490,66.84,320,1.000,bicubic vit_base_patch16_224,96.300,3.700,99.560,0.440,86.57,224,0.900,bicubic -resnetv2_50x3_bitm,96.290,3.710,99.630,0.370,217.32,448,1.000,bilinear -resnetv2_101x3_bitm,96.290,3.710,99.580,0.420,387.93,448,1.000,bilinear -tf_efficientnet_b6,96.280,3.720,99.520,0.480,43.04,528,0.942,bicubic +tf_efficientnet_b6,96.290,3.710,99.520,0.480,43.04,528,0.942,bicubic swsl_resnext101_32x16d,96.280,3.720,99.500,0.500,194.03,224,0.875,bilinear efficientnetv2_rw_m,96.270,3.730,99.560,0.440,53.24,416,1.000,bicubic +resnetv2_50x3_bitm,96.270,3.730,99.630,0.370,217.32,448,1.000,bilinear xcit_medium_24_p16_224_dist,96.260,3.740,99.400,0.600,84.40,224,1.000,bicubic -xcit_tiny_24_p8_384_dist,96.250,3.750,99.440,0.560,12.11,384,1.000,bicubic +resnetv2_101x3_bitm,96.250,3.750,99.580,0.420,387.93,448,1.000,bilinear resnetrs350,96.240,3.760,99.470,0.530,163.96,384,1.000,bicubic -swsl_resnext101_32x8d,96.230,3.770,99.590,0.410,88.79,224,0.875,bilinear -vit_large_r50_s32_224,96.190,3.810,99.530,0.470,328.99,224,0.900,bicubic -resnetv2_152x2_bit_teacher_384,96.170,3.830,99.510,0.490,236.34,384,1.000,bicubic -resnest269e,96.120,3.880,99.520,0.480,110.93,416,0.928,bicubic -crossvit_18_dagger_408,96.110,3.890,99.470,0.530,44.61,408,1.000,bicubic +swsl_resnext101_32x8d,96.240,3.760,99.590,0.410,88.79,224,0.875,bilinear +xcit_tiny_24_p8_384_dist,96.240,3.760,99.440,0.560,12.11,384,1.000,bicubic +resnetv2_152x2_bit_teacher_384,96.190,3.810,99.500,0.500,236.34,384,1.000,bicubic +vit_large_r50_s32_224,96.180,3.820,99.530,0.470,328.99,224,0.900,bicubic +crossvit_18_dagger_408,96.130,3.870,99.470,0.530,44.61,408,1.000,bicubic +resnest269e,96.130,3.870,99.520,0.480,110.93,416,0.928,bicubic resnet200d,96.110,3.890,99.460,0.540,64.69,320,1.000,bicubic -tf_efficientnet_b3_ns,96.110,3.890,99.470,0.530,12.23,300,0.904,bicubic +tf_efficientnet_b3_ns,96.100,3.900,99.480,0.520,12.23,300,0.904,bicubic tf_efficientnet_b5_ap,96.080,3.920,99.540,0.460,30.39,456,0.934,bicubic -resnest200e,96.080,3.920,99.470,0.530,70.20,320,0.909,bicubic -pit_b_distilled_224,96.080,3.920,99.380,0.620,74.79,224,0.900,bicubic -resnetrs270,96.070,3.930,99.480,0.520,129.86,352,1.000,bicubic -xcit_large_24_p8_224,96.060,3.940,99.150,0.850,188.93,224,1.000,bicubic +xcit_large_24_p8_224,96.080,3.920,99.150,0.850,188.93,224,1.000,bicubic +pit_b_distilled_224,96.070,3.930,99.380,0.620,74.79,224,0.900,bicubic +resnest200e,96.070,3.930,99.480,0.520,70.20,320,0.909,bicubic +resnetrs270,96.060,3.940,99.480,0.520,129.86,352,1.000,bicubic vit_small_r26_s32_384,96.060,3.940,99.550,0.450,36.47,384,1.000,bicubic -swsl_resnext101_32x4d,96.050,3.950,99.540,0.460,44.18,224,0.875,bilinear -vit_base_patch16_224_miil,96.040,3.960,99.350,0.650,86.54,224,0.875,bilinear +swsl_resnext101_32x4d,96.040,3.960,99.530,0.470,44.18,224,0.875,bilinear +vit_base_patch16_224_miil,96.030,3.970,99.350,0.650,86.54,224,0.875,bilinear +convnext_large,96.020,3.980,99.470,0.530,197.77,224,0.875,bicubic cait_xs24_384,96.010,3.990,99.430,0.570,26.67,384,1.000,bicubic -resnetrs200,96.000,4.000,99.440,0.560,93.21,320,1.000,bicubic +regnetz_d8,96.010,3.990,99.520,0.480,23.37,320,1.000,bicubic +resnetrs200,95.990,4.010,99.440,0.560,93.21,320,1.000,bicubic tf_efficientnet_b5,95.980,4.020,99.450,0.550,30.39,456,0.934,bicubic -vit_small_patch16_384,95.980,4.020,99.600,0.400,22.20,384,1.000,bicubic +vit_small_patch16_384,95.980,4.020,99.590,0.410,22.20,384,1.000,bicubic resnetrs152,95.960,4.040,99.380,0.620,86.62,320,1.000,bicubic xcit_small_12_p8_224_dist,95.960,4.040,99.420,0.580,26.21,224,1.000,bicubic -ig_resnext101_32x8d,95.950,4.050,99.390,0.610,88.79,224,0.875,bilinear -eca_nfnet_l1,95.920,4.080,99.500,0.500,41.41,320,1.000,bicubic +convnext_base,95.950,4.050,99.380,0.620,88.59,224,0.875,bicubic +ig_resnext101_32x8d,95.940,4.060,99.380,0.620,88.79,224,0.875,bilinear +eca_nfnet_l1,95.930,4.070,99.490,0.510,41.41,320,1.000,bicubic xcit_small_24_p8_224,95.910,4.090,99.180,0.820,47.63,224,1.000,bicubic -vit_base_patch32_384,95.910,4.090,99.440,0.560,88.30,384,1.000,bicubic -regnety_160,95.900,4.100,99.560,0.440,83.59,288,1.000,bicubic -xcit_medium_24_p8_224,95.870,4.130,99.090,0.910,84.32,224,1.000,bicubic +vit_base_patch32_384,95.900,4.100,99.440,0.560,88.30,384,1.000,bicubic +regnety_160,95.880,4.120,99.560,0.440,83.59,288,1.000,bicubic resmlp_big_24_distilled_224,95.870,4.130,99.440,0.560,129.14,224,0.875,bicubic -regnetz_d,95.860,4.140,99.440,0.560,27.58,320,0.950,bicubic -resnet152d,95.850,4.150,99.430,0.570,60.21,320,1.000,bicubic -crossvit_15_dagger_408,95.820,4.180,99.300,0.700,28.50,408,1.000,bicubic -xcit_small_24_p16_224_dist,95.810,4.190,99.340,0.660,47.67,224,1.000,bicubic -deit_base_distilled_patch16_224,95.780,4.220,99.280,0.720,87.34,224,0.900,bicubic +resnet152d,95.870,4.130,99.430,0.570,60.21,320,1.000,bicubic +xcit_medium_24_p8_224,95.870,4.130,99.080,0.920,84.32,224,1.000,bicubic +regnetz_d32,95.860,4.140,99.430,0.570,27.58,320,0.950,bicubic +crossvit_15_dagger_408,95.820,4.180,99.310,0.690,28.50,408,1.000,bicubic +xcit_small_24_p16_224_dist,95.800,4.200,99.340,0.660,47.67,224,1.000,bicubic +deit_base_distilled_patch16_224,95.750,4.250,99.280,0.720,87.34,224,0.900,bicubic resnet101d,95.750,4.250,99.440,0.560,44.57,320,1.000,bicubic -xcit_small_12_p16_224_dist,95.750,4.250,99.290,0.710,26.25,224,1.000,bicubic -resnetv2_152x2_bit_teacher,95.730,4.270,99.430,0.570,236.34,224,0.875,bicubic -twins_pcpvt_large,95.720,4.280,99.490,0.510,60.99,224,0.900,bicubic +resnetv2_152x2_bit_teacher,95.750,4.250,99.430,0.570,236.34,224,0.875,bicubic +xcit_small_12_p16_224_dist,95.740,4.260,99.300,0.700,26.25,224,1.000,bicubic twins_svt_large,95.720,4.280,99.370,0.630,99.27,224,0.900,bicubic +twins_pcpvt_large,95.720,4.280,99.490,0.510,60.99,224,0.900,bicubic swin_small_patch4_window7_224,95.720,4.280,99.290,0.710,49.61,224,0.900,bicubic tf_efficientnetv2_s,95.710,4.290,99.400,0.600,21.46,384,1.000,bicubic -dm_nfnet_f0,95.710,4.290,99.330,0.670,71.49,256,0.900,bicubic efficientnetv2_rw_s,95.700,4.300,99.380,0.620,23.94,384,1.000,bicubic -deit_base_patch16_384,95.660,4.340,99.240,0.760,86.86,384,1.000,bicubic -cait_s24_224,95.640,4.360,99.390,0.610,46.92,224,1.000,bicubic -tf_efficientnet_b4,95.590,4.410,99.320,0.680,19.34,380,0.922,bicubic -swsl_resnext50_32x4d,95.590,4.410,99.440,0.560,25.03,224,0.875,bilinear -resnest101e,95.580,4.420,99.270,0.730,48.28,256,0.875,bilinear +dm_nfnet_f0,95.690,4.310,99.330,0.670,71.49,256,0.900,bicubic +cait_s24_224,95.650,4.350,99.390,0.610,46.92,224,1.000,bicubic +deit_base_patch16_384,95.650,4.350,99.240,0.760,86.86,384,1.000,bicubic +convnext_small,95.630,4.370,99.260,0.740,50.22,224,0.875,bicubic +swsl_resnext50_32x4d,95.600,4.400,99.440,0.560,25.03,224,0.875,bilinear +tf_efficientnet_b4,95.590,4.410,99.330,0.670,19.34,380,0.922,bicubic twins_svt_base,95.570,4.430,99.230,0.770,56.07,224,0.900,bicubic -efficientnet_b4,95.540,4.460,99.400,0.600,19.34,384,1.000,bicubic -jx_nest_small,95.540,4.460,99.230,0.770,38.35,224,0.875,bicubic -jx_nest_base,95.530,4.470,99.300,0.700,67.72,224,0.875,bicubic -tf_efficientnet_b2_ns,95.530,4.470,99.340,0.660,9.11,260,0.890,bicubic -tresnet_xl_448,95.520,4.480,99.340,0.660,78.44,448,0.875,bilinear -tf_efficientnet_b4_ap,95.500,4.500,99.390,0.610,19.34,380,0.922,bicubic -regnety_032,95.470,4.530,99.320,0.680,19.44,288,1.000,bicubic -twins_pcpvt_base,95.470,4.530,99.380,0.620,43.83,224,0.900,bicubic -xcit_tiny_24_p16_384_dist,95.460,4.540,99.350,0.650,12.12,384,1.000,bicubic -xcit_tiny_24_p8_224_dist,95.460,4.540,99.370,0.630,12.11,224,1.000,bicubic +resnest101e,95.560,4.440,99.270,0.730,48.28,256,0.875,bilinear +resnet152,95.560,4.440,99.270,0.730,60.19,224,0.950,bicubic +jx_nest_base,95.540,4.460,99.300,0.700,67.72,224,0.875,bicubic +jx_nest_small,95.540,4.460,99.220,0.780,38.35,224,0.875,bicubic +efficientnet_b4,95.520,4.480,99.400,0.600,19.34,384,1.000,bicubic +tf_efficientnet_b2_ns,95.520,4.480,99.340,0.660,9.11,260,0.890,bicubic +tresnet_xl_448,95.510,4.490,99.340,0.660,78.44,448,0.875,bilinear +tf_efficientnet_b4_ap,95.490,4.510,99.390,0.610,19.34,380,0.922,bicubic +regnety_032,95.480,4.520,99.320,0.680,19.44,288,1.000,bicubic +xcit_tiny_24_p16_384_dist,95.480,4.520,99.360,0.640,12.12,384,1.000,bicubic +twins_pcpvt_base,95.460,4.540,99.390,0.610,43.83,224,0.900,bicubic +xcit_tiny_24_p8_224_dist,95.460,4.540,99.360,0.640,12.11,224,1.000,bicubic eca_nfnet_l0,95.450,4.550,99.390,0.610,24.14,288,1.000,bicubic -nfnet_l0,95.420,4.580,99.430,0.570,35.07,288,1.000,bicubic xcit_small_12_p8_224,95.420,4.580,99.200,0.800,26.21,224,1.000,bicubic -regnetz_c,95.410,4.590,99.310,0.690,13.46,320,0.940,bicubic -ssl_resnext101_32x16d,95.400,4.600,99.410,0.590,194.03,224,0.875,bilinear -tresnet_m,95.400,4.600,99.150,0.850,31.39,224,0.875,bilinear +ssl_resnext101_32x16d,95.410,4.590,99.410,0.590,194.03,224,0.875,bilinear +tresnet_l_448,95.400,4.600,99.300,0.700,55.99,448,0.875,bilinear +nfnet_l0,95.390,4.610,99.420,0.580,35.07,288,1.000,bicubic +regnetz_c16,95.390,4.610,99.310,0.690,13.46,320,0.940,bicubic resnetv2_50x1_bit_distilled,95.390,4.610,99.430,0.570,25.55,224,0.875,bicubic -tresnet_l_448,95.390,4.610,99.280,0.720,55.99,448,0.875,bilinear -pnasnet5large,95.370,4.630,99.130,0.870,86.06,331,0.911,bicubic +tresnet_m,95.380,4.620,99.150,0.850,31.39,224,0.875,bilinear +pnasnet5large,95.360,4.640,99.130,0.870,86.06,331,0.911,bicubic xcit_tiny_12_p8_384_dist,95.340,4.660,99.340,0.660,6.71,384,1.000,bicubic -resnetv2_101x1_bitm,95.330,4.670,99.380,0.620,44.54,448,1.000,bilinear -ssl_resnext101_32x8d,95.320,4.680,99.310,0.690,88.79,224,0.875,bilinear +ssl_resnext101_32x8d,95.330,4.670,99.310,0.690,88.79,224,0.875,bilinear +resnetv2_101x1_bitm,95.320,4.680,99.370,0.630,44.54,448,1.000,bilinear gc_efficientnetv2_rw_t,95.280,4.720,99.220,0.780,13.68,288,1.000,bicubic -vit_large_patch32_384,95.250,4.750,99.320,0.680,306.63,384,1.000,bicubic -cait_xxs36_384,95.240,4.760,99.330,0.670,17.37,384,1.000,bicubic -resnetrs101,95.230,4.770,99.210,0.790,63.62,288,0.940,bicubic -swsl_resnet50,95.220,4.780,99.400,0.600,25.56,224,0.875,bilinear -levit_384,95.200,4.800,99.160,0.840,39.13,224,0.900,bicubic -resnet51q,95.190,4.810,99.280,0.720,35.70,288,1.000,bilinear -crossvit_18_dagger_240,95.180,4.820,99.120,0.880,44.27,240,0.875,bicubic -nasnetalarge,95.170,4.830,99.130,0.870,88.75,331,0.911,bicubic +resnetrs101,95.250,4.750,99.210,0.790,63.62,288,0.940,bicubic +vit_large_patch32_384,95.240,4.760,99.320,0.680,306.63,384,1.000,bicubic +cait_xxs36_384,95.230,4.770,99.320,0.680,17.37,384,1.000,bicubic +levit_384,95.210,4.790,99.160,0.840,39.13,224,0.900,bicubic +resnet51q,95.200,4.800,99.280,0.720,35.70,288,1.000,bilinear +swsl_resnet50,95.200,4.800,99.390,0.610,25.56,224,0.875,bilinear +crossvit_18_dagger_240,95.190,4.810,99.120,0.880,44.27,240,0.875,bicubic ecaresnet101d,95.160,4.840,99.230,0.770,44.57,224,0.875,bicubic -efficientnet_b3,95.150,4.850,99.210,0.790,12.23,320,1.000,bicubic -ssl_resnext101_32x4d,95.140,4.860,99.310,0.690,44.18,224,0.875,bilinear -xcit_medium_24_p16_224,95.130,4.870,98.930,1.070,84.40,224,1.000,bicubic -tf_efficientnetv2_b3,95.120,4.880,99.190,0.810,14.36,300,0.904,bicubic -vit_small_r26_s32_224,95.120,4.880,99.220,0.780,36.43,224,0.900,bicubic -coat_lite_small,95.110,4.890,99.030,0.970,19.84,224,0.900,bicubic -ecaresnet50t,95.110,4.890,99.290,0.710,25.57,320,0.950,bicubic +ssl_resnext101_32x4d,95.160,4.840,99.310,0.690,44.18,224,0.875,bilinear +nasnetalarge,95.150,4.850,99.130,0.870,88.75,331,0.911,bicubic +efficientnet_b3,95.130,4.870,99.210,0.790,12.23,320,1.000,bicubic +fbnetv3_g,95.130,4.870,99.200,0.800,16.62,288,0.950,bilinear +vit_small_r26_s32_224,95.130,4.870,99.220,0.780,36.43,224,0.900,bicubic +xcit_medium_24_p16_224,95.130,4.870,98.920,1.080,84.40,224,1.000,bicubic +tf_efficientnetv2_b3,95.120,4.880,99.200,0.800,14.36,300,0.904,bicubic resnet61q,95.110,4.890,99.080,0.920,36.85,288,1.000,bicubic -convit_base,95.100,4.900,99.130,0.870,86.54,224,0.875,bicubic -tresnet_xl,95.080,4.920,99.250,0.750,78.44,224,0.875,bilinear -efficientnetv2_rw_t,95.080,4.920,99.220,0.780,13.65,288,1.000,bicubic -xcit_small_24_p16_224,95.070,4.930,99.060,0.940,47.67,224,1.000,bicubic -crossvit_base_240,95.060,4.940,98.980,1.020,105.03,240,0.875,bicubic -crossvit_18_240,95.050,4.950,99.120,0.880,43.27,240,0.875,bicubic -deit_base_patch16_224,95.020,4.980,98.970,1.030,86.57,224,0.900,bicubic -visformer_small,94.970,5.030,99.210,0.790,40.22,224,0.900,bicubic -crossvit_15_dagger_240,94.970,5.030,99.150,0.850,28.21,240,0.875,bicubic -tf_efficientnet_b3_ap,94.960,5.040,99.110,0.890,12.23,300,0.904,bicubic +convit_base,95.100,4.900,99.140,0.860,86.54,224,0.875,bicubic +xcit_small_24_p16_224,95.080,4.920,99.060,0.940,47.67,224,1.000,bicubic +coat_lite_small,95.080,4.920,99.030,0.970,19.84,224,0.900,bicubic +crossvit_18_240,95.070,4.930,99.120,0.880,43.27,240,0.875,bicubic +crossvit_base_240,95.070,4.930,98.980,1.020,105.03,240,0.875,bicubic +ecaresnet50t,95.070,4.930,99.290,0.710,25.57,320,0.950,bicubic +efficientnetv2_rw_t,95.070,4.930,99.220,0.780,13.65,288,1.000,bicubic +tresnet_xl,95.060,4.940,99.260,0.740,78.44,224,0.875,bilinear +halo2botnet50ts_256,95.010,4.990,99.040,0.960,22.64,256,0.950,bicubic +deit_base_patch16_224,95.010,4.990,98.980,1.020,86.57,224,0.900,bicubic +convnext_tiny,94.990,5.010,99.200,0.800,28.59,224,0.875,bicubic +crossvit_15_dagger_240,94.980,5.020,99.160,0.840,28.21,240,0.875,bicubic +convmixer_1536_20,94.970,5.030,99.170,0.830,51.63,224,0.960,bicubic +resnet101,94.970,5.030,99.080,0.920,44.55,224,0.950,bicubic +tf_efficientnet_b3_ap,94.970,5.030,99.110,0.890,12.23,300,0.904,bicubic +visformer_small,94.960,5.040,99.210,0.790,40.22,224,0.900,bicubic xcit_large_24_p16_224,94.950,5.050,98.830,1.170,189.10,224,1.000,bicubic -convmixer_1536_20,94.950,5.050,99.170,0.830,51.63,224,0.960,bicubic +jx_nest_tiny,94.950,5.050,99.100,0.900,17.06,224,0.875,bicubic cait_xxs24_384,94.940,5.060,99.130,0.870,12.03,384,1.000,bicubic -jx_nest_tiny,94.940,5.060,99.100,0.900,17.06,224,0.875,bicubic -resnetv2_101,94.930,5.070,99.110,0.890,44.54,224,0.950,bicubic -convit_small,94.920,5.080,99.120,0.880,27.78,224,0.875,bicubic -gernet_l,94.920,5.080,99.200,0.800,31.08,256,0.875,bilinear -tf_efficientnet_b3,94.910,5.090,99.100,0.900,12.23,300,0.904,bicubic -vit_small_patch16_224,94.900,5.100,99.280,0.720,22.05,224,0.900,bicubic +gernet_l,94.930,5.070,99.200,0.800,31.08,256,0.875,bilinear +resnetv2_101,94.930,5.070,99.120,0.880,44.54,224,0.950,bicubic +convit_small,94.920,5.080,99.100,0.900,27.78,224,0.875,bicubic +tf_efficientnet_b3,94.910,5.090,99.110,0.890,12.23,300,0.904,bicubic tresnet_l,94.900,5.100,99.030,0.970,55.99,224,0.875,bilinear -mixer_b16_224_miil,94.890,5.110,99.080,0.920,59.88,224,0.875,bilinear -tf_efficientnet_b1_ns,94.880,5.120,99.250,0.750,7.79,240,0.882,bicubic -xcit_tiny_24_p8_224,94.870,5.130,99.190,0.810,12.11,224,1.000,bicubic +mixer_b16_224_miil,94.880,5.120,99.080,0.920,59.88,224,0.875,bilinear +vit_small_patch16_224,94.880,5.120,99.270,0.730,22.05,224,0.900,bicubic +xcit_tiny_24_p8_224,94.880,5.120,99.190,0.810,12.11,224,1.000,bicubic tf_efficientnet_lite4,94.870,5.130,99.090,0.910,13.01,380,0.920,bilinear -xcit_small_12_p16_224,94.810,5.190,99.060,0.940,26.25,224,1.000,bicubic -seresnext50_32x4d,94.800,5.200,99.130,0.870,27.56,224,0.875,bicubic -pit_b_224,94.790,5.210,98.810,1.190,73.76,224,0.900,bicubic +tf_efficientnet_b1_ns,94.860,5.140,99.250,0.750,7.79,240,0.882,bicubic +xcit_small_12_p16_224,94.820,5.180,99.060,0.940,26.25,224,1.000,bicubic +seresnext50_32x4d,94.810,5.190,99.130,0.870,27.56,224,0.875,bicubic +pit_b_224,94.790,5.210,98.820,1.180,73.76,224,0.900,bicubic +lamhalobotnet50ts_256,94.780,5.220,98.980,1.020,22.57,256,0.950,bicubic twins_svt_small,94.770,5.230,99.080,0.920,24.06,224,0.900,bicubic -coat_mini,94.760,5.240,98.950,1.050,10.34,224,0.900,bicubic -resnetv2_50x1_bitm,94.760,5.240,99.180,0.820,25.55,448,1.000,bilinear +coat_mini,94.770,5.230,98.950,1.050,10.34,224,0.900,bicubic +resnetv2_50x1_bitm,94.750,5.250,99.180,0.820,25.55,448,1.000,bilinear pit_s_distilled_224,94.750,5.250,99.180,0.820,24.04,224,0.900,bicubic -xcit_tiny_12_p8_224_dist,94.740,5.260,99.180,0.820,6.71,224,1.000,bicubic legacy_senet154,94.730,5.270,99.100,0.900,115.09,224,0.875,bilinear +crossvit_15_240,94.720,5.280,99.080,0.920,27.53,240,0.875,bicubic +gluon_senet154,94.710,5.290,98.970,1.030,115.09,224,0.875,bicubic +halonet50ts,94.710,5.290,98.820,1.180,22.73,256,0.940,bicubic resnest50d_4s2x40d,94.710,5.290,99.130,0.870,30.42,224,0.875,bicubic +xcit_tiny_12_p8_224_dist,94.710,5.290,99.180,0.820,6.71,224,1.000,bicubic +gluon_resnet152_v1s,94.700,5.300,99.060,0.940,60.32,224,0.875,bicubic ssl_resnext50_32x4d,94.700,5.300,99.240,0.760,25.03,224,0.875,bilinear -gluon_senet154,94.700,5.300,98.970,1.030,115.09,224,0.875,bicubic -gluon_resnet152_v1s,94.690,5.310,99.050,0.950,60.32,224,0.875,bicubic -regnetz_b,94.690,5.310,99.160,0.840,9.72,288,0.940,bicubic -crossvit_15_240,94.680,5.320,99.070,0.930,27.53,240,0.875,bicubic +regnetz_b16,94.680,5.320,99.160,0.840,9.72,288,0.940,bicubic efficientnet_el,94.670,5.330,99.130,0.870,10.59,300,0.904,bicubic -rexnet_200,94.670,5.330,99.090,0.910,16.37,224,0.875,bicubic -tresnet_m_448,94.670,5.330,99.170,0.830,31.39,448,0.875,bilinear -gluon_seresnext101_64x4d,94.660,5.340,98.970,1.030,88.23,224,0.875,bicubic -wide_resnet50_2,94.650,5.350,99.050,0.950,68.88,224,0.875,bicubic -swin_tiny_patch4_window7_224,94.640,5.360,99.120,0.880,28.29,224,0.900,bicubic +gluon_seresnext101_64x4d,94.660,5.340,98.980,1.020,88.23,224,0.875,bicubic +rexnet_200,94.660,5.340,99.090,0.910,16.37,224,0.875,bicubic +wide_resnet50_2,94.660,5.340,99.050,0.950,68.88,224,0.875,bicubic +tresnet_m_448,94.650,5.350,99.150,0.850,31.39,448,0.875,bilinear resnest50d,94.620,5.380,99.030,0.970,27.48,224,0.875,bilinear -gcresnet50t,94.610,5.390,98.990,1.010,25.90,256,0.900,bicubic -lamhalobotnet50ts_256,94.610,5.390,98.610,1.390,22.57,256,0.950,bicubic -twins_pcpvt_small,94.600,5.400,99.140,0.860,24.11,224,0.900,bicubic -deit_small_distilled_patch16_224,94.590,5.410,99.090,0.910,22.44,224,0.900,bicubic -pit_s_224,94.590,5.410,98.930,1.070,23.46,224,0.900,bicubic -crossvit_small_240,94.590,5.410,99.120,0.880,26.86,240,0.875,bicubic +swin_tiny_patch4_window7_224,94.620,5.380,99.120,0.880,28.29,224,0.900,bicubic +gcresnet50t,94.620,5.380,98.980,1.020,25.90,256,0.900,bicubic +deit_small_distilled_patch16_224,94.600,5.400,99.100,0.900,22.44,224,0.900,bicubic +twins_pcpvt_small,94.600,5.400,99.150,0.850,24.11,224,0.900,bicubic +vit_small_patch32_384,94.600,5.400,99.140,0.860,22.92,384,1.000,bicubic +pit_s_224,94.590,5.410,98.920,1.080,23.46,224,0.900,bicubic +crossvit_small_240,94.580,5.420,99.120,0.880,26.86,240,0.875,bicubic efficientnet_b3_pruned,94.580,5.420,99.070,0.930,9.86,300,0.904,bicubic +lambda_resnet50ts,94.570,5.430,98.650,1.350,21.54,256,0.950,bicubic +resnext50_32x4d,94.570,5.430,98.800,1.200,25.03,224,0.950,bicubic tnt_s_patch16_224,94.570,5.430,99.180,0.820,23.76,224,0.900,bicubic -vit_small_patch32_384,94.570,5.430,99.140,0.860,22.92,384,1.000,bicubic -lambda_resnet50ts,94.560,5.440,98.650,1.350,21.54,256,0.950,bicubic repvgg_b3,94.560,5.440,98.910,1.090,123.09,224,0.875,bilinear -gernet_m,94.550,5.450,98.920,1.080,21.14,224,0.875,bilinear -halo2botnet50ts_256,94.550,5.450,98.760,1.240,22.64,256,0.950,bicubic +gernet_m,94.550,5.450,98.930,1.070,21.14,224,0.875,bilinear resmlp_36_distilled_224,94.550,5.450,99.160,0.840,44.69,224,0.875,bicubic -xcit_tiny_12_p16_384_dist,94.540,5.460,99.170,0.830,6.72,384,1.000,bicubic -sehalonet33ts,94.530,5.470,98.780,1.220,13.69,256,0.940,bicubic -regnety_320,94.500,5.500,99.170,0.830,145.05,224,0.875,bicubic -haloregnetz_b,94.500,5.500,98.960,1.040,11.68,224,0.940,bicubic -repvgg_b3g4,94.490,5.510,99.020,0.980,83.83,224,0.875,bilinear -gluon_resnet152_v1d,94.460,5.540,99.000,1.000,60.21,224,0.875,bicubic -ecaresnet101d_pruned,94.440,5.560,99.100,0.900,24.88,224,0.875,bicubic -gluon_seresnext101_32x4d,94.430,5.570,99.090,0.910,48.96,224,0.875,bicubic +sehalonet33ts,94.530,5.470,98.760,1.240,13.69,256,0.940,bicubic +xcit_tiny_12_p16_384_dist,94.530,5.470,99.170,0.830,6.72,384,1.000,bicubic +regnety_320,94.520,5.480,99.170,0.830,145.05,224,0.875,bicubic +haloregnetz_b,94.520,5.480,98.960,1.040,11.68,224,0.940,bicubic +repvgg_b3g4,94.500,5.500,99.020,0.980,83.83,224,0.875,bilinear +ecaresnet101d_pruned,94.450,5.550,99.100,0.900,24.88,224,0.875,bicubic +gluon_seresnext101_32x4d,94.450,5.550,99.090,0.910,48.96,224,0.875,bicubic +gluon_resnet152_v1d,94.440,5.560,99.010,0.990,60.21,224,0.875,bicubic convmixer_768_32,94.430,5.570,99.110,0.890,21.11,224,0.960,bicubic -halonet50ts,94.420,5.580,98.760,1.240,22.73,256,0.940,bicubic gcresnext50ts,94.410,5.590,98.990,1.010,15.67,256,0.900,bicubic -levit_256,94.410,5.590,99.060,0.940,18.89,224,0.900,bicubic +levit_256,94.400,5.600,99.060,0.940,18.89,224,0.900,bicubic +resnest50d_1s4x24d,94.390,5.610,99.070,0.930,25.68,224,0.875,bicubic +vit_base_patch32_224,94.390,5.610,99.060,0.940,88.22,224,0.900,bicubic +inception_v4,94.380,5.620,98.820,1.180,42.68,299,0.875,bicubic nf_resnet50,94.380,5.620,99.070,0.930,25.56,288,0.940,bicubic -resnest50d_1s4x24d,94.380,5.620,99.060,0.940,25.68,224,0.875,bicubic -vit_base_patch32_224,94.380,5.620,99.060,0.940,88.22,224,0.900,bicubic efficientnet_b2,94.370,5.630,99.050,0.950,9.11,288,1.000,bicubic -inception_v4,94.370,5.630,98.820,1.180,42.68,299,0.875,bicubic -xcit_tiny_12_p8_224,94.370,5.630,99.070,0.930,6.71,224,1.000,bicubic -tf_efficientnet_el,94.350,5.650,99.090,0.910,10.59,300,0.904,bicubic +tf_efficientnet_el,94.360,5.640,99.100,0.900,10.59,300,0.904,bicubic +xcit_tiny_12_p8_224,94.360,5.640,99.070,0.930,6.71,224,1.000,bicubic +gluon_resnext101_64x4d,94.350,5.650,98.880,1.120,83.46,224,0.875,bicubic resmlp_24_distilled_224,94.340,5.660,99.090,0.910,30.02,224,0.875,bicubic -gluon_resnext101_64x4d,94.330,5.670,98.880,1.120,83.46,224,0.875,bicubic -inception_resnet_v2,94.320,5.680,98.800,1.200,55.84,299,0.897,bicubic -ssl_resnet50,94.320,5.680,99.160,0.840,25.56,224,0.875,bilinear -resnetv2_50,94.290,5.710,98.930,1.070,25.55,224,0.950,bicubic -regnetx_120,94.290,5.710,99.200,0.800,46.11,224,0.875,bicubic -tf_efficientnet_b2_ap,94.280,5.720,98.950,1.050,9.11,260,0.890,bicubic -rexnet_150,94.270,5.730,99.090,0.910,9.73,224,0.875,bicubic +inception_resnet_v2,94.340,5.660,98.800,1.200,55.84,299,0.897,bicubic +sebotnet33ts_256,94.310,5.690,98.600,1.400,13.70,256,0.940,bicubic +ssl_resnet50,94.310,5.690,99.150,0.850,25.56,224,0.875,bilinear resmlp_big_24_224,94.270,5.730,98.820,1.180,129.14,224,0.875,bicubic -seresnet33ts,94.260,5.740,98.780,1.220,19.78,256,0.900,bicubic -mixnet_xl,94.220,5.780,98.810,1.190,11.90,224,0.875,bicubic -xcit_tiny_24_p16_224_dist,94.220,5.780,98.960,1.040,12.12,224,1.000,bicubic -ecaresnet50d,94.210,5.790,99.010,0.990,25.58,224,0.875,bicubic -regnetx_320,94.210,5.790,99.050,0.950,107.81,224,0.875,bicubic -tf_efficientnet_b2,94.200,5.800,99.030,0.970,9.11,260,0.890,bicubic -gluon_resnet101_v1s,94.180,5.820,99.020,0.980,44.67,224,0.875,bicubic -gluon_resnet101_v1d,94.180,5.820,98.950,1.050,44.57,224,0.875,bicubic +resnetv2_50,94.270,5.730,98.930,1.070,25.55,224,0.950,bicubic +rexnet_150,94.270,5.730,99.080,0.920,9.73,224,0.875,bicubic +seresnet33ts,94.270,5.730,98.780,1.220,19.78,256,0.900,bicubic +tf_efficientnet_b2_ap,94.270,5.730,98.950,1.050,9.11,260,0.890,bicubic +regnetx_120,94.260,5.740,99.190,0.810,46.11,224,0.875,bicubic +mixnet_xl,94.230,5.770,98.820,1.180,11.90,224,0.875,bicubic +regnetx_320,94.220,5.780,99.050,0.950,107.81,224,0.875,bicubic +tf_efficientnet_b2,94.210,5.790,99.030,0.970,9.11,260,0.890,bicubic +xcit_tiny_24_p16_224_dist,94.210,5.790,98.960,1.040,12.12,224,1.000,bicubic +ecaresnet50d,94.200,5.800,99.020,0.980,25.58,224,0.875,bicubic dpn92,94.180,5.820,98.930,1.070,37.67,224,0.875,bicubic -gluon_seresnext50_32x4d,94.180,5.820,98.910,1.090,27.56,224,0.875,bicubic -legacy_seresnext101_32x4d,94.170,5.830,98.970,1.030,48.96,224,0.875,bilinear -regnety_064,94.140,5.860,99.030,0.970,30.58,224,0.875,bicubic +resnet50_gn,94.180,5.820,98.920,1.080,25.56,224,0.940,bicubic +gluon_seresnext50_32x4d,94.170,5.830,98.910,1.090,27.56,224,0.875,bicubic +gluon_resnet101_v1s,94.170,5.830,99.010,0.990,44.67,224,0.875,bicubic +gluon_resnet101_v1d,94.170,5.830,98.940,1.060,44.57,224,0.875,bicubic ecaresnetlight,94.140,5.860,98.950,1.050,30.16,224,0.875,bicubic -ens_adv_inception_resnet_v2,94.140,5.860,98.790,1.210,55.84,299,0.897,bicubic +ens_adv_inception_resnet_v2,94.130,5.870,98.790,1.210,55.84,299,0.897,bicubic +regnety_064,94.130,5.870,99.030,0.970,30.58,224,0.875,bicubic gluon_resnext101_32x4d,94.120,5.880,98.940,1.060,44.18,224,0.875,bicubic -tf_efficientnet_lite3,94.110,5.890,98.960,1.040,8.20,300,0.904,bilinear -cspdarknet53,94.100,5.900,98.980,1.020,27.64,256,0.887,bilinear -seresnet50,94.080,5.920,98.950,1.050,28.09,224,0.875,bicubic +legacy_seresnext101_32x4d,94.120,5.880,98.970,1.030,48.96,224,0.875,bilinear +tf_efficientnet_lite3,94.120,5.880,98.960,1.040,8.20,300,0.904,bilinear +cspdarknet53,94.090,5.910,98.980,1.020,27.64,256,0.887,bilinear +efficientnet_el_pruned,94.080,5.920,99.020,0.980,10.59,300,0.904,bicubic +seresnet50,94.080,5.920,98.960,1.040,28.09,224,0.875,bicubic resnet50d,94.070,5.930,98.920,1.080,25.58,224,0.875,bicubic -regnety_120,94.060,5.940,99.020,0.980,51.82,224,0.875,bicubic -tf_efficientnetv2_b2,94.060,5.940,98.940,1.060,10.10,260,0.890,bicubic -efficientnet_el_pruned,94.060,5.940,99.020,0.980,10.59,300,0.904,bicubic -gluon_xception65,94.040,5.960,99.030,0.970,39.92,299,0.903,bicubic -resnetrs50,94.030,5.970,98.830,1.170,35.69,224,0.910,bicubic -hrnet_w48,94.030,5.970,99.030,0.970,77.47,224,0.875,bilinear -gluon_resnet152_v1b,94.020,5.980,98.750,1.250,60.19,224,0.875,bicubic -dla102x2,94.010,5.990,99.030,0.970,41.28,224,0.875,bilinear +tf_efficientnetv2_b2,94.070,5.930,98.930,1.070,10.10,260,0.890,bicubic +gluon_resnet152_v1b,94.030,5.970,98.740,1.260,60.19,224,0.875,bicubic +hrnet_w48,94.030,5.970,99.040,0.960,77.47,224,0.875,bilinear +gluon_xception65,94.020,5.980,99.020,0.980,39.92,299,0.903,bicubic +resnetrs50,94.020,5.980,98.850,1.150,35.69,224,0.910,bicubic +regnety_120,94.010,5.990,99.030,0.970,51.82,224,0.875,bicubic +dla102x2,94.000,6.000,99.030,0.970,41.28,224,0.875,bilinear deit_small_patch16_224,93.990,6.010,98.960,1.040,22.05,224,0.900,bicubic -dpn107,93.960,6.040,98.840,1.160,86.92,224,0.875,bicubic -resnet50,93.950,6.050,98.470,1.530,25.56,224,0.950,bicubic +dpn107,93.960,6.040,98.830,1.170,86.92,224,0.875,bicubic +ecaresnet26t,93.950,6.050,98.920,1.080,16.01,320,0.950,bicubic skresnext50_32x4d,93.950,6.050,98.830,1.170,27.48,224,0.875,bicubic -cait_xxs36_224,93.940,6.060,98.880,1.120,17.30,224,1.000,bicubic -ecaresnet26t,93.930,6.070,98.930,1.070,16.01,320,0.950,bicubic -dpn98,93.930,6.070,98.920,1.080,61.57,224,0.875,bicubic -xception71,93.900,6.100,98.950,1.050,42.34,299,0.903,bicubic -regnety_080,93.900,6.100,98.990,1.010,39.18,224,0.875,bicubic -regnetx_160,93.900,6.100,99.080,0.920,54.28,224,0.875,bicubic -vit_base_patch16_sam_224,93.890,6.110,98.890,1.110,86.57,224,0.900,bicubic -nf_regnet_b1,93.890,6.110,98.750,1.250,10.22,288,0.900,bicubic -gluon_resnet152_v1c,93.880,6.120,98.800,1.200,60.21,224,0.875,bicubic -eca_resnet33ts,93.870,6.130,98.890,1.110,19.68,256,0.900,bicubic -resnext50_32x4d,93.850,6.150,98.820,1.180,25.03,224,0.875,bicubic -cspresnet50,93.850,6.150,98.870,1.130,21.62,256,0.887,bilinear -xcit_tiny_24_p16_224,93.850,6.150,98.770,1.230,12.12,224,1.000,bicubic -hrnet_w64,93.850,6.150,98.930,1.070,128.06,224,0.875,bilinear +cait_xxs36_224,93.930,6.070,98.890,1.110,17.30,224,1.000,bicubic +resnet50,93.930,6.070,98.470,1.530,25.56,224,0.950,bicubic +dpn98,93.920,6.080,98.920,1.080,61.57,224,0.875,bicubic +gluon_resnet152_v1c,93.890,6.110,98.800,1.200,60.21,224,0.875,bicubic +regnetx_160,93.890,6.110,99.090,0.910,54.28,224,0.875,bicubic +regnety_080,93.890,6.110,99.000,1.000,39.18,224,0.875,bicubic +vit_base_patch16_224_sam,93.890,6.110,98.890,1.110,86.57,224,0.900,bicubic +nf_regnet_b1,93.880,6.120,98.740,1.260,10.22,288,0.900,bicubic +xception71,93.880,6.120,98.950,1.050,42.34,299,0.903,bicubic +cspresnet50,93.860,6.140,98.860,1.140,21.62,256,0.887,bilinear +eca_resnet33ts,93.860,6.140,98.890,1.110,19.68,256,0.900,bicubic +xcit_tiny_24_p16_224,93.850,6.150,98.760,1.240,12.12,224,1.000,bicubic ese_vovnet39b,93.850,6.150,98.900,1.100,24.57,224,0.875,bicubic -gcresnet33ts,93.820,6.180,98.930,1.070,19.88,256,0.900,bicubic +fbnetv3_d,93.840,6.160,98.910,1.090,10.31,256,0.950,bilinear +hrnet_w64,93.840,6.160,98.930,1.070,128.06,224,0.875,bilinear ecaresnet50d_pruned,93.820,6.180,99.000,1.000,19.94,224,0.875,bicubic -repvgg_b2g4,93.820,6.180,98.920,1.080,61.76,224,0.875,bilinear -resnext50d_32x4d,93.800,6.200,98.730,1.270,25.05,224,0.875,bicubic +gcresnet33ts,93.820,6.180,98.910,1.090,19.88,256,0.900,bicubic +repvgg_b2g4,93.810,6.190,98.930,1.070,61.76,224,0.875,bilinear +resnext50d_32x4d,93.810,6.190,98.740,1.260,25.05,224,0.875,bicubic efficientnet_b2_pruned,93.800,6.200,98.910,1.090,8.31,260,0.890,bicubic +dla169,93.800,6.200,98.840,1.160,53.39,224,0.875,bilinear regnetx_080,93.790,6.210,98.900,1.100,39.57,224,0.875,bicubic -dla169,93.780,6.220,98.830,1.170,53.39,224,0.875,bilinear +cspresnext50,93.780,6.220,98.840,1.160,20.57,224,0.875,bilinear +gluon_resnet101_v1b,93.770,6.230,98.690,1.310,44.55,224,0.875,bicubic resnext101_32x8d,93.770,6.230,98.950,1.050,88.79,224,0.875,bilinear -gluon_resnet101_v1b,93.770,6.230,98.720,1.280,44.55,224,0.875,bicubic -cspresnext50,93.770,6.230,98.840,1.160,20.57,224,0.875,bilinear -dpn131,93.760,6.240,98.850,1.150,79.25,224,0.875,bicubic -tf_efficientnet_b0_ns,93.760,6.240,98.980,1.020,5.29,224,0.875,bicubic -efficientnet_em,93.750,6.250,98.920,1.080,6.90,240,0.882,bicubic -xception65,93.740,6.260,98.870,1.130,39.92,299,0.903,bicubic +xception65,93.760,6.240,98.860,1.140,39.92,299,0.903,bicubic +dpn131,93.750,6.250,98.840,1.160,79.25,224,0.875,bicubic +efficientnet_em,93.740,6.260,98.930,1.070,6.90,240,0.882,bicubic +tf_efficientnet_b0_ns,93.740,6.260,98.980,1.020,5.29,224,0.875,bicubic wide_resnet101_2,93.720,6.280,98.810,1.190,126.89,224,0.875,bilinear hrnet_w40,93.710,6.290,98.800,1.200,57.56,224,0.875,bilinear -levit_192,93.710,6.290,98.790,1.210,10.95,224,0.900,bicubic -resnetblur50,93.710,6.290,98.800,1.200,25.56,224,0.875,bicubic +resnetblur50,93.710,6.290,98.810,1.190,25.56,224,0.875,bicubic tf_efficientnet_b1,93.710,6.290,98.800,1.200,7.79,240,0.882,bicubic -tf_efficientnetv2_b1,93.700,6.300,98.810,1.190,8.14,240,0.882,bicubic -rexnet_130,93.690,6.310,98.720,1.280,7.56,224,0.875,bicubic -regnetx_040,93.670,6.330,98.950,1.050,22.12,224,0.875,bicubic -resmlp_36_224,93.670,6.330,98.950,1.050,44.69,224,0.875,bicubic -gluon_resnext50_32x4d,93.670,6.330,98.700,1.300,25.03,224,0.875,bicubic -gluon_resnet101_v1c,93.660,6.340,98.760,1.240,44.57,224,0.875,bicubic -xception,93.650,6.350,98.770,1.230,22.86,299,0.897,bicubic -regnetx_064,93.650,6.350,99.050,0.950,26.21,224,0.875,bicubic -tf_efficientnet_b1_ap,93.640,6.360,98.780,1.220,7.79,240,0.882,bicubic -hrnet_w44,93.620,6.380,98.950,1.050,67.06,224,0.875,bilinear -resnet33ts,93.620,6.380,98.770,1.230,19.68,256,0.900,bicubic -halonet26t,93.610,6.390,98.640,1.360,12.48,256,0.950,bicubic -regnety_040,93.610,6.390,98.960,1.040,20.65,224,0.875,bicubic -dpn68b,93.600,6.400,98.710,1.290,12.61,224,0.875,bicubic -gluon_resnet50_v1s,93.590,6.410,98.830,1.170,25.68,224,0.875,bicubic -gluon_inception_v3,93.590,6.410,98.840,1.160,23.83,299,0.875,bicubic -res2net50_26w_6s,93.580,6.420,98.740,1.260,37.05,224,0.875,bilinear -tf_efficientnet_cc_b1_8e,93.580,6.420,98.690,1.310,39.72,240,0.882,bicubic -repvgg_b2,93.570,6.430,99.070,0.930,89.02,224,0.875,bilinear +tf_efficientnetv2_b1,93.710,6.290,98.820,1.180,8.14,240,0.882,bicubic +levit_192,93.710,6.290,98.800,1.200,10.95,224,0.900,bicubic +gluon_resnet101_v1c,93.690,6.310,98.760,1.240,44.57,224,0.875,bicubic +regnetx_040,93.680,6.320,98.940,1.060,22.12,224,0.875,bicubic +rexnet_130,93.680,6.320,98.710,1.290,7.56,224,0.875,bicubic +resmlp_36_224,93.650,6.350,98.950,1.050,44.69,224,0.875,bicubic +fbnetv3_b,93.650,6.350,98.910,1.090,8.60,256,0.950,bilinear +gluon_resnext50_32x4d,93.650,6.350,98.690,1.310,25.03,224,0.875,bicubic +xception,93.640,6.360,98.760,1.240,22.86,299,0.897,bicubic +resnet33ts,93.630,6.370,98.760,1.240,19.68,256,0.900,bicubic +tf_efficientnet_b1_ap,93.630,6.370,98.800,1.200,7.79,240,0.882,bicubic +dpn68b,93.620,6.380,98.700,1.300,12.61,224,0.875,bicubic +regnetx_064,93.620,6.380,99.050,0.950,26.21,224,0.875,bicubic +res2net50_26w_6s,93.610,6.390,98.740,1.260,37.05,224,0.875,bilinear +hrnet_w44,93.610,6.390,98.960,1.040,67.06,224,0.875,bilinear +regnety_040,93.610,6.390,98.950,1.050,20.65,224,0.875,bicubic +halonet26t,93.600,6.400,98.640,1.360,12.48,256,0.950,bicubic +gluon_resnet50_v1s,93.590,6.410,98.840,1.160,25.68,224,0.875,bicubic +repvgg_b2,93.590,6.410,99.070,0.930,89.02,224,0.875,bilinear +dla60_res2next,93.570,6.430,98.790,1.210,17.03,224,0.875,bilinear resnet32ts,93.570,6.430,98.750,1.250,17.96,256,0.900,bicubic -dla60_res2next,93.560,6.440,98.800,1.200,17.03,224,0.875,bilinear -gluon_resnet50_v1d,93.550,6.450,98.710,1.290,25.58,224,0.875,bicubic -res2net101_26w_4s,93.520,6.480,98.630,1.370,45.21,224,0.875,bilinear -dla102x,93.510,6.490,98.850,1.150,26.31,224,0.875,bilinear +tf_efficientnet_cc_b1_8e,93.570,6.430,98.690,1.310,39.72,240,0.882,bicubic +eca_halonext26ts,93.560,6.440,98.680,1.320,10.76,256,0.940,bicubic +gluon_inception_v3,93.540,6.460,98.830,1.170,23.83,299,0.875,bicubic +gluon_resnet50_v1d,93.530,6.470,98.710,1.290,25.58,224,0.875,bicubic +dla102x,93.520,6.480,98.850,1.150,26.31,224,0.875,bilinear +res2net101_26w_4s,93.520,6.480,98.600,1.400,45.21,224,0.875,bilinear +coat_tiny,93.510,6.490,98.690,1.310,5.50,224,0.900,bicubic gmlp_s16_224,93.510,6.490,98.780,1.220,19.42,224,0.875,bicubic -coat_tiny,93.500,6.500,98.680,1.320,5.50,224,0.900,bicubic +selecsls60b,93.500,6.500,98.840,1.160,32.77,224,0.875,bicubic cait_xxs24_224,93.490,6.510,98.770,1.230,11.96,224,1.000,bicubic -coat_lite_mini,93.490,6.510,98.780,1.220,11.01,224,0.900,bicubic -selecsls60b,93.480,6.520,98.840,1.160,32.77,224,0.875,bicubic -xception41,93.480,6.520,98.760,1.240,26.97,299,0.903,bicubic -legacy_seresnet152,93.460,6.540,98.850,1.150,66.82,224,0.875,bilinear -lambda_resnet26rpt_256,93.440,6.560,98.880,1.120,10.99,256,0.940,bicubic -botnet26t_256,93.440,6.560,98.660,1.340,12.49,256,0.950,bicubic -res2net50_26w_8s,93.430,6.570,98.670,1.330,48.40,224,0.875,bilinear -resmlp_24_224,93.430,6.570,98.810,1.190,30.02,224,0.875,bicubic -vit_tiny_patch16_384,93.430,6.570,98.840,1.160,5.79,384,1.000,bicubic -hrnet_w30,93.410,6.590,98.830,1.170,37.71,224,0.875,bilinear -legacy_seresnext50_32x4d,93.410,6.590,98.800,1.200,27.56,224,0.875,bilinear -repvgg_b1,93.410,6.590,98.780,1.220,57.42,224,0.875,bilinear -lambda_resnet26t,93.400,6.600,98.760,1.240,10.96,256,0.940,bicubic -dla60_res2net,93.380,6.620,98.830,1.170,20.85,224,0.875,bilinear -eca_botnext26ts_256,93.360,6.640,98.690,1.310,10.59,256,0.950,bicubic -xcit_tiny_12_p16_224_dist,93.340,6.660,98.750,1.250,6.72,224,1.000,bicubic -dla102,93.290,6.710,98.780,1.220,33.27,224,0.875,bilinear -legacy_seresnet101,93.290,6.710,98.750,1.250,49.33,224,0.875,bilinear -mixnet_l,93.290,6.710,98.710,1.290,7.33,224,0.875,bicubic -regnetx_032,93.270,6.730,98.740,1.260,15.30,224,0.875,bicubic -resnest26d,93.260,6.740,98.840,1.160,17.07,224,0.875,bilinear -tv_resnet152,93.260,6.740,98.750,1.250,60.19,224,0.875,bilinear -xcit_nano_12_p8_384_dist,93.250,6.750,98.850,1.150,3.05,384,1.000,bicubic -pit_xs_distilled_224,93.230,6.770,98.820,1.180,11.00,224,0.900,bicubic -tf_inception_v3,93.210,6.790,98.490,1.510,23.83,299,0.875,bicubic -dla60x,93.210,6.790,98.720,1.280,17.35,224,0.875,bilinear -tf_efficientnet_em,93.200,6.800,98.680,1.320,6.90,240,0.882,bicubic +xception41,93.480,6.520,98.750,1.250,26.97,299,0.903,bicubic +coat_lite_mini,93.460,6.540,98.780,1.220,11.01,224,0.900,bicubic +legacy_seresnet152,93.440,6.560,98.850,1.150,66.82,224,0.875,bilinear +resmlp_24_224,93.440,6.560,98.810,1.190,30.02,224,0.875,bicubic +botnet26t_256,93.430,6.570,98.660,1.340,12.49,256,0.950,bicubic +lambda_resnet26rpt_256,93.430,6.570,98.880,1.120,10.99,256,0.940,bicubic +legacy_seresnext50_32x4d,93.430,6.570,98.800,1.200,27.56,224,0.875,bilinear +vit_tiny_patch16_384,93.430,6.570,98.830,1.170,5.79,384,1.000,bicubic +res2net50_26w_8s,93.420,6.580,98.690,1.310,48.40,224,0.875,bilinear +repvgg_b1,93.410,6.590,98.790,1.210,57.42,224,0.875,bilinear +lambda_resnet26t,93.400,6.600,98.740,1.260,10.96,256,0.940,bicubic +hrnet_w30,93.390,6.610,98.830,1.170,37.71,224,0.875,bilinear +dla60_res2net,93.380,6.620,98.860,1.140,20.85,224,0.875,bilinear +eca_botnext26ts_256,93.360,6.640,98.700,1.300,10.59,256,0.950,bicubic +xcit_tiny_12_p16_224_dist,93.340,6.660,98.740,1.260,6.72,224,1.000,bicubic +xcit_nano_12_p8_384_dist,93.280,6.720,98.850,1.150,3.05,384,1.000,bicubic +mixnet_l,93.270,6.730,98.700,1.300,7.33,224,0.875,bicubic +legacy_seresnet101,93.270,6.730,98.740,1.260,49.33,224,0.875,bilinear +dla102,93.260,6.740,98.770,1.230,33.27,224,0.875,bilinear +regnetx_032,93.250,6.750,98.730,1.270,15.30,224,0.875,bicubic +pit_xs_distilled_224,93.240,6.760,98.830,1.170,11.00,224,0.900,bicubic +resnest26d,93.240,6.760,98.850,1.150,17.07,224,0.875,bilinear +tv_resnet152,93.240,6.760,98.750,1.250,60.19,224,0.875,bilinear +tf_inception_v3,93.200,6.800,98.480,1.520,23.83,299,0.875,bicubic +dla60x,93.190,6.810,98.710,1.290,17.35,224,0.875,bilinear res2net50_26w_4s,93.180,6.820,98.670,1.330,25.70,224,0.875,bilinear -eca_halonext26ts,93.140,6.860,98.690,1.310,10.76,256,0.940,bicubic -res2next50,93.110,6.890,98.660,1.340,24.67,224,0.875,bilinear -bat_resnext26ts,93.100,6.900,98.720,1.280,10.73,256,0.900,bicubic +tf_efficientnet_em,93.180,6.820,98.670,1.330,6.90,240,0.882,bicubic +res2next50,93.140,6.860,98.650,1.350,24.67,224,0.875,bilinear +bat_resnext26ts,93.100,6.900,98.730,1.270,10.73,256,0.900,bicubic tf_efficientnetv2_b0,93.060,6.940,98.700,1.300,7.14,224,0.875,bicubic -tf_mixnet_l,93.050,6.950,98.540,1.460,7.33,224,0.875,bicubic -levit_128,93.040,6.960,98.690,1.310,9.21,224,0.900,bicubic -repvgg_b1g4,93.040,6.960,98.820,1.180,39.97,224,0.875,bilinear -regnety_016,93.030,6.970,98.690,1.310,11.20,224,0.875,bicubic -efficientnet_b1,93.020,6.980,98.710,1.290,7.79,256,1.000,bicubic -res2net50_14w_8s,93.020,6.980,98.700,1.300,25.06,224,0.875,bilinear -selecsls60,93.000,7.000,98.830,1.170,30.67,224,0.875,bicubic -adv_inception_v3,92.990,7.010,98.480,1.520,23.83,299,0.875,bicubic +levit_128,93.040,6.960,98.680,1.320,9.21,224,0.900,bicubic +tf_mixnet_l,93.040,6.960,98.540,1.460,7.33,224,0.875,bicubic +repvgg_b1g4,93.030,6.970,98.820,1.180,39.97,224,0.875,bilinear +res2net50_14w_8s,93.030,6.970,98.700,1.300,25.06,224,0.875,bilinear +efficientnet_b1,93.030,6.970,98.710,1.290,7.79,256,1.000,bicubic +selecsls60,93.010,6.990,98.830,1.170,30.67,224,0.875,bicubic +adv_inception_v3,93.010,6.990,98.490,1.510,23.83,299,0.875,bicubic +regnety_016,93.000,7.000,98.680,1.320,11.20,224,0.875,bicubic hardcorenas_f,92.980,7.020,98.620,1.380,8.20,224,0.875,bilinear -hardcorenas_e,92.960,7.040,98.570,1.430,8.07,224,0.875,bilinear -efficientnet_b1_pruned,92.960,7.040,98.520,1.480,6.33,240,0.882,bicubic +efficientnet_b1_pruned,92.970,7.030,98.520,1.480,6.33,240,0.882,bicubic +hardcorenas_e,92.950,7.050,98.570,1.430,8.07,224,0.875,bilinear hrnet_w32,92.950,7.050,98.840,1.160,41.23,224,0.875,bilinear -efficientnet_es,92.940,7.060,98.690,1.310,5.44,224,0.875,bicubic gluon_resnet50_v1c,92.920,7.080,98.710,1.290,25.58,224,0.875,bicubic -tv_resnext50_32x4d,92.910,7.090,98.730,1.270,25.03,224,0.875,bilinear -pit_xs_224,92.900,7.100,98.790,1.210,10.62,224,0.900,bicubic -inception_v3,92.900,7.100,98.320,1.680,23.83,299,0.875,bicubic +efficientnet_es,92.920,7.080,98.690,1.310,5.44,224,0.875,bicubic +pit_xs_224,92.910,7.090,98.770,1.230,10.62,224,0.900,bicubic +tv_resnext50_32x4d,92.910,7.090,98.720,1.280,25.03,224,0.875,bilinear +inception_v3,92.900,7.100,98.330,1.670,23.83,299,0.875,bicubic +densenet161,92.890,7.110,98.810,1.190,28.68,224,0.875,bicubic tv_resnet101,92.880,7.120,98.660,1.340,44.55,224,0.875,bilinear -densenet161,92.880,7.120,98.810,1.190,28.68,224,0.875,bicubic -resmlp_12_distilled_224,92.870,7.130,98.630,1.370,15.35,224,0.875,bicubic -tf_efficientnet_cc_b0_8e,92.850,7.150,98.460,1.540,24.01,224,0.875,bicubic +resmlp_12_distilled_224,92.870,7.130,98.620,1.380,15.35,224,0.875,bicubic +tf_efficientnet_cc_b0_8e,92.870,7.130,98.460,1.540,24.01,224,0.875,bicubic +coat_lite_tiny,92.860,7.140,98.630,1.370,5.72,224,0.900,bicubic rexnet_100,92.840,7.160,98.620,1.380,4.80,224,0.875,bicubic tf_efficientnet_cc_b0_4e,92.840,7.160,98.440,1.560,13.31,224,0.875,bicubic -coat_lite_tiny,92.830,7.170,98.640,1.360,5.72,224,0.900,bicubic -res2net50_48w_2s,92.800,7.200,98.470,1.530,25.29,224,0.875,bilinear -seresnext26ts,92.790,7.210,98.600,1.400,10.39,256,0.900,bicubic -seresnext26t_32x4d,92.770,7.230,98.550,1.450,16.81,224,0.875,bicubic -hrnet_w18,92.750,7.250,98.650,1.350,21.30,224,0.875,bilinear +seresnext26t_32x4d,92.820,7.180,98.560,1.440,16.81,224,0.875,bicubic +seresnext26ts,92.810,7.190,98.600,1.400,10.39,256,0.900,bicubic +res2net50_48w_2s,92.790,7.210,98.480,1.520,25.29,224,0.875,bilinear +tinynet_a,92.790,7.210,98.560,1.440,6.19,192,0.875,bicubic crossvit_9_dagger_240,92.750,7.250,98.510,1.490,8.78,240,0.875,bicubic -dla60,92.690,7.310,98.630,1.370,22.04,224,0.875,bilinear -densenet201,92.690,7.310,98.660,1.340,20.01,224,0.875,bicubic -resnet26t,92.680,7.320,98.600,1.400,16.01,256,0.940,bicubic -gmixer_24_224,92.670,7.330,98.260,1.740,24.72,224,0.875,bicubic -legacy_seresnet50,92.670,7.330,98.660,1.340,28.09,224,0.875,bilinear -repvgg_a2,92.660,7.340,98.530,1.470,28.21,224,0.875,bilinear -resnet34d,92.640,7.360,98.440,1.560,21.82,224,0.875,bicubic -mobilenetv2_120d,92.610,7.390,98.510,1.490,5.83,224,0.875,bicubic -tf_efficientnet_b0_ap,92.600,7.400,98.370,1.630,5.29,224,0.875,bicubic +hrnet_w18,92.750,7.250,98.660,1.340,21.30,224,0.875,bilinear +densenet201,92.690,7.310,98.650,1.350,20.01,224,0.875,bicubic +gmixer_24_224,92.680,7.320,98.280,1.720,24.72,224,0.875,bicubic +repvgg_a2,92.680,7.320,98.520,1.480,28.21,224,0.875,bilinear +dla60,92.670,7.330,98.630,1.370,22.04,224,0.875,bilinear +legacy_seresnet50,92.670,7.330,98.650,1.350,28.09,224,0.875,bilinear +resnet26t,92.670,7.330,98.580,1.420,16.01,256,0.940,bicubic +resnet34d,92.640,7.360,98.420,1.580,21.82,224,0.875,bicubic +mobilenetv2_120d,92.610,7.390,98.500,1.500,5.83,224,0.875,bicubic +tf_efficientnet_b0_ap,92.610,7.390,98.370,1.630,5.29,224,0.875,bicubic hardcorenas_d,92.600,7.400,98.430,1.570,7.50,224,0.875,bilinear -legacy_seresnext26_32x4d,92.590,7.410,98.420,1.580,16.79,224,0.875,bicubic -tf_efficientnet_lite2,92.570,7.430,98.550,1.450,6.09,260,0.890,bicubic -regnetx_016,92.560,7.440,98.550,1.450,9.19,224,0.875,bicubic -skresnet34,92.560,7.440,98.510,1.490,22.28,224,0.875,bicubic -gluon_resnet50_v1b,92.550,7.450,98.550,1.450,25.56,224,0.875,bicubic +legacy_seresnext26_32x4d,92.580,7.420,98.410,1.590,16.79,224,0.875,bicubic +tf_efficientnet_lite2,92.580,7.420,98.550,1.450,6.09,260,0.890,bicubic +skresnet34,92.570,7.430,98.520,1.480,22.28,224,0.875,bicubic +gluon_resnet50_v1b,92.560,7.440,98.550,1.450,25.56,224,0.875,bicubic +regnetx_016,92.540,7.460,98.550,1.450,9.19,224,0.875,bicubic +efficientnet_b0,92.480,7.520,98.680,1.320,5.29,224,0.875,bicubic selecsls42b,92.480,7.520,98.440,1.560,32.46,224,0.875,bicubic -gcresnext26ts,92.470,7.530,98.500,1.500,10.48,256,0.900,bicubic -efficientnet_b0,92.470,7.530,98.680,1.320,5.29,224,0.875,bicubic +gcresnext26ts,92.470,7.530,98.490,1.510,10.48,256,0.900,bicubic xcit_tiny_12_p16_224,92.460,7.540,98.630,1.370,6.72,224,1.000,bicubic -gernet_s,92.440,7.560,98.490,1.510,8.17,224,0.875,bilinear +gernet_s,92.440,7.560,98.500,1.500,8.17,224,0.875,bilinear seresnext26d_32x4d,92.430,7.570,98.540,1.460,16.81,224,0.875,bicubic -eca_resnext26ts,92.420,7.580,98.610,1.390,10.30,256,0.900,bicubic -xcit_nano_12_p8_224_dist,92.410,7.590,98.510,1.490,3.05,224,1.000,bicubic +xcit_nano_12_p8_224_dist,92.420,7.580,98.530,1.470,3.05,224,1.000,bicubic +eca_resnext26ts,92.410,7.590,98.620,1.380,10.30,256,0.900,bicubic +densenetblur121d,92.400,7.600,98.410,1.590,8.00,224,0.875,bicubic tf_efficientnet_b0,92.400,7.600,98.470,1.530,5.29,224,0.875,bicubic -densenetblur121d,92.400,7.600,98.420,1.580,8.00,224,0.875,bicubic convmixer_1024_20_ks9_p14,92.350,7.650,98.420,1.580,24.38,224,0.960,bicubic -hardcorenas_c,92.330,7.670,98.340,1.660,5.52,224,0.875,bilinear -tf_efficientnet_lite1,92.320,7.680,98.490,1.510,5.42,240,0.882,bicubic +hardcorenas_c,92.330,7.670,98.350,1.650,5.52,224,0.875,bilinear +tf_efficientnet_lite1,92.310,7.690,98.490,1.510,5.42,240,0.882,bicubic densenet169,92.290,7.710,98.590,1.410,14.15,224,0.875,bicubic -mixnet_m,92.260,7.740,98.370,1.630,5.01,224,0.875,bicubic -dpn68,92.260,7.740,98.600,1.400,12.61,224,0.875,bicubic -resnet26d,92.250,7.750,98.470,1.530,16.01,224,0.875,bicubic +mixnet_m,92.270,7.730,98.350,1.650,5.01,224,0.875,bicubic +dpn68,92.260,7.740,98.610,1.390,12.61,224,0.875,bicubic mobilenetv3_large_100_miil,92.250,7.750,98.250,1.750,5.48,224,0.875,bilinear -resnext26ts,92.210,7.790,98.280,1.720,10.30,256,0.900,bicubic -tf_mixnet_m,92.170,7.830,98.420,1.580,5.01,224,0.875,bicubic -vit_small_patch32_224,92.150,7.850,98.510,1.490,22.88,224,0.900,bicubic -resmlp_12_224,92.130,7.870,98.570,1.430,15.35,224,0.875,bicubic -tv_resnet50,92.110,7.890,98.420,1.580,25.56,224,0.875,bilinear -xcit_nano_12_p16_384_dist,92.100,7.900,98.520,1.480,3.05,384,1.000,bicubic +resnet26d,92.250,7.750,98.450,1.550,16.01,224,0.875,bicubic +resnext26ts,92.220,7.780,98.250,1.750,10.30,256,0.900,bicubic +tf_mixnet_m,92.200,7.800,98.420,1.580,5.01,224,0.875,bicubic +vit_small_patch32_224,92.160,7.840,98.510,1.490,22.88,224,0.900,bicubic +resmlp_12_224,92.120,7.880,98.570,1.430,15.35,224,0.875,bicubic +tv_resnet50,92.120,7.880,98.420,1.580,25.56,224,0.875,bilinear +xcit_nano_12_p16_384_dist,92.110,7.890,98.520,1.480,3.05,384,1.000,bicubic tf_efficientnet_es,92.100,7.900,98.430,1.570,5.44,224,0.875,bicubic -mobilenetv2_140,92.030,7.970,98.250,1.750,6.11,224,0.875,bicubic -ese_vovnet19b_dw,92.020,7.980,98.520,1.480,6.54,224,0.875,bicubic -hardcorenas_b,91.970,8.030,98.400,1.600,5.18,224,0.875,bilinear +mobilenetv2_140,92.050,7.950,98.250,1.750,6.11,224,0.875,bicubic +ese_vovnet19b_dw,92.010,7.990,98.510,1.490,6.54,224,0.875,bicubic densenet121,91.940,8.060,98.280,1.720,7.98,224,0.875,bicubic -vit_tiny_patch16_224,91.930,8.070,98.330,1.670,5.72,224,0.900,bicubic -regnety_008,91.890,8.110,98.420,1.580,6.26,224,0.875,bicubic +hardcorenas_b,91.930,8.070,98.400,1.600,5.18,224,0.875,bilinear +regnety_008,91.910,8.090,98.420,1.580,6.26,224,0.875,bicubic +vit_tiny_patch16_224,91.910,8.090,98.340,1.660,5.72,224,0.900,bicubic mixnet_s,91.780,8.220,98.300,1.700,4.13,224,0.875,bicubic -vit_tiny_r_s16_p8_384,91.720,8.280,98.430,1.570,6.36,384,1.000,bicubic -efficientnet_es_pruned,91.710,8.290,98.400,1.600,5.44,224,0.875,bicubic -tf_mixnet_s,91.690,8.310,98.240,1.760,4.13,224,0.875,bicubic -repvgg_b0,91.670,8.330,98.450,1.550,15.82,224,0.875,bilinear -semnasnet_100,91.660,8.340,98.260,1.740,3.89,224,0.875,bicubic -hardcorenas_a,91.610,8.390,98.170,1.830,5.26,224,0.875,bilinear -regnety_006,91.580,8.420,98.430,1.570,6.06,224,0.875,bicubic -mobilenetv3_rw,91.550,8.450,98.270,1.730,5.48,224,0.875,bicubic +vit_tiny_r_s16_p8_384,91.730,8.270,98.430,1.570,6.36,384,1.000,bicubic +efficientnet_es_pruned,91.710,8.290,98.410,1.590,5.44,224,0.875,bicubic +repvgg_b0,91.680,8.320,98.450,1.550,15.82,224,0.875,bilinear +tf_mixnet_s,91.680,8.320,98.240,1.760,4.13,224,0.875,bicubic +semnasnet_100,91.660,8.340,98.270,1.730,3.89,224,0.875,bicubic +hardcorenas_a,91.620,8.380,98.170,1.830,5.26,224,0.875,bilinear +regnety_006,91.560,8.440,98.430,1.570,6.06,224,0.875,bicubic +mobilenetv3_rw,91.540,8.460,98.270,1.730,5.48,224,0.875,bicubic levit_128s,91.500,8.500,98.400,1.600,7.78,224,0.900,bicubic legacy_seresnet34,91.480,8.520,98.200,1.800,21.96,224,0.875,bilinear -mobilenetv3_large_100,91.480,8.520,98.330,1.670,5.48,224,0.875,bicubic -resnet26,91.460,8.540,98.270,1.730,16.00,224,0.875,bicubic -tf_mobilenetv3_large_100,91.410,8.590,98.250,1.750,5.48,224,0.875,bilinear -tv_densenet121,91.400,8.600,98.250,1.750,7.98,224,0.875,bicubic -mobilenetv2_110d,91.320,8.680,98.180,1.820,4.52,224,0.875,bicubic -tf_efficientnet_lite0,91.280,8.720,98.090,1.910,4.65,224,0.875,bicubic -fbnetc_100,91.260,8.740,97.820,2.180,5.57,224,0.875,bilinear -dla34,91.250,8.750,98.180,1.820,15.74,224,0.875,bilinear +mobilenetv3_large_100,91.480,8.520,98.320,1.680,5.48,224,0.875,bicubic +resnet26,91.450,8.550,98.270,1.730,16.00,224,0.875,bicubic +tf_mobilenetv3_large_100,91.420,8.580,98.260,1.740,5.48,224,0.875,bilinear +tv_densenet121,91.410,8.590,98.250,1.750,7.98,224,0.875,bicubic +mobilenetv2_110d,91.350,8.650,98.190,1.810,4.52,224,0.875,bicubic +tf_efficientnet_lite0,91.300,8.700,98.090,1.910,4.65,224,0.875,bicubic +fbnetc_100,91.260,8.740,97.830,2.170,5.57,224,0.875,bilinear efficientnet_lite0,91.250,8.750,98.250,1.750,4.65,224,0.875,bicubic -mnasnet_100,91.200,8.800,98.040,1.960,4.38,224,0.875,bicubic -resnet34,91.190,8.810,98.230,1.770,21.80,224,0.875,bilinear -regnetx_008,91.190,8.810,98.370,1.630,7.26,224,0.875,bicubic -hrnet_w18_small_v2,91.170,8.830,98.350,1.650,15.60,224,0.875,bilinear -resnest14d,91.150,8.850,98.350,1.650,10.61,224,0.875,bilinear -mixer_b16_224,91.130,8.870,97.410,2.590,59.88,224,0.875,bicubic -xcit_nano_12_p8_224,91.100,8.900,98.240,1.760,3.05,224,1.000,bicubic -swsl_resnet18,91.090,8.910,98.210,1.790,11.69,224,0.875,bilinear -gluon_resnet34_v1b,91.090,8.910,98.180,1.820,21.80,224,0.875,bicubic -deit_tiny_distilled_patch16_224,91.090,8.910,98.270,1.730,5.91,224,0.900,bicubic -crossvit_9_240,91.070,8.930,98.310,1.690,8.55,240,0.875,bicubic -vgg19_bn,90.990,9.010,98.120,1.880,143.68,224,0.875,bilinear -pit_ti_distilled_224,90.900,9.100,98.230,1.770,5.10,224,0.900,bicubic -regnetx_006,90.750,9.250,98.100,1.900,6.20,224,0.875,bicubic -regnety_004,90.750,9.250,98.080,1.920,4.34,224,0.875,bicubic +dla34,91.230,8.770,98.180,1.820,15.74,224,0.875,bilinear +mnasnet_100,91.200,8.800,98.050,1.950,4.38,224,0.875,bicubic +resnet34,91.200,8.800,98.240,1.760,21.80,224,0.875,bilinear +hrnet_w18_small_v2,91.170,8.830,98.340,1.660,15.60,224,0.875,bilinear +regnetx_008,91.160,8.840,98.380,1.620,7.26,224,0.875,bicubic +mixer_b16_224,91.140,8.860,97.400,2.600,59.88,224,0.875,bicubic +tinynet_b,91.130,8.870,98.070,1.930,3.73,188,0.875,bicubic +resnest14d,91.120,8.880,98.330,1.670,10.61,224,0.875,bilinear +xcit_nano_12_p8_224,91.120,8.880,98.240,1.760,3.05,224,1.000,bicubic +deit_tiny_distilled_patch16_224,91.110,8.890,98.270,1.730,5.91,224,0.900,bicubic +gluon_resnet34_v1b,91.100,8.900,98.180,1.820,21.80,224,0.875,bicubic +swsl_resnet18,91.080,8.920,98.210,1.790,11.69,224,0.875,bilinear +crossvit_9_240,91.050,8.950,98.310,1.690,8.55,240,0.875,bicubic +vgg19_bn,90.990,9.010,98.110,1.890,143.68,224,0.875,bilinear +pit_ti_distilled_224,90.900,9.100,98.220,1.780,5.10,224,0.900,bicubic +regnetx_006,90.770,9.230,98.100,1.900,6.20,224,0.875,bicubic +regnety_004,90.770,9.230,98.080,1.920,4.34,224,0.875,bicubic ssl_resnet18,90.700,9.300,98.030,1.970,11.69,224,0.875,bilinear -spnasnet_100,90.610,9.390,97.950,2.050,4.42,224,0.875,bilinear -convit_tiny,90.550,9.450,98.210,1.790,5.71,224,0.875,bicubic -crossvit_tiny_240,90.530,9.470,97.950,2.050,7.01,240,0.875,bicubic -vgg16_bn,90.520,9.480,97.990,2.010,138.37,224,0.875,bilinear -ghostnet_100,90.440,9.560,97.840,2.160,5.18,224,0.875,bilinear -pit_ti_224,90.440,9.560,98.020,1.980,4.85,224,0.900,bicubic -tf_mobilenetv3_large_075,90.310,9.690,97.880,2.120,3.99,224,0.875,bilinear -tv_resnet34,90.310,9.690,97.970,2.030,21.80,224,0.875,bilinear -xcit_nano_12_p16_224_dist,90.190,9.810,97.760,2.240,3.05,224,1.000,bicubic +spnasnet_100,90.600,9.400,97.950,2.050,4.42,224,0.875,bilinear +convit_tiny,90.550,9.450,98.220,1.780,5.71,224,0.875,bicubic +crossvit_tiny_240,90.540,9.460,97.950,2.050,7.01,240,0.875,bicubic +vgg16_bn,90.540,9.460,97.990,2.010,138.37,224,0.875,bilinear +ghostnet_100,90.440,9.560,97.830,2.170,5.18,224,0.875,bilinear +pit_ti_224,90.440,9.560,98.010,1.990,4.85,224,0.900,bicubic +tf_mobilenetv3_large_075,90.320,9.680,97.870,2.130,3.99,224,0.875,bilinear +tv_resnet34,90.290,9.710,97.980,2.020,21.80,224,0.875,bilinear +semnasnet_075,90.200,9.800,97.970,2.030,2.91,224,0.875,bicubic skresnet18,90.170,9.830,97.780,2.220,11.96,224,0.875,bicubic -resnet18d,89.990,10.010,97.840,2.160,11.71,224,0.875,bicubic -hrnet_w18_small,89.900,10.100,97.900,2.100,13.19,224,0.875,bilinear -vit_base_patch32_sam_224,89.870,10.130,97.600,2.400,88.22,224,0.900,bicubic -mobilenetv2_100,89.840,10.160,97.840,2.160,3.50,224,0.875,bicubic -vgg19,89.690,10.310,97.550,2.450,143.67,224,0.875,bilinear -deit_tiny_patch16_224,89.600,10.400,97.960,2.040,5.72,224,0.900,bicubic -regnetx_004,89.450,10.550,97.780,2.220,5.16,224,0.875,bicubic -vit_tiny_r_s16_p8_224,89.400,10.600,97.690,2.310,6.34,224,0.900,bicubic -vgg16,89.380,10.620,97.520,2.480,138.36,224,0.875,bilinear -legacy_seresnet18,89.250,10.750,97.690,2.310,11.78,224,0.875,bicubic -vgg13_bn,89.210,10.790,97.540,2.460,133.05,224,0.875,bilinear -tf_mobilenetv3_large_minimal_100,89.160,10.840,97.320,2.680,3.92,224,0.875,bilinear -xcit_nano_12_p16_224,88.960,11.040,97.410,2.590,3.05,224,1.000,bicubic -gluon_resnet18_v1b,88.670,11.330,97.110,2.890,11.69,224,0.875,bicubic -vgg11_bn,88.390,11.610,97.280,2.720,132.87,224,0.875,bilinear -regnety_002,88.210,11.790,97.420,2.580,3.16,224,0.875,bicubic -resnet18,88.160,11.840,97.120,2.880,11.69,224,0.875,bilinear -vgg13,87.550,12.450,97.120,2.880,133.05,224,0.875,bilinear -regnetx_002,87.360,12.640,96.990,3.010,2.68,224,0.875,bicubic -vgg11,87.330,12.670,97.110,2.890,132.86,224,0.875,bilinear -dla60x_c,87.080,12.920,97.140,2.860,1.32,224,0.875,bilinear -mixer_l16_224,86.960,13.040,94.030,5.970,208.20,224,0.875,bicubic -tf_mobilenetv3_small_100,85.990,14.010,96.410,3.590,2.54,224,0.875,bilinear -dla46x_c,85.470,14.530,96.450,3.550,1.07,224,0.875,bilinear -dla46_c,84.710,15.290,96.210,3.790,1.30,224,0.875,bilinear +xcit_nano_12_p16_224_dist,90.170,9.830,97.760,2.240,3.05,224,1.000,bicubic +resnet18d,89.990,10.010,97.830,2.170,11.71,224,0.875,bicubic +hrnet_w18_small,89.880,10.120,97.900,2.100,13.19,224,0.875,bilinear +vit_base_patch32_224_sam,89.860,10.140,97.600,2.400,88.22,224,0.900,bicubic +mobilenetv2_100,89.830,10.170,97.830,2.170,3.50,224,0.875,bicubic +vgg19,89.680,10.320,97.550,2.450,143.67,224,0.875,bilinear +deit_tiny_patch16_224,89.620,10.380,97.960,2.040,5.72,224,0.900,bicubic +regnetx_004,89.470,10.530,97.770,2.230,5.16,224,0.875,bicubic +vgg16,89.360,10.640,97.520,2.480,138.36,224,0.875,bilinear +vit_tiny_r_s16_p8_224,89.350,10.650,97.700,2.300,6.34,224,0.900,bicubic +legacy_seresnet18,89.260,10.740,97.680,2.320,11.78,224,0.875,bicubic +vgg13_bn,89.200,10.800,97.520,2.480,133.05,224,0.875,bilinear +tf_mobilenetv3_large_minimal_100,89.170,10.830,97.320,2.680,3.92,224,0.875,bilinear +xcit_nano_12_p16_224,88.970,11.030,97.390,2.610,3.05,224,1.000,bicubic +lcnet_100,88.950,11.050,97.380,2.620,2.95,224,0.875,bicubic +gluon_resnet18_v1b,88.660,11.340,97.100,2.900,11.69,224,0.875,bicubic +tinynet_c,88.420,11.580,97.260,2.740,2.46,184,0.875,bicubic +vgg11_bn,88.390,11.610,97.270,2.730,132.87,224,0.875,bilinear +regnety_002,88.190,11.810,97.420,2.580,3.16,224,0.875,bicubic +resnet18,88.150,11.850,97.120,2.880,11.69,224,0.875,bilinear +vgg13,87.570,12.430,97.120,2.880,133.05,224,0.875,bilinear +regnetx_002,87.380,12.620,96.990,3.010,2.68,224,0.875,bicubic +vgg11,87.340,12.660,97.110,2.890,132.86,224,0.875,bilinear +dla60x_c,87.110,12.890,97.140,2.860,1.32,224,0.875,bilinear +mixer_l16_224,86.970,13.030,94.040,5.960,208.20,224,0.875,bicubic +lcnet_075,86.940,13.060,96.530,3.470,2.36,224,0.875,bicubic +tf_mobilenetv3_small_100,85.970,14.030,96.410,3.590,2.54,224,0.875,bilinear +dla46x_c,85.480,14.520,96.440,3.560,1.07,224,0.875,bilinear +tinynet_d,85.430,14.570,96.020,3.980,2.34,152,0.875,bicubic +mobilenetv2_050,84.990,15.010,95.620,4.380,1.97,224,0.875,bicubic +mnasnet_small,84.920,15.080,95.930,4.070,2.03,224,0.875,bicubic +dla46_c,84.670,15.330,96.200,3.800,1.30,224,0.875,bilinear tf_mobilenetv3_small_075,84.530,15.470,95.890,4.110,2.04,224,0.875,bilinear +lcnet_050,83.000,17.000,95.020,4.980,1.88,224,0.875,bicubic tf_mobilenetv3_small_minimal_100,82.680,17.320,95.010,4.990,2.04,224,0.875,bilinear +tinynet_e,79.800,20.200,93.980,6.020,2.04,106,0.875,bicubic diff --git a/results/results-imagenet-r.csv b/results/results-imagenet-r.csv index 8b30676494..906bdb5ac3 100644 --- a/results/results-imagenet-r.csv +++ b/results/results-imagenet-r.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation,top1_diff,top5_diff,rank_diff -ig_resnext101_32x48d,79.727,20.273,89.523,10.477,828.41,224,0.875,bilinear,-17.233,-10.147,+14 -ig_resnext101_32x32d,79.510,20.490,89.230,10.770,468.53,224,0.875,bilinear,-17.270,-10.300,+26 -ig_resnext101_32x16d,78.823,21.177,88.457,11.543,194.03,224,0.875,bilinear,-17.607,-11.083,+52 -tf_efficientnet_l2_ns_475,76.370,23.630,88.540,11.460,480.31,475,0.936,bicubic,-21.380,-11.280,0 -swsl_resnext101_32x16d,76.230,23.770,87.750,12.250,194.03,224,0.875,bilinear,-20.050,-11.750,+64 -ig_resnext101_32x8d,75.890,24.110,86.243,13.757,88.79,224,0.875,bilinear,-20.060,-13.147,+89 -swsl_resnext101_32x8d,75.583,24.417,87.063,12.937,88.79,224,0.875,bilinear,-20.647,-12.527,+67 -tf_efficientnet_l2_ns,74.623,25.377,87.497,12.503,480.31,800,0.960,bicubic,-23.147,-12.313,-5 -beit_large_patch16_384,73.100,26.900,84.797,15.203,305.00,384,1.000,bicubic,-24.720,-14.993,-8 -beit_large_patch16_512,73.030,26.970,84.943,15.057,305.67,512,1.000,bicubic,-24.740,-14.947,-8 -swsl_resnext101_32x4d,72.703,27.297,85.197,14.803,44.18,224,0.875,bilinear,-23.347,-14.343,+76 -beit_large_patch16_224,71.030,28.970,83.300,16.700,304.43,224,0.900,bicubic,-26.440,-16.390,-7 -swsl_resnext50_32x4d,69.097,30.903,82.873,17.127,25.03,224,0.875,bilinear,-26.493,-16.567,+106 -swsl_resnet50,68.370,31.630,83.380,16.620,25.56,224,0.875,bilinear,-26.850,-16.020,+134 -vit_large_patch16_384,67.107,32.893,78.723,21.277,304.72,384,1.000,bicubic,-30.313,-21.057,-9 -tf_efficientnet_b7_ns,67.043,32.957,81.090,18.910,66.35,600,0.949,bicubic,-30.167,-18.610,-8 -swin_large_patch4_window12_384,65.983,34.017,79.260,20.740,196.74,384,1.000,bicubic,-31.197,-20.430,-8 -tf_efficientnet_b6_ns,65.460,34.540,79.450,20.550,43.04,528,0.942,bicubic,-31.570,-20.260,-5 -vit_large_patch16_224,64.333,35.667,76.243,23.757,304.33,224,0.900,bicubic,-32.377,-23.407,+14 -vit_large_r50_s32_384,64.160,35.840,75.903,24.097,329.09,384,1.000,bicubic,-32.790,-23.817,-2 -swin_large_patch4_window7_224,63.720,36.280,78.060,21.940,196.53,224,0.900,bicubic,-33.230,-21.600,-5 -beit_base_patch16_384,63.393,36.607,77.850,22.150,86.74,384,1.000,bicubic,-33.957,-21.860,-15 -swin_base_patch4_window12_384,62.990,37.010,77.727,22.273,87.90,384,1.000,bicubic,-34.080,-22.043,-11 -tf_efficientnet_b5_ns,62.890,37.110,77.720,22.280,30.39,456,0.934,bicubic,-33.990,-21.920,-2 -tf_efficientnet_b4_ns,61.090,38.910,76.057,23.943,19.34,380,0.922,bicubic,-35.620,-23.583,+7 -tf_efficientnetv2_l_in21ft1k,60.963,39.037,75.887,24.113,118.52,480,1.000,bicubic,-36.147,-23.813,-15 -tf_efficientnetv2_xl_in21ft1k,60.710,39.290,74.393,25.607,208.12,512,1.000,bicubic,-36.440,-25.227,-17 -vit_base_patch16_384,60.197,39.803,73.840,26.160,86.86,384,1.000,bicubic,-36.823,-25.860,-14 -beit_base_patch16_224,60.143,39.857,75.367,24.633,86.53,224,0.900,bicubic,-36.507,-24.203,+8 -swin_base_patch4_window7_224,59.293,40.707,73.890,26.110,87.77,224,0.900,bicubic,-37.377,-25.780,+6 -vit_large_r50_s32_224,58.677,41.323,71.857,28.143,328.99,224,0.900,bicubic,-37.513,-27.673,+44 -tf_efficientnetv2_m_in21ft1k,58.653,41.347,74.017,25.983,54.14,480,1.000,bicubic,-38.297,-25.593,-15 -tf_efficientnet_b8_ap,57.873,42.127,72.937,27.063,87.41,672,0.954,bicubic,-38.687,-26.613,+10 -cait_m48_448,57.447,42.553,71.810,28.190,356.46,448,1.000,bicubic,-39.423,-27.810,-11 -cait_m36_384,57.413,42.587,72.307,27.693,271.22,384,1.000,bicubic,-39.407,-27.353,-10 -tf_efficientnet_b3_ns,57.313,42.687,72.387,27.613,12.23,300,0.904,bicubic,-38.797,-27.083,+44 -vit_base_patch16_224,56.837,43.163,70.713,29.287,86.57,224,0.900,bicubic,-39.463,-28.847,+28 -xcit_large_24_p8_384_dist,56.373,43.627,71.240,28.760,188.93,384,1.000,bicubic,-40.387,-28.320,-8 -xcit_large_24_p8_224_dist,55.980,44.020,70.687,29.313,188.93,224,1.000,bicubic,-40.640,-28.773,+1 -xcit_large_24_p16_384_dist,54.850,45.150,69.857,30.143,189.10,384,1.000,bicubic,-42.080,-29.653,-21 -vit_base_r50_s16_384,54.340,45.660,69.510,30.490,98.95,384,1.000,bicubic,-42.130,-30.150,+9 -resnetv2_152x4_bitm,54.220,45.780,70.290,29.710,936.53,480,1.000,bilinear,-42.660,-29.370,-21 -xcit_large_24_p16_224_dist,54.217,45.783,68.950,31.050,189.10,224,1.000,bicubic,-42.093,-30.550,+21 -vit_small_r26_s32_384,54.097,45.903,68.793,31.207,36.47,384,1.000,bicubic,-41.963,-30.757,+42 -tf_efficientnet_b5_ap,53.923,46.077,69.180,30.820,30.39,456,0.934,bicubic,-42.157,-30.200,+36 -xcit_medium_24_p8_224_dist,53.650,46.350,68.327,31.673,84.32,224,1.000,bicubic,-42.850,-31.173,+1 -tf_efficientnet_b6_ap,53.560,46.440,68.580,31.420,43.04,528,0.942,bicubic,-42.800,-30.970,+11 -cait_s36_384,53.507,46.493,67.990,32.010,68.37,384,1.000,bicubic,-43.123,-31.600,-9 -tf_efficientnet_b2_ns,53.503,46.497,70.393,29.607,9.11,260,0.890,bicubic,-42.027,-28.947,+76 -vit_base_patch32_384,53.340,46.660,68.133,31.867,88.30,384,1.000,bicubic,-42.570,-31.047,+48 -tf_efficientnet_b7_ap,53.320,46.680,68.900,31.100,66.35,600,0.949,bicubic,-43.030,-30.700,+9 -xcit_medium_24_p8_384_dist,53.297,46.703,68.067,31.933,84.32,384,1.000,bicubic,-43.483,-31.553,-23 -tf_efficientnetv2_s_in21ft1k,53.253,46.747,69.057,30.943,21.46,384,1.000,bicubic,-43.207,-30.573,-1 -xcit_medium_24_p16_384_dist,53.210,46.790,68.047,31.953,84.40,384,1.000,bicubic,-43.480,-31.553,-19 -tf_efficientnet_b8,53.200,46.800,68.953,31.047,87.41,672,0.954,bicubic,-43.500,-30.597,-21 -tf_efficientnet_b4_ap,53.073,46.927,68.237,31.763,19.34,380,0.922,bicubic,-42.427,-31.153,+71 -dm_nfnet_f5,52.717,47.283,67.250,32.750,377.21,544,0.954,bicubic,-44.083,-32.420,-31 -efficientnetv2_rw_m,52.347,47.653,67.260,32.740,53.24,416,1.000,bicubic,-43.923,-32.300,+12 -tf_efficientnet_b7,52.303,47.697,68.230,31.770,66.35,600,0.949,bicubic,-44.277,-31.280,-17 -xcit_small_24_p8_384_dist,52.283,47.717,66.753,33.247,47.63,384,1.000,bicubic,-44.547,-32.877,-36 -tf_efficientnetv2_l,52.277,47.723,67.197,32.803,118.52,480,1.000,bicubic,-44.373,-32.463,-23 -dm_nfnet_f6,52.250,47.750,66.963,33.037,438.36,576,0.956,bicubic,-44.660,-32.757,-42 -swsl_resnet18,52.243,47.757,70.503,29.497,11.69,224,0.875,bilinear,-38.847,-27.707,+413 -xcit_medium_24_p16_224_dist,52.210,47.790,66.883,33.117,84.40,224,1.000,bicubic,-44.050,-32.517,+7 -deit_base_distilled_patch16_384,52.180,47.820,67.693,32.307,87.63,384,1.000,bicubic,-44.310,-31.897,-17 -xcit_small_24_p8_224_dist,52.133,47.867,66.717,33.283,47.63,224,1.000,bicubic,-44.417,-32.843,-21 -resnetv2_152x2_bit_teacher_384,52.060,47.940,68.833,31.167,236.34,384,1.000,bicubic,-44.110,-30.677,+9 -dm_nfnet_f3,51.960,48.040,66.597,33.403,254.92,416,0.940,bicubic,-44.760,-33.033,-37 -resmlp_big_24_224_in22ft1k,51.893,48.107,68.423,31.577,129.14,224,0.875,bicubic,-44.447,-31.087,-8 -xcit_small_24_p16_384_dist,51.883,48.117,66.307,33.693,47.67,384,1.000,bicubic,-44.477,-33.283,-11 -resnetv2_152x2_bitm,51.780,48.220,69.353,30.647,236.34,448,1.000,bilinear,-44.740,-30.237,-25 -cait_s24_384,51.727,48.273,66.330,33.670,47.06,384,1.000,bicubic,-44.853,-33.220,-31 -ecaresnet269d,51.590,48.410,66.087,33.913,102.09,352,1.000,bicubic,-44.870,-33.483,-22 -vit_base_patch16_224_miil,51.557,48.443,65.253,34.747,86.54,224,0.875,bilinear,-44.483,-34.097,+14 -pit_b_distilled_224,51.163,48.837,66.773,33.227,74.79,224,0.900,bicubic,-44.917,-32.767,+8 -xcit_small_12_p8_384_dist,51.040,48.960,65.710,34.290,26.21,384,1.000,bicubic,-45.440,-33.770,-27 -dm_nfnet_f4,50.810,49.190,65.430,34.570,316.07,512,0.951,bicubic,-45.970,-34.190,-50 -tf_efficientnet_b1_ns,50.767,49.233,67.963,32.037,7.79,240,0.882,bicubic,-44.113,-31.287,+105 -xcit_small_24_p16_224_dist,50.700,49.300,65.007,34.993,47.67,224,1.000,bicubic,-45.110,-34.333,+26 -tf_efficientnetv2_m,50.570,49.430,66.013,33.987,54.14,480,1.000,bicubic,-45.980,-33.557,-36 -efficientnet_b4,50.523,49.477,65.800,34.200,19.34,384,1.000,bicubic,-45.017,-33.600,+41 -resnetv2_101x3_bitm,50.520,49.480,67.963,32.037,387.93,448,1.000,bilinear,-45.770,-31.667,-15 -xcit_small_12_p16_384_dist,50.447,49.553,65.287,34.713,26.25,384,1.000,bicubic,-45.883,-34.203,-20 -xcit_small_12_p8_224_dist,50.400,49.600,65.440,34.560,26.21,224,1.000,bicubic,-45.560,-33.980,+10 -cait_s24_224,50.230,49.770,65.033,34.967,46.92,224,1.000,bicubic,-45.410,-34.357,+32 -eca_nfnet_l2,50.227,49.773,65.463,34.537,56.72,384,1.000,bicubic,-46.233,-34.147,-33 -ssl_resnext101_32x16d,50.220,49.780,66.073,33.927,194.03,224,0.875,bilinear,-45.180,-33.337,+49 -vit_small_patch16_384,50.153,49.847,65.883,34.117,22.20,384,1.000,bicubic,-45.827,-33.717,+4 -resnest269e,50.137,49.863,64.713,35.287,110.93,416,0.928,bicubic,-45.983,-34.807,-12 -tf_efficientnet_b3_ap,50.093,49.907,65.280,34.720,12.23,300,0.904,bicubic,-44.867,-33.830,+81 -deit_base_distilled_patch16_224,50.070,49.930,66.253,33.747,87.34,224,0.900,bicubic,-45.710,-33.027,+15 -resnest200e,49.817,50.183,64.777,35.223,70.20,320,0.909,bicubic,-46.263,-34.693,-10 -cait_xs24_384,49.510,50.490,64.843,35.157,26.67,384,1.000,bicubic,-46.500,-34.587,-4 -tf_efficientnet_b5,49.503,50.497,65.597,34.403,30.39,456,0.934,bicubic,-46.477,-33.853,-3 -xcit_small_12_p16_224_dist,49.443,50.557,63.893,36.107,26.25,224,1.000,bicubic,-46.307,-35.397,+13 -resnet200d,49.427,50.573,64.303,35.697,64.69,320,1.000,bicubic,-46.683,-35.157,-17 -vit_base_patch32_224,49.383,50.617,64.450,35.550,88.22,224,0.900,bicubic,-44.997,-34.610,+139 -resnest101e,49.377,50.623,65.527,34.473,48.28,256,0.875,bilinear,-46.203,-33.743,+22 -resnet152d,49.257,50.743,64.427,35.573,60.21,320,1.000,bicubic,-46.593,-35.003,+4 -seresnet152d,49.217,50.783,64.277,35.723,66.84,320,1.000,bicubic,-47.113,-35.233,-38 -resnetv2_152x2_bit_teacher,49.190,50.810,65.430,34.570,236.34,224,0.875,bicubic,-46.540,-34.000,+8 -ssl_resnext101_32x8d,49.153,50.847,65.503,34.497,88.79,224,0.875,bilinear,-46.167,-33.807,+41 -xcit_large_24_p8_224,49.143,50.857,62.727,37.273,188.93,224,1.000,bicubic,-46.917,-36.423,-18 -resmlp_big_24_distilled_224,49.047,50.953,65.463,34.537,129.14,224,0.875,bicubic,-46.823,-33.977,-3 -repvgg_b3,49.023,50.977,64.877,35.123,123.09,224,0.875,bilinear,-45.537,-34.033,+113 -resnetrs420,48.817,51.183,63.453,36.547,191.89,416,1.000,bicubic,-47.583,-36.087,-50 -efficientnetv2_rw_s,48.673,51.327,63.863,36.137,23.94,384,1.000,bicubic,-47.027,-35.517,+8 -regnetz_d,48.633,51.367,65.220,34.780,27.58,320,0.950,bicubic,-47.227,-34.220,-6 -efficientnet_b3,48.580,51.420,64.343,35.657,12.23,320,1.000,bicubic,-46.570,-34.867,+45 -ecaresnet101d,48.473,51.527,64.090,35.910,44.57,224,0.875,bicubic,-46.687,-35.140,+43 -vit_small_r26_s32_224,48.417,51.583,63.927,36.073,36.43,224,0.900,bicubic,-46.703,-35.293,+47 -vit_large_patch32_384,48.353,51.647,61.907,38.093,306.63,384,1.000,bicubic,-46.897,-37.413,+33 -repvgg_b3g4,48.270,51.730,64.820,35.180,83.83,224,0.875,bilinear,-46.220,-34.200,+113 -convit_base,48.243,51.757,63.003,36.997,86.54,224,0.875,bicubic,-46.857,-36.127,+48 -dm_nfnet_f2,48.203,51.797,63.200,36.800,193.78,352,0.920,bicubic,-48.247,-36.340,-61 -resnetrs350,47.963,52.037,62.577,37.423,163.96,384,1.000,bicubic,-48.277,-36.893,-43 -twins_svt_large,47.907,52.093,62.860,37.140,99.27,224,0.900,bicubic,-47.813,-36.510,-6 -mixer_b16_224_miil,47.827,52.173,63.363,36.637,59.88,224,0.875,bilinear,-47.063,-35.717,+64 -repvgg_b2g4,47.773,52.227,64.427,35.573,61.76,224,0.875,bilinear,-46.047,-34.493,+179 -resnetv2_50x3_bitm,47.757,52.243,65.667,34.333,217.32,448,1.000,bilinear,-48.533,-33.913,-54 -eca_nfnet_l1,47.610,52.390,62.650,37.350,41.41,320,1.000,bicubic,-48.310,-36.850,-25 -pit_s_distilled_224,47.603,52.397,63.543,36.457,24.04,224,0.900,bicubic,-47.147,-35.637,+70 -resnest50d_4s2x40d,47.503,52.497,63.863,36.137,30.42,224,0.875,bicubic,-47.207,-35.267,+72 -efficientnet_b3_pruned,47.467,52.533,62.850,37.150,9.86,300,0.904,bicubic,-47.113,-36.220,+90 -crossvit_18_dagger_408,47.353,52.647,60.900,39.100,44.61,408,1.000,bicubic,-48.757,-38.570,-47 -xcit_small_24_p8_224,47.340,52.660,61.097,38.903,47.63,224,1.000,bicubic,-48.570,-38.343,-29 -tresnet_m,47.297,52.703,62.087,37.913,31.39,224,0.875,bilinear,-48.103,-37.063,+10 -ssl_resnext101_32x4d,47.167,52.833,63.390,36.610,44.18,224,0.875,bilinear,-47.973,-35.920,+27 -tf_efficientnet_b6,47.150,52.850,63.057,36.943,43.04,528,0.942,bicubic,-49.130,-36.463,-61 -resnetrs270,47.147,52.853,62.057,37.943,129.86,352,1.000,bicubic,-48.923,-37.423,-46 -xcit_small_12_p8_224,47.057,52.943,60.570,39.430,26.21,224,1.000,bicubic,-48.363,-38.860,+3 -tf_efficientnet_b4,47.027,52.973,62.907,37.093,19.34,380,0.922,bicubic,-48.563,-36.413,-14 -resnet101d,46.907,53.093,62.357,37.643,44.57,320,1.000,bicubic,-48.843,-37.083,-26 -xcit_large_24_p16_224,46.877,53.123,60.770,39.230,189.10,224,1.000,bicubic,-48.073,-38.400,+38 -resnetrs200,46.867,53.133,62.480,37.520,93.21,320,1.000,bicubic,-49.133,-36.960,-45 -gluon_seresnext101_64x4d,46.677,53.323,61.363,38.637,88.23,224,0.875,bicubic,-47.983,-37.607,+68 -twins_pcpvt_large,46.557,53.443,62.170,37.830,60.99,224,0.900,bicubic,-49.163,-37.320,-27 -dm_nfnet_f1,46.457,53.543,61.450,38.550,132.63,320,0.910,bicubic,-49.913,-38.030,-81 -xcit_medium_24_p8_224,46.427,53.573,59.607,40.393,84.32,224,1.000,bicubic,-49.443,-39.483,-39 -crossvit_15_dagger_408,46.367,53.633,60.537,39.463,28.50,408,1.000,bicubic,-49.453,-38.763,-36 -tresnet_xl,46.277,53.723,61.907,38.093,78.44,224,0.875,bilinear,-48.803,-37.313,+22 -xcit_tiny_24_p8_224_dist,46.250,53.750,60.627,39.373,12.11,224,1.000,bicubic,-49.210,-38.723,-11 -xcit_tiny_24_p8_384_dist,46.233,53.767,60.660,39.340,12.11,384,1.000,bicubic,-50.017,-38.780,-71 -gernet_m,46.157,53.843,62.720,37.280,21.14,224,0.875,bilinear,-48.393,-36.200,+75 -deit_small_distilled_patch16_224,46.150,53.850,62.447,37.553,22.44,224,0.900,bicubic,-48.440,-36.673,+66 -resnest50d_1s4x24d,46.133,53.867,62.483,37.517,25.68,224,0.875,bicubic,-48.247,-36.577,+89 -regnety_160,46.123,53.877,61.803,38.197,83.59,288,1.000,bicubic,-49.777,-37.757,-48 -crossvit_base_240,46.087,53.913,60.247,39.753,105.03,240,0.875,bicubic,-48.973,-38.733,+18 -tf_efficientnet_b0_ns,46.047,53.953,63.280,36.720,5.29,224,0.875,bicubic,-47.713,-35.700,+158 -vit_small_patch16_224,46.027,53.973,61.850,38.150,22.05,224,0.900,bicubic,-48.873,-37.180,+30 -resnet51q,46.017,53.983,60.917,39.083,35.70,288,1.000,bilinear,-49.173,-38.363,-1 -jx_nest_base,45.973,54.027,60.113,39.887,67.72,224,0.875,bicubic,-49.557,-39.187,-28 -crossvit_18_240,45.923,54.077,60.380,39.620,43.27,240,0.875,bicubic,-49.127,-38.740,+14 -resnest50d,45.900,54.100,62.673,37.327,27.48,224,0.875,bilinear,-48.720,-36.357,+53 -twins_pcpvt_base,45.890,54.110,61.357,38.643,43.83,224,0.900,bicubic,-49.580,-38.023,-26 -regnety_032,45.887,54.113,61.520,38.480,19.44,288,1.000,bicubic,-49.583,-37.800,-28 -twins_svt_base,45.863,54.137,60.903,39.097,56.07,224,0.900,bicubic,-49.707,-38.327,-36 -crossvit_18_dagger_240,45.820,54.180,59.963,40.037,44.27,240,0.875,bicubic,-49.360,-39.157,-7 -levit_384,45.783,54.217,61.727,38.273,39.13,224,0.900,bicubic,-49.417,-37.433,-10 -gc_efficientnetv2_rw_t,45.703,54.297,60.197,39.803,13.68,288,1.000,bicubic,-49.577,-39.023,-16 -regnetz_c,45.667,54.333,62.437,37.563,13.46,320,0.940,bicubic,-49.743,-36.873,-26 -convmixer_1536_20,45.647,54.353,61.740,38.260,51.63,224,0.960,bicubic,-49.303,-37.090,+11 -efficientnetv2_rw_t,45.593,54.407,60.160,39.840,13.65,288,1.000,bicubic,-49.487,-39.090,+1 -crossvit_15_dagger_240,45.580,54.420,60.053,39.947,28.21,240,0.875,bicubic,-49.390,-39.097,+6 -xcit_tiny_24_p16_384_dist,45.563,54.437,60.473,39.527,12.12,384,1.000,bicubic,-49.897,-38.897,-35 -xcit_medium_24_p16_224,45.560,54.440,58.993,41.007,84.40,224,1.000,bicubic,-49.570,-39.937,-10 -dm_nfnet_f0,45.543,54.457,61.013,38.987,71.49,256,0.900,bicubic,-50.167,-38.387,-53 -gluon_seresnext101_32x4d,45.517,54.483,61.147,38.853,48.96,224,0.875,bicubic,-48.913,-37.963,+61 -xcit_small_24_p16_224,45.493,54.507,58.910,41.090,47.67,224,1.000,bicubic,-49.577,-40.150,-4 -gluon_resnet152_v1d,45.433,54.567,60.093,39.907,60.21,224,0.875,bicubic,-49.027,-38.907,+57 -xcit_small_12_p16_224,45.433,54.567,59.407,40.593,26.25,224,1.000,bicubic,-49.377,-39.653,+15 -nfnet_l0,45.367,54.633,62.073,37.927,35.07,288,1.000,bicubic,-50.053,-37.127,-39 -ssl_resnext50_32x4d,45.363,54.637,61.973,38.027,25.03,224,0.875,bilinear,-49.337,-36.997,+23 -resnetv2_50x1_bit_distilled,45.330,54.670,62.290,37.710,25.55,224,0.875,bicubic,-50.060,-37.140,-36 -jx_nest_small,45.317,54.683,59.017,40.983,38.35,224,0.875,bicubic,-50.223,-40.213,-52 -resnet61q,45.277,54.723,59.350,40.650,36.85,288,1.000,bicubic,-49.833,-39.730,-15 -convit_small,45.227,54.773,60.530,39.470,27.78,224,0.875,bicubic,-49.693,-38.590,0 -nasnetalarge,45.197,54.803,57.960,42.040,88.75,331,0.911,bicubic,-49.973,-41.170,-26 -tresnet_xl_448,45.163,54.837,61.440,38.560,78.44,448,0.875,bilinear,-50.357,-37.900,-53 -swin_small_patch4_window7_224,45.133,54.867,60.270,39.730,49.61,224,0.900,bicubic,-50.587,-39.020,-68 -tf_efficientnet_b3,45.100,54.900,60.677,39.323,12.23,300,0.904,bicubic,-49.810,-38.423,-2 -rexnet_200,45.067,54.933,62.223,37.777,16.37,224,0.875,bicubic,-49.603,-36.867,+20 -resnetrs152,44.990,55.010,59.683,40.317,86.62,320,1.000,bicubic,-50.970,-39.697,-90 -ecaresnetlight,44.907,55.093,60.763,39.237,30.16,224,0.875,bicubic,-49.233,-38.027,+78 -deit_base_patch16_224,44.893,55.107,59.203,40.797,86.57,224,0.900,bicubic,-50.127,-39.767,-17 -resnetv2_101,44.817,55.183,58.843,41.157,44.54,224,0.950,bicubic,-50.113,-40.267,-10 -resmlp_24_distilled_224,44.787,55.213,61.517,38.483,30.02,224,0.875,bicubic,-49.553,-37.573,+54 -cait_xxs36_384,44.750,55.250,59.410,40.590,17.37,384,1.000,bicubic,-50.490,-39.920,-42 -tf_efficientnet_b2_ap,44.743,55.257,60.693,39.307,9.11,260,0.890,bicubic,-49.537,-38.257,+58 -resmlp_36_distilled_224,44.720,55.280,61.110,38.890,44.69,224,0.875,bicubic,-49.830,-38.050,+31 -gernet_l,44.697,55.303,59.007,40.993,31.08,256,0.875,bilinear,-50.223,-40.193,-13 -xcit_tiny_24_p16_224_dist,44.690,55.310,59.397,40.603,12.12,224,1.000,bicubic,-49.530,-39.563,+60 -deit_base_patch16_384,44.660,55.340,59.570,40.430,86.86,384,1.000,bicubic,-51.000,-39.670,-77 -gmlp_s16_224,44.487,55.513,58.667,41.333,19.42,224,0.875,bicubic,-49.023,-40.113,+145 -ens_adv_inception_resnet_v2,44.407,55.593,58.153,41.847,55.84,299,0.897,bicubic,-49.733,-40.877,+68 -tresnet_l,44.360,55.640,59.953,40.047,55.99,224,0.875,bilinear,-50.540,-39.327,-15 -gluon_resnext101_32x4d,44.330,55.670,59.097,40.903,44.18,224,0.875,bicubic,-49.790,-39.843,+67 -cspresnext50,44.180,55.820,60.463,39.537,20.57,224,0.875,bilinear,-49.590,-38.377,+107 -wide_resnet50_2,44.157,55.843,59.657,40.343,68.88,224,0.875,bicubic,-50.493,-39.393,+6 -crossvit_15_240,44.140,55.860,59.153,40.847,27.53,240,0.875,bicubic,-50.540,-39.917,0 -resnetv2_101x1_bitm,44.113,55.887,62.063,37.937,44.54,448,1.000,bilinear,-51.217,-37.317,-59 -gluon_resnet152_v1s,44.090,55.910,58.743,41.257,60.32,224,0.875,bicubic,-50.600,-40.307,-4 -pit_b_224,44.080,55.920,57.990,42.010,73.76,224,0.900,bicubic,-50.710,-40.820,-15 -seresnext50_32x4d,44.077,55.923,59.413,40.587,27.56,224,0.875,bicubic,-50.723,-39.717,-17 -inception_resnet_v2,44.057,55.943,57.930,42.070,55.84,299,0.897,bicubic,-50.263,-40.870,+38 -pnasnet5large,43.993,56.007,56.770,43.230,86.06,331,0.911,bicubic,-51.377,-42.360,-66 -ssl_resnet50,43.903,56.097,61.940,38.060,25.56,224,0.875,bilinear,-50.417,-37.220,+37 -gluon_resnext101_64x4d,43.900,56.100,58.703,41.297,83.46,224,0.875,bicubic,-50.430,-40.177,+34 -pit_s_224,43.893,56.107,58.663,41.337,23.46,224,0.900,bicubic,-50.697,-40.427,+3 -tf_efficientnetv2_s,43.853,56.147,58.710,41.290,21.46,384,1.000,bicubic,-51.857,-40.620,-97 -cait_xxs36_224,43.823,56.177,58.773,41.227,17.30,224,1.000,bicubic,-50.117,-40.107,+70 -ecaresnet101d_pruned,43.787,56.213,59.647,40.353,24.88,224,0.875,bicubic,-50.653,-39.453,+16 -coat_lite_small,43.780,56.220,56.930,43.070,19.84,224,0.900,bicubic,-51.330,-42.100,-54 -tnt_s_patch16_224,43.767,56.233,59.223,40.777,23.76,224,0.900,bicubic,-50.803,-39.957,+1 -ecaresnet50d,43.703,56.297,60.380,39.620,25.58,224,0.875,bicubic,-50.507,-38.630,+38 -pit_xs_distilled_224,43.683,56.317,60.680,39.320,11.00,224,0.900,bicubic,-49.547,-38.140,+149 -xcit_tiny_12_p8_224_dist,43.597,56.403,58.480,41.520,6.71,224,1.000,bicubic,-51.143,-40.700,-24 -rexnet_150,43.587,56.413,60.837,39.163,9.73,224,0.875,bicubic,-50.683,-38.253,+30 -crossvit_small_240,43.510,56.490,58.980,41.020,26.86,240,0.875,bicubic,-51.080,-39.950,-6 -ecaresnet50t,43.420,56.580,59.327,40.673,25.57,320,0.950,bicubic,-51.690,-39.963,-60 -gluon_resnet101_v1d,43.420,56.580,58.560,41.440,44.57,224,0.875,bicubic,-50.760,-40.390,+36 -gluon_resnet101_v1s,43.410,56.590,58.703,41.297,44.67,224,0.875,bicubic,-50.770,-40.317,+34 -cspdarknet53,43.330,56.670,59.487,40.513,27.64,256,0.887,bilinear,-50.770,-39.493,+43 -eca_nfnet_l0,43.297,56.703,59.910,40.090,24.14,288,1.000,bicubic,-52.153,-39.480,-92 -convmixer_768_32,43.263,56.737,59.270,40.730,21.11,224,0.960,bicubic,-51.167,-39.820,+5 -xcit_tiny_24_p8_224,43.263,56.737,57.297,42.703,12.11,224,1.000,bicubic,-51.607,-41.893,-42 -dpn68b,43.257,56.743,58.610,41.390,12.61,224,0.875,bicubic,-50.343,-40.100,+101 -xcit_tiny_12_p8_384_dist,43.253,56.747,58.160,41.840,6.71,384,1.000,bicubic,-52.087,-41.180,-87 -visformer_small,43.187,56.813,57.970,42.030,40.22,224,0.900,bicubic,-51.783,-41.240,-60 -vit_small_patch32_384,43.137,56.863,59.273,40.727,22.92,384,1.000,bicubic,-51.433,-39.867,-14 -cspresnet50,43.130,56.870,59.230,40.770,21.62,256,0.887,bilinear,-50.720,-39.700,+61 -resnest26d,43.107,56.893,60.597,39.403,17.07,224,0.875,bilinear,-50.153,-38.243,+130 -twins_pcpvt_small,43.080,56.920,58.913,41.087,24.11,224,0.900,bicubic,-51.520,-40.227,-23 -dpn131,43.003,56.997,57.420,42.580,79.25,224,0.875,bicubic,-50.757,-41.430,+72 -resmlp_36_224,43.003,56.997,59.417,40.583,44.69,224,0.875,bicubic,-50.667,-39.533,+83 -gluon_resnet152_v1b,42.987,57.013,57.727,42.273,60.19,224,0.875,bicubic,-51.033,-41.023,+39 -dpn107,42.883,57.117,57.533,42.467,86.92,224,0.875,bicubic,-51.077,-41.307,+41 -tf_efficientnet_lite4,42.860,57.140,57.723,42.277,13.01,380,0.920,bilinear,-52.010,-41.367,-53 -gcresnet50t,42.840,57.160,59.237,40.763,25.90,256,0.900,bicubic,-51.770,-39.753,-31 -gluon_resnet152_v1c,42.830,57.170,57.807,42.193,60.21,224,0.875,bicubic,-51.050,-40.993,+49 -twins_svt_small,42.830,57.170,58.473,41.527,24.06,224,0.900,bicubic,-51.940,-40.607,-52 -tf_efficientnet_b1_ap,42.823,57.177,58.853,41.147,7.79,240,0.882,bicubic,-50.817,-39.927,+81 -levit_256,42.807,57.193,57.913,42.087,18.89,224,0.900,bicubic,-51.603,-41.147,-10 -tresnet_l_448,42.780,57.220,58.937,41.063,55.99,448,0.875,bilinear,-52.610,-40.343,-105 -gluon_xception65,42.730,57.270,58.867,41.133,39.92,299,0.903,bicubic,-51.310,-40.163,+27 -resnet50d,42.703,57.297,58.770,41.230,25.58,224,0.875,bicubic,-51.367,-40.150,+22 -gluon_seresnext50_32x4d,42.693,57.307,58.713,41.287,27.56,224,0.875,bicubic,-51.487,-40.197,+12 -resnext101_32x8d,42.577,57.423,58.337,41.663,88.79,224,0.875,bilinear,-51.193,-40.613,+55 -xcit_tiny_12_p16_384_dist,42.563,57.437,58.057,41.943,6.72,384,1.000,bicubic,-51.977,-41.113,-27 -seresnet50,42.507,57.493,58.760,41.240,28.09,224,0.875,bicubic,-51.573,-40.190,+17 -nf_resnet50,42.490,57.510,59.593,40.407,25.56,288,0.940,bicubic,-51.890,-39.477,-17 -resnetrs101,42.447,57.553,57.300,42.700,63.62,288,0.940,bicubic,-52.783,-41.910,-105 -tf_efficientnetv2_b3,42.317,57.683,58.000,42.000,14.36,300,0.904,bicubic,-52.803,-41.190,-96 -jx_nest_tiny,42.313,57.687,57.023,42.977,17.06,224,0.875,bicubic,-52.627,-42.077,-79 -legacy_senet154,42.283,57.717,56.573,43.427,115.09,224,0.875,bilinear,-52.447,-42.527,-61 -dpn98,42.277,57.723,56.927,43.073,61.57,224,0.875,bicubic,-51.653,-41.993,+27 -tf_efficientnet_cc_b1_8e,42.273,57.727,58.527,41.473,39.72,240,0.882,bicubic,-51.307,-40.163,+75 -xcit_tiny_24_p16_224,42.273,57.727,56.780,43.220,12.12,224,1.000,bicubic,-51.577,-42.040,+35 -convmixer_1024_20_ks9_p14,42.270,57.730,59.693,40.307,24.38,224,0.960,bicubic,-50.080,-38.727,+169 -deit_small_patch16_224,42.257,57.743,58.027,41.973,22.05,224,0.900,bicubic,-51.733,-40.933,+17 -tf_efficientnet_b2,42.197,57.803,58.203,41.797,9.11,260,0.890,bicubic,-52.003,-40.827,-6 -cait_xxs24_384,42.177,57.823,57.513,42.487,12.03,384,1.000,bicubic,-52.763,-41.617,-88 -gluon_resnext50_32x4d,42.100,57.900,57.690,42.310,25.03,224,0.875,bicubic,-51.570,-41.010,+56 -ecaresnet50d_pruned,41.993,58.007,58.323,41.677,19.94,224,0.875,bicubic,-51.827,-40.677,+33 -efficientnet_b2,41.937,58.063,58.300,41.700,9.11,288,1.000,bicubic,-52.433,-40.750,-28 -xcit_tiny_12_p16_224_dist,41.883,58.117,57.213,42.787,6.72,224,1.000,bicubic,-51.457,-41.537,+91 -gluon_senet154,41.700,58.300,56.480,43.520,115.09,224,0.875,bicubic,-53.000,-42.760,-70 -dla102x2,41.677,58.323,58.033,41.967,41.28,224,0.875,bilinear,-52.333,-40.997,+8 -inception_v4,41.647,58.353,55.367,44.633,42.68,299,0.875,bicubic,-52.723,-43.453,-31 -hrnet_w64,41.617,58.383,57.173,42.827,128.06,224,0.875,bilinear,-52.233,-41.597,+24 -haloregnetz_b,41.590,58.410,57.073,42.927,11.68,224,0.940,bicubic,-52.910,-41.887,-46 -tf_efficientnet_cc_b0_8e,41.533,58.467,57.393,42.607,24.01,224,0.875,bicubic,-51.317,-41.067,+122 -efficientnet_el,41.503,58.497,58.317,41.683,10.59,300,0.904,bicubic,-53.167,-40.813,-72 -efficientnet_em,41.477,58.523,58.873,41.127,6.90,240,0.882,bicubic,-52.273,-40.047,+34 -resnetv2_50,41.447,58.553,56.750,43.250,25.55,224,0.950,bicubic,-52.843,-42.450,-30 -swin_tiny_patch4_window7_224,41.403,58.597,57.333,42.667,28.29,224,0.900,bicubic,-53.237,-41.787,-70 -cait_xxs24_224,41.387,58.613,57.523,42.477,11.96,224,1.000,bicubic,-52.103,-41.247,+64 -resnext50_32x4d,41.373,58.627,56.940,43.060,25.03,224,0.875,bicubic,-52.477,-41.960,+13 -tv_resnet152,41.320,58.680,57.587,42.413,60.19,224,0.875,bilinear,-51.940,-41.163,+84 -gernet_s,41.317,58.683,58.880,41.120,8.17,224,0.875,bilinear,-51.123,-39.610,+142 -xception71,41.300,58.700,55.940,44.060,42.34,299,0.903,bicubic,-52.600,-43.010,+3 -gcresnext50ts,41.270,58.730,57.090,42.910,15.67,256,0.900,bicubic,-53.140,-41.900,-50 -dpn92,41.263,58.737,56.313,43.687,37.67,224,0.875,bicubic,-52.917,-42.617,-25 -adv_inception_v3,41.220,58.780,56.357,43.643,23.83,299,0.875,bicubic,-51.770,-42.123,+97 -resnetblur50,41.073,58.927,57.080,42.920,25.56,224,0.875,bicubic,-52.637,-41.720,+28 -nf_regnet_b1,41.053,58.947,58.157,41.843,10.22,288,0.900,bicubic,-52.837,-40.593,+2 -gluon_resnet50_v1d,41.017,58.983,57.147,42.853,25.58,224,0.875,bicubic,-52.533,-41.563,+49 -ese_vovnet39b,40.883,59.117,57.023,42.977,24.57,224,0.875,bicubic,-52.967,-41.847,+7 -gluon_inception_v3,40.880,59.120,55.670,44.330,23.83,299,0.875,bicubic,-52.710,-43.170,+41 -resnet34d,40.853,59.147,56.527,43.473,21.82,224,0.875,bicubic,-51.787,-41.913,+119 -regnety_320,40.837,59.163,56.173,43.827,145.05,224,0.875,bicubic,-53.663,-42.997,-67 -levit_192,40.800,59.200,56.663,43.337,10.95,224,0.900,bicubic,-52.910,-42.127,+20 -xception,40.793,59.207,56.507,43.493,22.86,299,0.897,bicubic,-52.857,-42.263,+28 -gluon_resnet101_v1b,40.703,59.297,56.193,43.807,44.55,224,0.875,bicubic,-53.067,-42.527,+10 -skresnext50_32x4d,40.690,59.310,56.017,43.983,27.48,224,0.875,bicubic,-53.260,-42.453,-15 -repvgg_b1,40.683,59.317,57.830,42.170,57.42,224,0.875,bilinear,-52.727,-40.950,+57 -hrnet_w40,40.660,59.340,56.860,43.140,57.56,224,0.875,bilinear,-53.050,-41.940,+14 -resmlp_24_224,40.660,59.340,56.597,43.403,30.02,224,0.875,bicubic,-52.770,-42.213,+51 -tf_efficientnet_lite3,40.613,59.387,56.573,43.427,8.20,300,0.904,bilinear,-53.497,-42.387,-34 -regnetx_320,40.533,59.467,55.667,44.333,107.81,224,0.875,bicubic,-53.677,-43.383,-46 -xcit_tiny_12_p8_224,40.533,59.467,55.583,44.417,6.71,224,1.000,bicubic,-53.837,-43.487,-62 -repvgg_b2,40.523,59.477,57.790,42.210,89.02,224,0.875,bilinear,-53.047,-41.280,+31 -tresnet_m_448,40.520,59.480,56.673,43.327,31.39,448,0.875,bilinear,-54.150,-42.497,-100 -pit_xs_224,40.513,59.487,56.543,43.457,10.62,224,0.900,bicubic,-52.387,-42.247,+85 -dla169,40.507,59.493,57.320,42.680,53.39,224,0.875,bilinear,-53.273,-41.510,-3 -wide_resnet101_2,40.477,59.523,55.863,44.137,126.89,224,0.875,bilinear,-53.243,-42.947,+4 -efficientnet_b2_pruned,40.457,59.543,56.603,43.397,8.31,260,0.890,bicubic,-53.343,-42.307,-7 -resnet50,40.397,59.603,54.667,45.333,25.56,224,0.950,bicubic,-53.553,-44.163,-29 -skresnet34,40.373,59.627,56.793,43.207,22.28,224,0.875,bicubic,-52.187,-41.717,+107 -tf_efficientnet_b0_ap,40.357,59.643,56.823,43.177,5.29,224,0.875,bicubic,-52.243,-41.547,+101 -regnetx_160,40.350,59.650,56.090,43.910,54.28,224,0.875,bicubic,-53.550,-42.990,-25 -legacy_seresnext101_32x4d,40.323,59.677,54.843,45.157,48.96,224,0.875,bilinear,-53.847,-44.127,-52 -xception65,40.320,59.680,55.263,44.737,39.92,299,0.903,bicubic,-53.420,-43.607,-4 -coat_mini,40.310,59.690,55.153,44.847,10.34,224,0.900,bicubic,-54.450,-43.797,-124 -densenet201,40.297,59.703,56.770,43.230,20.01,224,0.875,bicubic,-52.393,-41.890,+89 -efficientnet_el_pruned,40.293,59.707,56.750,43.250,10.59,300,0.904,bicubic,-53.767,-42.270,-45 -coat_lite_mini,40.280,59.720,55.670,44.330,11.01,224,0.900,bicubic,-53.210,-43.110,+25 -eca_resnet33ts,40.193,59.807,56.963,43.037,19.68,256,0.900,bicubic,-53.677,-41.927,-28 -hrnet_w48,40.160,59.840,56.597,43.403,77.47,224,0.875,bilinear,-53.870,-42.433,-45 -resnext50d_32x4d,40.150,59.850,55.593,44.407,25.05,224,0.875,bicubic,-53.650,-43.137,-21 -vit_base_patch16_sam_224,40.133,59.867,55.530,44.470,86.57,224,0.900,bicubic,-53.757,-43.360,-34 -halonet50ts,40.113,59.887,54.453,45.547,22.73,256,0.940,bicubic,-54.307,-44.307,-91 -legacy_seresnet152,40.053,59.947,55.887,44.113,66.82,224,0.875,bilinear,-53.407,-42.963,+22 -tf_efficientnet_b1,40.043,59.957,56.213,43.787,7.79,240,0.882,bicubic,-53.667,-42.587,-10 -hrnet_w30,40.013,59.987,57.123,42.877,37.71,224,0.875,bilinear,-53.397,-41.707,+26 -regnetz_b,39.990,60.010,55.657,44.343,9.72,288,0.940,bicubic,-54.700,-43.503,-127 -regnetx_080,39.967,60.033,56.057,43.943,39.57,224,0.875,bicubic,-53.823,-42.843,-26 -gluon_resnet101_v1c,39.953,60.047,55.253,44.747,44.57,224,0.875,bicubic,-53.707,-43.507,-8 -resmlp_12_distilled_224,39.880,60.120,57.473,42.527,15.35,224,0.875,bicubic,-52.990,-41.157,+64 -seresnet33ts,39.813,60.187,56.503,43.497,19.78,256,0.900,bicubic,-54.447,-42.277,-80 -tf_efficientnetv2_b0,39.800,60.200,56.297,43.703,7.14,224,0.875,bicubic,-53.260,-42.403,+42 -res2net50_26w_8s,39.747,60.253,54.947,45.053,48.40,224,0.875,bilinear,-53.683,-43.723,+16 -vit_small_patch32_224,39.747,60.253,55.283,44.717,22.88,224,0.900,bicubic,-52.403,-43.227,+105 -lambda_resnet50ts,39.723,60.277,54.367,45.633,21.54,256,0.950,bicubic,-54.837,-44.283,-117 -res2net101_26w_4s,39.723,60.277,54.613,45.387,45.21,224,0.875,bilinear,-53.797,-44.017,+2 -regnetx_120,39.707,60.293,55.693,44.307,46.11,224,0.875,bicubic,-54.583,-43.237,-90 -hrnet_w44,39.660,60.340,55.313,44.687,67.06,224,0.875,bilinear,-53.960,-43.637,-13 -xception41,39.660,60.340,54.977,45.023,26.97,299,0.903,bicubic,-53.820,-43.863,+6 -sehalonet33ts,39.640,60.360,53.967,46.033,13.69,256,0.940,bicubic,-54.890,-44.813,-116 -resmlp_big_24_224,39.610,60.390,54.767,45.233,129.14,224,0.875,bicubic,-54.660,-44.053,-91 -tf_efficientnetv2_b1,39.607,60.393,55.490,44.510,8.14,240,0.882,bicubic,-54.093,-43.320,-26 -dla102x,39.593,60.407,56.337,43.663,26.31,224,0.875,bilinear,-53.917,-42.513,-4 -densenet161,39.590,60.410,56.180,43.820,28.68,224,0.875,bicubic,-53.290,-42.480,+49 -mixnet_xl,39.553,60.447,55.827,44.173,11.90,224,0.875,bicubic,-54.667,-42.983,-93 -hrnet_w32,39.523,60.477,56.267,43.733,41.23,224,0.875,bilinear,-53.427,-42.573,+40 -lamhalobotnet50ts_256,39.517,60.483,53.860,46.140,22.57,256,0.950,bicubic,-55.093,-44.750,-137 -gcresnet33ts,39.507,60.493,55.863,44.137,19.88,256,0.900,bicubic,-54.313,-43.067,-51 -xcit_tiny_12_p16_224,39.477,60.523,55.023,44.977,6.72,224,1.000,bicubic,-52.983,-43.607,+73 -rexnet_130,39.477,60.523,56.633,43.367,7.56,224,0.875,bicubic,-54.213,-42.087,-33 -levit_128,39.453,60.547,55.460,44.540,9.21,224,0.900,bicubic,-53.587,-43.360,+25 -resnetv2_50x1_bitm,39.407,60.593,57.873,42.127,25.55,448,1.000,bilinear,-55.353,-41.307,-160 -regnety_064,39.390,60.610,55.817,44.183,30.58,224,0.875,bicubic,-54.750,-43.133,-91 -regnety_120,39.377,60.623,55.347,44.653,51.82,224,0.875,bicubic,-54.683,-43.673,-84 -tf_efficientnet_el,39.353,60.647,55.443,44.557,10.59,300,0.904,bicubic,-54.997,-43.647,-114 -tf_inception_v3,39.353,60.647,54.373,45.627,23.83,299,0.875,bicubic,-53.857,-44.117,+11 -halo2botnet50ts_256,39.313,60.687,53.643,46.357,22.64,256,0.950,bicubic,-55.237,-45.117,-136 -densenetblur121d,39.310,60.690,56.650,43.350,8.00,224,0.875,bicubic,-53.090,-41.820,+70 -gluon_resnet50_v1s,39.283,60.717,55.100,44.900,25.68,224,0.875,bicubic,-54.307,-43.730,-29 -tv_resnet101,39.273,60.727,55.833,44.167,44.55,224,0.875,bilinear,-53.607,-42.977,+32 -tf_efficientnetv2_b2,39.190,60.810,54.620,45.380,10.10,260,0.890,bicubic,-54.870,-44.320,-90 -densenet169,39.177,60.823,55.850,44.150,14.15,224,0.875,bicubic,-53.113,-42.740,+70 -legacy_seresnet101,39.123,60.877,55.100,44.900,49.33,224,0.875,bilinear,-54.167,-43.650,-3 -repvgg_b1g4,39.000,61.000,56.433,43.567,39.97,224,0.875,bilinear,-54.040,-42.257,+13 -regnety_080,38.973,61.027,55.193,44.807,39.18,224,0.875,bicubic,-54.927,-43.797,-79 -dpn68,38.967,61.033,54.977,45.023,12.61,224,0.875,bicubic,-53.293,-43.623,+68 -efficientnet_b1_pruned,38.967,61.033,55.607,44.393,6.33,240,0.882,bicubic,-53.993,-42.913,+18 -inception_v3,38.953,61.047,53.850,46.150,23.83,299,0.875,bicubic,-53.947,-44.470,+23 -crossvit_9_dagger_240,38.947,61.053,54.913,45.087,8.78,240,0.875,bicubic,-53.803,-43.597,+34 -legacy_seresnext50_32x4d,38.897,61.103,54.637,45.363,27.56,224,0.875,bilinear,-54.513,-44.163,-17 -resnet33ts,38.890,61.110,55.550,44.450,19.68,256,0.900,bicubic,-54.730,-43.220,-45 -dla102,38.883,61.117,55.333,44.667,33.27,224,0.875,bilinear,-54.407,-43.377,-13 -regnety_040,38.833,61.167,55.600,44.400,20.65,224,0.875,bicubic,-54.777,-43.040,-45 -regnetx_040,38.803,61.197,55.493,44.507,22.12,224,0.875,bicubic,-54.867,-43.457,-56 -resnet32ts,38.767,61.233,55.847,44.153,17.96,256,0.900,bicubic,-54.803,-42.903,-40 -regnetx_032,38.760,61.240,55.160,44.840,15.30,224,0.875,bicubic,-54.510,-43.580,-14 -densenet121,38.753,61.247,56.250,43.750,7.98,224,0.875,bicubic,-53.187,-42.030,+70 -res2net50_14w_8s,38.720,61.280,54.197,45.803,25.06,224,0.875,bilinear,-54.300,-44.503,+2 -dla60_res2net,38.687,61.313,54.613,45.387,20.85,224,0.875,bilinear,-54.693,-44.217,-23 -res2net50_26w_6s,38.660,61.340,53.810,46.190,37.05,224,0.875,bilinear,-54.920,-44.930,-48 -selecsls60,38.623,61.377,55.693,44.307,30.67,224,0.875,bicubic,-54.377,-43.137,0 -dla60x,38.617,61.383,55.500,44.500,17.35,224,0.875,bilinear,-54.593,-43.220,-14 -selecsls60b,38.573,61.427,55.327,44.673,32.77,224,0.875,bicubic,-54.907,-43.433,-39 -tf_efficientnet_b0,38.550,61.450,56.083,43.917,5.29,224,0.875,bicubic,-53.850,-42.337,+43 -dla60_res2next,38.530,61.470,55.003,44.997,17.03,224,0.875,bilinear,-55.030,-43.797,-49 -repvgg_a2,38.507,61.493,55.827,44.173,28.21,224,0.875,bilinear,-54.153,-42.703,+23 -hardcorenas_f,38.507,61.493,55.743,44.257,8.20,224,0.875,bilinear,-54.473,-42.877,-4 -regnetx_064,38.493,61.507,55.027,44.973,26.21,224,0.875,bicubic,-55.157,-44.023,-65 -gluon_resnet50_v1b,38.457,61.543,54.897,45.103,25.56,224,0.875,bicubic,-54.093,-43.653,+29 -resmlp_12_224,38.453,61.547,56.387,43.613,15.35,224,0.875,bicubic,-53.677,-42.183,+50 -tf_efficientnet_cc_b0_4e,38.427,61.573,55.200,44.800,13.31,224,0.875,bicubic,-54.413,-43.240,+6 -hrnet_w18,38.380,61.620,55.750,44.250,21.30,224,0.875,bilinear,-54.370,-42.900,+10 -mixnet_l,38.233,61.767,54.857,45.143,7.33,224,0.875,bicubic,-55.057,-43.923,-32 -hardcorenas_e,38.130,61.870,55.193,44.807,8.07,224,0.875,bilinear,-54.830,-43.377,-10 -efficientnet_b1,38.107,61.893,54.090,45.910,7.79,256,1.000,bicubic,-54.913,-44.620,-16 -coat_lite_tiny,38.080,61.920,53.467,46.533,5.72,224,0.900,bicubic,-54.750,-45.173,+2 -eca_halonext26ts,38.067,61.933,54.167,45.833,10.76,256,0.940,bicubic,-55.073,-44.523,-26 -gmixer_24_224,37.977,62.023,52.117,47.883,24.72,224,0.875,bicubic,-54.693,-46.143,+9 -resnetrs50,37.907,62.093,53.320,46.680,35.69,224,0.910,bicubic,-56.123,-45.510,-125 -hardcorenas_c,37.887,62.113,55.720,44.280,5.52,224,0.875,bilinear,-54.443,-42.620,+30 -gluon_resnet50_v1c,37.867,62.133,54.150,45.850,25.58,224,0.875,bicubic,-55.053,-44.560,-13 -efficientnet_es,37.837,62.163,54.987,45.013,5.44,224,0.875,bicubic,-55.103,-43.703,-15 -res2net50_26w_4s,37.820,62.180,53.113,46.887,25.70,224,0.875,bilinear,-55.360,-45.557,-33 -resnest14d,37.790,62.210,56.570,43.430,10.61,224,0.875,bilinear,-53.360,-41.780,+70 -tv_resnext50_32x4d,37.783,62.217,54.153,45.847,25.03,224,0.875,bilinear,-55.127,-44.577,-16 -resnet26t,37.753,62.247,55.300,44.700,16.01,256,0.940,bicubic,-54.927,-43.300,0 -ecaresnet26t,37.597,62.403,54.353,45.647,16.01,320,0.950,bicubic,-56.333,-44.577,-124 -hardcorenas_d,37.550,62.450,54.723,45.277,7.50,224,0.875,bilinear,-55.050,-43.707,+5 -res2next50,37.537,62.463,52.883,47.117,24.67,224,0.875,bilinear,-55.573,-45.777,-37 -resnet34,37.497,62.503,54.327,45.673,21.80,224,0.875,bilinear,-53.693,-43.903,+61 -lambda_resnet26t,37.370,62.630,53.550,46.450,10.96,256,0.940,bicubic,-56.030,-45.210,-56 -pit_ti_distilled_224,37.320,62.680,55.183,44.817,5.10,224,0.900,bicubic,-53.580,-43.047,+70 -hardcorenas_b,37.280,62.720,55.040,44.960,5.18,224,0.875,bilinear,-54.690,-43.360,+33 -mobilenetv3_large_100_miil,37.247,62.753,53.560,46.440,5.48,224,0.875,bilinear,-55.003,-44.690,+22 -regnety_016,37.143,62.857,54.147,45.853,11.20,224,0.875,bicubic,-55.887,-44.543,-37 -res2net50_48w_2s,37.143,62.857,53.410,46.590,25.29,224,0.875,bilinear,-55.657,-45.060,-17 -lambda_resnet26rpt_256,37.113,62.887,53.843,46.157,10.99,256,0.940,bicubic,-56.327,-45.037,-70 -dla60,37.110,62.890,54.297,45.703,22.04,224,0.875,bilinear,-55.580,-44.333,-14 -bat_resnext26ts,37.090,62.910,53.750,46.250,10.73,256,0.900,bicubic,-56.010,-44.970,-46 -rexnet_100,37.060,62.940,54.070,45.930,4.80,224,0.875,bicubic,-55.780,-44.550,-24 -tf_mixnet_l,37.040,62.960,52.710,47.290,7.33,224,0.875,bicubic,-56.010,-45.830,-46 -botnet26t_256,36.963,63.037,53.070,46.930,12.49,256,0.950,bicubic,-56.477,-45.590,-74 -legacy_seresnet50,36.933,63.067,53.517,46.483,28.09,224,0.875,bilinear,-55.737,-45.143,-15 -tf_efficientnet_lite2,36.890,63.110,53.367,46.633,6.09,260,0.890,bicubic,-55.680,-45.183,-9 -halonet26t,36.783,63.217,52.267,47.733,12.48,256,0.950,bicubic,-56.827,-46.693,-98 -regnetx_016,36.767,63.233,53.293,46.707,9.19,224,0.875,bicubic,-55.793,-45.257,-10 -tv_densenet121,36.747,63.253,54.000,46.000,7.98,224,0.875,bicubic,-54.653,-44.250,+37 -mobilenetv2_120d,36.717,63.283,53.967,46.033,5.83,224,0.875,bicubic,-55.893,-44.543,-17 -hardcorenas_a,36.707,63.293,54.923,45.077,5.26,224,0.875,bilinear,-54.903,-43.247,+27 -eca_botnext26ts_256,36.673,63.327,52.493,47.507,10.59,256,0.950,bicubic,-56.687,-46.197,-73 -tf_efficientnet_lite1,36.667,63.333,53.687,46.313,5.42,240,0.882,bicubic,-55.653,-44.803,0 -efficientnet_b0,36.603,63.397,53.490,46.510,5.29,224,0.875,bicubic,-55.867,-45.190,-11 -vit_base_patch32_sam_224,36.593,63.407,53.087,46.913,88.22,224,0.900,bicubic,-53.277,-44.513,+65 -levit_128s,36.593,63.407,53.083,46.917,7.78,224,0.900,bicubic,-54.907,-45.317,+25 -xcit_nano_12_p8_224_dist,36.503,63.497,52.780,47.220,3.05,224,1.000,bicubic,-55.907,-45.730,-9 -tf_efficientnet_em,36.450,63.550,52.860,47.140,6.90,240,0.882,bicubic,-56.750,-45.820,-67 -skresnet18,36.343,63.657,54.267,45.733,11.96,224,0.875,bicubic,-53.827,-43.513,+58 -repvgg_b0,36.317,63.683,54.113,45.887,15.82,224,0.875,bilinear,-55.353,-44.337,+16 -xcit_nano_12_p16_384_dist,36.153,63.847,53.217,46.783,3.05,384,1.000,bicubic,-55.947,-45.213,+3 -legacy_seresnet34,36.147,63.853,52.547,47.453,21.96,224,0.875,bilinear,-55.333,-45.653,+20 -tv_resnet50,36.143,63.857,52.873,47.127,25.56,224,0.875,bilinear,-55.967,-45.547,0 -coat_tiny,36.100,63.900,51.073,48.927,5.50,224,0.900,bicubic,-57.400,-47.607,-101 -deit_tiny_distilled_patch16_224,36.093,63.907,54.273,45.727,5.91,224,0.900,bicubic,-54.997,-43.997,+36 -tv_resnet34,36.057,63.943,53.530,46.470,21.80,224,0.875,bilinear,-54.253,-44.440,+49 -tf_efficientnet_lite0,36.020,63.980,53.520,46.480,4.65,224,0.875,bicubic,-55.260,-44.570,+21 -mobilenetv2_140,35.980,64.020,53.920,46.080,6.11,224,0.875,bicubic,-56.050,-44.330,-2 -selecsls42b,35.830,64.170,52.537,47.463,32.46,224,0.875,bicubic,-56.650,-45.903,-28 -seresnext26ts,35.807,64.193,53.990,46.010,10.39,256,0.900,bicubic,-56.983,-44.610,-48 -gluon_resnet34_v1b,35.750,64.250,52.290,47.710,21.80,224,0.875,bicubic,-55.340,-45.890,+29 -xcit_nano_12_p8_384_dist,35.730,64.270,52.297,47.703,3.05,384,1.000,bicubic,-57.520,-46.553,-85 -mixnet_m,35.677,64.323,52.447,47.553,5.01,224,0.875,bicubic,-56.583,-45.923,-18 -efficientnet_lite0,35.653,64.347,53.693,46.307,4.65,224,0.875,bicubic,-55.597,-44.557,+17 -dla34,35.647,64.353,52.817,47.183,15.74,224,0.875,bilinear,-55.603,-45.363,+15 -ssl_resnet18,35.630,64.370,53.813,46.187,11.69,224,0.875,bilinear,-55.070,-44.217,+31 -mobilenetv3_rw,35.620,64.380,53.740,46.260,5.48,224,0.875,bicubic,-55.930,-44.530,+3 -efficientnet_es_pruned,35.373,64.627,52.853,47.147,5.44,224,0.875,bicubic,-56.337,-45.547,-4 -mobilenetv2_110d,35.277,64.723,52.823,47.177,4.52,224,0.875,bicubic,-56.043,-45.357,+8 -hrnet_w18_small_v2,35.227,64.773,52.500,47.500,15.60,224,0.875,bilinear,-55.943,-45.850,+15 -tf_mixnet_m,35.217,64.783,50.977,49.023,5.01,224,0.875,bicubic,-56.953,-47.443,-21 -resnet18d,35.120,64.880,52.883,47.117,11.71,224,0.875,bicubic,-54.870,-44.957,+36 -convit_tiny,35.103,64.897,51.850,48.150,5.71,224,0.875,bicubic,-55.447,-46.360,+26 -xcit_nano_12_p16_224_dist,35.103,64.897,52.500,47.500,3.05,224,1.000,bicubic,-55.087,-45.260,+32 -resnext26ts,35.097,64.903,53.447,46.553,10.30,256,0.900,bicubic,-57.113,-44.833,-26 -gcresnext26ts,34.973,65.027,51.613,48.387,10.48,256,0.900,bicubic,-57.497,-46.887,-44 -eca_resnext26ts,34.970,65.030,52.323,47.677,10.30,256,0.900,bicubic,-57.450,-46.287,-40 -regnety_008,34.883,65.117,51.863,48.137,6.26,224,0.875,bicubic,-57.007,-46.557,-17 -ese_vovnet19b_dw,34.830,65.170,51.997,48.003,6.54,224,0.875,bicubic,-57.190,-46.523,-22 -crossvit_9_240,34.680,65.320,51.793,48.207,8.55,240,0.875,bicubic,-56.390,-46.517,+12 -pit_ti_224,34.637,65.363,52.127,47.873,4.85,224,0.900,bicubic,-55.803,-45.713,+22 -mobilenetv3_large_100,34.570,65.430,52.917,47.083,5.48,224,0.875,bicubic,-56.910,-45.413,-9 -seresnext26t_32x4d,34.560,65.440,51.480,48.520,16.81,224,0.875,bicubic,-58.210,-47.070,-70 -seresnext26d_32x4d,34.527,65.473,51.570,48.430,16.81,224,0.875,bicubic,-57.903,-46.970,-48 -resnet26d,34.333,65.667,51.857,48.143,16.01,224,0.875,bicubic,-57.917,-46.613,-38 -mixer_b16_224,34.327,65.673,48.050,51.950,59.88,224,0.875,bicubic,-56.803,-49.360,+1 -fbnetc_100,34.320,65.680,51.240,48.760,5.57,224,0.875,bilinear,-56.940,-46.580,-8 -tf_efficientnet_es,34.273,65.727,51.467,48.533,5.44,224,0.875,bicubic,-57.827,-47.053,-33 -regnety_006,34.243,65.757,51.297,48.703,6.06,224,0.875,bicubic,-57.337,-47.133,-20 -tf_mobilenetv3_large_100,33.977,66.023,51.520,48.480,5.48,224,0.875,bilinear,-57.433,-46.730,-15 -mnasnet_100,33.847,66.153,51.247,48.753,4.38,224,0.875,bicubic,-57.353,-46.793,-9 -regnetx_008,33.733,66.267,50.590,49.410,7.26,224,0.875,bicubic,-57.457,-47.780,-8 -xcit_nano_12_p8_224,33.610,66.390,50.230,49.770,3.05,224,1.000,bicubic,-57.490,-48.010,-5 -vit_tiny_r_s16_p8_384,33.593,66.407,50.650,49.350,6.36,384,1.000,bicubic,-58.127,-47.780,-31 -resnet26,33.593,66.407,51.017,48.983,16.00,224,0.875,bicubic,-57.867,-47.253,-21 -mixnet_s,33.587,66.413,51.030,48.970,4.13,224,0.875,bicubic,-58.193,-47.270,-34 -semnasnet_100,33.550,66.450,50.837,49.163,3.89,224,0.875,bicubic,-58.110,-47.423,-30 -vit_tiny_patch16_384,33.547,66.453,51.003,48.997,5.79,384,1.000,bicubic,-59.883,-47.837,-135 -spnasnet_100,33.513,66.487,51.303,48.697,4.42,224,0.875,bilinear,-57.097,-46.647,-1 -crossvit_tiny_240,33.380,66.620,49.917,50.083,7.01,240,0.875,bicubic,-57.150,-48.033,0 -vgg19_bn,33.313,66.687,50.877,49.123,143.68,224,0.875,bilinear,-57.677,-47.243,-8 -regnetx_006,33.207,66.793,50.300,49.700,6.20,224,0.875,bicubic,-57.543,-47.800,-7 -ghostnet_100,33.180,66.820,51.143,48.857,5.18,224,0.875,bilinear,-57.260,-46.877,-1 -xcit_nano_12_p16_224,33.060,66.940,50.070,49.930,3.05,224,1.000,bicubic,-55.900,-47.340,+16 -resnet18,33.040,66.960,51.127,48.873,11.69,224,0.875,bilinear,-55.120,-45.993,+19 -legacy_seresnext26_32x4d,32.747,67.253,49.210,50.790,16.79,224,0.875,bicubic,-59.843,-49.210,-80 -hrnet_w18_small,32.720,67.280,50.673,49.327,13.19,224,0.875,bilinear,-57.180,-47.227,+2 -deit_tiny_patch16_224,32.703,67.297,50.323,49.677,5.72,224,0.900,bicubic,-56.897,-47.637,+5 -legacy_seresnet18,32.637,67.363,50.360,49.640,11.78,224,0.875,bicubic,-56.613,-47.330,+8 -regnetx_004,32.577,67.423,49.390,50.610,5.16,224,0.875,bicubic,-56.873,-48.390,+4 -mobilenetv2_100,32.570,67.430,50.867,49.133,3.50,224,0.875,bicubic,-57.270,-46.973,0 -regnety_004,32.407,67.593,49.500,50.500,4.34,224,0.875,bicubic,-58.343,-48.580,-16 -gluon_resnet18_v1b,32.393,67.607,49.710,50.290,11.69,224,0.875,bicubic,-56.277,-47.400,+8 -tf_mixnet_s,32.223,67.777,48.610,51.390,4.13,224,0.875,bicubic,-59.467,-49.630,-49 -vit_tiny_patch16_224,32.147,67.853,49.103,50.897,5.72,224,0.900,bicubic,-59.783,-49.227,-55 -tf_mobilenetv3_large_075,31.947,68.053,49.147,50.853,3.99,224,0.875,bilinear,-58.363,-48.733,-12 -tf_mobilenetv3_large_minimal_100,31.603,68.397,49.407,50.593,3.92,224,0.875,bilinear,-57.557,-47.913,+2 -vit_tiny_r_s16_p8_224,30.850,69.150,47.673,52.327,6.34,224,0.900,bicubic,-58.550,-50.017,-3 -vgg16_bn,30.363,69.637,47.267,52.733,138.37,224,0.875,bilinear,-60.157,-50.723,-18 -regnety_002,29.683,70.317,46.887,53.113,3.16,224,0.875,bicubic,-58.527,-50.533,+3 -vgg13_bn,28.970,71.030,46.827,53.173,133.05,224,0.875,bilinear,-60.240,-50.713,-3 -regnetx_002,28.887,71.113,45.587,54.413,2.68,224,0.875,bicubic,-58.473,-51.403,+4 -vgg19,28.687,71.313,45.257,54.743,143.67,224,0.875,bilinear,-61.003,-52.293,-11 -dla60x_c,28.520,71.480,46.260,53.740,1.32,224,0.875,bilinear,-58.560,-50.880,+4 -vgg11_bn,28.380,71.620,46.507,53.493,132.87,224,0.875,bilinear,-60.010,-50.773,-3 -vgg16,27.990,72.010,44.743,55.257,138.36,224,0.875,bilinear,-61.390,-52.777,-10 -tf_mobilenetv3_small_100,27.350,72.650,44.490,55.510,2.54,224,0.875,bilinear,-58.640,-51.920,+3 -mixer_l16_224,26.797,73.203,37.860,62.140,208.20,224,0.875,bicubic,-60.163,-56.170,+1 -vgg11,26.610,73.390,43.510,56.490,132.86,224,0.875,bilinear,-60.720,-53.600,-2 -vgg13,26.317,73.683,43.463,56.537,133.05,224,0.875,bilinear,-61.233,-53.657,-5 -dla46x_c,26.283,73.717,43.907,56.093,1.07,224,0.875,bilinear,-59.187,-52.543,0 -tf_mobilenetv3_small_075,26.273,73.727,43.710,56.290,2.04,224,0.875,bilinear,-58.257,-52.180,+1 -dla46_c,25.493,74.507,43.953,56.047,1.30,224,0.875,bilinear,-59.217,-52.257,-1 -tf_mobilenetv3_small_minimal_100,25.107,74.893,42.987,57.013,2.04,224,0.875,bilinear,-57.573,-52.023,0 +ig_resnext101_32x48d,79.640,20.360,89.390,10.610,828.41,224,0.875,bilinear,-17.330,-10.280,+20 +ig_resnext101_32x32d,79.467,20.533,89.190,10.810,468.53,224,0.875,bilinear,-17.313,-10.340,+33 +ig_resnext101_32x16d,78.817,21.183,88.467,11.533,194.03,224,0.875,bilinear,-17.623,-11.073,+60 +tf_efficientnet_l2_ns_475,76.473,23.527,88.650,11.350,480.31,475,0.936,bicubic,-21.277,-11.170,0 +swsl_resnext101_32x16d,76.307,23.693,87.740,12.260,194.03,224,0.875,bilinear,-19.973,-11.760,+70 +ig_resnext101_32x8d,75.800,24.200,86.213,13.787,88.79,224,0.875,bilinear,-20.140,-13.167,+100 +swsl_resnext101_32x8d,75.587,24.413,86.940,13.060,88.79,224,0.875,bilinear,-20.653,-12.650,+74 +tf_efficientnet_l2_ns,74.660,25.340,87.543,12.457,480.31,800,0.960,bicubic,-23.120,-12.347,-5 +beit_large_patch16_384,73.280,26.720,85.023,14.977,305.00,384,1.000,bicubic,-24.530,-14.767,-8 +beit_large_patch16_512,73.163,26.837,85.080,14.920,305.67,512,1.000,bicubic,-24.617,-14.740,-8 +swsl_resnext101_32x4d,72.660,27.340,85.160,14.840,44.18,224,0.875,bilinear,-23.380,-14.370,+84 +beit_large_patch16_224,71.040,28.960,83.420,16.580,304.43,224,0.900,bicubic,-26.440,-16.270,-6 +swsl_resnext50_32x4d,68.970,31.030,82.803,17.197,25.03,224,0.875,bilinear,-26.630,-16.637,+117 +swsl_resnet50,68.297,31.703,83.300,16.700,25.56,224,0.875,bilinear,-26.903,-16.090,+149 +tf_efficientnet_b7_ns,67.510,32.490,81.383,18.617,66.35,600,0.949,bicubic,-29.690,-18.317,-2 +vit_large_patch16_384,67.063,32.937,78.707,21.293,304.72,384,1.000,bicubic,-30.357,-21.073,-8 +convnext_xlarge_384_in22ft1k,66.957,33.043,79.697,20.303,350.20,384,1.000,bicubic,-30.593,-20.103,-12 +swin_large_patch4_window12_384,66.283,33.717,79.790,20.210,196.74,384,1.000,bicubic,-30.897,-19.890,-4 +convnext_large_384_in22ft1k,65.997,34.003,79.223,20.777,197.77,384,1.000,bicubic,-31.443,-20.557,-12 +tf_efficientnet_b6_ns,65.587,34.413,79.557,20.443,43.04,528,0.942,bicubic,-31.433,-20.153,-1 +convnext_xlarge_in22ft1k,65.427,34.573,78.237,21.763,350.20,224,0.875,bicubic,-31.813,-21.493,-9 +vit_large_patch16_224,64.347,35.653,76.190,23.810,304.33,224,0.900,bicubic,-32.363,-23.460,+18 +convnext_large_in22ft1k,64.200,35.800,77.587,22.413,197.77,224,0.875,bicubic,-33.060,-22.063,-12 +vit_large_r50_s32_384,64.107,35.893,75.857,24.143,329.09,384,1.000,bicubic,-32.843,-23.853,0 +convnext_base_384_in22ft1k,64.097,35.903,77.757,22.243,88.59,384,1.000,bicubic,-33.183,-22.013,-15 +swin_large_patch4_window7_224,63.867,36.133,78.173,21.827,196.53,224,0.900,bicubic,-33.083,-21.487,-3 +beit_base_patch16_384,63.610,36.390,78.117,21.883,86.74,384,1.000,bicubic,-33.720,-21.603,-18 +swin_base_patch4_window12_384,63.470,36.530,78.057,21.943,87.90,384,1.000,bicubic,-33.650,-21.723,-12 +tf_efficientnet_b5_ns,63.047,36.953,77.783,22.217,30.39,456,0.934,bicubic,-33.823,-21.857,0 +vit_base_patch8_224,62.193,37.807,75.613,24.387,86.58,224,0.900,bicubic,-34.887,-24.007,-12 +convnext_base_in22ft1k,61.990,38.010,76.010,23.990,88.59,224,0.875,bicubic,-34.870,-23.640,-1 +tf_efficientnet_b4_ns,61.230,38.770,76.170,23.830,19.34,380,0.922,bicubic,-35.480,-23.470,+7 +tf_efficientnetv2_l_in21ft1k,60.950,39.050,75.840,24.160,118.52,480,1.000,bicubic,-36.160,-23.870,-16 +tf_efficientnetv2_xl_in21ft1k,60.680,39.320,74.393,25.607,208.12,512,1.000,bicubic,-36.470,-25.227,-19 +beit_base_patch16_224,60.317,39.683,75.603,24.397,86.53,224,0.900,bicubic,-36.343,-24.057,+9 +vit_base_patch16_384,60.190,39.810,73.840,26.160,86.86,384,1.000,bicubic,-36.830,-25.870,-16 +swin_base_patch4_window7_224,59.533,40.467,74.230,25.770,87.77,224,0.900,bicubic,-37.147,-25.430,+6 +tf_efficientnetv2_m_in21ft1k,58.640,41.360,73.983,26.017,54.14,480,1.000,bicubic,-38.330,-25.627,-16 +vit_large_r50_s32_224,58.640,41.360,71.720,28.280,328.99,224,0.900,bicubic,-37.540,-27.810,+45 +tf_efficientnet_b8_ap,57.830,42.170,72.960,27.040,87.41,672,0.954,bicubic,-38.720,-26.580,+11 +cait_m48_448,57.483,42.517,71.860,28.140,356.46,448,1.000,bicubic,-39.397,-27.760,-14 +cait_m36_384,57.467,42.533,72.313,27.687,271.22,384,1.000,bicubic,-39.363,-27.347,-11 +tf_efficientnet_b3_ns,57.420,42.580,72.377,27.623,12.23,300,0.904,bicubic,-38.680,-27.103,+45 +vit_base_patch16_224,56.833,43.167,70.640,29.360,86.57,224,0.900,bicubic,-39.467,-28.920,+29 +xcit_large_24_p8_384_dist,56.350,43.650,71.320,28.680,188.93,384,1.000,bicubic,-40.410,-28.240,-8 +xcit_large_24_p8_224_dist,56.027,43.973,70.663,29.337,188.93,224,1.000,bicubic,-40.613,-28.797,0 +xcit_large_24_p16_384_dist,54.907,45.093,69.863,30.137,189.10,384,1.000,bicubic,-42.033,-29.647,-22 +vit_base_r50_s16_384,54.403,45.597,69.567,30.433,98.95,384,1.000,bicubic,-42.047,-30.093,+14 +resnetv2_152x4_bitm,54.320,45.680,70.170,29.830,936.53,480,1.000,bilinear,-42.560,-29.490,-21 +xcit_large_24_p16_224_dist,54.257,45.743,68.980,31.020,189.10,224,1.000,bicubic,-42.063,-30.520,+21 +vit_small_r26_s32_384,54.197,45.803,68.753,31.247,36.47,384,1.000,bicubic,-41.863,-30.797,+43 +tf_efficientnet_b5_ap,53.867,46.133,69.160,30.840,30.39,456,0.934,bicubic,-42.213,-30.380,+37 +xcit_medium_24_p8_224_dist,53.660,46.340,68.407,31.593,84.32,224,1.000,bicubic,-42.860,-31.103,+2 +tf_efficientnet_b2_ns,53.600,46.400,70.270,29.730,9.11,260,0.890,bicubic,-41.920,-29.070,+84 +convnext_large,53.560,46.440,68.187,31.813,197.77,224,0.875,bicubic,-42.460,-31.283,+42 +tf_efficientnet_b6_ap,53.560,46.440,68.550,31.450,43.04,528,0.942,bicubic,-42.810,-31.000,+10 +cait_s36_384,53.553,46.447,68.007,31.993,68.37,384,1.000,bicubic,-43.077,-31.593,-10 +tf_efficientnet_b8,53.413,46.587,69.087,30.913,87.41,672,0.954,bicubic,-43.287,-30.443,-17 +xcit_medium_24_p8_384_dist,53.407,46.593,68.137,31.863,84.32,384,1.000,bicubic,-43.373,-31.483,-25 +vit_base_patch32_384,53.297,46.703,68.040,31.960,88.30,384,1.000,bicubic,-42.603,-31.400,+49 +tf_efficientnet_b7_ap,53.263,46.737,68.877,31.123,66.35,600,0.949,bicubic,-43.087,-30.713,+7 +xcit_medium_24_p16_384_dist,53.217,46.783,68.050,31.950,84.40,384,1.000,bicubic,-43.483,-31.550,-20 +tf_efficientnetv2_s_in21ft1k,53.137,46.863,68.997,31.003,21.46,384,1.000,bicubic,-43.333,-30.573,-5 +tf_efficientnet_b4_ap,53.090,46.910,68.213,31.787,19.34,380,0.922,bicubic,-42.400,-31.177,+76 +regnetz_e8,53.017,46.983,67.137,32.863,57.70,320,1.000,bicubic,-43.583,-32.473,-17 +dm_nfnet_f5,52.867,47.133,67.430,32.570,377.21,544,0.954,bicubic,-43.943,-32.240,-34 +dm_nfnet_f6,52.447,47.553,67.113,32.887,438.36,576,0.956,bicubic,-44.473,-32.607,-41 +tf_efficientnet_b7,52.390,47.610,68.233,31.767,66.35,600,0.949,bicubic,-44.190,-31.277,-19 +tf_efficientnetv2_l,52.387,47.613,67.243,32.757,118.52,480,1.000,bicubic,-44.263,-32.317,-24 +xcit_small_24_p8_384_dist,52.360,47.640,66.833,33.167,47.63,384,1.000,bicubic,-44.450,-32.797,-37 +swsl_resnet18,52.337,47.663,70.477,29.523,11.69,224,0.875,bilinear,-38.743,-27.733,+429 +efficientnetv2_rw_m,52.327,47.673,67.210,32.790,53.24,416,1.000,bicubic,-43.943,-32.350,+4 +deit_base_distilled_patch16_384,52.260,47.740,67.733,32.267,87.63,384,1.000,bicubic,-44.250,-31.857,-17 +xcit_medium_24_p16_224_dist,52.197,47.803,66.893,33.107,84.40,224,1.000,bicubic,-44.063,-32.507,+4 +xcit_small_24_p8_224_dist,52.193,47.807,66.767,33.233,47.63,224,1.000,bicubic,-44.357,-32.803,-23 +dm_nfnet_f3,52.130,47.870,66.747,33.253,254.92,416,0.940,bicubic,-44.600,-32.883,-38 +resnetv2_152x2_bit_teacher_384,51.940,48.060,68.663,31.337,236.34,384,1.000,bicubic,-44.250,-30.837,+6 +resmlp_big_24_224_in22ft1k,51.893,48.107,68.470,31.530,129.14,224,0.875,bicubic,-44.457,-31.050,-11 +xcit_small_24_p16_384_dist,51.883,48.117,66.360,33.640,47.67,384,1.000,bicubic,-44.457,-33.220,-10 +cait_s24_384,51.780,48.220,66.317,33.683,47.06,384,1.000,bicubic,-44.790,-33.233,-30 +resnetv2_152x2_bitm,51.753,48.247,69.253,30.747,236.34,448,1.000,bilinear,-44.767,-30.337,-27 +ecaresnet269d,51.667,48.333,66.047,33.953,102.09,352,1.000,bicubic,-44.793,-33.563,-22 +vit_base_patch16_224_miil,51.553,48.447,65.200,34.800,86.54,224,0.875,bilinear,-44.477,-34.150,+13 +convnext_base,51.280,48.720,66.167,33.833,88.59,224,0.875,bicubic,-44.670,-33.213,+21 +pit_b_distilled_224,51.163,48.837,66.773,33.227,74.79,224,0.900,bicubic,-44.907,-32.607,+6 +xcit_small_12_p8_384_dist,51.093,48.907,65.833,34.167,26.21,384,1.000,bicubic,-45.387,-33.657,-29 +dm_nfnet_f4,50.903,49.097,65.560,34.440,316.07,512,0.951,bicubic,-45.877,-34.050,-51 +tf_efficientnet_b1_ns,50.880,49.120,67.923,32.077,7.79,240,0.882,bicubic,-43.980,-31.327,+114 +xcit_small_24_p16_224_dist,50.733,49.267,65.010,34.990,47.67,224,1.000,bicubic,-45.067,-34.330,+27 +tf_efficientnetv2_m,50.560,49.440,66.007,33.993,54.14,480,1.000,bicubic,-45.980,-33.563,-37 +xcit_small_12_p16_384_dist,50.530,49.470,65.310,34.690,26.25,384,1.000,bicubic,-45.800,-34.180,-21 +efficientnet_b4,50.503,49.497,65.717,34.283,19.34,384,1.000,bicubic,-45.017,-33.683,+45 +xcit_small_12_p8_224_dist,50.433,49.567,65.433,34.567,26.21,224,1.000,bicubic,-45.527,-33.987,+11 +resnetv2_101x3_bitm,50.400,49.600,67.790,32.210,387.93,448,1.000,bilinear,-45.850,-31.790,-15 +ssl_resnext101_32x16d,50.250,49.750,66.020,33.980,194.03,224,0.875,bilinear,-45.160,-33.390,+52 +cait_s24_224,50.237,49.763,65.010,34.990,46.92,224,1.000,bicubic,-45.413,-34.380,+31 +eca_nfnet_l2,50.233,49.767,65.453,34.547,56.72,384,1.000,bicubic,-46.217,-34.177,-36 +vit_small_patch16_384,50.170,49.830,65.810,34.190,22.20,384,1.000,bicubic,-45.810,-33.780,+4 +resnest269e,50.153,49.847,64.673,35.327,110.93,416,0.928,bicubic,-45.977,-34.847,-13 +tf_efficientnet_b3_ap,50.060,49.940,65.207,34.793,12.23,300,0.904,bicubic,-44.910,-33.903,+88 +deit_base_distilled_patch16_224,50.057,49.943,66.230,33.770,87.34,224,0.900,bicubic,-45.693,-33.050,+16 +resnest200e,49.873,50.127,64.743,35.257,70.20,320,0.909,bicubic,-46.197,-34.737,-10 +convnext_small,49.583,50.417,64.883,35.117,50.22,224,0.875,bicubic,-46.047,-34.377,+26 +cait_xs24_384,49.527,50.473,64.897,35.103,26.67,384,1.000,bicubic,-46.483,-34.533,-6 +tf_efficientnet_b5,49.520,50.480,65.650,34.350,30.39,456,0.934,bicubic,-46.460,-33.800,-4 +resnetv2_152x2_bit_teacher,49.477,50.523,65.617,34.383,236.34,224,0.875,bicubic,-46.273,-33.813,+13 +resnet200d,49.470,50.530,64.330,35.670,64.69,320,1.000,bicubic,-46.640,-35.130,-20 +xcit_small_12_p16_224_dist,49.420,50.580,63.853,36.147,26.25,224,1.000,bicubic,-46.320,-35.447,+12 +resnest101e,49.367,50.633,65.597,34.403,48.28,256,0.875,bilinear,-46.193,-33.673,+24 +resnet152d,49.247,50.753,64.410,35.590,60.21,320,1.000,bicubic,-46.623,-35.020,+2 +seresnet152d,49.247,50.753,64.180,35.820,66.84,320,1.000,bicubic,-47.063,-35.330,-39 +vit_base_patch32_224,49.243,50.757,64.340,35.660,88.22,224,0.900,bicubic,-45.147,-34.720,+140 +xcit_large_24_p8_224,49.240,50.760,62.840,37.160,188.93,224,1.000,bicubic,-46.840,-36.310,-23 +ssl_resnext101_32x8d,49.097,50.903,65.483,34.517,88.79,224,0.875,bilinear,-46.233,-33.827,+41 +resmlp_big_24_distilled_224,49.093,50.907,65.470,34.530,129.14,224,0.875,bicubic,-46.777,-33.970,-4 +repvgg_b3,48.927,51.073,64.880,35.120,123.09,224,0.875,bilinear,-45.633,-34.030,+121 +resnetrs420,48.860,51.140,63.420,36.580,191.89,416,1.000,bicubic,-47.540,-36.120,-53 +efficientnetv2_rw_s,48.597,51.403,63.837,36.163,23.94,384,1.000,bicubic,-47.103,-35.543,+7 +regnetz_d32,48.590,51.410,65.193,34.807,27.58,320,0.950,bicubic,-47.270,-34.237,-5 +efficientnet_b3,48.563,51.437,64.247,35.753,12.23,320,1.000,bicubic,-46.567,-34.963,+48 +ecaresnet101d,48.540,51.460,64.097,35.903,44.57,224,0.875,bicubic,-46.620,-35.133,+44 +dm_nfnet_f2,48.373,51.627,63.233,36.767,193.78,352,0.920,bicubic,-48.087,-36.307,-63 +vit_small_r26_s32_224,48.360,51.640,63.807,36.193,36.43,224,0.900,bicubic,-46.770,-35.413,+47 +repvgg_b3g4,48.313,51.687,64.793,35.207,83.83,224,0.875,bilinear,-46.187,-34.227,+120 +vit_large_patch32_384,48.250,51.750,61.827,38.173,306.63,384,1.000,bicubic,-46.990,-37.493,+34 +convit_base,48.220,51.780,63.007,36.993,86.54,224,0.875,bicubic,-46.880,-36.133,+48 +resnetrs350,48.060,51.940,62.650,37.350,163.96,384,1.000,bicubic,-48.180,-36.820,-47 +regnetz_d8,48.013,51.987,64.420,35.580,23.37,320,1.000,bicubic,-47.997,-35.100,-29 +twins_svt_large,47.947,52.053,62.910,37.090,99.27,224,0.900,bicubic,-47.773,-36.380,-8 +repvgg_b2g4,47.797,52.203,64.383,35.617,61.76,224,0.875,bilinear,-46.013,-34.547,+187 +mixer_b16_224_miil,47.783,52.217,63.397,36.603,59.88,224,0.875,bilinear,-47.097,-35.683,+67 +eca_nfnet_l1,47.647,52.353,62.763,37.237,41.41,320,1.000,bicubic,-48.283,-36.727,-25 +resnetv2_50x3_bitm,47.593,52.407,65.603,34.397,217.32,448,1.000,bilinear,-48.677,-34.027,-56 +pit_s_distilled_224,47.550,52.450,63.500,36.500,24.04,224,0.900,bicubic,-47.200,-35.680,+76 +resnest50d_4s2x40d,47.483,52.517,63.810,36.190,30.42,224,0.875,bicubic,-47.227,-35.320,+80 +efficientnet_b3_pruned,47.450,52.550,62.807,37.193,9.86,300,0.904,bicubic,-47.130,-36.263,+97 +crossvit_18_dagger_408,47.387,52.613,60.937,39.063,44.61,408,1.000,bicubic,-48.743,-38.533,-52 +xcit_small_24_p8_224,47.293,52.707,60.990,39.010,47.63,224,1.000,bicubic,-48.617,-38.190,-30 +tresnet_m,47.227,52.773,61.997,38.003,31.39,224,0.875,bilinear,-48.153,-37.153,+13 +tf_efficientnet_b6,47.210,52.790,63.113,36.887,43.04,528,0.942,bicubic,-49.080,-36.407,-66 +convnext_tiny,47.200,52.800,63.193,36.807,28.59,224,0.875,bicubic,-47.790,-36.007,+43 +ssl_resnext101_32x4d,47.167,52.833,63.373,36.627,44.18,224,0.875,bilinear,-47.993,-35.937,+24 +resnetrs270,47.110,52.890,62.007,37.993,129.86,352,1.000,bicubic,-48.950,-37.473,-50 +tf_efficientnet_b4,47.077,52.923,62.867,37.133,19.34,380,0.922,bicubic,-48.513,-36.463,-13 +xcit_small_12_p8_224,46.983,53.017,60.530,39.470,26.21,224,1.000,bicubic,-48.437,-38.670,+1 +xcit_large_24_p16_224,46.957,53.043,60.667,39.333,189.10,224,1.000,bicubic,-47.993,-38.433,+44 +resnet101d,46.893,53.107,62.317,37.683,44.57,320,1.000,bicubic,-48.857,-37.123,-29 +resnetrs200,46.837,53.163,62.490,37.510,93.21,320,1.000,bicubic,-49.153,-36.950,-48 +resnet152,46.783,53.217,60.417,39.583,60.19,224,0.950,bicubic,-48.777,-38.853,-15 +gluon_seresnext101_64x4d,46.670,53.330,61.297,38.703,88.23,224,0.875,bicubic,-47.990,-37.683,+71 +twins_pcpvt_large,46.623,53.377,62.240,37.760,60.99,224,0.900,bicubic,-49.097,-37.250,-29 +dm_nfnet_f1,46.543,53.457,61.403,38.597,132.63,320,0.910,bicubic,-49.837,-38.067,-87 +xcit_medium_24_p8_224,46.473,53.527,59.647,40.353,84.32,224,1.000,bicubic,-49.397,-39.433,-40 +crossvit_15_dagger_408,46.463,53.537,60.477,39.523,28.50,408,1.000,bicubic,-49.357,-38.833,-39 +fbnetv3_g,46.333,53.667,62.407,37.593,16.62,288,0.950,bilinear,-48.797,-36.793,+14 +tresnet_xl,46.277,53.723,61.947,38.053,78.44,224,0.875,bilinear,-48.783,-37.313,+25 +xcit_tiny_24_p8_384_dist,46.263,53.737,60.707,39.293,12.11,384,1.000,bicubic,-49.977,-38.733,-75 +xcit_tiny_24_p8_224_dist,46.253,53.747,60.603,39.397,12.11,224,1.000,bicubic,-49.207,-38.757,-14 +gernet_m,46.177,53.823,62.700,37.300,21.14,224,0.875,bilinear,-48.373,-36.230,+79 +deit_small_distilled_patch16_224,46.167,53.833,62.407,37.593,22.44,224,0.900,bicubic,-48.433,-36.693,+68 +regnety_160,46.163,53.837,61.843,38.157,83.59,288,1.000,bicubic,-49.717,-37.717,-51 +crossvit_base_240,46.133,53.867,60.227,39.773,105.03,240,0.875,bicubic,-48.937,-38.753,+16 +resnest50d_1s4x24d,46.087,53.913,62.373,37.627,25.68,224,0.875,bicubic,-48.303,-36.697,+88 +tf_efficientnet_b0_ns,46.047,53.953,63.243,36.757,5.29,224,0.875,bicubic,-47.693,-35.737,+164 +jx_nest_base,46.040,53.960,60.093,39.907,67.72,224,0.875,bicubic,-49.500,-39.207,-30 +resnet51q,46.030,53.970,60.907,39.093,35.70,288,1.000,bilinear,-49.170,-38.373,-4 +vit_small_patch16_224,46.003,53.997,61.827,38.173,22.05,224,0.900,bicubic,-48.877,-37.443,+32 +resnest50d,45.940,54.060,62.637,37.363,27.48,224,0.875,bilinear,-48.680,-36.343,+57 +crossvit_18_240,45.907,54.093,60.370,39.630,43.27,240,0.875,bicubic,-49.163,-38.750,+8 +regnety_032,45.893,54.107,61.537,38.463,19.44,288,1.000,bicubic,-49.587,-37.783,-29 +twins_pcpvt_base,45.887,54.113,61.343,38.657,43.83,224,0.900,bicubic,-49.573,-38.047,-28 +twins_svt_base,45.873,54.127,60.967,39.033,56.07,224,0.900,bicubic,-49.697,-38.263,-40 +levit_384,45.870,54.130,61.700,38.300,39.13,224,0.900,bicubic,-49.340,-37.460,-12 +crossvit_18_dagger_240,45.850,54.150,59.927,40.073,44.27,240,0.875,bicubic,-49.340,-39.193,-10 +crossvit_15_dagger_240,45.697,54.303,60.087,39.913,28.21,240,0.875,bicubic,-49.283,-39.073,+10 +regnetz_c16,45.690,54.310,62.517,37.483,13.46,320,0.940,bicubic,-49.700,-36.793,-26 +convmixer_1536_20,45.660,54.340,61.767,38.233,51.63,224,0.960,bicubic,-49.310,-37.403,+9 +gc_efficientnetv2_rw_t,45.650,54.350,60.197,39.803,13.68,288,1.000,bicubic,-49.630,-39.023,-21 +efficientnetv2_rw_t,45.600,54.400,60.187,39.813,13.65,288,1.000,bicubic,-49.470,-39.033,+1 +gluon_seresnext101_32x4d,45.597,54.403,61.150,38.850,48.96,224,0.875,bicubic,-48.853,-37.940,+66 +xcit_tiny_24_p16_384_dist,45.577,54.423,60.510,39.490,12.12,384,1.000,bicubic,-49.903,-38.850,-39 +xcit_small_24_p16_224,45.537,54.463,58.903,41.097,47.67,224,1.000,bicubic,-49.543,-40.127,-7 +xcit_medium_24_p16_224,45.530,54.470,59.000,41.000,84.40,224,1.000,bicubic,-49.600,-39.920,-12 +dm_nfnet_f0,45.470,54.530,60.987,39.013,71.49,256,0.900,bicubic,-50.220,-38.343,-58 +gluon_resnet152_v1d,45.437,54.563,60.073,39.927,60.21,224,0.875,bicubic,-49.003,-38.937,+62 +nfnet_l0,45.423,54.577,62.080,37.920,35.07,288,1.000,bicubic,-49.967,-37.340,-37 +ssl_resnext50_32x4d,45.407,54.593,62.033,37.967,25.03,224,0.875,bilinear,-49.293,-37.207,+31 +resnetv2_50x1_bit_distilled,45.397,54.603,62.307,37.693,25.55,224,0.875,bicubic,-49.993,-37.123,-37 +xcit_small_12_p16_224,45.383,54.617,59.430,40.570,26.25,224,1.000,bicubic,-49.437,-39.630,+14 +jx_nest_small,45.357,54.643,59.010,40.990,38.35,224,0.875,bicubic,-50.183,-40.210,-54 +resnet61q,45.287,54.713,59.407,40.593,36.85,288,1.000,bicubic,-49.823,-39.673,-18 +tresnet_xl_448,45.230,54.770,61.440,38.560,78.44,448,0.875,bilinear,-50.280,-37.900,-53 +nasnetalarge,45.207,54.793,57.880,42.120,88.75,331,0.911,bicubic,-49.943,-41.250,-26 +convit_small,45.203,54.797,60.497,39.503,27.78,224,0.875,bicubic,-49.717,-38.603,+1 +swin_small_patch4_window7_224,45.157,54.843,60.340,39.660,49.61,224,0.900,bicubic,-50.563,-39.030,-72 +tf_efficientnet_b3,45.100,54.900,60.643,39.357,12.23,300,0.904,bicubic,-49.810,-38.467,0 +resnet101,45.093,54.907,59.580,40.420,44.55,224,0.950,bicubic,-49.877,-39.500,-10 +rexnet_200,45.050,54.950,62.303,37.697,16.37,224,0.875,bicubic,-49.610,-36.787,+24 +resnetrs152,44.957,55.043,59.713,40.287,86.62,320,1.000,bicubic,-51.003,-39.667,-96 +resnetv2_101,44.927,55.073,58.850,41.150,44.54,224,0.950,bicubic,-50.003,-40.270,-6 +ecaresnetlight,44.890,55.110,60.783,39.217,30.16,224,0.875,bicubic,-49.250,-38.167,+78 +deit_base_patch16_224,44.870,55.130,59.180,40.820,86.57,224,0.900,bicubic,-50.140,-39.860,-19 +deit_base_patch16_384,44.773,55.227,59.630,40.370,86.86,384,1.000,bicubic,-50.877,-39.610,-75 +cait_xxs36_384,44.770,55.230,59.380,40.620,17.37,384,1.000,bicubic,-50.460,-39.940,-44 +resmlp_36_distilled_224,44.760,55.240,61.067,38.933,44.69,224,0.875,bicubic,-49.790,-38.093,+34 +gernet_l,44.740,55.260,58.953,41.047,31.08,256,0.875,bilinear,-50.190,-40.247,-13 +xcit_tiny_24_p16_224_dist,44.717,55.283,59.417,40.583,12.12,224,1.000,bicubic,-49.493,-39.543,+65 +resmlp_24_distilled_224,44.707,55.293,61.457,38.543,30.02,224,0.875,bicubic,-49.633,-37.343,+51 +tf_efficientnet_b2_ap,44.703,55.297,60.680,39.320,9.11,260,0.890,bicubic,-49.567,-38.270,+58 +gmlp_s16_224,44.490,55.510,58.633,41.367,19.42,224,0.875,bicubic,-49.020,-40.147,+151 +ens_adv_inception_resnet_v2,44.390,55.610,58.120,41.880,55.84,299,0.897,bicubic,-49.740,-40.670,+69 +tresnet_l,44.367,55.633,59.953,40.047,55.99,224,0.875,bilinear,-50.533,-39.077,-15 +gluon_resnext101_32x4d,44.287,55.713,59.087,40.913,44.18,224,0.875,bicubic,-49.833,-39.853,+69 +wide_resnet50_2,44.180,55.820,59.703,40.297,68.88,224,0.875,bicubic,-50.480,-39.347,+9 +cspresnext50,44.147,55.853,60.537,39.463,20.57,224,0.875,bilinear,-49.633,-38.303,+107 +resnetv2_101x1_bitm,44.117,55.883,61.983,38.017,44.54,448,1.000,bilinear,-51.203,-37.387,-61 +crossvit_15_240,44.117,55.883,59.130,40.870,27.53,240,0.875,bicubic,-50.603,-39.950,-4 +seresnext50_32x4d,44.107,55.893,59.473,40.527,27.56,224,0.875,bicubic,-50.703,-39.657,-14 +gluon_resnet152_v1s,44.070,55.930,58.697,41.303,60.32,224,0.875,bicubic,-50.630,-40.363,-2 +pit_b_224,44.070,55.930,58.017,41.983,73.76,224,0.900,bicubic,-50.720,-40.803,-15 +ssl_resnet50,44.023,55.977,61.900,38.100,25.56,224,0.875,bilinear,-50.287,-37.250,+41 +inception_resnet_v2,44.003,55.997,57.910,42.090,55.84,299,0.897,bicubic,-50.337,-41.180,+38 +pnasnet5large,43.950,56.050,56.723,43.277,86.06,331,0.911,bicubic,-51.410,-42.407,-70 +pit_s_224,43.900,56.100,58.633,41.367,23.46,224,0.900,bicubic,-50.690,-40.287,+7 +gluon_resnext101_64x4d,43.880,56.120,58.703,41.297,83.46,224,0.875,bicubic,-50.470,-40.177,+33 +coat_lite_small,43.820,56.180,57.143,42.857,19.84,224,0.900,bicubic,-51.260,-41.917,-50 +tnt_s_patch16_224,43.777,56.223,59.203,40.797,23.76,224,0.900,bicubic,-50.793,-39.977,+9 +cait_xxs36_224,43.760,56.240,58.730,41.270,17.30,224,1.000,bicubic,-50.170,-40.160,+72 +ecaresnet50d,43.743,56.257,60.380,39.620,25.58,224,0.875,bicubic,-50.457,-38.640,+44 +ecaresnet101d_pruned,43.737,56.263,59.603,40.397,24.88,224,0.875,bicubic,-50.713,-39.497,+15 +tf_efficientnetv2_s,43.703,56.297,58.597,41.403,21.46,384,1.000,bicubic,-52.007,-40.803,-107 +rexnet_150,43.690,56.310,60.890,39.110,9.73,224,0.875,bicubic,-50.580,-38.190,+33 +pit_xs_distilled_224,43.660,56.340,60.693,39.307,11.00,224,0.900,bicubic,-49.580,-38.137,+151 +xcit_tiny_12_p8_224_dist,43.643,56.357,58.460,41.540,6.71,224,1.000,bicubic,-51.067,-40.720,-18 +crossvit_small_240,43.470,56.530,58.943,41.057,26.86,240,0.875,bicubic,-51.110,-40.177,-3 +gluon_resnet101_v1d,43.433,56.567,58.613,41.387,44.57,224,0.875,bicubic,-50.737,-40.297,+42 +ecaresnet50t,43.410,56.590,59.303,40.697,25.57,320,0.950,bicubic,-51.660,-39.987,-58 +gluon_resnet101_v1s,43.363,56.637,58.513,41.487,44.67,224,0.875,bicubic,-50.807,-40.497,+39 +cspdarknet53,43.360,56.640,59.433,40.567,27.64,256,0.887,bilinear,-50.730,-39.547,+46 +xcit_tiny_24_p8_224,43.313,56.687,57.267,42.733,12.11,224,1.000,bicubic,-51.567,-41.923,-40 +xcit_tiny_12_p8_384_dist,43.300,56.700,58.177,41.823,6.71,384,1.000,bicubic,-52.040,-41.163,-87 +dpn68b,43.287,56.713,58.683,41.317,12.61,224,0.875,bicubic,-50.333,-40.017,+102 +convmixer_768_32,43.267,56.733,59.367,40.633,21.11,224,0.960,bicubic,-51.163,-39.743,+5 +visformer_small,43.260,56.740,57.977,42.023,40.22,224,0.900,bicubic,-51.700,-41.233,-55 +eca_nfnet_l0,43.240,56.760,59.910,40.090,24.14,288,1.000,bicubic,-52.210,-39.480,-100 +resnest26d,43.143,56.857,60.633,39.367,17.07,224,0.875,bilinear,-50.097,-38.217,+139 +vit_small_patch32_384,43.140,56.860,59.300,40.700,22.92,384,1.000,bicubic,-51.460,-39.840,-17 +twins_pcpvt_small,43.093,56.907,58.880,41.120,24.11,224,0.900,bicubic,-51.507,-40.270,-19 +resmlp_36_224,43.047,56.953,59.313,40.687,44.69,224,0.875,bicubic,-50.603,-39.597,+89 +dpn131,43.040,56.960,57.430,42.570,79.25,224,0.875,bicubic,-50.710,-41.410,+76 +cspresnet50,43.037,56.963,59.147,40.853,21.62,256,0.887,bilinear,-50.823,-39.713,+58 +tf_efficientnet_lite4,42.970,57.030,57.643,42.357,13.01,380,0.920,bilinear,-51.900,-41.447,-51 +twins_svt_small,42.917,57.083,58.460,41.540,24.06,224,0.900,bicubic,-51.853,-40.490,-46 +gluon_resnet152_v1b,42.900,57.100,57.737,42.263,60.19,224,0.875,bicubic,-51.130,-41.003,+36 +fbnetv3_d,42.883,57.117,59.693,40.307,10.31,256,0.950,bilinear,-50.957,-39.217,+58 +dpn107,42.863,57.137,57.370,42.630,86.92,224,0.875,bicubic,-51.097,-41.460,+41 +levit_256,42.820,57.180,57.907,42.093,18.89,224,0.900,bicubic,-51.580,-41.153,-7 +gluon_resnet152_v1c,42.803,57.197,57.733,42.267,60.21,224,0.875,bicubic,-51.087,-41.067,+45 +tf_efficientnet_b1_ap,42.803,57.197,58.810,41.190,7.79,240,0.882,bicubic,-50.827,-39.990,+84 +gcresnet50t,42.797,57.203,59.183,40.817,25.90,256,0.900,bicubic,-51.823,-39.937,-33 +gluon_xception65,42.787,57.213,58.817,41.183,39.92,299,0.903,bicubic,-51.233,-40.203,+31 +tresnet_l_448,42.740,57.260,58.947,41.053,55.99,448,0.875,bilinear,-52.660,-40.353,-114 +resnet50d,42.703,57.297,58.683,41.317,25.58,224,0.875,bicubic,-51.367,-40.237,+25 +gluon_seresnext50_32x4d,42.680,57.320,58.697,41.303,27.56,224,0.875,bicubic,-51.490,-40.243,+12 +xcit_tiny_12_p16_384_dist,42.587,57.413,58.090,41.910,6.72,384,1.000,bicubic,-51.943,-41.080,-24 +resnext101_32x8d,42.570,57.430,58.293,41.707,88.79,224,0.875,bilinear,-51.200,-40.657,+58 +seresnet50,42.517,57.483,58.680,41.320,28.09,224,0.875,bicubic,-51.563,-40.280,+20 +nf_resnet50,42.507,57.493,59.530,40.470,25.56,288,0.940,bicubic,-51.873,-39.540,-14 +resnetrs101,42.443,57.557,57.287,42.713,63.62,288,0.940,bicubic,-52.807,-41.923,-111 +jx_nest_tiny,42.327,57.673,57.047,42.953,17.06,224,0.875,bicubic,-52.623,-41.783,-79 +tf_efficientnetv2_b3,42.313,57.687,57.933,42.067,14.36,300,0.904,bicubic,-52.807,-41.267,-99 +convmixer_1024_20_ks9_p14,42.277,57.723,59.713,40.287,24.38,224,0.960,bicubic,-50.073,-38.707,+177 +dpn98,42.273,57.727,56.877,43.123,61.57,224,0.875,bicubic,-51.647,-42.043,+29 +deit_small_patch16_224,42.270,57.730,58.010,41.990,22.05,224,0.900,bicubic,-51.720,-40.950,+22 +xcit_tiny_24_p16_224,42.263,57.737,56.833,43.167,12.12,224,1.000,bicubic,-51.587,-42.067,+36 +tf_efficientnet_cc_b1_8e,42.230,57.770,58.420,41.580,39.72,240,0.882,bicubic,-51.340,-40.270,+78 +legacy_senet154,42.203,57.797,56.593,43.407,115.09,224,0.875,bilinear,-52.527,-42.507,-66 +cait_xxs24_384,42.177,57.823,57.460,42.540,12.03,384,1.000,bicubic,-52.763,-41.670,-86 +tf_efficientnet_b2,42.117,57.883,58.193,41.807,9.11,260,0.890,bicubic,-52.093,-40.837,-8 +gluon_resnext50_32x4d,42.043,57.957,57.663,42.337,25.03,224,0.875,bicubic,-51.607,-41.287,+60 +resnext50_32x4d,41.970,58.030,56.753,43.247,25.03,224,0.950,bicubic,-52.600,-42.047,-46 +ecaresnet50d_pruned,41.953,58.047,58.210,41.790,19.94,224,0.875,bicubic,-51.867,-40.790,+33 +efficientnet_b2,41.933,58.067,58.293,41.707,9.11,288,1.000,bicubic,-52.437,-40.757,-28 +xcit_tiny_12_p16_224_dist,41.933,58.067,57.233,42.767,6.72,224,1.000,bicubic,-51.407,-41.507,+94 +hrnet_w64,41.637,58.363,57.123,42.877,128.06,224,0.875,bilinear,-52.203,-41.807,+28 +dla102x2,41.637,58.363,57.957,42.043,41.28,224,0.875,bilinear,-52.363,-41.073,+10 +gluon_senet154,41.623,58.377,56.383,43.617,115.09,224,0.875,bicubic,-53.087,-42.587,-74 +inception_v4,41.573,58.427,55.383,44.617,42.68,299,0.875,bicubic,-52.807,-43.437,-35 +haloregnetz_b,41.543,58.457,57.083,42.917,11.68,224,0.940,bicubic,-52.977,-42.087,-46 +efficientnet_em,41.497,58.503,58.877,41.123,6.90,240,0.882,bicubic,-52.243,-40.053,+37 +efficientnet_el,41.493,58.507,58.303,41.697,10.59,300,0.904,bicubic,-53.177,-40.827,-71 +tf_efficientnet_cc_b0_8e,41.490,58.510,57.373,42.627,24.01,224,0.875,bicubic,-51.380,-41.087,+122 +halo2botnet50ts_256,41.477,58.523,56.200,43.800,22.64,256,0.950,bicubic,-53.533,-42.780,-111 +swin_tiny_patch4_window7_224,41.453,58.547,57.310,42.690,28.29,224,0.900,bicubic,-53.167,-41.720,-68 +cait_xxs24_224,41.390,58.610,57.520,42.480,11.96,224,1.000,bicubic,-52.100,-41.250,+68 +resnetv2_50,41.380,58.620,56.763,43.237,25.55,224,0.950,bicubic,-52.890,-42.167,-32 +tv_resnet152,41.333,58.667,57.517,42.483,60.19,224,0.875,bilinear,-51.907,-41.233,+89 +xception71,41.277,58.723,55.880,44.120,42.34,299,0.903,bicubic,-52.603,-43.070,+10 +dpn92,41.273,58.727,56.330,43.670,37.67,224,0.875,bicubic,-52.907,-42.600,-25 +gcresnext50ts,41.270,58.730,57.143,42.857,15.67,256,0.900,bicubic,-53.140,-41.847,-51 +adv_inception_v3,41.267,58.733,56.317,43.683,23.83,299,0.875,bicubic,-51.743,-42.513,+99 +gernet_s,41.250,58.750,58.830,41.170,8.17,224,0.875,bilinear,-51.190,-39.670,+141 +resnetblur50,41.073,58.927,57.083,42.917,25.56,224,0.875,bicubic,-52.637,-41.717,+28 +nf_regnet_b1,41.010,58.990,58.117,41.883,10.22,288,0.900,bicubic,-52.870,-40.623,+3 +gluon_resnet50_v1d,40.970,59.030,57.143,42.857,25.58,224,0.875,bicubic,-52.560,-41.567,+52 +fbnetv3_b,40.950,59.050,58.660,41.340,8.60,256,0.950,bilinear,-52.700,-40.030,+33 +gluon_inception_v3,40.903,59.097,55.617,44.383,23.83,299,0.875,bicubic,-52.637,-43.213,+49 +ese_vovnet39b,40.870,59.130,56.947,43.053,24.57,224,0.875,bicubic,-52.980,-41.813,+4 +levit_192,40.840,59.160,56.693,43.307,10.95,224,0.900,bicubic,-52.870,-42.127,+25 +resnet34d,40.810,59.190,56.533,43.467,21.82,224,0.875,bicubic,-51.830,-41.887,+120 +regnety_320,40.803,59.197,56.110,43.890,145.05,224,0.875,bicubic,-53.717,-42.850,-69 +xception,40.767,59.233,56.383,43.617,22.86,299,0.897,bicubic,-52.873,-42.377,+29 +resnet50_gn,40.740,59.260,55.743,44.257,25.56,224,0.940,bicubic,-53.440,-43.177,-38 +lamhalobotnet50ts_256,40.737,59.263,56.100,43.900,22.57,256,0.950,bicubic,-54.043,-42.880,-108 +skresnext50_32x4d,40.693,59.307,56.037,43.963,27.48,224,0.875,bicubic,-53.257,-42.793,-16 +gluon_resnet101_v1b,40.677,59.323,56.123,43.877,44.55,224,0.875,bicubic,-53.093,-42.567,+7 +hrnet_w40,40.670,59.330,56.757,43.243,57.56,224,0.875,bilinear,-53.040,-42.043,+13 +resmlp_24_224,40.643,59.357,56.570,43.430,30.02,224,0.875,bicubic,-52.797,-42.240,+49 +repvgg_b1,40.590,59.410,57.833,42.167,57.42,224,0.875,bilinear,-52.820,-40.957,+54 +halonet50ts,40.577,59.423,55.203,44.797,22.73,256,0.940,bicubic,-54.133,-43.617,-106 +tf_efficientnet_lite3,40.570,59.430,56.480,43.520,8.20,300,0.904,bilinear,-53.550,-42.480,-37 +tresnet_m_448,40.527,59.473,56.703,43.297,31.39,448,0.875,bilinear,-54.123,-42.447,-98 +xcit_tiny_12_p8_224,40.527,59.473,55.620,44.380,6.71,224,1.000,bicubic,-53.833,-43.450,-66 +dla169,40.503,59.497,57.260,42.740,53.39,224,0.875,bilinear,-53.297,-41.650,-4 +pit_xs_224,40.490,59.510,56.540,43.460,10.62,224,0.900,bicubic,-52.420,-42.230,+83 +repvgg_b2,40.467,59.533,57.773,42.227,89.02,224,0.875,bilinear,-53.123,-41.297,+25 +regnetx_320,40.450,59.550,55.663,44.337,107.81,224,0.875,bicubic,-53.770,-43.387,-57 +coat_mini,40.427,59.573,55.157,44.843,10.34,224,0.900,bicubic,-54.343,-43.923,-120 +skresnet34,40.397,59.603,56.737,43.263,22.28,224,0.875,bicubic,-52.173,-41.783,+107 +efficientnet_el_pruned,40.390,59.610,56.903,43.097,10.59,300,0.904,bicubic,-53.690,-42.117,-44 +efficientnet_b2_pruned,40.380,59.620,56.537,43.463,8.31,260,0.890,bicubic,-53.420,-42.303,-12 +resnet50,40.373,59.627,54.670,45.330,25.56,224,0.950,bicubic,-53.557,-43.800,-31 +wide_resnet101_2,40.373,59.627,55.783,44.217,126.89,224,0.875,bilinear,-53.347,-43.027,-4 +legacy_seresnext101_32x4d,40.350,59.650,54.827,45.173,48.96,224,0.875,bilinear,-53.770,-44.143,-51 +coat_lite_mini,40.347,59.653,55.707,44.293,11.01,224,0.900,bicubic,-53.113,-43.073,+30 +sebotnet33ts_256,40.340,59.660,53.207,46.793,13.70,256,0.940,bicubic,-53.970,-45.393,-75 +tf_efficientnet_b0_ap,40.340,59.660,56.777,43.223,5.29,224,0.875,bicubic,-52.270,-41.593,+95 +regnetx_160,40.270,59.730,56.060,43.940,54.28,224,0.875,bicubic,-53.620,-43.030,-34 +xception65,40.270,59.730,55.277,44.723,39.92,299,0.903,bicubic,-53.490,-43.583,-14 +densenet201,40.267,59.733,56.700,43.300,20.01,224,0.875,bicubic,-52.423,-41.950,+84 +resnext50d_32x4d,40.163,59.837,55.487,44.513,25.05,224,0.875,bicubic,-53.647,-43.253,-23 +eca_resnet33ts,40.130,59.870,56.997,43.003,19.68,256,0.900,bicubic,-53.730,-41.893,-32 +vit_base_patch16_224_sam,40.103,59.897,55.430,44.570,86.57,224,0.900,bicubic,-53.787,-43.460,-37 +hrnet_w48,40.097,59.903,56.640,43.360,77.47,224,0.875,bilinear,-53.933,-42.400,-53 +legacy_seresnet152,40.050,59.950,55.813,44.187,66.82,224,0.875,bilinear,-53.390,-43.037,+21 +hrnet_w30,40.030,59.970,57.117,42.883,37.71,224,0.875,bilinear,-53.360,-41.713,+29 +regnetz_b16,40.000,60.000,55.630,44.370,9.72,288,0.940,bicubic,-54.680,-43.530,-128 +regnetx_080,39.993,60.007,55.967,44.033,39.57,224,0.875,bicubic,-53.797,-42.933,-27 +tf_efficientnet_b1,39.980,60.020,56.130,43.870,7.79,240,0.882,bicubic,-53.730,-42.680,-17 +gluon_resnet101_v1c,39.950,60.050,55.310,44.690,44.57,224,0.875,bicubic,-53.740,-43.450,-15 +resmlp_12_distilled_224,39.850,60.150,57.447,42.553,15.35,224,0.875,bicubic,-53.020,-41.173,+62 +seresnet33ts,39.827,60.173,56.517,43.483,19.78,256,0.900,bicubic,-54.443,-42.263,-86 +tf_efficientnetv2_b0,39.777,60.223,56.287,43.713,7.14,224,0.875,bicubic,-53.283,-42.413,+40 +res2net50_26w_8s,39.767,60.233,54.907,45.093,48.40,224,0.875,bilinear,-53.653,-43.783,+18 +lambda_resnet50ts,39.733,60.267,54.350,45.650,21.54,256,0.950,bicubic,-54.837,-44.300,-121 +res2net101_26w_4s,39.713,60.287,54.553,45.447,45.21,224,0.875,bilinear,-53.807,-44.047,+3 +regnetx_120,39.690,60.310,55.650,44.350,46.11,224,0.875,bicubic,-54.570,-43.540,-89 +hrnet_w44,39.673,60.327,55.327,44.673,67.06,224,0.875,bilinear,-53.937,-43.623,-11 +vit_small_patch32_224,39.670,60.330,55.253,44.747,22.88,224,0.900,bicubic,-52.490,-43.257,+100 +resmlp_big_24_224,39.623,60.377,54.827,45.173,129.14,224,0.875,bicubic,-54.647,-43.993,-97 +densenet161,39.617,60.383,56.140,43.860,28.68,224,0.875,bicubic,-53.273,-42.670,+50 +mixnet_xl,39.610,60.390,55.880,44.120,11.90,224,0.875,bicubic,-54.620,-42.940,-93 +xception41,39.603,60.397,55.033,44.967,26.97,299,0.903,bicubic,-53.877,-43.717,+1 +tf_efficientnetv2_b1,39.570,60.430,55.347,44.653,8.14,240,0.882,bicubic,-54.140,-43.453,-31 +dla102x,39.563,60.437,56.307,43.693,26.31,224,0.875,bilinear,-53.957,-42.543,-7 +gcresnet33ts,39.550,60.450,55.823,44.177,19.88,256,0.900,bicubic,-54.270,-43.087,-50 +xcit_tiny_12_p16_224,39.547,60.453,55.023,44.977,6.72,224,1.000,bicubic,-52.913,-43.607,+75 +sehalonet33ts,39.537,60.463,54.003,45.997,13.69,256,0.940,bicubic,-54.993,-44.757,-128 +rexnet_130,39.487,60.513,56.633,43.367,7.56,224,0.875,bicubic,-54.193,-42.077,-32 +hrnet_w32,39.463,60.537,56.130,43.870,41.23,224,0.875,bilinear,-53.487,-42.710,+35 +levit_128,39.437,60.563,55.363,44.637,9.21,224,0.900,bicubic,-53.603,-43.317,+23 +resnetv2_50x1_bitm,39.430,60.570,57.853,42.147,25.55,448,1.000,bilinear,-55.320,-41.327,-163 +densenetblur121d,39.383,60.617,56.637,43.363,8.00,224,0.875,bicubic,-53.017,-41.773,+74 +regnety_064,39.383,60.617,55.787,44.213,30.58,224,0.875,bicubic,-54.747,-43.243,-93 +regnety_120,39.357,60.643,55.273,44.727,51.82,224,0.875,bicubic,-54.653,-43.757,-81 +tf_efficientnet_el,39.307,60.693,55.377,44.623,10.59,300,0.904,bicubic,-55.053,-43.723,-120 +tv_resnet101,39.290,60.710,55.793,44.207,44.55,224,0.875,bilinear,-53.590,-42.867,+35 +tf_inception_v3,39.240,60.760,54.310,45.690,23.83,299,0.875,bicubic,-53.960,-44.170,+9 +gluon_resnet50_v1s,39.230,60.770,55.013,44.987,25.68,224,0.875,bicubic,-54.360,-43.827,-29 +tf_efficientnetv2_b2,39.170,60.830,54.567,45.433,10.10,260,0.890,bicubic,-54.900,-44.363,-91 +densenet169,39.163,60.837,55.843,44.157,14.15,224,0.875,bicubic,-53.127,-42.747,+71 +legacy_seresnet101,39.027,60.973,55.003,44.997,49.33,224,0.875,bilinear,-54.243,-43.697,-1 +efficientnet_b1_pruned,39.010,60.990,55.640,44.360,6.33,240,0.882,bicubic,-53.960,-42.880,+20 +repvgg_b1g4,38.997,61.003,56.350,43.650,39.97,224,0.875,bilinear,-54.033,-42.360,+12 +crossvit_9_dagger_240,38.970,61.030,54.863,45.137,8.78,240,0.875,bicubic,-53.780,-43.647,+37 +inception_v3,38.960,61.040,53.847,46.153,23.83,299,0.875,bicubic,-53.940,-44.483,+24 +dpn68,38.943,61.057,54.947,45.053,12.61,224,0.875,bicubic,-53.317,-43.663,+67 +resnet33ts,38.927,61.073,55.580,44.420,19.68,256,0.900,bicubic,-54.703,-43.180,-46 +regnety_080,38.920,61.080,55.210,44.790,39.18,224,0.875,bicubic,-54.970,-43.790,-84 +legacy_seresnext50_32x4d,38.893,61.107,54.603,45.397,27.56,224,0.875,bilinear,-54.537,-44.197,-20 +dla102,38.840,61.160,55.320,44.680,33.27,224,0.875,bilinear,-54.420,-43.450,-9 +regnety_040,38.810,61.190,55.560,44.440,20.65,224,0.875,bicubic,-54.800,-43.180,-44 +densenet121,38.787,61.213,56.280,43.720,7.98,224,0.875,bicubic,-53.153,-42.000,+73 +resnet32ts,38.773,61.227,55.813,44.187,17.96,256,0.900,bicubic,-54.797,-42.937,-41 +regnetx_040,38.707,61.293,55.350,44.650,22.12,224,0.875,bicubic,-54.973,-43.590,-59 +res2net50_14w_8s,38.693,61.307,54.073,45.927,25.06,224,0.875,bilinear,-54.337,-44.747,+1 +res2net50_26w_6s,38.690,61.310,53.760,46.240,37.05,224,0.875,bilinear,-54.920,-45.200,-52 +regnetx_032,38.690,61.310,55.163,44.837,15.30,224,0.875,bicubic,-54.560,-43.567,-14 +selecsls60,38.617,61.383,55.630,44.370,30.67,224,0.875,bicubic,-54.393,-42.860,0 +dla60x,38.613,61.387,55.383,44.617,17.35,224,0.875,bilinear,-54.577,-43.327,-12 +tf_efficientnet_b0,38.613,61.387,55.957,44.043,5.29,224,0.875,bicubic,-53.787,-42.513,+47 +dla60_res2net,38.597,61.403,54.557,45.443,20.85,224,0.875,bilinear,-54.783,-44.303,-26 +selecsls60b,38.570,61.430,55.307,44.693,32.77,224,0.875,bicubic,-54.930,-43.533,-41 +repvgg_a2,38.560,61.440,55.763,44.237,28.21,224,0.875,bilinear,-54.120,-42.757,+22 +hardcorenas_f,38.507,61.493,55.663,44.337,8.20,224,0.875,bilinear,-54.473,-42.957,-3 +dla60_res2next,38.453,61.547,54.953,45.047,17.03,224,0.875,bilinear,-55.117,-43.837,-54 +resmlp_12_224,38.443,61.557,56.323,43.677,15.35,224,0.875,bicubic,-53.677,-42.247,+53 +regnetx_064,38.427,61.573,54.993,45.007,26.21,224,0.875,bicubic,-55.193,-44.057,-63 +gluon_resnet50_v1b,38.413,61.587,54.810,45.190,25.56,224,0.875,bicubic,-54.147,-43.740,+28 +tf_efficientnet_cc_b0_4e,38.407,61.593,55.150,44.850,13.31,224,0.875,bicubic,-54.433,-43.290,+7 +hrnet_w18,38.267,61.733,55.640,44.360,21.30,224,0.875,bilinear,-54.483,-43.020,+12 +tinynet_a,38.220,61.780,55.180,44.820,6.19,192,0.875,bicubic,-54.570,-43.380,+9 +mixnet_l,38.157,61.843,54.753,45.247,7.33,224,0.875,bicubic,-55.113,-43.987,-33 +hardcorenas_e,38.130,61.870,55.163,44.837,8.07,224,0.875,bilinear,-54.820,-43.407,-10 +efficientnet_b1,38.087,61.913,54.010,45.990,7.79,256,1.000,bicubic,-54.943,-44.690,-17 +coat_lite_tiny,38.063,61.937,53.467,46.533,5.72,224,0.900,bicubic,-54.797,-45.163,-1 +gmixer_24_224,38.057,61.943,52.083,47.917,24.72,224,0.875,bicubic,-54.623,-46.197,+8 +resnetrs50,37.957,62.043,53.310,46.690,35.69,224,0.910,bicubic,-56.063,-45.540,-125 +hardcorenas_c,37.887,62.113,55.720,44.280,5.52,224,0.875,bilinear,-54.443,-42.630,+31 +gluon_resnet50_v1c,37.850,62.150,54.117,45.883,25.58,224,0.875,bicubic,-55.070,-44.573,-14 +res2net50_26w_4s,37.817,62.183,53.080,46.920,25.70,224,0.875,bilinear,-55.363,-45.590,-32 +efficientnet_es,37.777,62.223,54.977,45.023,5.44,224,0.875,bicubic,-55.143,-43.733,-15 +resnest14d,37.773,62.227,56.463,43.537,10.61,224,0.875,bilinear,-53.347,-41.867,+73 +tv_resnext50_32x4d,37.743,62.257,54.100,45.900,25.03,224,0.875,bilinear,-55.167,-44.620,-15 +resnet26t,37.697,62.303,55.257,44.743,16.01,256,0.940,bicubic,-54.973,-43.323,+4 +ecaresnet26t,37.643,62.357,54.350,45.650,16.01,320,0.950,bicubic,-56.307,-44.570,-128 +hardcorenas_d,37.550,62.450,54.727,45.273,7.50,224,0.875,bilinear,-55.050,-43.703,+6 +res2next50,37.487,62.513,52.867,47.133,24.67,224,0.875,bilinear,-55.653,-45.783,-37 +resnet34,37.453,62.547,54.300,45.700,21.80,224,0.875,bilinear,-53.747,-43.940,+62 +pit_ti_distilled_224,37.327,62.673,55.133,44.867,5.10,224,0.900,bicubic,-53.573,-43.087,+73 +lambda_resnet26t,37.293,62.707,53.567,46.433,10.96,256,0.940,bicubic,-56.107,-45.173,-57 +hardcorenas_b,37.230,62.770,55.067,44.933,5.18,224,0.875,bilinear,-54.700,-43.333,+35 +mobilenetv3_large_100_miil,37.213,62.787,53.513,46.487,5.48,224,0.875,bilinear,-55.037,-44.737,+22 +eca_halonext26ts,37.177,62.823,53.117,46.883,10.76,256,0.940,bicubic,-56.383,-45.563,-79 +res2net50_48w_2s,37.123,62.877,53.343,46.657,25.29,224,0.875,bilinear,-55.667,-45.137,-15 +lambda_resnet26rpt_256,37.077,62.923,53.840,46.160,10.99,256,0.940,bicubic,-56.353,-45.040,-67 +dla60,37.073,62.927,54.203,45.797,22.04,224,0.875,bilinear,-55.597,-44.427,-10 +bat_resnext26ts,37.063,62.937,53.747,46.253,10.73,256,0.900,bicubic,-56.037,-44.983,-46 +rexnet_100,37.057,62.943,54.030,45.970,4.80,224,0.875,bicubic,-55.783,-44.590,-23 +regnety_016,37.013,62.987,54.083,45.917,11.20,224,0.875,bicubic,-55.987,-44.597,-39 +tf_mixnet_l,36.977,63.023,52.577,47.423,7.33,224,0.875,bicubic,-56.063,-45.963,-46 +botnet26t_256,36.970,63.030,53.073,46.927,12.49,256,0.950,bicubic,-56.460,-45.587,-74 +legacy_seresnet50,36.873,63.127,53.473,46.527,28.09,224,0.875,bilinear,-55.797,-45.177,-15 +halonet26t,36.843,63.157,52.290,47.710,12.48,256,0.950,bicubic,-56.757,-46.350,-95 +tv_densenet121,36.807,63.193,54.030,45.970,7.98,224,0.875,bicubic,-54.603,-44.220,+39 +tf_efficientnet_lite2,36.803,63.197,53.323,46.677,6.09,260,0.890,bicubic,-55.777,-45.227,-11 +mobilenetv2_120d,36.783,63.217,54.047,45.953,5.83,224,0.875,bicubic,-55.827,-44.453,-16 +tf_efficientnet_lite1,36.740,63.260,53.587,46.413,5.42,240,0.882,bicubic,-55.570,-44.903,+3 +regnetx_016,36.680,63.320,53.307,46.693,9.19,224,0.875,bicubic,-55.860,-45.243,-11 +eca_botnext26ts_256,36.670,63.330,52.477,47.523,10.59,256,0.950,bicubic,-56.690,-46.223,-73 +hardcorenas_a,36.643,63.357,54.910,45.090,5.26,224,0.875,bilinear,-54.977,-43.260,+25 +levit_128s,36.623,63.377,53.137,46.863,7.78,224,0.900,bicubic,-54.877,-45.263,+27 +efficientnet_b0,36.603,63.397,53.487,46.513,5.29,224,0.875,bicubic,-55.877,-45.193,-14 +vit_base_patch32_224_sam,36.547,63.453,53.043,46.957,88.22,224,0.900,bicubic,-53.313,-44.557,+66 +xcit_nano_12_p8_224_dist,36.540,63.460,52.883,47.117,3.05,224,1.000,bicubic,-55.880,-45.647,-10 +tf_efficientnet_em,36.370,63.630,52.843,47.157,6.90,240,0.882,bicubic,-56.810,-45.827,-66 +skresnet18,36.320,63.680,54.193,45.807,11.96,224,0.875,bicubic,-53.850,-43.587,+59 +repvgg_b0,36.277,63.723,54.050,45.950,15.82,224,0.875,bilinear,-55.403,-44.400,+15 +tv_resnet50,36.183,63.817,52.807,47.193,25.56,224,0.875,bilinear,-55.937,-45.613,+2 +xcit_nano_12_p16_384_dist,36.150,63.850,53.253,46.747,3.05,384,1.000,bicubic,-55.960,-45.267,+2 +legacy_seresnet34,36.140,63.860,52.553,47.447,21.96,224,0.875,bilinear,-55.340,-45.647,+19 +coat_tiny,36.123,63.877,51.060,48.940,5.50,224,0.900,bicubic,-57.387,-47.630,-102 +tv_resnet34,36.087,63.913,53.533,46.467,21.80,224,0.875,bilinear,-54.203,-44.447,+51 +deit_tiny_distilled_patch16_224,36.027,63.973,54.230,45.770,5.91,224,0.900,bicubic,-55.083,-44.040,+34 +mobilenetv2_140,36.017,63.983,53.950,46.050,6.11,224,0.875,bicubic,-56.033,-44.300,-1 +tf_efficientnet_lite0,35.927,64.073,53.470,46.530,4.65,224,0.875,bicubic,-55.373,-44.620,+20 +seresnext26ts,35.827,64.173,53.930,46.070,10.39,256,0.900,bicubic,-56.983,-44.670,-48 +selecsls42b,35.817,64.183,52.497,47.503,32.46,224,0.875,bicubic,-56.663,-45.943,-28 +xcit_nano_12_p8_384_dist,35.777,64.223,52.300,47.700,3.05,384,1.000,bicubic,-57.503,-46.550,-90 +gluon_resnet34_v1b,35.767,64.233,52.183,47.817,21.80,224,0.875,bicubic,-55.333,-45.997,+29 +dla34,35.640,64.360,52.783,47.217,15.74,224,0.875,bilinear,-55.590,-45.397,+18 +mixnet_m,35.637,64.363,52.433,47.567,5.01,224,0.875,bicubic,-56.633,-45.917,-19 +efficientnet_lite0,35.633,64.367,53.653,46.347,4.65,224,0.875,bicubic,-55.617,-44.597,+15 +ssl_resnet18,35.590,64.410,53.737,46.263,11.69,224,0.875,bilinear,-55.110,-44.293,+32 +mobilenetv3_rw,35.547,64.453,53.713,46.287,5.48,224,0.875,bicubic,-55.993,-44.557,+3 +efficientnet_es_pruned,35.397,64.603,52.843,47.157,5.44,224,0.875,bicubic,-56.313,-45.567,-4 +mobilenetv2_110d,35.287,64.713,52.837,47.163,4.52,224,0.875,bicubic,-56.063,-45.353,+8 +tf_mixnet_m,35.187,64.813,50.983,49.017,5.01,224,0.875,bicubic,-57.013,-47.437,-20 +hrnet_w18_small_v2,35.177,64.823,52.420,47.580,15.60,224,0.875,bilinear,-55.993,-45.920,+13 +resnet18d,35.127,64.873,52.893,47.107,11.71,224,0.875,bicubic,-54.863,-44.937,+38 +xcit_nano_12_p16_224_dist,35.127,64.873,52.550,47.450,3.05,224,1.000,bicubic,-55.043,-45.210,+36 +eca_resnext26ts,35.057,64.943,52.303,47.697,10.30,256,0.900,bicubic,-57.353,-46.317,-36 +resnext26ts,35.043,64.957,53.420,46.580,10.30,256,0.900,bicubic,-57.177,-44.830,-27 +convit_tiny,35.043,64.957,51.773,48.227,5.71,224,0.875,bicubic,-55.507,-46.447,+25 +gcresnext26ts,34.937,65.063,51.667,48.333,10.48,256,0.900,bicubic,-57.533,-46.823,-44 +tinynet_b,34.873,65.127,52.017,47.983,3.73,188,0.875,bicubic,-56.257,-46.053,+9 +ese_vovnet19b_dw,34.823,65.177,52.047,47.953,6.54,224,0.875,bicubic,-57.187,-46.463,-22 +regnety_008,34.807,65.193,51.750,48.250,6.26,224,0.875,bicubic,-57.103,-46.670,-20 +pit_ti_224,34.677,65.323,52.150,47.850,4.85,224,0.900,bicubic,-55.763,-45.860,+23 +crossvit_9_240,34.603,65.397,51.767,48.233,8.55,240,0.875,bicubic,-56.447,-46.543,+11 +mobilenetv3_large_100,34.603,65.397,52.863,47.137,5.48,224,0.875,bicubic,-56.877,-45.457,-10 +seresnext26d_32x4d,34.543,65.457,51.550,48.450,16.81,224,0.875,bicubic,-57.887,-46.990,-48 +seresnext26t_32x4d,34.537,65.463,51.380,48.620,16.81,224,0.875,bicubic,-58.283,-47.180,-75 +mixer_b16_224,34.430,65.570,48.080,51.920,59.88,224,0.875,bicubic,-56.710,-49.320,0 +resnet26d,34.280,65.720,51.693,48.307,16.01,224,0.875,bicubic,-57.970,-46.757,-39 +tf_efficientnet_es,34.260,65.740,51.357,48.643,5.44,224,0.875,bicubic,-57.840,-47.073,-33 +fbnetc_100,34.253,65.747,51.190,48.810,5.57,224,0.875,bilinear,-57.007,-46.640,-10 +regnety_006,34.157,65.843,51.273,48.727,6.06,224,0.875,bicubic,-57.403,-47.157,-21 +tf_mobilenetv3_large_100,33.950,66.050,51.480,48.520,5.48,224,0.875,bilinear,-57.470,-46.780,-16 +semnasnet_075,33.790,66.210,52.420,47.580,2.91,224,0.875,bicubic,-56.410,-45.550,+15 +regnetx_008,33.773,66.227,50.540,49.460,7.26,224,0.875,bicubic,-57.387,-47.840,-8 +mnasnet_100,33.763,66.237,51.177,48.823,4.38,224,0.875,bicubic,-57.437,-46.873,-12 +lcnet_100,33.757,66.243,52.100,47.900,2.95,224,0.875,bicubic,-55.193,-45.280,+28 +vit_tiny_r_s16_p8_384,33.653,66.347,50.687,49.313,6.36,384,1.000,bicubic,-58.077,-47.743,-33 +xcit_nano_12_p8_224,33.577,66.423,50.227,49.773,3.05,224,1.000,bicubic,-57.543,-48.013,-8 +vit_tiny_patch16_384,33.543,66.457,51.073,48.927,5.79,384,1.000,bicubic,-59.887,-47.757,-135 +semnasnet_100,33.520,66.480,50.777,49.223,3.89,224,0.875,bicubic,-58.140,-47.493,-32 +resnet26,33.507,66.493,50.920,49.080,16.00,224,0.875,bicubic,-57.943,-47.350,-26 +mixnet_s,33.487,66.513,50.993,49.007,4.13,224,0.875,bicubic,-58.293,-47.307,-39 +spnasnet_100,33.483,66.517,51.267,48.733,4.42,224,0.875,bilinear,-57.117,-46.683,-3 +crossvit_tiny_240,33.360,66.640,49.897,50.103,7.01,240,0.875,bicubic,-57.180,-48.053,-2 +vgg19_bn,33.230,66.770,50.803,49.197,143.68,224,0.875,bilinear,-57.760,-47.307,-10 +ghostnet_100,33.207,66.793,51.157,48.843,5.18,224,0.875,bilinear,-57.233,-46.673,-2 +regnetx_006,33.147,66.853,50.253,49.747,6.20,224,0.875,bicubic,-57.623,-47.847,-10 +resnet18,33.067,66.933,51.180,48.820,11.69,224,0.875,bilinear,-55.083,-45.940,+21 +xcit_nano_12_p16_224,32.957,67.043,49.993,50.007,3.05,224,1.000,bicubic,-56.013,-47.397,+14 +legacy_seresnext26_32x4d,32.760,67.240,49.253,50.747,16.79,224,0.875,bicubic,-59.820,-49.157,-83 +hrnet_w18_small,32.663,67.337,50.593,49.407,13.19,224,0.875,bilinear,-57.217,-47.307,+1 +deit_tiny_patch16_224,32.657,67.343,50.267,49.733,5.72,224,0.900,bicubic,-56.963,-47.693,+4 +legacy_seresnet18,32.593,67.407,50.323,49.677,11.78,224,0.875,bicubic,-56.667,-47.357,+7 +mobilenetv2_100,32.517,67.483,50.800,49.200,3.50,224,0.875,bicubic,-57.313,-47.030,0 +regnetx_004,32.513,67.487,49.337,50.663,5.16,224,0.875,bicubic,-56.957,-48.433,+2 +gluon_resnet18_v1b,32.407,67.593,49.727,50.273,11.69,224,0.875,bicubic,-56.253,-47.373,+9 +regnety_004,32.323,67.677,49.447,50.553,4.34,224,0.875,bicubic,-58.447,-48.633,-19 +tf_mixnet_s,32.183,67.817,48.493,51.507,4.13,224,0.875,bicubic,-59.497,-49.747,-51 +vit_tiny_patch16_224,32.023,67.977,49.017,50.983,5.72,224,0.900,bicubic,-59.887,-49.323,-57 +tf_mobilenetv3_large_075,31.867,68.133,49.120,50.880,3.99,224,0.875,bilinear,-58.453,-48.750,-14 +tf_mobilenetv3_large_minimal_100,31.597,68.403,49.340,50.660,3.92,224,0.875,bilinear,-57.573,-47.980,+1 +vit_tiny_r_s16_p8_224,30.803,69.197,47.647,52.353,6.34,224,0.900,bicubic,-58.547,-50.053,-3 +tinynet_c,30.510,69.490,48.480,51.520,2.46,184,0.875,bicubic,-57.910,-48.780,+3 +lcnet_075,30.370,69.630,48.763,51.237,2.36,224,0.875,bicubic,-56.570,-47.767,+11 +vgg16_bn,30.357,69.643,47.257,52.743,138.37,224,0.875,bilinear,-60.183,-50.733,-22 +mnasnet_small,29.997,70.003,48.650,51.350,2.03,224,0.875,bicubic,-54.923,-47.280,+14 +regnety_002,29.690,70.310,46.813,53.187,3.16,224,0.875,bicubic,-58.500,-50.607,+1 +vgg13_bn,28.893,71.107,46.737,53.263,133.05,224,0.875,bilinear,-60.307,-50.783,-7 +regnetx_002,28.860,71.140,45.420,54.580,2.68,224,0.875,bicubic,-58.520,-51.570,+2 +mobilenetv2_050,28.680,71.320,46.597,53.403,1.97,224,0.875,bicubic,-56.310,-49.023,+9 +vgg19,28.577,71.423,45.167,54.833,143.67,224,0.875,bilinear,-61.103,-52.383,-16 +dla60x_c,28.447,71.553,46.193,53.807,1.32,224,0.875,bilinear,-58.663,-50.947,+1 +vgg11_bn,28.423,71.577,46.443,53.557,132.87,224,0.875,bilinear,-59.967,-50.827,-6 +tinynet_d,27.967,72.033,45.853,54.147,2.34,152,0.875,bicubic,-57.463,-50.167,+4 +vgg16,27.877,72.123,44.673,55.327,138.36,224,0.875,bilinear,-61.483,-52.847,-17 +tf_mobilenetv3_small_100,27.290,72.710,44.427,55.573,2.54,224,0.875,bilinear,-58.680,-51.983,0 +mixer_l16_224,26.850,73.150,37.917,62.083,208.20,224,0.875,bicubic,-60.120,-56.123,-3 +vgg11,26.533,73.467,43.460,56.540,132.86,224,0.875,bilinear,-60.807,-53.650,-6 +vgg13,26.270,73.730,43.373,56.627,133.05,224,0.875,bilinear,-61.300,-53.747,-9 +lcnet_050,26.220,73.780,44.573,55.427,1.88,224,0.875,bicubic,-56.780,-50.447,+3 +dla46x_c,26.217,73.783,43.780,56.220,1.07,224,0.875,bilinear,-59.263,-52.660,-4 +tf_mobilenetv3_small_075,26.203,73.797,43.643,56.357,2.04,224,0.875,bilinear,-58.327,-52.247,0 +dla46_c,25.500,74.500,43.800,56.200,1.30,224,0.875,bilinear,-59.170,-52.400,-2 +tf_mobilenetv3_small_minimal_100,25.107,74.893,42.927,57.073,2.04,224,0.875,bilinear,-57.573,-52.083,0 +tinynet_e,23.363,76.637,41.087,58.913,2.04,106,0.875,bicubic,-56.437,-52.893,0 diff --git a/results/results-imagenet-real.csv b/results/results-imagenet-real.csv index f833fafc86..56959e800a 100644 --- a/results/results-imagenet-real.csv +++ b/results/results-imagenet-real.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation,top1_diff,top5_diff,rank_diff -beit_large_patch16_512,90.695,9.305,98.770,1.230,305.67,512,1.000,bicubic,+2.111,+0.110,0 -beit_large_patch16_384,90.601,9.399,98.777,1.223,305.00,384,1.000,bicubic,+2.219,+0.169,0 -tf_efficientnet_l2_ns,90.572,9.428,98.779,1.221,480.31,800,0.960,bicubic,+2.226,+0.125,0 -tf_efficientnet_l2_ns_475,90.527,9.473,98.706,1.294,480.31,475,0.936,bicubic,+2.289,+0.156,0 -beit_base_patch16_384,90.388,9.612,98.730,1.270,86.74,384,1.000,bicubic,+3.580,+0.590,+4 -vit_large_patch16_384,90.202,9.798,98.655,1.345,304.72,384,1.000,bicubic,+3.110,+0.349,+1 -cait_m48_448,90.194,9.806,98.484,1.516,356.46,448,1.000,bicubic,+3.700,+0.734,+3 -beit_large_patch16_224,90.157,9.843,98.730,1.270,304.43,224,0.900,bicubic,+2.681,+0.412,-3 -tf_efficientnet_b7_ns,90.134,9.866,98.617,1.383,66.35,600,0.949,bicubic,+3.304,+0.533,-1 -swin_large_patch4_window12_384,90.066,9.934,98.668,1.332,196.74,384,1.000,bicubic,+2.916,+0.430,-4 -swin_base_patch4_window12_384,90.063,9.937,98.713,1.287,87.90,384,1.000,bicubic,+3.627,+0.647,+1 -cait_m36_384,90.046,9.954,98.497,1.503,271.22,384,1.000,bicubic,+3.990,+0.767,+7 -dm_nfnet_f6,90.025,9.975,98.542,1.458,438.36,576,0.956,bicubic,+3.895,+0.802,+4 -tf_efficientnetv2_l_in21ft1k,89.999,10.001,98.621,1.379,118.52,480,1.000,bicubic,+3.707,+0.637,+1 -vit_base_patch16_384,89.965,10.035,98.680,1.319,86.86,384,1.000,bicubic,+3.965,+0.674,+5 -xcit_large_24_p8_384_dist,89.893,10.107,98.373,1.627,188.93,384,1.000,bicubic,+3.897,+0.685,+5 -cait_s36_384,89.837,10.163,98.427,1.573,68.37,384,1.000,bicubic,+4.383,+0.945,+14 -xcit_medium_24_p8_384_dist,89.805,10.195,98.358,1.642,84.32,384,1.000,bicubic,+3.985,+0.764,+5 -swin_large_patch4_window7_224,89.796,10.204,98.646,1.354,196.53,224,0.900,bicubic,+3.480,+0.756,-5 -vit_large_r50_s32_384,89.790,10.210,98.516,1.484,329.09,384,1.000,bicubic,+3.610,+0.592,-4 -tf_efficientnetv2_m_in21ft1k,89.777,10.223,98.501,1.499,54.14,480,1.000,bicubic,+4.179,+0.749,+6 -tf_efficientnet_b6_ns,89.760,10.240,98.505,1.494,43.04,528,0.942,bicubic,+3.314,+0.625,-11 -xcit_small_24_p8_384_dist,89.737,10.263,98.427,1.573,47.63,384,1.000,bicubic,+4.171,+0.851,+5 -xcit_large_24_p16_384_dist,89.660,10.340,98.405,1.595,189.10,384,1.000,bicubic,+3.890,+0.871,+1 -tf_efficientnet_b5_ns,89.658,10.342,98.488,1.512,30.39,456,0.934,bicubic,+3.582,+0.736,-7 -tf_efficientnet_b8_ap,89.589,10.411,98.298,1.702,87.41,672,0.954,bicubic,+4.215,+1.000,+10 -tf_efficientnetv2_xl_in21ft1k,89.566,10.434,98.185,1.815,208.12,512,1.000,bicubic,+3.162,+0.317,-14 -dm_nfnet_f4,89.538,10.462,98.294,1.706,316.07,512,0.951,bicubic,+3.838,+0.780,-2 -xcit_small_12_p8_384_dist,89.525,10.475,98.296,1.704,26.21,384,1.000,bicubic,+4.443,+1.026,+15 -xcit_large_24_p8_224_dist,89.519,10.481,98.224,1.776,188.93,224,1.000,bicubic,+4.119,+0.808,+5 -cait_s24_384,89.500,10.500,98.362,1.638,47.06,384,1.000,bicubic,+4.456,+1.012,+17 -dm_nfnet_f3,89.478,10.522,98.392,1.608,254.92,416,0.940,bicubic,+3.946,+0.934,-3 -xcit_medium_24_p16_384_dist,89.476,10.524,98.296,1.704,84.40,384,1.000,bicubic,+4.050,+0.888,0 -dm_nfnet_f5,89.451,10.549,98.309,1.691,377.21,544,0.954,bicubic,+3.645,+0.827,-10 -beit_base_patch16_224,89.438,10.562,98.520,1.480,86.53,224,0.900,bicubic,+4.198,+0.866,+4 -deit_base_distilled_patch16_384,89.431,10.569,98.444,1.556,87.63,384,1.000,bicubic,+4.009,+1.112,-2 -tf_efficientnet_b7_ap,89.419,10.581,98.341,1.659,66.35,600,0.949,bicubic,+4.299,+1.091,+4 -tf_efficientnetv2_l,89.361,10.639,98.273,1.727,118.52,480,1.000,bicubic,+3.859,+0.903,-8 -tf_efficientnet_b6_ap,89.338,10.662,98.281,1.719,43.04,528,0.942,bicubic,+4.554,+1.143,+18 -tf_efficientnet_b8,89.338,10.662,98.305,1.695,87.41,672,0.954,bicubic,+3.988,+0.913,-3 -tf_efficientnet_b4_ns,89.323,10.678,98.352,1.648,19.34,380,0.922,bicubic,+4.173,+0.882,-1 -vit_large_patch16_224,89.308,10.692,98.397,1.603,304.33,224,0.900,bicubic,+3.470,+0.571,-20 -xcit_small_24_p16_384_dist,89.305,10.694,98.332,1.667,47.67,384,1.000,bicubic,+4.201,+1.016,-1 -xcit_medium_24_p8_224_dist,89.286,10.714,98.194,1.806,84.32,224,1.000,bicubic,+4.218,+0.918,+1 -tf_efficientnetv2_m,89.284,10.716,98.241,1.759,54.14,480,1.000,bicubic,+4.238,+0.957,+2 -xcit_small_24_p8_224_dist,89.207,10.793,98.249,1.751,47.63,224,1.000,bicubic,+4.331,+1.051,+9 -xcit_small_12_p16_384_dist,89.203,10.797,98.219,1.781,26.25,384,1.000,bicubic,+4.489,+1.103,+12 -swin_base_patch4_window7_224,89.190,10.810,98.424,1.576,87.77,224,0.900,bicubic,+3.922,+0.866,-10 -eca_nfnet_l2,89.158,10.842,98.313,1.687,56.72,384,1.000,bicubic,+4.438,+1.055,+9 -cait_xs24_384,89.143,10.857,98.290,1.710,26.67,384,1.000,bicubic,+5.089,+1.404,+32 -ig_resnext101_32x32d,89.109,10.891,98.185,1.815,468.53,224,0.875,bilinear,+4.015,+0.747,-8 -ig_resnext101_32x48d,89.107,10.893,98.127,1.873,828.41,224,0.875,bilinear,+3.677,+0.545,-20 -tf_efficientnet_b7,89.086,10.914,98.181,1.819,66.35,600,0.949,bicubic,+4.150,+0.975,0 -ecaresnet269d,89.075,10.925,98.236,1.764,102.09,352,1.000,bicubic,+4.089,+1.008,-4 -xcit_large_24_p16_224_dist,89.045,10.955,98.066,1.934,189.10,224,1.000,bicubic,+4.115,+0.936,-1 -resmlp_big_24_224_in22ft1k,89.019,10.981,98.215,1.785,129.14,224,0.875,bicubic,+4.595,+1.099,+12 -xcit_small_12_p8_224_dist,89.007,10.993,98.078,1.922,26.21,224,1.000,bicubic,+4.767,+1.206,+19 -efficientnetv2_rw_m,88.994,11.006,98.211,1.789,53.24,416,1.000,bicubic,+4.172,+1.065,-2 -dm_nfnet_f2,88.985,11.015,98.187,1.813,193.78,352,0.920,bicubic,+3.939,+0.949,-13 -tf_efficientnet_b5_ap,88.936,11.064,98.168,1.832,30.39,456,0.934,bicubic,+4.678,+1.192,+15 -dm_nfnet_f1,88.915,11.085,98.115,1.885,132.63,320,0.910,bicubic,+4.291,+1.019,0 -tf_efficientnetv2_s_in21ft1k,88.889,11.111,98.275,1.725,21.46,384,1.000,bicubic,+4.593,+1.019,+9 -vit_base_patch16_224,88.857,11.143,98.232,1.768,86.57,224,0.900,bicubic,+4.317,+0.926,-1 -resnetrs270,88.836,11.164,98.140,1.860,129.86,352,1.000,bicubic,+4.396,+0.986,+2 -resnetrs420,88.832,11.168,98.021,1.979,191.89,416,1.000,bicubic,+3.824,+0.895,-16 -vit_small_r26_s32_384,88.814,11.186,98.335,1.665,36.47,384,1.000,bicubic,+4.764,+1.013,+17 -xcit_medium_24_p16_224_dist,88.806,11.194,98.038,1.962,84.40,224,1.000,bicubic,+4.528,+1.096,+5 -ig_resnext101_32x16d,88.804,11.196,98.049,1.951,194.03,224,0.875,bilinear,+4.638,+0.853,+10 -seresnet152d,88.804,11.196,98.174,1.825,66.84,320,1.000,bicubic,+4.442,+1.132,+1 -vit_base_r50_s16_384,88.804,11.196,98.241,1.759,98.95,384,1.000,bicubic,+3.820,+0.943,-19 -xcit_tiny_24_p8_384_dist,88.784,11.216,98.160,1.840,12.11,384,1.000,bicubic,+5.020,+1.456,+27 -resnetrs350,88.757,11.243,98.038,1.962,163.96,384,1.000,bicubic,+4.045,+1.048,-12 -swsl_resnext101_32x8d,88.757,11.243,98.140,1.860,88.79,224,0.875,bilinear,+4.483,+0.966,+1 -tf_efficientnet_b6,88.757,11.243,98.066,1.934,43.04,528,0.942,bicubic,+4.645,+1.178,+6 -vit_base_patch16_224_miil,88.748,11.252,98.029,1.971,86.54,224,0.875,bilinear,+4.472,+1.231,-2 -resnetv2_152x2_bitm,88.708,11.292,98.303,1.697,236.34,448,1.000,bilinear,+4.256,+0.867,-12 -regnety_160,88.697,11.303,98.066,1.934,83.59,288,1.000,bicubic,+4.995,+1.284,+24 -pit_b_distilled_224,88.678,11.322,98.096,1.905,74.79,224,0.900,bicubic,+4.520,+1.238,+1 -regnetz_d,88.652,11.348,98.087,1.913,27.58,320,0.950,bicubic,+4.618,+1.217,+6 -eca_nfnet_l1,88.633,11.367,98.132,1.868,41.41,320,1.000,bicubic,+4.601,+1.100,+6 -vit_small_patch16_384,88.624,11.376,98.239,1.761,22.20,384,1.000,bicubic,+4.830,+1.131,+16 -resnetrs200,88.597,11.403,98.038,1.962,93.21,320,1.000,bicubic,+4.539,+1.164,-1 -resnetv2_152x4_bitm,88.552,11.448,98.189,1.810,936.53,480,1.000,bilinear,+3.614,+0.731,-31 -xcit_small_24_p16_224_dist,88.535,11.465,98.002,1.998,47.67,224,1.000,bicubic,+4.661,+1.274,+6 -resnet200d,88.533,11.467,97.957,2.043,64.69,320,1.000,bicubic,+4.563,+1.139,+3 -resnest269e,88.526,11.474,98.021,1.979,110.93,416,0.928,bicubic,+4.002,+1.035,-23 -efficientnetv2_rw_s,88.484,11.517,97.976,2.024,23.94,384,1.000,bicubic,+4.654,+1.254,+7 -crossvit_18_dagger_408,88.477,11.523,97.895,2.105,44.61,408,1.000,bicubic,+4.293,+1.073,-11 -cait_s24_224,88.451,11.549,97.950,2.050,46.92,224,1.000,bicubic,+4.989,+1.384,+17 -resmlp_big_24_distilled_224,88.447,11.553,97.940,2.060,129.14,224,0.875,bicubic,+4.851,+1.284,+14 -tf_efficientnet_b3_ns,88.441,11.559,98.031,1.968,12.23,300,0.904,bicubic,+4.399,+1.123,-7 -resnetv2_101x3_bitm,88.430,11.570,98.153,1.847,387.93,448,1.000,bilinear,+4.000,+0.781,-25 -resnest200e,88.424,11.576,98.049,1.951,70.20,320,0.909,bicubic,+4.576,+1.159,-2 -vit_large_r50_s32_224,88.424,11.576,98.072,1.928,328.99,224,0.900,bicubic,+3.984,+1.102,-29 -resnetv2_50x3_bitm,88.415,11.585,98.183,1.817,217.32,448,1.000,bilinear,+4.431,+1.053,-8 -tf_efficientnetv2_s,88.396,11.604,97.927,2.073,21.46,384,1.000,bicubic,+4.498,+1.229,-7 -efficientnet_b4,88.366,11.634,97.957,2.043,19.34,384,1.000,bicubic,+4.936,+1.363,+10 -tf_efficientnet_b4_ap,88.351,11.649,97.891,2.109,19.34,380,0.922,bicubic,+5.093,+1.495,+16 -resnet152d,88.347,11.653,97.929,2.071,60.21,320,1.000,bicubic,+4.683,+1.195,+4 -tf_efficientnet_b5,88.315,11.685,97.914,2.086,30.39,456,0.934,bicubic,+4.505,+1.166,-4 -crossvit_15_dagger_408,88.298,11.702,97.874,2.127,28.50,408,1.000,bicubic,+4.472,+1.088,-6 -xcit_small_12_p16_224_dist,88.251,11.749,97.856,2.144,26.25,224,1.000,bicubic,+4.901,+1.434,+9 -resnetrs152,88.246,11.754,97.733,2.267,86.62,320,1.000,bicubic,+4.536,+1.123,-3 -deit_base_distilled_patch16_224,88.217,11.783,97.920,2.080,87.34,224,0.900,bicubic,+4.829,+1.430,+4 -ig_resnext101_32x8d,88.161,11.839,97.856,2.144,88.79,224,0.875,bilinear,+5.451,+1.216,+28 -xcit_large_24_p8_224,88.161,11.839,97.387,2.613,188.93,224,1.000,bicubic,+3.779,+0.731,-37 -xcit_tiny_24_p16_384_dist,88.161,11.839,97.950,2.050,12.12,384,1.000,bicubic,+5.593,+1.656,+33 -cait_xxs36_384,88.142,11.858,97.914,2.086,17.37,384,1.000,bicubic,+5.952,+1.754,+53 -resnetv2_152x2_bit_teacher_384,88.142,11.858,98.044,1.956,236.34,384,1.000,bicubic,+4.298,+0.926,-16 -dm_nfnet_f0,88.135,11.865,97.850,2.150,71.49,256,0.900,bicubic,+4.751,+1.270,-1 -xcit_tiny_12_p8_384_dist,88.093,11.907,97.923,2.077,6.71,384,1.000,bicubic,+5.701,+1.705,+36 -swsl_resnext101_32x4d,88.086,11.914,97.974,2.026,44.18,224,0.875,bilinear,+4.860,+1.644,+3 -xcit_tiny_24_p8_224_dist,88.048,11.952,97.818,2.182,12.11,224,1.000,bicubic,+5.472,+1.638,+26 -nfnet_l0,87.980,12.020,97.865,2.135,35.07,288,1.000,bicubic,+5.228,+1.349,+16 -xcit_small_24_p8_224,87.975,12.025,97.575,2.425,47.63,224,1.000,bicubic,+4.129,+0.943,-23 -eca_nfnet_l0,87.973,12.027,97.874,2.127,24.14,288,1.000,bicubic,+5.381,+1.388,+20 -tf_efficientnet_b4,87.963,12.037,97.737,2.263,19.34,380,0.922,bicubic,+4.933,+1.439,+6 -resnet101d,87.945,12.055,97.903,2.097,44.57,320,1.000,bicubic,+4.921,+1.447,+6 -regnety_032,87.926,12.074,97.888,2.112,19.44,288,1.000,bicubic,+5.204,+1.456,+12 -twins_svt_large,87.907,12.093,97.581,2.419,99.27,224,0.900,bicubic,+4.223,+0.971,-18 -vit_base_patch32_384,87.898,12.101,98.021,1.979,88.30,384,1.000,bicubic,+4.552,+1.177,-9 -twins_pcpvt_large,87.879,12.121,97.859,2.142,60.99,224,0.900,bicubic,+4.741,+1.251,-5 -regnetz_c,87.854,12.146,97.816,2.184,13.46,320,0.940,bicubic,+5.338,+1.456,+19 -deit_base_patch16_384,87.852,12.149,97.510,2.490,86.86,384,1.000,bicubic,+4.746,+1.134,-4 -xcit_small_12_p8_224,87.832,12.168,97.564,2.436,26.21,224,1.000,bicubic,+4.486,+1.088,-12 -resnetv2_50x1_bit_distilled,87.802,12.198,97.901,2.099,25.55,224,0.875,bicubic,+4.980,+1.377,+2 -tresnet_xl_448,87.792,12.208,97.466,2.534,78.44,448,0.875,bilinear,+4.736,+1.282,-5 -tresnet_m,87.734,12.266,97.530,2.470,31.39,224,0.875,bilinear,+4.658,+1.404,-7 -twins_pcpvt_base,87.728,12.272,97.728,2.272,43.83,224,0.900,bicubic,+5.016,+1.380,+3 -gc_efficientnetv2_rw_t,87.717,12.283,97.805,2.195,13.68,288,1.000,bicubic,+5.239,+1.509,+14 -swin_small_patch4_window7_224,87.678,12.322,97.570,2.430,49.61,224,0.900,bicubic,+4.452,+0.802,-15 -resnetv2_101x1_bitm,87.670,12.330,97.942,2.058,44.54,448,1.000,bilinear,+5.340,+1.414,+20 -pnasnet5large,87.657,12.343,97.487,2.513,86.06,331,0.911,bicubic,+4.859,+1.453,-4 -efficientnetv2_rw_t,87.653,12.347,97.681,2.319,13.65,288,1.000,bicubic,+5.315,+1.487,+17 -twins_svt_base,87.629,12.371,97.523,2.477,56.07,224,0.900,bicubic,+4.505,+1.095,-17 -xcit_medium_24_p8_224,87.619,12.381,97.192,2.808,84.32,224,1.000,bicubic,+3.883,+0.806,-37 -jx_nest_base,87.602,12.398,97.513,2.487,67.72,224,0.875,bicubic,+4.048,+1.149,-32 -swsl_resnext101_32x16d,87.595,12.405,97.818,2.182,194.03,224,0.875,bilinear,+4.241,+0.982,-28 -swsl_resnext50_32x4d,87.593,12.407,97.654,2.346,25.03,224,0.875,bilinear,+5.427,+1.420,+24 -levit_384,87.559,12.441,97.545,2.455,39.13,224,0.900,bicubic,+4.967,+1.531,-3 -tf_efficientnet_b2_ns,87.559,12.441,97.626,2.374,9.11,260,0.890,bicubic,+5.169,+1.386,+7 -ecaresnet50t,87.546,12.454,97.649,2.351,25.57,320,0.950,bicubic,+5.182,+1.507,+8 -jx_nest_small,87.495,12.505,97.521,2.479,38.35,224,0.875,bicubic,+4.377,+1.189,-24 -resnetv2_152x2_bit_teacher,87.491,12.509,97.807,2.193,236.34,224,0.875,bicubic,+4.589,+1.239,-19 -efficientnet_b3,87.452,12.548,97.679,2.321,12.23,320,1.000,bicubic,+5.194,+1.563,+14 -resnet61q,87.433,12.567,97.605,2.396,36.85,288,1.000,bicubic,+4.911,+1.471,-5 -cait_xxs24_384,87.399,12.601,97.613,2.387,12.03,384,1.000,bicubic,+6.445,+1.975,+70 -resnet51q,87.388,12.612,97.581,2.419,35.70,288,1.000,bilinear,+5.020,+1.405,+1 -xcit_tiny_24_p8_224,87.375,12.625,97.634,2.366,12.11,224,1.000,bicubic,+5.481,+1.650,+22 -tresnet_l_448,87.373,12.627,97.489,2.511,55.99,448,0.875,bilinear,+5.111,+1.509,+8 -coat_lite_small,87.365,12.635,97.368,2.632,19.84,224,0.900,bicubic,+5.063,+1.508,+3 -nasnetalarge,87.352,12.648,97.412,2.588,88.75,331,0.911,bicubic,+4.716,+1.362,-18 -crossvit_18_dagger_240,87.335,12.665,97.453,2.547,44.27,240,0.875,bicubic,+4.829,+1.381,-10 -crossvit_18_240,87.307,12.693,97.485,2.515,43.27,240,0.875,bicubic,+4.913,+1.423,-8 -resnetv2_101,87.296,12.704,97.329,2.671,44.54,224,0.950,bicubic,+5.264,+1.465,+11 -ecaresnet101d,87.281,12.719,97.560,2.440,44.57,224,0.875,bicubic,+5.109,+1.506,+6 -pit_s_distilled_224,87.264,12.736,97.504,2.496,24.04,224,0.900,bicubic,+5.270,+1.704,+10 -resnest101e,87.262,12.738,97.558,2.442,48.28,256,0.875,bilinear,+4.386,+1.246,-31 -resnetrs101,87.243,12.757,97.455,2.545,63.62,288,0.940,bicubic,+4.949,+1.453,-3 -mixer_b16_224_miil,87.230,12.770,97.417,2.583,59.88,224,0.875,bilinear,+4.928,+1.703,-5 -tresnet_xl,87.230,12.770,97.400,2.600,78.44,224,0.875,bilinear,+5.172,+1.468,+4 -xcit_tiny_12_p8_224_dist,87.224,12.776,97.442,2.558,6.71,224,1.000,bicubic,+6.010,+1.836,+40 -convit_base,87.205,12.795,97.295,2.705,86.54,224,0.875,bicubic,+4.913,+1.361,-6 -xcit_tiny_12_p16_384_dist,87.198,12.802,97.468,2.532,6.72,384,1.000,bicubic,+6.254,+2.054,+53 -tf_efficientnet_b3_ap,87.198,12.802,97.382,2.618,12.23,300,0.904,bicubic,+5.376,+1.762,+10 -visformer_small,87.185,12.815,97.320,2.679,40.22,224,0.900,bicubic,+5.089,+1.442,-2 -crossvit_15_dagger_240,87.153,12.847,97.440,2.560,28.21,240,0.875,bicubic,+4.843,+1.478,-14 -xcit_small_24_p16_224,87.136,12.864,97.256,2.744,47.67,224,1.000,bicubic,+4.558,+1.256,-30 -convit_small,87.044,12.956,97.348,2.652,27.78,224,0.875,bicubic,+5.632,+1.602,+22 -crossvit_15_240,87.038,12.962,97.423,2.577,27.53,240,0.875,bicubic,+5.512,+1.729,+12 -jx_nest_tiny,87.014,12.986,97.380,2.620,17.06,224,0.875,bicubic,+5.580,+1.760,+18 -tf_efficientnetv2_b3,87.014,12.986,97.303,2.697,14.36,300,0.904,bicubic,+5.060,+1.519,-2 -regnetz_b,87.012,12.988,97.429,2.571,9.72,288,0.940,bicubic,+6.294,+1.955,+56 -xcit_small_12_p16_224,87.000,13.000,97.248,2.752,26.25,224,1.000,bicubic,+5.024,+1.430,-5 -deit_small_distilled_patch16_224,86.993,13.007,97.316,2.684,22.44,224,0.900,bicubic,+5.791,+1.938,+28 -resmlp_36_distilled_224,86.987,13.013,97.273,2.727,44.69,224,0.875,bicubic,+5.833,+1.777,+29 -xcit_large_24_p16_224,86.961,13.039,96.923,3.077,189.10,224,1.000,bicubic,+4.063,+1.041,-51 -xcit_medium_24_p16_224,86.940,13.060,97.096,2.904,84.40,224,1.000,bicubic,+4.314,+1.120,-43 -tnt_s_patch16_224,86.901,13.099,97.361,2.639,23.76,224,0.900,bicubic,+5.387,+1.617,+5 -convmixer_1536_20,86.861,13.139,97.346,2.654,51.63,224,0.960,bicubic,+5.485,+1.736,+15 -rexnet_200,86.854,13.146,97.282,2.718,16.37,224,0.875,bicubic,+5.228,+1.610,-3 -vit_small_patch16_224,86.852,13.148,97.598,2.402,22.05,224,0.900,bicubic,+5.466,+1.468,+11 -ssl_resnext101_32x16d,86.850,13.150,97.519,2.481,194.03,224,0.875,bilinear,+5.006,+1.429,-11 -tf_efficientnet_b3,86.842,13.158,97.293,2.707,12.23,300,0.904,bicubic,+5.196,+1.573,-7 -vit_small_r26_s32_224,86.840,13.161,97.532,2.468,36.43,224,0.900,bicubic,+5.002,+1.506,-12 -deit_base_patch16_224,86.827,13.173,97.056,2.944,86.57,224,0.900,bicubic,+4.843,+1.314,-18 -tresnet_m_448,86.814,13.186,97.210,2.791,31.39,448,0.875,bilinear,+5.100,+1.640,-12 -coat_mini,86.810,13.190,97.167,2.833,10.34,224,0.900,bicubic,+5.528,+1.773,+11 -swsl_resnet50,86.801,13.199,97.491,2.509,25.56,224,0.875,bilinear,+5.655,+1.513,+17 -tf_efficientnet_lite4,86.799,13.201,97.256,2.744,13.01,380,0.920,bilinear,+5.259,+1.596,-9 -ssl_resnext101_32x8d,86.797,13.203,97.470,2.530,88.79,224,0.875,bilinear,+5.197,+1.424,-12 -tresnet_l,86.754,13.246,97.271,2.729,55.99,224,0.875,bilinear,+5.270,+1.651,-5 -twins_svt_small,86.754,13.246,97.175,2.825,24.06,224,0.900,bicubic,+5.072,+1.497,-17 -crossvit_base_240,86.735,13.265,97.122,2.878,105.03,240,0.875,bicubic,+4.529,+1.294,-34 -levit_256,86.733,13.267,97.261,2.739,18.89,224,0.900,bicubic,+5.231,+1.781,-9 -seresnext50_32x4d,86.705,13.295,97.207,2.793,27.56,224,0.875,bicubic,+5.437,+1.581,+3 -crossvit_small_240,86.705,13.295,97.284,2.716,26.86,240,0.875,bicubic,+5.675,+1.818,+16 -pit_b_224,86.690,13.310,96.894,3.107,73.76,224,0.900,bicubic,+4.246,+1.182,-53 -tf_efficientnet_b1_ns,86.681,13.319,97.380,2.620,7.79,240,0.882,bicubic,+5.297,+1.642,-5 -swin_tiny_patch4_window7_224,86.671,13.329,97.199,2.801,28.29,224,0.900,bicubic,+5.285,+1.663,-8 -gernet_l,86.652,13.348,97.195,2.805,31.08,256,0.875,bilinear,+5.306,+1.659,-5 -wide_resnet50_2,86.647,13.353,97.205,2.795,68.88,224,0.875,bicubic,+5.197,+1.687,-14 -efficientnet_el,86.622,13.378,97.182,2.818,10.59,300,0.904,bicubic,+5.316,+1.646,-5 -twins_pcpvt_small,86.609,13.391,97.342,2.658,24.11,224,0.900,bicubic,+5.505,+1.700,+4 -resmlp_24_distilled_224,86.607,13.393,97.137,2.863,30.02,224,0.875,bicubic,+5.847,+1.917,+21 -nf_resnet50,86.598,13.402,97.295,2.705,25.56,288,0.940,bicubic,+5.942,+1.959,+24 -efficientnet_b3_pruned,86.585,13.415,97.186,2.814,9.86,300,0.904,bicubic,+5.727,+1.946,+16 -sehalonet33ts,86.585,13.415,97.004,2.995,13.69,256,0.940,bicubic,+5.603,+1.732,+7 -resnest50d_4s2x40d,86.581,13.419,97.271,2.729,30.42,224,0.875,bicubic,+5.461,+1.711,-2 -repvgg_b3,86.570,13.430,97.143,2.857,123.09,224,0.875,bilinear,+6.054,+1.879,+26 -xcit_tiny_24_p16_224_dist,86.543,13.457,97.214,2.786,12.12,224,1.000,bicubic,+6.081,+2.006,+29 -ecaresnet50d,86.479,13.521,97.186,2.814,25.58,224,0.875,bicubic,+5.859,+1.878,+20 -ssl_resnext101_32x4d,86.474,13.526,97.468,2.532,44.18,224,0.875,bilinear,+5.552,+1.738,+7 -gcresnet50t,86.459,13.541,97.141,2.859,25.90,256,0.900,bicubic,+5.521,+1.701,+5 -gluon_resnet152_v1s,86.453,13.547,97.122,2.878,60.32,224,0.875,bicubic,+5.433,+1.700,-2 -haloregnetz_b,86.449,13.551,96.938,3.062,11.68,224,0.940,bicubic,+5.407,+1.738,-6 -resnest50d_1s4x24d,86.440,13.560,97.152,2.848,25.68,224,0.875,bicubic,+5.440,+1.826,-3 -resnetv2_50x1_bitm,86.440,13.560,97.605,2.396,25.55,448,1.000,bilinear,+6.096,+1.919,+30 -halonet50ts,86.391,13.609,96.799,3.200,22.73,256,0.940,bicubic,+4.843,+1.487,-39 -lamhalobotnet50ts_256,86.391,13.609,96.676,3.324,22.57,256,0.950,bicubic,+4.969,+1.620,-30 -halo2botnet50ts_256,86.372,13.628,96.761,3.239,22.64,256,0.950,bicubic,+4.852,+1.503,-38 -repvgg_b3g4,86.359,13.641,97.052,2.949,83.83,224,0.875,bilinear,+6.141,+1.948,+38 -legacy_senet154,86.334,13.666,96.925,3.075,115.09,224,0.875,bilinear,+5.008,+1.419,-26 -gernet_m,86.325,13.675,97.092,2.908,21.14,224,0.875,bilinear,+5.599,+1.914,+4 -cait_xxs36_224,86.321,13.679,97.113,2.887,17.30,224,1.000,bicubic,+6.559,+2.245,+62 -pit_s_224,86.319,13.681,97.045,2.955,23.46,224,0.900,bicubic,+5.219,+1.711,-17 -efficientnet_b2,86.310,13.690,96.990,3.010,9.11,288,1.000,bicubic,+5.700,+1.674,+6 -vit_small_patch32_384,86.304,13.696,97.417,2.583,22.92,384,1.000,bicubic,+5.818,+1.819,+9 -gluon_senet154,86.274,13.726,96.936,3.064,115.09,224,0.875,bicubic,+5.050,+1.584,-28 -resnest50d,86.231,13.769,97.064,2.936,27.48,224,0.875,bilinear,+5.269,+1.686,-14 -convmixer_768_32,86.220,13.780,97.030,2.970,21.11,224,0.960,bicubic,+6.060,+1.956,+32 -efficientnet_el_pruned,86.188,13.812,97.022,2.978,10.59,300,0.904,bicubic,+5.900,+1.800,+21 -ecaresnet101d_pruned,86.182,13.818,97.342,2.658,24.88,224,0.875,bicubic,+5.370,+1.702,-9 -rexnet_150,86.165,13.835,97.071,2.929,9.73,224,0.875,bicubic,+5.855,+1.911,+16 -cspdarknet53,86.152,13.848,97.013,2.987,27.64,256,0.887,bilinear,+6.102,+1.921,+35 -inception_v4,86.152,13.848,96.921,3.079,42.68,299,0.875,bicubic,+6.008,+1.949,+28 -inception_resnet_v2,86.120,13.880,97.041,2.959,55.84,299,0.897,bicubic,+5.672,+1.733,+5 -xcit_tiny_12_p8_224,86.118,13.882,97.084,2.917,6.71,224,1.000,bicubic,+6.408,+2.026,+51 -ssl_resnext50_32x4d,86.075,13.925,97.212,2.788,25.03,224,0.875,bilinear,+5.773,+1.794,+13 -tf_efficientnet_el,86.071,13.929,96.966,3.034,10.59,300,0.904,bicubic,+5.823,+1.842,+16 -lambda_resnet50ts,86.052,13.948,96.744,3.256,21.54,256,0.950,bicubic,+4.886,+1.648,-37 -ecaresnetlight,86.045,13.955,97.069,2.931,30.16,224,0.875,bicubic,+5.591,+1.817,-1 -gluon_resnet101_v1s,86.037,13.963,97.026,2.974,44.67,224,0.875,bicubic,+5.755,+1.864,+11 -resnetv2_50,86.020,13.980,96.911,3.089,25.55,224,0.950,bicubic,+5.614,+1.831,-1 -gcresnext50ts,86.009,13.991,96.966,3.034,15.67,256,0.900,bicubic,+5.415,+1.786,-11 -gluon_seresnext101_32x4d,86.007,13.993,96.979,3.021,48.96,224,0.875,bicubic,+5.131,+1.687,-25 -seresnet33ts,86.005,13.995,97.009,2.991,19.78,256,0.900,bicubic,+5.633,+1.895,0 -resnet50d,85.994,14.006,96.985,3.015,25.58,224,0.875,bicubic,+5.456,+1.825,-13 -tf_efficientnet_b2_ap,85.977,14.023,96.808,3.192,9.11,260,0.890,bicubic,+5.671,+1.776,+2 -ecaresnet26t,85.964,14.036,97.032,2.968,16.01,320,0.950,bicubic,+6.130,+1.948,+31 -vit_base_patch32_224,85.960,14.040,97.128,2.872,88.22,224,0.900,bicubic,+5.228,+1.562,-24 -gluon_seresnext101_64x4d,85.951,14.049,96.987,3.013,88.23,224,0.875,bicubic,+5.081,+1.681,-30 -gluon_resnet152_v1d,85.906,14.094,96.808,3.192,60.21,224,0.875,bicubic,+5.430,+1.606,-15 -vit_large_patch32_384,85.902,14.098,97.370,2.630,306.63,384,1.000,bicubic,+4.396,+1.284,-69 -tf_efficientnetv2_b2,85.900,14.100,96.883,3.117,10.10,260,0.890,bicubic,+5.686,+1.839,+6 -tf_efficientnet_b2,85.881,14.119,96.855,3.145,9.11,260,0.890,bicubic,+5.813,+1.951,+12 -vit_base_patch16_sam_224,85.879,14.121,96.706,3.294,86.57,224,0.900,bicubic,+5.637,+1.944,+1 -repvgg_b2g4,85.857,14.143,96.821,3.179,61.76,224,0.875,bilinear,+6.477,+2.127,+48 -seresnet50,85.830,14.170,97.002,2.998,28.09,224,0.875,bicubic,+5.582,+1.932,-2 -gluon_resnet101_v1d,85.827,14.173,96.661,3.339,44.57,224,0.875,bicubic,+5.423,+1.637,-16 -gcresnet33ts,85.804,14.196,96.896,3.104,19.88,256,0.900,bicubic,+5.718,+1.904,+6 -mixnet_xl,85.785,14.215,96.721,3.280,11.90,224,0.875,bicubic,+5.317,+1.789,-23 -ens_adv_inception_resnet_v2,85.781,14.220,96.757,3.243,55.84,299,0.897,bicubic,+5.803,+1.821,+9 -cspresnext50,85.763,14.237,96.838,3.162,20.57,224,0.875,bilinear,+5.711,+1.888,+5 -tf_efficientnet_lite3,85.759,14.241,96.894,3.107,8.20,300,0.904,bilinear,+5.939,+1.984,+19 -gluon_resnext101_32x4d,85.744,14.256,96.616,3.384,44.18,224,0.875,bicubic,+5.406,+1.708,-17 -ese_vovnet39b,85.742,14.258,96.902,3.098,24.57,224,0.875,bicubic,+6.438,+2.178,+44 -legacy_seresnext101_32x4d,85.738,14.262,96.763,3.237,48.96,224,0.875,bilinear,+5.516,+1.751,-9 -xcit_tiny_24_p16_224,85.736,14.264,96.938,3.062,12.12,224,1.000,bicubic,+6.284,+2.050,+34 -eca_resnet33ts,85.736,14.264,96.900,3.100,19.68,256,0.900,bicubic,+5.640,+1.926,-4 -cspresnet50,85.725,14.275,96.802,3.198,21.62,256,0.887,bilinear,+6.149,+2.100,+26 -regnety_320,85.723,14.277,96.727,3.273,145.05,224,0.875,bicubic,+4.929,+1.481,-47 -resnet50,85.704,14.296,96.490,3.510,25.56,224,0.950,bicubic,+5.322,+1.896,-27 -gluon_resnext101_64x4d,85.704,14.296,96.646,3.354,83.46,224,0.875,bicubic,+5.078,+1.644,-43 -resmlp_big_24_224,85.697,14.303,96.417,3.583,129.14,224,0.875,bicubic,+4.665,+1.395,-64 -xception71,85.693,14.307,96.772,3.228,42.34,299,0.903,bicubic,+5.809,+1.840,0 -efficientnet_em,85.691,14.309,96.941,3.059,6.90,240,0.882,bicubic,+6.431,+2.149,+42 -deit_small_patch16_224,85.663,14.337,96.906,3.094,22.05,224,0.900,bicubic,+5.797,+1.850,+1 -dpn107,85.650,14.350,96.725,3.275,86.92,224,0.875,bicubic,+5.478,+1.821,-17 -pit_xs_distilled_224,85.644,14.356,96.665,3.335,11.00,224,0.900,bicubic,+6.350,+2.291,+35 -efficientnet_b2_pruned,85.637,14.363,96.746,3.254,8.31,260,0.890,bicubic,+5.731,+1.892,-6 -resmlp_36_224,85.623,14.377,96.795,3.205,44.69,224,0.875,bicubic,+5.847,+1.909,+4 -levit_192,85.586,14.414,96.744,3.256,10.95,224,0.900,bicubic,+5.726,+1.942,-3 -gluon_resnet152_v1c,85.576,14.425,96.652,3.348,60.21,224,0.875,bicubic,+5.664,+1.800,-10 -ecaresnet50d_pruned,85.573,14.427,96.934,3.066,19.94,224,0.875,bicubic,+5.867,+2.060,+5 -resnext50d_32x4d,85.561,14.439,96.746,3.254,25.05,224,0.875,bicubic,+5.897,+1.880,+7 -tf_efficientnetv2_b1,85.556,14.444,96.721,3.280,8.14,240,0.882,bicubic,+6.082,+2.001,+14 -regnety_120,85.541,14.459,96.774,3.226,51.82,224,0.875,bicubic,+5.155,+1.652,-43 -regnetx_320,85.516,14.484,96.667,3.333,107.81,224,0.875,bicubic,+5.268,+1.641,-34 -nf_regnet_b1,85.496,14.504,96.791,3.209,10.22,288,0.900,bicubic,+6.200,+2.049,+24 -dpn92,85.484,14.516,96.635,3.365,37.67,224,0.875,bicubic,+5.490,+1.799,-20 -rexnet_130,85.465,14.536,96.686,3.314,7.56,224,0.875,bicubic,+5.969,+2.012,+8 -gluon_resnet152_v1b,85.458,14.542,96.560,3.440,60.19,224,0.875,bicubic,+5.778,+1.824,-1 -resnetrs50,85.433,14.568,96.731,3.269,35.69,224,0.910,bicubic,+5.563,+1.761,-16 -dpn131,85.411,14.589,96.637,3.363,79.25,224,0.875,bicubic,+5.577,+1.925,-12 -dla102x2,85.383,14.617,96.635,3.365,41.28,224,0.875,bilinear,+5.943,+1.991,+8 -regnetx_160,85.364,14.636,96.633,3.367,54.28,224,0.875,bicubic,+5.530,+1.809,-15 -gmlp_s16_224,85.349,14.651,96.641,3.358,19.42,224,0.875,bicubic,+5.707,+2.019,-3 -gluon_seresnext50_32x4d,85.343,14.657,96.671,3.329,27.56,224,0.875,bicubic,+5.419,+1.843,-26 -botnet26t_256,85.334,14.666,96.635,3.365,12.49,256,0.950,bicubic,+6.074,+2.101,+18 -skresnext50_32x4d,85.315,14.685,96.394,3.606,27.48,224,0.875,bicubic,+5.173,+1.750,-36 -gluon_resnet101_v1c,85.311,14.689,96.415,3.585,44.57,224,0.875,bicubic,+5.777,+1.827,-3 -dpn98,85.309,14.691,96.466,3.534,61.57,224,0.875,bicubic,+5.655,+1.862,-9 -xception65,85.304,14.696,96.633,3.367,39.92,299,0.903,bicubic,+5.758,+1.973,-6 -lambda_resnet26t,85.300,14.700,96.723,3.277,10.96,256,0.940,bicubic,+6.192,+2.135,+22 -regnety_064,85.287,14.713,96.633,3.367,30.58,224,0.875,bicubic,+5.557,+1.871,-18 -dpn68b,85.285,14.715,96.473,3.527,12.61,224,0.875,bicubic,+6.069,+2.051,+16 -resnetblur50,85.277,14.723,96.516,3.484,25.56,224,0.875,bicubic,+5.977,+1.880,+5 -resmlp_24_224,85.275,14.726,96.499,3.502,30.02,224,0.875,bicubic,+5.889,+1.953,-4 -coat_lite_mini,85.249,14.751,96.684,3.316,11.01,224,0.900,bicubic,+6.149,+2.082,+18 -resnet33ts,85.242,14.758,96.620,3.380,19.68,256,0.900,bicubic,+6.028,+2.048,+13 -resnext50_32x4d,85.232,14.768,96.526,3.474,25.03,224,0.875,bicubic,+5.432,+1.912,-27 -regnety_080,85.232,14.768,96.635,3.365,39.18,224,0.875,bicubic,+5.360,+1.803,-36 -cait_xxs24_224,85.221,14.779,96.718,3.282,11.96,224,1.000,bicubic,+6.845,+2.402,+51 -halonet26t,85.213,14.787,96.466,3.534,12.48,256,0.950,bicubic,+6.079,+2.150,+11 -xcit_tiny_12_p16_224_dist,85.206,14.794,96.605,3.395,6.72,224,1.000,bicubic,+6.626,+2.401,+34 -resnext101_32x8d,85.187,14.813,96.449,3.551,88.79,224,0.875,bilinear,+5.875,+1.927,-7 -gluon_inception_v3,85.183,14.817,96.531,3.470,23.83,299,0.875,bicubic,+6.385,+2.151,+25 -resnet32ts,85.174,14.826,96.624,3.376,17.96,256,0.900,bicubic,+6.154,+2.262,+14 -hrnet_w48,85.155,14.845,96.490,3.510,77.47,224,0.875,bilinear,+5.833,+1.976,-11 -regnetx_120,85.138,14.862,96.473,3.527,46.11,224,0.875,bicubic,+5.532,+1.743,-25 -tf_efficientnet_b1_ap,85.129,14.871,96.407,3.593,7.79,240,0.882,bicubic,+5.855,+2.105,-6 -xception,85.129,14.871,96.477,3.523,22.86,299,0.897,bicubic,+6.081,+2.081,+9 -gluon_resnet101_v1b,85.129,14.871,96.370,3.630,44.55,224,0.875,bicubic,+5.829,+1.840,-12 -eca_botnext26ts_256,85.127,14.873,96.511,3.489,10.59,256,0.950,bicubic,+5.853,+1.905,-8 -gluon_xception65,85.123,14.877,96.599,3.401,39.92,299,0.903,bicubic,+5.421,+1.731,-35 -hrnet_w64,85.117,14.883,96.746,3.254,128.06,224,0.875,bilinear,+5.661,+2.092,-25 -ssl_resnet50,85.104,14.896,96.862,3.139,25.56,224,0.875,bilinear,+5.868,+2.030,-8 -res2net101_26w_4s,85.089,14.911,96.385,3.615,45.21,224,0.875,bilinear,+5.897,+1.947,-4 -lambda_resnet26rpt_256,85.084,14.916,96.558,3.442,10.99,256,0.940,bicubic,+6.116,+2.130,+6 -tf_efficientnet_cc_b1_8e,85.072,14.928,96.424,3.576,39.72,240,0.882,bicubic,+5.746,+2.056,-23 -xcit_nano_12_p8_384_dist,85.029,14.971,96.629,3.371,3.05,384,1.000,bicubic,+7.211,+2.595,+62 -gluon_resnext50_32x4d,85.010,14.990,96.426,3.574,25.03,224,0.875,bicubic,+5.646,+2.002,-26 -tf_efficientnet_b0_ns,85.003,14.997,96.496,3.504,5.29,224,0.875,bicubic,+6.345,+2.126,+15 -resnest26d,84.997,15.003,96.629,3.371,17.07,224,0.875,bilinear,+6.519,+2.333,+20 -coat_tiny,84.969,15.031,96.409,3.591,5.50,224,0.900,bicubic,+6.535,+2.375,+25 -regnety_040,84.948,15.052,96.601,3.399,20.65,224,0.875,bicubic,+5.720,+1.955,-16 -eca_halonext26ts,84.918,15.082,96.445,3.555,10.76,256,0.940,bicubic,+6.078,+2.189,+2 -dla169,84.914,15.086,96.522,3.478,53.39,224,0.875,bilinear,+6.216,+2.190,+7 -legacy_seresnext50_32x4d,84.909,15.091,96.437,3.563,27.56,224,0.875,bilinear,+5.831,+2.005,-11 -tf_efficientnet_b1,84.907,15.093,96.362,3.638,7.79,240,0.882,bicubic,+6.071,+2.168,0 -hrnet_w44,84.886,15.114,96.432,3.568,67.06,224,0.875,bilinear,+5.996,+2.050,-4 -regnetx_080,84.875,15.125,96.428,3.572,39.57,224,0.875,bicubic,+5.655,+1.882,-21 -gluon_resnet50_v1s,84.852,15.148,96.447,3.553,25.68,224,0.875,bicubic,+6.156,+2.199,+3 -res2net50_26w_8s,84.843,15.157,96.338,3.662,48.40,224,0.875,bilinear,+5.863,+2.054,-11 -dla60_res2next,84.828,15.172,96.413,3.587,17.03,224,0.875,bilinear,+6.386,+2.217,+14 -mixnet_l,84.826,15.174,96.328,3.672,7.33,224,0.875,bicubic,+5.846,+2.148,-12 -levit_128,84.822,15.178,96.351,3.649,9.21,224,0.900,bicubic,+6.356,+2.341,+8 -dla60_res2net,84.820,15.180,96.481,3.519,20.85,224,0.875,bilinear,+6.358,+2.273,+8 -vit_tiny_patch16_384,84.820,15.180,96.714,3.286,5.79,384,1.000,bicubic,+6.374,+2.170,+8 -tv_resnet152,84.818,15.182,96.219,3.781,60.19,224,0.875,bilinear,+6.496,+2.175,+16 -dla102x,84.813,15.187,96.548,3.452,26.31,224,0.875,bilinear,+6.301,+2.322,+1 -gluon_resnet50_v1d,84.811,15.189,96.394,3.606,25.58,224,0.875,bicubic,+5.747,+1.934,-23 -xception41,84.809,15.191,96.413,3.587,26.97,299,0.903,bicubic,+6.277,+2.129,-2 -regnetx_064,84.783,15.217,96.492,3.508,26.21,224,0.875,bicubic,+5.723,+2.026,-24 -pit_xs_224,84.783,15.217,96.505,3.495,10.62,224,0.900,bicubic,+6.599,+2.341,+17 -hrnet_w40,84.745,15.255,96.556,3.444,57.56,224,0.875,bilinear,+5.819,+2.078,-20 -repvgg_b2,84.726,15.274,96.484,3.517,89.02,224,0.875,bilinear,+5.932,+2.058,-14 -res2net50_26w_6s,84.724,15.276,96.274,3.726,37.05,224,0.875,bilinear,+6.158,+2.156,-8 -resmlp_12_distilled_224,84.707,15.293,96.225,3.775,15.35,224,0.875,bicubic,+6.763,+2.663,+25 -legacy_seresnet152,84.696,15.304,96.417,3.583,66.82,224,0.875,bilinear,+6.034,+2.041,-13 -selecsls60b,84.655,15.345,96.298,3.702,32.77,224,0.875,bicubic,+6.247,+2.122,0 -hrnet_w32,84.653,15.347,96.413,3.587,41.23,224,0.875,bilinear,+6.211,+2.255,-4 -bat_resnext26ts,84.640,15.360,96.285,3.715,10.73,256,0.900,bicubic,+6.378,+2.185,+4 -tf_efficientnetv2_b0,84.625,15.375,96.272,3.728,7.14,224,0.875,bicubic,+6.255,+2.246,+1 -efficientnet_b1,84.615,15.385,96.336,3.664,7.79,256,1.000,bicubic,+5.811,+1.990,-24 -regnetx_040,84.600,15.400,96.385,3.615,22.12,224,0.875,bicubic,+6.116,+2.131,-13 -hrnet_w30,84.591,15.409,96.392,3.608,37.71,224,0.875,bilinear,+6.389,+2.164,+4 -efficientnet_es,84.591,15.409,96.315,3.685,5.44,224,0.875,bicubic,+6.509,+2.371,+9 -tf_mixnet_l,84.559,15.441,96.247,3.753,7.33,224,0.875,bicubic,+5.781,+2.247,-25 -wide_resnet101_2,84.555,15.445,96.351,3.649,126.89,224,0.875,bilinear,+5.701,+2.067,-32 -dla60x,84.529,15.471,96.291,3.709,17.35,224,0.875,bilinear,+6.283,+2.267,-2 -legacy_seresnet101,84.502,15.498,96.338,3.662,49.33,224,0.875,bilinear,+6.118,+2.074,-10 -resnet26t,84.465,15.535,96.210,3.790,16.01,256,0.940,bicubic,+6.593,+2.376,+14 -tf_efficientnet_em,84.463,15.537,96.178,3.822,6.90,240,0.882,bicubic,+6.321,+2.120,0 -coat_lite_tiny,84.457,15.543,96.370,3.630,5.72,224,0.900,bicubic,+6.943,+2.454,+28 -efficientnet_b1_pruned,84.399,15.601,96.138,3.862,6.33,240,0.882,bicubic,+6.149,+2.302,-8 -repvgg_b1,84.399,15.601,96.202,3.798,57.42,224,0.875,bilinear,+6.021,+2.098,-14 -res2net50_26w_4s,84.371,15.629,96.080,3.920,25.70,224,0.875,bilinear,+6.385,+2.232,+3 -hardcorenas_f,84.322,15.678,96.027,3.973,8.20,224,0.875,bilinear,+6.218,+2.233,-3 -res2net50_14w_8s,84.307,15.693,96.074,3.926,25.06,224,0.875,bilinear,+6.173,+2.218,-5 -selecsls60,84.282,15.718,96.091,3.909,30.67,224,0.875,bicubic,+6.298,+2.259,+1 -res2next50,84.230,15.770,96.003,3.997,24.67,224,0.875,bilinear,+5.988,+2.099,-12 -regnetx_032,84.230,15.770,96.255,3.745,15.30,224,0.875,bicubic,+6.080,+2.169,-10 -gluon_resnet50_v1c,84.209,15.791,96.165,3.835,25.58,224,0.875,bicubic,+6.203,+2.177,-4 -dla102,84.192,15.808,96.223,3.777,33.27,224,0.875,bilinear,+6.164,+2.265,-6 -gcresnext26ts,84.181,15.819,96.084,3.916,10.48,256,0.900,bicubic,+6.361,+2.258,+6 -rexnet_100,84.173,15.827,96.253,3.747,4.80,224,0.875,bicubic,+6.313,+2.377,+3 -tf_inception_v3,84.128,15.872,95.918,4.082,23.83,299,0.875,bicubic,+6.268,+2.272,+1 -seresnext26ts,84.124,15.876,96.069,3.931,10.39,256,0.900,bicubic,+6.276,+2.281,+2 -res2net50_48w_2s,84.121,15.879,95.965,4.035,25.29,224,0.875,bilinear,+6.587,+2.407,+12 -resnet34d,84.104,15.896,95.975,4.025,21.82,224,0.875,bicubic,+6.990,+2.593,+25 -tf_efficientnet_lite2,84.092,15.908,96.063,3.937,6.09,260,0.890,bicubic,+6.610,+2.315,+12 -xcit_tiny_12_p16_224,84.083,15.917,96.230,3.771,6.72,224,1.000,bicubic,+6.963,+2.512,+22 -efficientnet_b0,84.034,15.966,95.956,4.044,5.29,224,0.875,bicubic,+6.330,+2.434,+1 -crossvit_9_dagger_240,84.030,15.970,96.080,3.920,8.78,240,0.875,bicubic,+7.040,+2.474,+26 -hardcorenas_e,83.972,16.028,95.901,4.099,8.07,224,0.875,bilinear,+6.172,+2.205,-2 -gmixer_24_224,83.970,16.030,95.852,4.148,24.72,224,0.875,bicubic,+5.918,+2.184,-19 -tf_efficientnet_cc_b0_8e,83.970,16.030,96.072,3.929,24.01,224,0.875,bicubic,+6.062,+2.416,-12 -regnety_016,83.955,16.045,95.997,4.003,11.20,224,0.875,bicubic,+6.091,+2.273,-11 -tv_resnext50_32x4d,83.955,16.045,95.948,4.052,25.03,224,0.875,bilinear,+6.345,+2.264,-3 -gluon_resnet50_v1b,83.942,16.058,96.018,3.982,25.56,224,0.875,bicubic,+6.366,+2.296,0 -densenet161,83.900,16.101,96.014,3.986,28.68,224,0.875,bicubic,+6.548,+2.378,+7 -seresnext26t_32x4d,83.887,16.113,95.943,4.057,16.81,224,0.875,bicubic,+5.909,+2.201,-20 -mobilenetv2_120d,83.887,16.113,95.905,4.095,5.83,224,0.875,bicubic,+6.601,+2.393,+8 -adv_inception_v3,83.876,16.124,95.939,4.061,23.83,299,0.875,bicubic,+6.298,+2.199,-5 -tv_resnet101,83.855,16.145,95.888,4.112,44.55,224,0.875,bilinear,+6.487,+2.328,+2 -inception_v3,83.771,16.229,95.898,4.101,23.83,299,0.875,bicubic,+6.307,+2.422,-2 -hardcorenas_d,83.763,16.237,95.734,4.266,7.50,224,0.875,bilinear,+6.339,+2.248,-1 -dla60,83.735,16.265,95.933,4.067,22.04,224,0.875,bilinear,+6.701,+2.609,+11 -xcit_nano_12_p8_224_dist,83.733,16.267,95.948,4.052,3.05,224,1.000,bicubic,+7.403,+2.862,+31 -seresnext26d_32x4d,83.724,16.276,95.847,4.153,16.81,224,0.875,bicubic,+6.138,+2.243,-12 -repvgg_b1g4,83.695,16.305,96.029,3.971,39.97,224,0.875,bilinear,+6.101,+2.187,-14 -eca_resnext26ts,83.692,16.308,95.939,4.061,10.30,256,0.900,bicubic,+6.242,+2.361,-7 -convmixer_1024_20_ks9_p14,83.688,16.312,95.886,4.114,24.38,224,0.960,bicubic,+6.744,+2.528,+10 -legacy_seresnet50,83.671,16.329,95.982,4.018,28.09,224,0.875,bilinear,+6.033,+2.236,-19 -tf_efficientnet_b0_ap,83.660,16.340,95.783,4.217,5.29,224,0.875,bicubic,+6.556,+2.519,+1 -skresnet34,83.650,16.350,95.920,4.080,22.28,224,0.875,bicubic,+6.730,+2.600,+8 -tf_efficientnet_cc_b0_4e,83.639,16.361,95.730,4.270,13.31,224,0.875,bicubic,+6.319,+2.408,-8 -resmlp_12_224,83.573,16.427,95.760,4.240,15.35,224,0.875,bicubic,+6.919,+2.588,+14 -mobilenetv3_large_100_miil,83.549,16.451,95.450,4.550,5.48,224,0.875,bilinear,+5.637,+2.546,-35 -densenet201,83.547,16.453,95.807,4.193,20.01,224,0.875,bicubic,+6.257,+2.327,-10 -gernet_s,83.522,16.478,95.792,4.208,8.17,224,0.875,bilinear,+6.616,+2.658,+4 -legacy_seresnext26_32x4d,83.515,16.485,95.719,4.281,16.79,224,0.875,bicubic,+6.421,+2.409,-5 -mixnet_m,83.513,16.487,95.691,4.309,5.01,224,0.875,bicubic,+6.239,+2.269,-12 -tf_efficientnet_b0,83.513,16.487,95.717,4.283,5.29,224,0.875,bicubic,+6.667,+2.487,+3 -hrnet_w18,83.500,16.500,95.907,4.093,21.30,224,0.875,bilinear,+6.742,+2.469,+4 -densenetblur121d,83.475,16.525,95.817,4.183,8.00,224,0.875,bicubic,+6.885,+2.625,+9 -selecsls42b,83.460,16.540,95.749,4.251,32.46,224,0.875,bicubic,+6.270,+2.359,-14 -resnext26ts,83.457,16.543,95.726,4.274,10.30,256,0.900,bicubic,+6.685,+2.596,0 -tf_efficientnet_lite1,83.355,16.645,95.638,4.362,5.42,240,0.882,bicubic,+6.691,+2.404,+2 -hardcorenas_c,83.336,16.664,95.713,4.287,5.52,224,0.875,bilinear,+6.286,+2.541,-12 -regnetx_016,83.186,16.814,95.740,4.260,9.19,224,0.875,bicubic,+6.240,+2.314,-9 -mobilenetv2_140,83.176,16.824,95.685,4.315,6.11,224,0.875,bicubic,+6.660,+2.685,+6 -tf_mixnet_m,83.174,16.826,95.469,4.531,5.01,224,0.875,bicubic,+6.216,+2.303,-12 -xcit_nano_12_p16_384_dist,83.174,16.826,95.743,4.257,3.05,384,1.000,bicubic,+7.706,+3.067,+22 -dpn68,83.171,16.829,95.589,4.411,12.61,224,0.875,bicubic,+6.877,+2.627,+7 -tf_efficientnet_es,83.167,16.833,95.591,4.409,5.44,224,0.875,bicubic,+6.577,+2.379,-2 -ese_vovnet19b_dw,83.114,16.886,95.790,4.210,6.54,224,0.875,bicubic,+6.290,+2.510,-10 -levit_128s,83.065,16.935,95.533,4.467,7.78,224,0.900,bicubic,+6.527,+2.669,-2 -resnet26d,83.043,16.957,95.602,4.398,16.01,224,0.875,bicubic,+6.353,+2.454,-9 -repvgg_a2,82.999,17.002,95.600,4.400,28.21,224,0.875,bilinear,+6.519,+2.580,-1 -tv_resnet50,82.954,17.046,95.472,4.529,25.56,224,0.875,bilinear,+6.802,+2.594,+2 -hardcorenas_b,82.877,17.123,95.386,4.614,5.18,224,0.875,bilinear,+6.347,+2.634,-5 -densenet121,82.815,17.185,95.585,4.415,7.98,224,0.875,bicubic,+7.247,+2.933,+9 -vit_tiny_r_s16_p8_384,82.693,17.307,95.862,4.138,6.36,384,1.000,bicubic,+6.721,+2.590,+2 -densenet169,82.661,17.339,95.593,4.407,14.15,224,0.875,bicubic,+6.763,+2.569,+3 -mixnet_s,82.525,17.476,95.352,4.648,4.13,224,0.875,bicubic,+6.531,+2.560,-1 -vit_small_patch32_224,82.510,17.490,95.674,4.326,22.88,224,0.900,bicubic,+6.516,+2.398,-3 -regnety_008,82.478,17.523,95.480,4.520,6.26,224,0.875,bicubic,+6.158,+2.412,-7 -efficientnet_lite0,82.388,17.612,95.286,4.714,4.65,224,0.875,bicubic,+6.884,+2.770,+6 -resnest14d,82.362,17.638,95.324,4.676,10.61,224,0.875,bilinear,+6.856,+2.804,+4 -hardcorenas_a,82.305,17.695,95.294,4.706,5.26,224,0.875,bilinear,+6.393,+2.780,-4 -efficientnet_es_pruned,82.279,17.721,95.301,4.699,5.44,224,0.875,bicubic,+7.283,+2.861,+15 -mobilenetv3_rw,82.268,17.732,95.241,4.759,5.48,224,0.875,bicubic,+6.650,+2.529,-2 -semnasnet_100,82.253,17.747,95.239,4.761,3.89,224,0.875,bicubic,+6.801,+2.633,+4 -mobilenetv3_large_100,82.177,17.823,95.196,4.804,5.48,224,0.875,bicubic,+6.403,+2.656,-6 -resnet34,82.125,17.875,95.136,4.864,21.80,224,0.875,bilinear,+7.013,+2.860,+7 -mobilenetv2_110d,82.076,17.924,95.076,4.923,4.52,224,0.875,bicubic,+7.024,+2.888,+9 -vit_tiny_patch16_224,82.044,17.956,95.493,4.507,5.72,224,0.900,bicubic,+6.590,+2.641,-1 -tf_mixnet_s,82.040,17.960,95.130,4.870,4.13,224,0.875,bicubic,+6.356,+2.494,-9 -repvgg_b0,82.006,17.994,95.102,4.898,15.82,224,0.875,bilinear,+6.854,+2.688,+1 -deit_tiny_distilled_patch16_224,82.001,17.999,95.147,4.853,5.91,224,0.900,bicubic,+7.477,+3.251,+14 -mixer_b16_224,81.997,18.003,94.447,5.553,59.88,224,0.875,bicubic,+5.375,+2.219,-29 -pit_ti_distilled_224,81.972,18.029,95.156,4.845,5.10,224,0.900,bicubic,+7.442,+3.056,+11 -hrnet_w18_small_v2,81.959,18.041,95.166,4.834,15.60,224,0.875,bilinear,+6.853,+2.754,0 -tf_efficientnet_lite0,81.950,18.050,95.160,4.840,4.65,224,0.875,bicubic,+7.118,+2.984,+3 -resnet26,81.942,18.058,95.245,4.755,16.00,224,0.875,bicubic,+6.650,+2.671,-7 -tf_mobilenetv3_large_100,81.841,18.159,95.076,4.923,5.48,224,0.875,bilinear,+6.331,+2.468,-14 -tv_densenet121,81.728,18.272,95.036,4.964,7.98,224,0.875,bicubic,+6.982,+2.882,+2 -regnety_006,81.703,18.297,95.113,4.887,6.06,224,0.875,bicubic,+6.437,+2.579,-9 -dla34,81.643,18.357,94.874,5.126,15.74,224,0.875,bilinear,+7.035,+2.816,+2 -xcit_nano_12_p8_224,81.641,18.359,95.264,4.736,3.05,224,1.000,bicubic,+7.729,+3.098,+10 -crossvit_9_240,81.630,18.370,94.983,5.017,8.55,240,0.875,bicubic,+7.648,+3.013,+8 -fbnetc_100,81.555,18.445,94.948,5.052,5.57,224,0.875,bilinear,+6.435,+2.574,-11 -legacy_seresnet34,81.532,18.468,94.899,5.101,21.96,224,0.875,bilinear,+6.740,+2.771,-5 -regnetx_008,81.508,18.492,95.062,4.938,7.26,224,0.875,bicubic,+6.452,+2.714,-10 -gluon_resnet34_v1b,81.489,18.511,94.808,5.192,21.80,224,0.875,bicubic,+6.897,+2.812,-3 -mnasnet_100,81.472,18.528,94.893,5.107,4.38,224,0.875,bicubic,+6.798,+2.795,-6 -vgg19_bn,81.451,18.549,94.778,5.222,143.68,224,0.875,bilinear,+7.217,+2.924,-2 -convit_tiny,81.115,18.885,95.044,4.955,5.71,224,0.875,bicubic,+8.003,+3.324,+10 -crossvit_tiny_240,81.100,18.900,94.991,5.009,7.01,240,0.875,bicubic,+7.756,+3.069,+6 -spnasnet_100,80.866,19.134,94.511,5.489,4.42,224,0.875,bilinear,+6.788,+2.691,-4 -ghostnet_100,80.699,19.301,94.291,5.709,5.18,224,0.875,bilinear,+6.715,+2.831,-3 -regnety_004,80.648,19.352,94.692,5.308,4.34,224,0.875,bicubic,+6.636,+2.926,-5 -skresnet18,80.624,19.376,94.383,5.617,11.96,224,0.875,bicubic,+7.602,+3.213,+6 -regnetx_006,80.616,19.384,94.526,5.474,6.20,224,0.875,bicubic,+6.770,+2.844,-3 -pit_ti_224,80.597,19.404,94.618,5.383,4.85,224,0.900,bicubic,+7.675,+3.208,+6 -swsl_resnet18,80.562,19.438,94.746,5.254,11.69,224,0.875,bilinear,+7.280,+2.988,+1 -vgg16_bn,80.535,19.465,94.583,5.417,138.37,224,0.875,bilinear,+7.175,+3.091,-3 -resnet18d,80.387,19.613,94.244,5.756,11.71,224,0.875,bicubic,+8.119,+3.560,+9 -tv_resnet34,80.377,19.623,94.430,5.570,21.80,224,0.875,bilinear,+7.073,+3.008,-3 -mobilenetv2_100,80.257,19.743,94.197,5.803,3.50,224,0.875,bicubic,+7.305,+3.195,0 -xcit_nano_12_p16_224_dist,80.225,19.775,94.363,5.637,3.05,224,1.000,bicubic,+7.913,+3.511,+5 -vit_base_patch32_sam_224,80.212,19.788,93.821,6.179,88.22,224,0.900,bicubic,+6.512,+2.813,-10 -ssl_resnet18,80.114,19.886,94.594,5.406,11.69,224,0.875,bilinear,+7.502,+3.174,-1 -tf_mobilenetv3_large_075,80.088,19.912,94.186,5.814,3.99,224,0.875,bilinear,+6.638,+2.846,-11 -deit_tiny_patch16_224,80.009,19.991,94.445,5.555,5.72,224,0.900,bicubic,+7.849,+3.333,+4 -hrnet_w18_small,79.544,20.456,93.909,6.091,13.19,224,0.875,bilinear,+7.212,+3.223,-1 -vgg19,79.484,20.516,93.881,6.119,143.67,224,0.875,bilinear,+7.096,+2.995,-3 -regnetx_004,79.424,20.576,93.849,6.151,5.16,224,0.875,bicubic,+7.034,+3.031,-5 -tf_mobilenetv3_large_minimal_100,79.232,20.768,93.706,6.294,3.92,224,0.875,bilinear,+6.980,+3.070,-1 -legacy_seresnet18,79.151,20.849,93.778,6.222,11.78,224,0.875,bicubic,+7.417,+3.440,+2 -vgg16,79.031,20.968,93.642,6.358,138.36,224,0.875,bilinear,+7.447,+3.252,+2 -vit_tiny_r_s16_p8_224,78.997,21.003,93.911,6.089,6.34,224,0.900,bicubic,+7.199,+3.087,-1 -vgg13_bn,78.987,21.013,93.655,6.345,133.05,224,0.875,bilinear,+7.423,+3.281,+1 -gluon_resnet18_v1b,78.376,21.624,93.134,6.866,11.69,224,0.875,bicubic,+7.542,+3.374,+1 -vgg11_bn,77.926,22.074,93.228,6.772,132.87,224,0.875,bilinear,+7.564,+3.422,+1 -xcit_nano_12_p16_224,77.909,22.091,93.437,6.563,3.05,224,1.000,bicubic,+7.937,+3.679,+2 -regnety_002,77.417,22.583,92.916,7.084,3.16,224,0.875,bicubic,+7.135,+3.372,0 -mixer_l16_224,77.294,22.706,90.557,9.443,208.20,224,0.875,bicubic,+5.228,+2.903,-8 -resnet18,77.276,22.724,92.760,7.240,11.69,224,0.875,bilinear,+7.536,+3.674,+1 -vgg13,77.234,22.766,92.702,7.298,133.05,224,0.875,bilinear,+7.296,+3.444,-1 -vgg11,76.397,23.603,92.171,7.829,132.86,224,0.875,bilinear,+7.349,+3.535,0 -regnetx_002,76.102,23.898,92.205,7.795,2.68,224,0.875,bicubic,+7.352,+3.645,0 -dla60x_c,75.656,24.344,92.164,7.836,1.32,224,0.875,bilinear,+7.744,+3.746,+1 -tf_mobilenetv3_small_100,74.736,25.264,91.274,8.726,2.54,224,0.875,bilinear,+6.810,+3.598,-1 -dla46x_c,73.645,26.355,91.110,8.890,1.07,224,0.875,bilinear,+7.669,+4.122,0 -tf_mobilenetv3_small_075,72.816,27.184,90.031,9.969,2.04,224,0.875,bilinear,+7.096,+3.895,0 -dla46_c,72.607,27.393,90.495,9.505,1.30,224,0.875,bilinear,+7.737,+4.201,0 -tf_mobilenetv3_small_minimal_100,70.107,29.893,88.516,11.485,2.04,224,0.875,bilinear,+7.199,+4.270,0 +beit_large_patch16_512,90.691,9.309,98.751,1.249,305.67,512,1.000,bicubic,+2.089,+0.095,0 +beit_large_patch16_384,90.610,9.390,98.766,1.234,305.00,384,1.000,bicubic,+2.206,+0.158,0 +tf_efficientnet_l2_ns,90.563,9.437,98.779,1.221,480.31,800,0.960,bicubic,+2.215,+0.131,0 +tf_efficientnet_l2_ns_475,90.540,9.460,98.710,1.290,480.31,475,0.936,bicubic,+2.308,+0.164,0 +convnext_xlarge_384_in22ft1k,90.452,9.548,98.672,1.328,350.20,384,1.000,bicubic,+2.908,+0.182,0 +beit_base_patch16_384,90.371,9.629,98.725,1.275,86.74,384,1.000,bicubic,+3.573,+0.589,+6 +convnext_large_384_in22ft1k,90.256,9.744,98.663,1.337,197.77,384,1.000,bicubic,+2.858,+0.297,0 +vit_large_patch16_384,90.198,9.802,98.661,1.339,304.72,384,1.000,bicubic,+3.118,+0.359,+1 +cait_m48_448,90.187,9.813,98.484,1.516,356.46,448,1.000,bicubic,+3.703,+0.732,+6 +beit_large_patch16_224,90.153,9.847,98.723,1.277,304.43,224,0.900,bicubic,+2.675,+0.417,-4 +convnext_base_384_in22ft1k,90.142,9.858,98.728,1.272,88.59,384,1.000,bicubic,+3.576,+0.530,+3 +tf_efficientnet_b7_ns,90.104,9.896,98.614,1.386,66.35,600,0.949,bicubic,+3.264,+0.520,-1 +cait_m36_384,90.044,9.956,98.493,1.507,271.22,384,1.000,bicubic,+3.992,+0.763,+11 +dm_nfnet_f6,90.044,9.956,98.546,1.454,438.36,576,0.956,bicubic,+3.900,+0.816,+8 +swin_large_patch4_window12_384,90.027,9.973,98.663,1.337,196.74,384,1.000,bicubic,+2.879,+0.423,-7 +tf_efficientnetv2_l_in21ft1k,90.008,9.992,98.619,1.381,118.52,480,1.000,bicubic,+3.704,+0.641,+4 +swin_base_patch4_window12_384,89.995,10.005,98.695,1.304,87.90,384,1.000,bicubic,+3.563,+0.639,0 +vit_base_patch16_384,89.984,10.016,98.680,1.319,86.86,384,1.000,bicubic,+3.978,+0.678,+7 +convnext_xlarge_in22ft1k,89.937,10.063,98.570,1.431,350.20,224,0.875,bicubic,+2.929,+0.362,-9 +xcit_large_24_p8_384_dist,89.886,10.114,98.384,1.616,188.93,384,1.000,bicubic,+3.886,+0.700,+6 +cait_s36_384,89.844,10.156,98.424,1.576,68.37,384,1.000,bicubic,+4.382,+0.944,+17 +xcit_medium_24_p8_384_dist,89.814,10.186,98.362,1.638,84.32,384,1.000,bicubic,+4.000,+0.770,+7 +convnext_large_in22ft1k,89.807,10.193,98.499,1.501,197.77,224,0.875,bicubic,+3.181,+0.467,-10 +swin_large_patch4_window7_224,89.796,10.204,98.642,1.358,196.53,224,0.900,bicubic,+3.478,+0.750,-5 +vit_large_r50_s32_384,89.794,10.206,98.516,1.484,329.09,384,1.000,bicubic,+3.612,+0.598,-4 +tf_efficientnetv2_m_in21ft1k,89.779,10.221,98.501,1.499,54.14,480,1.000,bicubic,+4.187,+0.755,+8 +tf_efficientnet_b6_ns,89.777,10.223,98.512,1.488,43.04,528,0.942,bicubic,+3.327,+0.630,-11 +xcit_small_24_p8_384_dist,89.739,10.261,98.422,1.578,47.63,384,1.000,bicubic,+4.187,+0.850,+7 +xcit_large_24_p16_384_dist,89.662,10.338,98.401,1.599,189.10,384,1.000,bicubic,+3.906,+0.863,+3 +tf_efficientnet_b5_ns,89.653,10.347,98.480,1.520,30.39,456,0.934,bicubic,+3.563,+0.730,-7 +convnext_base_in22ft1k,89.624,10.376,98.529,1.471,88.59,224,0.875,bicubic,+3.828,+0.663,-1 +tf_efficientnetv2_xl_in21ft1k,89.587,10.413,98.174,1.825,208.12,512,1.000,bicubic,+3.169,+0.308,-14 +tf_efficientnet_b8_ap,89.581,10.419,98.303,1.697,87.41,672,0.954,bicubic,+4.211,+1.011,+10 +dm_nfnet_f4,89.557,10.443,98.303,1.697,316.07,512,0.951,bicubic,+3.843,+0.781,-1 +xcit_small_12_p8_384_dist,89.517,10.483,98.303,1.697,26.21,384,1.000,bicubic,+4.435,+1.023,+15 +xcit_large_24_p8_224_dist,89.517,10.483,98.224,1.776,188.93,224,1.000,bicubic,+4.119,+0.814,+7 +cait_s24_384,89.504,10.496,98.365,1.635,47.06,384,1.000,bicubic,+4.456,+1.017,+17 +dm_nfnet_f3,89.485,10.515,98.399,1.601,254.92,416,0.940,bicubic,+3.961,+0.937,-2 +xcit_medium_24_p16_384_dist,89.476,10.524,98.296,1.704,84.40,384,1.000,bicubic,+4.056,+0.890,+2 +dm_nfnet_f5,89.463,10.537,98.324,1.676,377.21,544,0.954,bicubic,+3.650,+0.838,-12 +deit_base_distilled_patch16_384,89.429,10.571,98.439,1.561,87.63,384,1.000,bicubic,+4.007,+1.107,-1 +tf_efficientnet_b7_ap,89.429,10.571,98.345,1.655,66.35,600,0.949,bicubic,+4.309,+1.093,+6 +vit_base_patch8_224,89.425,10.575,98.486,1.514,86.58,224,0.900,bicubic,+3.633,+0.694,-12 +beit_base_patch16_224,89.408,10.592,98.525,1.475,86.53,224,0.900,bicubic,+4.180,+0.869,+2 +regnetz_e8,89.380,10.620,98.459,1.542,57.70,320,1.000,bicubic,+4.350,+1.195,+11 +tf_efficientnetv2_l,89.370,10.630,98.273,1.727,118.52,480,1.000,bicubic,+3.880,+0.901,-9 +tf_efficientnet_b8,89.352,10.648,98.303,1.697,87.41,672,0.954,bicubic,+3.986,+0.911,-3 +tf_efficientnet_b6_ap,89.342,10.658,98.281,1.719,43.04,528,0.942,bicubic,+4.554,+1.143,+17 +vit_large_patch16_224,89.316,10.684,98.394,1.606,304.33,224,0.900,bicubic,+3.472,+0.570,-22 +tf_efficientnet_b4_ns,89.303,10.697,98.347,1.653,19.34,380,0.922,bicubic,+4.141,+0.877,-3 +xcit_small_24_p16_384_dist,89.299,10.701,98.328,1.672,47.67,384,1.000,bicubic,+4.205,+1.018,-1 +xcit_medium_24_p8_224_dist,89.286,10.714,98.189,1.810,84.32,224,1.000,bicubic,+4.218,+0.911,0 +tf_efficientnetv2_m,89.284,10.716,98.236,1.764,54.14,480,1.000,bicubic,+4.248,+0.958,+2 +xcit_small_24_p8_224_dist,89.201,10.799,98.243,1.757,47.63,224,1.000,bicubic,+4.327,+1.055,+9 +xcit_small_12_p16_384_dist,89.199,10.801,98.219,1.781,26.25,384,1.000,bicubic,+4.493,+1.101,+12 +swin_base_patch4_window7_224,89.145,10.855,98.422,1.578,87.77,224,0.900,bicubic,+3.895,+0.862,-11 +cait_xs24_384,89.143,10.857,98.292,1.708,26.67,384,1.000,bicubic,+5.081,+1.404,+34 +eca_nfnet_l2,89.141,10.859,98.315,1.685,56.72,384,1.000,bicubic,+4.445,+1.051,+10 +ig_resnext101_32x48d,89.118,10.882,98.132,1.868,828.41,224,0.875,bilinear,+3.682,+0.556,-20 +ig_resnext101_32x32d,89.107,10.893,98.185,1.815,468.53,224,0.875,bilinear,+4.005,+0.751,-11 +tf_efficientnet_b7,89.083,10.917,98.185,1.815,66.35,600,0.949,bicubic,+4.149,+0.979,-1 +ecaresnet269d,89.066,10.934,98.232,1.768,102.09,352,1.000,bicubic,+4.090,+1.006,-4 +xcit_large_24_p16_224_dist,89.039,10.961,98.061,1.939,189.10,224,1.000,bicubic,+4.121,+0.929,-2 +resmlp_big_24_224_in22ft1k,89.011,10.989,98.215,1.785,129.14,224,0.875,bicubic,+4.617,+1.095,+12 +dm_nfnet_f2,89.007,10.993,98.189,1.810,193.78,352,0.920,bicubic,+3.943,+0.950,-12 +xcit_small_12_p8_224_dist,89.004,10.996,98.081,1.919,26.21,224,1.000,bicubic,+4.772,+1.209,+19 +efficientnetv2_rw_m,88.985,11.015,98.213,1.787,53.24,416,1.000,bicubic,+4.175,+1.067,-3 +tf_efficientnet_b5_ap,88.940,11.060,98.164,1.836,30.39,456,0.934,bicubic,+4.684,+1.186,+16 +dm_nfnet_f1,88.925,11.075,98.115,1.885,132.63,320,0.910,bicubic,+4.301,+1.017,0 +tf_efficientnetv2_s_in21ft1k,88.902,11.098,98.279,1.721,21.46,384,1.000,bicubic,+4.604,+1.025,+9 +regnetz_d8,88.857,11.143,98.189,1.810,23.37,320,1.000,bicubic,+4.805,+1.195,+21 +vit_base_patch16_224,88.857,11.143,98.228,1.772,86.57,224,0.900,bicubic,+4.331,+0.930,-2 +resnetrs420,88.842,11.158,98.034,1.966,191.89,416,1.000,bicubic,+3.832,+0.910,-16 +resnetrs270,88.834,11.166,98.136,1.864,129.86,352,1.000,bicubic,+4.400,+1.164,0 +ig_resnext101_32x16d,88.825,11.175,98.049,1.951,194.03,224,0.875,bilinear,+4.653,+0.851,+12 +vit_small_r26_s32_384,88.817,11.184,98.341,1.659,36.47,384,1.000,bicubic,+4.770,+1.011,+18 +vit_base_r50_s16_384,88.808,11.192,98.232,1.768,98.95,384,1.000,bicubic,+3.836,+0.942,-18 +xcit_medium_24_p16_224_dist,88.804,11.196,98.038,1.962,84.40,224,1.000,bicubic,+4.524,+1.098,+4 +seresnet152d,88.797,11.203,98.174,1.825,66.84,320,1.000,bicubic,+4.439,+1.132,-1 +xcit_tiny_24_p8_384_dist,88.780,11.220,98.162,1.838,12.11,384,1.000,bicubic,+5.032,+1.452,+29 +swsl_resnext101_32x8d,88.778,11.222,98.149,1.851,88.79,224,0.875,bilinear,+4.488,+0.969,0 +tf_efficientnet_b6,88.761,11.239,98.064,1.937,43.04,528,0.942,bicubic,+4.653,+1.178,+7 +resnetrs350,88.759,11.241,98.031,1.968,163.96,384,1.000,bicubic,+4.039,+1.043,-17 +vit_base_patch16_224_miil,88.740,11.260,98.029,1.971,86.54,224,0.875,bilinear,+4.470,+1.227,-1 +resnetv2_152x2_bitm,88.731,11.269,98.307,1.693,236.34,448,1.000,bilinear,+4.223,+0.873,-13 +regnety_160,88.701,11.299,98.068,1.932,83.59,288,1.000,bicubic,+5.015,+1.292,+26 +pit_b_distilled_224,88.674,11.326,98.091,1.909,74.79,224,0.900,bicubic,+4.532,+1.235,+1 +vit_small_patch16_384,88.652,11.348,98.232,1.768,22.20,384,1.000,bicubic,+4.846,+1.132,+19 +regnetz_d32,88.652,11.348,98.083,1.917,27.58,320,0.950,bicubic,+4.630,+1.217,+7 +eca_nfnet_l1,88.624,11.376,98.132,1.868,41.41,320,1.000,bicubic,+4.612,+1.104,+7 +resnetrs200,88.609,11.391,98.038,1.962,93.21,320,1.000,bicubic,+4.543,+1.164,-1 +convnext_large,88.573,11.427,97.852,2.148,197.77,224,0.875,bicubic,+4.277,+0.958,-12 +resnetv2_152x4_bitm,88.554,11.446,98.194,1.806,936.53,480,1.000,bilinear,+3.638,+0.752,-31 +resnet200d,88.545,11.455,97.959,2.041,64.69,320,1.000,bicubic,+4.583,+1.135,+4 +xcit_small_24_p16_224_dist,88.533,11.467,97.999,2.001,47.67,224,1.000,bicubic,+4.671,+1.275,+5 +resnest269e,88.524,11.476,98.027,1.973,110.93,416,0.928,bicubic,+4.008,+1.041,-25 +crossvit_18_dagger_408,88.473,11.527,97.893,2.107,44.61,408,1.000,bicubic,+4.281,+1.075,-11 +efficientnetv2_rw_s,88.473,11.527,97.972,2.028,23.94,384,1.000,bicubic,+4.663,+1.250,+9 +resnetv2_101x3_bitm,88.464,11.536,98.157,1.843,387.93,448,1.000,bilinear,+4.022,+0.775,-26 +cait_s24_224,88.456,11.544,97.957,2.043,46.92,224,1.000,bicubic,+4.998,+1.393,+17 +resnetv2_50x3_bitm,88.447,11.553,98.198,1.802,217.32,448,1.000,bilinear,+4.433,+1.074,-5 +resmlp_big_24_distilled_224,88.443,11.557,97.940,2.060,129.14,224,0.875,bicubic,+4.855,+1.292,+13 +resnest200e,88.432,11.568,98.044,1.956,70.20,320,0.909,bicubic,+4.602,+1.150,+1 +tf_efficientnet_b3_ns,88.426,11.574,98.029,1.971,12.23,300,0.904,bicubic,+4.378,+1.121,-11 +vit_large_r50_s32_224,88.421,11.579,98.087,1.913,328.99,224,0.900,bicubic,+3.991,+0.921,-30 +tf_efficientnetv2_s,88.398,11.602,97.927,2.073,21.46,384,1.000,bicubic,+4.512,+1.231,-7 +efficientnet_b4,88.366,11.634,97.961,2.039,19.34,384,1.000,bicubic,+4.942,+1.365,+11 +resnet152d,88.353,11.647,97.935,2.065,60.21,320,1.000,bicubic,+4.679,+1.197,+6 +tf_efficientnet_b4_ap,88.349,11.651,97.893,2.107,19.34,380,0.922,bicubic,+5.097,+1.499,+16 +convnext_base,88.328,11.672,97.792,2.208,88.59,224,0.875,bicubic,+4.512,+1.024,-5 +tf_efficientnet_b5,88.321,11.679,97.914,2.086,30.39,456,0.934,bicubic,+4.509,+1.166,-5 +crossvit_15_dagger_408,88.308,11.692,97.874,2.127,28.50,408,1.000,bicubic,+4.476,+1.090,-9 +resnetrs152,88.251,11.749,97.737,2.263,86.62,320,1.000,bicubic,+4.539,+1.123,-2 +xcit_small_12_p16_224_dist,88.251,11.749,97.846,2.154,26.25,224,1.000,bicubic,+4.903,+1.010,+8 +deit_base_distilled_patch16_224,88.214,11.786,97.918,2.082,87.34,224,0.900,bicubic,+4.824,+1.432,+4 +xcit_tiny_24_p16_384_dist,88.159,11.841,97.946,2.054,12.12,384,1.000,bicubic,+5.589,+1.662,+36 +xcit_large_24_p8_224,88.157,11.843,97.389,2.611,188.93,224,1.000,bicubic,+3.765,+0.731,-40 +ig_resnext101_32x8d,88.155,11.845,97.856,2.144,88.79,224,0.875,bilinear,+5.457,+1.224,+28 +resnetv2_152x2_bit_teacher_384,88.153,11.848,98.051,1.949,236.34,384,1.000,bicubic,+4.309,+0.933,-18 +cait_xxs36_384,88.138,11.862,97.910,2.090,17.37,384,1.000,bicubic,+5.946,+1.764,+54 +dm_nfnet_f0,88.127,11.873,97.854,2.146,71.49,256,0.900,bicubic,+4.741,+1.280,-1 +xcit_tiny_12_p8_384_dist,88.101,11.899,97.918,2.082,6.71,384,1.000,bicubic,+5.709,+1.696,+38 +swsl_resnext101_32x4d,88.099,11.901,97.970,2.030,44.18,224,0.875,bilinear,+4.863,+1.206,+3 +convnext_small,88.048,11.952,97.779,2.220,50.22,224,0.875,bicubic,+4.922,+1.355,+6 +xcit_tiny_24_p8_224_dist,88.039,11.961,97.814,2.186,12.11,224,1.000,bicubic,+5.477,+1.646,+28 +eca_nfnet_l0,87.973,12.027,97.874,2.127,24.14,288,1.000,bicubic,+5.395,+1.382,+25 +nfnet_l0,87.971,12.029,97.869,2.131,35.07,288,1.000,bicubic,+5.219,+1.351,+16 +xcit_small_24_p8_224,87.969,12.031,97.581,2.419,47.63,224,1.000,bicubic,+4.127,+0.945,-26 +tf_efficientnet_b4,87.963,12.037,97.739,2.261,19.34,380,0.922,bicubic,+4.939,+1.439,+6 +resnet101d,87.937,12.063,97.908,2.092,44.57,320,1.000,bicubic,+4.915,+1.462,+6 +regnety_032,87.933,12.067,97.891,2.109,19.44,288,1.000,bicubic,+5.207,+1.467,+13 +vit_base_patch32_384,87.907,12.093,98.010,1.990,88.30,384,1.000,bicubic,+4.559,+1.596,-9 +twins_svt_large,87.901,12.099,97.581,2.419,99.27,224,0.900,bicubic,+4.221,+0.987,-20 +twins_pcpvt_large,87.879,12.121,97.859,2.142,60.99,224,0.900,bicubic,+4.743,+1.257,-6 +regnetz_c16,87.858,12.142,97.818,2.182,13.46,320,0.940,bicubic,+5.340,+1.458,+21 +deit_base_patch16_384,87.841,12.159,97.510,2.490,86.86,384,1.000,bicubic,+4.735,+1.140,-4 +xcit_small_12_p8_224,87.828,12.172,97.566,2.434,26.21,224,1.000,bicubic,+4.484,+1.086,-13 +tresnet_xl_448,87.796,12.204,97.457,2.543,78.44,448,0.875,bilinear,+4.742,+1.285,-4 +resnetv2_50x1_bit_distilled,87.792,12.208,97.903,2.097,25.55,224,0.875,bicubic,+4.964,+1.377,+1 +tresnet_m,87.738,12.262,97.521,2.479,31.39,224,0.875,bilinear,+4.666,+1.403,-7 +twins_pcpvt_base,87.732,12.268,97.726,2.274,43.83,224,0.900,bicubic,+5.028,+1.378,+4 +gc_efficientnetv2_rw_t,87.717,12.283,97.807,2.193,13.68,288,1.000,bicubic,+5.251,+1.511,+15 +resnetv2_101x1_bitm,87.683,12.317,97.938,2.062,44.54,448,1.000,bilinear,+5.349,+1.421,+22 +swin_small_patch4_window7_224,87.668,12.332,97.566,2.434,49.61,224,0.900,bicubic,+4.454,+1.242,-17 +efficientnetv2_rw_t,87.644,12.356,97.688,2.312,13.65,288,1.000,bicubic,+5.300,+1.492,+19 +pnasnet5large,87.642,12.358,97.487,2.513,86.06,331,0.911,bicubic,+4.854,+1.447,-4 +twins_svt_base,87.642,12.358,97.523,2.477,56.07,224,0.900,bicubic,+4.506,+1.103,-18 +swsl_resnext101_32x16d,87.608,12.392,97.818,2.182,194.03,224,0.875,bilinear,+4.252,+0.976,-28 +jx_nest_base,87.608,12.392,97.515,2.485,67.72,224,0.875,bicubic,+4.054,+1.151,-32 +xcit_medium_24_p8_224,87.604,12.396,97.197,2.803,84.32,224,1.000,bicubic,+3.868,+0.803,-40 +swsl_resnext50_32x4d,87.595,12.405,97.654,2.346,25.03,224,0.875,bilinear,+5.421,+1.422,+24 +levit_384,87.557,12.443,97.549,2.451,39.13,224,0.900,bicubic,+4.969,+1.527,-3 +tf_efficientnet_b2_ns,87.555,12.445,97.628,2.372,9.11,260,0.890,bicubic,+5.175,+1.380,+8 +ecaresnet50t,87.542,12.458,97.643,2.357,25.57,320,0.950,bicubic,+5.194,+1.505,+9 +jx_nest_small,87.495,12.505,97.519,2.481,38.35,224,0.875,bicubic,+4.375,+1.191,-24 +resnetv2_152x2_bit_teacher,87.493,12.507,97.814,2.186,236.34,224,0.875,bicubic,+4.621,+1.244,-17 +resnet152,87.457,12.543,97.402,2.598,60.19,224,0.950,bicubic,+4.633,+1.268,-16 +fbnetv3_g,87.452,12.548,97.549,2.451,16.62,288,0.950,bilinear,+5.406,+1.485,+23 +resnet61q,87.439,12.561,97.600,2.400,36.85,288,1.000,bicubic,+4.913,+1.466,-5 +efficientnet_b3,87.435,12.565,97.681,2.319,12.23,320,1.000,bicubic,+5.193,+1.567,+12 +cait_xxs24_384,87.412,12.588,97.619,2.381,12.03,384,1.000,bicubic,+6.448,+1.973,+74 +resnet51q,87.401,12.599,97.585,2.415,35.70,288,1.000,bilinear,+5.039,+1.405,0 +coat_lite_small,87.380,12.620,97.368,2.632,19.84,224,0.900,bicubic,+5.070,+1.520,+4 +xcit_tiny_24_p8_224,87.377,12.623,97.628,2.372,12.11,224,1.000,bicubic,+5.486,+1.650,+24 +tresnet_l_448,87.375,12.625,97.487,2.513,55.99,448,0.875,bilinear,+5.105,+1.509,+6 +nasnetalarge,87.350,12.650,97.417,2.583,88.75,331,0.911,bicubic,+4.724,+1.371,-18 +crossvit_18_dagger_240,87.346,12.655,97.455,2.545,44.27,240,0.875,bicubic,+4.826,+1.383,-12 +convnext_tiny,87.339,12.661,97.436,2.564,28.59,224,0.875,bicubic,+5.275,+1.602,+10 +crossvit_18_240,87.318,12.682,97.483,2.517,43.27,240,0.875,bicubic,+4.918,+1.429,-10 +resnetv2_101,87.316,12.684,97.323,2.677,44.54,224,0.950,bicubic,+5.274,+1.461,+12 +ecaresnet101d,87.288,12.712,97.558,2.442,44.57,224,0.875,bicubic,+5.116,+1.510,+5 +resnest101e,87.284,12.716,97.560,2.440,48.28,256,0.875,bilinear,+4.396,+1.240,-34 +pit_s_distilled_224,87.273,12.727,97.500,2.500,24.04,224,0.900,bicubic,+5.277,+1.704,+10 +resnetrs101,87.249,12.751,97.455,2.545,63.62,288,0.940,bicubic,+4.961,+1.447,-4 +mixer_b16_224_miil,87.230,12.770,97.410,2.590,59.88,224,0.875,bilinear,+4.926,+1.694,-7 +tresnet_xl,87.228,12.772,97.400,2.600,78.44,224,0.875,bilinear,+5.170,+1.463,+4 +xcit_tiny_12_p8_224_dist,87.222,12.778,97.444,2.556,6.71,224,1.000,bicubic,+6.014,+1.842,+41 +convit_base,87.207,12.793,97.286,2.714,86.54,224,0.875,bicubic,+4.913,+1.352,-9 +xcit_tiny_12_p16_384_dist,87.200,12.800,97.466,2.534,6.72,384,1.000,bicubic,+6.256,+2.056,+57 +tf_efficientnet_b3_ap,87.194,12.806,97.380,2.620,12.23,300,0.904,bicubic,+5.368,+1.756,+11 +visformer_small,87.185,12.815,97.320,2.679,40.22,224,0.900,bicubic,+5.079,+1.447,-4 +crossvit_15_dagger_240,87.170,12.830,97.438,2.562,28.21,240,0.875,bicubic,+4.844,+1.480,-16 +xcit_small_24_p16_224,87.132,12.868,97.263,2.737,47.67,224,1.000,bicubic,+4.550,+1.259,-33 +resnet101,87.081,12.919,97.263,2.737,44.55,224,0.950,bicubic,+5.149,+1.497,+3 +convit_small,87.053,12.947,97.348,2.652,27.78,224,0.875,bicubic,+5.629,+1.606,+21 +crossvit_15_240,87.051,12.949,97.423,2.577,27.53,240,0.875,bicubic,+5.507,+1.735,+13 +tf_efficientnetv2_b3,87.027,12.973,97.303,2.697,14.36,300,0.904,bicubic,+5.059,+1.523,-1 +jx_nest_tiny,87.012,12.988,97.378,2.622,17.06,224,0.875,bicubic,+5.590,+1.762,+19 +regnetz_b16,87.012,12.988,97.427,2.573,9.72,288,0.940,bicubic,+6.296,+1.949,+58 +xcit_small_12_p16_224,87.012,12.988,97.246,2.754,26.25,224,1.000,bicubic,+5.036,+1.428,-5 +deit_small_distilled_patch16_224,86.995,13.005,97.316,2.684,22.44,224,0.900,bicubic,+5.791,+1.938,+28 +resmlp_36_distilled_224,86.989,13.011,97.276,2.724,44.69,224,0.875,bicubic,+5.835,+1.788,+29 +xcit_large_24_p16_224,86.955,13.045,96.919,3.081,189.10,224,1.000,bicubic,+4.063,+1.041,-56 +xcit_medium_24_p16_224,86.938,13.062,97.101,2.899,84.40,224,1.000,bicubic,+4.300,+1.125,-47 +tnt_s_patch16_224,86.903,13.097,97.365,2.635,23.76,224,0.900,bicubic,+5.387,+1.619,+6 +vit_small_patch16_224,86.867,13.133,97.613,2.387,22.05,224,0.900,bicubic,+5.471,+1.479,+12 +ssl_resnext101_32x16d,86.865,13.135,97.519,2.481,194.03,224,0.875,bilinear,+5.011,+1.425,-7 +vit_small_r26_s32_224,86.859,13.141,97.530,2.470,36.43,224,0.900,bicubic,+5.003,+1.510,-9 +convmixer_1536_20,86.850,13.150,97.348,2.652,51.63,224,0.960,bicubic,+5.484,+1.734,+12 +rexnet_200,86.844,13.156,97.276,2.724,16.37,224,0.875,bicubic,+5.216,+1.608,-4 +tf_efficientnet_b3,86.835,13.165,97.297,2.703,12.23,300,0.904,bicubic,+5.199,+1.579,-6 +deit_base_patch16_224,86.831,13.169,97.049,2.951,86.57,224,0.900,bicubic,+4.837,+1.315,-18 +swsl_resnet50,86.825,13.175,97.496,2.504,25.56,224,0.875,bilinear,+5.654,+1.518,+17 +tresnet_m_448,86.814,13.186,97.216,2.784,31.39,448,0.875,bilinear,+5.110,+1.642,-12 +tf_efficientnet_lite4,86.803,13.197,97.265,2.735,13.01,380,0.920,bilinear,+5.267,+1.597,-5 +ssl_resnext101_32x8d,86.801,13.199,97.472,2.528,88.79,224,0.875,bilinear,+5.193,+1.430,-9 +coat_mini,86.795,13.205,97.158,2.842,10.34,224,0.900,bicubic,+5.531,+1.764,+8 +tresnet_l,86.763,13.237,97.269,2.731,55.99,224,0.875,bilinear,+5.273,+1.645,-4 +twins_svt_small,86.758,13.242,97.180,2.820,24.06,224,0.900,bicubic,+5.074,+1.508,-16 +crossvit_base_240,86.735,13.265,97.122,2.878,105.03,240,0.875,bicubic,+4.521,+1.290,-37 +levit_256,86.728,13.272,97.256,2.744,18.89,224,0.900,bicubic,+5.222,+1.764,-8 +seresnext50_32x4d,86.694,13.306,97.218,2.782,27.56,224,0.875,bicubic,+5.436,+1.590,+4 +crossvit_small_240,86.692,13.308,97.273,2.727,26.86,240,0.875,bicubic,+5.670,+1.816,+17 +halo2botnet50ts_256,86.686,13.314,97.096,2.904,22.64,256,0.950,bicubic,+4.624,+1.454,-35 +pit_b_224,86.684,13.316,96.898,3.102,73.76,224,0.900,bicubic,+4.240,+1.186,-57 +tf_efficientnet_b1_ns,86.669,13.331,97.378,2.622,7.79,240,0.882,bicubic,+5.283,+1.642,-7 +swin_tiny_patch4_window7_224,86.660,13.340,97.197,2.803,28.29,224,0.900,bicubic,+5.286,+1.655,-7 +wide_resnet50_2,86.645,13.355,97.207,2.793,68.88,224,0.875,bicubic,+5.193,+1.677,-13 +gernet_l,86.641,13.359,97.190,2.810,31.08,256,0.875,bilinear,+5.295,+1.658,-7 +efficientnet_el,86.632,13.368,97.175,2.825,10.59,300,0.904,bicubic,+5.326,+1.649,-6 +twins_pcpvt_small,86.624,13.376,97.340,2.660,24.11,224,0.900,bicubic,+5.536,+1.700,+6 +resmlp_24_distilled_224,86.620,13.380,97.141,2.859,30.02,224,0.875,bicubic,+5.856,+1.917,+22 +nf_resnet50,86.605,13.395,97.291,2.709,25.56,288,0.940,bicubic,+5.951,+1.957,+25 +resnest50d_4s2x40d,86.588,13.412,97.267,2.733,30.42,224,0.875,bicubic,+5.478,+1.703,0 +efficientnet_b3_pruned,86.579,13.421,97.190,2.810,9.86,300,0.904,bicubic,+5.723,+1.946,+16 +sehalonet33ts,86.568,13.432,97.004,2.995,13.69,256,0.940,bicubic,+5.602,+1.732,+7 +sebotnet33ts_256,86.568,13.432,96.791,3.209,13.70,256,0.940,bicubic,+5.414,+1.623,-4 +repvgg_b3,86.562,13.438,97.141,2.859,123.09,224,0.875,bilinear,+6.066,+1.877,+26 +xcit_tiny_24_p16_224_dist,86.536,13.464,97.218,2.782,12.12,224,1.000,bicubic,+6.088,+2.002,+31 +halonet50ts,86.502,13.498,97.152,2.848,22.73,256,0.940,bicubic,+4.844,+1.542,-36 +ssl_resnext101_32x4d,86.479,13.521,97.468,2.532,44.18,224,0.875,bilinear,+5.553,+1.744,+7 +ecaresnet50d,86.470,13.530,97.186,2.814,25.58,224,0.875,bicubic,+5.868,+1.866,+19 +gcresnet50t,86.468,13.532,97.141,2.859,25.90,256,0.900,bicubic,+5.530,+1.689,+4 +gluon_resnet152_v1s,86.466,13.534,97.113,2.887,60.32,224,0.875,bicubic,+5.444,+1.699,-3 +haloregnetz_b,86.464,13.536,96.943,3.057,11.68,224,0.940,bicubic,+5.412,+1.749,-7 +resnest50d_1s4x24d,86.445,13.556,97.150,2.850,25.68,224,0.875,bicubic,+5.459,+1.830,-4 +resnetv2_50x1_bitm,86.442,13.558,97.600,2.400,25.55,448,1.000,bilinear,+6.100,+1.920,+29 +repvgg_b3g4,86.361,13.639,97.054,2.946,83.83,224,0.875,bilinear,+6.149,+1.948,+40 +lamhalobotnet50ts_256,86.355,13.645,97.062,2.938,22.57,256,0.950,bicubic,+4.805,+1.560,-41 +cait_xxs36_224,86.340,13.660,97.113,2.887,17.30,224,1.000,bicubic,+6.590,+2.243,+65 +legacy_senet154,86.340,13.660,96.923,3.077,115.09,224,0.875,bilinear,+5.030,+1.433,-28 +resnext50_32x4d,86.331,13.669,96.964,3.036,25.03,224,0.950,bicubic,+5.227,+1.638,-17 +gernet_m,86.329,13.671,97.096,2.904,21.14,224,0.875,bilinear,+5.583,+1.912,+2 +pit_s_224,86.323,13.677,97.047,2.953,23.46,224,0.900,bicubic,+5.225,+1.717,-18 +vit_small_patch32_384,86.314,13.686,97.419,2.581,22.92,384,1.000,bicubic,+5.830,+1.821,+10 +efficientnet_b2,86.308,13.692,96.990,3.010,9.11,288,1.000,bicubic,+5.696,+1.676,+3 +gluon_senet154,86.272,13.729,96.947,3.053,115.09,224,0.875,bicubic,+5.040,+1.599,-30 +resnest50d,86.240,13.761,97.066,2.934,27.48,224,0.875,bilinear,+5.262,+1.688,-15 +convmixer_768_32,86.225,13.775,97.034,2.966,21.11,224,0.960,bicubic,+6.061,+1.962,+33 +ecaresnet101d_pruned,86.210,13.790,97.335,2.665,24.88,224,0.875,bicubic,+5.394,+1.701,-8 +efficientnet_el_pruned,86.201,13.799,97.026,2.974,10.59,300,0.904,bicubic,+5.899,+1.808,+19 +cspdarknet53,86.184,13.816,97.013,2.987,27.64,256,0.887,bilinear,+6.122,+1.929,+35 +inception_v4,86.167,13.833,96.915,3.085,42.68,299,0.875,bicubic,+5.997,+1.945,+28 +rexnet_150,86.156,13.844,97.062,2.938,9.73,224,0.875,bicubic,+5.846,+1.896,+15 +inception_resnet_v2,86.135,13.865,97.043,2.957,55.84,299,0.897,bicubic,+5.675,+1.735,+4 +xcit_tiny_12_p8_224,86.105,13.895,97.084,2.917,6.71,224,1.000,bicubic,+6.411,+2.029,+53 +tf_efficientnet_el,86.088,13.912,96.957,3.042,10.59,300,0.904,bicubic,+5.838,+1.828,+17 +ssl_resnext50_32x4d,86.077,13.923,97.212,2.788,25.03,224,0.875,bilinear,+5.761,+1.802,+10 +gluon_resnet101_v1s,86.058,13.942,97.024,2.976,44.67,224,0.875,bicubic,+5.756,+1.864,+11 +ecaresnetlight,86.058,13.942,97.064,2.936,30.16,224,0.875,bicubic,+5.596,+1.812,-1 +lambda_resnet50ts,86.039,13.961,96.744,3.256,21.54,256,0.950,bicubic,+4.889,+1.640,-38 +gluon_seresnext101_32x4d,86.032,13.968,96.977,3.023,48.96,224,0.875,bicubic,+5.126,+1.681,-23 +resnetv2_50,86.022,13.978,96.898,3.102,25.55,224,0.950,bicubic,+5.602,+1.824,-2 +seresnet33ts,86.009,13.991,97.011,2.989,19.78,256,0.900,bicubic,+5.653,+1.903,+1 +gcresnext50ts,86.007,13.993,96.964,3.036,15.67,256,0.900,bicubic,+5.429,+1.794,-13 +resnet50d,85.996,14.004,96.985,3.015,25.58,224,0.875,bicubic,+5.470,+1.823,-13 +ecaresnet26t,85.981,14.019,97.039,2.961,16.01,320,0.950,bicubic,+6.133,+1.955,+32 +tf_efficientnet_b2_ap,85.975,14.025,96.810,3.190,9.11,260,0.890,bicubic,+5.673,+1.782,+4 +gluon_seresnext101_64x4d,85.956,14.044,96.979,3.021,88.23,224,0.875,bicubic,+5.078,+1.681,-29 +vit_base_patch32_224,85.956,14.044,97.128,2.872,88.22,224,0.900,bicubic,+5.234,+1.562,-24 +fbnetv3_d,85.926,14.074,97.026,2.974,10.31,256,0.950,bilinear,+6.244,+2.076,+39 +gluon_resnet152_v1d,85.915,14.085,96.810,3.190,60.21,224,0.875,bicubic,+5.439,+1.602,-16 +vit_large_patch32_384,85.911,14.089,97.368,2.632,306.63,384,1.000,bicubic,+4.401,+1.274,-71 +tf_efficientnetv2_b2,85.900,14.100,96.889,3.111,10.10,260,0.890,bicubic,+5.694,+1.847,+5 +tf_efficientnet_b2,85.898,14.102,96.862,3.139,9.11,260,0.890,bicubic,+5.818,+1.954,+11 +resnet50_gn,85.883,14.117,96.849,3.151,25.56,224,0.940,bicubic,+5.831,+1.903,+12 +vit_base_patch16_224_sam,85.877,14.123,96.697,3.303,86.57,224,0.900,bicubic,+5.635,+1.941,-2 +seresnet50,85.853,14.147,97.009,2.991,28.09,224,0.875,bicubic,+5.589,+1.937,-5 +repvgg_b2g4,85.849,14.151,96.812,3.188,61.76,224,0.875,bilinear,+6.479,+2.126,+47 +gluon_resnet101_v1d,85.847,14.153,96.663,3.337,44.57,224,0.875,bicubic,+5.431,+1.647,-18 +gcresnet33ts,85.808,14.192,96.900,3.100,19.88,256,0.900,bicubic,+5.724,+1.900,+4 +mixnet_xl,85.791,14.209,96.712,3.288,11.90,224,0.875,bicubic,+5.315,+1.778,-25 +ens_adv_inception_resnet_v2,85.778,14.222,96.757,3.243,55.84,299,0.897,bicubic,+5.798,+1.819,+8 +cspresnext50,85.748,14.252,96.840,3.160,20.57,224,0.875,bilinear,+5.698,+1.894,+5 +tf_efficientnet_lite3,85.746,14.254,96.889,3.111,8.20,300,0.904,bilinear,+5.928,+1.975,+18 +ese_vovnet39b,85.744,14.256,96.894,3.107,24.57,224,0.875,bicubic,+6.434,+2.178,+43 +legacy_seresnext101_32x4d,85.744,14.256,96.757,3.243,48.96,224,0.875,bilinear,+5.516,+1.743,-11 +gluon_resnext101_32x4d,85.744,14.256,96.635,3.365,44.18,224,0.875,bicubic,+5.404,+1.709,-20 +xcit_tiny_24_p16_224,85.740,14.260,96.938,3.062,12.12,224,1.000,bicubic,+6.292,+2.052,+35 +eca_resnet33ts,85.738,14.262,96.900,3.100,19.68,256,0.900,bicubic,+5.654,+1.930,-6 +cspresnet50,85.723,14.277,96.799,3.200,21.62,256,0.887,bilinear,+6.143,+2.096,+25 +regnety_320,85.723,14.277,96.725,3.275,145.05,224,0.875,bicubic,+4.915,+1.481,-49 +resnet50,85.716,14.284,96.492,3.508,25.56,224,0.950,bicubic,+5.344,+1.882,-30 +resmlp_big_24_224,85.697,14.303,96.424,3.576,129.14,224,0.875,bicubic,+4.665,+1.404,-65 +xception71,85.693,14.307,96.776,3.224,42.34,299,0.903,bicubic,+5.821,+1.854,+1 +gluon_resnext101_64x4d,85.693,14.307,96.644,3.356,83.46,224,0.875,bicubic,+5.089,+1.652,-45 +efficientnet_em,85.682,14.318,96.943,3.057,6.90,240,0.882,bicubic,+6.432,+2.147,+42 +deit_small_patch16_224,85.676,14.324,96.904,3.096,22.05,224,0.900,bicubic,+5.810,+1.858,0 +pit_xs_distilled_224,85.654,14.345,96.665,3.335,11.00,224,0.900,bicubic,+6.350,+2.299,+34 +dpn107,85.650,14.350,96.723,3.277,86.92,224,0.875,bicubic,+5.478,+1.817,-20 +efficientnet_b2_pruned,85.642,14.358,96.746,3.254,8.31,260,0.890,bicubic,+5.726,+1.892,-9 +resmlp_36_224,85.618,14.382,96.795,3.205,44.69,224,0.875,bicubic,+5.850,+1.909,+2 +ecaresnet50d_pruned,85.576,14.425,96.938,3.062,19.94,224,0.875,bicubic,+5.866,+2.058,+5 +gluon_resnet152_v1c,85.573,14.427,96.646,3.354,60.21,224,0.875,bicubic,+5.661,+1.798,-10 +levit_192,85.569,14.431,96.742,3.258,10.95,224,0.900,bicubic,+5.737,+1.956,-4 +resnext50d_32x4d,85.567,14.433,96.748,3.252,25.05,224,0.875,bicubic,+5.897,+1.884,+6 +tf_efficientnetv2_b1,85.561,14.439,96.727,3.273,8.14,240,0.882,bicubic,+6.099,+2.001,+15 +regnety_120,85.546,14.454,96.785,3.215,51.82,224,0.875,bicubic,+5.176,+1.661,-44 +fbnetv3_b,85.522,14.478,96.862,3.139,8.60,256,0.950,bilinear,+6.372,+2.116,+37 +regnetx_320,85.518,14.482,96.669,3.331,107.81,224,0.875,bicubic,+5.278,+1.647,-34 +nf_regnet_b1,85.505,14.495,96.789,3.211,10.22,288,0.900,bicubic,+6.217,+2.039,+24 +dpn92,85.503,14.497,96.629,3.371,37.67,224,0.875,bicubic,+5.487,+1.801,-22 +rexnet_130,85.473,14.527,96.684,3.316,7.56,224,0.875,bicubic,+5.973,+2.002,+6 +gluon_resnet152_v1b,85.465,14.536,96.556,3.444,60.19,224,0.875,bicubic,+5.788,+1.818,-3 +resnetrs50,85.458,14.542,96.733,3.267,35.69,224,0.910,bicubic,+5.568,+1.767,-20 +dpn131,85.394,14.606,96.637,3.363,79.25,224,0.875,bicubic,+5.570,+1.929,-14 +regnetx_160,85.388,14.612,96.637,3.363,54.28,224,0.875,bicubic,+5.540,+1.807,-17 +dla102x2,85.379,14.621,96.627,3.373,41.28,224,0.875,bilinear,+5.929,+1.993,+5 +gmlp_s16_224,85.351,14.649,96.646,3.354,19.42,224,0.875,bicubic,+5.709,+2.022,-5 +gluon_seresnext50_32x4d,85.336,14.664,96.671,3.329,27.56,224,0.875,bicubic,+5.420,+1.837,-27 +botnet26t_256,85.332,14.668,96.631,3.369,12.49,256,0.950,bicubic,+6.080,+2.103,+17 +skresnext50_32x4d,85.317,14.683,96.392,3.608,27.48,224,0.875,bicubic,+5.165,+1.748,-39 +dpn98,85.309,14.691,96.471,3.529,61.57,224,0.875,bicubic,+5.665,+1.873,-10 +xception65,85.309,14.691,96.639,3.361,39.92,299,0.903,bicubic,+5.761,+1.983,-7 +gluon_resnet101_v1c,85.304,14.696,96.407,3.593,44.57,224,0.875,bicubic,+5.772,+1.827,-7 +lambda_resnet26t,85.300,14.700,96.725,3.275,10.96,256,0.940,bicubic,+6.204,+2.137,+22 +regnety_064,85.287,14.713,96.644,3.356,30.58,224,0.875,bicubic,+5.567,+1.880,-22 +resnetblur50,85.287,14.713,96.520,3.480,25.56,224,0.875,bicubic,+5.979,+1.886,+1 +dpn68b,85.287,14.713,96.464,3.536,12.61,224,0.875,bicubic,+6.073,+2.050,+15 +resmlp_24_224,85.268,14.732,96.494,3.506,30.02,224,0.875,bicubic,+5.886,+1.948,-5 +coat_lite_mini,85.253,14.747,96.678,3.322,11.01,224,0.900,bicubic,+6.161,+2.072,+18 +regnety_080,85.242,14.758,96.633,3.367,39.18,224,0.875,bicubic,+5.362,+1.803,-36 +resnet33ts,85.225,14.775,96.629,3.371,19.68,256,0.900,bicubic,+6.013,+2.057,+10 +cait_xxs24_224,85.223,14.777,96.716,3.284,11.96,224,1.000,bicubic,+6.839,+2.406,+50 +xcit_tiny_12_p16_224_dist,85.204,14.796,96.597,3.403,6.72,224,1.000,bicubic,+6.630,+2.399,+35 +halonet26t,85.200,14.800,96.464,3.536,12.48,256,0.950,bicubic,+6.084,+2.152,+11 +resnext101_32x8d,85.195,14.805,96.451,3.549,88.79,224,0.875,bilinear,+5.879,+1.933,-9 +gluon_inception_v3,85.180,14.819,96.526,3.474,23.83,299,0.875,bicubic,+6.374,+2.154,+24 +resnet32ts,85.161,14.839,96.622,3.378,17.96,256,0.900,bicubic,+6.147,+2.266,+15 +hrnet_w48,85.153,14.847,96.492,3.508,77.47,224,0.875,bilinear,+5.853,+1.980,-6 +gluon_xception65,85.151,14.849,96.597,3.403,39.92,299,0.903,bicubic,+5.435,+1.737,-34 +gluon_resnet101_v1b,85.144,14.856,96.368,3.632,44.55,224,0.875,bicubic,+5.840,+1.846,-10 +eca_halonext26ts,85.127,14.873,96.586,3.414,10.76,256,0.940,bicubic,+5.639,+1.990,-23 +regnetx_120,85.127,14.873,96.473,3.527,46.11,224,0.875,bicubic,+5.535,+1.739,-29 +tf_efficientnet_b1_ap,85.127,14.873,96.405,3.595,7.79,240,0.882,bicubic,+5.849,+2.099,-9 +eca_botnext26ts_256,85.121,14.879,96.511,3.489,10.59,256,0.950,bicubic,+5.849,+1.895,-9 +xception,85.119,14.881,96.471,3.529,22.86,299,0.897,bicubic,+6.071,+2.079,+6 +hrnet_w64,85.112,14.888,96.744,3.256,128.06,224,0.875,bilinear,+5.644,+2.090,-27 +ssl_resnet50,85.102,14.899,96.862,3.139,25.56,224,0.875,bilinear,+5.882,+2.030,-9 +lambda_resnet26rpt_256,85.097,14.903,96.560,3.440,10.99,256,0.940,bicubic,+6.129,+2.132,+7 +res2net101_26w_4s,85.095,14.905,96.385,3.615,45.21,224,0.875,bilinear,+5.897,+1.947,-6 +tf_efficientnet_cc_b1_8e,85.063,14.937,96.419,3.580,39.72,240,0.882,bicubic,+5.757,+2.049,-21 +xcit_nano_12_p8_384_dist,85.027,14.973,96.631,3.369,3.05,384,1.000,bicubic,+7.209,+2.587,+61 +resnest26d,85.010,14.990,96.635,3.365,17.07,224,0.875,bilinear,+6.526,+2.341,+20 +gluon_resnext50_32x4d,85.010,14.990,96.428,3.572,25.03,224,0.875,bicubic,+5.642,+2.002,-27 +tf_efficientnet_b0_ns,84.986,15.014,96.503,3.497,5.29,224,0.875,bicubic,+6.328,+2.127,+12 +coat_tiny,84.969,15.031,96.409,3.591,5.50,224,0.900,bicubic,+6.541,+2.371,+24 +regnety_040,84.948,15.052,96.612,3.388,20.65,224,0.875,bicubic,+5.732,+1.956,-17 +dla169,84.922,15.078,96.533,3.467,53.39,224,0.875,bilinear,+6.228,+2.197,+8 +tf_efficientnet_b1,84.916,15.084,96.364,3.636,7.79,240,0.882,bicubic,+6.096,+2.168,+1 +legacy_seresnext50_32x4d,84.894,15.106,96.428,3.572,27.56,224,0.875,bilinear,+5.824,+1.996,-10 +hrnet_w44,84.886,15.114,96.432,3.568,67.06,224,0.875,bilinear,+5.986,+2.060,-3 +regnetx_080,84.867,15.133,96.432,3.568,39.57,224,0.875,bicubic,+5.667,+1.880,-19 +gluon_resnet50_v1s,84.862,15.138,96.443,3.557,25.68,224,0.875,bicubic,+6.154,+2.203,+2 +res2net50_26w_8s,84.852,15.148,96.345,3.655,48.40,224,0.875,bilinear,+5.876,+2.167,-10 +levit_128,84.843,15.157,96.351,3.649,9.21,224,0.900,bicubic,+6.357,+2.345,+8 +vit_tiny_patch16_384,84.828,15.172,96.712,3.288,5.79,384,1.000,bicubic,+6.396,+2.170,+13 +gluon_resnet50_v1d,84.826,15.174,96.400,3.600,25.58,224,0.875,bicubic,+5.750,+1.930,-18 +dla60_res2next,84.824,15.176,96.413,3.587,17.03,224,0.875,bilinear,+6.382,+2.263,+10 +mixnet_l,84.820,15.180,96.326,3.674,7.33,224,0.875,bicubic,+5.844,+2.032,-14 +dla102x,84.815,15.185,96.548,3.452,26.31,224,0.875,bilinear,+6.301,+2.324,+1 +tv_resnet152,84.815,15.185,96.219,3.781,60.19,224,0.875,bilinear,+6.495,+2.183,+15 +dla60_res2net,84.809,15.191,96.484,3.517,20.85,224,0.875,bilinear,+6.347,+2.278,+4 +pit_xs_224,84.790,15.210,96.492,3.508,10.62,224,0.900,bicubic,+6.602,+2.326,+19 +xception41,84.783,15.217,96.415,3.585,26.97,299,0.903,bicubic,+6.275,+2.135,-2 +regnetx_064,84.781,15.219,96.492,3.508,26.21,224,0.875,bicubic,+5.715,+2.034,-24 +hrnet_w40,84.736,15.264,96.552,3.448,57.56,224,0.875,bilinear,+5.820,+2.078,-19 +res2net50_26w_6s,84.730,15.270,96.285,3.715,37.05,224,0.875,bilinear,+6.164,+2.151,-7 +repvgg_b2,84.722,15.278,96.469,3.531,89.02,224,0.875,bilinear,+5.930,+2.051,-16 +resmlp_12_distilled_224,84.713,15.287,96.223,3.777,15.35,224,0.875,bicubic,+6.771,+2.665,+25 +legacy_seresnet152,84.694,15.306,96.413,3.587,66.82,224,0.875,bilinear,+6.038,+2.045,-12 +selecsls60b,84.653,15.347,96.298,3.702,32.77,224,0.875,bicubic,+6.241,+2.128,0 +hrnet_w32,84.649,15.351,96.411,3.589,41.23,224,0.875,bilinear,+6.203,+2.223,-5 +bat_resnext26ts,84.640,15.360,96.270,3.730,10.73,256,0.900,bicubic,+6.390,+2.172,+4 +tf_efficientnetv2_b0,84.630,15.370,96.272,3.728,7.14,224,0.875,bicubic,+6.270,+2.248,+1 +efficientnet_b1,84.608,15.392,96.332,3.668,7.79,256,1.000,bicubic,+5.818,+1.990,-22 +regnetx_040,84.598,15.402,96.379,3.621,22.12,224,0.875,bicubic,+6.116,+2.135,-11 +efficientnet_es,84.583,15.417,96.313,3.687,5.44,224,0.875,bicubic,+6.523,+2.375,+10 +hrnet_w30,84.576,15.424,96.381,3.619,37.71,224,0.875,bilinear,+6.378,+2.157,+3 +tf_mixnet_l,84.564,15.437,96.244,3.756,7.33,224,0.875,bicubic,+5.790,+2.248,-25 +wide_resnet101_2,84.551,15.449,96.353,3.647,126.89,224,0.875,bilinear,+5.699,+2.065,-31 +dla60x,84.523,15.477,96.283,3.717,17.35,224,0.875,bilinear,+6.277,+2.263,-2 +legacy_seresnet101,84.499,15.501,96.330,3.670,49.33,224,0.875,bilinear,+6.111,+2.064,-10 +resnet26t,84.467,15.533,96.217,3.783,16.01,256,0.940,bicubic,+6.603,+2.371,+14 +coat_lite_tiny,84.457,15.543,96.368,3.632,5.72,224,0.900,bicubic,+6.947,+2.456,+30 +tf_efficientnet_em,84.450,15.550,96.178,3.822,6.90,240,0.882,bicubic,+6.318,+2.132,0 +repvgg_b1,84.414,15.586,96.215,3.785,57.42,224,0.875,bilinear,+6.046,+2.118,-12 +efficientnet_b1_pruned,84.395,15.605,96.140,3.860,6.33,240,0.882,bicubic,+6.155,+2.308,-7 +res2net50_26w_4s,84.363,15.637,96.080,3.920,25.70,224,0.875,bilinear,+6.407,+2.228,+5 +hardcorenas_f,84.322,15.678,96.025,3.975,8.20,224,0.875,bilinear,+6.224,+2.221,-3 +res2net50_14w_8s,84.305,15.695,96.072,3.929,25.06,224,0.875,bilinear,+6.161,+2.222,-6 +selecsls60,84.284,15.716,96.099,3.901,30.67,224,0.875,bicubic,+6.310,+2.267,+1 +regnetx_032,84.239,15.761,96.249,3.751,15.30,224,0.875,bicubic,+6.067,+2.161,-9 +res2next50,84.235,15.765,96.001,3.999,24.67,224,0.875,bilinear,+5.985,+2.115,-15 +gluon_resnet50_v1c,84.211,15.789,96.161,3.839,25.58,224,0.875,bicubic,+6.201,+2.173,-4 +dla102,84.188,15.812,96.208,3.792,33.27,224,0.875,bilinear,+6.160,+2.258,-6 +gcresnext26ts,84.175,15.825,96.084,3.916,10.48,256,0.900,bicubic,+6.355,+2.252,+6 +rexnet_100,84.164,15.836,96.255,3.745,4.80,224,0.875,bicubic,+6.306,+2.385,+2 +seresnext26ts,84.145,15.855,96.072,3.929,10.39,256,0.900,bicubic,+6.293,+2.281,+3 +tf_inception_v3,84.134,15.866,95.916,4.084,23.83,299,0.875,bicubic,+6.280,+2.278,+1 +res2net50_48w_2s,84.126,15.874,95.967,4.033,25.29,224,0.875,bilinear,+6.604,+2.415,+13 +resnet34d,84.094,15.906,95.975,4.025,21.82,224,0.875,bicubic,+6.980,+2.595,+26 +tf_efficientnet_lite2,84.094,15.906,96.069,3.931,6.09,260,0.890,bicubic,+6.626,+2.313,+13 +xcit_tiny_12_p16_224,84.090,15.911,96.236,3.764,6.72,224,1.000,bicubic,+6.963,+2.522,+23 +efficientnet_b0,84.032,15.968,95.956,4.044,5.29,224,0.875,bicubic,+6.338,+2.422,+1 +crossvit_9_dagger_240,84.019,15.981,96.084,3.916,8.78,240,0.875,bicubic,+7.041,+2.472,+27 +gmixer_24_224,83.968,16.032,95.854,4.146,24.72,224,0.875,bicubic,+5.930,+2.184,-18 +hardcorenas_e,83.966,16.034,95.901,4.099,8.07,224,0.875,bilinear,+6.174,+2.203,-3 +tf_efficientnet_cc_b0_8e,83.963,16.037,96.069,3.931,24.01,224,0.875,bicubic,+6.055,+2.413,-12 +regnety_016,83.957,16.043,96.005,3.995,11.20,224,0.875,bicubic,+6.097,+2.283,-11 +tv_resnext50_32x4d,83.957,16.043,95.963,4.037,25.03,224,0.875,bilinear,+6.339,+2.267,-2 +gluon_resnet50_v1b,83.940,16.060,96.016,3.984,25.56,224,0.875,bicubic,+6.360,+2.294,+1 +densenet161,83.904,16.096,96.016,3.984,28.68,224,0.875,bicubic,+6.552,+2.378,+8 +mobilenetv2_120d,83.893,16.107,95.907,4.093,5.83,224,0.875,bicubic,+6.597,+2.411,+9 +adv_inception_v3,83.891,16.109,95.933,4.067,23.83,299,0.875,bicubic,+6.309,+2.195,-3 +seresnext26t_32x4d,83.878,16.122,95.933,4.067,16.81,224,0.875,bicubic,+5.902,+2.189,-24 +tv_resnet101,83.850,16.150,95.890,4.110,44.55,224,0.875,bilinear,+6.472,+2.348,+3 +tinynet_a,83.827,16.173,95.820,4.181,6.19,192,0.875,bicubic,+6.175,+2.282,-11 +inception_v3,83.761,16.239,95.879,4.121,23.83,299,0.875,bicubic,+6.323,+2.403,-1 +hardcorenas_d,83.756,16.244,95.734,4.266,7.50,224,0.875,bilinear,+6.324,+2.250,-1 +seresnext26d_32x4d,83.754,16.246,95.852,4.148,16.81,224,0.875,bicubic,+6.152,+2.244,-11 +dla60,83.727,16.273,95.937,4.063,22.04,224,0.875,bilinear,+6.691,+2.619,+10 +xcit_nano_12_p8_224_dist,83.724,16.276,95.952,4.048,3.05,224,1.000,bicubic,+7.404,+2.866,+30 +eca_resnext26ts,83.703,16.297,95.943,4.057,10.30,256,0.900,bicubic,+6.251,+2.377,-7 +repvgg_b1g4,83.701,16.299,96.025,3.975,39.97,224,0.875,bilinear,+6.115,+2.195,-14 +convmixer_1024_20_ks9_p14,83.682,16.318,95.890,4.110,24.38,224,0.960,bicubic,+6.740,+2.534,+9 +legacy_seresnet50,83.667,16.333,95.980,4.020,28.09,224,0.875,bilinear,+6.035,+2.228,-19 +tf_efficientnet_b0_ap,83.652,16.348,95.781,4.219,5.29,224,0.875,bicubic,+6.562,+2.523,+2 +skresnet34,83.635,16.365,95.928,4.072,22.28,224,0.875,bicubic,+6.731,+2.608,+9 +tf_efficientnet_cc_b0_4e,83.635,16.365,95.740,4.260,13.31,224,0.875,bicubic,+6.331,+2.406,-8 +resmlp_12_224,83.569,16.431,95.762,4.238,15.35,224,0.875,bicubic,+6.912,+2.582,+13 +densenet201,83.554,16.446,95.811,4.189,20.01,224,0.875,bicubic,+6.264,+2.333,-8 +mobilenetv3_large_100_miil,83.554,16.446,95.450,4.550,5.48,224,0.875,bilinear,+5.636,+2.544,-37 +gernet_s,83.519,16.481,95.796,4.204,8.17,224,0.875,bilinear,+6.607,+2.662,+3 +mixnet_m,83.519,16.481,95.689,4.311,5.01,224,0.875,bicubic,+6.255,+2.265,-10 +legacy_seresnext26_32x4d,83.517,16.483,95.715,4.285,16.79,224,0.875,bicubic,+6.415,+2.399,-7 +tf_efficientnet_b0,83.517,16.483,95.719,4.281,5.29,224,0.875,bicubic,+6.671,+2.493,+2 +hrnet_w18,83.498,16.502,95.909,4.091,21.30,224,0.875,bilinear,+6.746,+2.467,+4 +densenetblur121d,83.470,16.530,95.822,4.178,8.00,224,0.875,bicubic,+6.888,+2.634,+9 +resnext26ts,83.466,16.534,95.724,4.277,10.30,256,0.900,bicubic,+6.686,+2.596,+1 +selecsls42b,83.455,16.545,95.749,4.251,32.46,224,0.875,bicubic,+6.281,+2.355,-15 +tf_efficientnet_lite1,83.344,16.656,95.640,4.360,5.42,240,0.882,bicubic,+6.708,+2.418,+3 +hardcorenas_c,83.334,16.666,95.711,4.289,5.52,224,0.875,bilinear,+6.286,+2.555,-12 +regnetx_016,83.197,16.803,95.740,4.260,9.19,224,0.875,bicubic,+6.247,+2.319,-10 +dpn68,83.180,16.820,95.595,4.405,12.61,224,0.875,bicubic,+6.874,+2.621,+10 +tf_mixnet_m,83.176,16.824,95.463,4.537,5.01,224,0.875,bicubic,+6.234,+2.311,-10 +tf_efficientnet_es,83.174,16.826,95.587,4.413,5.44,224,0.875,bicubic,+6.576,+2.383,0 +mobilenetv2_140,83.169,16.831,95.689,4.311,6.11,224,0.875,bicubic,+6.661,+2.691,+3 +xcit_nano_12_p16_384_dist,83.165,16.835,95.755,4.245,3.05,384,1.000,bicubic,+7.715,+3.064,+22 +ese_vovnet19b_dw,83.107,16.893,95.779,4.221,6.54,224,0.875,bicubic,+6.307,+2.507,-10 +levit_128s,83.062,16.938,95.529,4.471,7.78,224,0.900,bicubic,+6.543,+2.663,-1 +resnet26d,83.056,16.944,95.608,4.392,16.01,224,0.875,bicubic,+6.356,+2.462,-9 +repvgg_a2,83.001,16.999,95.591,4.409,28.21,224,0.875,bilinear,+6.541,+2.585,-1 +tv_resnet50,82.958,17.042,95.472,4.529,25.56,224,0.875,bilinear,+6.820,+2.610,+2 +hardcorenas_b,82.864,17.136,95.390,4.610,5.18,224,0.875,bilinear,+6.332,+2.636,-6 +densenet121,82.819,17.181,95.583,4.417,7.98,224,0.875,bicubic,+7.237,+2.931,+9 +vit_tiny_r_s16_p8_384,82.689,17.311,95.845,4.155,6.36,384,1.000,bicubic,+6.733,+2.583,+2 +densenet169,82.680,17.320,95.600,4.400,14.15,224,0.875,bicubic,+6.780,+2.570,+3 +vit_small_patch32_224,82.527,17.473,95.670,4.330,22.88,224,0.900,bicubic,+6.529,+2.398,-2 +mixnet_s,82.522,17.478,95.356,4.644,4.13,224,0.875,bicubic,+6.530,+2.558,-2 +regnety_008,82.488,17.512,95.491,4.509,6.26,224,0.875,bicubic,+6.176,+2.421,-7 +efficientnet_lite0,82.382,17.619,95.284,4.716,4.65,224,0.875,bicubic,+6.906,+2.772,+6 +resnest14d,82.352,17.648,95.343,4.657,10.61,224,0.875,bilinear,+6.846,+2.823,+4 +hardcorenas_a,82.313,17.687,95.299,4.701,5.26,224,0.875,bilinear,+6.391,+2.783,-4 +efficientnet_es_pruned,82.285,17.715,95.301,4.699,5.44,224,0.875,bicubic,+7.287,+2.863,+15 +mobilenetv3_rw,82.275,17.725,95.234,4.766,5.48,224,0.875,bicubic,+6.645,+2.526,-2 +semnasnet_100,82.251,17.749,95.230,4.770,3.89,224,0.875,bicubic,+6.801,+2.630,+3 +mobilenetv3_large_100,82.177,17.823,95.196,4.804,5.48,224,0.875,bicubic,+6.415,+2.656,-6 +resnet34,82.144,17.855,95.128,4.872,21.80,224,0.875,bilinear,+7.030,+2.844,+8 +mobilenetv2_110d,82.072,17.928,95.076,4.923,4.52,224,0.875,bicubic,+7.032,+2.892,+8 +vit_tiny_patch16_224,82.063,17.937,95.484,4.516,5.72,224,0.900,bicubic,+6.607,+2.638,-2 +tf_mixnet_s,82.038,17.962,95.124,4.877,4.13,224,0.875,bicubic,+6.388,+2.496,-9 +repvgg_b0,82.012,17.988,95.098,4.902,15.82,224,0.875,bilinear,+6.856,+2.680,+1 +deit_tiny_distilled_patch16_224,81.999,18.001,95.141,4.859,5.91,224,0.900,bicubic,+7.487,+3.253,+15 +mixer_b16_224,81.987,18.014,94.449,5.551,59.88,224,0.875,bicubic,+5.377,+2.219,-29 +pit_ti_distilled_224,81.967,18.033,95.145,4.855,5.10,224,0.900,bicubic,+7.435,+3.047,+12 +hrnet_w18_small_v2,81.965,18.035,95.164,4.836,15.60,224,0.875,bilinear,+6.847,+2.748,-1 +tf_efficientnet_lite0,81.957,18.043,95.162,4.838,4.65,224,0.875,bicubic,+7.125,+2.986,+4 +resnet26,81.954,18.046,95.245,4.755,16.00,224,0.875,bicubic,+6.652,+2.669,-7 +tinynet_b,81.873,18.127,94.878,5.122,3.73,188,0.875,bicubic,+6.893,+2.692,+1 +tf_mobilenetv3_large_100,81.848,18.152,95.068,4.932,5.48,224,0.875,bilinear,+6.330,+2.464,-15 +tv_densenet121,81.726,18.274,95.036,4.964,7.98,224,0.875,bicubic,+6.982,+2.886,+2 +regnety_006,81.696,18.304,95.121,4.879,6.06,224,0.875,bicubic,+6.450,+2.587,-10 +dla34,81.647,18.353,94.878,5.122,15.74,224,0.875,bilinear,+7.027,+2.806,+2 +xcit_nano_12_p8_224,81.643,18.357,95.271,4.729,3.05,224,1.000,bicubic,+7.725,+3.101,+10 +crossvit_9_240,81.617,18.383,94.978,5.022,8.55,240,0.875,bicubic,+7.647,+3.014,+8 +fbnetc_100,81.559,18.441,94.966,5.035,5.57,224,0.875,bilinear,+6.433,+2.584,-12 +legacy_seresnet34,81.538,18.462,94.897,5.103,21.96,224,0.875,bilinear,+6.728,+2.771,-5 +gluon_resnet34_v1b,81.498,18.503,94.805,5.195,21.80,224,0.875,bicubic,+6.906,+2.817,-2 +regnetx_008,81.481,18.520,95.064,4.936,7.26,224,0.875,bicubic,+6.445,+2.724,-11 +mnasnet_100,81.455,18.545,94.901,5.098,4.38,224,0.875,bicubic,+6.801,+2.791,-6 +vgg19_bn,81.446,18.554,94.765,5.235,143.68,224,0.875,bilinear,+7.232,+2.917,-2 +convit_tiny,81.132,18.868,95.047,4.953,5.71,224,0.875,bicubic,+8.012,+3.327,+10 +crossvit_tiny_240,81.094,18.906,94.987,5.013,7.01,240,0.875,bicubic,+7.758,+3.071,+6 +spnasnet_100,80.872,19.128,94.526,5.474,4.42,224,0.875,bilinear,+6.786,+2.708,-4 +ghostnet_100,80.701,19.299,94.291,5.709,5.18,224,0.875,bilinear,+6.723,+2.833,-3 +regnety_004,80.650,19.350,94.684,5.316,4.34,224,0.875,bicubic,+6.626,+2.930,-5 +skresnet18,80.641,19.359,94.376,5.624,11.96,224,0.875,bicubic,+7.605,+3.208,+6 +regnetx_006,80.635,19.365,94.528,5.472,6.20,224,0.875,bicubic,+6.783,+2.854,-3 +pit_ti_224,80.609,19.391,94.620,5.380,4.85,224,0.900,bicubic,+7.699,+3.214,+7 +swsl_resnet18,80.567,19.433,94.746,5.254,11.69,224,0.875,bilinear,+7.293,+3.008,+1 +vgg16_bn,80.556,19.444,94.592,5.408,138.37,224,0.875,bilinear,+7.206,+3.088,-3 +semnasnet_075,80.481,19.519,94.321,5.679,2.91,224,0.875,bicubic,+7.507,+3.185,+2 +tv_resnet34,80.389,19.611,94.438,5.562,21.80,224,0.875,bilinear,+7.081,+3.014,-3 +resnet18d,80.385,19.615,94.246,5.754,11.71,224,0.875,bicubic,+8.135,+3.558,+8 +mobilenetv2_100,80.255,19.745,94.197,5.803,3.50,224,0.875,bicubic,+7.289,+3.179,0 +xcit_nano_12_p16_224_dist,80.216,19.784,94.357,5.643,3.05,224,1.000,bicubic,+7.914,+3.495,+5 +vit_base_patch32_224_sam,80.210,19.790,93.823,6.177,88.22,224,0.900,bicubic,+6.518,+2.811,-11 +ssl_resnet18,80.101,19.899,94.590,5.410,11.69,224,0.875,bilinear,+7.495,+3.166,-1 +tf_mobilenetv3_large_075,80.088,19.912,94.182,5.818,3.99,224,0.875,bilinear,+6.648,+2.834,-12 +deit_tiny_patch16_224,80.011,19.988,94.449,5.551,5.72,224,0.900,bicubic,+7.846,+3.329,+4 +hrnet_w18_small,79.563,20.437,93.896,6.104,13.19,224,0.875,bilinear,+7.223,+3.218,-1 +vgg19,79.478,20.522,93.868,6.132,143.67,224,0.875,bilinear,+7.112,+2.998,-3 +regnetx_004,79.424,20.576,93.851,6.149,5.16,224,0.875,bicubic,+7.034,+3.021,-5 +tf_mobilenetv3_large_minimal_100,79.226,20.774,93.702,6.298,3.92,224,0.875,bilinear,+6.976,+3.072,-1 +legacy_seresnet18,79.157,20.843,93.781,6.219,11.78,224,0.875,bicubic,+7.415,+3.449,+3 +vgg16,79.034,20.966,93.646,6.354,138.36,224,0.875,bilinear,+7.444,+3.264,+4 +vgg13_bn,79.008,20.992,93.657,6.343,133.05,224,0.875,bilinear,+7.414,+3.281,+2 +vit_tiny_r_s16_p8_224,78.987,21.013,93.898,6.102,6.34,224,0.900,bicubic,+7.199,+3.076,-1 +lcnet_100,78.895,21.105,93.558,6.441,2.95,224,0.875,bicubic,+6.787,+3.180,-4 +tinynet_c,78.432,21.568,93.140,6.860,2.46,184,0.875,bicubic,+7.204,+3.390,+1 +gluon_resnet18_v1b,78.374,21.626,93.136,6.864,11.69,224,0.875,bicubic,+7.536,+3.374,+1 +vgg11_bn,77.926,22.074,93.230,6.770,132.87,224,0.875,bilinear,+7.566,+3.428,+1 +xcit_nano_12_p16_224,77.906,22.094,93.428,6.572,3.05,224,1.000,bicubic,+7.942,+3.668,+2 +regnety_002,77.411,22.589,92.907,7.093,3.16,224,0.875,bicubic,+7.157,+3.367,0 +resnet18,77.274,22.726,92.760,7.240,11.69,224,0.875,bilinear,+7.530,+3.678,+2 +mixer_l16_224,77.270,22.730,90.580,9.420,208.20,224,0.875,bicubic,+5.222,+2.916,-10 +vgg13,77.227,22.773,92.687,7.313,133.05,224,0.875,bilinear,+7.301,+3.441,-1 +vgg11,76.393,23.607,92.154,7.846,132.86,224,0.875,bilinear,+7.365,+3.528,0 +regnetx_002,76.117,23.883,92.209,7.791,2.68,224,0.875,bicubic,+7.367,+3.653,+1 +lcnet_075,76.057,23.943,92.070,7.930,2.36,224,0.875,bicubic,+7.239,+3.696,-1 +dla60x_c,75.637,24.363,92.177,7.823,1.32,224,0.875,bilinear,+7.745,+3.751,+1 +tf_mobilenetv3_small_100,74.717,25.283,91.257,8.743,2.54,224,0.875,bilinear,+6.793,+3.593,-1 +tinynet_d,74.281,25.719,90.922,9.078,2.34,152,0.875,bicubic,+7.323,+3.858,0 +dla46x_c,73.647,26.353,91.095,8.905,1.07,224,0.875,bilinear,+7.677,+4.115,0 +mobilenetv2_050,73.463,26.537,90.317,9.682,1.97,224,0.875,bicubic,+7.521,+4.236,0 +mnasnet_small,73.371,26.628,90.516,9.484,2.03,224,0.875,bicubic,+7.775,+4.328,+1 +tf_mobilenetv3_small_075,72.810,27.190,90.036,9.964,2.04,224,0.875,bilinear,+7.096,+3.902,-1 +dla46_c,72.607,27.393,90.499,9.501,1.30,224,0.875,bilinear,+7.741,+4.205,0 +lcnet_050,70.393,29.607,88.825,11.175,1.88,224,0.875,bicubic,+7.293,+4.443,0 +tf_mobilenetv3_small_minimal_100,70.111,29.889,88.507,11.493,2.04,224,0.875,bilinear,+7.203,+4.273,0 +tinynet_e,66.817,33.183,86.269,13.731,2.04,106,0.875,bicubic,+6.961,+4.503,0 diff --git a/results/results-imagenet.csv b/results/results-imagenet.csv index 2f50d17a14..ae25e01561 100644 --- a/results/results-imagenet.csv +++ b/results/results-imagenet.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation -beit_large_patch16_512,88.584,11.416,98.660,1.340,305.67,512,1.000,bicubic -beit_large_patch16_384,88.382,11.618,98.608,1.392,305.00,384,1.000,bicubic -tf_efficientnet_l2_ns,88.346,11.654,98.654,1.346,480.31,800,0.960,bicubic -tf_efficientnet_l2_ns_475,88.238,11.762,98.550,1.450,480.31,475,0.936,bicubic -beit_large_patch16_224,87.476,12.524,98.318,1.682,304.43,224,0.900,bicubic -swin_large_patch4_window12_384,87.150,12.850,98.238,1.762,196.74,384,1.000,bicubic -vit_large_patch16_384,87.092,12.908,98.306,1.694,304.72,384,1.000,bicubic -tf_efficientnet_b7_ns,86.830,13.170,98.084,1.916,66.35,600,0.949,bicubic -beit_base_patch16_384,86.808,13.192,98.140,1.860,86.74,384,1.000,bicubic -cait_m48_448,86.494,13.506,97.750,2.250,356.46,448,1.000,bicubic -tf_efficientnet_b6_ns,86.446,13.554,97.880,2.120,43.04,528,0.942,bicubic -swin_base_patch4_window12_384,86.436,13.564,98.066,1.934,87.90,384,1.000,bicubic -tf_efficientnetv2_xl_in21ft1k,86.404,13.596,97.868,2.132,208.12,512,1.000,bicubic -swin_large_patch4_window7_224,86.316,13.684,97.890,2.110,196.53,224,0.900,bicubic -tf_efficientnetv2_l_in21ft1k,86.292,13.708,97.984,2.016,118.52,480,1.000,bicubic -vit_large_r50_s32_384,86.180,13.820,97.924,2.076,329.09,384,1.000,bicubic -dm_nfnet_f6,86.130,13.870,97.740,2.260,438.36,576,0.956,bicubic -tf_efficientnet_b5_ns,86.076,13.924,97.752,2.248,30.39,456,0.934,bicubic -cait_m36_384,86.056,13.944,97.730,2.270,271.22,384,1.000,bicubic -vit_base_patch16_384,86.000,14.000,98.006,1.994,86.86,384,1.000,bicubic -xcit_large_24_p8_384_dist,85.996,14.004,97.688,2.312,188.93,384,1.000,bicubic -vit_large_patch16_224,85.838,14.162,97.826,2.174,304.33,224,0.900,bicubic -xcit_medium_24_p8_384_dist,85.820,14.180,97.594,2.406,84.32,384,1.000,bicubic -dm_nfnet_f5,85.806,14.194,97.482,2.518,377.21,544,0.954,bicubic -xcit_large_24_p16_384_dist,85.770,14.230,97.534,2.466,189.10,384,1.000,bicubic -dm_nfnet_f4,85.700,14.300,97.514,2.486,316.07,512,0.951,bicubic -tf_efficientnetv2_m_in21ft1k,85.598,14.402,97.752,2.248,54.14,480,1.000,bicubic -xcit_small_24_p8_384_dist,85.566,14.434,97.576,2.424,47.63,384,1.000,bicubic -dm_nfnet_f3,85.532,14.468,97.458,2.542,254.92,416,0.940,bicubic -tf_efficientnetv2_l,85.502,14.498,97.370,2.630,118.52,480,1.000,bicubic -cait_s36_384,85.454,14.546,97.482,2.518,68.37,384,1.000,bicubic -ig_resnext101_32x48d,85.430,14.570,97.582,2.418,828.41,224,0.875,bilinear -xcit_medium_24_p16_384_dist,85.426,14.574,97.408,2.592,84.40,384,1.000,bicubic +beit_large_patch16_512,88.602,11.398,98.656,1.344,305.67,512,1.000,bicubic +beit_large_patch16_384,88.404,11.596,98.608,1.392,305.00,384,1.000,bicubic +tf_efficientnet_l2_ns,88.348,11.652,98.648,1.352,480.31,800,0.960,bicubic +tf_efficientnet_l2_ns_475,88.232,11.768,98.546,1.454,480.31,475,0.936,bicubic +convnext_xlarge_384_in22ft1k,87.544,12.456,98.490,1.510,350.20,384,1.000,bicubic +beit_large_patch16_224,87.478,12.522,98.306,1.694,304.43,224,0.900,bicubic +convnext_large_384_in22ft1k,87.398,12.602,98.366,1.634,197.77,384,1.000,bicubic +swin_large_patch4_window12_384,87.148,12.852,98.240,1.760,196.74,384,1.000,bicubic +vit_large_patch16_384,87.080,12.920,98.302,1.698,304.72,384,1.000,bicubic +convnext_xlarge_in22ft1k,87.008,12.992,98.208,1.792,350.20,224,0.875,bicubic +tf_efficientnet_b7_ns,86.840,13.160,98.094,1.906,66.35,600,0.949,bicubic +beit_base_patch16_384,86.798,13.202,98.136,1.864,86.74,384,1.000,bicubic +convnext_large_in22ft1k,86.626,13.374,98.032,1.968,197.77,224,0.875,bicubic +convnext_base_384_in22ft1k,86.566,13.434,98.198,1.802,88.59,384,1.000,bicubic +cait_m48_448,86.484,13.516,97.752,2.248,356.46,448,1.000,bicubic +tf_efficientnet_b6_ns,86.450,13.550,97.882,2.118,43.04,528,0.942,bicubic +swin_base_patch4_window12_384,86.432,13.568,98.056,1.944,87.90,384,1.000,bicubic +tf_efficientnetv2_xl_in21ft1k,86.418,13.582,97.866,2.134,208.12,512,1.000,bicubic +swin_large_patch4_window7_224,86.318,13.682,97.892,2.108,196.53,224,0.900,bicubic +tf_efficientnetv2_l_in21ft1k,86.304,13.696,97.978,2.022,118.52,480,1.000,bicubic +vit_large_r50_s32_384,86.182,13.818,97.918,2.082,329.09,384,1.000,bicubic +dm_nfnet_f6,86.144,13.856,97.730,2.270,438.36,576,0.956,bicubic +tf_efficientnet_b5_ns,86.090,13.910,97.750,2.250,30.39,456,0.934,bicubic +cait_m36_384,86.052,13.948,97.730,2.270,271.22,384,1.000,bicubic +vit_base_patch16_384,86.006,13.994,98.002,1.998,86.86,384,1.000,bicubic +xcit_large_24_p8_384_dist,86.000,14.000,97.684,2.316,188.93,384,1.000,bicubic +vit_large_patch16_224,85.844,14.156,97.824,2.176,304.33,224,0.900,bicubic +dm_nfnet_f5,85.814,14.186,97.486,2.514,377.21,544,0.954,bicubic +xcit_medium_24_p8_384_dist,85.814,14.186,97.592,2.408,84.32,384,1.000,bicubic +convnext_base_in22ft1k,85.796,14.204,97.866,2.134,88.59,224,0.875,bicubic +vit_base_patch8_224,85.792,14.208,97.792,2.208,86.58,224,0.900,bicubic +xcit_large_24_p16_384_dist,85.756,14.244,97.538,2.462,189.10,384,1.000,bicubic +dm_nfnet_f4,85.714,14.286,97.522,2.478,316.07,512,0.951,bicubic +tf_efficientnetv2_m_in21ft1k,85.592,14.408,97.746,2.254,54.14,480,1.000,bicubic +xcit_small_24_p8_384_dist,85.552,14.448,97.572,2.428,47.63,384,1.000,bicubic +dm_nfnet_f3,85.524,14.476,97.462,2.538,254.92,416,0.940,bicubic +tf_efficientnetv2_l,85.490,14.510,97.372,2.628,118.52,480,1.000,bicubic +cait_s36_384,85.462,14.538,97.480,2.520,68.37,384,1.000,bicubic +ig_resnext101_32x48d,85.436,14.564,97.576,2.424,828.41,224,0.875,bilinear deit_base_distilled_patch16_384,85.422,14.578,97.332,2.668,87.63,384,1.000,bicubic -xcit_large_24_p8_224_dist,85.400,14.600,97.416,2.584,188.93,224,1.000,bicubic -tf_efficientnet_b8_ap,85.374,14.626,97.298,2.702,87.41,672,0.954,bicubic -tf_efficientnet_b8,85.350,14.650,97.392,2.608,87.41,672,0.954,bicubic -swin_base_patch4_window7_224,85.268,14.732,97.558,2.442,87.77,224,0.900,bicubic -beit_base_patch16_224,85.240,14.760,97.654,2.346,86.53,224,0.900,bicubic -tf_efficientnet_b4_ns,85.150,14.850,97.470,2.530,19.34,380,0.922,bicubic -tf_efficientnet_b7_ap,85.120,14.880,97.250,2.750,66.35,600,0.949,bicubic -xcit_small_24_p16_384_dist,85.104,14.896,97.316,2.684,47.67,384,1.000,bicubic -ig_resnext101_32x32d,85.094,14.906,97.438,2.562,468.53,224,0.875,bilinear -xcit_small_12_p8_384_dist,85.082,14.918,97.270,2.730,26.21,384,1.000,bicubic -xcit_medium_24_p8_224_dist,85.068,14.932,97.276,2.724,84.32,224,1.000,bicubic -dm_nfnet_f2,85.046,14.954,97.238,2.762,193.78,352,0.920,bicubic -tf_efficientnetv2_m,85.046,14.954,97.284,2.716,54.14,480,1.000,bicubic -cait_s24_384,85.044,14.956,97.350,2.650,47.06,384,1.000,bicubic -resnetrs420,85.008,14.992,97.126,2.874,191.89,416,1.000,bicubic -ecaresnet269d,84.986,15.014,97.228,2.772,102.09,352,1.000,bicubic -vit_base_r50_s16_384,84.984,15.016,97.298,2.702,98.95,384,1.000,bicubic -resnetv2_152x4_bitm,84.938,15.062,97.458,2.542,936.53,480,1.000,bilinear -tf_efficientnet_b7,84.936,15.064,97.206,2.794,66.35,600,0.949,bicubic -xcit_large_24_p16_224_dist,84.930,15.070,97.130,2.870,189.10,224,1.000,bicubic -xcit_small_24_p8_224_dist,84.876,15.124,97.198,2.802,47.63,224,1.000,bicubic -efficientnetv2_rw_m,84.822,15.178,97.146,2.854,53.24,416,1.000,bicubic -tf_efficientnet_b6_ap,84.784,15.216,97.138,2.862,43.04,528,0.942,bicubic -eca_nfnet_l2,84.720,15.280,97.258,2.742,56.72,384,1.000,bicubic -xcit_small_12_p16_384_dist,84.714,15.286,97.116,2.884,26.25,384,1.000,bicubic -resnetrs350,84.712,15.288,96.990,3.010,163.96,384,1.000,bicubic -dm_nfnet_f1,84.624,15.376,97.096,2.904,132.63,320,0.910,bicubic -vit_base_patch16_224,84.540,15.460,97.306,2.694,86.57,224,0.900,bicubic -resnest269e,84.524,15.476,96.986,3.014,110.93,416,0.928,bicubic -resnetv2_152x2_bitm,84.452,15.548,97.436,2.564,236.34,448,1.000,bilinear -vit_large_r50_s32_224,84.440,15.560,97.154,2.846,328.99,224,0.900,bicubic -resnetrs270,84.440,15.560,96.970,3.030,129.86,352,1.000,bicubic -resnetv2_101x3_bitm,84.430,15.570,97.372,2.628,387.93,448,1.000,bilinear -resmlp_big_24_224_in22ft1k,84.424,15.576,97.116,2.884,129.14,224,0.875,bicubic -xcit_large_24_p8_224,84.382,15.618,96.656,3.344,188.93,224,1.000,bicubic -seresnet152d,84.362,15.638,97.042,2.958,66.84,320,1.000,bicubic -tf_efficientnetv2_s_in21ft1k,84.296,15.704,97.256,2.744,21.46,384,1.000,bicubic -xcit_medium_24_p16_224_dist,84.278,15.722,96.942,3.058,84.40,224,1.000,bicubic -vit_base_patch16_224_miil,84.276,15.724,96.798,3.202,86.54,224,0.875,bilinear -swsl_resnext101_32x8d,84.274,15.726,97.174,2.826,88.79,224,0.875,bilinear -tf_efficientnet_b5_ap,84.258,15.742,96.976,3.024,30.39,456,0.934,bicubic -xcit_small_12_p8_224_dist,84.240,15.760,96.872,3.128,26.21,224,1.000,bicubic -crossvit_18_dagger_408,84.184,15.816,96.822,3.178,44.61,408,1.000,bicubic -ig_resnext101_32x16d,84.166,15.834,97.196,2.804,194.03,224,0.875,bilinear -pit_b_distilled_224,84.158,15.842,96.858,3.142,74.79,224,0.900,bicubic -tf_efficientnet_b6,84.112,15.888,96.888,3.112,43.04,528,0.942,bicubic -resnetrs200,84.058,15.942,96.874,3.126,93.21,320,1.000,bicubic -cait_xs24_384,84.054,15.946,96.886,3.114,26.67,384,1.000,bicubic -vit_small_r26_s32_384,84.050,15.950,97.322,2.678,36.47,384,1.000,bicubic -tf_efficientnet_b3_ns,84.042,15.958,96.908,3.092,12.23,300,0.904,bicubic -regnetz_d,84.034,15.966,96.870,3.130,27.58,320,0.950,bicubic -eca_nfnet_l1,84.032,15.968,97.032,2.968,41.41,320,1.000,bicubic -resnetv2_50x3_bitm,83.984,16.016,97.130,2.870,217.32,448,1.000,bilinear -resnet200d,83.970,16.030,96.818,3.182,64.69,320,1.000,bicubic -tf_efficientnetv2_s,83.898,16.102,96.698,3.302,21.46,384,1.000,bicubic -xcit_small_24_p16_224_dist,83.874,16.126,96.728,3.272,47.67,224,1.000,bicubic -resnest200e,83.848,16.152,96.890,3.110,70.20,320,0.909,bicubic -xcit_small_24_p8_224,83.846,16.154,96.632,3.368,47.63,224,1.000,bicubic +xcit_medium_24_p16_384_dist,85.420,14.580,97.406,2.594,84.40,384,1.000,bicubic +xcit_large_24_p8_224_dist,85.398,14.602,97.410,2.590,188.93,224,1.000,bicubic +tf_efficientnet_b8_ap,85.370,14.630,97.292,2.708,87.41,672,0.954,bicubic +tf_efficientnet_b8,85.366,14.634,97.392,2.608,87.41,672,0.954,bicubic +swin_base_patch4_window7_224,85.250,14.750,97.560,2.440,87.77,224,0.900,bicubic +beit_base_patch16_224,85.228,14.772,97.656,2.344,86.53,224,0.900,bicubic +tf_efficientnet_b4_ns,85.162,14.838,97.470,2.530,19.34,380,0.922,bicubic +tf_efficientnet_b7_ap,85.120,14.880,97.252,2.748,66.35,600,0.949,bicubic +ig_resnext101_32x32d,85.102,14.898,97.434,2.566,468.53,224,0.875,bilinear +xcit_small_24_p16_384_dist,85.094,14.906,97.310,2.690,47.67,384,1.000,bicubic +xcit_small_12_p8_384_dist,85.082,14.918,97.280,2.720,26.21,384,1.000,bicubic +xcit_medium_24_p8_224_dist,85.068,14.932,97.278,2.722,84.32,224,1.000,bicubic +dm_nfnet_f2,85.064,14.936,97.240,2.760,193.78,352,0.920,bicubic +cait_s24_384,85.048,14.952,97.348,2.652,47.06,384,1.000,bicubic +tf_efficientnetv2_m,85.036,14.964,97.278,2.722,54.14,480,1.000,bicubic +regnetz_e8,85.030,14.970,97.264,2.736,57.70,320,1.000,bicubic +resnetrs420,85.010,14.990,97.124,2.876,191.89,416,1.000,bicubic +ecaresnet269d,84.976,15.024,97.226,2.774,102.09,352,1.000,bicubic +vit_base_r50_s16_384,84.972,15.028,97.290,2.710,98.95,384,1.000,bicubic +tf_efficientnet_b7,84.934,15.066,97.206,2.794,66.35,600,0.949,bicubic +xcit_large_24_p16_224_dist,84.918,15.082,97.132,2.868,189.10,224,1.000,bicubic +resnetv2_152x4_bitm,84.916,15.084,97.442,2.558,936.53,480,1.000,bilinear +xcit_small_24_p8_224_dist,84.874,15.126,97.188,2.812,47.63,224,1.000,bicubic +efficientnetv2_rw_m,84.810,15.190,97.146,2.854,53.24,416,1.000,bicubic +tf_efficientnet_b6_ap,84.788,15.212,97.138,2.862,43.04,528,0.942,bicubic +resnetrs350,84.720,15.280,96.988,3.012,163.96,384,1.000,bicubic +xcit_small_12_p16_384_dist,84.706,15.294,97.118,2.882,26.25,384,1.000,bicubic +eca_nfnet_l2,84.696,15.304,97.264,2.736,56.72,384,1.000,bicubic +dm_nfnet_f1,84.624,15.376,97.098,2.902,132.63,320,0.910,bicubic +vit_base_patch16_224,84.526,15.474,97.298,2.702,86.57,224,0.900,bicubic +resnest269e,84.516,15.484,96.986,3.014,110.93,416,0.928,bicubic +resnetv2_152x2_bitm,84.508,15.492,97.434,2.566,236.34,448,1.000,bilinear +resnetv2_101x3_bitm,84.442,15.558,97.382,2.618,387.93,448,1.000,bilinear +resnetrs270,84.434,15.566,96.972,3.028,129.86,352,1.000,bicubic +vit_large_r50_s32_224,84.430,15.570,97.166,2.834,328.99,224,0.900,bicubic +resmlp_big_24_224_in22ft1k,84.394,15.606,97.120,2.880,129.14,224,0.875,bicubic +xcit_large_24_p8_224,84.392,15.608,96.658,3.342,188.93,224,1.000,bicubic +seresnet152d,84.358,15.642,97.042,2.958,66.84,320,1.000,bicubic +tf_efficientnetv2_s_in21ft1k,84.298,15.702,97.254,2.746,21.46,384,1.000,bicubic +convnext_large,84.296,15.704,96.894,3.106,197.77,224,0.875,bicubic +swsl_resnext101_32x8d,84.290,15.710,97.180,2.820,88.79,224,0.875,bilinear +xcit_medium_24_p16_224_dist,84.280,15.720,96.940,3.060,84.40,224,1.000,bicubic +vit_base_patch16_224_miil,84.270,15.730,96.802,3.198,86.54,224,0.875,bilinear +tf_efficientnet_b5_ap,84.256,15.744,96.978,3.022,30.39,456,0.934,bicubic +xcit_small_12_p8_224_dist,84.232,15.768,96.872,3.128,26.21,224,1.000,bicubic +crossvit_18_dagger_408,84.192,15.808,96.818,3.182,44.61,408,1.000,bicubic +ig_resnext101_32x16d,84.172,15.828,97.198,2.802,194.03,224,0.875,bilinear +pit_b_distilled_224,84.142,15.858,96.856,3.144,74.79,224,0.900,bicubic +tf_efficientnet_b6,84.108,15.892,96.886,3.114,43.04,528,0.942,bicubic +resnetrs200,84.066,15.934,96.874,3.126,93.21,320,1.000,bicubic +cait_xs24_384,84.062,15.938,96.888,3.112,26.67,384,1.000,bicubic +regnetz_d8,84.052,15.948,96.994,3.006,23.37,320,1.000,bicubic +tf_efficientnet_b3_ns,84.048,15.952,96.908,3.092,12.23,300,0.904,bicubic +vit_small_r26_s32_384,84.046,15.954,97.330,2.670,36.47,384,1.000,bicubic +regnetz_d32,84.022,15.978,96.866,3.134,27.58,320,0.950,bicubic +resnetv2_50x3_bitm,84.014,15.986,97.124,2.876,217.32,448,1.000,bilinear +eca_nfnet_l1,84.012,15.988,97.028,2.972,41.41,320,1.000,bicubic +resnet200d,83.962,16.038,96.824,3.176,64.69,320,1.000,bicubic +tf_efficientnetv2_s,83.886,16.114,96.696,3.304,21.46,384,1.000,bicubic +xcit_small_24_p16_224_dist,83.862,16.138,96.724,3.276,47.67,224,1.000,bicubic resnetv2_152x2_bit_teacher_384,83.844,16.156,97.118,2.882,236.34,384,1.000,bicubic -efficientnetv2_rw_s,83.830,16.170,96.722,3.278,23.94,384,1.000,bicubic -crossvit_15_dagger_408,83.826,16.174,96.786,3.214,28.50,408,1.000,bicubic -tf_efficientnet_b5,83.810,16.190,96.748,3.252,30.39,456,0.934,bicubic -vit_small_patch16_384,83.794,16.206,97.108,2.892,22.20,384,1.000,bicubic -xcit_tiny_24_p8_384_dist,83.764,16.236,96.704,3.296,12.11,384,1.000,bicubic -xcit_medium_24_p8_224,83.736,16.264,96.386,3.614,84.32,224,1.000,bicubic -resnetrs152,83.710,16.290,96.610,3.390,86.62,320,1.000,bicubic -regnety_160,83.702,16.298,96.782,3.218,83.59,288,1.000,bicubic -twins_svt_large,83.684,16.316,96.610,3.390,99.27,224,0.900,bicubic -resnet152d,83.664,16.336,96.734,3.266,60.21,320,1.000,bicubic -resmlp_big_24_distilled_224,83.596,16.404,96.656,3.344,129.14,224,0.875,bicubic +xcit_small_24_p8_224,83.842,16.158,96.636,3.364,47.63,224,1.000,bicubic +crossvit_15_dagger_408,83.832,16.168,96.784,3.216,28.50,408,1.000,bicubic +resnest200e,83.830,16.170,96.894,3.106,70.20,320,0.909,bicubic +convnext_base,83.816,16.184,96.768,3.232,88.59,224,0.875,bicubic +tf_efficientnet_b5,83.812,16.188,96.748,3.252,30.39,456,0.934,bicubic +efficientnetv2_rw_s,83.810,16.190,96.722,3.278,23.94,384,1.000,bicubic +vit_small_patch16_384,83.806,16.194,97.100,2.900,22.20,384,1.000,bicubic +xcit_tiny_24_p8_384_dist,83.748,16.252,96.710,3.290,12.11,384,1.000,bicubic +xcit_medium_24_p8_224,83.736,16.264,96.394,3.606,84.32,224,1.000,bicubic +resnetrs152,83.712,16.288,96.614,3.386,86.62,320,1.000,bicubic +regnety_160,83.686,16.314,96.776,3.224,83.59,288,1.000,bicubic +twins_svt_large,83.680,16.320,96.594,3.406,99.27,224,0.900,bicubic +resnet152d,83.674,16.326,96.738,3.262,60.21,320,1.000,bicubic +resmlp_big_24_distilled_224,83.588,16.412,96.648,3.352,129.14,224,0.875,bicubic jx_nest_base,83.554,16.446,96.364,3.636,67.72,224,0.875,bicubic -cait_s24_224,83.462,16.538,96.566,3.434,46.92,224,1.000,bicubic -efficientnet_b4,83.430,16.570,96.594,3.406,19.34,384,1.000,bicubic -deit_base_distilled_patch16_224,83.388,16.612,96.490,3.510,87.34,224,0.900,bicubic -dm_nfnet_f0,83.384,16.616,96.580,3.420,71.49,256,0.900,bicubic -swsl_resnext101_32x16d,83.354,16.646,96.836,3.164,194.03,224,0.875,bilinear -xcit_small_12_p16_224_dist,83.350,16.650,96.422,3.578,26.25,224,1.000,bicubic -vit_base_patch32_384,83.346,16.654,96.844,3.156,88.30,384,1.000,bicubic -xcit_small_12_p8_224,83.346,16.654,96.476,3.524,26.21,224,1.000,bicubic -tf_efficientnet_b4_ap,83.258,16.742,96.396,3.604,19.34,380,0.922,bicubic -swsl_resnext101_32x4d,83.226,16.774,96.768,3.232,44.18,224,0.875,bilinear -swin_small_patch4_window7_224,83.226,16.774,96.330,3.670,49.61,224,0.900,bicubic -twins_pcpvt_large,83.138,16.862,96.608,3.392,60.99,224,0.900,bicubic -twins_svt_base,83.124,16.876,96.428,3.572,56.07,224,0.900,bicubic -jx_nest_small,83.118,16.882,96.332,3.668,38.35,224,0.875,bicubic -deit_base_patch16_384,83.106,16.894,96.376,3.624,86.86,384,1.000,bicubic -tresnet_m,83.076,16.924,96.126,3.874,31.39,224,0.875,bilinear -tresnet_xl_448,83.056,16.944,96.184,3.816,78.44,448,0.875,bilinear -tf_efficientnet_b4,83.030,16.970,96.298,3.702,19.34,380,0.922,bicubic -resnet101d,83.024,16.976,96.456,3.544,44.57,320,1.000,bicubic -resnetv2_152x2_bit_teacher,82.902,17.098,96.568,3.432,236.34,224,0.875,bicubic -xcit_large_24_p16_224,82.898,17.102,95.882,4.118,189.10,224,1.000,bicubic -resnest101e,82.876,17.124,96.312,3.688,48.28,256,0.875,bilinear -resnetv2_50x1_bit_distilled,82.822,17.178,96.524,3.476,25.55,224,0.875,bicubic -pnasnet5large,82.798,17.202,96.034,3.966,86.06,331,0.911,bicubic -nfnet_l0,82.752,17.248,96.516,3.484,35.07,288,1.000,bicubic -regnety_032,82.722,17.278,96.432,3.568,19.44,288,1.000,bicubic -twins_pcpvt_base,82.712,17.288,96.348,3.652,43.83,224,0.900,bicubic -ig_resnext101_32x8d,82.710,17.290,96.640,3.360,88.79,224,0.875,bilinear -nasnetalarge,82.636,17.364,96.050,3.950,88.75,331,0.911,bicubic -xcit_medium_24_p16_224,82.626,17.374,95.976,4.024,84.40,224,1.000,bicubic -eca_nfnet_l0,82.592,17.408,96.486,3.514,24.14,288,1.000,bicubic -levit_384,82.592,17.408,96.014,3.986,39.13,224,0.900,bicubic -xcit_small_24_p16_224,82.578,17.422,96.000,4.000,47.67,224,1.000,bicubic -xcit_tiny_24_p8_224_dist,82.576,17.424,96.180,3.820,12.11,224,1.000,bicubic -xcit_tiny_24_p16_384_dist,82.568,17.432,96.294,3.706,12.12,384,1.000,bicubic -resnet61q,82.522,17.478,96.134,3.866,36.85,288,1.000,bicubic -regnetz_c,82.516,17.484,96.360,3.640,13.46,320,0.940,bicubic -crossvit_18_dagger_240,82.506,17.494,96.072,3.928,44.27,240,0.875,bicubic -gc_efficientnetv2_rw_t,82.478,17.522,96.296,3.704,13.68,288,1.000,bicubic +cait_s24_224,83.458,16.542,96.564,3.436,46.92,224,1.000,bicubic +efficientnet_b4,83.424,16.576,96.596,3.404,19.34,384,1.000,bicubic +deit_base_distilled_patch16_224,83.390,16.610,96.486,3.514,87.34,224,0.900,bicubic +dm_nfnet_f0,83.386,16.614,96.574,3.426,71.49,256,0.900,bicubic +swsl_resnext101_32x16d,83.356,16.644,96.842,3.158,194.03,224,0.875,bilinear +xcit_small_12_p16_224_dist,83.348,16.652,96.414,3.586,26.25,224,1.000,bicubic +vit_base_patch32_384,83.348,16.652,96.836,3.164,88.30,384,1.000,bicubic +xcit_small_12_p8_224,83.344,16.656,96.480,3.520,26.21,224,1.000,bicubic +tf_efficientnet_b4_ap,83.252,16.748,96.394,3.606,19.34,380,0.922,bicubic +swsl_resnext101_32x4d,83.236,16.764,96.764,3.236,44.18,224,0.875,bilinear +swin_small_patch4_window7_224,83.214,16.786,96.324,3.676,49.61,224,0.900,bicubic +twins_pcpvt_large,83.136,16.864,96.602,3.398,60.99,224,0.900,bicubic +twins_svt_base,83.136,16.864,96.420,3.580,56.07,224,0.900,bicubic +convnext_small,83.126,16.874,96.424,3.576,50.22,224,0.875,bicubic +jx_nest_small,83.120,16.880,96.328,3.672,38.35,224,0.875,bicubic +deit_base_patch16_384,83.106,16.894,96.370,3.630,86.86,384,1.000,bicubic +tresnet_m,83.072,16.928,96.118,3.882,31.39,224,0.875,bilinear +tresnet_xl_448,83.054,16.946,96.172,3.828,78.44,448,0.875,bilinear +tf_efficientnet_b4,83.024,16.976,96.300,3.700,19.34,380,0.922,bicubic +resnet101d,83.022,16.978,96.446,3.554,44.57,320,1.000,bicubic +xcit_large_24_p16_224,82.892,17.108,95.878,4.122,189.10,224,1.000,bicubic +resnest101e,82.888,17.112,96.320,3.680,48.28,256,0.875,bilinear +resnetv2_152x2_bit_teacher,82.872,17.128,96.570,3.430,236.34,224,0.875,bicubic +resnetv2_50x1_bit_distilled,82.828,17.172,96.526,3.474,25.55,224,0.875,bicubic +resnet152,82.824,17.176,96.134,3.866,60.19,224,0.950,bicubic +pnasnet5large,82.788,17.212,96.040,3.960,86.06,331,0.911,bicubic +nfnet_l0,82.752,17.248,96.518,3.482,35.07,288,1.000,bicubic +regnety_032,82.726,17.274,96.424,3.576,19.44,288,1.000,bicubic +twins_pcpvt_base,82.704,17.296,96.348,3.652,43.83,224,0.900,bicubic +ig_resnext101_32x8d,82.698,17.302,96.632,3.368,88.79,224,0.875,bilinear +xcit_medium_24_p16_224,82.638,17.362,95.976,4.024,84.40,224,1.000,bicubic +nasnetalarge,82.626,17.374,96.046,3.954,88.75,331,0.911,bicubic +levit_384,82.588,17.412,96.022,3.978,39.13,224,0.900,bicubic +xcit_small_24_p16_224,82.582,17.418,96.004,3.996,47.67,224,1.000,bicubic +eca_nfnet_l0,82.578,17.422,96.492,3.508,24.14,288,1.000,bicubic +xcit_tiny_24_p16_384_dist,82.570,17.430,96.284,3.716,12.12,384,1.000,bicubic +xcit_tiny_24_p8_224_dist,82.562,17.438,96.168,3.832,12.11,224,1.000,bicubic +resnet61q,82.526,17.474,96.134,3.866,36.85,288,1.000,bicubic +crossvit_18_dagger_240,82.520,17.480,96.072,3.928,44.27,240,0.875,bicubic +regnetz_c16,82.518,17.482,96.360,3.640,13.46,320,0.940,bicubic +gc_efficientnetv2_rw_t,82.466,17.534,96.296,3.704,13.68,288,1.000,bicubic pit_b_224,82.444,17.556,95.712,4.288,73.76,224,0.900,bicubic -crossvit_18_240,82.394,17.606,96.062,3.938,43.27,240,0.875,bicubic -xcit_tiny_12_p8_384_dist,82.392,17.608,96.218,3.782,6.71,384,1.000,bicubic -tf_efficientnet_b2_ns,82.390,17.610,96.240,3.760,9.11,260,0.890,bicubic -resnet51q,82.368,17.632,96.176,3.824,35.70,288,1.000,bilinear -ecaresnet50t,82.364,17.636,96.142,3.858,25.57,320,0.950,bicubic -efficientnetv2_rw_t,82.338,17.662,96.194,3.806,13.65,288,1.000,bicubic -resnetv2_101x1_bitm,82.330,17.670,96.528,3.472,44.54,448,1.000,bilinear -crossvit_15_dagger_240,82.310,17.690,95.962,4.038,28.21,240,0.875,bicubic -coat_lite_small,82.302,17.698,95.860,4.140,19.84,224,0.900,bicubic -mixer_b16_224_miil,82.302,17.698,95.714,4.286,59.88,224,0.875,bilinear -resnetrs101,82.294,17.706,96.002,3.998,63.62,288,0.940,bicubic -convit_base,82.292,17.708,95.934,4.066,86.54,224,0.875,bicubic -tresnet_l_448,82.262,17.738,95.980,4.020,55.99,448,0.875,bilinear -efficientnet_b3,82.258,17.742,96.116,3.884,12.23,320,1.000,bicubic -crossvit_base_240,82.206,17.794,95.828,4.172,105.03,240,0.875,bicubic -cait_xxs36_384,82.190,17.810,96.160,3.840,17.37,384,1.000,bicubic -ecaresnet101d,82.172,17.828,96.054,3.946,44.57,224,0.875,bicubic -swsl_resnext50_32x4d,82.166,17.834,96.234,3.766,25.03,224,0.875,bilinear -visformer_small,82.096,17.904,95.878,4.122,40.22,224,0.900,bicubic -tresnet_xl,82.058,17.942,95.932,4.068,78.44,224,0.875,bilinear -resnetv2_101,82.032,17.968,95.864,4.136,44.54,224,0.950,bicubic -pit_s_distilled_224,81.994,18.006,95.800,4.200,24.04,224,0.900,bicubic -deit_base_patch16_224,81.984,18.016,95.742,4.258,86.57,224,0.900,bicubic +crossvit_18_240,82.400,17.600,96.054,3.946,43.27,240,0.875,bicubic +xcit_tiny_12_p8_384_dist,82.392,17.608,96.222,3.778,6.71,384,1.000,bicubic +tf_efficientnet_b2_ns,82.380,17.620,96.248,3.752,9.11,260,0.890,bicubic +resnet51q,82.362,17.638,96.180,3.820,35.70,288,1.000,bilinear +ecaresnet50t,82.348,17.652,96.138,3.862,25.57,320,0.950,bicubic +efficientnetv2_rw_t,82.344,17.656,96.196,3.804,13.65,288,1.000,bicubic +resnetv2_101x1_bitm,82.334,17.666,96.516,3.484,44.54,448,1.000,bilinear +crossvit_15_dagger_240,82.326,17.674,95.958,4.042,28.21,240,0.875,bicubic +coat_lite_small,82.310,17.690,95.848,4.152,19.84,224,0.900,bicubic +mixer_b16_224_miil,82.304,17.696,95.716,4.284,59.88,224,0.875,bilinear +convit_base,82.294,17.706,95.934,4.066,86.54,224,0.875,bicubic +resnetrs101,82.288,17.712,96.008,3.992,63.62,288,0.940,bicubic +tresnet_l_448,82.270,17.730,95.978,4.022,55.99,448,0.875,bilinear +efficientnet_b3,82.242,17.758,96.114,3.886,12.23,320,1.000,bicubic +crossvit_base_240,82.214,17.786,95.832,4.168,105.03,240,0.875,bicubic +cait_xxs36_384,82.192,17.808,96.146,3.854,17.37,384,1.000,bicubic +swsl_resnext50_32x4d,82.174,17.826,96.232,3.768,25.03,224,0.875,bilinear +ecaresnet101d,82.172,17.828,96.048,3.952,44.57,224,0.875,bicubic +visformer_small,82.106,17.894,95.874,4.126,40.22,224,0.900,bicubic +convnext_tiny,82.064,17.936,95.834,4.166,28.59,224,0.875,bicubic +halo2botnet50ts_256,82.062,17.938,95.642,4.358,22.64,256,0.950,bicubic +tresnet_xl,82.058,17.942,95.936,4.064,78.44,224,0.875,bilinear +fbnetv3_g,82.046,17.954,96.064,3.936,16.62,288,0.950,bilinear +resnetv2_101,82.042,17.958,95.862,4.138,44.54,224,0.950,bicubic +pit_s_distilled_224,81.996,18.004,95.796,4.204,24.04,224,0.900,bicubic +deit_base_patch16_224,81.994,18.006,95.734,4.266,86.57,224,0.900,bicubic xcit_small_12_p16_224,81.976,18.024,95.818,4.182,26.25,224,1.000,bicubic -tf_efficientnetv2_b3,81.954,18.046,95.784,4.216,14.36,300,0.904,bicubic -xcit_tiny_24_p8_224,81.894,18.106,95.984,4.016,12.11,224,1.000,bicubic -ssl_resnext101_32x16d,81.844,18.156,96.090,3.910,194.03,224,0.875,bilinear -vit_small_r26_s32_224,81.838,18.162,96.026,3.974,36.43,224,0.900,bicubic -tf_efficientnet_b3_ap,81.822,18.178,95.620,4.380,12.23,300,0.904,bicubic -tresnet_m_448,81.714,18.286,95.570,4.430,31.39,448,0.875,bilinear -twins_svt_small,81.682,18.318,95.678,4.322,24.06,224,0.900,bicubic -tf_efficientnet_b3,81.646,18.354,95.720,4.280,12.23,300,0.904,bicubic -rexnet_200,81.626,18.374,95.672,4.328,16.37,224,0.875,bicubic -ssl_resnext101_32x8d,81.600,18.400,96.046,3.954,88.79,224,0.875,bilinear -halonet50ts,81.548,18.452,95.312,4.688,22.73,256,0.940,bicubic -tf_efficientnet_lite4,81.540,18.460,95.660,4.340,13.01,380,0.920,bilinear -crossvit_15_240,81.526,18.474,95.694,4.306,27.53,240,0.875,bicubic -halo2botnet50ts_256,81.520,18.480,95.258,4.742,22.64,256,0.950,bicubic -tnt_s_patch16_224,81.514,18.486,95.744,4.256,23.76,224,0.900,bicubic -vit_large_patch32_384,81.506,18.494,96.086,3.914,306.63,384,1.000,bicubic -levit_256,81.502,18.498,95.480,4.520,18.89,224,0.900,bicubic -tresnet_l,81.484,18.516,95.620,4.380,55.99,224,0.875,bilinear -wide_resnet50_2,81.450,18.550,95.518,4.482,68.88,224,0.875,bicubic -jx_nest_tiny,81.434,18.566,95.620,4.380,17.06,224,0.875,bicubic -lamhalobotnet50ts_256,81.422,18.578,95.056,4.944,22.57,256,0.950,bicubic -convit_small,81.412,18.588,95.746,4.254,27.78,224,0.875,bicubic -swin_tiny_patch4_window7_224,81.386,18.614,95.536,4.464,28.29,224,0.900,bicubic -vit_small_patch16_224,81.386,18.614,96.130,3.870,22.05,224,0.900,bicubic -tf_efficientnet_b1_ns,81.384,18.616,95.738,4.262,7.79,240,0.882,bicubic -convmixer_1536_20,81.376,18.624,95.610,4.390,51.63,224,0.960,bicubic -gernet_l,81.346,18.654,95.536,4.464,31.08,256,0.875,bilinear -legacy_senet154,81.326,18.674,95.506,4.494,115.09,224,0.875,bilinear -efficientnet_el,81.306,18.694,95.536,4.464,10.59,300,0.904,bicubic -coat_mini,81.282,18.718,95.394,4.606,10.34,224,0.900,bicubic -seresnext50_32x4d,81.268,18.732,95.626,4.374,27.56,224,0.875,bicubic -gluon_senet154,81.224,18.776,95.352,4.648,115.09,224,0.875,bicubic -xcit_tiny_12_p8_224_dist,81.214,18.786,95.606,4.394,6.71,224,1.000,bicubic -deit_small_distilled_patch16_224,81.202,18.798,95.378,4.622,22.44,224,0.900,bicubic -lambda_resnet50ts,81.166,18.834,95.096,4.904,21.54,256,0.950,bicubic -resmlp_36_distilled_224,81.154,18.846,95.496,4.504,44.69,224,0.875,bicubic -swsl_resnet50,81.146,18.854,95.978,4.022,25.56,224,0.875,bilinear -resnest50d_4s2x40d,81.120,18.880,95.560,4.440,30.42,224,0.875,bicubic -twins_pcpvt_small,81.104,18.896,95.642,4.358,24.11,224,0.900,bicubic -pit_s_224,81.100,18.900,95.334,4.666,23.46,224,0.900,bicubic -haloregnetz_b,81.042,18.958,95.200,4.800,11.68,224,0.940,bicubic -resmlp_big_24_224,81.032,18.968,95.022,4.978,129.14,224,0.875,bicubic -crossvit_small_240,81.030,18.970,95.466,4.534,26.86,240,0.875,bicubic -gluon_resnet152_v1s,81.020,18.980,95.422,4.578,60.32,224,0.875,bicubic -resnest50d_1s4x24d,81.000,19.000,95.326,4.674,25.68,224,0.875,bicubic -sehalonet33ts,80.982,19.018,95.272,4.728,13.69,256,0.940,bicubic -resnest50d,80.962,19.038,95.378,4.622,27.48,224,0.875,bilinear -cait_xxs24_384,80.954,19.046,95.638,4.362,12.03,384,1.000,bicubic -xcit_tiny_12_p16_384_dist,80.944,19.056,95.414,4.586,6.72,384,1.000,bicubic -gcresnet50t,80.938,19.062,95.440,4.560,25.90,256,0.900,bicubic -ssl_resnext101_32x4d,80.922,19.078,95.730,4.270,44.18,224,0.875,bilinear -gluon_seresnext101_32x4d,80.876,19.124,95.292,4.708,48.96,224,0.875,bicubic -gluon_seresnext101_64x4d,80.870,19.130,95.306,4.694,88.23,224,0.875,bicubic -efficientnet_b3_pruned,80.858,19.142,95.240,4.760,9.86,300,0.904,bicubic -ecaresnet101d_pruned,80.812,19.188,95.640,4.360,24.88,224,0.875,bicubic -regnety_320,80.794,19.206,95.246,4.754,145.05,224,0.875,bicubic -resmlp_24_distilled_224,80.760,19.240,95.220,4.780,30.02,224,0.875,bicubic -vit_base_patch32_224,80.732,19.268,95.566,4.434,88.22,224,0.900,bicubic -gernet_m,80.726,19.274,95.178,4.822,21.14,224,0.875,bilinear -regnetz_b,80.718,19.282,95.474,4.526,9.72,288,0.940,bicubic -nf_resnet50,80.656,19.344,95.336,4.664,25.56,288,0.940,bicubic -gluon_resnext101_64x4d,80.626,19.374,95.002,4.998,83.46,224,0.875,bicubic -ecaresnet50d,80.620,19.380,95.308,4.692,25.58,224,0.875,bicubic -efficientnet_b2,80.610,19.390,95.316,4.684,9.11,288,1.000,bicubic -gcresnext50ts,80.594,19.406,95.180,4.820,15.67,256,0.900,bicubic -resnet50d,80.538,19.462,95.160,4.840,25.58,224,0.875,bicubic -repvgg_b3,80.516,19.484,95.264,4.736,123.09,224,0.875,bilinear -vit_small_patch32_384,80.486,19.514,95.598,4.402,22.92,384,1.000,bicubic -gluon_resnet152_v1d,80.476,19.524,95.202,4.798,60.21,224,0.875,bicubic -mixnet_xl,80.468,19.532,94.932,5.068,11.90,224,0.875,bicubic -xcit_tiny_24_p16_224_dist,80.462,19.538,95.208,4.792,12.12,224,1.000,bicubic -ecaresnetlight,80.454,19.546,95.252,4.748,30.16,224,0.875,bicubic -inception_resnet_v2,80.448,19.552,95.308,4.692,55.84,299,0.897,bicubic -resnetv2_50,80.406,19.594,95.080,4.920,25.55,224,0.950,bicubic -gluon_resnet101_v1d,80.404,19.596,95.024,4.976,44.57,224,0.875,bicubic -regnety_120,80.386,19.614,95.122,4.878,51.82,224,0.875,bicubic -resnet50,80.382,19.618,94.594,5.406,25.56,224,0.950,bicubic -seresnet33ts,80.372,19.628,95.114,4.886,19.78,256,0.900,bicubic -resnetv2_50x1_bitm,80.344,19.656,95.686,4.314,25.55,448,1.000,bilinear -gluon_resnext101_32x4d,80.338,19.662,94.908,5.092,44.18,224,0.875,bicubic -rexnet_150,80.310,19.690,95.160,4.840,9.73,224,0.875,bicubic -tf_efficientnet_b2_ap,80.306,19.694,95.032,4.968,9.11,260,0.890,bicubic -ssl_resnext50_32x4d,80.302,19.698,95.418,4.582,25.03,224,0.875,bilinear -efficientnet_el_pruned,80.288,19.712,95.222,4.778,10.59,300,0.904,bicubic -gluon_resnet101_v1s,80.282,19.718,95.162,4.838,44.67,224,0.875,bicubic -regnetx_320,80.248,19.752,95.026,4.974,107.81,224,0.875,bicubic -tf_efficientnet_el,80.248,19.752,95.124,4.876,10.59,300,0.904,bicubic -seresnet50,80.248,19.752,95.070,4.930,28.09,224,0.875,bicubic -vit_base_patch16_sam_224,80.242,19.758,94.762,5.238,86.57,224,0.900,bicubic -legacy_seresnext101_32x4d,80.222,19.778,95.012,4.988,48.96,224,0.875,bilinear -repvgg_b3g4,80.218,19.782,95.104,4.896,83.83,224,0.875,bilinear -tf_efficientnetv2_b2,80.214,19.786,95.044,4.956,10.10,260,0.890,bicubic -dpn107,80.172,19.828,94.904,5.096,86.92,224,0.875,bicubic -convmixer_768_32,80.160,19.840,95.074,4.926,21.11,224,0.960,bicubic -inception_v4,80.144,19.856,94.972,5.028,42.68,299,0.875,bicubic -skresnext50_32x4d,80.142,19.858,94.644,5.356,27.48,224,0.875,bicubic -eca_resnet33ts,80.096,19.904,94.974,5.026,19.68,256,0.900,bicubic -gcresnet33ts,80.086,19.914,94.992,5.008,19.88,256,0.900,bicubic -tf_efficientnet_b2,80.068,19.932,94.904,5.096,9.11,260,0.890,bicubic -cspresnext50,80.052,19.948,94.950,5.050,20.57,224,0.875,bilinear -cspdarknet53,80.050,19.950,95.092,4.908,27.64,256,0.887,bilinear -dpn92,79.994,20.006,94.836,5.164,37.67,224,0.875,bicubic -ens_adv_inception_resnet_v2,79.978,20.022,94.936,5.064,55.84,299,0.897,bicubic -gluon_seresnext50_32x4d,79.924,20.076,94.828,5.172,27.56,224,0.875,bicubic -gluon_resnet152_v1c,79.912,20.088,94.852,5.148,60.21,224,0.875,bicubic -efficientnet_b2_pruned,79.906,20.094,94.854,5.146,8.31,260,0.890,bicubic -xception71,79.884,20.116,94.932,5.068,42.34,299,0.903,bicubic -regnety_080,79.872,20.128,94.832,5.168,39.18,224,0.875,bicubic -resnetrs50,79.870,20.130,94.970,5.030,35.69,224,0.910,bicubic -deit_small_patch16_224,79.866,20.134,95.056,4.944,22.05,224,0.900,bicubic -levit_192,79.860,20.140,94.802,5.198,10.95,224,0.900,bicubic -ecaresnet26t,79.834,20.166,95.084,4.916,16.01,320,0.950,bicubic -regnetx_160,79.834,20.166,94.824,5.176,54.28,224,0.875,bicubic -dpn131,79.834,20.166,94.712,5.288,79.25,224,0.875,bicubic -tf_efficientnet_lite3,79.820,20.180,94.910,5.090,8.20,300,0.904,bilinear -resnext50_32x4d,79.800,20.200,94.614,5.386,25.03,224,0.875,bicubic -resmlp_36_224,79.776,20.224,94.886,5.114,44.69,224,0.875,bicubic -cait_xxs36_224,79.762,20.238,94.868,5.132,17.30,224,1.000,bicubic -regnety_064,79.730,20.270,94.762,5.238,30.58,224,0.875,bicubic -xcit_tiny_12_p8_224,79.710,20.290,95.058,4.942,6.71,224,1.000,bicubic -ecaresnet50d_pruned,79.706,20.294,94.874,5.126,19.94,224,0.875,bicubic -gluon_xception65,79.702,20.298,94.868,5.132,39.92,299,0.903,bicubic -gluon_resnet152_v1b,79.680,20.320,94.736,5.264,60.19,224,0.875,bicubic -resnext50d_32x4d,79.664,20.336,94.866,5.134,25.05,224,0.875,bicubic -dpn98,79.654,20.346,94.604,5.396,61.57,224,0.875,bicubic -gmlp_s16_224,79.642,20.358,94.622,5.378,19.42,224,0.875,bicubic -regnetx_120,79.606,20.394,94.730,5.270,46.11,224,0.875,bicubic -cspresnet50,79.576,20.424,94.702,5.298,21.62,256,0.887,bilinear -xception65,79.546,20.454,94.660,5.340,39.92,299,0.903,bicubic -gluon_resnet101_v1c,79.534,20.466,94.588,5.412,44.57,224,0.875,bicubic -rexnet_130,79.496,20.504,94.674,5.326,7.56,224,0.875,bicubic -tf_efficientnetv2_b1,79.474,20.526,94.720,5.280,8.14,240,0.882,bicubic -hrnet_w64,79.456,20.544,94.654,5.346,128.06,224,0.875,bilinear -xcit_tiny_24_p16_224,79.452,20.548,94.888,5.112,12.12,224,1.000,bicubic -dla102x2,79.440,20.560,94.644,5.356,41.28,224,0.875,bilinear -resmlp_24_224,79.386,20.614,94.546,5.454,30.02,224,0.875,bicubic -repvgg_b2g4,79.380,20.620,94.694,5.306,61.76,224,0.875,bilinear -gluon_resnext50_32x4d,79.364,20.636,94.424,5.576,25.03,224,0.875,bicubic -tf_efficientnet_cc_b1_8e,79.326,20.674,94.368,5.632,39.72,240,0.882,bicubic -hrnet_w48,79.322,20.678,94.514,5.486,77.47,224,0.875,bilinear -resnext101_32x8d,79.312,20.688,94.522,5.478,88.79,224,0.875,bilinear -ese_vovnet39b,79.304,20.696,94.724,5.276,24.57,224,0.875,bicubic -gluon_resnet101_v1b,79.300,20.700,94.530,5.470,44.55,224,0.875,bicubic -resnetblur50,79.300,20.700,94.636,5.364,25.56,224,0.875,bicubic -nf_regnet_b1,79.296,20.704,94.742,5.258,10.22,288,0.900,bicubic -pit_xs_distilled_224,79.294,20.706,94.374,5.626,11.00,224,0.900,bicubic -tf_efficientnet_b1_ap,79.274,20.726,94.302,5.698,7.79,240,0.882,bicubic -eca_botnext26ts_256,79.274,20.726,94.606,5.394,10.59,256,0.950,bicubic -botnet26t_256,79.260,20.740,94.534,5.466,12.49,256,0.950,bicubic -efficientnet_em,79.260,20.740,94.792,5.208,6.90,240,0.882,bicubic -ssl_resnet50,79.236,20.764,94.832,5.168,25.56,224,0.875,bilinear -regnety_040,79.228,20.772,94.646,5.354,20.65,224,0.875,bicubic -regnetx_080,79.220,20.780,94.546,5.454,39.57,224,0.875,bicubic -dpn68b,79.216,20.784,94.422,5.578,12.61,224,0.875,bicubic -resnet33ts,79.214,20.786,94.572,5.428,19.68,256,0.900,bicubic -res2net101_26w_4s,79.192,20.808,94.438,5.562,45.21,224,0.875,bilinear -halonet26t,79.134,20.866,94.316,5.684,12.48,256,0.950,bicubic -lambda_resnet26t,79.108,20.892,94.588,5.412,10.96,256,0.940,bicubic -coat_lite_mini,79.100,20.900,94.602,5.398,11.01,224,0.900,bicubic -legacy_seresnext50_32x4d,79.078,20.922,94.432,5.568,27.56,224,0.875,bilinear -gluon_resnet50_v1d,79.064,20.936,94.460,5.540,25.58,224,0.875,bicubic -regnetx_064,79.060,20.940,94.466,5.534,26.21,224,0.875,bicubic -xception,79.048,20.952,94.396,5.604,22.86,299,0.897,bicubic -resnet32ts,79.020,20.980,94.362,5.638,17.96,256,0.900,bicubic -res2net50_26w_8s,78.980,21.020,94.284,5.716,48.40,224,0.875,bilinear -mixnet_l,78.980,21.020,94.180,5.820,7.33,224,0.875,bicubic +tf_efficientnetv2_b3,81.968,18.032,95.780,4.220,14.36,300,0.904,bicubic +resnet101,81.932,18.068,95.766,4.234,44.55,224,0.950,bicubic +xcit_tiny_24_p8_224,81.892,18.108,95.978,4.022,12.11,224,1.000,bicubic +vit_small_r26_s32_224,81.856,18.144,96.020,3.980,36.43,224,0.900,bicubic +ssl_resnext101_32x16d,81.854,18.146,96.094,3.906,194.03,224,0.875,bilinear +tf_efficientnet_b3_ap,81.826,18.174,95.624,4.376,12.23,300,0.904,bicubic +tresnet_m_448,81.704,18.296,95.574,4.426,31.39,448,0.875,bilinear +twins_svt_small,81.684,18.316,95.672,4.328,24.06,224,0.900,bicubic +halonet50ts,81.658,18.342,95.610,4.390,22.73,256,0.940,bicubic +tf_efficientnet_b3,81.636,18.364,95.718,4.282,12.23,300,0.904,bicubic +rexnet_200,81.628,18.372,95.668,4.332,16.37,224,0.875,bicubic +ssl_resnext101_32x8d,81.608,18.392,96.042,3.958,88.79,224,0.875,bilinear +lamhalobotnet50ts_256,81.550,18.450,95.502,4.498,22.57,256,0.950,bicubic +crossvit_15_240,81.544,18.456,95.688,4.312,27.53,240,0.875,bicubic +tf_efficientnet_lite4,81.536,18.464,95.668,4.332,13.01,380,0.920,bilinear +tnt_s_patch16_224,81.516,18.484,95.746,4.254,23.76,224,0.900,bicubic +vit_large_patch32_384,81.510,18.490,96.094,3.906,306.63,384,1.000,bicubic +levit_256,81.506,18.494,95.492,4.508,18.89,224,0.900,bicubic +tresnet_l,81.490,18.510,95.624,4.376,55.99,224,0.875,bilinear +wide_resnet50_2,81.452,18.548,95.530,4.470,68.88,224,0.875,bicubic +convit_small,81.424,18.576,95.742,4.258,27.78,224,0.875,bicubic +jx_nest_tiny,81.422,18.578,95.616,4.384,17.06,224,0.875,bicubic +vit_small_patch16_224,81.396,18.604,96.134,3.866,22.05,224,0.900,bicubic +tf_efficientnet_b1_ns,81.386,18.614,95.736,4.264,7.79,240,0.882,bicubic +swin_tiny_patch4_window7_224,81.374,18.626,95.542,4.458,28.29,224,0.900,bicubic +convmixer_1536_20,81.366,18.634,95.614,4.386,51.63,224,0.960,bicubic +gernet_l,81.346,18.654,95.532,4.468,31.08,256,0.875,bilinear +legacy_senet154,81.310,18.690,95.490,4.510,115.09,224,0.875,bilinear +efficientnet_el,81.306,18.694,95.526,4.474,10.59,300,0.904,bicubic +coat_mini,81.264,18.736,95.394,4.606,10.34,224,0.900,bicubic +seresnext50_32x4d,81.258,18.742,95.628,4.372,27.56,224,0.875,bicubic +gluon_senet154,81.232,18.768,95.348,4.652,115.09,224,0.875,bicubic +xcit_tiny_12_p8_224_dist,81.208,18.792,95.602,4.398,6.71,224,1.000,bicubic +deit_small_distilled_patch16_224,81.204,18.796,95.378,4.622,22.44,224,0.900,bicubic +swsl_resnet50,81.170,18.830,95.978,4.022,25.56,224,0.875,bilinear +resmlp_36_distilled_224,81.154,18.846,95.488,4.512,44.69,224,0.875,bicubic +sebotnet33ts_256,81.154,18.846,95.168,4.832,13.70,256,0.940,bicubic +lambda_resnet50ts,81.150,18.850,95.104,4.896,21.54,256,0.950,bicubic +resnest50d_4s2x40d,81.110,18.890,95.564,4.436,30.42,224,0.875,bicubic +resnext50_32x4d,81.104,18.896,95.326,4.674,25.03,224,0.950,bicubic +pit_s_224,81.098,18.902,95.330,4.670,23.46,224,0.900,bicubic +twins_pcpvt_small,81.088,18.912,95.640,4.360,24.11,224,0.900,bicubic +haloregnetz_b,81.052,18.948,95.194,4.806,11.68,224,0.940,bicubic +resmlp_big_24_224,81.032,18.968,95.020,4.980,129.14,224,0.875,bicubic +crossvit_small_240,81.022,18.978,95.458,4.542,26.86,240,0.875,bicubic +gluon_resnet152_v1s,81.022,18.978,95.414,4.586,60.32,224,0.875,bicubic +resnest50d_1s4x24d,80.986,19.014,95.320,4.680,25.68,224,0.875,bicubic +resnest50d,80.978,19.022,95.378,4.622,27.48,224,0.875,bilinear +sehalonet33ts,80.966,19.034,95.272,4.728,13.69,256,0.940,bicubic +cait_xxs24_384,80.964,19.036,95.646,4.354,12.03,384,1.000,bicubic +xcit_tiny_12_p16_384_dist,80.944,19.056,95.410,4.590,6.72,384,1.000,bicubic +gcresnet50t,80.938,19.062,95.452,4.548,25.90,256,0.900,bicubic +ssl_resnext101_32x4d,80.926,19.074,95.724,4.276,44.18,224,0.875,bilinear +gluon_seresnext101_32x4d,80.906,19.094,95.296,4.704,48.96,224,0.875,bicubic +gluon_seresnext101_64x4d,80.878,19.122,95.298,4.702,88.23,224,0.875,bicubic +efficientnet_b3_pruned,80.856,19.144,95.244,4.756,9.86,300,0.904,bicubic +ecaresnet101d_pruned,80.816,19.184,95.634,4.366,24.88,224,0.875,bicubic +regnety_320,80.808,19.192,95.244,4.756,145.05,224,0.875,bicubic +resmlp_24_distilled_224,80.764,19.236,95.224,4.776,30.02,224,0.875,bicubic +gernet_m,80.746,19.254,95.184,4.816,21.14,224,0.875,bilinear +vit_base_patch32_224,80.722,19.278,95.566,4.434,88.22,224,0.900,bicubic +regnetz_b16,80.716,19.284,95.478,4.522,9.72,288,0.940,bicubic +nf_resnet50,80.654,19.346,95.334,4.666,25.56,288,0.940,bicubic +efficientnet_b2,80.612,19.388,95.314,4.686,9.11,288,1.000,bicubic +gluon_resnext101_64x4d,80.604,19.396,94.992,5.008,83.46,224,0.875,bicubic +ecaresnet50d,80.602,19.398,95.320,4.680,25.58,224,0.875,bicubic +gcresnext50ts,80.578,19.422,95.170,4.830,15.67,256,0.900,bicubic +resnet50d,80.526,19.474,95.162,4.838,25.58,224,0.875,bicubic +repvgg_b3,80.496,19.504,95.264,4.736,123.09,224,0.875,bilinear +vit_small_patch32_384,80.484,19.516,95.598,4.402,22.92,384,1.000,bicubic +gluon_resnet152_v1d,80.476,19.524,95.208,4.792,60.21,224,0.875,bicubic +mixnet_xl,80.476,19.524,94.934,5.066,11.90,224,0.875,bicubic +ecaresnetlight,80.462,19.538,95.252,4.748,30.16,224,0.875,bicubic +inception_resnet_v2,80.460,19.540,95.308,4.692,55.84,299,0.897,bicubic +xcit_tiny_24_p16_224_dist,80.448,19.552,95.216,4.784,12.12,224,1.000,bicubic +resnetv2_50,80.420,19.580,95.074,4.926,25.55,224,0.950,bicubic +gluon_resnet101_v1d,80.416,19.584,95.016,4.984,44.57,224,0.875,bicubic +resnet50,80.372,19.628,94.610,5.390,25.56,224,0.950,bicubic +regnety_120,80.370,19.630,95.124,4.876,51.82,224,0.875,bicubic +seresnet33ts,80.356,19.644,95.108,4.892,19.78,256,0.900,bicubic +resnetv2_50x1_bitm,80.342,19.658,95.680,4.320,25.55,448,1.000,bilinear +gluon_resnext101_32x4d,80.340,19.660,94.926,5.074,44.18,224,0.875,bicubic +ssl_resnext50_32x4d,80.316,19.684,95.410,4.590,25.03,224,0.875,bilinear +rexnet_150,80.310,19.690,95.166,4.834,9.73,224,0.875,bicubic +efficientnet_el_pruned,80.302,19.698,95.218,4.782,10.59,300,0.904,bicubic +gluon_resnet101_v1s,80.302,19.698,95.160,4.840,44.67,224,0.875,bicubic +tf_efficientnet_b2_ap,80.302,19.698,95.028,4.972,9.11,260,0.890,bicubic +seresnet50,80.264,19.736,95.072,4.928,28.09,224,0.875,bicubic +tf_efficientnet_el,80.250,19.750,95.130,4.870,10.59,300,0.904,bicubic +vit_base_patch16_224_sam,80.242,19.758,94.756,5.244,86.57,224,0.900,bicubic +regnetx_320,80.240,19.760,95.022,4.978,107.81,224,0.875,bicubic +legacy_seresnext101_32x4d,80.228,19.772,95.014,4.986,48.96,224,0.875,bilinear +repvgg_b3g4,80.212,19.788,95.106,4.894,83.83,224,0.875,bilinear +tf_efficientnetv2_b2,80.206,19.794,95.042,4.958,10.10,260,0.890,bicubic +dpn107,80.172,19.828,94.906,5.094,86.92,224,0.875,bicubic +inception_v4,80.170,19.830,94.970,5.030,42.68,299,0.875,bicubic +convmixer_768_32,80.164,19.836,95.072,4.928,21.11,224,0.960,bicubic +skresnext50_32x4d,80.152,19.848,94.644,5.356,27.48,224,0.875,bicubic +eca_resnet33ts,80.084,19.916,94.970,5.030,19.68,256,0.900,bicubic +gcresnet33ts,80.084,19.916,95.000,5.000,19.88,256,0.900,bicubic +tf_efficientnet_b2,80.080,19.920,94.908,5.092,9.11,260,0.890,bicubic +cspdarknet53,80.062,19.938,95.084,4.916,27.64,256,0.887,bilinear +resnet50_gn,80.052,19.948,94.946,5.054,25.56,224,0.940,bicubic +cspresnext50,80.050,19.950,94.946,5.054,20.57,224,0.875,bilinear +dpn92,80.016,19.984,94.828,5.172,37.67,224,0.875,bicubic +ens_adv_inception_resnet_v2,79.980,20.020,94.938,5.062,55.84,299,0.897,bicubic +efficientnet_b2_pruned,79.916,20.084,94.854,5.146,8.31,260,0.890,bicubic +gluon_seresnext50_32x4d,79.916,20.084,94.834,5.166,27.56,224,0.875,bicubic +gluon_resnet152_v1c,79.912,20.088,94.848,5.152,60.21,224,0.875,bicubic +resnetrs50,79.890,20.110,94.966,5.034,35.69,224,0.910,bicubic +regnety_080,79.880,20.120,94.830,5.170,39.18,224,0.875,bicubic +xception71,79.872,20.128,94.922,5.078,42.34,299,0.903,bicubic +deit_small_patch16_224,79.866,20.134,95.046,4.954,22.05,224,0.900,bicubic +ecaresnet26t,79.848,20.152,95.084,4.916,16.01,320,0.950,bicubic +regnetx_160,79.848,20.152,94.830,5.170,54.28,224,0.875,bicubic +levit_192,79.832,20.168,94.786,5.214,10.95,224,0.900,bicubic +dpn131,79.824,20.176,94.708,5.292,79.25,224,0.875,bicubic +tf_efficientnet_lite3,79.818,20.182,94.914,5.086,8.20,300,0.904,bilinear +resmlp_36_224,79.768,20.232,94.886,5.114,44.69,224,0.875,bicubic +cait_xxs36_224,79.750,20.250,94.870,5.130,17.30,224,1.000,bicubic +regnety_064,79.720,20.280,94.764,5.236,30.58,224,0.875,bicubic +gluon_xception65,79.716,20.284,94.860,5.140,39.92,299,0.903,bicubic +ecaresnet50d_pruned,79.710,20.290,94.880,5.120,19.94,224,0.875,bicubic +xcit_tiny_12_p8_224,79.694,20.306,95.054,4.946,6.71,224,1.000,bicubic +fbnetv3_d,79.682,20.318,94.950,5.050,10.31,256,0.950,bilinear +gluon_resnet152_v1b,79.676,20.324,94.738,5.262,60.19,224,0.875,bicubic +resnext50d_32x4d,79.670,20.330,94.864,5.136,25.05,224,0.875,bicubic +dpn98,79.644,20.356,94.598,5.402,61.57,224,0.875,bicubic +gmlp_s16_224,79.642,20.358,94.624,5.376,19.42,224,0.875,bicubic +regnetx_120,79.592,20.408,94.734,5.266,46.11,224,0.875,bicubic +cspresnet50,79.580,20.420,94.704,5.296,21.62,256,0.887,bilinear +xception65,79.548,20.452,94.656,5.344,39.92,299,0.903,bicubic +gluon_resnet101_v1c,79.532,20.468,94.580,5.420,44.57,224,0.875,bicubic +rexnet_130,79.500,20.500,94.682,5.318,7.56,224,0.875,bicubic +eca_halonext26ts,79.488,20.512,94.596,5.404,10.76,256,0.940,bicubic +hrnet_w64,79.468,20.532,94.654,5.346,128.06,224,0.875,bilinear +tf_efficientnetv2_b1,79.462,20.538,94.726,5.274,8.14,240,0.882,bicubic +dla102x2,79.450,20.550,94.634,5.366,41.28,224,0.875,bilinear +xcit_tiny_24_p16_224,79.448,20.552,94.886,5.114,12.12,224,1.000,bicubic +resmlp_24_224,79.382,20.618,94.546,5.454,30.02,224,0.875,bicubic +repvgg_b2g4,79.370,20.630,94.686,5.314,61.76,224,0.875,bilinear +gluon_resnext50_32x4d,79.368,20.632,94.426,5.574,25.03,224,0.875,bicubic +resnext101_32x8d,79.316,20.684,94.518,5.482,88.79,224,0.875,bilinear +ese_vovnet39b,79.310,20.690,94.716,5.284,24.57,224,0.875,bicubic +resnetblur50,79.308,20.692,94.634,5.366,25.56,224,0.875,bicubic +tf_efficientnet_cc_b1_8e,79.306,20.694,94.370,5.630,39.72,240,0.882,bicubic +gluon_resnet101_v1b,79.304,20.696,94.522,5.478,44.55,224,0.875,bicubic +pit_xs_distilled_224,79.304,20.696,94.366,5.634,11.00,224,0.900,bicubic +hrnet_w48,79.300,20.700,94.512,5.488,77.47,224,0.875,bilinear +nf_regnet_b1,79.288,20.712,94.750,5.250,10.22,288,0.900,bicubic +tf_efficientnet_b1_ap,79.278,20.722,94.306,5.694,7.79,240,0.882,bicubic +eca_botnext26ts_256,79.272,20.728,94.616,5.384,10.59,256,0.950,bicubic +botnet26t_256,79.252,20.748,94.528,5.472,12.49,256,0.950,bicubic +efficientnet_em,79.250,20.750,94.796,5.204,6.90,240,0.882,bicubic +ssl_resnet50,79.220,20.780,94.832,5.168,25.56,224,0.875,bilinear +regnety_040,79.216,20.784,94.656,5.344,20.65,224,0.875,bicubic +dpn68b,79.214,20.786,94.414,5.586,12.61,224,0.875,bicubic +resnet33ts,79.212,20.788,94.572,5.428,19.68,256,0.900,bicubic +regnetx_080,79.200,20.800,94.552,5.448,39.57,224,0.875,bicubic +res2net101_26w_4s,79.198,20.802,94.438,5.562,45.21,224,0.875,bilinear +fbnetv3_b,79.150,20.850,94.746,5.254,8.60,256,0.950,bilinear +halonet26t,79.116,20.884,94.312,5.688,12.48,256,0.950,bicubic +lambda_resnet26t,79.096,20.904,94.588,5.412,10.96,256,0.940,bicubic +coat_lite_mini,79.092,20.908,94.606,5.394,11.01,224,0.900,bicubic +gluon_resnet50_v1d,79.076,20.924,94.470,5.530,25.58,224,0.875,bicubic +legacy_seresnext50_32x4d,79.070,20.930,94.432,5.568,27.56,224,0.875,bilinear +regnetx_064,79.066,20.934,94.458,5.542,26.21,224,0.875,bicubic +xception,79.048,20.952,94.392,5.608,22.86,299,0.897,bicubic +resnet32ts,79.014,20.986,94.356,5.644,17.96,256,0.900,bicubic +res2net50_26w_8s,78.976,21.024,94.294,5.706,48.40,224,0.875,bilinear +mixnet_l,78.976,21.024,94.178,5.822,7.33,224,0.875,bicubic lambda_resnet26rpt_256,78.968,21.032,94.428,5.572,10.99,256,0.940,bicubic -hrnet_w40,78.926,21.074,94.478,5.522,57.56,224,0.875,bilinear -hrnet_w44,78.890,21.110,94.382,5.618,67.06,224,0.875,bilinear -wide_resnet101_2,78.854,21.146,94.284,5.716,126.89,224,0.875,bilinear -eca_halonext26ts,78.840,21.160,94.256,5.744,10.76,256,0.940,bicubic -tf_efficientnet_b1,78.836,21.164,94.194,5.806,7.79,240,0.882,bicubic -efficientnet_b1,78.804,21.196,94.346,5.654,7.79,256,1.000,bicubic -gluon_inception_v3,78.798,21.202,94.380,5.620,23.83,299,0.875,bicubic -repvgg_b2,78.794,21.206,94.426,5.574,89.02,224,0.875,bilinear -tf_mixnet_l,78.778,21.222,94.000,6.000,7.33,224,0.875,bicubic -dla169,78.698,21.302,94.332,5.668,53.39,224,0.875,bilinear -gluon_resnet50_v1s,78.696,21.304,94.248,5.752,25.68,224,0.875,bicubic -legacy_seresnet152,78.662,21.338,94.376,5.624,66.82,224,0.875,bilinear -tf_efficientnet_b0_ns,78.658,21.342,94.370,5.630,5.29,224,0.875,bicubic -xcit_tiny_12_p16_224_dist,78.580,21.420,94.204,5.796,6.72,224,1.000,bicubic -res2net50_26w_6s,78.566,21.434,94.118,5.882,37.05,224,0.875,bilinear -xception41,78.532,21.468,94.284,5.716,26.97,299,0.903,bicubic -dla102x,78.512,21.488,94.226,5.774,26.31,224,0.875,bilinear -regnetx_040,78.484,21.516,94.254,5.746,22.12,224,0.875,bicubic -resnest26d,78.478,21.522,94.296,5.704,17.07,224,0.875,bilinear -levit_128,78.466,21.534,94.010,5.990,9.21,224,0.900,bicubic -dla60_res2net,78.462,21.538,94.208,5.792,20.85,224,0.875,bilinear -vit_tiny_patch16_384,78.446,21.554,94.544,5.456,5.79,384,1.000,bicubic -hrnet_w32,78.442,21.558,94.196,5.804,41.23,224,0.875,bilinear -dla60_res2next,78.442,21.558,94.158,5.842,17.03,224,0.875,bilinear -coat_tiny,78.434,21.566,94.034,5.966,5.50,224,0.900,bicubic -selecsls60b,78.408,21.592,94.176,5.824,32.77,224,0.875,bicubic -legacy_seresnet101,78.384,21.616,94.264,5.736,49.33,224,0.875,bilinear -repvgg_b1,78.378,21.622,94.104,5.896,57.42,224,0.875,bilinear -cait_xxs24_224,78.376,21.624,94.316,5.684,11.96,224,1.000,bicubic -tf_efficientnetv2_b0,78.370,21.630,94.026,5.974,7.14,224,0.875,bicubic -tv_resnet152,78.322,21.678,94.044,5.956,60.19,224,0.875,bilinear -bat_resnext26ts,78.262,21.738,94.100,5.900,10.73,256,0.900,bicubic -efficientnet_b1_pruned,78.250,21.750,93.836,6.164,6.33,240,0.882,bicubic -dla60x,78.246,21.754,94.024,5.976,17.35,224,0.875,bilinear -res2next50,78.242,21.758,93.904,6.096,24.67,224,0.875,bilinear -hrnet_w30,78.202,21.798,94.228,5.772,37.71,224,0.875,bilinear -pit_xs_224,78.184,21.816,94.164,5.836,10.62,224,0.900,bicubic -regnetx_032,78.150,21.850,94.086,5.914,15.30,224,0.875,bicubic -tf_efficientnet_em,78.142,21.858,94.058,5.942,6.90,240,0.882,bicubic -res2net50_14w_8s,78.134,21.866,93.856,6.144,25.06,224,0.875,bilinear -hardcorenas_f,78.104,21.896,93.794,6.206,8.20,224,0.875,bilinear -efficientnet_es,78.082,21.918,93.944,6.056,5.44,224,0.875,bicubic -gmixer_24_224,78.052,21.948,93.668,6.332,24.72,224,0.875,bicubic -dla102,78.028,21.972,93.958,6.042,33.27,224,0.875,bilinear -gluon_resnet50_v1c,78.006,21.994,93.988,6.012,25.58,224,0.875,bicubic -res2net50_26w_4s,77.986,22.014,93.848,6.152,25.70,224,0.875,bilinear -selecsls60,77.984,22.016,93.832,6.168,30.67,224,0.875,bicubic -seresnext26t_32x4d,77.978,22.022,93.742,6.258,16.81,224,0.875,bicubic -resmlp_12_distilled_224,77.944,22.056,93.562,6.438,15.35,224,0.875,bicubic -mobilenetv3_large_100_miil,77.912,22.088,92.904,7.096,5.48,224,0.875,bilinear +hrnet_w40,78.916,21.084,94.474,5.526,57.56,224,0.875,bilinear +hrnet_w44,78.900,21.100,94.372,5.628,67.06,224,0.875,bilinear +wide_resnet101_2,78.852,21.148,94.288,5.712,126.89,224,0.875,bilinear +tf_efficientnet_b1,78.820,21.180,94.196,5.804,7.79,240,0.882,bicubic +gluon_inception_v3,78.806,21.194,94.372,5.628,23.83,299,0.875,bicubic +repvgg_b2,78.792,21.208,94.418,5.582,89.02,224,0.875,bilinear +efficientnet_b1,78.790,21.210,94.342,5.658,7.79,256,1.000,bicubic +tf_mixnet_l,78.774,21.226,93.996,6.004,7.33,224,0.875,bicubic +gluon_resnet50_v1s,78.708,21.292,94.240,5.760,25.68,224,0.875,bicubic +dla169,78.694,21.306,94.336,5.664,53.39,224,0.875,bilinear +tf_efficientnet_b0_ns,78.658,21.342,94.376,5.624,5.29,224,0.875,bicubic +legacy_seresnet152,78.656,21.344,94.368,5.632,66.82,224,0.875,bilinear +xcit_tiny_12_p16_224_dist,78.574,21.426,94.198,5.802,6.72,224,1.000,bicubic +res2net50_26w_6s,78.566,21.434,94.134,5.866,37.05,224,0.875,bilinear +dla102x,78.514,21.486,94.224,5.776,26.31,224,0.875,bilinear +xception41,78.508,21.492,94.280,5.720,26.97,299,0.903,bicubic +levit_128,78.486,21.514,94.006,5.994,9.21,224,0.900,bicubic +resnest26d,78.484,21.516,94.294,5.706,17.07,224,0.875,bilinear +regnetx_040,78.482,21.518,94.244,5.756,22.12,224,0.875,bicubic +dla60_res2net,78.462,21.538,94.206,5.794,20.85,224,0.875,bilinear +hrnet_w32,78.446,21.554,94.188,5.812,41.23,224,0.875,bilinear +dla60_res2next,78.442,21.558,94.150,5.850,17.03,224,0.875,bilinear +vit_tiny_patch16_384,78.432,21.568,94.542,5.458,5.79,384,1.000,bicubic +coat_tiny,78.428,21.572,94.038,5.962,5.50,224,0.900,bicubic +selecsls60b,78.412,21.588,94.170,5.830,32.77,224,0.875,bicubic +legacy_seresnet101,78.388,21.612,94.266,5.734,49.33,224,0.875,bilinear +cait_xxs24_224,78.384,21.616,94.310,5.690,11.96,224,1.000,bicubic +repvgg_b1,78.368,21.632,94.096,5.904,57.42,224,0.875,bilinear +tf_efficientnetv2_b0,78.360,21.640,94.024,5.976,7.14,224,0.875,bicubic +tv_resnet152,78.320,21.680,94.036,5.964,60.19,224,0.875,bilinear +bat_resnext26ts,78.250,21.750,94.098,5.902,10.73,256,0.900,bicubic +res2next50,78.250,21.750,93.886,6.114,24.67,224,0.875,bilinear +dla60x,78.246,21.754,94.020,5.980,17.35,224,0.875,bilinear +efficientnet_b1_pruned,78.240,21.760,93.832,6.168,6.33,240,0.882,bicubic +hrnet_w30,78.198,21.802,94.224,5.776,37.71,224,0.875,bilinear +pit_xs_224,78.188,21.812,94.166,5.834,10.62,224,0.900,bicubic +regnetx_032,78.172,21.828,94.088,5.912,15.30,224,0.875,bicubic +res2net50_14w_8s,78.144,21.856,93.850,6.150,25.06,224,0.875,bilinear +tf_efficientnet_em,78.132,21.868,94.046,5.954,6.90,240,0.882,bicubic +hardcorenas_f,78.098,21.902,93.804,6.196,8.20,224,0.875,bilinear +efficientnet_es,78.060,21.940,93.938,6.062,5.44,224,0.875,bicubic +gmixer_24_224,78.038,21.962,93.670,6.330,24.72,224,0.875,bicubic +dla102,78.028,21.972,93.950,6.050,33.27,224,0.875,bilinear +gluon_resnet50_v1c,78.010,21.990,93.988,6.012,25.58,224,0.875,bicubic +seresnext26t_32x4d,77.976,22.024,93.744,6.256,16.81,224,0.875,bicubic +selecsls60,77.974,22.026,93.832,6.168,30.67,224,0.875,bicubic +res2net50_26w_4s,77.956,22.044,93.852,6.148,25.70,224,0.875,bilinear +resmlp_12_distilled_224,77.942,22.058,93.558,6.442,15.35,224,0.875,bicubic +mobilenetv3_large_100_miil,77.918,22.082,92.906,7.094,5.48,224,0.875,bilinear tf_efficientnet_cc_b0_8e,77.908,22.092,93.656,6.344,24.01,224,0.875,bicubic -resnet26t,77.872,22.128,93.834,6.166,16.01,256,0.940,bicubic -regnety_016,77.864,22.136,93.724,6.276,11.20,224,0.875,bicubic -tf_inception_v3,77.860,22.140,93.646,6.354,23.83,299,0.875,bicubic -rexnet_100,77.860,22.140,93.876,6.124,4.80,224,0.875,bicubic -seresnext26ts,77.848,22.152,93.788,6.212,10.39,256,0.900,bicubic -gcresnext26ts,77.820,22.180,93.826,6.174,10.48,256,0.900,bicubic -xcit_nano_12_p8_384_dist,77.818,22.182,94.034,5.966,3.05,384,1.000,bicubic -hardcorenas_e,77.800,22.200,93.696,6.304,8.07,224,0.875,bilinear -efficientnet_b0,77.704,22.296,93.522,6.478,5.29,224,0.875,bicubic -legacy_seresnet50,77.638,22.362,93.746,6.254,28.09,224,0.875,bilinear -tv_resnext50_32x4d,77.610,22.390,93.684,6.316,25.03,224,0.875,bilinear -repvgg_b1g4,77.594,22.406,93.842,6.158,39.97,224,0.875,bilinear -seresnext26d_32x4d,77.586,22.414,93.604,6.396,16.81,224,0.875,bicubic -adv_inception_v3,77.578,22.422,93.740,6.260,23.83,299,0.875,bicubic -gluon_resnet50_v1b,77.576,22.424,93.722,6.278,25.56,224,0.875,bicubic -res2net50_48w_2s,77.534,22.466,93.558,6.442,25.29,224,0.875,bilinear -coat_lite_tiny,77.514,22.486,93.916,6.084,5.72,224,0.900,bicubic -tf_efficientnet_lite2,77.482,22.518,93.748,6.252,6.09,260,0.890,bicubic -inception_v3,77.464,22.536,93.476,6.524,23.83,299,0.875,bicubic -eca_resnext26ts,77.450,22.550,93.578,6.422,10.30,256,0.900,bicubic -hardcorenas_d,77.424,22.576,93.486,6.514,7.50,224,0.875,bilinear -tv_resnet101,77.368,22.632,93.560,6.440,44.55,224,0.875,bilinear -densenet161,77.352,22.648,93.636,6.364,28.68,224,0.875,bicubic -tf_efficientnet_cc_b0_4e,77.320,22.680,93.322,6.678,13.31,224,0.875,bicubic -densenet201,77.290,22.710,93.480,6.520,20.01,224,0.875,bicubic -mobilenetv2_120d,77.286,22.714,93.512,6.488,5.83,224,0.875,bicubic -mixnet_m,77.274,22.726,93.422,6.578,5.01,224,0.875,bicubic -selecsls42b,77.190,22.810,93.390,6.610,32.46,224,0.875,bicubic -xcit_tiny_12_p16_224,77.120,22.880,93.718,6.282,6.72,224,1.000,bicubic -resnet34d,77.114,22.886,93.382,6.618,21.82,224,0.875,bicubic -tf_efficientnet_b0_ap,77.104,22.896,93.264,6.736,5.29,224,0.875,bicubic -legacy_seresnext26_32x4d,77.094,22.906,93.310,6.690,16.79,224,0.875,bicubic -hardcorenas_c,77.050,22.950,93.172,6.828,5.52,224,0.875,bilinear -dla60,77.034,22.966,93.324,6.676,22.04,224,0.875,bilinear -crossvit_9_dagger_240,76.990,23.010,93.606,6.394,8.78,240,0.875,bicubic -tf_mixnet_m,76.958,23.042,93.166,6.834,5.01,224,0.875,bicubic -regnetx_016,76.946,23.054,93.426,6.574,9.19,224,0.875,bicubic -convmixer_1024_20_ks9_p14,76.944,23.056,93.358,6.642,24.38,224,0.960,bicubic -skresnet34,76.920,23.080,93.320,6.680,22.28,224,0.875,bicubic -gernet_s,76.906,23.094,93.134,6.866,8.17,224,0.875,bilinear -tf_efficientnet_b0,76.846,23.154,93.230,6.770,5.29,224,0.875,bicubic -ese_vovnet19b_dw,76.824,23.176,93.280,6.720,6.54,224,0.875,bicubic -resnext26ts,76.772,23.228,93.130,6.870,10.30,256,0.900,bicubic -hrnet_w18,76.758,23.242,93.438,6.562,21.30,224,0.875,bilinear -resnet26d,76.690,23.310,93.148,6.852,16.01,224,0.875,bicubic -tf_efficientnet_lite1,76.664,23.336,93.234,6.766,5.42,240,0.882,bicubic -resmlp_12_224,76.654,23.346,93.172,6.828,15.35,224,0.875,bicubic -mixer_b16_224,76.622,23.378,92.228,7.772,59.88,224,0.875,bicubic -tf_efficientnet_es,76.590,23.410,93.212,6.788,5.44,224,0.875,bicubic -densenetblur121d,76.590,23.410,93.192,6.808,8.00,224,0.875,bicubic -levit_128s,76.538,23.462,92.864,7.136,7.78,224,0.900,bicubic -hardcorenas_b,76.530,23.470,92.752,7.248,5.18,224,0.875,bilinear -mobilenetv2_140,76.516,23.484,93.000,7.000,6.11,224,0.875,bicubic -repvgg_a2,76.480,23.520,93.020,6.980,28.21,224,0.875,bilinear -xcit_nano_12_p8_224_dist,76.330,23.670,93.086,6.914,3.05,224,1.000,bicubic -regnety_008,76.320,23.680,93.068,6.932,6.26,224,0.875,bicubic -dpn68,76.294,23.706,92.962,7.038,12.61,224,0.875,bicubic -tv_resnet50,76.152,23.848,92.878,7.122,25.56,224,0.875,bilinear -vit_small_patch32_224,75.994,24.006,93.276,6.724,22.88,224,0.900,bicubic -mixnet_s,75.994,24.006,92.792,7.208,4.13,224,0.875,bicubic -vit_tiny_r_s16_p8_384,75.972,24.028,93.272,6.728,6.36,384,1.000,bicubic -hardcorenas_a,75.912,24.088,92.514,7.486,5.26,224,0.875,bilinear -densenet169,75.898,24.102,93.024,6.976,14.15,224,0.875,bicubic -mobilenetv3_large_100,75.774,24.226,92.540,7.460,5.48,224,0.875,bicubic -tf_mixnet_s,75.684,24.316,92.636,7.364,4.13,224,0.875,bicubic -mobilenetv3_rw,75.618,24.382,92.712,7.288,5.48,224,0.875,bicubic -densenet121,75.568,24.432,92.652,7.348,7.98,224,0.875,bicubic -tf_mobilenetv3_large_100,75.510,24.490,92.608,7.392,5.48,224,0.875,bilinear +resnet26t,77.864,22.136,93.846,6.154,16.01,256,0.940,bicubic +regnety_016,77.860,22.140,93.722,6.278,11.20,224,0.875,bicubic +rexnet_100,77.858,22.142,93.870,6.130,4.80,224,0.875,bicubic +tf_inception_v3,77.854,22.146,93.638,6.362,23.83,299,0.875,bicubic +seresnext26ts,77.852,22.148,93.790,6.210,10.39,256,0.900,bicubic +gcresnext26ts,77.820,22.180,93.832,6.168,10.48,256,0.900,bicubic +xcit_nano_12_p8_384_dist,77.818,22.182,94.044,5.956,3.05,384,1.000,bicubic +hardcorenas_e,77.792,22.208,93.698,6.302,8.07,224,0.875,bilinear +efficientnet_b0,77.694,22.306,93.534,6.466,5.29,224,0.875,bicubic +tinynet_a,77.652,22.348,93.538,6.462,6.19,192,0.875,bicubic +legacy_seresnet50,77.632,22.368,93.752,6.248,28.09,224,0.875,bilinear +tv_resnext50_32x4d,77.618,22.382,93.696,6.304,25.03,224,0.875,bilinear +seresnext26d_32x4d,77.602,22.398,93.608,6.392,16.81,224,0.875,bicubic +repvgg_b1g4,77.586,22.414,93.830,6.170,39.97,224,0.875,bilinear +adv_inception_v3,77.582,22.418,93.738,6.262,23.83,299,0.875,bicubic +gluon_resnet50_v1b,77.580,22.420,93.722,6.278,25.56,224,0.875,bicubic +res2net50_48w_2s,77.522,22.478,93.552,6.448,25.29,224,0.875,bilinear +coat_lite_tiny,77.510,22.490,93.912,6.088,5.72,224,0.900,bicubic +tf_efficientnet_lite2,77.468,22.532,93.756,6.244,6.09,260,0.890,bicubic +eca_resnext26ts,77.452,22.548,93.566,6.434,10.30,256,0.900,bicubic +inception_v3,77.438,22.562,93.476,6.524,23.83,299,0.875,bicubic +hardcorenas_d,77.432,22.568,93.484,6.516,7.50,224,0.875,bilinear +tv_resnet101,77.378,22.622,93.542,6.458,44.55,224,0.875,bilinear +densenet161,77.352,22.648,93.638,6.362,28.68,224,0.875,bicubic +tf_efficientnet_cc_b0_4e,77.304,22.696,93.334,6.666,13.31,224,0.875,bicubic +mobilenetv2_120d,77.296,22.704,93.496,6.504,5.83,224,0.875,bicubic +densenet201,77.290,22.710,93.478,6.522,20.01,224,0.875,bicubic +mixnet_m,77.264,22.736,93.424,6.576,5.01,224,0.875,bicubic +selecsls42b,77.174,22.826,93.394,6.606,32.46,224,0.875,bicubic +xcit_tiny_12_p16_224,77.126,22.874,93.714,6.286,6.72,224,1.000,bicubic +resnet34d,77.114,22.886,93.380,6.620,21.82,224,0.875,bicubic +legacy_seresnext26_32x4d,77.102,22.898,93.316,6.684,16.79,224,0.875,bicubic +tf_efficientnet_b0_ap,77.090,22.910,93.258,6.742,5.29,224,0.875,bicubic +hardcorenas_c,77.048,22.952,93.156,6.844,5.52,224,0.875,bilinear +dla60,77.036,22.964,93.318,6.682,22.04,224,0.875,bilinear +crossvit_9_dagger_240,76.978,23.022,93.612,6.388,8.78,240,0.875,bicubic +regnetx_016,76.950,23.050,93.422,6.578,9.19,224,0.875,bicubic +convmixer_1024_20_ks9_p14,76.942,23.058,93.356,6.644,24.38,224,0.960,bicubic +tf_mixnet_m,76.942,23.058,93.152,6.848,5.01,224,0.875,bicubic +gernet_s,76.912,23.088,93.134,6.866,8.17,224,0.875,bilinear +skresnet34,76.904,23.096,93.320,6.680,22.28,224,0.875,bicubic +tf_efficientnet_b0,76.846,23.154,93.226,6.774,5.29,224,0.875,bicubic +ese_vovnet19b_dw,76.800,23.200,93.272,6.728,6.54,224,0.875,bicubic +resnext26ts,76.780,23.220,93.128,6.872,10.30,256,0.900,bicubic +hrnet_w18,76.752,23.248,93.442,6.558,21.30,224,0.875,bilinear +resnet26d,76.700,23.300,93.146,6.854,16.01,224,0.875,bicubic +resmlp_12_224,76.656,23.344,93.180,6.820,15.35,224,0.875,bicubic +tf_efficientnet_lite1,76.636,23.364,93.222,6.778,5.42,240,0.882,bicubic +mixer_b16_224,76.610,23.390,92.230,7.770,59.88,224,0.875,bicubic +tf_efficientnet_es,76.598,23.402,93.204,6.796,5.44,224,0.875,bicubic +densenetblur121d,76.582,23.418,93.188,6.812,8.00,224,0.875,bicubic +hardcorenas_b,76.532,23.468,92.754,7.246,5.18,224,0.875,bilinear +levit_128s,76.520,23.480,92.866,7.134,7.78,224,0.900,bicubic +mobilenetv2_140,76.508,23.492,92.998,7.002,6.11,224,0.875,bicubic +repvgg_a2,76.460,23.540,93.006,6.994,28.21,224,0.875,bilinear +xcit_nano_12_p8_224_dist,76.320,23.680,93.086,6.914,3.05,224,1.000,bicubic +regnety_008,76.312,23.688,93.070,6.930,6.26,224,0.875,bicubic +dpn68,76.306,23.694,92.974,7.026,12.61,224,0.875,bicubic +tv_resnet50,76.138,23.862,92.862,7.138,25.56,224,0.875,bilinear +vit_small_patch32_224,75.998,24.002,93.272,6.728,22.88,224,0.900,bicubic +mixnet_s,75.992,24.008,92.798,7.202,4.13,224,0.875,bicubic +vit_tiny_r_s16_p8_384,75.956,24.044,93.262,6.738,6.36,384,1.000,bicubic +hardcorenas_a,75.922,24.078,92.516,7.484,5.26,224,0.875,bilinear +densenet169,75.900,24.100,93.030,6.970,14.15,224,0.875,bicubic +mobilenetv3_large_100,75.762,24.238,92.540,7.460,5.48,224,0.875,bicubic +tf_mixnet_s,75.650,24.350,92.628,7.372,4.13,224,0.875,bicubic +mobilenetv3_rw,75.630,24.370,92.708,7.292,5.48,224,0.875,bicubic +densenet121,75.582,24.418,92.652,7.348,7.98,224,0.875,bicubic +tf_mobilenetv3_large_100,75.518,24.482,92.604,7.396,5.48,224,0.875,bilinear resnest14d,75.506,24.494,92.520,7.480,10.61,224,0.875,bilinear -efficientnet_lite0,75.504,24.496,92.516,7.484,4.65,224,0.875,bicubic -xcit_nano_12_p16_384_dist,75.468,24.532,92.676,7.324,3.05,384,1.000,bicubic -vit_tiny_patch16_224,75.454,24.546,92.852,7.148,5.72,224,0.900,bicubic -semnasnet_100,75.452,24.548,92.606,7.394,3.89,224,0.875,bicubic -resnet26,75.292,24.708,92.574,7.426,16.00,224,0.875,bicubic -regnety_006,75.266,24.734,92.534,7.466,6.06,224,0.875,bicubic -repvgg_b0,75.152,24.848,92.414,7.586,15.82,224,0.875,bilinear -fbnetc_100,75.120,24.880,92.374,7.626,5.57,224,0.875,bilinear -resnet34,75.112,24.888,92.276,7.724,21.80,224,0.875,bilinear -hrnet_w18_small_v2,75.106,24.894,92.412,7.588,15.60,224,0.875,bilinear -regnetx_008,75.056,24.944,92.348,7.652,7.26,224,0.875,bicubic -mobilenetv2_110d,75.052,24.948,92.188,7.812,4.52,224,0.875,bicubic -efficientnet_es_pruned,74.996,25.004,92.440,7.560,5.44,224,0.875,bicubic +efficientnet_lite0,75.476,24.524,92.512,7.488,4.65,224,0.875,bicubic +vit_tiny_patch16_224,75.456,24.544,92.846,7.154,5.72,224,0.900,bicubic +semnasnet_100,75.450,24.550,92.600,7.400,3.89,224,0.875,bicubic +xcit_nano_12_p16_384_dist,75.450,24.550,92.692,7.308,3.05,384,1.000,bicubic +resnet26,75.302,24.698,92.576,7.424,16.00,224,0.875,bicubic +regnety_006,75.246,24.754,92.534,7.466,6.06,224,0.875,bicubic +repvgg_b0,75.156,24.844,92.418,7.582,15.82,224,0.875,bilinear +fbnetc_100,75.126,24.874,92.382,7.618,5.57,224,0.875,bilinear +hrnet_w18_small_v2,75.118,24.882,92.416,7.584,15.60,224,0.875,bilinear +resnet34,75.114,24.886,92.284,7.716,21.80,224,0.875,bilinear +mobilenetv2_110d,75.040,24.960,92.184,7.816,4.52,224,0.875,bicubic +regnetx_008,75.036,24.964,92.340,7.660,7.26,224,0.875,bicubic +efficientnet_es_pruned,74.998,25.002,92.438,7.562,5.44,224,0.875,bicubic +tinynet_b,74.980,25.020,92.186,7.814,3.73,188,0.875,bicubic tf_efficientnet_lite0,74.832,25.168,92.176,7.824,4.65,224,0.875,bicubic -legacy_seresnet34,74.792,25.208,92.128,7.872,21.96,224,0.875,bilinear -tv_densenet121,74.746,25.254,92.154,7.846,7.98,224,0.875,bicubic -mnasnet_100,74.674,25.326,92.098,7.902,4.38,224,0.875,bicubic -dla34,74.608,25.392,92.058,7.942,15.74,224,0.875,bilinear -gluon_resnet34_v1b,74.592,25.408,91.996,8.004,21.80,224,0.875,bicubic -pit_ti_distilled_224,74.530,25.470,92.100,7.900,5.10,224,0.900,bicubic -deit_tiny_distilled_patch16_224,74.524,25.476,91.896,8.104,5.91,224,0.900,bicubic -vgg19_bn,74.234,25.766,91.854,8.146,143.68,224,0.875,bilinear -spnasnet_100,74.078,25.922,91.820,8.180,4.42,224,0.875,bilinear -regnety_004,74.012,25.988,91.766,8.234,4.34,224,0.875,bicubic -ghostnet_100,73.984,26.016,91.460,8.540,5.18,224,0.875,bilinear -crossvit_9_240,73.982,26.018,91.970,8.030,8.55,240,0.875,bicubic -xcit_nano_12_p8_224,73.912,26.088,92.166,7.834,3.05,224,1.000,bicubic -regnetx_006,73.846,26.154,91.682,8.318,6.20,224,0.875,bicubic -vit_base_patch32_sam_224,73.700,26.300,91.008,8.992,88.22,224,0.900,bicubic -tf_mobilenetv3_large_075,73.450,26.550,91.340,8.660,3.99,224,0.875,bilinear -vgg16_bn,73.360,26.640,91.492,8.508,138.37,224,0.875,bilinear -crossvit_tiny_240,73.344,26.656,91.922,8.078,7.01,240,0.875,bicubic -tv_resnet34,73.304,26.696,91.422,8.578,21.80,224,0.875,bilinear -swsl_resnet18,73.282,26.718,91.758,8.242,11.69,224,0.875,bilinear -convit_tiny,73.112,26.888,91.720,8.280,5.71,224,0.875,bicubic -skresnet18,73.022,26.978,91.170,8.830,11.96,224,0.875,bicubic -mobilenetv2_100,72.952,27.048,91.002,8.998,3.50,224,0.875,bicubic -pit_ti_224,72.922,27.078,91.410,8.590,4.85,224,0.900,bicubic -ssl_resnet18,72.612,27.388,91.420,8.580,11.69,224,0.875,bilinear -regnetx_004,72.390,27.610,90.818,9.182,5.16,224,0.875,bicubic -vgg19,72.388,27.612,90.886,9.114,143.67,224,0.875,bilinear -hrnet_w18_small,72.332,27.668,90.686,9.314,13.19,224,0.875,bilinear -xcit_nano_12_p16_224_dist,72.312,27.688,90.852,9.148,3.05,224,1.000,bicubic -resnet18d,72.268,27.732,90.684,9.316,11.71,224,0.875,bicubic -tf_mobilenetv3_large_minimal_100,72.252,27.748,90.636,9.364,3.92,224,0.875,bilinear -deit_tiny_patch16_224,72.160,27.840,91.112,8.888,5.72,224,0.900,bicubic -mixer_l16_224,72.066,27.934,87.654,12.346,208.20,224,0.875,bicubic -vit_tiny_r_s16_p8_224,71.798,28.202,90.824,9.176,6.34,224,0.900,bicubic -legacy_seresnet18,71.734,28.266,90.338,9.662,11.78,224,0.875,bicubic -vgg16,71.584,28.416,90.390,9.610,138.36,224,0.875,bilinear -vgg13_bn,71.564,28.436,90.374,9.626,133.05,224,0.875,bilinear -gluon_resnet18_v1b,70.834,29.166,89.760,10.240,11.69,224,0.875,bicubic -vgg11_bn,70.362,29.638,89.806,10.194,132.87,224,0.875,bilinear -regnety_002,70.282,29.718,89.544,10.456,3.16,224,0.875,bicubic -xcit_nano_12_p16_224,69.972,30.028,89.758,10.242,3.05,224,1.000,bicubic -vgg13,69.938,30.062,89.258,10.742,133.05,224,0.875,bilinear -resnet18,69.740,30.260,89.086,10.914,11.69,224,0.875,bilinear -vgg11,69.048,30.952,88.636,11.364,132.86,224,0.875,bilinear -regnetx_002,68.750,31.250,88.560,11.440,2.68,224,0.875,bicubic -tf_mobilenetv3_small_100,67.926,32.074,87.676,12.324,2.54,224,0.875,bilinear -dla60x_c,67.912,32.088,88.418,11.582,1.32,224,0.875,bilinear -dla46x_c,65.976,34.024,86.988,13.012,1.07,224,0.875,bilinear -tf_mobilenetv3_small_075,65.720,34.280,86.136,13.864,2.04,224,0.875,bilinear -dla46_c,64.870,35.130,86.294,13.706,1.30,224,0.875,bilinear -tf_mobilenetv3_small_minimal_100,62.908,37.092,84.246,15.754,2.04,224,0.875,bilinear +legacy_seresnet34,74.810,25.190,92.126,7.874,21.96,224,0.875,bilinear +tv_densenet121,74.744,25.256,92.150,7.850,7.98,224,0.875,bicubic +mnasnet_100,74.654,25.346,92.110,7.890,4.38,224,0.875,bicubic +dla34,74.620,25.380,92.072,7.928,15.74,224,0.875,bilinear +gluon_resnet34_v1b,74.592,25.408,91.988,8.012,21.80,224,0.875,bicubic +pit_ti_distilled_224,74.532,25.468,92.098,7.902,5.10,224,0.900,bicubic +deit_tiny_distilled_patch16_224,74.512,25.488,91.888,8.112,5.91,224,0.900,bicubic +vgg19_bn,74.214,25.786,91.848,8.152,143.68,224,0.875,bilinear +spnasnet_100,74.086,25.914,91.818,8.182,4.42,224,0.875,bilinear +regnety_004,74.024,25.976,91.754,8.246,4.34,224,0.875,bicubic +ghostnet_100,73.978,26.022,91.458,8.542,5.18,224,0.875,bilinear +crossvit_9_240,73.970,26.030,91.964,8.036,8.55,240,0.875,bicubic +xcit_nano_12_p8_224,73.918,26.082,92.170,7.830,3.05,224,1.000,bicubic +regnetx_006,73.852,26.148,91.674,8.326,6.20,224,0.875,bicubic +vit_base_patch32_224_sam,73.692,26.308,91.012,8.988,88.22,224,0.900,bicubic +tf_mobilenetv3_large_075,73.440,26.560,91.348,8.652,3.99,224,0.875,bilinear +vgg16_bn,73.350,26.650,91.504,8.496,138.37,224,0.875,bilinear +crossvit_tiny_240,73.336,26.664,91.916,8.084,7.01,240,0.875,bicubic +tv_resnet34,73.308,26.692,91.424,8.576,21.80,224,0.875,bilinear +swsl_resnet18,73.274,26.726,91.738,8.262,11.69,224,0.875,bilinear +convit_tiny,73.120,26.880,91.720,8.280,5.71,224,0.875,bicubic +skresnet18,73.036,26.964,91.168,8.832,11.96,224,0.875,bicubic +semnasnet_075,72.974,27.026,91.136,8.864,2.91,224,0.875,bicubic +mobilenetv2_100,72.966,27.034,91.018,8.982,3.50,224,0.875,bicubic +pit_ti_224,72.910,27.090,91.406,8.594,4.85,224,0.900,bicubic +ssl_resnet18,72.606,27.394,91.424,8.576,11.69,224,0.875,bilinear +regnetx_004,72.390,27.610,90.830,9.170,5.16,224,0.875,bicubic +vgg19,72.366,27.634,90.870,9.130,143.67,224,0.875,bilinear +hrnet_w18_small,72.340,27.660,90.678,9.322,13.19,224,0.875,bilinear +xcit_nano_12_p16_224_dist,72.302,27.698,90.862,9.138,3.05,224,1.000,bicubic +resnet18d,72.250,27.750,90.688,9.312,11.71,224,0.875,bicubic +tf_mobilenetv3_large_minimal_100,72.250,27.750,90.630,9.370,3.92,224,0.875,bilinear +deit_tiny_patch16_224,72.166,27.834,91.120,8.880,5.72,224,0.900,bicubic +lcnet_100,72.108,27.892,90.378,9.622,2.95,224,0.875,bicubic +mixer_l16_224,72.048,27.952,87.664,12.336,208.20,224,0.875,bicubic +vit_tiny_r_s16_p8_224,71.788,28.212,90.822,9.178,6.34,224,0.900,bicubic +legacy_seresnet18,71.742,28.258,90.332,9.668,11.78,224,0.875,bicubic +vgg13_bn,71.594,28.406,90.376,9.624,133.05,224,0.875,bilinear +vgg16,71.590,28.410,90.382,9.618,138.36,224,0.875,bilinear +tinynet_c,71.228,28.772,89.750,10.250,2.46,184,0.875,bicubic +gluon_resnet18_v1b,70.838,29.162,89.762,10.238,11.69,224,0.875,bicubic +vgg11_bn,70.360,29.640,89.802,10.198,132.87,224,0.875,bilinear +regnety_002,70.254,29.746,89.540,10.460,3.16,224,0.875,bicubic +xcit_nano_12_p16_224,69.964,30.036,89.760,10.240,3.05,224,1.000,bicubic +vgg13,69.926,30.074,89.246,10.754,133.05,224,0.875,bilinear +resnet18,69.744,30.256,89.082,10.918,11.69,224,0.875,bilinear +vgg11,69.028,30.972,88.626,11.374,132.86,224,0.875,bilinear +lcnet_075,68.818,31.182,88.374,11.626,2.36,224,0.875,bicubic +regnetx_002,68.750,31.250,88.556,11.444,2.68,224,0.875,bicubic +tf_mobilenetv3_small_100,67.924,32.076,87.664,12.336,2.54,224,0.875,bilinear +dla60x_c,67.892,32.108,88.426,11.574,1.32,224,0.875,bilinear +tinynet_d,66.958,33.042,87.064,12.936,2.34,152,0.875,bicubic +dla46x_c,65.970,34.030,86.980,13.020,1.07,224,0.875,bilinear +mobilenetv2_050,65.942,34.058,86.082,13.918,1.97,224,0.875,bicubic +tf_mobilenetv3_small_075,65.714,34.286,86.134,13.866,2.04,224,0.875,bilinear +mnasnet_small,65.596,34.404,86.188,13.812,2.03,224,0.875,bicubic +dla46_c,64.866,35.134,86.294,13.706,1.30,224,0.875,bilinear +lcnet_050,63.100,36.900,84.382,15.618,1.88,224,0.875,bicubic +tf_mobilenetv3_small_minimal_100,62.908,37.092,84.234,15.766,2.04,224,0.875,bilinear +tinynet_e,59.856,40.144,81.766,18.234,2.04,106,0.875,bicubic diff --git a/results/results-imagenetv2-matched-frequency.csv b/results/results-imagenetv2-matched-frequency.csv index 668399f49b..fdf25a929a 100644 --- a/results/results-imagenetv2-matched-frequency.csv +++ b/results/results-imagenetv2-matched-frequency.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation,top1_diff,top5_diff,rank_diff -beit_large_patch16_512,80.770,19.230,95.860,4.140,305.67,512,1.000,bicubic,-7.814,-2.800,0 -tf_efficientnet_l2_ns_475,80.500,19.500,95.630,4.370,480.31,475,0.936,bicubic,-7.738,-2.920,+2 -beit_large_patch16_384,80.280,19.720,95.610,4.390,305.00,384,1.000,bicubic,-8.102,-2.998,-1 -tf_efficientnet_l2_ns,80.100,19.900,95.860,4.140,480.31,800,0.960,bicubic,-8.246,-2.794,-1 -beit_large_patch16_224,79.340,20.660,94.940,5.060,304.43,224,0.900,bicubic,-8.136,-3.378,0 -swin_large_patch4_window12_384,78.310,21.690,94.410,5.590,196.74,384,1.000,bicubic,-8.840,-3.828,0 -tf_efficientnet_b7_ns,77.850,22.150,94.310,5.690,66.35,600,0.949,bicubic,-8.980,-3.774,+1 -vit_large_patch16_384,77.810,22.190,94.290,5.710,304.72,384,1.000,bicubic,-9.282,-4.016,-1 -beit_base_patch16_384,77.780,22.220,94.330,5.670,86.74,384,1.000,bicubic,-9.028,-3.810,0 -swin_base_patch4_window12_384,77.350,22.650,94.330,5.670,87.90,384,1.000,bicubic,-9.086,-3.736,+2 -swin_large_patch4_window7_224,77.050,22.950,93.670,6.330,196.53,224,0.900,bicubic,-9.266,-4.220,+3 -tf_efficientnet_b6_ns,77.050,22.950,93.790,6.210,43.04,528,0.942,bicubic,-9.396,-4.090,-1 -vit_large_r50_s32_384,76.900,23.100,93.680,6.320,329.09,384,1.000,bicubic,-9.280,-4.244,+3 -cait_m48_448,76.870,23.130,93.420,6.580,356.46,448,1.000,bicubic,-9.624,-4.330,-4 -ig_resnext101_32x48d,76.780,23.220,93.410,6.590,828.41,224,0.875,bilinear,-8.650,-4.172,+17 -xcit_large_24_p8_384_dist,76.750,23.250,93.090,6.910,188.93,384,1.000,bicubic,-9.246,-4.598,+5 -ig_resnext101_32x32d,76.740,23.260,93.180,6.820,468.53,224,0.875,bilinear,-8.354,-4.258,+26 -tf_efficientnet_b5_ns,76.700,23.300,93.510,6.490,30.39,456,0.934,bicubic,-9.376,-4.242,0 -tf_efficientnetv2_l_in21ft1k,76.600,23.400,93.760,6.240,118.52,480,1.000,bicubic,-9.692,-4.224,-4 -tf_efficientnetv2_xl_in21ft1k,76.570,23.430,93.120,6.880,208.12,512,1.000,bicubic,-9.834,-4.748,-7 -cait_m36_384,76.280,23.720,93.040,6.960,271.22,384,1.000,bicubic,-9.776,-4.690,-2 -xcit_medium_24_p8_384_dist,76.250,23.750,92.960,7.040,84.32,384,1.000,bicubic,-9.570,-4.634,+1 -vit_base_patch16_384,76.160,23.840,93.600,6.400,86.86,384,1.000,bicubic,-9.840,-4.406,-3 -vit_large_patch16_224,76.150,23.850,93.470,6.530,304.33,224,0.900,bicubic,-9.688,-4.356,-2 -tf_efficientnetv2_l,76.070,23.930,92.960,7.040,118.52,480,1.000,bicubic,-9.432,-4.410,+5 -xcit_large_24_p8_224_dist,76.060,23.940,92.700,7.300,188.93,224,1.000,bicubic,-9.340,-4.716,+9 -cait_s36_384,76.020,23.980,92.920,7.080,68.37,384,1.000,bicubic,-9.434,-4.562,+4 -tf_efficientnet_b7_ap,75.990,24.010,92.930,7.070,66.35,600,0.949,bicubic,-9.130,-4.320,+13 -tf_efficientnet_b8_ap,75.970,24.030,92.650,7.350,87.41,672,0.954,bicubic,-9.404,-4.648,+7 -xcit_large_24_p16_384_dist,75.840,24.160,92.790,7.210,189.10,384,1.000,bicubic,-9.930,-4.744,-5 -tf_efficientnetv2_m_in21ft1k,75.830,24.170,93.170,6.830,54.14,480,1.000,bicubic,-9.768,-4.582,-4 -xcit_small_24_p8_384_dist,75.800,24.200,92.960,7.040,47.63,384,1.000,bicubic,-9.766,-4.616,-4 -dm_nfnet_f6,75.790,24.210,93.020,6.980,438.36,576,0.956,bicubic,-10.340,-4.720,-16 -beit_base_patch16_224,75.680,24.320,93.420,6.580,86.53,224,0.900,bicubic,-9.560,-4.234,+5 -ig_resnext101_32x16d,75.670,24.330,92.940,7.060,194.03,224,0.875,bilinear,-8.496,-4.256,+43 -xcit_medium_24_p8_224_dist,75.580,24.420,92.810,7.190,84.32,224,1.000,bicubic,-9.488,-4.466,+9 -swin_base_patch4_window7_224,75.570,24.430,93.250,6.750,87.77,224,0.900,bicubic,-9.698,-4.308,+1 -tf_efficientnet_b4_ns,75.500,24.500,92.860,7.140,19.34,380,0.922,bicubic,-9.650,-4.610,+2 -swsl_resnext101_32x8d,75.480,24.520,92.680,7.320,88.79,224,0.875,bilinear,-8.794,-4.494,+35 -vit_base_r50_s16_384,75.410,24.590,92.760,7.240,98.95,384,1.000,bicubic,-9.574,-4.538,+11 -deit_base_distilled_patch16_384,75.400,24.600,92.520,7.480,87.63,384,1.000,bicubic,-10.022,-4.812,-7 -cait_s24_384,75.380,24.620,92.520,7.480,47.06,384,1.000,bicubic,-9.664,-4.830,+6 -tf_efficientnet_b6_ap,75.370,24.630,92.300,7.700,43.04,528,0.942,bicubic,-9.414,-4.838,+14 -dm_nfnet_f4,75.330,24.670,92.880,7.120,316.07,512,0.951,bicubic,-10.370,-4.634,-18 -tf_efficientnetv2_m,75.260,24.740,92.680,7.320,54.14,480,1.000,bicubic,-9.786,-4.604,+2 -efficientnetv2_rw_m,75.130,24.870,92.540,7.460,53.24,416,1.000,bicubic,-9.692,-4.606,+10 -xcit_medium_24_p16_384_dist,75.100,24.900,92.330,7.670,84.40,384,1.000,bicubic,-10.326,-5.078,-14 -xcit_small_24_p8_224_dist,75.000,25.000,92.390,7.610,47.63,224,1.000,bicubic,-9.876,-4.808,+7 -xcit_small_12_p8_384_dist,74.990,25.010,92.370,7.630,26.21,384,1.000,bicubic,-10.092,-4.900,-5 -dm_nfnet_f3,74.900,25.100,92.860,7.140,254.92,416,0.940,bicubic,-10.632,-4.598,-21 -ecaresnet269d,74.880,25.120,92.770,7.230,102.09,352,1.000,bicubic,-10.106,-4.458,-1 -dm_nfnet_f5,74.740,25.260,92.480,7.520,377.21,544,0.954,bicubic,-11.066,-5.002,-28 -xcit_small_24_p16_384_dist,74.620,25.380,92.520,7.480,47.67,384,1.000,bicubic,-10.484,-4.796,-11 -eca_nfnet_l2,74.550,25.450,92.630,7.370,56.72,384,1.000,bicubic,-10.170,-4.628,+4 -tf_efficientnet_b8,74.540,25.460,92.170,7.830,87.41,672,0.954,bicubic,-10.810,-5.222,-18 -xcit_large_24_p16_224_dist,74.530,25.470,91.990,8.010,189.10,224,1.000,bicubic,-10.400,-5.140,-2 -dm_nfnet_f1,74.500,25.500,92.260,7.740,132.63,320,0.910,bicubic,-10.124,-4.836,+4 -dm_nfnet_f2,74.490,25.510,92.200,7.800,193.78,352,0.920,bicubic,-10.556,-5.038,-12 -tf_efficientnet_b7,74.460,25.540,92.120,7.880,66.35,600,0.949,bicubic,-10.476,-5.086,-6 -xcit_small_12_p16_384_dist,74.350,25.650,92.120,7.880,26.25,384,1.000,bicubic,-10.364,-4.996,-1 -tf_efficientnet_b5_ap,74.330,25.670,91.940,8.060,30.39,456,0.934,bicubic,-9.928,-5.036,+14 -resnest200e,74.240,25.760,91.860,8.140,70.20,320,0.909,bicubic,-9.608,-5.030,+29 -tf_efficientnetv2_s_in21ft1k,74.240,25.760,92.400,7.600,21.46,384,1.000,bicubic,-10.056,-4.856,+8 -resmlp_big_24_224_in22ft1k,74.220,25.780,92.080,7.920,129.14,224,0.875,bicubic,-10.204,-5.036,+4 -xcit_large_24_p8_224,74.170,25.830,90.880,9.120,188.93,224,1.000,bicubic,-10.212,-5.776,+4 -vit_large_r50_s32_224,74.140,25.860,92.290,7.710,328.99,224,0.900,bicubic,-10.300,-4.680,-1 -seresnet152d,74.110,25.890,91.920,8.080,66.84,320,1.000,bicubic,-10.252,-5.122,+3 -cait_xs24_384,74.090,25.910,91.900,8.100,26.67,384,1.000,bicubic,-9.964,-4.986,+14 -pit_b_distilled_224,74.080,25.920,91.590,8.410,74.79,224,0.900,bicubic,-10.078,-5.268,+10 -vit_base_patch16_224,74.070,25.930,92.400,7.600,86.57,224,0.900,bicubic,-10.470,-4.906,-8 -efficientnetv2_rw_s,74.020,25.980,91.750,8.250,23.94,384,1.000,bicubic,-9.810,-4.972,+23 -crossvit_18_dagger_408,74.010,25.990,91.300,8.700,44.61,408,1.000,bicubic,-10.174,-5.522,+5 -swsl_resnext101_32x4d,74.000,26.000,91.970,8.030,44.18,224,0.875,bilinear,-9.226,-4.360,+42 -vit_base_patch16_224_miil,74.000,26.000,91.600,8.400,86.54,224,0.875,bilinear,-10.276,-5.198,-1 -tf_efficientnetv2_s,73.980,26.020,91.430,8.570,21.46,384,1.000,bicubic,-9.918,-5.268,+14 -resnest269e,73.920,26.080,91.990,8.010,110.93,416,0.928,bicubic,-10.604,-4.996,-13 -tf_efficientnet_b6,73.910,26.090,91.730,8.270,43.04,528,0.942,bicubic,-10.202,-5.158,+3 -eca_nfnet_l1,73.880,26.120,92.020,7.980,41.41,320,1.000,bicubic,-10.152,-5.012,+8 -vit_small_r26_s32_384,73.880,26.120,92.150,7.850,36.47,384,1.000,bicubic,-10.170,-5.172,+4 -xcit_small_12_p8_224_dist,73.880,26.120,91.700,8.300,26.21,224,1.000,bicubic,-10.360,-5.172,-4 -resnetrs420,73.870,26.130,91.700,8.300,191.89,416,1.000,bicubic,-11.138,-5.426,-32 -tf_efficientnet_b3_ns,73.770,26.230,91.850,8.150,12.23,300,0.904,bicubic,-10.272,-5.058,+2 -regnetz_d,73.760,26.240,91.850,8.150,27.58,320,0.950,bicubic,-10.274,-5.020,+2 -ig_resnext101_32x8d,73.670,26.330,92.190,7.810,88.79,224,0.875,bilinear,-9.040,-4.450,+48 -swsl_resnext101_32x16d,73.670,26.330,92.120,7.880,194.03,224,0.875,bilinear,-9.684,-4.716,+26 -xcit_medium_24_p16_224_dist,73.610,26.390,91.450,8.550,84.40,224,1.000,bicubic,-10.668,-5.492,-14 -xcit_tiny_24_p8_384_dist,73.460,26.540,91.640,8.360,12.11,384,1.000,bicubic,-10.304,-5.064,+11 -resnetrs270,73.450,26.550,91.460,8.540,129.86,352,1.000,bicubic,-10.990,-5.694,-22 -twins_svt_large,73.420,26.580,90.870,9.130,99.27,224,0.900,bicubic,-10.264,-5.740,+13 -resmlp_big_24_distilled_224,73.340,26.660,91.100,8.900,129.14,224,0.875,bicubic,-10.256,-5.556,+14 -resnet200d,73.320,26.680,91.470,8.530,64.69,320,1.000,bicubic,-10.650,-5.348,-3 -tf_efficientnet_b5,73.280,26.720,91.370,8.630,30.39,456,0.934,bicubic,-10.530,-5.378,+4 -efficientnet_b4,73.250,26.750,91.280,8.720,19.34,384,1.000,bicubic,-10.180,-5.314,+14 -regnety_160,73.250,26.750,91.650,8.350,83.59,288,1.000,bicubic,-10.452,-5.132,+7 -resnet152d,73.250,26.750,91.210,8.790,60.21,320,1.000,bicubic,-10.414,-5.524,+8 -vit_small_patch16_384,73.180,26.820,91.900,8.100,22.20,384,1.000,bicubic,-10.614,-5.208,+1 -resnetrs200,73.170,26.830,91.110,8.890,93.21,320,1.000,bicubic,-10.888,-5.764,-16 -jx_nest_base,73.160,26.840,91.000,9.000,67.72,224,0.875,bicubic,-10.394,-5.364,+7 -xcit_small_24_p8_224,73.150,26.850,91.210,8.790,47.63,224,1.000,bicubic,-10.696,-5.422,-9 -xcit_small_24_p16_224_dist,73.150,26.850,91.430,8.570,47.67,224,1.000,bicubic,-10.724,-5.298,-9 -resnetv2_152x4_bitm,73.150,26.850,91.780,8.220,936.53,480,1.000,bilinear,-11.788,-5.678,-48 -resnetrs350,73.130,26.870,91.180,8.820,163.96,384,1.000,bicubic,-11.582,-5.810,-42 -xcit_medium_24_p8_224,73.090,26.910,90.440,9.560,84.32,224,1.000,bicubic,-10.646,-5.946,-4 -resnetv2_152x2_bitm,73.000,27.000,91.990,8.010,236.34,448,1.000,bilinear,-11.452,-5.446,-40 -cait_s24_224,72.990,27.010,91.130,8.870,46.92,224,1.000,bicubic,-10.472,-5.436,+1 -deit_base_distilled_patch16_224,72.960,27.040,90.950,9.050,87.34,224,0.900,bicubic,-10.428,-5.540,+2 -resnetrs152,72.900,27.100,91.200,8.800,86.62,320,1.000,bicubic,-10.810,-5.410,-7 -tf_efficientnet_b4_ap,72.740,27.260,90.990,9.010,19.34,380,0.922,bicubic,-10.518,-5.406,+6 -crossvit_15_dagger_408,72.730,27.270,91.040,8.960,28.50,408,1.000,bicubic,-11.096,-5.746,-14 -dm_nfnet_f0,72.710,27.290,90.990,9.010,71.49,256,0.900,bicubic,-10.674,-5.590,-1 -resnetv2_152x2_bit_teacher_384,72.710,27.290,90.930,9.070,236.34,384,1.000,bicubic,-11.134,-6.188,-18 -twins_svt_base,72.710,27.290,90.440,9.560,56.07,224,0.900,bicubic,-10.414,-5.988,+6 -vit_base_patch32_384,72.670,27.330,91.170,8.830,88.30,384,1.000,bicubic,-10.676,-5.674,-1 -xcit_small_12_p8_224,72.670,27.330,90.710,9.290,26.21,224,1.000,bicubic,-10.676,-5.766,-1 -regnety_032,72.640,27.360,90.910,9.090,19.44,288,1.000,bicubic,-10.082,-5.522,+16 -pnasnet5large,72.560,27.440,90.540,9.460,86.06,331,0.911,bicubic,-10.238,-5.494,+13 -twins_pcpvt_large,72.550,27.450,90.880,9.120,60.99,224,0.900,bicubic,-10.588,-5.728,0 -deit_base_patch16_384,72.480,27.520,90.230,9.770,86.86,384,1.000,bicubic,-10.626,-6.146,+2 -xcit_small_12_p16_224_dist,72.480,27.520,91.070,8.930,26.25,224,1.000,bicubic,-10.870,-5.352,-8 -swsl_resnext50_32x4d,72.450,27.550,90.860,9.140,25.03,224,0.875,bilinear,-9.716,-5.374,+43 -nfnet_l0,72.440,27.560,90.860,9.140,35.07,288,1.000,bicubic,-10.312,-5.656,+9 -gc_efficientnetv2_rw_t,72.390,27.610,90.820,9.180,13.68,288,1.000,bicubic,-10.088,-5.476,+22 -resnetv2_101x3_bitm,72.380,27.620,92.040,7.960,387.93,448,1.000,bilinear,-12.050,-5.332,-56 -xcit_tiny_24_p8_224_dist,72.370,27.630,90.790,9.210,12.11,224,1.000,bicubic,-10.206,-5.390,+15 -resnet101d,72.350,27.650,90.580,9.420,44.57,320,1.000,bicubic,-10.674,-5.876,-1 -jx_nest_small,72.340,27.660,90.720,9.280,38.35,224,0.875,bicubic,-10.778,-5.612,-7 -nasnetalarge,72.340,27.660,90.520,9.480,88.75,331,0.911,bicubic,-10.296,-5.530,+7 -resnest101e,72.320,27.680,90.780,9.220,48.28,256,0.875,bilinear,-10.556,-5.532,-1 -tf_efficientnet_b2_ns,72.320,27.680,91.000,9.000,9.11,260,0.890,bicubic,-10.070,-5.240,+19 -efficientnetv2_rw_t,72.310,27.690,90.460,9.540,13.65,288,1.000,bicubic,-10.028,-5.734,+21 -twins_pcpvt_base,72.250,27.750,90.580,9.420,43.83,224,0.900,bicubic,-10.462,-5.768,+1 -crossvit_18_240,72.200,27.800,90.280,9.720,43.27,240,0.875,bicubic,-10.194,-5.782,+14 -tresnet_xl_448,72.170,27.830,90.130,9.870,78.44,448,0.875,bilinear,-10.886,-6.054,-11 -resnetv2_50x1_bit_distilled,72.160,27.840,91.090,8.910,25.55,224,0.875,bicubic,-10.662,-5.434,-6 -tf_efficientnet_b4,72.160,27.840,90.480,9.520,19.34,380,0.922,bicubic,-10.870,-5.818,-12 -regnetz_c,72.150,27.850,90.660,9.340,13.46,320,0.940,bicubic,-10.366,-5.700,+6 -cait_xxs36_384,72.110,27.890,90.790,9.210,17.37,384,1.000,bicubic,-10.080,-5.370,+24 -tresnet_m,72.100,27.900,90.100,9.900,31.39,224,0.875,bilinear,-10.976,-6.026,-17 -xcit_tiny_24_p16_384_dist,72.070,27.930,90.510,9.490,12.12,384,1.000,bicubic,-10.498,-5.784,+1 -crossvit_18_dagger_240,72.020,27.980,90.100,9.900,44.27,240,0.875,bicubic,-10.486,-5.972,+3 -xcit_tiny_12_p8_384_dist,71.820,28.180,90.700,9.300,6.71,384,1.000,bicubic,-10.572,-5.518,+6 -resnetv2_50x3_bitm,71.770,28.230,91.280,8.720,217.32,448,1.000,bilinear,-12.214,-5.850,-55 -swin_small_patch4_window7_224,71.750,28.250,90.280,9.720,49.61,224,0.900,bicubic,-11.476,-6.488,-27 -crossvit_15_dagger_240,71.650,28.350,89.800,10.200,28.21,240,0.875,bicubic,-10.660,-6.162,+9 -pit_b_224,71.650,28.350,89.280,10.720,73.76,224,0.900,bicubic,-10.794,-6.432,0 -swsl_resnet50,71.640,28.360,90.500,9.500,25.56,224,0.875,bilinear,-9.506,-5.478,+60 -eca_nfnet_l0,71.580,28.420,91.010,8.990,24.14,288,1.000,bicubic,-11.012,-5.476,-11 -resnet61q,71.550,28.450,90.010,9.990,36.85,288,1.000,bicubic,-10.972,-6.124,-7 -xcit_large_24_p16_224,71.540,28.460,89.200,10.800,189.10,224,1.000,bicubic,-11.358,-6.682,-23 -convit_base,71.520,28.480,90.090,9.910,86.54,224,0.875,bicubic,-10.772,-5.844,+7 -tresnet_l_448,71.510,28.490,89.950,10.050,55.99,448,0.875,bilinear,-10.752,-6.030,+7 -tresnet_xl,71.480,28.520,89.460,10.540,78.44,224,0.875,bilinear,-10.578,-6.472,+13 -ssl_resnext101_32x8d,71.470,28.530,90.330,9.670,88.79,224,0.875,bilinear,-10.130,-5.716,+26 -efficientnet_b3,71.460,28.540,90.020,9.980,12.23,320,1.000,bicubic,-10.798,-6.096,+5 -resnetv2_152x2_bit_teacher,71.400,28.600,90.290,9.710,236.34,224,0.875,bicubic,-11.502,-6.278,-30 -xcit_tiny_24_p8_224,71.350,28.650,90.280,9.720,12.11,224,1.000,bicubic,-10.544,-5.704,+15 -pit_s_distilled_224,71.330,28.670,89.730,10.270,24.04,224,0.900,bicubic,-10.664,-6.070,+10 -resnetv2_101,71.290,28.710,89.780,10.220,44.54,224,0.950,bicubic,-10.742,-6.084,+8 -ecaresnet101d,71.240,28.760,90.240,9.760,44.57,224,0.875,bicubic,-10.932,-5.814,+3 -mixer_b16_224_miil,71.200,28.800,89.490,10.510,59.88,224,0.875,bilinear,-11.102,-6.224,-5 -ssl_resnext101_32x16d,71.170,28.830,90.460,9.540,194.03,224,0.875,bilinear,-10.674,-5.630,+11 -ecaresnet50t,71.110,28.890,90.410,9.590,25.57,320,0.950,bicubic,-11.254,-5.732,-12 -xcit_small_24_p16_224,71.090,28.910,89.530,10.470,47.67,224,1.000,bicubic,-11.488,-6.470,-25 -xcit_small_12_p16_224,71.070,28.930,89.730,10.270,26.25,224,1.000,bicubic,-10.906,-6.088,+3 -resnet51q,71.070,28.930,90.070,9.930,35.70,288,1.000,bilinear,-11.298,-6.106,-16 -crossvit_base_240,71.070,28.930,89.780,10.220,105.03,240,0.875,bicubic,-11.136,-6.048,-4 -convmixer_1536_20,71.050,28.950,89.470,10.530,51.63,224,0.960,bicubic,-10.326,-6.140,+28 -coat_lite_small,71.010,28.990,89.460,10.540,19.84,224,0.900,bicubic,-11.292,-6.400,-14 -tf_efficientnet_b3_ap,71.010,28.990,89.220,10.780,12.23,300,0.904,bicubic,-10.812,-6.400,+5 -deit_base_patch16_224,70.970,29.030,89.170,10.830,86.57,224,0.900,bicubic,-11.014,-6.572,-2 -xcit_medium_24_p16_224,70.960,29.040,89.460,10.540,84.40,224,1.000,bicubic,-11.666,-6.516,-36 -tnt_s_patch16_224,70.920,29.080,89.510,10.490,23.76,224,0.900,bicubic,-10.594,-6.234,+12 -xcit_tiny_12_p8_224_dist,70.910,29.090,89.720,10.280,6.71,224,1.000,bicubic,-10.304,-5.886,+29 -vit_large_patch32_384,70.890,29.110,90.460,9.540,306.63,384,1.000,bicubic,-10.616,-5.626,+11 -resnest50d_4s2x40d,70.850,29.150,89.520,10.480,30.42,224,0.875,bicubic,-10.270,-6.040,+32 -visformer_small,70.850,29.150,89.310,10.690,40.22,224,0.900,bicubic,-11.246,-6.568,-12 -rexnet_200,70.840,29.160,89.800,10.200,16.37,224,0.875,bicubic,-10.786,-5.872,+1 -tresnet_m_448,70.770,29.230,88.690,11.310,31.39,448,0.875,bilinear,-10.944,-6.880,-3 -jx_nest_tiny,70.720,29.280,89.840,10.160,17.06,224,0.875,bicubic,-10.714,-5.780,+10 -resnetrs101,70.700,29.300,89.620,10.380,63.62,288,0.940,bicubic,-11.594,-6.382,-24 -wide_resnet50_2,70.690,29.310,89.120,10.880,68.88,224,0.875,bicubic,-10.760,-6.398,+7 -tresnet_l,70.680,29.320,89.640,10.360,55.99,224,0.875,bilinear,-10.804,-5.980,+5 -vit_small_patch16_224,70.670,29.330,90.090,9.910,22.05,224,0.900,bicubic,-10.716,-6.040,+10 -convit_small,70.660,29.340,89.570,10.430,27.78,224,0.875,bicubic,-10.752,-6.176,+7 -resnetv2_101x1_bitm,70.630,29.370,90.950,9.050,44.54,448,1.000,bilinear,-11.700,-5.578,-33 -tf_efficientnet_b1_ns,70.630,29.370,89.930,10.070,7.79,240,0.882,bicubic,-10.754,-5.808,+8 -tf_efficientnetv2_b3,70.630,29.370,89.370,10.630,14.36,300,0.904,bicubic,-11.324,-6.414,-17 -halo2botnet50ts_256,70.610,29.390,89.020,10.980,22.64,256,0.950,bicubic,-10.910,-6.238,-5 -levit_384,70.610,29.390,89.240,10.760,39.13,224,0.900,bicubic,-11.982,-6.774,-52 -crossvit_small_240,70.580,29.420,89.410,10.590,26.86,240,0.875,bicubic,-10.450,-6.056,+22 -vit_small_r26_s32_224,70.560,29.440,90.020,9.980,36.43,224,0.900,bicubic,-11.278,-6.006,-18 -cait_xxs24_384,70.550,29.450,89.780,10.220,12.03,384,1.000,bicubic,-10.404,-5.858,+25 -lamhalobotnet50ts_256,70.530,29.470,88.910,11.090,22.57,256,0.950,bicubic,-10.892,-6.146,-3 -twins_pcpvt_small,70.490,29.510,89.060,10.940,24.11,224,0.900,bicubic,-10.614,-6.582,+14 -legacy_senet154,70.480,29.520,88.960,11.040,115.09,224,0.875,bilinear,-10.846,-6.546,+2 -gluon_seresnext101_64x4d,70.470,29.530,89.180,10.820,88.23,224,0.875,bicubic,-10.400,-6.126,+25 -coat_mini,70.470,29.530,89.580,10.420,10.34,224,0.900,bicubic,-10.812,-5.814,+3 -deit_small_distilled_patch16_224,70.460,29.540,89.400,10.600,22.44,224,0.900,bicubic,-10.742,-5.978,+5 -seresnext50_32x4d,70.450,29.550,89.130,10.870,27.56,224,0.875,bicubic,-10.818,-6.496,+1 -tf_efficientnet_b3,70.400,29.600,89.270,10.730,12.23,300,0.904,bicubic,-11.246,-6.450,-23 -regnetz_b,70.400,29.600,89.440,10.560,9.72,288,0.940,bicubic,-10.318,-6.034,+28 -gernet_l,70.380,29.620,88.940,11.060,31.08,256,0.875,bilinear,-10.966,-6.596,-6 -halonet50ts,70.370,29.630,88.760,11.240,22.73,256,0.940,bicubic,-11.178,-6.552,-23 -ssl_resnext101_32x4d,70.360,29.640,89.810,10.190,44.18,224,0.875,bilinear,-10.562,-5.920,+16 -resnest50d_1s4x24d,70.360,29.640,89.140,10.860,25.68,224,0.875,bicubic,-10.640,-6.186,+9 -crossvit_15_240,70.350,29.650,89.520,10.480,27.53,240,0.875,bicubic,-11.176,-6.174,-24 -gluon_senet154,70.340,29.660,88.960,11.040,115.09,224,0.875,bicubic,-10.884,-6.392,-6 -twins_svt_small,70.330,29.670,89.300,10.700,24.06,224,0.900,bicubic,-11.352,-6.378,-32 -resnest50d,70.250,29.750,88.630,11.370,27.48,224,0.875,bilinear,-10.712,-6.748,+7 -tf_efficientnet_lite4,70.190,29.810,89.040,10.960,13.01,380,0.920,bilinear,-11.350,-6.620,-29 -gluon_resnet152_v1s,70.120,29.880,88.890,11.110,60.32,224,0.875,bicubic,-10.900,-6.532,+2 -resmlp_36_distilled_224,70.120,29.880,89.060,10.940,44.69,224,0.875,bicubic,-11.034,-6.436,-7 -efficientnet_el,70.060,29.940,89.150,10.850,10.59,300,0.904,bicubic,-11.246,-6.386,-15 -inception_resnet_v2,70.030,29.970,88.620,11.380,55.84,299,0.897,bicubic,-10.418,-6.688,+28 -haloregnetz_b,69.980,30.020,88.850,11.150,11.68,224,0.940,bicubic,-11.062,-6.350,-5 -repvgg_b3,69.940,30.060,88.660,11.340,123.09,224,0.875,bilinear,-10.576,-6.604,+20 -gluon_seresnext101_32x4d,69.940,30.060,88.870,11.130,48.96,224,0.875,bicubic,-10.936,-6.422,+4 -levit_256,69.930,30.070,89.240,10.760,18.89,224,0.900,bicubic,-11.572,-6.240,-32 -regnety_320,69.870,30.130,88.760,11.240,145.05,224,0.875,bicubic,-10.924,-6.486,+6 -gluon_resnet152_v1d,69.810,30.190,88.490,11.510,60.21,224,0.875,bicubic,-10.666,-6.712,+18 -pit_s_224,69.800,30.200,88.830,11.170,23.46,224,0.900,bicubic,-11.300,-6.504,-12 -sehalonet33ts,69.770,30.230,88.580,11.420,13.69,256,0.940,bicubic,-11.212,-6.692,-7 -ecaresnet101d_pruned,69.710,30.290,89.330,10.670,24.88,224,0.875,bicubic,-11.102,-6.310,+1 -lambda_resnet50ts,69.710,30.290,88.830,11.170,21.54,256,0.950,bicubic,-11.456,-6.266,-20 -xcit_tiny_24_p16_224_dist,69.610,30.390,88.730,11.270,12.12,224,1.000,bicubic,-10.852,-6.478,+15 -ens_adv_inception_resnet_v2,69.590,30.410,88.350,11.650,55.84,299,0.897,bicubic,-10.388,-6.586,+46 -ssl_resnext50_32x4d,69.590,30.410,89.310,10.690,25.03,224,0.875,bilinear,-10.712,-6.108,+25 -ecaresnet50d,69.580,30.420,89.290,10.710,25.58,224,0.875,bicubic,-11.040,-6.018,+4 -gcresnet50t,69.570,30.430,88.920,11.080,25.90,256,0.900,bicubic,-11.368,-6.520,-10 -efficientnet_b3_pruned,69.550,30.450,88.770,11.230,9.86,300,0.904,bicubic,-11.308,-6.470,-7 -repvgg_b3g4,69.520,30.480,88.500,11.500,83.83,224,0.875,bilinear,-10.698,-6.604,+29 -resmlp_24_distilled_224,69.510,30.490,89.010,10.990,30.02,224,0.875,bicubic,-11.250,-6.210,-6 -gernet_m,69.510,30.490,88.590,11.410,21.14,224,0.875,bilinear,-11.216,-6.588,-5 -convmixer_768_32,69.500,30.500,88.950,11.050,21.11,224,0.960,bicubic,-10.660,-6.124,+29 -gluon_resnext101_64x4d,69.490,30.510,88.250,11.750,83.46,224,0.875,bicubic,-11.136,-6.752,-4 -xcit_tiny_12_p16_384_dist,69.470,30.530,88.970,11.030,6.72,384,1.000,bicubic,-11.474,-6.444,-18 -swin_tiny_patch4_window7_224,69.460,30.540,89.020,10.980,28.29,224,0.900,bicubic,-11.926,-6.516,-45 -efficientnet_el_pruned,69.460,30.540,88.890,11.110,10.59,300,0.904,bicubic,-10.828,-6.332,+15 -regnetx_320,69.440,30.560,88.140,11.860,107.81,224,0.875,bicubic,-10.808,-6.886,+16 -gcresnext50ts,69.430,30.570,88.770,11.230,15.67,256,0.900,bicubic,-11.164,-6.410,-6 -rexnet_150,69.410,30.590,88.970,11.030,9.73,224,0.875,bicubic,-10.900,-6.190,+9 -efficientnet_b2,69.390,30.610,88.650,11.350,9.11,288,1.000,bicubic,-11.220,-6.666,-9 -inception_v4,69.370,30.630,88.740,11.260,42.68,299,0.875,bicubic,-10.774,-6.232,+21 -vit_base_patch32_224,69.350,30.650,89.270,10.730,88.22,224,0.900,bicubic,-11.382,-6.296,-17 -ecaresnetlight,69.330,30.670,89.210,10.790,30.16,224,0.875,bicubic,-11.124,-6.042,-4 -nf_resnet50,69.320,30.680,88.700,11.300,25.56,288,0.940,bicubic,-11.336,-6.636,-16 -xception71,69.270,30.730,88.170,11.830,42.34,299,0.903,bicubic,-10.614,-6.762,+29 -resnet50d,69.170,30.830,88.140,11.860,25.58,224,0.875,bicubic,-11.368,-7.020,-13 -tf_efficientnetv2_b2,69.090,30.910,88.150,11.850,10.10,260,0.890,bicubic,-11.124,-6.894,+12 -legacy_seresnext101_32x4d,69.060,30.940,88.080,11.920,48.96,224,0.875,bilinear,-11.162,-6.932,+9 -mixnet_xl,69.040,30.960,88.340,11.660,11.90,224,0.875,bicubic,-11.428,-6.592,-12 -regnety_120,68.980,31.020,88.190,11.810,51.82,224,0.875,bicubic,-11.406,-6.932,-7 -seresnet33ts,68.960,31.040,88.340,11.660,19.78,256,0.900,bicubic,-11.412,-6.774,-6 -gluon_resnet152_v1c,68.960,31.040,87.670,12.330,60.21,224,0.875,bicubic,-10.952,-7.182,+20 -vit_small_patch32_384,68.950,31.050,89.660,10.340,22.92,384,1.000,bicubic,-11.536,-5.938,-18 -resnetv2_50,68.900,31.100,88.400,11.600,25.55,224,0.950,bicubic,-11.506,-6.680,-13 -gluon_resnext101_32x4d,68.880,31.120,88.280,11.720,44.18,224,0.875,bicubic,-11.458,-6.628,-8 -hrnet_w64,68.830,31.170,88.140,11.860,128.06,224,0.875,bilinear,-10.626,-6.514,+44 -gluon_resnet152_v1b,68.800,31.200,87.570,12.430,60.19,224,0.875,bicubic,-10.880,-7.166,+33 -tf_efficientnet_b2_ap,68.790,31.210,88.330,11.670,9.11,260,0.890,bicubic,-11.516,-6.702,-9 -gluon_resnet101_v1d,68.780,31.220,88.080,11.920,44.57,224,0.875,bicubic,-11.624,-6.944,-17 -seresnet50,68.760,31.240,88.520,11.480,28.09,224,0.875,bicubic,-11.488,-6.550,-5 -repvgg_b2g4,68.760,31.240,88.260,11.740,61.76,224,0.875,bilinear,-10.620,-6.434,+41 -gluon_xception65,68.760,31.240,87.950,12.050,39.92,299,0.903,bicubic,-10.942,-6.918,+25 -xception65,68.760,31.240,88.250,11.750,39.92,299,0.903,bicubic,-10.786,-6.410,+35 -eca_resnet33ts,68.760,31.240,88.520,11.480,19.68,256,0.900,bicubic,-11.336,-6.454,+2 -cspdarknet53,68.730,31.270,88.540,11.460,27.64,256,0.887,bilinear,-11.320,-6.552,+3 -cspresnext50,68.720,31.280,88.020,11.980,20.57,224,0.875,bilinear,-11.332,-6.930,+1 -gcresnet33ts,68.700,31.300,88.480,11.520,19.88,256,0.900,bicubic,-11.386,-6.512,-2 -resnext50d_32x4d,68.670,31.330,88.230,11.770,25.05,224,0.875,bicubic,-10.994,-6.636,+23 -dpn131,68.660,31.340,87.220,12.780,79.25,224,0.875,bicubic,-11.174,-7.492,+12 -gluon_resnet101_v1s,68.650,31.350,87.720,12.280,44.67,224,0.875,bicubic,-11.632,-7.442,-18 -gmlp_s16_224,68.620,31.380,87.950,12.050,19.42,224,0.875,bicubic,-11.022,-6.672,+22 -xcit_tiny_12_p8_224,68.610,31.390,88.690,11.310,6.71,224,1.000,bicubic,-11.100,-6.368,+15 -gluon_seresnext50_32x4d,68.580,31.420,88.150,11.850,27.56,224,0.875,bicubic,-11.344,-6.678,-2 -regnetx_160,68.520,31.480,88.280,11.720,54.28,224,0.875,bicubic,-11.314,-6.544,+6 -regnety_080,68.510,31.490,88.000,12.000,39.18,224,0.875,bicubic,-11.362,-6.832,0 -deit_small_patch16_224,68.490,31.510,88.260,11.740,22.05,224,0.900,bicubic,-11.376,-6.796,+1 -tf_efficientnet_b2,68.460,31.540,88.010,11.990,9.11,260,0.890,bicubic,-11.608,-6.894,-11 -resnet50,68.440,31.560,87.600,12.400,25.56,224,0.950,bicubic,-11.942,-6.994,-35 -skresnext50_32x4d,68.440,31.560,87.610,12.390,27.48,224,0.875,bicubic,-11.702,-7.034,-15 -dpn107,68.430,31.570,88.080,11.920,86.92,224,0.875,bicubic,-11.742,-6.824,-20 -cspresnet50,68.380,31.620,87.950,12.050,21.62,256,0.887,bilinear,-11.196,-6.752,+14 -dla102x2,68.380,31.620,87.810,12.190,41.28,224,0.875,bilinear,-11.060,-6.834,+20 -resnext50_32x4d,68.380,31.620,87.590,12.410,25.03,224,0.875,bicubic,-11.420,-7.024,0 -ssl_resnet50,68.350,31.650,88.580,11.420,25.56,224,0.875,bilinear,-10.886,-6.252,+34 -cait_xxs36_224,68.350,31.650,88.610,11.390,17.30,224,1.000,bicubic,-11.412,-6.258,0 -xcit_tiny_24_p16_224,68.340,31.660,88.120,11.880,12.12,224,1.000,bicubic,-11.112,-6.768,+15 -regnety_064,68.330,31.670,88.030,11.970,30.58,224,0.875,bicubic,-11.400,-6.732,-1 -vit_base_patch16_sam_224,68.310,31.690,87.680,12.320,86.57,224,0.900,bicubic,-11.932,-7.082,-32 -dpn98,68.300,31.700,87.570,12.430,61.57,224,0.875,bicubic,-11.354,-7.034,+3 -resmlp_big_24_224,68.280,31.720,87.700,12.300,129.14,224,0.875,bicubic,-12.752,-7.322,-81 -ecaresnet26t,68.240,31.760,88.660,11.340,16.01,320,0.950,bicubic,-11.594,-6.424,-12 -ese_vovnet39b,68.230,31.770,88.290,11.710,24.57,224,0.875,bicubic,-11.074,-6.434,+16 -regnetx_120,68.230,31.770,87.580,12.420,46.11,224,0.875,bicubic,-11.376,-7.150,+2 -efficientnet_b2_pruned,68.220,31.780,88.080,11.920,8.31,260,0.890,bicubic,-11.686,-6.774,-21 -rexnet_130,68.220,31.780,88.000,12.000,7.56,224,0.875,bicubic,-11.276,-6.674,+3 -gluon_resnext50_32x4d,68.160,31.840,87.360,12.640,25.03,224,0.875,bicubic,-11.204,-7.064,+9 -ecaresnet50d_pruned,68.140,31.860,88.340,11.660,19.94,224,0.875,bicubic,-11.566,-6.534,-9 -tf_efficientnet_el,68.100,31.900,88.020,11.980,10.59,300,0.904,bicubic,-12.148,-7.104,-44 -resnetv2_50x1_bitm,67.930,32.070,89.090,10.910,25.55,448,1.000,bilinear,-12.414,-6.596,-53 -regnetx_080,67.920,32.080,87.070,12.930,39.57,224,0.875,bicubic,-11.300,-7.476,+20 -resmlp_36_224,67.920,32.080,88.220,11.780,44.69,224,0.875,bicubic,-11.856,-6.666,-17 -tf_efficientnet_lite3,67.920,32.080,87.710,12.290,8.20,300,0.904,bilinear,-11.900,-7.200,-20 -pit_xs_distilled_224,67.900,32.100,87.710,12.290,11.00,224,0.900,bicubic,-11.394,-6.664,+10 -resnetrs50,67.890,32.110,87.660,12.340,35.69,224,0.910,bicubic,-11.980,-7.310,-28 -legacy_seresnext50_32x4d,67.880,32.120,87.590,12.410,27.56,224,0.875,bilinear,-11.198,-6.842,+22 -gluon_resnet50_v1d,67.870,32.130,86.940,13.060,25.58,224,0.875,bicubic,-11.194,-7.520,+22 -tf_efficientnetv2_b1,67.840,32.160,87.620,12.380,8.14,240,0.882,bicubic,-11.634,-7.100,-9 -nf_regnet_b1,67.840,32.160,88.080,11.920,10.22,288,0.900,bicubic,-11.456,-6.662,+3 -levit_192,67.840,32.160,87.820,12.180,10.95,224,0.900,bicubic,-12.020,-6.982,-29 -hrnet_w48,67.800,32.200,87.370,12.630,77.47,224,0.875,bilinear,-11.522,-7.144,-3 -resnext101_32x8d,67.760,32.240,87.360,12.640,88.79,224,0.875,bilinear,-11.552,-7.162,-3 -tf_efficientnet_b0_ns,67.720,32.280,87.940,12.060,5.29,224,0.875,bicubic,-10.938,-6.430,+35 -resmlp_24_224,67.700,32.300,87.570,12.430,30.02,224,0.875,bicubic,-11.686,-6.976,-10 -hrnet_w44,67.690,32.310,87.490,12.510,67.06,224,0.875,bilinear,-11.200,-6.892,+22 -halonet26t,67.690,32.310,87.310,12.690,12.48,256,0.950,bicubic,-11.444,-7.006,+9 -eca_botnext26ts_256,67.680,32.320,87.090,12.910,10.59,256,0.950,bicubic,-11.594,-7.516,-1 -regnetx_064,67.670,32.330,87.470,12.530,26.21,224,0.875,bicubic,-11.390,-6.996,+12 -coat_lite_mini,67.660,32.340,87.720,12.280,11.01,224,0.900,bicubic,-11.440,-6.882,+8 -dla169,67.650,32.350,87.460,12.540,53.39,224,0.875,bilinear,-11.048,-6.872,+25 -regnety_040,67.620,32.380,87.390,12.610,20.65,224,0.875,bicubic,-11.608,-7.256,-1 -efficientnet_em,67.570,32.430,88.110,11.890,6.90,240,0.882,bicubic,-11.690,-6.682,-4 -dpn92,67.550,32.450,87.290,12.710,37.67,224,0.875,bicubic,-12.444,-7.546,-53 -xception,67.550,32.450,87.520,12.480,22.86,299,0.897,bicubic,-11.498,-6.876,+7 -gluon_inception_v3,67.540,32.460,87.250,12.750,23.83,299,0.875,bicubic,-11.258,-7.130,+17 -dpn68b,67.520,32.480,87.490,12.510,12.61,224,0.875,bicubic,-11.696,-6.932,-4 -legacy_seresnet152,67.510,32.490,87.500,12.500,66.82,224,0.875,bilinear,-11.152,-6.876,+20 -efficientnet_b1,67.490,32.510,87.430,12.570,7.79,256,1.000,bicubic,-11.314,-6.916,+12 -lambda_resnet26t,67.490,32.510,87.650,12.350,10.96,256,0.940,bicubic,-11.618,-6.938,-2 -hrnet_w40,67.470,32.530,87.140,12.860,57.56,224,0.875,bilinear,-11.456,-7.338,+6 -resnetblur50,67.440,32.560,87.580,12.420,25.56,224,0.875,bicubic,-11.860,-7.056,-19 -tf_efficientnet_b1_ap,67.430,32.570,87.540,12.460,7.79,240,0.882,bicubic,-11.844,-6.762,-17 -tf_efficientnet_cc_b1_8e,67.380,32.620,87.280,12.720,39.72,240,0.882,bicubic,-11.946,-7.088,-26 -res2net50_26w_8s,67.360,32.640,87.130,12.870,48.40,224,0.875,bilinear,-11.620,-7.154,-1 -res2net101_26w_4s,67.360,32.640,87.170,12.830,45.21,224,0.875,bilinear,-11.832,-7.268,-11 -gluon_resnet101_v1b,67.350,32.650,87.050,12.950,44.55,224,0.875,bicubic,-11.950,-7.480,-25 -cait_xxs24_224,67.310,32.690,87.490,12.510,11.96,224,1.000,bicubic,-11.066,-6.826,+27 -xception41,67.310,32.690,87.150,12.850,26.97,299,0.903,bicubic,-11.222,-7.134,+13 -gluon_resnet101_v1c,67.290,32.710,87.060,12.940,44.57,224,0.875,bicubic,-12.244,-7.528,-41 -resnet33ts,67.170,32.830,87.410,12.590,19.68,256,0.900,bicubic,-12.044,-7.162,-17 -regnetx_032,67.150,32.850,86.980,13.020,15.30,224,0.875,bicubic,-11.000,-7.106,+32 -botnet26t_256,67.130,32.870,87.500,12.500,12.49,256,0.950,bicubic,-12.130,-7.034,-25 -resnest26d,67.120,32.880,87.130,12.870,17.07,224,0.875,bilinear,-11.358,-7.166,+10 -coat_tiny,67.120,32.880,87.380,12.620,5.50,224,0.900,bicubic,-11.314,-6.654,+17 -dla60_res2net,67.110,32.890,87.080,12.920,20.85,224,0.875,bilinear,-11.352,-7.128,+11 -legacy_seresnet101,67.100,32.900,87.020,12.980,49.33,224,0.875,bilinear,-11.284,-7.244,+16 -dla60x,67.080,32.920,87.200,12.800,17.35,224,0.875,bilinear,-11.166,-6.824,+22 -dla102x,67.000,33.000,86.730,13.270,26.31,224,0.875,bilinear,-11.512,-7.496,+4 -res2net50_26w_6s,66.980,33.020,86.830,13.170,37.05,224,0.875,bilinear,-11.586,-7.288,+1 -xcit_tiny_12_p16_224_dist,66.970,33.030,87.340,12.660,6.72,224,1.000,bicubic,-11.610,-6.864,-1 -repvgg_b2,66.950,33.050,87.260,12.740,89.02,224,0.875,bilinear,-11.844,-7.166,-8 -pit_xs_224,66.940,33.060,87.190,12.810,10.62,224,0.900,bicubic,-11.244,-6.974,+20 -mixnet_l,66.940,33.060,86.790,13.210,7.33,224,0.875,bicubic,-12.040,-7.390,-19 -gluon_resnet50_v1s,66.940,33.060,86.800,13.200,25.68,224,0.875,bicubic,-11.756,-7.448,-8 -tv_resnet152,66.930,33.070,87.440,12.560,60.19,224,0.875,bilinear,-11.392,-6.604,+11 -repvgg_b1,66.820,33.180,86.690,13.310,57.42,224,0.875,bilinear,-11.558,-7.414,+7 -eca_halonext26ts,66.820,33.180,87.070,12.930,10.76,256,0.940,bicubic,-12.020,-7.186,-18 -tf_efficientnet_b1,66.810,33.190,86.920,13.080,7.79,240,0.882,bicubic,-12.026,-7.274,-18 -lambda_resnet26rpt_256,66.800,33.200,87.060,12.940,10.99,256,0.940,bicubic,-12.168,-7.368,-24 -efficientnet_es,66.720,33.280,86.670,13.330,5.44,224,0.875,bicubic,-11.362,-7.274,+17 -xcit_nano_12_p8_384_dist,66.720,33.280,87.050,12.950,3.05,384,1.000,bicubic,-11.098,-6.984,+32 -gluon_resnet50_v1c,66.710,33.290,86.110,13.890,25.58,224,0.875,bicubic,-11.296,-7.878,+18 -dla60_res2next,66.710,33.290,86.940,13.060,17.03,224,0.875,bilinear,-11.732,-7.256,-4 -hrnet_w30,66.690,33.310,86.740,13.260,37.71,224,0.875,bilinear,-11.512,-7.488,+7 -resnet32ts,66.690,33.310,87.130,12.870,17.96,256,0.900,bicubic,-12.330,-7.232,-33 -selecsls60b,66.650,33.350,86.590,13.410,32.77,224,0.875,bicubic,-11.758,-7.586,-5 -regnetx_040,66.650,33.350,86.530,13.470,22.12,224,0.875,bicubic,-11.834,-7.724,-14 -hrnet_w32,66.650,33.350,87.190,12.810,41.23,224,0.875,bilinear,-11.792,-6.968,-10 -tf_mixnet_l,66.630,33.370,86.380,13.620,7.33,224,0.875,bicubic,-12.148,-7.620,-25 -dla102,66.590,33.410,86.930,13.070,33.27,224,0.875,bilinear,-11.438,-7.028,+9 -wide_resnet101_2,66.570,33.430,87.010,12.990,126.89,224,0.875,bilinear,-12.284,-7.274,-33 -tf_efficientnetv2_b0,66.520,33.480,86.620,13.380,7.14,224,0.875,bicubic,-11.850,-7.406,-7 -levit_128,66.500,33.500,86.710,13.290,9.21,224,0.900,bicubic,-11.966,-7.300,-18 -adv_inception_v3,66.370,33.630,86.380,13.620,23.83,299,0.875,bicubic,-11.208,-7.360,+26 -vit_tiny_patch16_384,66.330,33.670,87.160,12.840,5.79,384,1.000,bicubic,-12.116,-7.384,-18 -tf_inception_v3,66.320,33.680,86.570,13.430,23.83,299,0.875,bicubic,-11.540,-7.076,+13 -selecsls60,66.310,33.690,86.290,13.710,30.67,224,0.875,bicubic,-11.674,-7.542,+5 -resmlp_12_distilled_224,66.280,33.720,86.470,13.530,15.35,224,0.875,bicubic,-11.664,-7.092,+6 -hardcorenas_f,66.240,33.760,86.250,13.750,8.20,224,0.875,bilinear,-11.864,-7.544,-3 -coat_lite_tiny,66.230,33.770,86.950,13.050,5.72,224,0.900,bicubic,-11.284,-6.966,+23 -bat_resnext26ts,66.210,33.790,86.650,13.350,10.73,256,0.900,bicubic,-12.052,-7.450,-14 -tf_efficientnet_cc_b0_8e,66.120,33.880,86.100,13.900,24.01,224,0.875,bicubic,-11.788,-7.556,+4 -efficientnet_b0,66.120,33.880,86.100,13.900,5.29,224,0.875,bicubic,-11.584,-7.422,+12 -legacy_seresnet50,66.090,33.910,86.290,13.710,28.09,224,0.875,bilinear,-11.548,-7.456,+12 -gmixer_24_224,66.080,33.920,85.980,14.020,24.72,224,0.875,bicubic,-11.972,-7.688,-7 -tf_efficientnet_em,66.030,33.970,86.210,13.790,6.90,240,0.882,bicubic,-12.112,-7.848,-12 -res2net50_14w_8s,66.030,33.970,86.200,13.800,25.06,224,0.875,bilinear,-12.104,-7.656,-12 -res2net50_26w_4s,66.010,33.990,86.590,13.410,25.70,224,0.875,bilinear,-11.976,-7.258,-7 -inception_v3,66.000,34.000,86.120,13.880,23.83,299,0.875,bicubic,-11.464,-7.356,+16 -hardcorenas_e,65.990,34.010,85.980,14.020,8.07,224,0.875,bilinear,-11.810,-7.716,+4 -regnety_016,65.960,34.040,86.270,13.730,11.20,224,0.875,bicubic,-11.904,-7.454,-3 -efficientnet_b1_pruned,65.950,34.050,86.510,13.490,6.33,240,0.882,bicubic,-12.300,-7.326,-24 -tv_resnext50_32x4d,65.940,34.060,86.030,13.970,25.03,224,0.875,bilinear,-11.670,-7.654,+4 -gluon_resnet50_v1b,65.910,34.090,86.230,13.770,25.56,224,0.875,bicubic,-11.666,-7.492,+7 -tv_resnet101,65.820,34.180,85.980,14.020,44.55,224,0.875,bilinear,-11.548,-7.580,+13 -rexnet_100,65.810,34.190,86.510,13.490,4.80,224,0.875,bicubic,-12.050,-7.366,-6 -gcresnext26ts,65.810,34.190,85.850,14.150,10.48,256,0.900,bicubic,-12.010,-7.976,-5 -seresnext26t_32x4d,65.780,34.220,85.610,14.390,16.81,224,0.875,bicubic,-12.198,-8.132,-15 -resnet34d,65.770,34.230,86.620,13.380,21.82,224,0.875,bicubic,-11.344,-6.762,+17 -repvgg_b1g4,65.760,34.240,85.970,14.030,39.97,224,0.875,bilinear,-11.834,-7.872,-2 -densenet161,65.700,34.300,86.510,13.490,28.68,224,0.875,bicubic,-11.652,-7.126,+8 -skresnet34,65.660,34.340,85.960,14.040,22.28,224,0.875,bicubic,-11.260,-7.360,+23 -eca_resnext26ts,65.630,34.370,85.780,14.220,10.30,256,0.900,bicubic,-11.820,-7.798,+3 -mobilenetv3_large_100_miil,65.620,34.380,85.210,14.790,5.48,224,0.875,bilinear,-12.292,-7.694,-19 -res2next50,65.610,34.390,85.810,14.190,24.67,224,0.875,bilinear,-12.632,-8.094,-35 -hardcorenas_d,65.570,34.430,85.530,14.470,7.50,224,0.875,bilinear,-11.854,-7.956,+1 -selecsls42b,65.550,34.450,85.870,14.130,32.46,224,0.875,bicubic,-11.640,-7.520,+7 -xcit_tiny_12_p16_224,65.500,34.500,86.190,13.810,6.72,224,1.000,bicubic,-11.620,-7.528,+7 -resnet26t,65.470,34.530,86.240,13.760,16.01,256,0.940,bicubic,-12.402,-7.594,-22 -seresnext26ts,65.450,34.550,86.020,13.980,10.39,256,0.900,bicubic,-12.398,-7.768,-19 -convmixer_1024_20_ks9_p14,65.430,34.570,85.520,14.480,24.38,224,0.960,bicubic,-11.514,-7.838,+13 -tf_efficientnet_lite2,65.300,34.700,86.010,13.990,6.09,260,0.890,bicubic,-12.182,-7.738,-8 -densenet201,65.290,34.710,85.660,14.340,20.01,224,0.875,bicubic,-12.000,-7.820,-2 -seresnext26d_32x4d,65.260,34.740,85.810,14.190,16.81,224,0.875,bicubic,-12.326,-7.794,-15 -densenetblur121d,65.250,34.750,85.780,14.220,8.00,224,0.875,bicubic,-11.340,-7.412,+21 -crossvit_9_dagger_240,65.230,34.770,86.470,13.530,8.78,240,0.875,bicubic,-11.760,-7.136,+5 -res2net50_48w_2s,65.220,34.780,85.920,14.080,25.29,224,0.875,bilinear,-12.314,-7.638,-15 -tf_efficientnet_b0_ap,65.200,34.800,85.490,14.510,5.29,224,0.875,bicubic,-11.904,-7.774,-1 -hrnet_w18,65.110,34.890,85.690,14.310,21.30,224,0.875,bilinear,-11.648,-7.748,+11 -ese_vovnet19b_dw,65.100,34.900,85.420,14.580,6.54,224,0.875,bicubic,-11.724,-7.860,+8 -dla60,65.070,34.930,85.700,14.300,22.04,224,0.875,bilinear,-11.964,-7.624,-1 -gernet_s,65.000,35.000,85.520,14.480,8.17,224,0.875,bilinear,-11.906,-7.614,+4 -tf_efficientnet_cc_b0_4e,64.960,35.040,85.020,14.980,13.31,224,0.875,bicubic,-12.360,-8.302,-13 -mobilenetv2_120d,64.920,35.080,85.850,14.150,5.83,224,0.875,bicubic,-12.366,-7.662,-12 -hardcorenas_c,64.850,35.150,85.240,14.760,5.52,224,0.875,bilinear,-12.200,-7.932,-6 -legacy_seresnext26_32x4d,64.830,35.170,85.550,14.450,16.79,224,0.875,bicubic,-12.264,-7.760,-8 -mixnet_m,64.740,35.260,85.510,14.490,5.01,224,0.875,bicubic,-12.534,-7.912,-14 -resnet26d,64.590,35.410,85.090,14.910,16.01,224,0.875,bicubic,-12.100,-8.058,+3 -xcit_nano_12_p8_224_dist,64.520,35.480,85.900,14.100,3.05,224,1.000,bicubic,-11.810,-7.186,+12 -tf_efficientnet_lite1,64.490,35.510,85.520,14.480,5.42,240,0.882,bicubic,-12.174,-7.714,+2 -tf_mixnet_m,64.460,35.540,84.930,15.070,5.01,224,0.875,bicubic,-12.498,-8.236,-9 -levit_128s,64.440,35.560,84.690,15.310,7.78,224,0.900,bicubic,-12.098,-8.174,+5 -densenet169,64.420,35.580,85.250,14.750,14.15,224,0.875,bicubic,-11.478,-7.774,+16 -resnext26ts,64.380,35.620,85.000,15.000,10.30,256,0.900,bicubic,-12.392,-8.130,-5 -resmlp_12_224,64.340,35.660,85.600,14.400,15.35,224,0.875,bicubic,-12.314,-7.572,-2 -repvgg_a2,64.270,35.730,84.980,15.020,28.21,224,0.875,bilinear,-12.210,-8.040,+4 -xcit_nano_12_p16_384_dist,64.230,35.770,85.280,14.720,3.05,384,1.000,bicubic,-11.238,-7.396,+20 -regnetx_016,64.230,35.770,85.440,14.560,9.19,224,0.875,bicubic,-12.716,-7.986,-15 -hardcorenas_b,64.210,35.790,84.860,15.140,5.18,224,0.875,bilinear,-12.320,-7.892,-1 -tf_efficientnet_b0,64.160,35.840,85.170,14.830,5.29,224,0.875,bicubic,-12.686,-8.060,-13 -dpn68,64.030,35.970,84.990,15.010,12.61,224,0.875,bicubic,-12.264,-7.972,+2 -tf_efficientnet_es,63.900,36.100,84.580,15.420,5.44,224,0.875,bicubic,-12.690,-8.632,-7 -vit_small_patch32_224,63.880,36.120,85.590,14.410,22.88,224,0.900,bicubic,-12.114,-7.686,+2 -mobilenetv2_140,63.870,36.130,84.950,15.050,6.11,224,0.875,bicubic,-12.646,-8.050,-5 -densenet121,63.730,36.270,84.600,15.400,7.98,224,0.875,bicubic,-11.838,-8.052,+8 -regnety_008,63.730,36.270,85.240,14.760,6.26,224,0.875,bicubic,-12.590,-7.828,-4 -hardcorenas_a,63.680,36.320,84.470,15.530,5.26,224,0.875,bilinear,-12.232,-8.044,+1 -resnest14d,63.550,36.450,84.010,15.990,10.61,224,0.875,bilinear,-11.956,-8.510,+7 -mixnet_s,63.540,36.460,84.710,15.290,4.13,224,0.875,bicubic,-12.454,-8.082,-3 -tf_mixnet_s,63.430,36.570,84.090,15.910,4.13,224,0.875,bicubic,-12.254,-8.546,+1 -resnet26,63.420,36.580,84.210,15.790,16.00,224,0.875,bicubic,-11.872,-8.364,+9 -mobilenetv3_large_100,63.310,36.690,84.050,15.950,5.48,224,0.875,bicubic,-12.464,-8.490,-2 -efficientnet_es_pruned,63.300,36.700,84.840,15.160,5.44,224,0.875,bicubic,-11.696,-7.600,+15 -mobilenetv3_rw,63.270,36.730,84.560,15.440,5.48,224,0.875,bicubic,-12.348,-8.152,-2 -tv_resnet50,63.200,36.800,84.640,15.360,25.56,224,0.875,bilinear,-12.952,-8.238,-11 -vit_tiny_r_s16_p8_384,63.190,36.810,85.120,14.880,6.36,384,1.000,bicubic,-12.782,-8.152,-9 -efficientnet_lite0,63.160,36.840,84.350,15.650,4.65,224,0.875,bicubic,-12.344,-8.166,-1 -mixer_b16_224,63.160,36.840,83.080,16.920,59.88,224,0.875,bicubic,-13.462,-9.148,-24 -vit_tiny_patch16_224,63.100,36.900,84.900,15.100,5.72,224,0.900,bicubic,-12.354,-7.952,-1 -pit_ti_distilled_224,63.090,36.910,84.010,15.990,5.10,224,0.900,bicubic,-11.440,-8.090,+15 -semnasnet_100,63.050,36.950,84.450,15.550,3.89,224,0.875,bicubic,-12.402,-8.156,-2 -resnet34,62.850,37.150,84.150,15.850,21.80,224,0.875,bilinear,-12.262,-8.126,+2 -tv_densenet121,62.790,37.210,84.120,15.880,7.98,224,0.875,bicubic,-11.956,-8.034,+8 -legacy_seresnet34,62.770,37.230,84.200,15.800,21.96,224,0.875,bilinear,-12.022,-7.928,+6 -regnety_006,62.740,37.260,84.100,15.900,6.06,224,0.875,bicubic,-12.526,-8.434,-4 -deit_tiny_distilled_patch16_224,62.720,37.280,83.800,16.200,5.91,224,0.900,bicubic,-11.804,-8.096,+10 -hrnet_w18_small_v2,62.660,37.340,83.850,16.150,15.60,224,0.875,bilinear,-12.446,-8.562,-2 -swsl_resnet18,62.650,37.350,84.290,15.710,11.69,224,0.875,bilinear,-10.632,-7.468,+21 -repvgg_b0,62.620,37.380,83.660,16.340,15.82,224,0.875,bilinear,-12.532,-8.754,-7 -mobilenetv2_110d,62.620,37.380,84.450,15.550,4.52,224,0.875,bicubic,-12.432,-7.738,-3 -tf_efficientnet_lite0,62.560,37.440,84.140,15.860,4.65,224,0.875,bicubic,-12.272,-8.036,-2 -regnetx_008,62.510,37.490,83.980,16.020,7.26,224,0.875,bicubic,-12.546,-8.368,-6 -dla34,62.500,37.500,83.860,16.140,15.74,224,0.875,bilinear,-12.108,-8.198,0 -gluon_resnet34_v1b,62.460,37.540,83.920,16.080,21.80,224,0.875,bicubic,-12.132,-8.076,0 -xcit_nano_12_p8_224,62.450,37.550,84.190,15.810,3.05,224,1.000,bicubic,-11.462,-7.976,+7 -fbnetc_100,62.380,37.620,83.370,16.630,5.57,224,0.875,bilinear,-12.740,-9.004,-13 -tf_mobilenetv3_large_100,62.230,37.770,83.850,16.150,5.48,224,0.875,bilinear,-13.280,-8.758,-23 -crossvit_9_240,62.110,37.890,84.300,15.700,8.55,240,0.875,bicubic,-11.872,-7.670,+3 -crossvit_tiny_240,62.060,37.940,83.780,16.220,7.01,240,0.875,bicubic,-11.284,-8.142,+8 -regnety_004,61.990,38.010,83.440,16.560,4.34,224,0.875,bicubic,-12.022,-8.326,-1 -vgg19_bn,61.910,38.090,83.380,16.620,143.68,224,0.875,bilinear,-12.324,-8.474,-4 -mnasnet_100,61.900,38.100,83.730,16.270,4.38,224,0.875,bicubic,-12.774,-8.368,-10 -ssl_resnet18,61.530,38.470,83.300,16.700,11.69,224,0.875,bilinear,-11.082,-8.120,+11 -convit_tiny,61.470,38.530,83.990,16.010,5.71,224,0.875,bicubic,-11.642,-7.730,+6 -tv_resnet34,61.150,38.850,82.640,17.360,21.80,224,0.875,bilinear,-12.154,-8.782,+3 -regnetx_006,61.120,38.880,83.250,16.750,6.20,224,0.875,bicubic,-12.726,-8.432,-3 -spnasnet_100,61.070,38.930,82.750,17.250,4.42,224,0.875,bilinear,-13.008,-9.070,-9 -pit_ti_224,60.940,39.060,83.820,16.180,4.85,224,0.900,bicubic,-11.982,-7.590,+5 -vgg16_bn,60.820,39.180,83.010,16.990,138.37,224,0.875,bilinear,-12.540,-8.482,-4 -skresnet18,60.820,39.180,82.870,17.130,11.96,224,0.875,bicubic,-12.202,-8.300,+2 -ghostnet_100,60.610,39.390,82.270,17.730,5.18,224,0.875,bilinear,-13.374,-9.190,-11 -tf_mobilenetv3_large_075,60.360,39.640,81.800,18.200,3.99,224,0.875,bilinear,-13.090,-9.540,-7 -xcit_nano_12_p16_224_dist,60.330,39.670,82.490,17.510,3.05,224,1.000,bicubic,-11.982,-8.362,+5 -mobilenetv2_100,60.210,39.790,82.040,17.960,3.50,224,0.875,bicubic,-12.742,-8.962,-2 -vit_base_patch32_sam_224,59.970,40.030,81.300,18.700,88.22,224,0.900,bicubic,-13.730,-9.708,-36 -deit_tiny_patch16_224,59.920,40.080,82.730,17.270,5.72,224,0.900,bicubic,-12.240,-8.382,+6 -resnet18d,59.860,40.140,82.310,17.690,11.71,224,0.875,bicubic,-12.408,-8.374,+3 -legacy_seresnet18,59.730,40.270,81.600,18.400,11.78,224,0.875,bicubic,-12.004,-8.738,+7 -vgg19,59.720,40.280,81.420,18.580,143.67,224,0.875,bilinear,-12.668,-9.466,-2 -regnetx_004,59.260,40.740,81.830,18.170,5.16,224,0.875,bicubic,-13.130,-8.988,-4 -tf_mobilenetv3_large_minimal_100,59.040,40.960,80.880,19.120,3.92,224,0.875,bilinear,-13.212,-9.756,0 -hrnet_w18_small,58.920,41.080,81.340,18.660,13.19,224,0.875,bilinear,-13.412,-9.346,-4 -vit_tiny_r_s16_p8_224,58.880,41.120,81.630,18.370,6.34,224,0.900,bicubic,-12.918,-9.194,+1 -vgg13_bn,58.850,41.150,81.040,18.960,133.05,224,0.875,bilinear,-12.714,-9.334,+3 -vgg16,58.630,41.370,81.670,18.330,138.36,224,0.875,bilinear,-12.954,-8.720,+1 -xcit_nano_12_p16_224,58.340,41.660,80.900,19.100,3.05,224,1.000,bicubic,-11.632,-8.858,+5 -gluon_resnet18_v1b,58.300,41.700,80.990,19.010,11.69,224,0.875,bicubic,-12.534,-8.770,+1 -resnet18,57.240,42.760,80.090,19.910,11.69,224,0.875,bilinear,-12.500,-8.996,+5 -vgg13,57.100,42.900,79.610,20.390,133.05,224,0.875,bilinear,-12.838,-9.648,+3 -vgg11_bn,57.040,42.960,79.760,20.240,132.87,224,0.875,bilinear,-13.322,-10.046,-1 -regnety_002,56.980,43.020,79.830,20.170,3.16,224,0.875,bicubic,-13.302,-9.714,-1 -mixer_l16_224,56.200,43.800,75.690,24.310,208.20,224,0.875,bicubic,-15.866,-11.964,-9 -dla60x_c,56.090,43.910,78.950,21.050,1.32,224,0.875,bilinear,-11.822,-9.468,+4 -vgg11,55.900,44.100,78.760,21.240,132.86,224,0.875,bilinear,-13.148,-9.876,0 -regnetx_002,55.790,44.210,79.240,20.760,2.68,224,0.875,bicubic,-12.960,-9.320,0 -tf_mobilenetv3_small_100,54.530,45.470,77.010,22.990,2.54,224,0.875,bilinear,-13.396,-10.666,0 -dla46x_c,53.120,46.880,76.810,23.190,1.07,224,0.875,bilinear,-12.856,-10.178,+1 -tf_mobilenetv3_small_075,52.360,47.640,75.470,24.530,2.04,224,0.875,bilinear,-13.360,-10.666,+1 -dla46_c,52.020,47.980,75.730,24.270,1.30,224,0.875,bilinear,-12.850,-10.564,+1 -tf_mobilenetv3_small_minimal_100,49.560,50.440,72.820,27.180,2.04,224,0.875,bilinear,-13.348,-11.426,+1 +tf_efficientnet_l2_ns_475,80.460,19.540,95.730,4.270,480.31,475,0.936,bicubic,-7.772,-2.816,+3 +tf_efficientnet_l2_ns,80.250,19.750,95.840,4.160,480.31,800,0.960,bicubic,-8.098,-2.808,+1 +beit_large_patch16_512,79.940,20.060,95.350,4.650,305.67,512,1.000,bicubic,-8.662,-3.306,-2 +beit_large_patch16_384,79.500,20.500,95.170,4.830,305.00,384,1.000,bicubic,-8.904,-3.438,-2 +beit_large_patch16_224,78.810,21.190,94.600,5.400,304.43,224,0.900,bicubic,-8.668,-3.706,+1 +tf_efficientnet_b7_ns,78.510,21.490,94.380,5.620,66.35,600,0.949,bicubic,-8.330,-3.714,+5 +vit_large_patch16_384,77.940,22.060,94.440,5.560,304.72,384,1.000,bicubic,-9.140,-3.862,+2 +convnext_large_384_in22ft1k,77.740,22.260,94.080,5.920,197.77,384,1.000,bicubic,-9.658,-4.286,-1 +convnext_xlarge_384_in22ft1k,77.700,22.300,94.200,5.800,350.20,384,1.000,bicubic,-9.844,-4.290,-4 +tf_efficientnet_b6_ns,77.280,22.720,93.900,6.100,43.04,528,0.942,bicubic,-9.170,-3.982,+6 +vit_large_r50_s32_384,77.070,22.930,93.720,6.280,329.09,384,1.000,bicubic,-9.112,-4.198,+10 +swin_large_patch4_window12_384,77.040,22.960,93.750,6.250,196.74,384,1.000,bicubic,-10.108,-4.490,-4 +tf_efficientnetv2_xl_in21ft1k,77.040,22.960,93.270,6.730,208.12,512,1.000,bicubic,-9.378,-4.596,+5 +tf_efficientnetv2_l_in21ft1k,76.940,23.060,93.960,6.040,118.52,480,1.000,bicubic,-9.364,-4.018,+6 +beit_base_patch16_384,76.900,23.100,93.910,6.090,86.74,384,1.000,bicubic,-9.898,-4.226,-3 +ig_resnext101_32x48d,76.880,23.120,93.310,6.690,828.41,224,0.875,bilinear,-8.556,-4.266,+23 +cait_m48_448,76.860,23.140,93.370,6.630,356.46,448,1.000,bicubic,-9.624,-4.382,-2 +ig_resnext101_32x32d,76.820,23.180,93.210,6.790,468.53,224,0.875,bilinear,-8.282,-4.224,+31 +tf_efficientnet_b5_ns,76.810,23.190,93.580,6.420,30.39,456,0.934,bicubic,-9.280,-4.170,+4 +convnext_xlarge_in22ft1k,76.750,23.250,93.540,6.460,350.20,224,0.875,bicubic,-10.258,-4.668,-10 +xcit_large_24_p8_384_dist,76.620,23.380,93.090,6.910,188.93,384,1.000,bicubic,-9.380,-4.594,+5 +convnext_base_384_in22ft1k,76.570,23.430,93.750,6.250,88.59,384,1.000,bicubic,-9.996,-4.448,-8 +vit_base_patch16_384,76.480,23.520,93.760,6.240,86.86,384,1.000,bicubic,-9.526,-4.242,+2 +convnext_large_in22ft1k,76.410,23.590,93.480,6.520,197.77,224,0.875,bicubic,-10.216,-4.552,-11 +cait_m36_384,76.320,23.680,93.060,6.940,271.22,384,1.000,bicubic,-9.732,-4.670,-1 +vit_large_patch16_224,76.300,23.700,93.600,6.400,304.33,224,0.900,bicubic,-9.544,-4.224,+1 +swin_base_patch4_window12_384,76.280,23.720,93.320,6.680,87.90,384,1.000,bicubic,-10.152,-4.736,-10 +tf_efficientnetv2_l,76.280,23.720,92.970,7.030,118.52,480,1.000,bicubic,-9.210,-4.402,+9 +swin_large_patch4_window7_224,76.270,23.730,93.410,6.590,196.53,224,0.900,bicubic,-10.048,-4.482,-10 +cait_s36_384,76.220,23.780,92.970,7.030,68.37,384,1.000,bicubic,-9.242,-4.510,+8 +xcit_medium_24_p8_384_dist,76.140,23.860,92.970,7.030,84.32,384,1.000,bicubic,-9.674,-4.622,-2 +dm_nfnet_f6,76.130,23.870,93.110,6.890,438.36,576,0.956,bicubic,-10.014,-4.620,-10 +tf_efficientnet_b7_ap,76.090,23.910,92.970,7.030,66.35,600,0.949,bicubic,-9.030,-4.282,+15 +tf_efficientnet_b8_ap,76.090,23.910,92.730,7.270,87.41,672,0.954,bicubic,-9.280,-4.562,+9 +vit_base_patch8_224,76.010,23.990,93.370,6.630,86.58,224,0.900,bicubic,-9.782,-4.422,-4 +xcit_large_24_p8_224_dist,75.990,24.010,92.730,7.270,188.93,224,1.000,bicubic,-9.408,-4.680,+6 +tf_efficientnetv2_m_in21ft1k,75.910,24.090,93.290,6.710,54.14,480,1.000,bicubic,-9.682,-4.456,-3 +dm_nfnet_f4,75.850,24.150,92.970,7.030,316.07,512,0.951,bicubic,-9.864,-4.552,-5 +xcit_large_24_p16_384_dist,75.830,24.170,92.750,7.250,189.10,384,1.000,bicubic,-9.926,-4.788,-7 +xcit_small_24_p8_384_dist,75.770,24.230,92.970,7.030,47.63,384,1.000,bicubic,-9.782,-4.602,-5 +ig_resnext101_32x16d,75.740,24.260,92.880,7.120,194.03,224,0.875,bilinear,-8.432,-4.318,+46 +tf_efficientnet_b4_ns,75.680,24.320,93.050,6.950,19.34,380,0.922,bicubic,-9.482,-4.420,+5 +vit_base_r50_s16_384,75.590,24.410,92.780,7.220,98.95,384,1.000,bicubic,-9.382,-4.510,+16 +deit_base_distilled_patch16_384,75.550,24.450,92.500,7.500,87.63,384,1.000,bicubic,-9.872,-4.832,-4 +convnext_base_in22ft1k,75.530,24.470,93.150,6.850,88.59,224,0.875,bicubic,-10.266,-4.716,-15 +tf_efficientnetv2_m,75.520,24.480,92.620,7.380,54.14,480,1.000,bicubic,-9.516,-4.658,+9 +regnetz_e8,75.490,24.510,92.710,7.290,57.70,320,1.000,bicubic,-9.540,-4.554,+9 +cait_s24_384,75.480,24.520,92.590,7.410,47.06,384,1.000,bicubic,-9.568,-4.758,+6 +xcit_medium_24_p8_224_dist,75.470,24.530,92.900,7.100,84.32,224,1.000,bicubic,-9.598,-4.378,+3 +swsl_resnext101_32x8d,75.420,24.580,92.750,7.250,88.79,224,0.875,bilinear,-8.870,-4.430,+31 +tf_efficientnet_b6_ap,75.380,24.620,92.440,7.560,43.04,528,0.942,bicubic,-9.408,-4.698,+14 +beit_base_patch16_224,75.360,24.640,93.040,6.960,86.53,224,0.900,bicubic,-9.868,-4.616,-6 +dm_nfnet_f3,75.210,24.790,92.940,7.060,254.92,416,0.940,bicubic,-10.314,-4.522,-17 +efficientnetv2_rw_m,75.160,24.840,92.570,7.430,53.24,416,1.000,bicubic,-9.650,-4.576,+10 +ecaresnet269d,75.130,24.870,92.840,7.160,102.09,352,1.000,bicubic,-9.846,-4.386,+3 +xcit_medium_24_p16_384_dist,75.100,24.900,92.450,7.550,84.40,384,1.000,bicubic,-10.320,-4.956,-15 +dm_nfnet_f5,75.000,25.000,92.600,7.400,377.21,544,0.954,bicubic,-10.814,-4.886,-29 +xcit_small_24_p8_224_dist,74.970,25.030,92.300,7.700,47.63,224,1.000,bicubic,-9.904,-4.888,+5 +tf_efficientnet_b8,74.920,25.080,92.320,7.680,87.41,672,0.954,bicubic,-10.446,-5.072,-15 +xcit_small_12_p8_384_dist,74.860,25.140,92.460,7.540,26.21,384,1.000,bicubic,-10.222,-4.820,-9 +eca_nfnet_l2,74.830,25.170,92.650,7.350,56.72,384,1.000,bicubic,-9.866,-4.614,+7 +tf_efficientnet_b7,74.720,25.280,92.220,7.780,66.35,600,0.949,bicubic,-10.214,-4.986,-2 +xcit_large_24_p16_224_dist,74.670,25.330,91.860,8.140,189.10,224,1.000,bicubic,-10.248,-5.272,-2 +dm_nfnet_f2,74.620,25.380,92.250,7.750,193.78,352,0.920,bicubic,-10.444,-4.990,-11 +xcit_small_24_p16_384_dist,74.600,25.400,92.450,7.550,47.67,384,1.000,bicubic,-10.494,-4.860,-15 +tf_efficientnet_b5_ap,74.590,25.410,91.990,8.010,30.39,456,0.934,bicubic,-9.666,-4.988,+18 +dm_nfnet_f1,74.570,25.430,92.260,7.740,132.63,320,0.910,bicubic,-10.054,-4.838,+2 +swin_base_patch4_window7_224,74.550,25.450,92.560,7.440,87.77,224,0.900,bicubic,-10.700,-5.000,-23 +seresnet152d,74.510,25.490,92.080,7.920,66.84,320,1.000,bicubic,-9.848,-4.962,+9 +resnest200e,74.480,25.520,91.860,8.140,70.20,320,0.909,bicubic,-9.350,-5.034,+34 +tf_efficientnetv2_s_in21ft1k,74.460,25.540,92.500,7.500,21.46,384,1.000,bicubic,-9.838,-4.754,+8 +efficientnetv2_rw_s,74.180,25.820,91.710,8.290,23.94,384,1.000,bicubic,-9.630,-5.012,+35 +resnest269e,74.180,25.820,91.930,8.070,110.93,416,0.928,bicubic,-10.336,-5.056,-2 +cait_xs24_384,74.170,25.830,91.910,8.090,26.67,384,1.000,bicubic,-9.892,-4.978,+17 +pit_b_distilled_224,74.160,25.840,91.670,8.330,74.79,224,0.900,bicubic,-9.982,-5.186,+13 +swsl_resnext101_32x4d,74.140,25.860,92.000,8.000,44.18,224,0.875,bilinear,-9.096,-4.764,+50 +eca_nfnet_l1,74.120,25.880,92.070,7.930,41.41,320,1.000,bicubic,-9.892,-4.958,+20 +xcit_small_12_p16_384_dist,74.120,25.880,92.070,7.930,26.25,384,1.000,bicubic,-10.586,-5.048,-11 +vit_large_r50_s32_224,74.110,25.890,92.380,7.620,328.99,224,0.900,bicubic,-10.320,-4.786,-4 +convnext_large,74.070,25.930,91.550,8.450,197.77,224,0.875,bicubic,-10.226,-5.344,0 +xcit_large_24_p8_224,74.070,25.930,90.890,9.110,188.93,224,1.000,bicubic,-10.322,-5.768,-4 +vit_base_patch16_224_miil,74.050,25.950,91.700,8.300,86.54,224,0.875,bilinear,-10.220,-5.102,+1 +resnetv2_152x4_bitm,74.010,25.990,92.330,7.670,936.53,480,1.000,bilinear,-10.906,-5.112,-21 +vit_base_patch16_224,74.010,25.990,92.470,7.530,86.57,224,0.900,bicubic,-10.516,-4.828,-14 +tf_efficientnetv2_s,74.000,26.000,91.530,8.470,21.46,384,1.000,bicubic,-9.886,-5.166,+14 +swsl_resnext101_32x16d,73.980,26.020,92.180,7.820,194.03,224,0.875,bilinear,-9.376,-4.662,+35 +regnetz_d32,73.970,26.030,91.950,8.050,27.58,320,0.950,bicubic,-10.052,-4.916,+8 +crossvit_18_dagger_408,73.960,26.040,91.410,8.590,44.61,408,1.000,bicubic,-10.232,-5.408,-2 +xcit_small_12_p8_224_dist,73.930,26.070,91.720,8.280,26.21,224,1.000,bicubic,-10.302,-5.152,-4 +resnetrs420,73.920,26.080,91.760,8.240,191.89,416,1.000,bicubic,-11.090,-5.364,-33 +resnetv2_152x2_bitm,73.920,26.080,92.670,7.330,236.34,448,1.000,bilinear,-10.588,-4.764,-19 +resmlp_big_24_224_in22ft1k,73.900,26.100,91.750,8.250,129.14,224,0.875,bicubic,-10.494,-5.370,-16 +tf_efficientnet_b6,73.900,26.100,91.750,8.250,43.04,528,0.942,bicubic,-10.208,-5.136,-4 +tf_efficientnet_b3_ns,73.890,26.110,91.870,8.130,12.23,300,0.904,bicubic,-10.158,-5.038,-1 +convnext_base,73.870,26.130,91.310,8.690,88.59,224,0.875,bicubic,-9.946,-5.458,+10 +vit_small_r26_s32_384,73.790,26.210,92.300,7.700,36.47,384,1.000,bicubic,-10.256,-5.030,-2 +regnetz_d8,73.760,26.240,92.020,7.980,23.37,320,1.000,bicubic,-10.292,-4.974,-5 +resnetrs270,73.690,26.310,91.570,8.430,129.86,352,1.000,bicubic,-10.744,-5.402,-24 +resnetv2_101x3_bitm,73.690,26.310,92.470,7.530,387.93,448,1.000,bilinear,-10.752,-4.912,-26 +resnet200d,73.680,26.320,91.570,8.430,64.69,320,1.000,bicubic,-10.282,-5.254,-2 +ig_resnext101_32x8d,73.660,26.340,92.160,7.840,88.79,224,0.875,bilinear,-9.038,-4.472,+45 +xcit_medium_24_p16_224_dist,73.650,26.350,91.580,8.420,84.40,224,1.000,bicubic,-10.630,-5.360,-20 +tf_efficientnet_b5,73.560,26.440,91.460,8.540,30.39,456,0.934,bicubic,-10.252,-5.288,+3 +resnet152d,73.530,26.470,91.230,8.770,60.21,320,1.000,bicubic,-10.144,-5.508,+10 +resnetrs200,73.490,26.510,91.260,8.740,93.21,320,1.000,bicubic,-10.576,-5.614,-15 +resnetrs350,73.410,26.590,91.310,8.690,163.96,384,1.000,bicubic,-11.310,-5.678,-40 +xcit_tiny_24_p8_384_dist,73.400,26.600,91.570,8.430,12.11,384,1.000,bicubic,-10.348,-5.140,+2 +twins_svt_large,73.380,26.620,90.910,9.090,99.27,224,0.900,bicubic,-10.300,-5.684,+5 +regnety_160,73.370,26.630,91.700,8.300,83.59,288,1.000,bicubic,-10.316,-5.076,+3 +efficientnet_b4,73.320,26.680,91.280,8.720,19.34,384,1.000,bicubic,-10.104,-5.316,+8 +resmlp_big_24_distilled_224,73.290,26.710,91.170,8.830,129.14,224,0.875,bicubic,-10.298,-5.478,+4 +xcit_small_24_p16_224_dist,73.290,26.710,91.440,8.560,47.67,224,1.000,bicubic,-10.572,-5.284,-12 +vit_small_patch16_384,73.280,26.720,92.000,8.000,22.20,384,1.000,bicubic,-10.526,-5.100,-5 +deit_base_distilled_patch16_224,73.240,26.760,91.000,9.000,87.34,224,0.900,bicubic,-10.150,-5.486,+5 +resnetrs152,73.200,26.800,91.270,8.730,86.62,320,1.000,bicubic,-10.512,-5.344,-4 +xcit_medium_24_p8_224,73.150,26.850,90.280,9.720,84.32,224,1.000,bicubic,-10.586,-6.114,-6 +jx_nest_base,73.120,26.880,91.060,8.940,67.72,224,0.875,bicubic,-10.434,-5.304,-1 +vit_base_patch32_384,73.120,26.880,91.240,8.760,88.30,384,1.000,bicubic,-10.228,-5.174,+5 +cait_s24_224,73.070,26.930,91.120,8.880,46.92,224,1.000,bicubic,-10.388,-5.444,-2 +xcit_small_24_p8_224,73.070,26.930,91.150,8.850,47.63,224,1.000,bicubic,-10.772,-5.486,-18 +crossvit_15_dagger_408,72.970,27.030,91.090,8.910,28.50,408,1.000,bicubic,-10.862,-5.694,-18 +resnetv2_152x2_bit_teacher_384,72.900,27.100,91.550,8.450,236.34,384,1.000,bicubic,-10.944,-5.568,-21 +tf_efficientnet_b4_ap,72.880,27.120,90.980,9.020,19.34,380,0.922,bicubic,-10.372,-5.414,+2 +dm_nfnet_f0,72.870,27.130,91.080,8.920,71.49,256,0.900,bicubic,-10.516,-5.494,-4 +regnety_032,72.770,27.230,90.950,9.050,19.44,288,1.000,bicubic,-9.956,-5.474,+19 +nfnet_l0,72.610,27.390,91.000,9.000,35.07,288,1.000,bicubic,-10.142,-5.518,+17 +pnasnet5large,72.610,27.390,90.500,9.500,86.06,331,0.911,bicubic,-10.178,-5.540,+15 +xcit_small_12_p8_224,72.610,27.390,90.670,9.330,26.21,224,1.000,bicubic,-10.734,-5.810,-4 +resnest101e,72.580,27.420,90.820,9.180,48.28,256,0.875,bilinear,-10.308,-5.500,+9 +twins_pcpvt_large,72.580,27.420,90.700,9.300,60.99,224,0.900,bicubic,-10.556,-5.902,-2 +swsl_resnext50_32x4d,72.560,27.440,90.850,9.150,25.03,224,0.875,bilinear,-9.614,-5.382,+44 +tresnet_xl_448,72.550,27.450,90.310,9.690,78.44,448,0.875,bilinear,-10.504,-5.862,+2 +twins_svt_base,72.550,27.450,90.460,9.540,56.07,224,0.900,bicubic,-10.586,-5.960,-4 +deit_base_patch16_384,72.540,27.460,90.270,9.730,86.86,384,1.000,bicubic,-10.566,-6.100,-2 +gc_efficientnetv2_rw_t,72.530,27.470,90.820,9.180,13.68,288,1.000,bicubic,-9.936,-5.476,+22 +resnetv2_50x3_bitm,72.510,27.490,91.760,8.240,217.32,448,1.000,bilinear,-11.504,-5.364,-40 +xcit_small_12_p16_224_dist,72.500,27.500,91.120,8.880,26.25,224,1.000,bicubic,-10.848,-5.716,-15 +xcit_tiny_24_p8_224_dist,72.440,27.560,90.920,9.080,12.11,224,1.000,bicubic,-10.122,-5.248,+15 +resnet101d,72.410,27.590,90.640,9.360,44.57,320,1.000,bicubic,-10.612,-5.806,-3 +jx_nest_small,72.360,27.640,90.700,9.300,38.35,224,0.875,bicubic,-10.760,-5.628,-9 +convnext_small,72.310,27.690,90.830,9.170,50.22,224,0.875,bicubic,-10.816,-5.594,-11 +regnetz_c16,72.310,27.690,90.820,9.180,13.46,320,0.940,bicubic,-10.208,-5.540,+14 +tf_efficientnet_b2_ns,72.290,27.710,91.090,8.910,9.11,260,0.890,bicubic,-10.090,-5.158,+18 +tf_efficientnet_b4,72.290,27.710,90.590,9.410,19.34,380,0.922,bicubic,-10.734,-5.710,-9 +tresnet_m,72.270,27.730,90.230,9.770,31.39,224,0.875,bilinear,-10.802,-5.888,-12 +resnetv2_50x1_bit_distilled,72.260,27.740,91.000,9.000,25.55,224,0.875,bicubic,-10.568,-5.526,-6 +crossvit_18_240,72.250,27.750,90.270,9.730,43.27,240,0.875,bicubic,-10.150,-5.784,+12 +efficientnetv2_rw_t,72.240,27.760,90.420,9.580,13.65,288,1.000,bicubic,-10.104,-5.776,+16 +nasnetalarge,72.230,27.770,90.460,9.540,88.75,331,0.911,bicubic,-10.396,-5.586,-1 +twins_pcpvt_base,72.200,27.800,90.500,9.500,43.83,224,0.900,bicubic,-10.504,-5.848,-5 +cait_xxs36_384,72.190,27.810,90.840,9.160,17.37,384,1.000,bicubic,-10.002,-5.306,+23 +crossvit_18_dagger_240,72.130,27.870,90.070,9.930,44.27,240,0.875,bicubic,-10.390,-6.002,+3 +xcit_tiny_24_p16_384_dist,72.080,27.920,90.580,9.420,12.12,384,1.000,bicubic,-10.490,-5.704,-1 +resnet152,72.060,27.940,90.320,9.680,60.19,224,0.950,bicubic,-10.764,-5.814,-13 +eca_nfnet_l0,71.850,28.150,91.110,8.890,24.14,288,1.000,bicubic,-10.728,-5.382,-4 +swin_small_patch4_window7_224,71.760,28.240,90.240,9.760,49.61,224,0.900,bicubic,-11.454,-6.084,-29 +pit_b_224,71.710,28.290,89.250,10.750,73.76,224,0.900,bicubic,-10.734,-6.462,+1 +xcit_large_24_p16_224,71.710,28.290,89.170,10.830,189.10,224,1.000,bicubic,-11.182,-6.708,-21 +swsl_resnet50,71.700,28.300,90.480,9.520,25.56,224,0.875,bilinear,-9.470,-5.498,+61 +resnet61q,71.680,28.320,90.280,9.720,36.85,288,1.000,bicubic,-10.846,-5.854,-6 +tresnet_xl,71.660,28.340,89.630,10.370,78.44,224,0.875,bilinear,-10.398,-6.306,+19 +convit_base,71.610,28.390,90.160,9.840,86.54,224,0.875,bicubic,-10.684,-5.774,+7 +tresnet_l_448,71.590,28.410,90.060,9.940,55.99,448,0.875,bilinear,-10.680,-5.918,+8 +xcit_tiny_12_p8_384_dist,71.580,28.420,90.710,9.290,6.71,384,1.000,bicubic,-10.812,-5.512,-4 +crossvit_15_dagger_240,71.510,28.490,89.860,10.140,28.21,240,0.875,bicubic,-10.816,-6.098,+1 +ssl_resnext101_32x8d,71.510,28.490,90.470,9.530,88.79,224,0.875,bilinear,-10.098,-5.572,+31 +fbnetv3_g,71.490,28.510,90.370,9.630,16.62,288,0.950,bilinear,-10.556,-5.694,+14 +efficientnet_b3,71.480,28.520,90.060,9.940,12.23,320,1.000,bicubic,-10.762,-6.054,+4 +ecaresnet101d,71.470,28.530,90.320,9.680,44.57,224,0.875,bicubic,-10.702,-5.728,+7 +resnet51q,71.420,28.580,90.180,9.820,35.70,288,1.000,bilinear,-10.942,-6.000,-8 +ssl_resnext101_32x16d,71.420,28.580,90.520,9.480,194.03,224,0.875,bilinear,-10.434,-5.574,+19 +pit_s_distilled_224,71.360,28.640,89.780,10.220,24.04,224,0.900,bicubic,-10.636,-6.016,+11 +xcit_tiny_24_p8_224,71.350,28.650,90.240,9.760,12.11,224,1.000,bicubic,-10.542,-5.738,+15 +mixer_b16_224_miil,71.310,28.690,89.660,10.340,59.88,224,0.875,bilinear,-10.994,-6.056,-6 +resnetv2_152x2_bit_teacher,71.290,28.710,90.430,9.570,236.34,224,0.875,bicubic,-11.582,-6.140,-36 +resnetv2_101,71.270,28.730,89.910,10.090,44.54,224,0.950,bicubic,-10.772,-5.952,+6 +ecaresnet50t,71.260,28.740,90.420,9.580,25.57,320,0.950,bicubic,-11.088,-5.718,-14 +convmixer_1536_20,71.230,28.770,89.440,10.560,51.63,224,0.960,bicubic,-10.136,-6.174,+33 +xcit_small_12_p16_224,71.200,28.800,89.750,10.250,26.25,224,1.000,bicubic,-10.776,-6.068,+6 +crossvit_base_240,71.180,28.820,89.840,10.160,105.03,240,0.875,bicubic,-11.034,-5.992,-7 +deit_base_patch16_224,71.180,28.820,89.190,10.810,86.57,224,0.900,bicubic,-10.814,-6.544,+3 +halo2botnet50ts_256,71.100,28.900,89.630,10.370,22.64,256,0.950,bicubic,-10.962,-6.012,-3 +xcit_tiny_12_p8_224_dist,71.040,28.960,89.880,10.120,6.71,224,1.000,bicubic,-10.168,-5.722,+35 +xcit_medium_24_p16_224,71.030,28.970,89.520,10.480,84.40,224,1.000,bicubic,-11.608,-6.456,-37 +xcit_small_24_p16_224,71.020,28.980,89.700,10.300,47.67,224,1.000,bicubic,-11.562,-6.304,-35 +visformer_small,71.010,28.990,89.450,10.550,40.22,224,0.900,bicubic,-11.096,-6.424,-9 +lamhalobotnet50ts_256,70.990,29.010,89.080,10.920,22.57,256,0.950,bicubic,-10.560,-6.422,+11 +resnetv2_101x1_bitm,70.990,29.010,91.090,8.910,44.54,448,1.000,bilinear,-11.344,-5.426,-23 +tresnet_m_448,70.990,29.010,88.690,11.310,31.39,448,0.875,bilinear,-10.714,-6.884,+3 +convnext_tiny,70.960,29.040,89.760,10.240,28.59,224,0.875,bicubic,-11.104,-6.074,-12 +tnt_s_patch16_224,70.940,29.060,89.590,10.410,23.76,224,0.900,bicubic,-10.576,-6.156,+10 +wide_resnet50_2,70.940,29.060,89.230,10.770,68.88,224,0.875,bicubic,-10.512,-6.300,+13 +resnest50d_4s2x40d,70.930,29.070,89.710,10.290,30.42,224,0.875,bicubic,-10.180,-5.854,+31 +tf_efficientnet_b3_ap,70.920,29.080,89.430,10.570,12.23,300,0.904,bicubic,-10.906,-6.194,-3 +vit_small_patch16_224,70.910,29.090,90.160,9.840,22.05,224,0.900,bicubic,-10.486,-5.974,+13 +resnet101,70.870,29.130,89.520,10.480,44.55,224,0.950,bicubic,-11.062,-6.246,-9 +jx_nest_tiny,70.860,29.140,89.940,10.060,17.06,224,0.875,bicubic,-10.562,-5.676,+10 +resnetrs101,70.860,29.140,89.830,10.170,63.62,288,0.940,bicubic,-11.428,-6.178,-28 +rexnet_200,70.850,29.150,89.700,10.300,16.37,224,0.875,bicubic,-10.778,-5.968,-3 +tf_efficientnet_b1_ns,70.850,29.150,90.120,9.880,7.79,240,0.882,bicubic,-10.536,-5.616,+9 +vit_large_patch32_384,70.850,29.150,90.570,9.430,306.63,384,1.000,bicubic,-10.660,-5.524,+1 +tf_efficientnetv2_b3,70.840,29.160,89.510,10.490,14.36,300,0.904,bicubic,-11.128,-6.270,-16 +tresnet_l,70.840,29.160,89.630,10.370,55.99,224,0.875,bilinear,-10.650,-5.994,+1 +coat_lite_small,70.770,29.230,89.570,10.430,19.84,224,0.900,bicubic,-11.540,-6.278,-37 +levit_384,70.750,29.250,89.300,10.700,39.13,224,0.900,bicubic,-11.838,-6.722,-56 +tf_efficientnet_b3,70.640,29.360,89.440,10.560,12.23,300,0.904,bicubic,-10.996,-6.278,-11 +gluon_senet154,70.620,29.380,88.920,11.080,115.09,224,0.875,bicubic,-10.612,-6.428,+9 +crossvit_small_240,70.620,29.380,89.360,10.640,26.86,240,0.875,bicubic,-10.402,-6.098,+23 +cait_xxs24_384,70.610,29.390,89.720,10.280,12.03,384,1.000,bicubic,-10.354,-5.926,+26 +convit_small,70.590,29.410,89.580,10.420,27.78,224,0.875,bicubic,-10.834,-6.162,-4 +twins_pcpvt_small,70.560,29.440,89.080,10.920,24.11,224,0.900,bicubic,-10.528,-6.560,+16 +ssl_resnext101_32x4d,70.530,29.470,89.780,10.220,44.18,224,0.875,bilinear,-10.396,-5.944,+26 +deit_small_distilled_patch16_224,70.520,29.480,89.480,10.520,22.44,224,0.900,bicubic,-10.684,-5.898,+6 +legacy_senet154,70.510,29.490,89.010,10.990,115.09,224,0.875,bilinear,-10.800,-6.480,-1 +vit_small_r26_s32_224,70.510,29.490,90.110,9.890,36.43,224,0.900,bicubic,-11.346,-5.910,-26 +halonet50ts,70.480,29.520,89.330,10.670,22.73,256,0.940,bicubic,-11.178,-6.280,-22 +regnetz_b16,70.450,29.550,89.530,10.470,9.72,288,0.940,bicubic,-10.266,-5.948,+30 +twins_svt_small,70.440,29.560,89.360,10.640,24.06,224,0.900,bicubic,-11.244,-6.312,-25 +crossvit_15_240,70.430,29.570,89.540,10.460,27.53,240,0.875,bicubic,-11.114,-6.148,-20 +gluon_seresnext101_64x4d,70.430,29.570,89.360,10.640,88.23,224,0.875,bicubic,-10.448,-5.938,+20 +resnest50d,70.430,29.570,88.760,11.240,27.48,224,0.875,bilinear,-10.548,-6.618,+12 +tf_efficientnet_lite4,70.430,29.570,89.100,10.900,13.01,380,0.920,bilinear,-11.106,-6.568,-22 +resnest50d_1s4x24d,70.400,29.600,89.230,10.770,25.68,224,0.875,bicubic,-10.586,-6.090,+9 +seresnext50_32x4d,70.400,29.600,89.110,10.890,27.56,224,0.875,bicubic,-10.858,-6.518,-8 +gernet_l,70.370,29.630,88.980,11.020,31.08,256,0.875,bilinear,-10.976,-6.552,-13 +gluon_resnet152_v1s,70.290,29.710,88.850,11.150,60.32,224,0.875,bicubic,-10.732,-6.564,+5 +repvgg_b3,70.250,29.750,88.740,11.260,123.09,224,0.875,bilinear,-10.246,-6.524,+27 +coat_mini,70.210,29.790,89.440,10.560,10.34,224,0.900,bicubic,-11.054,-5.954,-13 +sebotnet33ts_256,70.150,29.850,88.800,11.200,13.70,256,0.940,bicubic,-11.004,-6.368,-7 +efficientnet_el,70.130,29.870,89.290,10.710,10.59,300,0.904,bicubic,-11.176,-6.236,-16 +inception_resnet_v2,70.130,29.870,88.700,11.300,55.84,299,0.897,bicubic,-10.330,-6.608,+28 +ecaresnet101d_pruned,70.110,29.890,89.590,10.410,24.88,224,0.875,bicubic,-10.706,-6.044,+10 +resmlp_36_distilled_224,70.100,29.900,89.100,10.900,44.69,224,0.875,bicubic,-11.054,-6.388,-12 +haloregnetz_b,70.090,29.910,88.860,11.140,11.68,224,0.940,bicubic,-10.962,-6.334,-6 +gluon_seresnext101_32x4d,70.040,29.960,88.920,11.080,48.96,224,0.875,bicubic,-10.866,-6.376,+4 +sehalonet33ts,70.020,29.980,88.700,11.300,13.69,256,0.940,bicubic,-10.946,-6.572,-2 +regnety_320,69.990,30.010,88.890,11.110,145.05,224,0.875,bicubic,-10.818,-6.354,+6 +levit_256,69.970,30.030,89.240,10.760,18.89,224,0.900,bicubic,-11.536,-6.252,-35 +gluon_resnet152_v1d,69.960,30.040,88.490,11.510,60.21,224,0.875,bicubic,-10.516,-6.718,+17 +pit_s_224,69.900,30.100,88.930,11.070,23.46,224,0.900,bicubic,-11.198,-6.400,-14 +ecaresnet50d,69.840,30.160,89.390,10.610,25.58,224,0.875,bicubic,-10.762,-5.930,+10 +ssl_resnext50_32x4d,69.720,30.280,89.440,10.560,25.03,224,0.875,bilinear,-10.596,-5.970,+26 +gluon_resnext101_64x4d,69.710,30.290,88.270,11.730,83.46,224,0.875,bicubic,-10.894,-6.722,+7 +xcit_tiny_24_p16_224_dist,69.710,30.290,88.720,11.280,12.12,224,1.000,bicubic,-10.738,-6.496,+16 +xcit_tiny_12_p16_384_dist,69.690,30.310,89.020,10.980,6.72,384,1.000,bicubic,-11.254,-6.390,-9 +lambda_resnet50ts,69.680,30.320,88.820,11.180,21.54,256,0.950,bicubic,-11.470,-6.284,-23 +resmlp_24_distilled_224,69.680,30.320,89.050,10.950,30.02,224,0.875,bicubic,-11.084,-6.174,-3 +resnext50_32x4d,69.670,30.330,88.650,11.350,25.03,224,0.950,bicubic,-11.434,-6.676,-23 +efficientnet_b3_pruned,69.580,30.420,88.980,11.020,9.86,300,0.904,bicubic,-11.276,-6.264,-8 +gernet_m,69.560,30.440,88.700,11.300,21.14,224,0.875,bilinear,-11.186,-6.484,-5 +nf_resnet50,69.540,30.460,88.730,11.270,25.56,288,0.940,bicubic,-11.114,-6.604,-4 +gcresnext50ts,69.540,30.460,88.850,11.150,15.67,256,0.900,bicubic,-11.038,-6.320,+1 +repvgg_b3g4,69.520,30.480,88.450,11.550,83.83,224,0.875,bilinear,-10.692,-6.656,+25 +efficientnet_el_pruned,69.510,30.490,88.920,11.080,10.59,300,0.904,bicubic,-10.792,-6.298,+16 +ens_adv_inception_resnet_v2,69.510,30.490,88.510,11.490,55.84,299,0.897,bicubic,-10.470,-6.428,+36 +efficientnet_b2,69.500,30.500,88.670,11.330,9.11,288,1.000,bicubic,-11.112,-6.644,-7 +gcresnet50t,69.490,30.510,89.060,10.940,25.90,256,0.900,bicubic,-11.448,-6.392,-20 +rexnet_150,69.470,30.530,88.980,11.020,9.73,224,0.875,bicubic,-10.840,-6.186,+11 +regnetx_320,69.440,30.560,88.270,11.730,107.81,224,0.875,bicubic,-10.800,-6.752,+17 +swin_tiny_patch4_window7_224,69.430,30.570,89.020,10.980,28.29,224,0.900,bicubic,-11.944,-6.522,-50 +vit_base_patch32_224,69.410,30.590,89.430,10.570,88.22,224,0.900,bicubic,-11.312,-6.136,-15 +convmixer_768_32,69.400,30.600,88.870,11.130,21.11,224,0.960,bicubic,-10.764,-6.202,+20 +legacy_seresnext101_32x4d,69.380,30.620,88.060,11.940,48.96,224,0.875,bilinear,-10.848,-6.954,+14 +inception_v4,69.360,30.640,88.780,11.220,42.68,299,0.875,bicubic,-10.810,-6.190,+17 +ecaresnetlight,69.350,30.650,89.230,10.770,30.16,224,0.875,bicubic,-11.112,-6.022,-7 +resnet50d,69.340,30.660,88.220,11.780,25.58,224,0.875,bicubic,-11.186,-6.942,-13 +xception71,69.320,30.680,88.270,11.730,42.34,299,0.903,bicubic,-10.552,-6.652,+30 +vit_small_patch32_384,69.290,30.710,89.820,10.180,22.92,384,1.000,bicubic,-11.194,-5.778,-13 +gluon_xception65,69.160,30.840,88.080,11.920,39.92,299,0.903,bicubic,-10.556,-6.780,+38 +gluon_resnet152_v1c,69.140,30.860,87.860,12.140,60.21,224,0.875,bicubic,-10.772,-6.988,+24 +mixnet_xl,69.120,30.880,88.310,11.690,11.90,224,0.875,bicubic,-11.356,-6.624,-14 +seresnet33ts,69.110,30.890,88.490,11.510,19.78,256,0.900,bicubic,-11.246,-6.618,-7 +tf_efficientnetv2_b2,69.080,30.920,88.220,11.780,10.10,260,0.890,bicubic,-11.126,-6.822,+6 +resnetv2_50,69.060,30.940,88.440,11.560,25.55,224,0.950,bicubic,-11.360,-6.634,-13 +gluon_resnet101_v1d,69.010,30.990,88.100,11.900,44.57,224,0.875,bicubic,-11.406,-6.916,-13 +repvgg_b2g4,69.000,31.000,88.360,11.640,61.76,224,0.875,bilinear,-10.370,-6.326,+50 +gcresnet33ts,68.990,31.010,88.470,11.530,19.88,256,0.900,bicubic,-11.094,-6.530,+8 +xception65,68.980,31.020,88.480,11.520,39.92,299,0.903,bicubic,-10.568,-6.176,+39 +seresnet50,68.950,31.050,88.700,11.300,28.09,224,0.875,bicubic,-11.314,-6.372,-7 +gluon_resnext101_32x4d,68.950,31.050,88.360,11.640,44.18,224,0.875,bicubic,-11.390,-6.566,-12 +tf_efficientnet_b2_ap,68.930,31.070,88.350,11.650,9.11,260,0.890,bicubic,-11.372,-6.678,-9 +cspdarknet53,68.920,31.080,88.600,11.400,27.64,256,0.887,bilinear,-11.142,-6.484,+5 +regnety_120,68.870,31.130,88.330,11.670,51.82,224,0.875,bicubic,-11.500,-6.794,-19 +resnet50_gn,68.850,31.150,88.420,11.580,25.56,224,0.940,bicubic,-11.202,-6.526,+4 +gluon_resnet152_v1b,68.820,31.180,87.720,12.280,60.19,224,0.875,bicubic,-10.856,-7.018,+26 +eca_resnet33ts,68.810,31.190,88.580,11.420,19.68,256,0.900,bicubic,-11.274,-6.390,-2 +cspresnext50,68.790,31.210,87.940,12.060,20.57,224,0.875,bilinear,-11.260,-7.006,+2 +dpn131,68.760,31.240,87.450,12.550,79.25,224,0.875,bicubic,-11.064,-7.258,+14 +gmlp_s16_224,68.760,31.240,88.080,11.920,19.42,224,0.875,bicubic,-10.882,-6.544,+25 +resnext50d_32x4d,68.740,31.260,88.300,11.700,25.05,224,0.875,bicubic,-10.930,-6.564,+22 +tf_efficientnet_b2,68.740,31.260,87.960,12.040,9.11,260,0.890,bicubic,-11.340,-6.948,-5 +resnet50,68.730,31.270,87.670,12.330,25.56,224,0.950,bicubic,-11.642,-6.940,-29 +deit_small_patch16_224,68.710,31.290,88.200,11.800,22.05,224,0.900,bicubic,-11.156,-6.846,+5 +gluon_resnet101_v1s,68.710,31.290,87.910,12.090,44.67,224,0.875,bicubic,-11.592,-7.250,-23 +regnety_080,68.710,31.290,87.970,12.030,39.18,224,0.875,bicubic,-11.170,-6.860,+1 +dpn107,68.700,31.300,88.140,11.860,86.92,224,0.875,bicubic,-11.472,-6.766,-16 +gluon_seresnext50_32x4d,68.670,31.330,88.320,11.680,27.56,224,0.875,bicubic,-11.246,-6.514,-4 +hrnet_w64,68.640,31.360,88.050,11.950,128.06,224,0.875,bilinear,-10.828,-6.604,+23 +dpn98,68.610,31.390,87.660,12.340,61.57,224,0.875,bicubic,-11.034,-6.938,+14 +xcit_tiny_12_p8_224,68.570,31.430,88.690,11.310,6.71,224,1.000,bicubic,-11.124,-6.364,+9 +regnetx_160,68.530,31.470,88.440,11.560,54.28,224,0.875,bicubic,-11.318,-6.390,-1 +rexnet_130,68.460,31.540,88.040,11.960,7.56,224,0.875,bicubic,-11.040,-6.642,+17 +cspresnet50,68.440,31.560,87.970,12.030,21.62,256,0.887,bilinear,-11.140,-6.734,+13 +tf_efficientnet_el,68.430,31.570,88.210,11.790,10.59,300,0.904,bicubic,-11.820,-6.920,-30 +xcit_tiny_24_p16_224,68.430,31.570,88.290,11.710,12.12,224,1.000,bicubic,-11.018,-6.596,+19 +regnety_064,68.420,31.580,88.080,11.920,30.58,224,0.875,bicubic,-11.300,-6.684,0 +cait_xxs36_224,68.400,31.600,88.640,11.360,17.30,224,1.000,bicubic,-11.350,-6.230,-2 +ecaresnet50d_pruned,68.400,31.600,88.370,11.630,19.94,224,0.875,bicubic,-11.310,-6.510,0 +skresnext50_32x4d,68.370,31.630,87.560,12.440,27.48,224,0.875,bicubic,-11.782,-7.084,-26 +ssl_resnet50,68.370,31.630,88.530,11.470,25.56,224,0.875,bilinear,-10.850,-6.302,+30 +dla102x2,68.340,31.660,87.890,12.110,41.28,224,0.875,bilinear,-11.110,-6.744,+12 +fbnetv3_d,68.340,31.660,88.450,11.550,10.31,256,0.950,bilinear,-11.342,-6.500,-2 +resmlp_big_24_224,68.320,31.680,87.530,12.470,129.14,224,0.875,bicubic,-12.712,-7.490,-85 +efficientnet_b2_pruned,68.320,31.680,88.100,11.900,8.31,260,0.890,bicubic,-11.596,-6.754,-21 +gluon_resnext50_32x4d,68.300,31.700,87.290,12.710,25.03,224,0.875,bicubic,-11.068,-7.136,+12 +vit_base_patch16_224_sam,68.260,31.740,87.720,12.280,86.57,224,0.900,bicubic,-11.982,-7.036,-41 +ecaresnet26t,68.230,31.770,88.800,11.200,16.01,320,0.950,bicubic,-11.618,-6.284,-18 +tf_efficientnet_lite3,68.230,31.770,87.740,12.260,8.20,300,0.904,bilinear,-11.588,-7.174,-15 +ese_vovnet39b,68.200,31.800,88.260,11.740,24.57,224,0.875,bicubic,-11.110,-6.456,+10 +regnetx_120,68.170,31.830,87.660,12.340,46.11,224,0.875,bicubic,-11.422,-7.074,-5 +fbnetv3_b,68.150,31.850,87.930,12.070,8.60,256,0.950,bilinear,-11.000,-6.816,+25 +resmlp_36_224,68.060,31.940,88.190,11.810,44.69,224,0.875,bicubic,-11.708,-6.696,-18 +resnetrs50,68.040,31.960,87.710,12.290,35.69,224,0.910,bicubic,-11.850,-7.256,-28 +pit_xs_distilled_224,68.010,31.990,87.720,12.280,11.00,224,0.900,bicubic,-11.294,-6.646,+9 +dpn92,67.960,32.040,87.560,12.440,37.67,224,0.875,bicubic,-12.056,-7.268,-35 +nf_regnet_b1,67.960,32.040,88.200,11.800,10.22,288,0.900,bicubic,-11.328,-6.550,+9 +gluon_resnet50_v1d,67.940,32.060,87.130,12.870,25.58,224,0.875,bicubic,-11.136,-7.340,+23 +resnetv2_50x1_bitm,67.920,32.080,89.290,10.710,25.55,448,1.000,bilinear,-12.422,-6.390,-62 +tf_efficientnetv2_b1,67.900,32.100,87.790,12.210,8.14,240,0.882,bicubic,-11.562,-6.936,-8 +levit_192,67.900,32.100,87.890,12.110,10.95,224,0.900,bicubic,-11.932,-6.896,-28 +regnetx_080,67.880,32.120,86.990,13.010,39.57,224,0.875,bicubic,-11.320,-7.562,+13 +legacy_seresnext50_32x4d,67.860,32.140,87.620,12.380,27.56,224,0.875,bilinear,-11.210,-6.812,+19 +resnext101_32x8d,67.860,32.140,87.490,12.510,88.79,224,0.875,bilinear,-11.456,-7.028,-5 +efficientnet_em,67.830,32.170,88.120,11.880,6.90,240,0.882,bicubic,-11.420,-6.676,+5 +lambda_resnet26t,67.810,32.190,87.780,12.220,10.96,256,0.940,bicubic,-11.286,-6.808,+13 +resmlp_24_224,67.800,32.200,87.620,12.380,30.02,224,0.875,bicubic,-11.582,-6.926,-11 +hrnet_w48,67.770,32.230,87.400,12.600,77.47,224,0.875,bilinear,-11.530,-7.112,-3 +hrnet_w44,67.740,32.260,87.560,12.440,67.06,224,0.875,bilinear,-11.160,-6.812,+21 +coat_lite_mini,67.720,32.280,87.690,12.310,11.01,224,0.900,bicubic,-11.372,-6.916,+10 +tf_efficientnet_b0_ns,67.720,32.280,88.070,11.930,5.29,224,0.875,bicubic,-10.938,-6.306,+28 +eca_botnext26ts_256,67.670,32.330,87.050,12.950,10.59,256,0.950,bicubic,-11.602,-7.566,-4 +regnetx_064,67.670,32.330,87.530,12.470,26.21,224,0.875,bicubic,-11.396,-6.928,+10 +xception,67.670,32.330,87.580,12.420,22.86,299,0.897,bicubic,-11.378,-6.812,+10 +halonet26t,67.630,32.370,87.240,12.760,12.48,256,0.950,bicubic,-11.486,-7.072,+3 +dla169,67.620,32.380,87.590,12.410,53.39,224,0.875,bilinear,-11.074,-6.746,+22 +dpn68b,67.620,32.380,87.660,12.340,12.61,224,0.875,bicubic,-11.594,-6.754,-4 +regnety_040,67.590,32.410,87.490,12.510,20.65,224,0.875,bicubic,-11.626,-7.166,-7 +gluon_inception_v3,67.590,32.410,87.470,12.530,23.83,299,0.875,bicubic,-11.216,-6.902,+15 +hrnet_w40,67.580,32.420,87.130,12.870,57.56,224,0.875,bilinear,-11.336,-7.344,+8 +gluon_resnet101_v1c,67.580,32.420,87.180,12.820,44.57,224,0.875,bicubic,-11.952,-7.400,-31 +legacy_seresnet152,67.530,32.470,87.410,12.590,66.82,224,0.875,bilinear,-11.126,-6.958,+18 +tf_efficientnet_b1_ap,67.520,32.480,87.760,12.240,7.79,240,0.882,bicubic,-11.758,-6.546,-16 +eca_halonext26ts,67.480,32.520,87.240,12.760,10.76,256,0.940,bicubic,-12.008,-7.356,-33 +gluon_resnet101_v1b,67.470,32.530,87.230,12.770,44.55,224,0.875,bicubic,-11.834,-7.292,-22 +resnetblur50,67.470,32.530,87.440,12.560,25.56,224,0.875,bicubic,-11.838,-7.194,-25 +res2net101_26w_4s,67.460,32.540,87.010,12.990,45.21,224,0.875,bilinear,-11.738,-7.428,-13 +efficientnet_b1,67.460,32.540,87.510,12.490,7.79,256,1.000,bicubic,-11.330,-6.832,+8 +res2net50_26w_8s,67.460,32.540,87.280,12.720,48.40,224,0.875,bilinear,-11.516,-6.898,-2 +tf_efficientnet_cc_b1_8e,67.450,32.550,87.320,12.680,39.72,240,0.882,bicubic,-11.856,-7.050,-28 +resnet33ts,67.370,32.630,87.570,12.430,19.68,256,0.900,bicubic,-11.842,-7.002,-17 +cait_xxs24_224,67.330,32.670,87.510,12.490,11.96,224,1.000,bicubic,-11.054,-6.800,+23 +regnetx_032,67.290,32.710,86.990,13.010,15.30,224,0.875,bicubic,-10.882,-7.098,+32 +coat_tiny,67.250,32.750,87.280,12.720,5.50,224,0.900,bicubic,-11.178,-6.758,+18 +xception41,67.250,32.750,87.200,12.800,26.97,299,0.903,bicubic,-11.258,-7.080,+9 +resnest26d,67.190,32.810,87.170,12.830,17.07,224,0.875,bilinear,-11.294,-7.124,+10 +legacy_seresnet101,67.170,32.830,87.050,12.950,49.33,224,0.875,bilinear,-11.218,-7.216,+17 +repvgg_b2,67.160,32.840,87.330,12.670,89.02,224,0.875,bilinear,-11.632,-7.088,-4 +botnet26t_256,67.130,32.870,87.530,12.470,12.49,256,0.950,bicubic,-12.122,-6.998,-30 +dla60x,67.100,32.900,87.180,12.820,17.35,224,0.875,bilinear,-11.146,-6.840,+21 +gluon_resnet50_v1s,67.050,32.950,86.860,13.140,25.68,224,0.875,bicubic,-11.658,-7.380,-4 +dla60_res2net,67.030,32.970,87.170,12.830,20.85,224,0.875,bilinear,-11.432,-7.036,+6 +dla102x,67.030,32.970,86.800,13.200,26.31,224,0.875,bilinear,-11.484,-7.424,0 +tv_resnet152,67.030,32.970,87.550,12.450,60.19,224,0.875,bilinear,-11.290,-6.486,+14 +xcit_tiny_12_p16_224_dist,67.010,32.990,87.410,12.590,6.72,224,1.000,bicubic,-11.564,-6.788,-4 +lambda_resnet26rpt_256,66.970,33.030,87.130,12.870,10.99,256,0.940,bicubic,-11.998,-7.298,-18 +mixnet_l,66.940,33.060,86.920,13.080,7.33,224,0.875,bicubic,-12.036,-7.374,-20 +res2net50_26w_6s,66.920,33.080,86.850,13.150,37.05,224,0.875,bilinear,-11.646,-7.284,-6 +pit_xs_224,66.910,33.090,87.290,12.710,10.62,224,0.900,bicubic,-11.278,-6.876,+15 +repvgg_b1,66.910,33.090,86.790,13.210,57.42,224,0.875,bilinear,-11.458,-7.306,+6 +xcit_nano_12_p8_384_dist,66.900,33.100,87.110,12.890,3.05,384,1.000,bicubic,-10.918,-6.934,+34 +tf_efficientnet_b1,66.890,33.110,87.020,12.980,7.79,240,0.882,bicubic,-11.930,-7.176,-20 +efficientnet_es,66.870,33.130,86.720,13.280,5.44,224,0.875,bicubic,-11.190,-7.218,+16 +regnetx_040,66.830,33.170,86.720,13.280,22.12,224,0.875,bicubic,-11.652,-7.524,-7 +resnet32ts,66.830,33.170,87.260,12.740,17.96,256,0.900,bicubic,-12.184,-7.096,-30 +tf_mixnet_l,66.790,33.210,86.460,13.540,7.33,224,0.875,bicubic,-11.984,-7.536,-20 +hrnet_w30,66.780,33.220,86.780,13.220,37.71,224,0.875,bilinear,-11.418,-7.444,+6 +hrnet_w32,66.760,33.240,87.310,12.690,41.23,224,0.875,bilinear,-11.686,-6.878,-9 +selecsls60b,66.740,33.260,86.520,13.480,32.77,224,0.875,bicubic,-11.672,-7.650,-6 +wide_resnet101_2,66.720,33.280,87.030,12.970,126.89,224,0.875,bilinear,-12.132,-7.258,-29 +tf_efficientnetv2_b0,66.710,33.290,86.710,13.290,7.14,224,0.875,bicubic,-11.650,-7.314,-4 +adv_inception_v3,66.650,33.350,86.540,13.460,23.83,299,0.875,bicubic,-10.932,-7.198,+31 +dla60_res2next,66.640,33.360,87.030,12.970,17.03,224,0.875,bilinear,-11.802,-7.120,-13 +vit_tiny_patch16_384,66.570,33.430,87.280,12.720,5.79,384,1.000,bicubic,-11.862,-7.262,-13 +gluon_resnet50_v1c,66.550,33.450,86.180,13.820,25.58,224,0.875,bicubic,-11.460,-7.808,+7 +levit_128,66.550,33.450,86.760,13.240,9.21,224,0.900,bicubic,-11.936,-7.246,-21 +dla102,66.530,33.470,86.910,13.090,33.27,224,0.875,bilinear,-11.498,-7.040,+4 +gmixer_24_224,66.420,33.580,86.160,13.840,24.72,224,0.875,bicubic,-11.618,-7.510,+2 +tf_inception_v3,66.410,33.590,86.660,13.340,23.83,299,0.875,bicubic,-11.444,-6.978,+13 +bat_resnext26ts,66.390,33.610,86.830,13.170,10.73,256,0.900,bicubic,-11.860,-7.268,-11 +hardcorenas_f,66.370,33.630,86.200,13.800,8.20,224,0.875,bilinear,-11.728,-7.604,-3 +coat_lite_tiny,66.300,33.700,86.980,13.020,5.72,224,0.900,bicubic,-11.210,-6.932,+24 +efficientnet_b0,66.300,33.700,85.980,14.020,5.29,224,0.875,bicubic,-11.394,-7.554,+14 +legacy_seresnet50,66.260,33.740,86.340,13.660,28.09,224,0.875,bilinear,-11.372,-7.412,+15 +selecsls60,66.200,33.800,86.330,13.670,30.67,224,0.875,bicubic,-11.774,-7.502,-1 +tf_efficientnet_cc_b0_8e,66.170,33.830,86.240,13.760,24.01,224,0.875,bicubic,-11.738,-7.416,+2 +tf_efficientnet_em,66.170,33.830,86.350,13.650,6.90,240,0.882,bicubic,-11.962,-7.696,-10 +tv_resnext50_32x4d,66.170,33.830,86.040,13.960,25.03,224,0.875,bilinear,-11.448,-7.656,+12 +inception_v3,66.150,33.850,86.330,13.670,23.83,299,0.875,bicubic,-11.288,-7.146,+20 +res2net50_26w_4s,66.140,33.860,86.600,13.400,25.70,224,0.875,bilinear,-11.816,-7.252,-5 +resmlp_12_distilled_224,66.140,33.860,86.620,13.380,15.35,224,0.875,bicubic,-11.802,-6.938,-5 +efficientnet_b1_pruned,66.090,33.910,86.570,13.430,6.33,240,0.882,bicubic,-12.150,-7.262,-20 +regnety_016,66.080,33.920,86.370,13.630,11.20,224,0.875,bicubic,-11.780,-7.352,-3 +gluon_resnet50_v1b,66.070,33.930,86.260,13.740,25.56,224,0.875,bicubic,-11.510,-7.462,+10 +rexnet_100,66.070,33.930,86.500,13.500,4.80,224,0.875,bicubic,-11.788,-7.370,-4 +tinynet_a,66.010,33.990,85.790,14.210,6.19,192,0.875,bicubic,-11.642,-7.748,+1 +res2net50_14w_8s,66.010,33.990,86.240,13.760,25.06,224,0.875,bilinear,-12.134,-7.610,-20 +gcresnext26ts,65.950,34.050,85.920,14.080,10.48,256,0.900,bicubic,-11.870,-7.912,-4 +seresnext26t_32x4d,65.880,34.120,85.670,14.330,16.81,224,0.875,bicubic,-12.096,-8.074,-16 +res2next50,65.860,34.140,85.840,14.160,24.67,224,0.875,bilinear,-12.390,-8.046,-30 +densenet161,65.850,34.150,86.450,13.550,28.68,224,0.875,bicubic,-11.502,-7.188,+11 +repvgg_b1g4,65.840,34.160,86.110,13.890,39.97,224,0.875,bilinear,-11.746,-7.720,0 +hardcorenas_e,65.830,34.170,85.980,14.020,8.07,224,0.875,bilinear,-11.962,-7.718,-7 +resnet34d,65.790,34.210,86.720,13.280,21.82,224,0.875,bicubic,-11.324,-6.660,+15 +xcit_tiny_12_p16_224,65.780,34.220,86.220,13.780,6.72,224,1.000,bicubic,-11.346,-7.494,+13 +eca_resnext26ts,65.770,34.230,85.840,14.160,10.30,256,0.900,bicubic,-11.682,-7.726,+2 +mobilenetv3_large_100_miil,65.760,34.240,85.200,14.800,5.48,224,0.875,bilinear,-12.158,-7.706,-20 +skresnet34,65.740,34.260,85.960,14.040,22.28,224,0.875,bicubic,-11.164,-7.360,+21 +tv_resnet101,65.690,34.310,85.980,14.020,44.55,224,0.875,bilinear,-11.688,-7.562,+2 +seresnext26ts,65.650,34.350,86.150,13.850,10.39,256,0.900,bicubic,-12.202,-7.640,-17 +hardcorenas_d,65.620,34.380,85.460,14.540,7.50,224,0.875,bilinear,-11.812,-8.024,-1 +selecsls42b,65.620,34.380,85.810,14.190,32.46,224,0.875,bicubic,-11.554,-7.584,+5 +tf_efficientnet_b0_ap,65.480,34.520,85.580,14.420,5.29,224,0.875,bicubic,-11.610,-7.678,+8 +convmixer_1024_20_ks9_p14,65.410,34.590,85.590,14.410,24.38,224,0.960,bicubic,-11.532,-7.766,+12 +seresnext26d_32x4d,65.400,34.600,85.960,14.040,16.81,224,0.875,bicubic,-12.202,-7.648,-14 +resnet26t,65.390,34.610,86.110,13.890,16.01,256,0.940,bicubic,-12.474,-7.736,-27 +tf_efficientnet_lite2,65.380,34.620,85.990,14.010,6.09,260,0.890,bicubic,-12.088,-7.766,-10 +res2net50_48w_2s,65.370,34.630,85.950,14.050,25.29,224,0.875,bilinear,-12.152,-7.602,-13 +densenetblur121d,65.300,34.700,85.700,14.300,8.00,224,0.875,bicubic,-11.282,-7.488,+20 +densenet201,65.290,34.710,85.680,14.320,20.01,224,0.875,bicubic,-12.000,-7.798,-5 +crossvit_9_dagger_240,65.210,34.790,86.590,13.410,8.78,240,0.875,bicubic,-11.768,-7.022,+3 +dla60,65.200,34.800,85.760,14.240,22.04,224,0.875,bilinear,-11.836,-7.558,+1 +ese_vovnet19b_dw,65.190,34.810,85.460,14.540,6.54,224,0.875,bicubic,-11.610,-7.812,+8 +tf_efficientnet_cc_b0_4e,65.150,34.850,85.150,14.850,13.31,224,0.875,bicubic,-12.154,-8.184,-11 +gernet_s,65.130,34.870,85.520,14.480,8.17,224,0.875,bilinear,-11.782,-7.614,+3 +legacy_seresnext26_32x4d,65.070,34.930,85.640,14.360,16.79,224,0.875,bicubic,-12.032,-7.676,-6 +mobilenetv2_120d,65.010,34.990,85.950,14.050,5.83,224,0.875,bicubic,-12.286,-7.546,-13 +hrnet_w18,64.930,35.070,85.740,14.260,21.30,224,0.875,bilinear,-11.822,-7.702,+5 +hardcorenas_c,64.850,35.150,85.240,14.760,5.52,224,0.875,bilinear,-12.198,-7.916,-7 +densenet169,64.760,35.240,85.240,14.760,14.15,224,0.875,bicubic,-11.140,-7.790,+22 +mixnet_m,64.700,35.300,85.460,14.540,5.01,224,0.875,bicubic,-12.564,-7.964,-15 +resnet26d,64.690,35.310,85.110,14.890,16.01,224,0.875,bicubic,-12.010,-8.036,+2 +levit_128s,64.600,35.400,84.740,15.260,7.78,224,0.900,bicubic,-11.920,-8.126,+8 +resnext26ts,64.590,35.410,85.100,14.900,10.30,256,0.900,bicubic,-12.190,-8.028,-2 +xcit_nano_12_p8_224_dist,64.550,35.450,85.990,14.010,3.05,224,1.000,bicubic,-11.770,-7.096,+9 +repvgg_a2,64.440,35.560,85.130,14.870,28.21,224,0.875,bilinear,-12.020,-7.876,+7 +hardcorenas_b,64.420,35.580,84.880,15.120,5.18,224,0.875,bilinear,-12.112,-7.874,+3 +xcit_nano_12_p16_384_dist,64.420,35.580,85.310,14.690,3.05,384,1.000,bicubic,-11.030,-7.382,+24 +tf_efficientnet_lite1,64.390,35.610,85.480,14.520,5.42,240,0.882,bicubic,-12.246,-7.742,-3 +regnetx_016,64.370,35.630,85.460,14.540,9.19,224,0.875,bicubic,-12.580,-7.962,-15 +resmlp_12_224,64.350,35.650,85.590,14.410,15.35,224,0.875,bicubic,-12.306,-7.590,-6 +tf_efficientnet_b0,64.310,35.690,85.280,14.720,5.29,224,0.875,bicubic,-12.536,-7.946,-12 +tf_mixnet_m,64.270,35.730,85.090,14.910,5.01,224,0.875,bicubic,-12.672,-8.062,-16 +dpn68,64.230,35.770,85.180,14.820,12.61,224,0.875,bicubic,-12.076,-7.794,+2 +tf_efficientnet_es,64.230,35.770,84.740,15.260,5.44,224,0.875,bicubic,-12.368,-8.464,-7 +regnety_008,64.150,35.850,85.280,14.720,6.26,224,0.875,bicubic,-12.162,-7.790,-1 +vit_small_patch32_224,64.070,35.930,85.570,14.430,22.88,224,0.900,bicubic,-11.928,-7.702,+1 +mobilenetv2_140,64.040,35.960,85.030,14.970,6.11,224,0.875,bicubic,-12.468,-7.968,-6 +densenet121,63.740,36.260,84.600,15.400,7.98,224,0.875,bicubic,-11.842,-8.052,+7 +hardcorenas_a,63.710,36.290,84.400,15.600,5.26,224,0.875,bilinear,-12.212,-8.116,+1 +resnest14d,63.610,36.390,84.260,15.740,10.61,224,0.875,bilinear,-11.896,-8.260,+7 +tf_mixnet_s,63.560,36.440,84.270,15.730,4.13,224,0.875,bicubic,-12.090,-8.358,+2 +resnet26,63.450,36.550,84.260,15.740,16.00,224,0.875,bicubic,-11.852,-8.316,+10 +mixnet_s,63.380,36.620,84.740,15.260,4.13,224,0.875,bicubic,-12.612,-8.058,-5 +mobilenetv3_large_100,63.340,36.660,84.090,15.910,5.48,224,0.875,bicubic,-12.422,-8.450,-2 +tv_resnet50,63.340,36.660,84.650,15.350,25.56,224,0.875,bilinear,-12.798,-8.212,-9 +vit_tiny_r_s16_p8_384,63.320,36.680,85.280,14.720,6.36,384,1.000,bicubic,-12.636,-7.982,-7 +efficientnet_es_pruned,63.290,36.710,84.950,15.050,5.44,224,0.875,bicubic,-11.708,-7.488,+13 +mixer_b16_224,63.260,36.740,83.300,16.700,59.88,224,0.875,bicubic,-13.350,-8.930,-22 +efficientnet_lite0,63.240,36.760,84.430,15.570,4.65,224,0.875,bicubic,-12.236,-8.082,-1 +mobilenetv3_rw,63.230,36.770,84.510,15.490,5.48,224,0.875,bicubic,-12.400,-8.198,-6 +semnasnet_100,63.160,36.840,84.530,15.470,3.89,224,0.875,bicubic,-12.290,-8.070,-1 +pit_ti_distilled_224,63.150,36.850,83.980,16.020,5.10,224,0.900,bicubic,-11.382,-8.118,+16 +regnety_006,63.110,36.890,84.260,15.740,6.06,224,0.875,bicubic,-12.136,-8.274,0 +vit_tiny_patch16_224,63.110,36.890,84.870,15.130,5.72,224,0.900,bicubic,-12.346,-7.976,-5 +tv_densenet121,62.950,37.050,84.250,15.750,7.98,224,0.875,bicubic,-11.794,-7.900,+9 +resnet34,62.870,37.130,84.130,15.870,21.80,224,0.875,bilinear,-12.244,-8.154,+1 +legacy_seresnet34,62.840,37.160,84.220,15.780,21.96,224,0.875,bilinear,-11.970,-7.906,+6 +mobilenetv2_110d,62.830,37.170,84.500,15.500,4.52,224,0.875,bicubic,-12.210,-7.684,0 +deit_tiny_distilled_patch16_224,62.810,37.190,83.920,16.080,5.91,224,0.900,bicubic,-11.702,-7.968,+10 +hrnet_w18_small_v2,62.790,37.210,83.980,16.020,15.60,224,0.875,bilinear,-12.328,-8.436,-4 +swsl_resnet18,62.770,37.230,84.290,15.710,11.69,224,0.875,bilinear,-10.504,-7.448,+21 +repvgg_b0,62.730,37.270,83.870,16.130,15.82,224,0.875,bilinear,-12.426,-8.548,-8 +tinynet_b,62.730,37.270,84.250,15.750,3.73,188,0.875,bicubic,-12.250,-7.936,-2 +gluon_resnet34_v1b,62.570,37.430,83.990,16.010,21.80,224,0.875,bicubic,-12.022,-7.998,+3 +xcit_nano_12_p8_224,62.560,37.440,84.200,15.800,3.05,224,1.000,bicubic,-11.358,-7.970,+10 +tf_efficientnet_lite0,62.540,37.460,84.220,15.780,4.65,224,0.875,bicubic,-12.292,-7.956,-4 +regnetx_008,62.490,37.510,84.020,15.980,7.26,224,0.875,bicubic,-12.546,-8.320,-8 +dla34,62.480,37.520,83.910,16.090,15.74,224,0.875,bilinear,-12.140,-8.162,-2 +fbnetc_100,62.460,37.540,83.380,16.620,5.57,224,0.875,bilinear,-12.666,-9.002,-14 +tf_mobilenetv3_large_100,62.460,37.540,83.970,16.030,5.48,224,0.875,bilinear,-13.058,-8.634,-24 +crossvit_9_240,62.270,37.730,84.280,15.720,8.55,240,0.875,bicubic,-11.700,-7.684,+3 +crossvit_tiny_240,62.060,37.940,83.610,16.390,7.01,240,0.875,bicubic,-11.276,-8.306,+8 +mnasnet_100,61.890,38.110,83.710,16.290,4.38,224,0.875,bicubic,-12.764,-8.400,-8 +regnety_004,61.860,38.140,83.420,16.580,4.34,224,0.875,bicubic,-12.164,-8.334,-2 +vgg19_bn,61.860,38.140,83.450,16.550,143.68,224,0.875,bilinear,-12.354,-8.398,-5 +convit_tiny,61.580,38.420,84.120,15.880,5.71,224,0.875,bicubic,-11.540,-7.600,+7 +ssl_resnet18,61.470,38.530,83.310,16.690,11.69,224,0.875,bilinear,-11.136,-8.114,+11 +regnetx_006,61.370,38.630,83.450,16.550,6.20,224,0.875,bicubic,-12.482,-8.224,-2 +spnasnet_100,61.210,38.790,82.790,17.210,4.42,224,0.875,bilinear,-12.876,-9.028,-8 +tv_resnet34,61.190,38.810,82.720,17.280,21.80,224,0.875,bilinear,-12.118,-8.704,+1 +pit_ti_224,60.970,39.030,83.860,16.140,4.85,224,0.900,bicubic,-11.940,-7.546,+6 +skresnet18,60.870,39.130,82.880,17.120,11.96,224,0.875,bicubic,-12.166,-8.288,+2 +ghostnet_100,60.830,39.170,82.360,17.640,5.18,224,0.875,bilinear,-13.148,-9.098,-10 +vgg16_bn,60.760,39.240,82.950,17.050,138.37,224,0.875,bilinear,-12.590,-8.554,-5 +semnasnet_075,60.710,39.290,82.510,17.490,2.91,224,0.875,bicubic,-12.264,-8.626,0 +tf_mobilenetv3_large_075,60.400,39.600,81.950,18.050,3.99,224,0.875,bilinear,-13.040,-9.398,-8 +xcit_nano_12_p16_224_dist,60.240,39.760,82.500,17.500,3.05,224,1.000,bicubic,-12.062,-8.362,+5 +mobilenetv2_100,60.190,39.810,82.240,17.760,3.50,224,0.875,bicubic,-12.776,-8.778,-2 +resnet18d,60.180,39.820,82.310,17.690,11.71,224,0.875,bicubic,-12.070,-8.378,+4 +vit_base_patch32_224_sam,60.010,39.990,81.230,18.770,88.22,224,0.900,bicubic,-13.682,-9.782,-13 +deit_tiny_patch16_224,59.830,40.170,82.660,17.340,5.72,224,0.900,bicubic,-12.336,-8.460,+4 +legacy_seresnet18,59.810,40.190,81.690,18.310,11.78,224,0.875,bicubic,-11.932,-8.642,+7 +vgg19,59.710,40.290,81.450,18.550,143.67,224,0.875,bilinear,-12.656,-9.420,-3 +regnetx_004,59.420,40.580,81.690,18.310,5.16,224,0.875,bicubic,-12.970,-9.140,-5 +tf_mobilenetv3_large_minimal_100,59.080,40.920,81.150,18.850,3.92,224,0.875,bilinear,-13.170,-9.480,-1 +vit_tiny_r_s16_p8_224,59.080,40.920,81.750,18.250,6.34,224,0.900,bicubic,-12.708,-9.072,+2 +vgg13_bn,59.000,41.000,81.080,18.920,133.05,224,0.875,bilinear,-12.594,-9.296,+3 +hrnet_w18_small,58.960,41.040,81.350,18.650,13.19,224,0.875,bilinear,-13.380,-9.328,-7 +lcnet_100,58.870,41.130,81.190,18.810,2.95,224,0.875,bicubic,-13.238,-9.188,-3 +vgg16,58.840,41.160,81.660,18.340,138.36,224,0.875,bilinear,-12.750,-8.722,+1 +xcit_nano_12_p16_224,58.330,41.670,80.880,19.120,3.05,224,1.000,bicubic,-11.634,-8.880,+5 +gluon_resnet18_v1b,58.320,41.680,80.970,19.030,11.69,224,0.875,bicubic,-12.518,-8.792,+1 +tinynet_c,58.170,41.830,80.280,19.720,2.46,184,0.875,bicubic,-13.058,-9.470,-1 +vgg11_bn,57.410,42.590,80.020,19.980,132.87,224,0.875,bilinear,-12.950,-9.782,0 +resnet18,57.180,42.820,80.200,19.800,11.69,224,0.875,bilinear,-12.564,-8.882,+3 +vgg13,57.140,42.860,79.550,20.450,133.05,224,0.875,bilinear,-12.786,-9.696,+1 +regnety_002,56.990,43.010,79.860,20.140,3.16,224,0.875,bicubic,-13.264,-9.680,-2 +mixer_l16_224,56.680,43.320,76.000,24.000,208.20,224,0.875,bicubic,-15.368,-11.664,-11 +regnetx_002,56.060,43.940,79.220,20.780,2.68,224,0.875,bicubic,-12.690,-9.336,+2 +dla60x_c,56.000,44.000,78.930,21.070,1.32,224,0.875,bilinear,-11.892,-9.496,+3 +vgg11,55.800,44.200,78.840,21.160,132.86,224,0.875,bilinear,-13.228,-9.786,-2 +lcnet_075,55.420,44.580,78.300,21.700,2.36,224,0.875,bicubic,-13.398,-10.074,-2 +tf_mobilenetv3_small_100,54.530,45.470,77.060,22.940,2.54,224,0.875,bilinear,-13.394,-10.604,-1 +tinynet_d,53.420,46.580,76.350,23.650,2.34,152,0.875,bicubic,-13.538,-10.714,0 +dla46x_c,53.050,46.950,76.870,23.130,1.07,224,0.875,bilinear,-12.920,-10.110,0 +mobilenetv2_050,52.850,47.150,75.430,24.570,1.97,224,0.875,bicubic,-13.092,-10.652,0 +mnasnet_small,52.790,47.210,75.530,24.470,2.03,224,0.875,bicubic,-12.806,-10.658,+1 +tf_mobilenetv3_small_075,52.160,47.840,75.480,24.520,2.04,224,0.875,bilinear,-13.554,-10.654,-1 +dla46_c,52.130,47.870,75.690,24.310,1.30,224,0.875,bilinear,-12.736,-10.604,0 +lcnet_050,49.990,50.010,73.460,26.540,1.88,224,0.875,bicubic,-13.110,-10.922,0 +tf_mobilenetv3_small_minimal_100,49.500,50.500,73.050,26.950,2.04,224,0.875,bilinear,-13.408,-11.184,0 +tinynet_e,46.690,53.310,70.360,29.640,2.04,106,0.875,bicubic,-13.166,-11.406,0 diff --git a/results/results-sketch.csv b/results/results-sketch.csv index 64a657768f..b2bc6eb69a 100644 --- a/results/results-sketch.csv +++ b/results/results-sketch.csv @@ -1,522 +1,553 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation,top1_diff,top5_diff,rank_diff -ig_resnext101_32x48d,58.846,41.154,81.088,18.912,828.41,224,0.875,bilinear,-26.584,-16.494,+31 -ig_resnext101_32x32d,58.402,41.598,80.426,19.574,468.53,224,0.875,bilinear,-26.692,-17.012,+41 -ig_resnext101_32x16d,57.684,42.316,79.891,20.108,194.03,224,0.875,bilinear,-26.482,-17.305,+75 -swsl_resnext101_32x16d,57.455,42.545,80.381,19.619,194.03,224,0.875,bilinear,-25.899,-16.455,+106 -beit_large_patch16_384,56.904,43.096,79.188,20.812,305.00,384,1.000,bicubic,-31.478,-19.420,-3 -beit_large_patch16_512,56.757,43.243,78.874,21.126,305.67,512,1.000,bicubic,-31.827,-19.786,-5 -swsl_resnext101_32x8d,56.421,43.579,78.948,21.052,88.79,224,0.875,bilinear,-27.853,-18.226,+67 -beit_large_patch16_224,54.969,45.031,77.600,22.400,304.43,224,0.900,bicubic,-32.507,-20.718,-3 -ig_resnext101_32x8d,54.937,45.063,77.539,22.461,88.79,224,0.875,bilinear,-27.773,-19.101,+124 -swsl_resnext101_32x4d,53.585,46.415,76.374,23.626,44.18,224,0.875,bilinear,-29.641,-19.956,+105 -vit_large_patch16_384,52.762,47.238,74.725,25.275,304.72,384,1.000,bicubic,-34.330,-23.581,-4 -vit_large_r50_s32_384,52.049,47.951,73.540,26.459,329.09,384,1.000,bicubic,-34.131,-24.384,+4 -vit_large_patch16_224,51.842,48.158,73.721,26.279,304.33,224,0.900,bicubic,-33.996,-24.105,+9 -tf_efficientnet_l2_ns_475,51.435,48.565,73.845,26.155,480.31,475,0.936,bicubic,-36.803,-24.705,-10 -swsl_resnext50_32x4d,50.408,49.592,73.348,26.652,25.03,224,0.875,bilinear,-31.758,-22.886,+148 -swin_large_patch4_window12_384,50.357,49.643,72.546,27.454,196.74,384,1.000,bicubic,-36.793,-25.692,-10 -swsl_resnet50,49.506,50.494,72.356,27.645,25.56,224,0.875,bilinear,-31.640,-23.622,+189 -swin_large_patch4_window7_224,48.989,51.011,71.377,28.623,196.53,224,0.900,bicubic,-37.327,-26.513,-4 -beit_base_patch16_384,48.682,51.318,72.073,27.927,86.74,384,1.000,bicubic,-38.126,-26.067,-10 -swin_base_patch4_window12_384,48.529,51.471,71.809,28.191,87.90,384,1.000,bicubic,-37.907,-26.257,-8 -vit_large_r50_s32_224,48.215,51.785,70.870,29.130,328.99,224,0.900,bicubic,-36.225,-26.100,+44 -tf_efficientnetv2_xl_in21ft1k,47.745,52.255,70.131,29.869,208.12,512,1.000,bicubic,-38.659,-27.737,-9 -tf_efficientnet_b6_ns,47.725,52.275,69.925,30.075,43.04,528,0.942,bicubic,-38.721,-27.955,-12 -tf_efficientnet_b7_ns,47.725,52.275,69.603,30.398,66.35,600,0.949,bicubic,-39.105,-28.481,-16 -tf_efficientnet_l2_ns,47.478,52.522,69.923,30.077,480.31,800,0.960,bicubic,-40.868,-28.731,-22 -tf_efficientnetv2_l_in21ft1k,46.922,53.078,70.312,29.688,118.52,480,1.000,bicubic,-39.370,-27.672,-11 -beit_base_patch16_224,46.258,53.742,69.907,30.093,86.53,224,0.900,bicubic,-38.982,-27.747,+12 -vit_base_patch16_384,45.900,54.100,68.537,31.463,86.86,384,1.000,bicubic,-40.100,-29.469,-8 -tf_efficientnet_b8_ap,45.768,54.232,67.915,32.086,87.41,672,0.954,bicubic,-39.606,-29.383,+7 -tf_efficientnet_b5_ns,45.599,54.401,67.820,32.180,30.39,456,0.934,bicubic,-40.477,-29.932,-12 -swin_base_patch4_window7_224,45.589,54.411,68.512,31.488,87.77,224,0.900,bicubic,-39.679,-29.046,+7 -tf_efficientnetv2_m_in21ft1k,45.574,54.426,69.148,30.852,54.14,480,1.000,bicubic,-40.024,-28.604,-5 -cait_m48_448,44.249,55.751,64.668,35.332,356.46,448,1.000,bicubic,-42.245,-33.082,-23 -vit_base_r50_s16_384,43.522,56.478,66.796,33.204,98.95,384,1.000,bicubic,-41.462,-30.502,+17 -tf_efficientnet_b4_ns,43.438,56.562,65.474,34.526,19.34,380,0.922,bicubic,-41.712,-31.996,+5 -vit_base_patch16_224,43.247,56.753,65.710,34.290,86.57,224,0.900,bicubic,-41.293,-31.596,+26 -xcit_large_24_p8_384_dist,42.828,57.172,63.426,36.574,188.93,384,1.000,bicubic,-43.168,-34.262,-16 -xcit_large_24_p8_224_dist,42.575,57.425,63.106,36.894,188.93,224,1.000,bicubic,-42.825,-34.310,-3 -tf_efficientnet_b8,42.494,57.506,64.873,35.127,87.41,672,0.954,bicubic,-42.856,-32.519,-2 -cait_m36_384,42.398,57.602,63.340,36.660,271.22,384,1.000,bicubic,-43.658,-34.390,-21 -tf_efficientnet_b7_ap,41.455,58.545,62.896,37.104,66.35,600,0.949,bicubic,-43.665,-34.354,0 -tf_efficientnet_b7,41.453,58.547,63.053,36.947,66.35,600,0.949,bicubic,-43.483,-34.153,+11 -tf_efficientnet_b5_ap,41.406,58.594,62.096,37.904,30.39,456,0.934,bicubic,-42.852,-34.880,+32 -resnetv2_152x4_bitm,41.294,58.706,64.354,35.646,936.53,480,1.000,bilinear,-43.644,-33.104,+8 -tf_efficientnet_b6_ap,41.113,58.887,62.379,37.621,43.04,528,0.942,bicubic,-43.671,-34.759,+12 -xcit_large_24_p16_384_dist,41.025,58.975,61.253,38.747,189.10,384,1.000,bicubic,-44.745,-36.281,-21 -tf_efficientnetv2_s_in21ft1k,40.985,59.015,63.837,36.163,21.46,384,1.000,bicubic,-43.311,-33.419,+24 -xcit_large_24_p16_224_dist,40.968,59.032,61.330,38.670,189.10,224,1.000,bicubic,-43.962,-35.800,+6 -xcit_medium_24_p8_224_dist,40.502,59.498,60.510,39.490,84.32,224,1.000,bicubic,-44.566,-36.766,-4 -tf_efficientnet_b4_ap,40.476,59.524,61.730,38.270,19.34,380,0.922,bicubic,-42.782,-34.666,+64 -vit_small_r26_s32_384,40.474,59.526,62.752,37.248,36.47,384,1.000,bicubic,-43.576,-34.570,+32 -vit_base_patch16_224_miil,40.178,59.822,60.895,39.105,86.54,224,0.875,bilinear,-44.098,-35.903,+21 -xcit_medium_24_p8_384_dist,40.042,59.958,60.453,39.547,84.32,384,1.000,bicubic,-45.778,-37.141,-30 -xcit_medium_24_p16_384_dist,39.912,60.088,60.127,39.873,84.40,384,1.000,bicubic,-45.514,-37.281,-21 -tf_efficientnetv2_l,39.834,60.166,60.815,39.185,118.52,480,1.000,bicubic,-45.668,-36.555,-25 -dm_nfnet_f3,39.785,60.215,60.636,39.364,254.92,416,0.940,bicubic,-45.747,-36.822,-27 -cait_s36_384,39.777,60.223,60.483,39.517,68.37,384,1.000,bicubic,-45.677,-36.999,-26 -efficientnetv2_rw_m,39.675,60.325,59.699,40.301,53.24,416,1.000,bicubic,-45.147,-37.447,-2 -ecaresnet269d,39.598,60.402,60.339,39.661,102.09,352,1.000,bicubic,-45.388,-36.889,-9 -dm_nfnet_f6,39.586,60.414,60.901,39.099,438.36,576,0.956,bicubic,-46.544,-36.839,-43 -tf_efficientnet_b3_ns,39.510,60.490,61.451,38.549,12.23,300,0.904,bicubic,-44.532,-35.457,+23 -dm_nfnet_f5,39.498,60.502,60.194,39.806,377.21,544,0.954,bicubic,-46.308,-37.288,-38 -xcit_small_24_p8_224_dist,39.309,60.691,59.404,40.596,47.63,224,1.000,bicubic,-45.567,-37.794,-8 -xcit_medium_24_p16_224_dist,39.272,60.728,59.473,40.527,84.40,224,1.000,bicubic,-45.006,-37.469,+8 -efficientnet_b4,39.136,60.864,59.628,40.372,19.34,384,1.000,bicubic,-44.294,-36.966,+42 -xcit_small_24_p8_384_dist,39.001,60.999,59.196,40.804,47.63,384,1.000,bicubic,-46.565,-38.380,-38 -resnetv2_152x2_bit_teacher_384,38.987,61.013,62.495,37.505,236.34,384,1.000,bicubic,-44.857,-34.623,+26 -vit_base_patch32_384,38.810,61.190,60.351,39.649,88.30,384,1.000,bicubic,-44.536,-36.493,+44 -eca_nfnet_l2,38.661,61.339,59.451,40.549,56.72,384,1.000,bicubic,-46.059,-37.807,-11 -xcit_small_12_p8_384_dist,38.533,61.467,58.820,41.180,26.21,384,1.000,bicubic,-46.549,-38.450,-26 -xcit_small_24_p16_384_dist,38.499,61.501,58.400,41.600,47.67,384,1.000,bicubic,-46.605,-38.916,-29 -xcit_small_12_p8_224_dist,38.382,61.618,58.844,41.156,26.21,224,1.000,bicubic,-45.858,-38.028,+4 -tf_efficientnet_b5,38.364,61.636,59.923,40.077,30.39,456,0.934,bicubic,-45.446,-36.825,+23 -deit_base_distilled_patch16_384,38.240,61.760,57.798,42.202,87.63,384,1.000,bicubic,-47.182,-39.534,-40 -dm_nfnet_f4,38.215,61.785,58.596,41.404,316.07,512,0.951,bicubic,-47.485,-38.918,-49 -xcit_large_24_p8_224,38.124,61.876,57.875,42.125,188.93,224,1.000,bicubic,-46.258,-38.781,-7 -resnetv2_152x2_bitm,38.008,61.992,61.180,38.820,236.34,448,1.000,bilinear,-46.444,-36.256,-13 -cait_s24_384,37.884,62.116,58.087,41.913,47.06,384,1.000,bicubic,-47.160,-39.263,-30 -resnet152d,37.879,62.121,58.362,41.638,60.21,320,1.000,bicubic,-45.785,-38.372,+24 -tf_efficientnetv2_m,37.829,62.171,58.716,41.284,54.14,480,1.000,bicubic,-47.217,-38.568,-33 -resnetrs420,37.770,62.230,58.227,41.773,191.89,416,1.000,bicubic,-47.238,-38.899,-32 -xcit_small_24_p16_224_dist,37.717,62.283,57.358,42.642,47.67,224,1.000,bicubic,-46.157,-39.370,+8 -resnetrs350,37.702,62.298,58.099,41.901,163.96,384,1.000,bicubic,-47.010,-38.891,-23 -pit_b_distilled_224,37.588,62.412,57.230,42.770,74.79,224,0.900,bicubic,-46.570,-39.628,-5 -xcit_small_12_p16_384_dist,37.582,62.418,57.777,42.223,26.25,384,1.000,bicubic,-47.132,-39.339,-26 -resnet200d,37.507,62.493,58.303,41.697,64.69,320,1.000,bicubic,-46.463,-38.515,+2 -resnetv2_152x2_bit_teacher,37.348,62.652,59.474,40.526,236.34,224,0.875,bicubic,-45.554,-37.094,+38 -resnest269e,37.299,62.701,57.466,42.534,110.93,416,0.928,bicubic,-47.225,-39.520,-25 -resmlp_big_24_224_in22ft1k,37.244,62.756,58.203,41.797,129.14,224,0.875,bicubic,-47.180,-38.913,-21 -vit_small_r26_s32_224,37.244,62.756,59.052,40.948,36.43,224,0.900,bicubic,-44.594,-36.974,+83 -cait_s24_224,37.150,62.850,56.725,43.275,46.92,224,1.000,bicubic,-46.312,-39.841,+15 -vit_base_patch32_224,37.100,62.900,59.284,40.716,88.22,224,0.900,bicubic,-43.632,-36.282,+135 -tf_efficientnet_b3_ap,37.061,62.939,57.242,42.758,12.23,300,0.904,bicubic,-44.761,-38.378,+81 -efficientnetv2_rw_s,37.057,62.943,56.831,43.169,23.94,384,1.000,bicubic,-46.773,-39.891,0 -xcit_small_12_p16_224_dist,36.973,63.027,56.745,43.255,26.25,224,1.000,bicubic,-46.377,-39.677,+16 -seresnet152d,36.804,63.196,56.731,43.269,66.84,320,1.000,bicubic,-47.558,-40.311,-26 -resnetrs200,36.664,63.336,56.837,43.163,93.21,320,1.000,bicubic,-47.394,-40.037,-16 -regnetz_d,36.432,63.568,57.388,42.612,27.58,320,0.950,bicubic,-47.602,-39.482,-13 -efficientnet_b3,36.422,63.578,56.845,43.155,12.23,320,1.000,bicubic,-45.836,-39.271,+60 -cait_xs24_384,36.411,63.589,56.938,43.062,26.67,384,1.000,bicubic,-47.643,-39.948,-18 -deit_base_distilled_patch16_224,36.411,63.589,56.623,43.377,87.34,224,0.900,bicubic,-46.977,-39.867,+7 -resnetv2_101x3_bitm,36.391,63.609,59.068,40.932,387.93,448,1.000,bilinear,-48.039,-38.304,-35 -resnetrs270,36.346,63.654,56.572,43.428,129.86,352,1.000,bicubic,-48.094,-40.582,-37 -mixer_b16_224_miil,36.271,63.729,55.971,44.029,59.88,224,0.875,bilinear,-46.031,-39.743,+51 -tresnet_m,36.271,63.729,55.802,44.198,31.39,224,0.875,bilinear,-46.805,-40.324,+16 -tf_efficientnet_b2_ns,36.139,63.861,57.515,42.485,9.11,260,0.890,bicubic,-46.251,-38.725,+42 -ecaresnet101d,36.014,63.986,56.199,43.801,44.57,224,0.875,bicubic,-46.158,-39.855,+55 -dm_nfnet_f2,35.990,64.010,55.495,44.505,193.78,352,0.920,bicubic,-49.056,-41.743,-62 -resnest200e,35.939,64.061,55.873,44.127,70.20,320,0.909,bicubic,-47.909,-41.017,-18 -swsl_resnet18,35.852,64.147,58.462,41.538,11.69,224,0.875,bilinear,-37.430,-33.296,+380 -eca_nfnet_l1,35.835,64.165,55.965,44.035,41.41,320,1.000,bicubic,-48.197,-41.067,-25 -xcit_small_24_p8_224,35.542,64.458,54.774,45.226,47.63,224,1.000,bicubic,-48.304,-41.858,-20 -vit_small_patch16_384,35.515,64.485,57.549,42.451,22.20,384,1.000,bicubic,-48.279,-39.559,-16 -xcit_small_12_p8_224,35.509,64.491,55.489,44.511,26.21,224,1.000,bicubic,-47.837,-40.987,-1 -xcit_large_24_p16_224,35.491,64.509,54.764,45.236,189.10,224,1.000,bicubic,-47.407,-41.118,+11 -xcit_medium_24_p8_224,35.424,64.576,54.843,45.157,84.32,224,1.000,bicubic,-48.312,-41.543,-17 -resnest101e,35.397,64.603,55.802,44.198,48.28,256,0.875,bilinear,-47.479,-40.510,+10 -convit_base,35.318,64.682,54.943,45.057,86.54,224,0.875,bicubic,-46.974,-40.991,+39 -xcit_tiny_24_p8_224_dist,35.253,64.747,55.287,44.713,12.11,224,1.000,bicubic,-47.323,-40.893,+20 -twins_svt_large,35.108,64.892,54.729,45.271,99.27,224,0.900,bicubic,-48.576,-41.881,-18 -repvgg_b3g4,35.069,64.931,54.772,45.228,83.83,224,0.875,bilinear,-45.149,-40.332,+139 -repvgg_b3,35.041,64.959,54.562,45.438,123.09,224,0.875,bilinear,-45.475,-40.702,+114 -dm_nfnet_f1,34.990,65.010,54.108,45.892,132.63,320,0.910,bicubic,-49.634,-42.988,-62 -xcit_tiny_24_p8_384_dist,34.925,65.075,55.153,44.847,12.11,384,1.000,bicubic,-48.839,-41.551,-26 -resnet101d,34.870,65.130,54.216,45.784,44.57,320,1.000,bicubic,-48.154,-42.240,-1 -resmlp_big_24_distilled_224,34.780,65.220,54.641,45.359,129.14,224,0.875,bicubic,-48.816,-42.015,-22 -vit_large_patch32_384,34.693,65.307,55.723,44.277,306.63,384,1.000,bicubic,-46.813,-40.363,+58 -dm_nfnet_f0,34.630,65.370,54.676,45.324,71.49,256,0.900,bicubic,-48.754,-41.904,-19 -ssl_resnext101_32x16d,34.593,65.407,55.949,44.051,194.03,224,0.875,bilinear,-47.251,-40.141,+43 -resnetv2_101,34.587,65.413,53.155,46.845,44.54,224,0.950,bicubic,-47.445,-42.709,+36 -repvgg_b2g4,34.581,65.419,54.809,45.191,61.76,224,0.875,bilinear,-44.799,-39.885,+175 -resnetrs152,34.377,65.623,53.568,46.432,86.62,320,1.000,bicubic,-49.333,-43.042,-32 -resnest50d_4s2x40d,34.367,65.633,54.731,45.269,30.42,224,0.875,bicubic,-46.753,-40.829,+74 -crossvit_18_dagger_408,34.245,65.755,53.086,46.914,44.61,408,1.000,bicubic,-49.939,-43.736,-57 -xcit_medium_24_p16_224,34.218,65.782,53.184,46.816,84.40,224,1.000,bicubic,-48.408,-42.792,0 -efficientnetv2_rw_t,34.153,65.847,53.151,46.849,13.65,288,1.000,bicubic,-48.185,-43.043,+15 -tf_efficientnet_b1_ns,34.114,65.886,55.460,44.540,7.79,240,0.882,bicubic,-47.270,-40.278,+57 -twins_pcpvt_large,34.090,65.910,54.128,45.872,60.99,224,0.900,bicubic,-49.048,-42.480,-21 -tf_efficientnet_b4,34.064,65.936,54.202,45.798,19.34,380,0.922,bicubic,-48.966,-42.096,-16 -ssl_resnext101_32x8d,34.060,65.940,55.603,44.397,88.79,224,0.875,bilinear,-47.540,-40.443,+39 -tf_efficientnet_b6,34.043,65.957,54.562,45.438,43.04,528,0.942,bicubic,-50.069,-42.326,-61 -efficientnet_b3_pruned,34.017,65.983,54.124,45.876,9.86,300,0.904,bicubic,-46.841,-41.116,+81 -nfnet_l0,34.011,65.989,54.383,45.617,35.07,288,1.000,bicubic,-48.741,-42.133,-13 -xcit_small_24_p16_224,34.009,65.991,53.294,46.706,47.67,224,1.000,bicubic,-48.569,-42.706,-6 -regnety_160,33.978,66.022,53.558,46.442,83.59,288,1.000,bicubic,-49.724,-43.224,-44 -gc_efficientnetv2_rw_t,33.952,66.048,53.228,46.772,13.68,288,1.000,bicubic,-48.526,-43.068,-2 -pit_s_distilled_224,33.948,66.052,53.247,46.753,24.04,224,0.900,bicubic,-48.046,-42.553,+20 -xcit_small_12_p16_224,33.776,66.225,53.230,46.770,26.25,224,1.000,bicubic,-48.200,-42.588,+21 -resnetv2_50x3_bitm,33.695,66.305,55.922,44.078,217.32,448,1.000,bilinear,-50.289,-41.208,-62 -resnet51q,33.585,66.415,53.029,46.971,35.70,288,1.000,bilinear,-48.783,-43.147,-1 -xcit_tiny_24_p16_384_dist,33.530,66.470,52.776,47.224,12.12,384,1.000,bicubic,-49.038,-43.518,-11 -convmixer_1536_20,33.447,66.553,53.041,46.959,51.63,224,0.960,bicubic,-47.929,-42.569,+43 -regnety_032,33.406,66.594,52.803,47.197,19.44,288,1.000,bicubic,-49.316,-43.629,-22 -crossvit_18_240,33.398,66.602,52.257,47.743,43.27,240,0.875,bicubic,-48.996,-43.805,-8 -gernet_l,33.380,66.620,51.919,48.081,31.08,256,0.875,bilinear,-47.966,-43.617,+41 -crossvit_15_dagger_408,33.331,66.669,52.224,47.776,28.50,408,1.000,bicubic,-50.495,-44.562,-61 -crossvit_18_dagger_240,33.282,66.718,52.210,47.790,44.27,240,0.875,bicubic,-49.224,-43.862,-14 -tresnet_xl,33.274,66.726,52.308,47.692,78.44,224,0.875,bilinear,-48.784,-43.624,+7 -jx_nest_base,33.219,66.781,51.823,48.177,67.72,224,0.875,bicubic,-50.335,-44.541,-54 -resnest50d_1s4x24d,33.157,66.844,52.852,47.148,25.68,224,0.875,bicubic,-47.843,-42.474,+54 -resnet61q,33.123,66.877,51.756,48.244,36.85,288,1.000,bicubic,-49.399,-44.378,-20 -jx_nest_small,33.046,66.954,51.062,48.938,38.35,224,0.875,bicubic,-50.072,-45.270,-43 -crossvit_base_240,33.041,66.960,51.384,48.616,105.03,240,0.875,bicubic,-49.165,-44.444,-3 -twins_pcpvt_base,33.031,66.969,52.491,47.509,43.83,224,0.900,bicubic,-49.681,-43.857,-32 -xcit_tiny_24_p16_224_dist,33.013,66.987,52.068,47.932,12.12,224,1.000,bicubic,-47.449,-43.140,+75 -rexnet_200,32.984,67.016,52.945,47.055,16.37,224,0.875,bicubic,-48.642,-42.727,+12 -resnest50d,32.974,67.026,52.715,47.285,27.48,224,0.875,bilinear,-47.988,-42.663,+49 -convit_small,32.928,67.072,52.098,47.902,27.78,224,0.875,bicubic,-48.484,-43.648,+23 -tf_efficientnetv2_s,32.909,67.091,51.760,48.240,21.46,384,1.000,bicubic,-50.989,-44.938,-80 -crossvit_15_dagger_240,32.895,67.105,51.768,48.232,28.21,240,0.875,bicubic,-49.415,-44.194,-17 -vit_small_patch16_224,32.877,67.123,53.949,46.051,22.05,224,0.900,bicubic,-48.509,-42.181,+22 -pnasnet5large,32.848,67.152,50.518,49.482,86.06,331,0.911,bicubic,-49.950,-45.516,-43 -twins_svt_base,32.838,67.162,51.559,48.441,56.07,224,0.900,bicubic,-50.286,-44.869,-55 -tf_efficientnet_b3,32.834,67.166,52.955,47.045,12.23,300,0.904,bicubic,-48.812,-42.765,+3 -regnetz_c,32.809,67.191,53.756,46.244,13.46,320,0.940,bicubic,-49.707,-42.604,-33 -nasnetalarge,32.773,67.227,50.150,49.850,88.75,331,0.911,bicubic,-49.863,-45.900,-42 -gernet_m,32.754,67.246,51.917,48.083,21.14,224,0.875,bilinear,-47.972,-43.261,+51 -gluon_resnet152_v1d,32.754,67.246,51.080,48.920,60.21,224,0.875,bicubic,-47.722,-44.122,+60 -inception_resnet_v2,32.746,67.254,50.642,49.358,55.84,299,0.897,bicubic,-47.702,-44.666,+63 -pit_b_224,32.710,67.290,49.832,50.168,73.76,224,0.900,bicubic,-49.734,-45.880,-35 -tf_efficientnet_b2_ap,32.669,67.331,52.249,47.751,9.11,260,0.890,bicubic,-47.637,-42.783,+70 -cait_xxs36_384,32.569,67.431,52.218,47.782,17.37,384,1.000,bicubic,-49.621,-43.942,-21 -tresnet_l,32.561,67.439,51.147,48.853,55.99,224,0.875,bilinear,-48.923,-44.473,+4 -wide_resnet50_2,32.480,67.519,51.467,48.533,68.88,224,0.875,bicubic,-48.970,-44.051,+4 -gmlp_s16_224,32.404,67.596,51.832,48.168,19.42,224,0.875,bicubic,-47.238,-42.790,+110 -deit_base_patch16_224,32.367,67.633,51.031,48.969,86.57,224,0.900,bicubic,-49.617,-44.711,-18 -ens_adv_inception_resnet_v2,32.367,67.633,50.431,49.569,55.84,299,0.897,bicubic,-47.611,-44.505,+85 -swin_small_patch4_window7_224,32.355,67.645,50.931,49.069,49.61,224,0.900,bicubic,-50.871,-45.837,-72 -gluon_resnet152_v1s,32.335,67.665,50.528,49.472,60.32,224,0.875,bicubic,-48.685,-44.894,+24 -deit_small_distilled_patch16_224,32.290,67.710,52.109,47.891,22.44,224,0.900,bicubic,-48.912,-43.269,+13 -xcit_tiny_24_p8_224,32.270,67.730,51.913,48.087,12.11,224,1.000,bicubic,-49.624,-44.071,-20 -gluon_seresnext101_64x4d,32.207,67.793,50.331,49.669,88.23,224,0.875,bicubic,-48.663,-44.975,+30 -coat_lite_small,32.135,67.865,49.946,50.054,19.84,224,0.900,bicubic,-50.167,-45.914,-39 -gluon_seresnext101_32x4d,32.115,67.885,51.227,48.773,48.96,224,0.875,bicubic,-48.761,-44.065,+27 -seresnext50_32x4d,32.001,67.999,51.245,48.755,27.56,224,0.875,bicubic,-49.267,-44.381,+5 -deit_base_patch16_384,31.987,68.013,50.557,49.443,86.86,384,1.000,bicubic,-51.119,-45.819,-76 -xcit_tiny_12_p8_224_dist,31.952,68.048,51.434,48.566,6.71,224,1.000,bicubic,-49.262,-44.172,+5 -levit_384,31.879,68.121,50.610,49.390,39.13,224,0.900,bicubic,-50.713,-45.404,-61 -resnetrs101,31.856,68.144,51.019,48.981,63.62,288,0.940,bicubic,-50.438,-44.983,-43 -cspresnext50,31.820,68.180,51.616,48.384,20.57,224,0.875,bilinear,-48.232,-43.334,+69 -tnt_s_patch16_224,31.632,68.368,51.156,48.844,23.76,224,0.900,bicubic,-49.882,-44.588,-17 -eca_nfnet_l0,31.614,68.386,51.606,48.394,24.14,288,1.000,bicubic,-50.978,-44.880,-66 -resnetv2_50x1_bit_distilled,31.610,68.390,51.304,48.696,25.55,224,0.875,bicubic,-51.212,-45.220,-75 -ssl_resnext101_32x4d,31.461,68.539,52.137,47.863,44.18,224,0.875,bilinear,-49.461,-43.593,+16 -inception_v4,31.378,68.622,49.240,50.760,42.68,299,0.875,bicubic,-48.766,-45.732,+59 -rexnet_150,31.374,68.626,51.294,48.706,9.73,224,0.875,bicubic,-48.936,-43.866,+44 -pit_s_224,31.331,68.669,49.693,50.307,23.46,224,0.900,bicubic,-49.769,-45.641,+2 -crossvit_15_240,31.313,68.687,50.192,49.808,27.53,240,0.875,bicubic,-50.213,-45.502,-26 -cait_xxs36_224,31.276,68.724,50.616,49.384,17.30,224,1.000,bicubic,-48.486,-44.252,+78 -crossvit_small_240,31.274,68.726,50.201,49.799,26.86,240,0.875,bicubic,-49.756,-45.265,+2 -convmixer_768_32,31.254,68.746,50.958,49.042,21.11,224,0.960,bicubic,-48.906,-44.116,+52 -cspresnet50,31.254,68.746,51.235,48.765,21.62,256,0.887,bilinear,-48.322,-43.467,+85 -coat_mini,31.213,68.787,49.793,50.207,10.34,224,0.900,bicubic,-50.069,-45.601,-14 -xcit_tiny_12_p8_384_dist,31.166,68.834,50.524,49.476,6.71,384,1.000,bicubic,-51.226,-45.694,-67 -gluon_resnet101_v1s,31.152,68.848,49.828,50.172,44.67,224,0.875,bicubic,-49.130,-45.334,+39 -ecaresnetlight,31.138,68.862,50.262,49.738,30.16,224,0.875,bicubic,-49.316,-44.990,+25 -resmlp_36_distilled_224,31.091,68.909,49.694,50.306,44.69,224,0.875,bicubic,-50.063,-45.802,-12 -ecaresnet50d,31.083,68.917,50.858,49.142,25.58,224,0.875,bicubic,-49.537,-44.450,+14 -tf_efficientnet_cc_b0_8e,31.083,68.917,50.771,49.229,24.01,224,0.875,bicubic,-46.825,-42.885,+168 -ecaresnet50t,31.066,68.934,50.596,49.404,25.57,320,0.950,bicubic,-51.298,-45.546,-70 -resnet50d,31.038,68.962,49.844,50.156,25.58,224,0.875,bicubic,-49.500,-45.316,+14 -gluon_resnet152_v1c,31.017,68.984,48.940,51.060,60.21,224,0.875,bicubic,-48.895,-45.912,+52 -cspdarknet53,31.015,68.985,50.414,49.586,27.64,256,0.887,bilinear,-49.035,-44.678,+47 -gcresnet50t,31.015,68.985,50.131,49.869,25.90,256,0.900,bicubic,-49.923,-45.309,-5 -gluon_resnext101_64x4d,31.003,68.997,48.559,51.441,83.46,224,0.875,bicubic,-49.623,-46.443,+6 -twins_svt_small,31.001,68.999,49.237,50.763,24.06,224,0.900,bicubic,-50.681,-46.441,-50 -ecaresnet101d_pruned,30.908,69.092,50.017,49.983,24.88,224,0.875,bicubic,-49.904,-45.623,-3 -resmlp_24_distilled_224,30.889,69.111,50.184,49.816,30.02,224,0.875,bicubic,-49.871,-45.036,-2 -tf_efficientnet_cc_b1_8e,30.887,69.113,50.076,49.924,39.72,240,0.882,bicubic,-48.439,-44.292,+79 -gluon_resnext101_32x4d,30.885,69.115,48.563,51.437,44.18,224,0.875,bicubic,-49.453,-46.345,+19 -tf_efficientnetv2_b3,30.873,69.127,49.808,50.192,14.36,300,0.904,bicubic,-51.081,-45.976,-61 -tf_efficientnet_lite4,30.840,69.160,50.400,49.600,13.01,380,0.920,bilinear,-50.700,-45.260,-51 -nf_resnet50,30.730,69.270,49.968,50.032,25.56,288,0.940,bicubic,-49.926,-45.368,-3 -ese_vovnet39b,30.696,69.304,49.879,50.121,24.57,224,0.875,bicubic,-48.608,-44.845,+77 -dpn107,30.671,69.329,48.828,51.172,86.92,224,0.875,bicubic,-49.501,-46.076,+27 -xcit_tiny_24_p16_224,30.671,69.329,50.386,49.614,12.12,224,1.000,bicubic,-48.781,-44.502,+67 -tresnet_xl_448,30.625,69.374,49.075,50.925,78.44,448,0.875,bilinear,-52.431,-47.109,-115 -gluon_resnet152_v1b,30.622,69.379,48.523,51.477,60.19,224,0.875,bicubic,-49.058,-46.213,+54 -haloregnetz_b,30.614,69.386,48.999,51.001,11.68,224,0.940,bicubic,-50.428,-46.201,-29 -ssl_resnext50_32x4d,30.596,69.404,50.687,49.313,25.03,224,0.875,bilinear,-49.706,-44.731,+12 -gluon_resnet101_v1d,30.531,69.469,47.977,52.023,44.57,224,0.875,bicubic,-49.873,-47.047,+3 -dpn68b,30.521,69.479,49.136,50.864,12.61,224,0.875,bicubic,-48.695,-45.286,+81 -resnest26d,30.496,69.504,50.665,49.335,17.07,224,0.875,bilinear,-47.982,-43.631,+112 -efficientnet_b2,30.445,69.555,49.698,50.302,9.11,288,1.000,bicubic,-50.165,-45.618,-11 -tf_efficientnet_b1_ap,30.419,69.581,49.555,50.445,7.79,240,0.882,bicubic,-48.855,-44.747,+71 -resnetv2_50,30.409,69.591,48.844,51.156,25.55,224,0.950,bicubic,-49.997,-46.236,-3 -xcit_tiny_12_p16_384_dist,30.392,69.608,50.127,49.873,6.72,384,1.000,bicubic,-50.552,-45.287,-29 -twins_pcpvt_small,30.378,69.622,49.394,50.606,24.11,224,0.900,bicubic,-50.726,-46.248,-40 -visformer_small,30.337,69.663,48.303,51.697,40.22,224,0.900,bicubic,-51.759,-47.575,-85 -pit_xs_distilled_224,30.280,69.720,49.830,50.170,11.00,224,0.900,bicubic,-49.014,-44.544,+65 -convmixer_1024_20_ks9_p14,30.081,69.919,49.928,50.072,24.38,224,0.960,bicubic,-46.863,-43.430,+174 -dpn98,30.065,69.935,48.252,51.748,61.57,224,0.875,bicubic,-49.589,-46.352,+42 -seresnet50,30.061,69.939,49.327,50.673,28.09,224,0.875,bicubic,-50.187,-45.743,+4 -dpn131,30.036,69.964,48.144,51.856,79.25,224,0.875,bicubic,-49.798,-46.568,+29 -efficientnet_el,30.028,69.972,48.840,51.160,10.59,300,0.904,bicubic,-51.278,-46.696,-57 -tf_efficientnet_b2,30.020,69.980,49.592,50.408,9.11,260,0.890,bicubic,-50.048,-45.312,+12 -xcit_tiny_12_p16_224_dist,29.999,70.001,49.681,50.319,6.72,224,1.000,bicubic,-48.581,-44.523,+93 -legacy_senet154,29.989,70.011,48.056,51.944,115.09,224,0.875,bilinear,-51.337,-47.450,-61 -dpn92,29.977,70.023,49.201,50.799,37.67,224,0.875,bicubic,-50.017,-45.635,+12 -resnetv2_101x1_bitm,29.922,70.078,51.129,48.871,44.54,448,1.000,bilinear,-52.408,-45.399,-108 -xception,29.887,70.113,48.716,51.284,22.86,299,0.897,bicubic,-49.161,-45.680,+71 -gluon_senet154,29.881,70.119,47.885,52.115,115.09,224,0.875,bicubic,-51.343,-47.467,-61 -adv_inception_v3,29.820,70.180,47.867,52.133,23.83,299,0.875,bicubic,-47.758,-45.873,+138 -gluon_xception65,29.804,70.196,47.776,52.224,39.92,299,0.903,bicubic,-49.898,-47.092,+27 -resmlp_36_224,29.710,70.290,48.981,51.019,44.69,224,0.875,bicubic,-50.066,-45.905,+21 -resnet50,29.649,70.351,46.753,53.247,25.56,224,0.950,bicubic,-50.733,-47.841,-20 -resnetblur50,29.613,70.386,48.260,51.740,25.56,224,0.875,bicubic,-49.687,-46.376,+46 -jx_nest_tiny,29.555,70.445,46.992,53.008,17.06,224,0.875,bicubic,-51.879,-48.628,-79 -efficientnet_em,29.482,70.518,48.944,51.056,6.90,240,0.882,bicubic,-49.778,-45.848,+50 -gcresnext50ts,29.446,70.554,47.898,52.102,15.67,256,0.900,bicubic,-51.148,-47.282,-36 -resnext101_32x8d,29.437,70.563,48.510,51.490,88.79,224,0.875,bilinear,-49.875,-46.012,+39 -coat_lite_mini,29.427,70.573,47.727,52.273,11.01,224,0.900,bicubic,-49.673,-46.875,+56 -ssl_resnet50,29.425,70.575,49.785,50.215,25.56,224,0.875,bilinear,-49.811,-45.047,+47 -deit_small_patch16_224,29.413,70.587,48.260,51.740,22.05,224,0.900,bicubic,-50.453,-46.796,+5 -cait_xxs24_384,29.405,70.595,48.751,51.249,12.03,384,1.000,bicubic,-51.549,-46.887,-58 -nf_regnet_b1,29.391,70.609,49.447,50.553,10.22,288,0.900,bicubic,-49.905,-45.295,+38 -resnext50_32x4d,29.358,70.642,47.409,52.591,25.03,224,0.875,bicubic,-50.442,-47.205,+8 -swin_tiny_patch4_window7_224,29.342,70.658,47.621,52.379,28.29,224,0.900,bicubic,-52.044,-47.915,-86 -resnet34d,29.325,70.675,48.427,51.573,21.82,224,0.875,bicubic,-47.789,-44.955,+138 -cait_xxs24_224,29.305,70.695,48.535,51.465,11.96,224,1.000,bicubic,-49.071,-45.781,+85 -ecaresnet50d_pruned,29.215,70.785,48.455,51.545,19.94,224,0.875,bicubic,-50.491,-46.419,+9 -tresnet_l_448,29.179,70.821,47.244,52.756,55.99,448,0.875,bilinear,-53.083,-48.736,-124 -gluon_inception_v3,29.134,70.866,46.963,53.037,23.83,299,0.875,bicubic,-49.664,-47.417,+60 -eca_resnet33ts,29.097,70.903,48.814,51.186,19.68,256,0.900,bicubic,-50.999,-46.160,-18 -lambda_resnet50ts,29.097,70.903,46.967,53.033,21.54,256,0.950,bicubic,-52.069,-48.129,-81 -xception71,29.053,70.947,47.443,52.557,42.34,299,0.903,bicubic,-50.831,-47.489,-10 -hrnet_w64,28.992,71.007,47.140,52.860,128.06,224,0.875,bilinear,-50.464,-47.514,+15 -regnetz_b,28.934,71.066,47.244,52.756,9.72,288,0.940,bicubic,-51.784,-48.230,-59 -xcit_tiny_12_p8_224,28.934,71.066,47.543,52.457,6.71,224,1.000,bicubic,-50.776,-47.515,0 -tf_efficientnet_b0_ns,28.908,71.092,48.983,51.017,5.29,224,0.875,bicubic,-49.750,-45.387,+59 -xception65,28.904,71.096,47.161,52.839,39.92,299,0.903,bicubic,-50.642,-47.499,+7 -gluon_resnet101_v1b,28.894,71.106,46.395,53.605,44.55,224,0.875,bicubic,-50.406,-48.135,+20 -tf_efficientnet_b1,28.871,71.129,47.513,52.487,7.79,240,0.882,bicubic,-49.965,-46.681,+47 -vit_small_patch32_384,28.871,71.129,48.912,51.088,22.92,384,1.000,bicubic,-51.615,-46.686,-56 -skresnext50_32x4d,28.855,71.145,46.503,53.497,27.48,224,0.875,bicubic,-51.287,-48.141,-30 -sehalonet33ts,28.768,71.231,46.576,53.424,13.69,256,0.940,bicubic,-52.214,-48.696,-81 -levit_256,28.767,71.234,46.702,53.298,18.89,224,0.900,bicubic,-52.735,-48.778,-111 -tf_efficientnet_lite3,28.668,71.332,47.368,52.632,8.20,300,0.904,bilinear,-51.152,-47.542,-14 -skresnet34,28.654,71.346,47.969,52.031,22.28,224,0.875,bicubic,-48.266,-45.351,+127 -gluon_seresnext50_32x4d,28.649,71.351,46.460,53.540,27.56,224,0.875,bicubic,-51.275,-48.368,-27 -hrnet_w40,28.631,71.369,47.460,52.540,57.56,224,0.875,bilinear,-50.295,-47.018,+36 -tf_efficientnetv2_b0,28.574,71.426,47.097,52.903,7.14,224,0.875,bicubic,-49.796,-46.929,+64 -tv_resnet152,28.539,71.461,47.134,52.866,60.19,224,0.875,bilinear,-49.783,-46.910,+64 -xcit_tiny_12_p16_224,28.529,71.471,47.419,52.581,6.72,224,1.000,bicubic,-48.591,-46.299,+112 -repvgg_b2,28.444,71.556,47.040,52.960,89.02,224,0.875,bilinear,-50.350,-47.386,+39 -hrnet_w48,28.427,71.573,47.588,52.412,77.47,224,0.875,bilinear,-50.895,-46.926,+3 -gluon_resnext50_32x4d,28.383,71.617,45.356,54.644,25.03,224,0.875,bicubic,-50.981,-49.068,0 -efficientnet_b2_pruned,28.362,71.638,47.055,52.945,8.31,260,0.890,bicubic,-51.544,-47.799,-33 -tf_efficientnet_b0_ap,28.354,71.646,47.535,52.465,5.29,224,0.875,bicubic,-48.750,-45.729,+109 -seresnet33ts,28.352,71.648,47.761,52.239,19.78,256,0.900,bicubic,-52.020,-47.353,-63 -dla169,28.344,71.656,47.393,52.607,53.39,224,0.875,bilinear,-50.354,-46.939,+35 -tf_efficientnet_cc_b0_4e,28.344,71.656,47.370,52.630,13.31,224,0.875,bicubic,-48.976,-45.952,+99 -dla102x2,28.330,71.670,46.786,53.214,41.28,224,0.875,bilinear,-51.110,-47.858,-9 -mixnet_xl,28.289,71.711,46.700,53.300,11.90,224,0.875,bicubic,-52.179,-48.232,-75 -gluon_resnet50_v1d,28.238,71.762,45.922,54.078,25.58,224,0.875,bicubic,-50.826,-48.538,+15 -lamhalobotnet50ts_256,28.169,71.831,45.320,54.680,22.57,256,0.950,bicubic,-53.253,-49.736,-126 -gluon_resnet101_v1c,28.120,71.880,45.994,54.006,44.57,224,0.875,bicubic,-51.414,-48.594,-18 -wide_resnet101_2,28.116,71.884,46.425,53.575,126.89,224,0.875,bilinear,-50.738,-47.859,+21 -densenet161,28.098,71.902,46.647,53.353,28.68,224,0.875,bicubic,-49.254,-46.989,+91 -regnetx_320,28.095,71.906,45.128,54.872,107.81,224,0.875,bicubic,-52.153,-49.898,-65 -regnety_320,28.073,71.927,45.458,54.542,145.05,224,0.875,bicubic,-52.721,-49.788,-96 -gernet_s,28.040,71.960,46.745,53.255,8.17,224,0.875,bilinear,-48.866,-46.389,+105 -levit_192,28.038,71.963,45.872,54.128,10.95,224,0.900,bicubic,-51.822,-48.930,-43 -efficientnet_el_pruned,28.006,71.994,46.798,53.202,10.59,300,0.904,bicubic,-52.282,-48.424,-71 -xception41,27.892,72.108,45.894,54.106,26.97,299,0.903,bicubic,-50.640,-48.390,+27 -halo2botnet50ts_256,27.866,72.133,45.185,54.815,22.64,256,0.950,bicubic,-53.654,-50.073,-143 -regnetx_160,27.839,72.161,45.627,54.373,54.28,224,0.875,bicubic,-51.995,-49.197,-45 -tf_inception_v3,27.802,72.198,45.729,54.271,23.83,299,0.875,bicubic,-50.058,-47.917,+62 -res2net101_26w_4s,27.790,72.210,45.194,54.806,45.21,224,0.875,bilinear,-51.402,-49.244,-4 -halonet50ts,27.790,72.210,45.633,54.367,22.73,256,0.940,bicubic,-53.758,-49.679,-150 -tf_efficientnetv2_b1,27.762,72.238,46.584,53.416,8.14,240,0.882,bicubic,-51.712,-48.136,-30 -vit_base_patch16_sam_224,27.719,72.281,45.104,54.896,86.57,224,0.900,bicubic,-52.523,-49.658,-74 -repvgg_b1,27.662,72.338,46.505,53.495,57.42,224,0.875,bilinear,-50.716,-47.599,+31 -hrnet_w44,27.633,72.367,45.833,54.167,67.06,224,0.875,bilinear,-51.257,-48.549,+4 -gcresnet33ts,27.599,72.401,46.218,53.782,19.88,256,0.900,bicubic,-52.487,-48.774,-68 -inception_v3,27.582,72.418,45.265,54.735,23.83,299,0.875,bicubic,-49.882,-48.211,+70 -resmlp_24_224,27.530,72.469,45.705,54.295,30.02,224,0.875,bicubic,-51.856,-48.841,-32 -pit_xs_224,27.472,72.528,45.918,54.082,10.62,224,0.900,bicubic,-50.712,-48.246,+35 -regnetx_080,27.387,72.613,44.998,55.002,39.57,224,0.875,bicubic,-51.833,-49.548,-17 -hrnet_w30,27.383,72.617,46.552,53.448,37.71,224,0.875,bilinear,-50.819,-47.676,+32 -hrnet_w32,27.379,72.621,46.024,53.976,41.23,224,0.875,bilinear,-51.063,-48.134,+18 -gluon_resnet50_v1s,27.328,72.672,45.257,54.743,25.68,224,0.875,bicubic,-51.368,-48.991,+5 -res2net50_26w_8s,27.308,72.692,44.835,55.165,48.40,224,0.875,bilinear,-51.672,-49.449,-9 -densenet201,27.279,72.721,46.210,53.790,20.01,224,0.875,bicubic,-50.011,-47.270,+68 -densenetblur121d,27.250,72.751,46.319,53.681,8.00,224,0.875,bicubic,-49.340,-46.873,+92 -regnety_064,27.226,72.774,44.856,55.144,30.58,224,0.875,bicubic,-52.504,-49.906,-58 -tf_efficientnetv2_b2,27.181,72.819,44.556,55.444,10.10,260,0.890,bicubic,-53.033,-50.488,-86 -efficientnet_b1_pruned,27.173,72.827,45.874,54.126,6.33,240,0.882,bicubic,-51.077,-47.962,+21 -resnet33ts,27.141,72.859,45.346,54.654,19.68,256,0.900,bicubic,-52.073,-49.226,-25 -resnetrs50,27.116,72.884,45.051,54.949,35.69,224,0.910,bicubic,-52.754,-49.919,-72 -rexnet_130,27.114,72.886,45.951,54.049,7.56,224,0.875,bicubic,-52.382,-48.723,-51 -dla102x,27.059,72.941,45.507,54.493,26.31,224,0.875,bilinear,-51.453,-48.719,+1 -resnet32ts,27.047,72.953,45.287,54.713,17.96,256,0.900,bicubic,-51.973,-49.075,-20 -gmixer_24_224,27.016,72.984,44.375,55.625,24.72,224,0.875,bicubic,-51.036,-49.293,+25 -tv_resnet101,26.974,73.026,45.236,54.764,44.55,224,0.875,bilinear,-50.394,-48.324,+54 -resnext50d_32x4d,26.880,73.120,44.456,55.544,25.05,224,0.875,bicubic,-52.784,-50.410,-63 -regnetx_120,26.866,73.134,44.666,55.334,46.11,224,0.875,bicubic,-52.740,-50.064,-61 -rexnet_100,26.864,73.136,45.379,54.621,4.80,224,0.875,bicubic,-50.996,-48.497,+33 -densenet169,26.841,73.159,45.414,54.586,14.15,224,0.875,bicubic,-49.057,-47.610,+91 -regnety_120,26.811,73.189,44.489,55.511,51.82,224,0.875,bicubic,-53.575,-50.633,-115 -regnetx_064,26.805,73.195,44.945,55.055,26.21,224,0.875,bicubic,-52.255,-49.521,-30 -legacy_seresnext101_32x4d,26.797,73.203,43.497,56.503,48.96,224,0.875,bilinear,-53.425,-51.515,-103 -regnetx_032,26.721,73.279,45.255,54.745,15.30,224,0.875,bicubic,-51.429,-48.831,+11 -legacy_seresnet152,26.674,73.326,43.951,56.049,66.82,224,0.875,bilinear,-51.988,-50.425,-16 -densenet121,26.670,73.330,45.892,54.108,7.98,224,0.875,bicubic,-48.898,-46.760,+89 -efficientnet_es,26.621,73.379,45.126,54.874,5.44,224,0.875,bicubic,-51.461,-48.818,+12 -res2net50_26w_6s,26.595,73.405,44.006,55.994,37.05,224,0.875,bilinear,-51.971,-50.112,-16 -repvgg_b1g4,26.583,73.417,45.084,54.916,39.97,224,0.875,bilinear,-51.011,-48.758,+31 -dla60x,26.564,73.436,45.049,54.951,17.35,224,0.875,bilinear,-51.682,-48.975,+1 -regnety_080,26.540,73.460,44.375,55.625,39.18,224,0.875,bicubic,-53.332,-50.457,-93 -coat_lite_tiny,26.530,73.470,44.642,55.358,5.72,224,0.900,bicubic,-50.984,-49.274,+33 -tf_efficientnet_b0,26.483,73.517,45.654,54.346,5.29,224,0.875,bicubic,-50.363,-47.576,+56 -mobilenetv3_large_100_miil,26.469,73.531,44.493,55.507,5.48,224,0.875,bilinear,-51.443,-48.411,+13 -res2net50_14w_8s,26.467,73.533,44.379,55.621,25.06,224,0.875,bilinear,-51.667,-49.477,+2 -gluon_resnet50_v1b,26.426,73.574,44.057,55.943,25.56,224,0.875,bicubic,-51.150,-49.665,+27 -tf_efficientnet_el,26.349,73.650,44.188,55.812,10.59,300,0.904,bicubic,-53.899,-50.936,-120 -lambda_resnet26t,26.340,73.660,44.428,55.572,10.96,256,0.940,bicubic,-52.768,-50.160,-50 -levit_128,26.328,73.672,44.133,55.867,9.21,224,0.900,bicubic,-52.138,-49.877,-22 -resmlp_12_distilled_224,26.318,73.682,44.902,55.098,15.35,224,0.875,bicubic,-51.626,-48.660,+6 -resmlp_big_24_224,26.314,73.686,43.565,56.435,129.14,224,0.875,bicubic,-54.718,-51.457,-169 -regnetx_040,26.245,73.755,44.458,55.542,22.12,224,0.875,bicubic,-52.239,-49.796,-27 -crossvit_9_dagger_240,26.180,73.820,44.548,55.452,8.78,240,0.875,bicubic,-50.810,-49.058,+40 -vit_small_patch32_224,26.178,73.822,45.118,54.882,22.88,224,0.900,bicubic,-49.816,-48.158,+63 -dpn68,26.118,73.882,44.239,55.761,12.61,224,0.875,bicubic,-50.176,-48.723,+60 -efficientnet_b1,26.065,73.935,44.084,55.916,7.79,256,1.000,bicubic,-52.739,-50.262,-43 -eca_halonext26ts,26.053,73.947,44.021,55.979,10.76,256,0.940,bicubic,-52.787,-50.235,-46 -lambda_resnet26rpt_256,26.019,73.981,44.222,55.778,10.99,256,0.940,bicubic,-52.949,-50.206,-51 -hrnet_w18,25.992,74.008,44.813,55.187,21.30,224,0.875,bilinear,-50.766,-48.625,+43 -hardcorenas_f,25.956,74.043,44.224,55.776,8.20,224,0.875,bilinear,-52.148,-49.570,-12 -regnety_040,25.929,74.071,43.850,56.150,20.65,224,0.875,bicubic,-53.299,-50.796,-69 -resnet34,25.894,74.106,43.990,56.010,21.80,224,0.875,bilinear,-49.218,-48.286,+74 -resnet26t,25.876,74.124,44.000,56.000,16.01,256,0.940,bicubic,-51.996,-49.834,-4 -res2net50_26w_4s,25.870,74.130,43.180,56.820,25.70,224,0.875,bilinear,-52.116,-50.668,-11 -tresnet_m_448,25.864,74.136,42.888,57.112,31.39,448,0.875,bilinear,-55.850,-52.682,-219 -coat_tiny,25.862,74.138,43.275,56.725,5.50,224,0.900,bicubic,-52.572,-50.759,-34 -hardcorenas_c,25.837,74.163,44.758,55.242,5.52,224,0.875,bilinear,-51.213,-48.414,+24 -gluon_resnet50_v1c,25.788,74.213,43.039,56.961,25.58,224,0.875,bicubic,-52.218,-50.949,-16 -halonet26t,25.750,74.250,43.239,56.761,12.48,256,0.950,bicubic,-53.384,-51.077,-72 -selecsls60,25.730,74.269,44.066,55.934,30.67,224,0.875,bicubic,-52.254,-49.766,-16 -dla60_res2net,25.674,74.326,43.603,56.397,20.85,224,0.875,bilinear,-52.788,-50.605,-43 -hardcorenas_e,25.664,74.336,43.426,56.574,8.07,224,0.875,bilinear,-52.136,-50.270,-6 -dla60_res2next,25.636,74.364,43.675,56.325,17.03,224,0.875,bilinear,-52.806,-50.521,-42 -ecaresnet26t,25.546,74.454,43.681,56.319,16.01,320,0.950,bicubic,-54.288,-51.403,-122 -resmlp_12_224,25.532,74.468,44.349,55.651,15.35,224,0.875,bicubic,-51.122,-48.823,+30 -tf_efficientnet_lite1,25.530,74.470,43.597,56.403,5.42,240,0.882,bicubic,-51.134,-49.637,+28 -mixnet_l,25.520,74.480,43.483,56.517,7.33,224,0.875,bicubic,-53.460,-50.697,-71 -bat_resnext26ts,25.471,74.529,43.235,56.765,10.73,256,0.900,bicubic,-52.791,-50.865,-39 -tv_resnext50_32x4d,25.469,74.531,42.817,57.183,25.03,224,0.875,bilinear,-52.141,-50.867,-10 -botnet26t_256,25.453,74.547,42.656,57.344,12.49,256,0.950,bicubic,-53.807,-51.878,-91 -tf_mixnet_l,25.438,74.562,42.530,57.470,7.33,224,0.875,bicubic,-53.340,-51.470,-65 -repvgg_a2,25.436,74.564,43.980,56.020,28.21,224,0.875,bilinear,-51.044,-49.040,+30 -hardcorenas_b,25.410,74.590,44.200,55.800,5.18,224,0.875,bilinear,-51.120,-48.552,+27 -res2next50,25.402,74.598,42.516,57.484,24.67,224,0.875,bilinear,-52.840,-51.388,-42 -resnetv2_50x1_bitm,25.345,74.655,45.352,54.648,25.55,448,1.000,bilinear,-54.999,-50.334,-166 -dla102,25.328,74.672,43.819,56.181,33.27,224,0.875,bilinear,-52.700,-50.139,-35 -legacy_seresnet101,25.324,74.676,42.823,57.177,49.33,224,0.875,bilinear,-53.060,-51.441,-53 -hardcorenas_d,25.322,74.678,43.159,56.841,7.50,224,0.875,bilinear,-52.102,-50.327,-9 -selecsls60b,25.314,74.686,43.575,56.425,32.77,224,0.875,bicubic,-53.094,-50.601,-56 -resnest14d,25.294,74.706,44.092,55.908,10.61,224,0.875,bilinear,-50.212,-48.428,+37 -legacy_seresnext50_32x4d,25.226,74.775,41.968,58.032,27.56,224,0.875,bilinear,-53.852,-52.464,-91 -mixer_b16_224,25.143,74.857,41.223,58.777,59.88,224,0.875,bicubic,-51.479,-51.005,+14 -res2net50_48w_2s,25.029,74.971,42.215,57.785,25.29,224,0.875,bilinear,-52.505,-51.343,-19 -efficientnet_b0,25.019,74.981,42.801,57.199,5.29,224,0.875,bicubic,-52.685,-50.721,-27 -gluon_resnet34_v1b,24.929,75.071,42.249,57.751,21.80,224,0.875,bicubic,-49.663,-49.747,+50 -dla60,24.929,75.071,43.310,56.690,22.04,224,0.875,bilinear,-52.105,-50.014,-3 -mobilenetv2_120d,24.925,75.075,43.053,56.947,5.83,224,0.875,bicubic,-52.361,-50.459,-13 -eca_botnext26ts_256,24.864,75.136,42.944,57.056,10.59,256,0.950,bicubic,-54.410,-51.662,-110 -regnety_016,24.815,75.185,42.628,57.372,11.20,224,0.875,bicubic,-53.049,-51.096,-39 -xcit_nano_12_p8_224_dist,24.807,75.193,43.088,56.912,3.05,224,1.000,bicubic,-51.523,-49.998,+13 -seresnext26ts,24.693,75.307,43.102,56.898,10.39,256,0.900,bicubic,-53.155,-50.686,-38 -eca_resnext26ts,24.660,75.340,42.872,57.128,10.30,256,0.900,bicubic,-52.790,-50.706,-24 -tf_efficientnet_lite2,24.530,75.470,42.251,57.749,6.09,260,0.890,bicubic,-52.952,-51.497,-27 -regnetx_016,24.502,75.498,42.514,57.486,9.19,224,0.875,bicubic,-52.444,-50.912,-9 -skresnet18,24.485,75.515,42.545,57.455,11.96,224,0.875,bicubic,-48.537,-48.625,+58 -tf_efficientnet_lite0,24.400,75.600,42.490,57.510,4.65,224,0.875,bicubic,-50.432,-49.686,+35 -pit_ti_distilled_224,24.400,75.600,42.734,57.266,5.10,224,0.900,bicubic,-50.130,-49.366,+40 -hardcorenas_a,24.363,75.637,43.292,56.708,5.26,224,0.875,bilinear,-51.549,-49.222,+12 -tv_resnet50,24.080,75.920,41.325,58.675,25.56,224,0.875,bilinear,-52.072,-51.553,+7 -levit_128s,24.068,75.932,41.017,58.983,7.78,224,0.900,bicubic,-52.470,-51.847,-1 -legacy_seresnet34,24.035,75.965,41.901,58.099,21.96,224,0.875,bilinear,-50.757,-50.227,+31 -xcit_nano_12_p16_384_dist,24.027,75.973,42.308,57.692,3.05,384,1.000,bicubic,-51.441,-50.368,+17 -xcit_nano_12_p8_384_dist,23.966,76.034,41.956,58.044,3.05,384,1.000,bicubic,-53.852,-52.078,-48 -gcresnext26ts,23.952,76.048,41.364,58.636,10.48,256,0.900,bicubic,-53.868,-52.462,-50 -resnet18d,23.936,76.064,42.300,57.700,11.71,224,0.875,bicubic,-48.332,-48.384,+56 -efficientnet_lite0,23.925,76.075,42.097,57.903,4.65,224,0.875,bicubic,-51.579,-50.419,+12 -resnext26ts,23.889,76.111,41.123,58.877,10.30,256,0.900,bicubic,-52.883,-52.007,-16 -efficientnet_es_pruned,23.854,76.146,42.003,57.997,5.44,224,0.875,bicubic,-51.142,-50.437,+22 -tv_densenet121,23.826,76.174,41.921,58.079,7.98,224,0.875,bicubic,-50.920,-50.233,+24 -mobilenetv2_140,23.701,76.299,41.494,58.506,6.11,224,0.875,bicubic,-52.815,-51.506,-9 -dla34,23.699,76.301,41.547,58.453,15.74,224,0.875,bilinear,-50.909,-50.511,+24 -mixnet_m,23.697,76.303,41.158,58.842,5.01,224,0.875,bicubic,-53.577,-52.264,-37 -legacy_seresnet50,23.646,76.354,40.107,59.893,28.09,224,0.875,bilinear,-53.992,-53.639,-55 -ese_vovnet19b_dw,23.545,76.455,41.276,58.724,6.54,224,0.875,bicubic,-53.279,-52.004,-24 -tf_mixnet_m,23.500,76.500,40.991,59.009,5.01,224,0.875,bicubic,-53.458,-52.175,-31 -tv_resnet34,23.490,76.510,41.398,58.602,21.80,224,0.875,bilinear,-49.814,-50.024,+34 -selecsls42b,23.404,76.596,40.659,59.341,32.46,224,0.875,bicubic,-53.786,-52.731,-41 -tf_efficientnet_em,23.394,76.606,40.411,59.589,6.90,240,0.882,bicubic,-54.748,-53.647,-82 -repvgg_b0,23.317,76.683,41.192,58.808,15.82,224,0.875,bilinear,-51.835,-51.222,+5 -xcit_nano_12_p16_224_dist,23.249,76.751,41.388,58.612,3.05,224,1.000,bicubic,-49.063,-49.464,+40 -mobilenetv2_110d,23.076,76.924,40.736,59.264,4.52,224,0.875,bicubic,-51.976,-51.452,+8 -vit_base_patch32_sam_224,23.042,76.958,39.557,60.443,88.22,224,0.900,bicubic,-50.658,-51.451,+24 -deit_tiny_distilled_patch16_224,22.712,77.288,40.773,59.227,5.91,224,0.900,bicubic,-51.812,-51.123,+15 -mobilenetv3_large_100,22.647,77.353,40.781,59.219,5.48,224,0.875,bicubic,-53.127,-51.759,-12 -mobilenetv3_rw,22.636,77.365,40.410,59.590,5.48,224,0.875,bicubic,-52.982,-52.302,-11 -tf_mobilenetv3_large_100,22.563,77.437,39.747,60.253,5.48,224,0.875,bilinear,-52.947,-52.861,-10 -tf_efficientnet_es,22.427,77.573,39.095,60.905,5.44,224,0.875,bicubic,-54.163,-54.117,-30 -xcit_nano_12_p8_224,22.396,77.604,40.675,59.325,3.05,224,1.000,bicubic,-51.516,-51.491,+16 -hrnet_w18_small_v2,22.357,77.644,39.899,60.101,15.60,224,0.875,bilinear,-52.749,-52.513,-2 -convit_tiny,22.256,77.744,39.684,60.316,5.71,224,0.875,bicubic,-50.856,-52.036,+22 -regnety_008,22.121,77.879,38.918,61.082,6.26,224,0.875,bicubic,-54.199,-54.150,-27 -seresnext26t_32x4d,22.009,77.991,38.501,61.499,16.81,224,0.875,bicubic,-55.969,-55.241,-87 -regnety_006,21.983,78.017,38.963,61.037,6.06,224,0.875,bicubic,-53.283,-53.571,-10 -regnetx_008,21.963,78.037,38.936,61.064,7.26,224,0.875,bicubic,-53.093,-53.412,-6 -vit_tiny_r_s16_p8_384,21.942,78.058,39.439,60.561,6.36,384,1.000,bicubic,-54.030,-53.833,-26 -resnet26d,21.930,78.070,38.639,61.361,16.01,224,0.875,bicubic,-54.760,-54.509,-43 -semnasnet_100,21.903,78.097,38.604,61.396,3.89,224,0.875,bicubic,-53.549,-54.002,-16 -pit_ti_224,21.869,78.131,39.537,60.463,4.85,224,0.900,bicubic,-51.053,-51.873,+17 -regnetx_006,21.739,78.260,38.932,61.068,6.20,224,0.875,bicubic,-52.107,-52.750,+6 -vit_tiny_patch16_384,21.728,78.272,39.335,60.665,5.79,384,1.000,bicubic,-56.718,-55.209,-121 -crossvit_9_240,21.706,78.294,39.268,60.732,8.55,240,0.875,bicubic,-52.276,-52.702,+2 -vgg19_bn,21.635,78.365,39.280,60.720,143.68,224,0.875,bilinear,-52.599,-52.574,-3 -ghostnet_100,21.625,78.374,38.714,61.286,5.18,224,0.875,bilinear,-52.359,-52.746,-1 -gluon_resnet18_v1b,21.547,78.453,38.895,61.105,11.69,224,0.875,bicubic,-49.287,-50.865,+25 -fbnetc_100,21.508,78.492,38.146,61.854,5.57,224,0.875,bilinear,-53.612,-54.228,-20 -xcit_nano_12_p16_224,21.437,78.563,39.804,60.196,3.05,224,1.000,bicubic,-48.535,-49.954,+26 -mnasnet_100,21.368,78.632,37.719,62.281,4.38,224,0.875,bicubic,-53.306,-54.379,-13 -ssl_resnet18,21.297,78.703,39.132,60.868,11.69,224,0.875,bilinear,-51.315,-52.288,+8 -resnet26,21.290,78.710,38.040,61.960,16.00,224,0.875,bicubic,-54.002,-54.534,-27 -seresnext26d_32x4d,21.285,78.715,37.332,62.668,16.81,224,0.875,bicubic,-56.301,-56.272,-89 -mixnet_s,21.268,78.732,38.209,61.791,4.13,224,0.875,bicubic,-54.726,-54.583,-43 -legacy_seresnext26_32x4d,21.075,78.925,37.629,62.371,16.79,224,0.875,bicubic,-56.019,-55.681,-72 -crossvit_tiny_240,21.054,78.946,38.071,61.929,7.01,240,0.875,bicubic,-52.290,-53.851,-4 -regnetx_004,20.908,79.092,37.568,62.432,5.16,224,0.875,bicubic,-51.482,-53.250,+3 -spnasnet_100,20.853,79.147,37.912,62.088,4.42,224,0.875,bilinear,-53.225,-53.908,-15 -legacy_seresnet18,20.800,79.200,37.619,62.381,11.78,224,0.875,bicubic,-50.934,-52.719,+10 -mobilenetv2_100,20.775,79.225,37.774,62.226,3.50,224,0.875,bicubic,-52.177,-53.228,-3 -tf_mixnet_s,20.470,79.530,36.639,63.361,4.13,224,0.875,bicubic,-55.214,-55.997,-45 -vit_tiny_patch16_224,20.452,79.548,37.625,62.375,5.72,224,0.900,bicubic,-55.002,-55.227,-39 -regnety_004,20.423,79.577,37.022,62.978,4.34,224,0.875,bicubic,-53.589,-54.744,-19 -hrnet_w18_small,20.366,79.634,37.100,62.900,13.19,224,0.875,bilinear,-51.966,-53.586,-2 -tf_mobilenetv3_large_075,20.362,79.638,36.770,63.230,3.99,224,0.875,bilinear,-53.088,-54.570,-15 -resnet18,20.238,79.762,37.260,62.740,11.69,224,0.875,bilinear,-49.502,-51.826,+11 -mixer_l16_224,20.160,79.840,32.950,67.050,208.20,224,0.875,bicubic,-51.906,-54.704,0 -deit_tiny_patch16_224,20.142,79.858,37.578,62.422,5.72,224,0.900,bicubic,-52.018,-53.534,-2 -tf_mobilenetv3_large_minimal_100,20.120,79.880,36.902,63.098,3.92,224,0.875,bilinear,-52.132,-53.734,-4 -vgg16_bn,19.969,80.031,36.310,63.690,138.37,224,0.875,bilinear,-53.391,-55.182,-19 -vit_tiny_r_s16_p8_224,19.342,80.658,36.061,63.939,6.34,224,0.900,bicubic,-52.456,-54.763,-3 -vgg19,17.929,82.071,33.060,66.940,143.67,224,0.875,bilinear,-54.459,-57.826,-11 -vgg13_bn,17.821,82.179,34.047,65.953,133.05,224,0.875,bilinear,-53.743,-56.327,-2 -vgg16,17.540,82.460,32.767,67.233,138.36,224,0.875,bilinear,-54.044,-57.623,-4 -regnety_002,17.454,82.546,32.453,67.547,3.16,224,0.875,bicubic,-52.828,-57.091,-1 -vgg11_bn,17.409,82.591,33.039,66.961,132.87,224,0.875,bilinear,-52.953,-56.767,-3 -regnetx_002,16.962,83.038,32.237,67.763,2.68,224,0.875,bicubic,-51.788,-56.323,+2 -dla60x_c,16.320,83.680,31.773,68.227,1.32,224,0.875,bilinear,-51.592,-56.645,+3 -tf_mobilenetv3_small_100,16.224,83.776,31.241,68.760,2.54,224,0.875,bilinear,-51.702,-56.435,+1 -vgg13,16.116,83.885,30.987,69.013,133.05,224,0.875,bilinear,-53.822,-58.271,-4 -vgg11,15.728,84.272,30.464,69.536,132.86,224,0.875,bilinear,-53.320,-58.172,-3 -tf_mobilenetv3_small_075,14.942,85.058,29.594,70.406,2.04,224,0.875,bilinear,-50.778,-56.542,+1 -dla46_c,14.677,85.323,29.372,70.628,1.30,224,0.875,bilinear,-50.193,-56.922,+1 -dla46x_c,14.382,85.618,29.197,70.803,1.07,224,0.875,bilinear,-51.594,-57.791,-2 -tf_mobilenetv3_small_minimal_100,13.983,86.017,27.992,72.008,2.04,224,0.875,bilinear,-48.925,-56.254,0 +ig_resnext101_32x48d,58.812,41.188,81.094,18.906,828.41,224,0.875,bilinear,-26.624,-16.482,+38 +ig_resnext101_32x32d,58.382,41.618,80.387,19.613,468.53,224,0.875,bilinear,-26.720,-17.047,+47 +ig_resnext101_32x16d,57.682,42.318,79.909,20.091,194.03,224,0.875,bilinear,-26.490,-17.289,+84 +swsl_resnext101_32x16d,57.460,42.540,80.373,19.627,194.03,224,0.875,bilinear,-25.896,-16.469,+117 +beit_large_patch16_384,56.891,43.109,79.229,20.771,305.00,384,1.000,bicubic,-31.513,-19.379,-3 +beit_large_patch16_512,56.753,43.247,78.897,21.103,305.67,512,1.000,bicubic,-31.849,-19.759,-5 +swsl_resnext101_32x8d,56.431,43.569,78.939,21.061,88.79,224,0.875,bilinear,-27.859,-18.242,+74 +beit_large_patch16_224,54.957,45.043,77.610,22.390,304.43,224,0.900,bicubic,-32.521,-20.696,-2 +ig_resnext101_32x8d,54.931,45.069,77.535,22.465,88.79,224,0.875,bilinear,-27.767,-19.097,+137 +convnext_xlarge_384_in22ft1k,53.689,46.311,75.889,24.111,350.20,384,1.000,bicubic,-33.855,-22.601,-5 +swsl_resnext101_32x4d,53.603,46.397,76.343,23.657,44.18,224,0.875,bilinear,-29.633,-20.421,+115 +vit_large_patch16_384,52.760,47.240,74.698,25.302,304.72,384,1.000,bicubic,-34.320,-23.604,-3 +convnext_xlarge_in22ft1k,52.562,47.438,74.407,25.593,350.20,224,0.875,bicubic,-34.446,-23.801,-3 +vit_large_r50_s32_384,52.039,47.961,73.562,26.438,329.09,384,1.000,bicubic,-34.143,-24.356,+7 +vit_large_patch16_224,51.832,48.168,73.692,26.308,304.33,224,0.900,bicubic,-34.012,-24.132,+12 +convnext_large_384_in22ft1k,51.748,48.252,73.906,26.094,197.77,384,1.000,bicubic,-35.650,-24.460,-9 +tf_efficientnet_l2_ns_475,51.490,48.510,73.930,26.070,480.31,475,0.936,bicubic,-36.742,-24.617,-13 +convnext_base_384_in22ft1k,50.443,49.557,73.554,26.446,88.59,384,1.000,bicubic,-36.123,-24.644,-4 +swsl_resnext50_32x4d,50.433,49.567,73.354,26.646,25.03,224,0.875,bilinear,-31.741,-22.878,+156 +swin_large_patch4_window12_384,50.406,49.594,72.572,27.428,196.74,384,1.000,bicubic,-36.742,-25.668,-12 +convnext_large_in22ft1k,49.954,50.046,72.208,27.792,197.77,224,0.875,bicubic,-36.672,-25.824,-8 +swsl_resnet50,49.520,50.480,72.330,27.670,25.56,224,0.875,bilinear,-31.651,-23.648,+198 +swin_large_patch4_window7_224,48.997,51.003,71.385,28.615,196.53,224,0.900,bicubic,-37.321,-26.507,-4 +convnext_base_in22ft1k,48.765,51.235,71.913,28.087,88.59,224,0.875,bicubic,-37.031,-25.953,+6 +beit_base_patch16_384,48.669,51.331,72.086,27.914,86.74,384,1.000,bicubic,-38.129,-26.050,-13 +swin_base_patch4_window12_384,48.545,51.455,71.821,28.179,87.90,384,1.000,bicubic,-37.887,-26.235,-9 +vit_large_r50_s32_224,48.205,51.795,70.872,29.128,328.99,224,0.900,bicubic,-36.225,-26.294,+48 +tf_efficientnet_b7_ns,47.808,52.192,69.640,30.360,66.35,600,0.949,bicubic,-39.032,-28.454,-17 +tf_efficientnet_b6_ns,47.757,52.243,69.970,30.030,43.04,528,0.942,bicubic,-38.693,-27.912,-13 +tf_efficientnetv2_xl_in21ft1k,47.745,52.255,70.117,29.883,208.12,512,1.000,bicubic,-38.673,-27.749,-12 +vit_base_patch8_224,47.745,52.255,70.933,29.067,86.58,224,0.900,bicubic,-38.047,-26.859,0 +tf_efficientnet_l2_ns,47.570,52.430,70.021,29.979,480.31,800,0.960,bicubic,-40.778,-28.627,-29 +tf_efficientnetv2_l_in21ft1k,46.938,53.062,70.310,29.690,118.52,480,1.000,bicubic,-39.367,-27.668,-13 +beit_base_patch16_224,46.236,53.764,69.891,30.109,86.53,224,0.900,bicubic,-38.992,-27.765,+12 +vit_base_patch16_384,45.904,54.096,68.561,31.439,86.86,384,1.000,bicubic,-40.102,-29.441,-10 +tf_efficientnet_b8_ap,45.768,54.232,67.912,32.087,87.41,672,0.954,bicubic,-39.602,-29.380,+7 +tf_efficientnet_b5_ns,45.615,54.385,67.842,32.158,30.39,456,0.934,bicubic,-40.475,-29.908,-14 +tf_efficientnetv2_m_in21ft1k,45.578,54.422,69.143,30.857,54.14,480,1.000,bicubic,-40.014,-28.603,-4 +swin_base_patch4_window7_224,45.560,54.440,68.512,31.488,87.77,224,0.900,bicubic,-39.690,-29.048,+6 +cait_m48_448,44.245,55.755,64.654,35.346,356.46,448,1.000,bicubic,-42.239,-33.098,-25 +vit_base_r50_s16_384,43.520,56.480,66.781,33.219,98.95,384,1.000,bicubic,-41.452,-30.509,+18 +tf_efficientnet_b4_ns,43.444,56.556,65.511,34.489,19.34,380,0.922,bicubic,-41.718,-31.959,+5 +vit_base_patch16_224,43.227,56.773,65.712,34.288,86.57,224,0.900,bicubic,-41.299,-31.586,+27 +xcit_large_24_p8_384_dist,42.827,57.173,63.401,36.599,188.93,384,1.000,bicubic,-43.173,-34.283,-18 +xcit_large_24_p8_224_dist,42.565,57.435,63.100,36.900,188.93,224,1.000,bicubic,-42.833,-34.310,-3 +tf_efficientnet_b8,42.506,57.494,64.863,35.137,87.41,672,0.954,bicubic,-42.860,-32.529,-2 +cait_m36_384,42.396,57.604,63.322,36.678,271.22,384,1.000,bicubic,-43.656,-34.408,-23 +tf_efficientnet_b7,41.431,58.569,63.022,36.978,66.35,600,0.949,bicubic,-43.503,-34.184,+12 +tf_efficientnet_b7_ap,41.431,58.569,62.876,37.124,66.35,600,0.949,bicubic,-43.689,-34.376,-1 +tf_efficientnet_b5_ap,41.416,58.584,62.080,37.920,30.39,456,0.934,bicubic,-42.840,-34.898,+34 +resnetv2_152x4_bitm,41.304,58.696,64.303,35.697,936.53,480,1.000,bilinear,-43.612,-33.139,+11 +tf_efficientnet_b6_ap,41.095,58.905,62.357,37.643,43.04,528,0.942,bicubic,-43.693,-34.781,+13 +xcit_large_24_p16_384_dist,41.031,58.969,61.241,38.759,189.10,384,1.000,bicubic,-44.725,-36.297,-21 +xcit_large_24_p16_224_dist,40.956,59.044,61.320,38.680,189.10,224,1.000,bicubic,-43.962,-35.812,+7 +tf_efficientnetv2_s_in21ft1k,40.954,59.046,63.847,36.153,21.46,384,1.000,bicubic,-43.344,-33.407,+24 +xcit_medium_24_p8_224_dist,40.492,59.508,60.500,39.500,84.32,224,1.000,bicubic,-44.576,-36.778,-4 +tf_efficientnet_b4_ap,40.484,59.516,61.717,38.283,19.34,380,0.922,bicubic,-42.768,-34.677,+68 +vit_small_r26_s32_384,40.474,59.526,62.744,37.256,36.47,384,1.000,bicubic,-43.572,-34.586,+36 +vit_base_patch16_224_miil,40.170,59.830,60.889,39.111,86.54,224,0.875,bilinear,-44.100,-35.913,+24 +regnetz_e8,40.144,59.856,61.320,38.680,57.70,320,1.000,bicubic,-44.886,-35.944,-4 +convnext_large,40.115,59.885,60.111,39.889,197.77,224,0.875,bicubic,-44.181,-36.783,+19 +xcit_medium_24_p8_384_dist,40.040,59.960,60.455,39.545,84.32,384,1.000,bicubic,-45.774,-37.137,-33 +xcit_medium_24_p16_384_dist,39.903,60.097,60.117,39.883,84.40,384,1.000,bicubic,-45.517,-37.289,-22 +tf_efficientnetv2_l,39.828,60.172,60.807,39.193,118.52,480,1.000,bicubic,-45.662,-36.565,-27 +dm_nfnet_f3,39.818,60.182,60.610,39.390,254.92,416,0.940,bicubic,-45.706,-36.852,-29 +cait_s36_384,39.757,60.243,60.477,39.523,68.37,384,1.000,bicubic,-45.705,-37.003,-28 +efficientnetv2_rw_m,39.675,60.325,59.683,40.317,53.24,416,1.000,bicubic,-45.135,-37.463,-3 +ecaresnet269d,39.590,60.410,60.341,39.659,102.09,352,1.000,bicubic,-45.386,-36.885,-10 +tf_efficientnet_b3_ns,39.582,60.418,61.453,38.547,12.23,300,0.904,bicubic,-44.466,-35.455,+24 +dm_nfnet_f6,39.580,60.420,60.911,39.089,438.36,576,0.956,bicubic,-46.564,-36.819,-48 +dm_nfnet_f5,39.502,60.498,60.225,39.775,377.21,544,0.954,bicubic,-46.312,-37.261,-43 +xcit_small_24_p8_224_dist,39.309,60.691,59.412,40.588,47.63,224,1.000,bicubic,-45.565,-37.776,-9 +xcit_medium_24_p16_224_dist,39.260,60.740,59.467,40.533,84.40,224,1.000,bicubic,-45.020,-37.473,+9 +efficientnet_b4,39.073,60.927,59.608,40.392,19.34,384,1.000,bicubic,-44.351,-36.988,+44 +xcit_small_24_p8_384_dist,38.997,61.003,59.176,40.824,47.63,384,1.000,bicubic,-46.555,-38.396,-40 +resnetv2_152x2_bit_teacher_384,38.971,61.029,62.442,37.558,236.34,384,1.000,bicubic,-44.873,-34.676,+25 +vit_base_patch32_384,38.794,61.206,60.333,39.667,88.30,384,1.000,bicubic,-44.554,-36.081,+46 +eca_nfnet_l2,38.663,61.337,59.439,40.561,56.72,384,1.000,bicubic,-46.033,-37.825,-10 +xcit_small_12_p8_384_dist,38.543,61.457,58.800,41.200,26.21,384,1.000,bicubic,-46.539,-38.480,-28 +xcit_small_24_p16_384_dist,38.499,61.501,58.382,41.618,47.67,384,1.000,bicubic,-46.594,-38.928,-30 +xcit_small_12_p8_224_dist,38.372,61.628,58.799,41.201,26.21,224,1.000,bicubic,-45.860,-38.073,+4 +tf_efficientnet_b5,38.352,61.648,59.911,40.089,30.39,456,0.934,bicubic,-45.460,-36.837,+24 +deit_base_distilled_patch16_384,38.256,61.744,57.791,42.209,87.63,384,1.000,bicubic,-47.166,-39.541,-43 +convnext_base,38.254,61.746,58.203,41.797,88.59,224,0.875,bicubic,-45.562,-38.565,+21 +dm_nfnet_f4,38.230,61.770,58.628,41.372,316.07,512,0.951,bicubic,-47.484,-38.894,-52 +xcit_large_24_p8_224,38.116,61.884,57.883,42.117,188.93,224,1.000,bicubic,-46.276,-38.775,-9 +resnetv2_152x2_bitm,37.985,62.015,61.131,38.869,236.34,448,1.000,bilinear,-46.523,-36.303,-15 +cait_s24_384,37.865,62.135,58.079,41.921,47.06,384,1.000,bicubic,-47.183,-39.269,-34 +resnet152d,37.853,62.147,58.358,41.642,60.21,320,1.000,bicubic,-45.821,-38.380,+25 +tf_efficientnetv2_m,37.825,62.175,58.708,41.292,54.14,480,1.000,bicubic,-47.211,-38.570,-35 +resnetrs420,37.751,62.249,58.209,41.791,191.89,416,1.000,bicubic,-47.259,-38.915,-34 +xcit_small_24_p16_224_dist,37.715,62.285,57.362,42.638,47.67,224,1.000,bicubic,-46.147,-39.362,+8 +resnetrs350,37.678,62.322,58.087,41.913,163.96,384,1.000,bicubic,-47.042,-38.901,-27 +pit_b_distilled_224,37.582,62.418,57.232,42.768,74.79,224,0.900,bicubic,-46.560,-39.624,-6 +xcit_small_12_p16_384_dist,37.578,62.422,57.767,42.233,26.25,384,1.000,bicubic,-47.128,-39.351,-28 +resnet200d,37.503,62.497,58.297,41.703,64.69,320,1.000,bicubic,-46.459,-38.526,+2 +resnetv2_152x2_bit_teacher,37.324,62.676,59.394,40.606,236.34,224,0.875,bicubic,-45.548,-37.176,+42 +resnest269e,37.315,62.685,57.470,42.530,110.93,416,0.928,bicubic,-47.202,-39.516,-27 +resmlp_big_24_224_in22ft1k,37.242,62.758,58.181,41.819,129.14,224,0.875,bicubic,-47.152,-38.939,-23 +vit_small_r26_s32_224,37.226,62.774,59.056,40.944,36.43,224,0.900,bicubic,-44.630,-36.964,+89 +cait_s24_224,37.155,62.845,56.733,43.267,46.92,224,1.000,bicubic,-46.303,-39.831,+16 +vit_base_patch32_224,37.083,62.917,59.292,40.708,88.22,224,0.900,bicubic,-43.639,-36.274,+144 +tf_efficientnet_b3_ap,37.053,62.947,57.236,42.764,12.23,300,0.904,bicubic,-44.773,-38.388,+88 +efficientnetv2_rw_s,37.045,62.955,56.812,43.188,23.94,384,1.000,bicubic,-46.765,-39.910,+3 +convnext_small,37.038,62.962,57.093,42.907,50.22,224,0.875,bicubic,-46.089,-39.331,+25 +xcit_small_12_p16_224_dist,36.977,63.023,56.731,43.269,26.25,224,1.000,bicubic,-46.371,-40.105,+16 +seresnet152d,36.788,63.212,56.719,43.281,66.84,320,1.000,bicubic,-47.570,-40.323,-29 +resnetrs200,36.642,63.358,56.831,43.169,93.21,320,1.000,bicubic,-47.424,-40.042,-18 +regnetz_d32,36.442,63.558,57.376,42.624,27.58,320,0.950,bicubic,-47.580,-39.490,-14 +efficientnet_b3,36.419,63.581,56.843,43.157,12.23,320,1.000,bicubic,-45.824,-39.271,+62 +cait_xs24_384,36.411,63.589,56.944,43.056,26.67,384,1.000,bicubic,-47.651,-39.945,-20 +deit_base_distilled_patch16_224,36.397,63.603,56.617,43.383,87.34,224,0.900,bicubic,-46.993,-39.869,+7 +resnetv2_101x3_bitm,36.385,63.615,59.064,40.936,387.93,448,1.000,bilinear,-48.057,-38.318,-40 +resnetrs270,36.326,63.674,56.568,43.432,129.86,352,1.000,bicubic,-48.108,-40.404,-40 +tresnet_m,36.277,63.723,55.792,44.208,31.39,224,0.875,bilinear,-46.795,-40.326,+18 +mixer_b16_224_miil,36.263,63.737,55.969,44.031,59.88,224,0.875,bilinear,-46.041,-39.747,+52 +tf_efficientnet_b2_ns,36.187,63.813,57.549,42.451,9.11,260,0.890,bicubic,-46.193,-38.699,+44 +resnet152,36.081,63.919,55.548,44.452,60.19,224,0.950,bicubic,-46.743,-40.586,+23 +ecaresnet101d,36.014,63.986,56.157,43.843,44.57,224,0.875,bicubic,-46.158,-39.891,+57 +dm_nfnet_f2,36.006,63.994,55.458,44.542,193.78,352,0.920,bicubic,-49.058,-41.782,-67 +resnest200e,35.933,64.067,55.851,44.149,70.20,320,0.909,bicubic,-47.897,-41.043,-17 +swsl_resnet18,35.864,64.136,58.459,41.541,11.69,224,0.875,bilinear,-37.410,-33.279,+390 +eca_nfnet_l1,35.819,64.181,55.951,44.049,41.41,320,1.000,bicubic,-48.193,-41.077,-26 +xcit_small_24_p8_224,35.550,64.450,54.788,45.212,47.63,224,1.000,bicubic,-48.292,-41.848,-22 +xcit_large_24_p16_224,35.522,64.478,54.764,45.236,189.10,224,1.000,bicubic,-47.370,-41.114,+12 +xcit_small_12_p8_224,35.520,64.480,55.505,44.495,26.21,224,1.000,bicubic,-47.824,-40.975,-2 +vit_small_patch16_384,35.475,64.525,57.541,42.459,22.20,384,1.000,bicubic,-48.331,-39.559,-19 +xcit_medium_24_p8_224,35.448,64.552,54.825,45.175,84.32,224,1.000,bicubic,-48.288,-41.569,-18 +resnest101e,35.373,64.627,55.784,44.216,48.28,256,0.875,bilinear,-47.515,-40.536,+9 +convit_base,35.308,64.692,54.937,45.063,86.54,224,0.875,bicubic,-46.986,-40.997,+39 +xcit_tiny_24_p8_224_dist,35.251,64.749,55.256,44.744,12.11,224,1.000,bicubic,-47.311,-40.912,+22 +twins_svt_large,35.090,64.910,54.721,45.279,99.27,224,0.900,bicubic,-48.590,-41.873,-19 +repvgg_b3,35.051,64.949,54.558,45.442,123.09,224,0.875,bilinear,-45.445,-40.706,+121 +repvgg_b3g4,35.041,64.959,54.770,45.230,83.83,224,0.875,bilinear,-45.171,-40.336,+144 +regnetz_d8,34.996,65.004,55.945,44.055,23.37,320,1.000,bicubic,-49.056,-41.049,-43 +dm_nfnet_f1,34.986,65.014,54.112,45.888,132.63,320,0.910,bicubic,-49.638,-42.986,-67 +xcit_tiny_24_p8_384_dist,34.925,65.075,55.151,44.849,12.11,384,1.000,bicubic,-48.823,-41.559,-28 +resnet101d,34.876,65.124,54.196,45.804,44.57,320,1.000,bicubic,-48.146,-42.250,-2 +resmlp_big_24_distilled_224,34.785,65.215,54.639,45.361,129.14,224,0.875,bicubic,-48.802,-42.009,-24 +vit_large_patch32_384,34.670,65.330,55.727,44.273,306.63,384,1.000,bicubic,-46.840,-40.367,+62 +resnet101,34.666,65.334,54.299,45.701,44.55,224,0.950,bicubic,-47.266,-41.467,+46 +dm_nfnet_f0,34.620,65.380,54.672,45.328,71.49,256,0.900,bicubic,-48.766,-41.902,-22 +ssl_resnext101_32x16d,34.607,65.393,55.931,44.069,194.03,224,0.875,bilinear,-47.247,-40.162,+47 +repvgg_b2g4,34.581,65.419,54.774,45.226,61.76,224,0.875,bilinear,-44.789,-39.912,+182 +resnetv2_101,34.581,65.419,53.145,46.855,44.54,224,0.950,bicubic,-47.461,-42.717,+37 +resnest50d_4s2x40d,34.359,65.641,54.731,45.269,30.42,224,0.875,bicubic,-46.751,-40.833,+78 +resnetrs152,34.359,65.641,53.564,46.436,86.62,320,1.000,bicubic,-49.353,-43.050,-36 +crossvit_18_dagger_408,34.253,65.747,53.084,46.916,44.61,408,1.000,bicubic,-49.939,-43.734,-62 +xcit_medium_24_p16_224,34.241,65.759,53.175,46.825,84.40,224,1.000,bicubic,-48.397,-42.801,-2 +tf_efficientnet_b1_ns,34.165,65.835,55.489,44.511,7.79,240,0.882,bicubic,-47.221,-40.247,+59 +efficientnetv2_rw_t,34.153,65.847,53.127,46.873,13.65,288,1.000,bicubic,-48.191,-43.069,+13 +twins_pcpvt_large,34.108,65.892,54.124,45.876,60.99,224,0.900,bicubic,-49.028,-42.478,-24 +tf_efficientnet_b4,34.060,65.940,54.196,45.804,19.34,380,0.922,bicubic,-48.964,-42.104,-18 +ssl_resnext101_32x8d,34.029,65.971,55.601,44.399,88.79,224,0.875,bilinear,-47.579,-40.441,+43 +tf_efficientnet_b6,34.003,65.997,54.542,45.458,43.04,528,0.942,bicubic,-50.105,-42.344,-66 +nfnet_l0,33.999,66.001,54.359,45.641,35.07,288,1.000,bicubic,-48.752,-42.159,-13 +efficientnet_b3_pruned,33.998,66.002,54.108,45.892,9.86,300,0.904,bicubic,-46.858,-41.136,+84 +xcit_small_24_p16_224,33.996,66.004,53.288,46.712,47.67,224,1.000,bicubic,-48.586,-42.716,-8 +regnety_160,33.972,66.028,53.540,46.460,83.59,288,1.000,bicubic,-49.714,-43.236,-47 +gc_efficientnetv2_rw_t,33.950,66.050,53.220,46.780,13.68,288,1.000,bicubic,-48.516,-43.076,-3 +pit_s_distilled_224,33.935,66.065,53.269,46.731,24.04,224,0.900,bicubic,-48.061,-42.527,+22 +convnext_tiny,33.831,66.169,53.593,46.407,28.59,224,0.875,bicubic,-48.233,-42.241,+16 +xcit_small_12_p16_224,33.770,66.230,53.236,46.764,26.25,224,1.000,bicubic,-48.206,-42.582,+22 +resnetv2_50x3_bitm,33.663,66.337,55.880,44.120,217.32,448,1.000,bilinear,-50.350,-41.244,-68 +resnet51q,33.561,66.439,53.019,46.981,35.70,288,1.000,bilinear,-48.801,-43.161,-3 +xcit_tiny_24_p16_384_dist,33.510,66.490,52.766,47.234,12.12,384,1.000,bicubic,-49.060,-43.518,-14 +convmixer_1536_20,33.424,66.576,53.031,46.969,51.63,224,0.960,bicubic,-47.942,-42.583,+44 +regnety_032,33.408,66.592,52.766,47.234,19.44,288,1.000,bicubic,-49.318,-43.658,-24 +crossvit_18_240,33.402,66.598,52.245,47.755,43.27,240,0.875,bicubic,-48.998,-43.809,-10 +gernet_l,33.357,66.643,51.913,48.087,31.08,256,0.875,bilinear,-47.989,-43.619,+42 +crossvit_15_dagger_408,33.325,66.674,52.186,47.814,28.50,408,1.000,bicubic,-50.506,-44.598,-68 +crossvit_18_dagger_240,33.278,66.722,52.200,47.800,44.27,240,0.875,bicubic,-49.242,-43.872,-17 +tresnet_xl,33.259,66.741,52.294,47.706,78.44,224,0.875,bilinear,-48.799,-43.642,+7 +jx_nest_base,33.215,66.785,51.809,48.191,67.72,224,0.875,bicubic,-50.339,-44.555,-58 +resnest50d_1s4x24d,33.151,66.849,52.850,47.150,25.68,224,0.875,bicubic,-47.835,-42.470,+57 +resnet61q,33.109,66.891,51.758,48.242,36.85,288,1.000,bicubic,-49.417,-44.376,-22 +jx_nest_small,33.050,66.950,51.066,48.934,38.35,224,0.875,bicubic,-50.070,-45.262,-46 +crossvit_base_240,33.035,66.965,51.384,48.616,105.03,240,0.875,bicubic,-49.179,-44.448,-5 +twins_pcpvt_base,33.027,66.973,52.483,47.517,43.83,224,0.900,bicubic,-49.677,-43.865,-34 +rexnet_200,32.986,67.014,52.935,47.065,16.37,224,0.875,bicubic,-48.642,-42.733,+16 +xcit_tiny_24_p16_224_dist,32.986,67.014,52.058,47.942,12.12,224,1.000,bicubic,-47.462,-43.158,+79 +resnest50d,32.972,67.028,52.711,47.289,27.48,224,0.875,bilinear,-48.006,-42.667,+51 +convit_small,32.917,67.083,52.117,47.883,27.78,224,0.875,bicubic,-48.507,-43.625,+23 +crossvit_15_dagger_240,32.903,67.097,51.781,48.219,28.21,240,0.875,bicubic,-49.423,-44.177,-18 +tf_efficientnetv2_s,32.903,67.097,51.724,48.276,21.46,384,1.000,bicubic,-50.983,-44.972,-86 +vit_small_patch16_224,32.870,67.130,53.919,46.081,22.05,224,0.900,bicubic,-48.526,-42.215,+22 +tf_efficientnet_b3,32.862,67.138,52.955,47.045,12.23,300,0.904,bicubic,-48.774,-42.764,+8 +pnasnet5large,32.846,67.154,50.502,49.498,86.06,331,0.911,bicubic,-49.942,-45.538,-46 +twins_svt_base,32.834,67.166,51.563,48.437,56.07,224,0.900,bicubic,-50.302,-44.857,-60 +regnetz_c16,32.826,67.174,53.748,46.252,13.46,320,0.940,bicubic,-49.692,-42.612,-34 +nasnetalarge,32.773,67.227,50.141,49.859,88.75,331,0.911,bicubic,-49.853,-45.906,-43 +gernet_m,32.758,67.242,51.913,48.087,21.14,224,0.875,bilinear,-47.988,-43.271,+53 +inception_resnet_v2,32.736,67.264,50.645,49.355,55.84,299,0.897,bicubic,-47.724,-44.663,+66 +gluon_resnet152_v1d,32.732,67.268,51.084,48.916,60.21,224,0.875,bicubic,-47.744,-44.124,+62 +pit_b_224,32.718,67.282,49.858,50.142,73.76,224,0.900,bicubic,-49.726,-45.855,-37 +tf_efficientnet_b2_ap,32.685,67.315,52.237,47.763,9.11,260,0.890,bicubic,-47.617,-42.791,+76 +fbnetv3_g,32.630,67.370,52.894,47.106,16.62,288,0.950,bilinear,-49.416,-43.170,-16 +tresnet_l,32.563,67.437,51.139,48.861,55.99,224,0.875,bilinear,-48.927,-44.485,+6 +cait_xxs36_384,32.547,67.453,52.225,47.775,17.37,384,1.000,bicubic,-49.645,-43.921,-25 +wide_resnet50_2,32.435,67.565,51.455,48.545,68.88,224,0.875,bicubic,-49.017,-44.075,+5 +gmlp_s16_224,32.420,67.580,51.819,48.181,19.42,224,0.875,bicubic,-47.222,-42.805,+113 +ens_adv_inception_resnet_v2,32.380,67.620,50.425,49.575,55.84,299,0.897,bicubic,-47.600,-44.513,+89 +deit_base_patch16_224,32.359,67.641,50.999,49.001,86.57,224,0.900,bicubic,-49.635,-44.735,-19 +swin_small_patch4_window7_224,32.345,67.655,50.915,49.085,49.61,224,0.900,bicubic,-50.869,-45.409,-77 +gluon_resnet152_v1s,32.337,67.663,50.533,49.467,60.32,224,0.875,bicubic,-48.685,-44.881,+26 +deit_small_distilled_patch16_224,32.292,67.708,52.108,47.892,22.44,224,0.900,bicubic,-48.912,-43.270,+13 +xcit_tiny_24_p8_224,32.270,67.730,51.909,48.091,12.11,224,1.000,bicubic,-49.622,-44.069,-19 +gluon_seresnext101_64x4d,32.196,67.804,50.300,49.700,88.23,224,0.875,bicubic,-48.682,-44.998,+32 +coat_lite_small,32.117,67.883,49.936,50.064,19.84,224,0.900,bicubic,-50.193,-45.912,-42 +gluon_seresnext101_32x4d,32.113,67.887,51.235,48.765,48.96,224,0.875,bicubic,-48.793,-44.061,+29 +deit_base_patch16_384,31.987,68.013,50.549,49.451,86.86,384,1.000,bicubic,-51.119,-45.821,-79 +seresnext50_32x4d,31.968,68.032,51.231,48.769,27.56,224,0.875,bicubic,-49.290,-44.397,+4 +xcit_tiny_12_p8_224_dist,31.944,68.056,51.400,48.600,6.71,224,1.000,bicubic,-49.264,-44.202,+5 +levit_384,31.873,68.127,50.598,49.402,39.13,224,0.900,bicubic,-50.715,-45.424,-65 +resnetrs101,31.856,68.144,51.019,48.981,63.62,288,0.940,bicubic,-50.432,-44.989,-45 +cspresnext50,31.814,68.186,51.618,48.382,20.57,224,0.875,bilinear,-48.236,-43.328,+73 +tnt_s_patch16_224,31.643,68.357,51.147,48.853,23.76,224,0.900,bicubic,-49.873,-44.599,-16 +eca_nfnet_l0,31.610,68.390,51.610,48.390,24.14,288,1.000,bicubic,-50.968,-44.882,-67 +resnetv2_50x1_bit_distilled,31.582,68.418,51.280,48.720,25.55,224,0.875,bicubic,-51.246,-45.246,-79 +ssl_resnext101_32x4d,31.423,68.577,52.127,47.873,44.18,224,0.875,bilinear,-49.503,-43.597,+18 +inception_v4,31.376,68.624,49.244,50.756,42.68,299,0.875,bicubic,-48.794,-45.726,+60 +rexnet_150,31.368,68.632,51.286,48.714,9.73,224,0.875,bicubic,-48.942,-43.880,+47 +crossvit_15_240,31.337,68.663,50.174,49.826,27.53,240,0.875,bicubic,-50.207,-45.514,-24 +pit_s_224,31.325,68.675,49.667,50.333,23.46,224,0.900,bicubic,-49.773,-45.663,+2 +cait_xxs36_224,31.278,68.722,50.612,49.388,17.30,224,1.000,bicubic,-48.472,-44.258,+80 +crossvit_small_240,31.276,68.724,50.194,49.806,26.86,240,0.875,bicubic,-49.746,-45.264,+4 +cspresnet50,31.268,68.732,51.223,48.777,21.62,256,0.887,bilinear,-48.312,-43.481,+89 +convmixer_768_32,31.250,68.750,50.950,49.050,21.11,224,0.960,bicubic,-48.914,-44.122,+54 +coat_mini,31.205,68.795,49.777,50.223,10.34,224,0.900,bicubic,-50.059,-45.617,-14 +xcit_tiny_12_p8_384_dist,31.184,68.816,50.526,49.474,6.71,384,1.000,bicubic,-51.208,-45.696,-70 +ecaresnetlight,31.127,68.873,50.243,49.757,30.16,224,0.875,bicubic,-49.335,-45.009,+27 +gluon_resnet101_v1s,31.117,68.883,49.795,50.205,44.67,224,0.875,bicubic,-49.185,-45.365,+39 +tf_efficientnet_cc_b0_8e,31.087,68.913,50.761,49.239,24.01,224,0.875,bicubic,-46.821,-42.895,+174 +resmlp_36_distilled_224,31.072,68.928,49.688,50.312,44.69,224,0.875,bicubic,-50.082,-45.800,-13 +ecaresnet50d,31.058,68.942,50.854,49.146,25.58,224,0.875,bicubic,-49.544,-44.466,+16 +ecaresnet50t,31.054,68.946,50.573,49.427,25.57,320,0.950,bicubic,-51.294,-45.565,-73 +resnet50d,31.024,68.976,49.810,50.190,25.58,224,0.875,bicubic,-49.502,-45.352,+16 +cspdarknet53,31.018,68.981,50.396,49.604,27.64,256,0.887,bilinear,-49.043,-44.688,+49 +gcresnet50t,31.011,68.989,50.127,49.873,25.90,256,0.900,bicubic,-49.927,-45.325,-2 +gluon_resnext101_64x4d,30.993,69.007,48.553,51.447,83.46,224,0.875,bicubic,-49.611,-46.439,+10 +gluon_resnet152_v1c,30.989,69.011,48.928,51.072,60.21,224,0.875,bicubic,-48.923,-45.920,+53 +twins_svt_small,30.979,69.021,49.231,50.769,24.06,224,0.900,bicubic,-50.705,-46.441,-49 +resnext50_32x4d,30.930,69.070,49.260,50.740,25.03,224,0.950,bicubic,-50.174,-46.066,-18 +resmlp_24_distilled_224,30.903,69.097,50.176,49.824,30.02,224,0.875,bicubic,-49.861,-45.048,0 +tf_efficientnet_cc_b1_8e,30.901,69.099,50.076,49.924,39.72,240,0.882,bicubic,-48.405,-44.294,+86 +ecaresnet101d_pruned,30.899,69.101,50.013,49.987,24.88,224,0.875,bicubic,-49.917,-45.621,-4 +gluon_resnext101_32x4d,30.877,69.123,48.539,51.461,44.18,224,0.875,bicubic,-49.463,-46.387,+20 +tf_efficientnetv2_b3,30.861,69.139,49.814,50.186,14.36,300,0.904,bicubic,-51.107,-45.966,-62 +tf_efficientnet_lite4,30.830,69.170,50.390,49.610,13.01,380,0.920,bilinear,-50.706,-45.278,-49 +nf_resnet50,30.706,69.294,49.962,50.038,25.56,288,0.940,bicubic,-49.948,-45.372,-2 +dpn107,30.678,69.322,48.808,51.192,86.92,224,0.875,bicubic,-49.493,-46.098,+29 +xcit_tiny_24_p16_224,30.678,69.322,50.410,49.590,12.12,224,1.000,bicubic,-48.769,-44.476,+72 +ese_vovnet39b,30.665,69.335,49.877,50.123,24.57,224,0.875,bicubic,-48.645,-44.839,+76 +gluon_resnet152_v1b,30.618,69.382,48.523,51.477,60.19,224,0.875,bicubic,-49.058,-46.215,+57 +tresnet_xl_448,30.616,69.384,49.072,50.928,78.44,448,0.875,bilinear,-52.438,-47.100,-121 +haloregnetz_b,30.602,69.398,49.003,50.997,11.68,224,0.940,bicubic,-50.450,-46.191,-28 +ssl_resnext50_32x4d,30.598,69.402,50.659,49.341,25.03,224,0.875,bilinear,-49.718,-44.751,+11 +gluon_resnet101_v1d,30.519,69.481,47.953,52.047,44.57,224,0.875,bicubic,-49.897,-47.063,+4 +dpn68b,30.517,69.483,49.166,50.834,12.61,224,0.875,bicubic,-48.697,-45.248,+83 +resnest26d,30.488,69.512,50.667,49.333,17.07,224,0.875,bilinear,-47.996,-43.627,+115 +efficientnet_b2,30.437,69.563,49.688,50.312,9.11,288,1.000,bicubic,-50.175,-45.625,-12 +tf_efficientnet_b1_ap,30.419,69.581,49.553,50.447,7.79,240,0.882,bicubic,-48.859,-44.753,+74 +xcit_tiny_12_p16_384_dist,30.405,69.595,50.131,49.869,6.72,384,1.000,bicubic,-50.539,-45.279,-27 +resnetv2_50,30.384,69.616,48.836,51.164,25.55,224,0.950,bicubic,-50.036,-46.238,-3 +twins_pcpvt_small,30.384,69.616,49.390,50.610,24.11,224,0.900,bicubic,-50.704,-46.250,-38 +visformer_small,30.331,69.669,48.291,51.709,40.22,224,0.900,bicubic,-51.775,-47.583,-89 +pit_xs_distilled_224,30.278,69.722,49.838,50.162,11.00,224,0.900,bicubic,-49.026,-44.528,+66 +convmixer_1024_20_ks9_p14,30.097,69.903,49.934,50.066,24.38,224,0.960,bicubic,-46.845,-43.422,+177 +seresnet50,30.073,69.927,49.282,50.718,28.09,224,0.875,bicubic,-50.191,-45.790,+4 +dpn98,30.061,69.939,48.244,51.756,61.57,224,0.875,bicubic,-49.583,-46.354,+43 +tf_efficientnet_b2,30.026,69.974,49.582,50.418,9.11,260,0.890,bicubic,-50.054,-45.326,+15 +dpn131,30.022,69.978,48.124,51.876,79.25,224,0.875,bicubic,-49.802,-46.584,+30 +efficientnet_el,30.020,69.980,48.840,51.160,10.59,300,0.904,bicubic,-51.286,-46.686,-59 +legacy_senet154,30.003,69.997,48.044,51.956,115.09,224,0.875,bilinear,-51.307,-47.446,-61 +xcit_tiny_12_p16_224_dist,30.001,69.999,49.649,50.351,6.72,224,1.000,bicubic,-48.573,-44.549,+95 +halo2botnet50ts_256,29.981,70.019,48.376,51.624,22.64,256,0.950,bicubic,-52.081,-47.266,-97 +dpn92,29.953,70.047,49.174,50.826,37.67,224,0.875,bicubic,-50.063,-45.654,+13 +resnetv2_101x1_bitm,29.896,70.104,51.125,48.875,44.54,448,1.000,bilinear,-52.438,-45.391,-113 +gluon_senet154,29.877,70.123,47.894,52.106,115.09,224,0.875,bicubic,-51.355,-47.454,-62 +xception,29.857,70.143,48.678,51.322,22.86,299,0.897,bicubic,-49.191,-45.713,+73 +adv_inception_v3,29.818,70.182,47.843,52.157,23.83,299,0.875,bicubic,-47.764,-45.895,+141 +gluon_xception65,29.782,70.218,47.759,52.241,39.92,299,0.903,bicubic,-49.933,-47.101,+25 +lamhalobotnet50ts_256,29.745,70.255,48.333,51.667,22.57,256,0.950,bicubic,-51.805,-47.169,-85 +fbnetv3_d,29.743,70.257,49.474,50.526,10.31,256,0.950,bilinear,-49.939,-45.476,+26 +resmlp_36_224,29.694,70.306,48.971,51.029,44.69,224,0.875,bicubic,-50.074,-45.915,+19 +resnet50,29.639,70.361,46.745,53.255,25.56,224,0.950,bicubic,-50.733,-47.865,-23 +resnetblur50,29.610,70.391,48.254,51.746,25.56,224,0.875,bicubic,-49.699,-46.380,+43 +jx_nest_tiny,29.543,70.457,46.990,53.010,17.06,224,0.875,bicubic,-51.879,-48.626,-81 +resnet50_gn,29.531,70.469,48.299,51.701,25.56,224,0.940,bicubic,-50.521,-46.647,-1 +efficientnet_em,29.478,70.522,48.940,51.060,6.90,240,0.882,bicubic,-49.772,-45.856,+49 +resnext101_32x8d,29.439,70.561,48.488,51.512,88.79,224,0.875,bilinear,-49.877,-46.030,+37 +gcresnext50ts,29.433,70.567,47.896,52.104,15.67,256,0.900,bicubic,-51.145,-47.274,-40 +coat_lite_mini,29.427,70.573,47.729,52.271,11.01,224,0.900,bicubic,-49.665,-46.877,+56 +sebotnet33ts_256,29.425,70.575,47.150,52.850,13.70,256,0.940,bicubic,-51.729,-48.018,-73 +deit_small_patch16_224,29.425,70.575,48.256,51.744,22.05,224,0.900,bicubic,-50.441,-46.790,+4 +ssl_resnet50,29.415,70.585,49.808,50.192,25.56,224,0.875,bilinear,-49.805,-45.024,+44 +nf_regnet_b1,29.393,70.607,49.419,50.581,10.22,288,0.900,bicubic,-49.895,-45.331,+38 +cait_xxs24_384,29.384,70.616,48.751,51.249,12.03,384,1.000,bicubic,-51.580,-46.895,-63 +resnet34d,29.332,70.668,48.415,51.585,21.82,224,0.875,bicubic,-47.782,-44.965,+139 +swin_tiny_patch4_window7_224,29.331,70.669,47.604,52.396,28.29,224,0.900,bicubic,-52.043,-47.938,-90 +cait_xxs24_224,29.299,70.701,48.533,51.467,11.96,224,1.000,bicubic,-49.085,-45.777,+83 +ecaresnet50d_pruned,29.216,70.784,48.439,51.561,19.94,224,0.875,bicubic,-50.493,-46.441,+6 +tresnet_l_448,29.162,70.838,47.224,52.776,55.99,448,0.875,bilinear,-53.108,-48.754,-132 +gluon_inception_v3,29.124,70.876,46.957,53.043,23.83,299,0.875,bicubic,-49.682,-47.415,+58 +eca_resnet33ts,29.099,70.901,48.791,51.209,19.68,256,0.900,bicubic,-50.985,-46.179,-21 +lambda_resnet50ts,29.095,70.905,46.981,53.019,21.54,256,0.950,bicubic,-52.055,-48.123,-83 +xception71,29.036,70.964,47.405,52.595,42.34,299,0.903,bicubic,-50.836,-47.517,-10 +hrnet_w64,28.987,71.013,47.138,52.862,128.06,224,0.875,bilinear,-50.481,-47.516,+13 +xcit_tiny_12_p8_224,28.963,71.037,47.519,52.481,6.71,224,1.000,bicubic,-50.731,-47.535,0 +regnetz_b16,28.941,71.059,47.248,52.752,9.72,288,0.940,bicubic,-51.775,-48.230,-63 +tf_efficientnet_b0_ns,28.904,71.096,49.011,50.989,5.29,224,0.875,bicubic,-49.754,-45.365,+57 +xception65,28.894,71.106,47.165,52.835,39.92,299,0.903,bicubic,-50.654,-47.491,+5 +tf_efficientnet_b1,28.884,71.116,47.503,52.497,7.79,240,0.882,bicubic,-49.936,-46.693,+48 +vit_small_patch32_384,28.877,71.123,48.891,51.109,22.92,384,1.000,bicubic,-51.607,-46.707,-59 +gluon_resnet101_v1b,28.871,71.129,46.379,53.621,44.55,224,0.875,bicubic,-50.433,-48.143,+17 +skresnext50_32x4d,28.831,71.169,46.487,53.513,27.48,224,0.875,bicubic,-51.321,-48.157,-33 +sehalonet33ts,28.772,71.228,46.578,53.422,13.69,256,0.940,bicubic,-52.194,-48.694,-83 +levit_256,28.747,71.253,46.717,53.283,18.89,224,0.900,bicubic,-52.759,-48.775,-115 +tf_efficientnet_lite3,28.662,71.338,47.352,52.648,8.20,300,0.904,bilinear,-51.156,-47.562,-16 +skresnet34,28.654,71.346,47.946,52.054,22.28,224,0.875,bicubic,-48.249,-45.374,+128 +gluon_seresnext50_32x4d,28.649,71.351,46.438,53.562,27.56,224,0.875,bicubic,-51.267,-48.396,-28 +hrnet_w40,28.635,71.365,47.456,52.544,57.56,224,0.875,bilinear,-50.281,-47.018,+36 +halonet50ts,28.572,71.428,46.179,53.821,22.73,256,0.940,bicubic,-53.086,-49.431,-129 +tf_efficientnetv2_b0,28.572,71.428,47.079,52.921,7.14,224,0.875,bicubic,-49.788,-46.945,+62 +tv_resnet152,28.531,71.469,47.118,52.882,60.19,224,0.875,bilinear,-49.789,-46.918,+62 +xcit_tiny_12_p16_224,28.519,71.481,47.413,52.587,6.72,224,1.000,bicubic,-48.607,-46.301,+111 +repvgg_b2,28.430,71.570,47.038,52.962,89.02,224,0.875,bilinear,-50.362,-47.380,+36 +hrnet_w48,28.413,71.587,47.582,52.418,77.47,224,0.875,bilinear,-50.887,-46.930,+6 +gluon_resnext50_32x4d,28.379,71.621,45.314,54.686,25.03,224,0.875,bicubic,-50.989,-49.112,-2 +efficientnet_b2_pruned,28.360,71.640,47.053,52.947,8.31,260,0.890,bicubic,-51.556,-47.801,-38 +seresnet33ts,28.350,71.650,47.747,52.253,19.78,256,0.900,bicubic,-52.006,-47.361,-66 +tf_efficientnet_b0_ap,28.350,71.650,47.529,52.471,5.29,224,0.875,bicubic,-48.740,-45.729,+108 +dla102x2,28.315,71.685,46.761,53.239,41.28,224,0.875,bilinear,-51.135,-47.873,-10 +dla169,28.313,71.687,47.391,52.609,53.39,224,0.875,bilinear,-50.381,-46.945,+33 +tf_efficientnet_cc_b0_4e,28.311,71.689,47.368,52.632,13.31,224,0.875,bicubic,-48.993,-45.966,+97 +mixnet_xl,28.287,71.713,46.696,53.304,11.90,224,0.875,bicubic,-52.189,-48.238,-79 +gluon_resnet50_v1d,28.246,71.754,45.878,54.122,25.58,224,0.875,bicubic,-50.830,-48.592,+13 +gluon_resnet101_v1c,28.104,71.896,45.965,54.035,44.57,224,0.875,bicubic,-51.428,-48.615,-20 +wide_resnet101_2,28.102,71.898,46.411,53.589,126.89,224,0.875,bilinear,-50.750,-47.877,+21 +regnetx_320,28.091,71.909,45.126,54.874,107.81,224,0.875,bicubic,-52.149,-49.896,-64 +densenet161,28.083,71.917,46.643,53.357,28.68,224,0.875,bicubic,-49.269,-46.995,+90 +regnety_320,28.061,71.939,45.452,54.548,145.05,224,0.875,bicubic,-52.747,-49.792,-99 +levit_192,28.032,71.968,45.882,54.118,10.95,224,0.900,bicubic,-51.800,-48.904,-42 +gernet_s,28.030,71.970,46.733,53.267,8.17,224,0.875,bilinear,-48.882,-46.401,+103 +efficientnet_el_pruned,28.004,71.996,46.784,53.216,10.59,300,0.904,bicubic,-52.298,-48.434,-75 +xception41,27.886,72.114,45.886,54.114,26.97,299,0.903,bicubic,-50.622,-48.394,+27 +regnetx_160,27.823,72.177,45.625,54.375,54.28,224,0.875,bicubic,-52.025,-49.205,-47 +tf_inception_v3,27.778,72.222,45.719,54.281,23.83,299,0.875,bicubic,-50.076,-47.919,+63 +res2net101_26w_4s,27.772,72.228,45.169,54.831,45.21,224,0.875,bilinear,-51.426,-49.269,-4 +tf_efficientnetv2_b1,27.756,72.243,46.578,53.422,8.14,240,0.882,bicubic,-51.706,-48.148,-28 +vit_base_patch16_224_sam,27.711,72.289,45.106,54.894,86.57,224,0.900,bicubic,-52.531,-49.650,-76 +fbnetv3_b,27.668,72.332,46.983,53.017,8.60,256,0.950,bilinear,-51.482,-47.763,-6 +repvgg_b1,27.652,72.348,46.521,53.479,57.42,224,0.875,bilinear,-50.716,-47.575,+32 +hrnet_w44,27.615,72.385,45.837,54.163,67.06,224,0.875,bilinear,-51.285,-48.535,+5 +gcresnet33ts,27.587,72.412,46.197,53.803,19.88,256,0.900,bicubic,-52.497,-48.803,-70 +inception_v3,27.552,72.448,45.273,54.727,23.83,299,0.875,bicubic,-49.886,-48.203,+72 +resmlp_24_224,27.523,72.477,45.700,54.300,30.02,224,0.875,bicubic,-51.859,-48.847,-32 +pit_xs_224,27.493,72.507,45.906,54.094,10.62,224,0.900,bicubic,-50.695,-48.260,+35 +regnetx_080,27.393,72.607,45.006,54.994,39.57,224,0.875,bicubic,-51.807,-49.546,-15 +hrnet_w30,27.387,72.613,46.544,53.456,37.71,224,0.875,bilinear,-50.811,-47.680,+32 +hrnet_w32,27.363,72.636,45.984,54.016,41.23,224,0.875,bilinear,-51.082,-48.204,+17 +gluon_resnet50_v1s,27.324,72.676,45.226,54.774,25.68,224,0.875,bicubic,-51.384,-49.014,+4 +res2net50_26w_8s,27.320,72.680,44.833,55.167,48.40,224,0.875,bilinear,-51.656,-49.345,-8 +densenet201,27.261,72.739,46.220,53.780,20.01,224,0.875,bicubic,-50.029,-47.258,+70 +densenetblur121d,27.228,72.772,46.295,53.705,8.00,224,0.875,bicubic,-49.354,-46.893,+93 +regnety_064,27.222,72.778,44.855,55.145,30.58,224,0.875,bicubic,-52.498,-49.909,-60 +efficientnet_b1_pruned,27.179,72.821,45.867,54.133,6.33,240,0.882,bicubic,-51.061,-47.965,+24 +tf_efficientnetv2_b2,27.163,72.837,44.572,55.428,10.10,260,0.890,bicubic,-53.043,-50.471,-89 +resnet33ts,27.132,72.868,45.332,54.668,19.68,256,0.900,bicubic,-52.080,-49.240,-26 +resnetrs50,27.104,72.896,45.022,54.978,35.69,224,0.910,bicubic,-52.786,-49.944,-75 +rexnet_130,27.102,72.898,45.933,54.067,7.56,224,0.875,bicubic,-52.398,-48.749,-52 +dla102x,27.059,72.941,45.479,54.521,26.31,224,0.875,bilinear,-51.455,-48.745,0 +resnet32ts,27.051,72.949,45.263,54.737,17.96,256,0.900,bicubic,-51.963,-49.093,-19 +gmixer_24_224,27.033,72.967,44.361,55.639,24.72,224,0.875,bicubic,-51.005,-49.309,+25 +tv_resnet101,26.963,73.037,45.234,54.766,44.55,224,0.875,bilinear,-50.415,-48.308,+55 +regnetx_120,26.870,73.130,44.676,55.324,46.11,224,0.875,bicubic,-52.722,-50.058,-61 +resnext50d_32x4d,26.864,73.136,44.450,55.550,25.05,224,0.875,bicubic,-52.806,-50.414,-65 +rexnet_100,26.839,73.161,45.375,54.625,4.80,224,0.875,bicubic,-51.019,-48.495,+32 +densenet169,26.827,73.173,45.375,54.625,14.15,224,0.875,bicubic,-49.073,-47.655,+92 +legacy_seresnext101_32x4d,26.817,73.183,43.499,56.501,48.96,224,0.875,bilinear,-53.411,-51.515,-103 +tinynet_a,26.805,73.195,45.104,54.896,6.19,192,0.875,bicubic,-50.847,-48.434,+36 +regnetx_064,26.792,73.208,44.921,55.079,26.21,224,0.875,bicubic,-52.274,-49.537,-30 +regnety_120,26.786,73.214,44.448,55.552,51.82,224,0.875,bicubic,-53.584,-50.676,-119 +regnetx_032,26.705,73.295,45.238,54.762,15.30,224,0.875,bicubic,-51.467,-48.850,+10 +densenet121,26.672,73.328,45.888,54.112,7.98,224,0.875,bicubic,-48.910,-46.764,+90 +legacy_seresnet152,26.668,73.332,43.953,56.047,66.82,224,0.875,bilinear,-51.988,-50.415,-17 +efficientnet_es,26.609,73.391,45.122,54.878,5.44,224,0.875,bicubic,-51.451,-48.816,+11 +res2net50_26w_6s,26.597,73.403,44.000,56.000,37.05,224,0.875,bilinear,-51.969,-50.134,-17 +repvgg_b1g4,26.579,73.421,45.088,54.912,39.97,224,0.875,bilinear,-51.007,-48.742,+32 +dla60x,26.558,73.442,45.025,54.975,17.35,224,0.875,bilinear,-51.688,-48.995,0 +coat_lite_tiny,26.517,73.484,44.642,55.358,5.72,224,0.900,bicubic,-50.994,-49.270,+34 +regnety_080,26.517,73.484,44.349,55.651,39.18,224,0.875,bicubic,-53.363,-50.480,-96 +res2net50_14w_8s,26.487,73.513,44.365,55.635,25.06,224,0.875,bilinear,-51.657,-49.485,+2 +tf_efficientnet_b0,26.487,73.513,45.644,54.356,5.29,224,0.875,bicubic,-50.359,-47.582,+55 +mobilenetv3_large_100_miil,26.485,73.515,44.477,55.523,5.48,224,0.875,bilinear,-51.433,-48.429,+11 +gluon_resnet50_v1b,26.436,73.564,44.037,55.963,25.56,224,0.875,bicubic,-51.144,-49.685,+27 +tf_efficientnet_el,26.359,73.641,44.181,55.819,10.59,300,0.904,bicubic,-53.891,-50.949,-123 +lambda_resnet26t,26.338,73.662,44.414,55.586,10.96,256,0.940,bicubic,-52.758,-50.174,-50 +levit_128,26.324,73.676,44.116,55.884,9.21,224,0.900,bicubic,-52.162,-49.890,-25 +resmlp_big_24_224,26.316,73.684,43.557,56.443,129.14,224,0.875,bicubic,-54.716,-51.462,-171 +resmlp_12_distilled_224,26.314,73.686,44.870,55.130,15.35,224,0.875,bicubic,-51.628,-48.688,+4 +regnetx_040,26.239,73.760,44.438,55.562,22.12,224,0.875,bicubic,-52.242,-49.806,-26 +crossvit_9_dagger_240,26.178,73.822,44.538,55.462,8.78,240,0.875,bicubic,-50.799,-49.074,+40 +vit_small_patch32_224,26.165,73.835,45.110,54.890,22.88,224,0.900,bicubic,-49.833,-48.162,+63 +dpn68,26.128,73.873,44.224,55.776,12.61,224,0.875,bicubic,-50.178,-48.750,+60 +efficientnet_b1,26.057,73.943,44.078,55.922,7.79,256,1.000,bicubic,-52.733,-50.264,-42 +lambda_resnet26rpt_256,26.012,73.989,44.184,55.816,10.99,256,0.940,bicubic,-52.957,-50.244,-50 +hrnet_w18,25.988,74.012,44.813,55.187,21.30,224,0.875,bilinear,-50.764,-48.629,+44 +hardcorenas_f,25.953,74.047,44.220,55.780,8.20,224,0.875,bilinear,-52.145,-49.584,-12 +regnety_040,25.913,74.087,43.850,56.150,20.65,224,0.875,bicubic,-53.303,-50.806,-69 +resnet34,25.890,74.110,43.986,56.014,21.80,224,0.875,bilinear,-49.224,-48.298,+76 +res2net50_26w_4s,25.862,74.138,43.157,56.843,25.70,224,0.875,bilinear,-52.094,-50.695,-8 +tresnet_m_448,25.862,74.138,42.874,57.126,31.39,448,0.875,bilinear,-55.842,-52.700,-221 +resnet26t,25.860,74.140,43.953,56.047,16.01,256,0.940,bicubic,-52.004,-49.894,-6 +coat_tiny,25.848,74.152,43.276,56.724,5.50,224,0.900,bicubic,-52.580,-50.761,-34 +hardcorenas_c,25.821,74.179,44.764,55.236,5.52,224,0.875,bilinear,-51.227,-48.392,+25 +gluon_resnet50_v1c,25.782,74.218,43.027,56.973,25.58,224,0.875,bicubic,-52.228,-50.961,-16 +halonet26t,25.768,74.232,43.225,56.775,12.48,256,0.950,bicubic,-53.348,-51.087,-71 +selecsls60,25.729,74.272,44.066,55.934,30.67,224,0.875,bicubic,-52.246,-49.765,-16 +hardcorenas_e,25.664,74.336,43.414,56.586,8.07,224,0.875,bilinear,-52.128,-50.284,-5 +dla60_res2net,25.658,74.342,43.591,56.409,20.85,224,0.875,bilinear,-52.804,-50.615,-44 +dla60_res2next,25.638,74.362,43.668,56.332,17.03,224,0.875,bilinear,-52.804,-50.482,-43 +ecaresnet26t,25.540,74.460,43.664,56.336,16.01,320,0.950,bicubic,-54.308,-51.420,-124 +resmlp_12_224,25.520,74.480,44.340,55.660,15.35,224,0.875,bicubic,-51.136,-48.840,+30 +mixnet_l,25.514,74.486,43.459,56.541,7.33,224,0.875,bicubic,-53.462,-50.835,-69 +tf_efficientnet_lite1,25.509,74.492,43.581,56.419,5.42,240,0.882,bicubic,-51.127,-49.641,+29 +eca_halonext26ts,25.475,74.525,43.188,56.812,10.76,256,0.940,bicubic,-54.013,-51.408,-107 +bat_resnext26ts,25.473,74.527,43.206,56.794,10.73,256,0.900,bicubic,-52.777,-50.892,-40 +botnet26t_256,25.453,74.547,42.636,57.364,12.49,256,0.950,bicubic,-53.799,-51.892,-91 +tv_resnext50_32x4d,25.453,74.547,42.781,57.219,25.03,224,0.875,bilinear,-52.165,-50.915,-11 +repvgg_a2,25.436,74.564,43.947,56.053,28.21,224,0.875,bilinear,-51.024,-49.059,+31 +tf_mixnet_l,25.422,74.578,42.536,57.464,7.33,224,0.875,bicubic,-53.352,-51.460,-67 +hardcorenas_b,25.400,74.600,44.181,55.819,5.18,224,0.875,bilinear,-51.132,-48.574,+26 +res2next50,25.391,74.609,42.506,57.494,24.67,224,0.875,bilinear,-52.859,-51.380,-45 +selecsls60b,25.337,74.662,43.562,56.438,32.77,224,0.875,bicubic,-53.075,-50.608,-53 +legacy_seresnet101,25.334,74.666,42.828,57.172,49.33,224,0.875,bilinear,-53.054,-51.438,-53 +resnetv2_50x1_bitm,25.318,74.682,45.358,54.642,25.55,448,1.000,bilinear,-55.024,-50.323,-171 +dla102,25.314,74.686,43.825,56.175,33.27,224,0.875,bilinear,-52.714,-50.125,-38 +hardcorenas_d,25.308,74.692,43.125,56.875,7.50,224,0.875,bilinear,-52.124,-50.359,-10 +resnest14d,25.267,74.733,44.092,55.908,10.61,224,0.875,bilinear,-50.239,-48.428,+37 +legacy_seresnext50_32x4d,25.214,74.786,41.940,58.060,27.56,224,0.875,bilinear,-53.856,-52.492,-90 +mixer_b16_224,25.129,74.871,41.225,58.775,59.88,224,0.875,bicubic,-51.481,-51.005,+14 +res2net50_48w_2s,25.035,74.965,42.196,57.804,25.29,224,0.875,bilinear,-52.487,-51.356,-19 +efficientnet_b0,25.011,74.989,42.793,57.207,5.29,224,0.875,bicubic,-52.683,-50.741,-28 +mobilenetv2_120d,24.939,75.061,43.062,56.938,5.83,224,0.875,bicubic,-52.357,-50.434,-12 +gluon_resnet34_v1b,24.937,75.063,42.239,57.761,21.80,224,0.875,bicubic,-49.655,-49.749,+51 +dla60,24.933,75.067,43.304,56.696,22.04,224,0.875,bilinear,-52.103,-50.014,-5 +eca_botnext26ts_256,24.868,75.132,42.958,57.042,10.59,256,0.950,bicubic,-54.404,-51.658,-111 +regnety_016,24.823,75.177,42.618,57.382,11.20,224,0.875,bicubic,-53.037,-51.104,-40 +xcit_nano_12_p8_224_dist,24.801,75.199,43.078,56.922,3.05,224,1.000,bicubic,-51.519,-50.008,+13 +seresnext26ts,24.689,75.311,43.106,56.894,10.39,256,0.900,bicubic,-53.163,-50.684,-39 +eca_resnext26ts,24.663,75.337,42.846,57.154,10.30,256,0.900,bicubic,-52.788,-50.720,-25 +tf_efficientnet_lite2,24.532,75.468,42.288,57.712,6.09,260,0.890,bicubic,-52.936,-51.468,-27 +skresnet18,24.489,75.511,42.540,57.460,11.96,224,0.875,bicubic,-48.547,-48.628,+60 +regnetx_016,24.477,75.523,42.506,57.494,9.19,224,0.875,bicubic,-52.473,-50.916,-11 +pit_ti_distilled_224,24.410,75.590,42.736,57.264,5.10,224,0.900,bicubic,-50.122,-49.362,+42 +tf_efficientnet_lite0,24.381,75.620,42.490,57.510,4.65,224,0.875,bicubic,-50.451,-49.686,+35 +hardcorenas_a,24.361,75.639,43.282,56.718,5.26,224,0.875,bilinear,-51.561,-49.234,+12 +tv_resnet50,24.082,75.918,41.312,58.688,25.56,224,0.875,bilinear,-52.056,-51.550,+7 +levit_128s,24.060,75.940,41.003,58.997,7.78,224,0.900,bicubic,-52.460,-51.863,0 +legacy_seresnet34,24.027,75.973,41.903,58.097,21.96,224,0.875,bilinear,-50.783,-50.223,+32 +xcit_nano_12_p16_384_dist,24.007,75.993,42.322,57.678,3.05,384,1.000,bicubic,-51.443,-50.370,+19 +xcit_nano_12_p8_384_dist,23.962,76.038,41.940,58.060,3.05,384,1.000,bicubic,-53.856,-52.104,-49 +gcresnext26ts,23.944,76.056,41.357,58.643,10.48,256,0.900,bicubic,-53.876,-52.475,-51 +resnet18d,23.930,76.070,42.300,57.700,11.71,224,0.875,bicubic,-48.320,-48.388,+58 +efficientnet_lite0,23.905,76.095,42.080,57.920,4.65,224,0.875,bicubic,-51.571,-50.432,+12 +resnext26ts,23.864,76.136,41.105,58.895,10.30,256,0.900,bicubic,-52.916,-52.023,-16 +tv_densenet121,23.844,76.156,41.925,58.075,7.98,224,0.875,bicubic,-50.900,-50.225,+26 +efficientnet_es_pruned,23.830,76.170,41.999,58.001,5.44,224,0.875,bicubic,-51.168,-50.439,+21 +mobilenetv2_140,23.720,76.280,41.480,58.520,6.11,224,0.875,bicubic,-52.788,-51.518,-9 +mixnet_m,23.710,76.290,41.142,58.858,5.01,224,0.875,bicubic,-53.554,-52.282,-36 +dla34,23.669,76.331,41.551,58.449,15.74,224,0.875,bilinear,-50.951,-50.521,+24 +legacy_seresnet50,23.651,76.349,40.089,59.911,28.09,224,0.875,bilinear,-53.981,-53.663,-55 +ese_vovnet19b_dw,23.534,76.466,41.286,58.714,6.54,224,0.875,bicubic,-53.266,-51.986,-24 +tf_mixnet_m,23.483,76.517,40.989,59.011,5.01,224,0.875,bicubic,-53.459,-52.163,-29 +tv_resnet34,23.469,76.531,41.367,58.633,21.80,224,0.875,bilinear,-49.839,-50.058,+35 +selecsls42b,23.361,76.639,40.669,59.331,32.46,224,0.875,bicubic,-53.813,-52.725,-41 +tf_efficientnet_em,23.359,76.641,40.402,59.598,6.90,240,0.882,bicubic,-54.773,-53.644,-82 +repvgg_b0,23.317,76.683,41.178,58.822,15.82,224,0.875,bilinear,-51.839,-51.240,+5 +xcit_nano_12_p16_224_dist,23.255,76.746,41.370,58.630,3.05,224,1.000,bicubic,-49.048,-49.492,+42 +mobilenetv2_110d,23.074,76.926,40.726,59.274,4.52,224,0.875,bicubic,-51.966,-51.458,+7 +vit_base_patch32_224_sam,23.048,76.952,39.572,60.428,88.22,224,0.900,bicubic,-50.644,-51.440,+25 +tinynet_b,23.015,76.985,40.971,59.029,3.73,188,0.875,bicubic,-51.965,-51.215,+8 +deit_tiny_distilled_patch16_224,22.726,77.274,40.771,59.229,5.91,224,0.900,bicubic,-51.786,-51.117,+15 +mobilenetv3_large_100,22.655,77.345,40.777,59.223,5.48,224,0.875,bicubic,-53.107,-51.763,-13 +mobilenetv3_rw,22.634,77.366,40.372,59.628,5.48,224,0.875,bicubic,-52.996,-52.336,-12 +tf_mobilenetv3_large_100,22.563,77.437,39.759,60.241,5.48,224,0.875,bilinear,-52.955,-52.845,-11 +tf_efficientnet_es,22.413,77.587,39.091,60.909,5.44,224,0.875,bicubic,-54.184,-54.113,-31 +xcit_nano_12_p8_224,22.402,77.598,40.653,59.347,3.05,224,1.000,bicubic,-51.516,-51.517,+16 +hrnet_w18_small_v2,22.341,77.659,39.877,60.123,15.60,224,0.875,bilinear,-52.777,-52.539,-4 +convit_tiny,22.274,77.726,39.665,60.335,5.71,224,0.875,bicubic,-50.846,-52.055,+22 +regnety_008,22.117,77.883,38.896,61.104,6.26,224,0.875,bicubic,-54.195,-54.174,-28 +seresnext26t_32x4d,21.983,78.017,38.490,61.510,16.81,224,0.875,bicubic,-55.993,-55.254,-91 +regnety_006,21.971,78.029,38.955,61.045,6.06,224,0.875,bicubic,-53.275,-53.579,-11 +vit_tiny_r_s16_p8_384,21.963,78.037,39.401,60.599,6.36,384,1.000,bicubic,-53.993,-53.861,-26 +regnetx_008,21.942,78.058,38.926,61.074,7.26,224,0.875,bicubic,-53.094,-53.414,-7 +resnet26d,21.904,78.096,38.615,61.385,16.01,224,0.875,bicubic,-54.796,-54.531,-44 +semnasnet_100,21.899,78.101,38.600,61.400,3.89,224,0.875,bicubic,-53.551,-54.000,-18 +pit_ti_224,21.873,78.127,39.541,60.459,4.85,224,0.900,bicubic,-51.037,-51.865,+18 +regnetx_006,21.738,78.263,38.904,61.096,6.20,224,0.875,bicubic,-52.115,-52.770,+6 +vit_tiny_patch16_384,21.722,78.278,39.329,60.671,5.79,384,1.000,bicubic,-56.710,-55.213,-121 +crossvit_9_240,21.686,78.314,39.278,60.722,8.55,240,0.875,bicubic,-52.284,-52.686,+2 +vgg19_bn,21.628,78.373,39.280,60.720,143.68,224,0.875,bilinear,-52.587,-52.568,-3 +ghostnet_100,21.620,78.380,38.692,61.308,5.18,224,0.875,bilinear,-52.358,-52.766,-1 +semnasnet_075,21.576,78.424,38.928,61.072,2.91,224,0.875,bicubic,-51.398,-52.208,+10 +gluon_resnet18_v1b,21.551,78.449,38.887,61.113,11.69,224,0.875,bicubic,-49.287,-50.875,+27 +fbnetc_100,21.490,78.510,38.161,61.839,5.57,224,0.875,bilinear,-53.636,-54.221,-22 +xcit_nano_12_p16_224,21.429,78.571,39.796,60.204,3.05,224,1.000,bicubic,-48.535,-49.964,+28 +mnasnet_100,21.356,78.644,37.719,62.281,4.38,224,0.875,bicubic,-53.298,-54.391,-14 +lcnet_100,21.285,78.715,38.851,61.149,2.95,224,0.875,bicubic,-50.823,-51.527,+16 +resnet26,21.285,78.715,38.020,61.980,16.00,224,0.875,bicubic,-54.017,-54.556,-29 +ssl_resnet18,21.284,78.716,39.109,60.891,11.69,224,0.875,bilinear,-51.322,-52.315,+6 +mixnet_s,21.254,78.746,38.189,61.811,4.13,224,0.875,bicubic,-54.738,-54.609,-45 +seresnext26d_32x4d,21.250,78.750,37.316,62.684,16.81,224,0.875,bicubic,-56.352,-56.292,-94 +legacy_seresnext26_32x4d,21.091,78.909,37.635,62.365,16.79,224,0.875,bicubic,-56.011,-55.681,-76 +crossvit_tiny_240,21.052,78.948,38.055,61.945,7.01,240,0.875,bicubic,-52.284,-53.861,-6 +regnetx_004,20.895,79.106,37.564,62.436,5.16,224,0.875,bicubic,-51.495,-53.266,+2 +spnasnet_100,20.863,79.137,37.896,62.104,4.42,224,0.875,bilinear,-53.223,-53.922,-17 +legacy_seresnet18,20.841,79.159,37.615,62.385,11.78,224,0.875,bicubic,-50.901,-52.717,+10 +mobilenetv2_100,20.769,79.231,37.761,62.239,3.50,224,0.875,bicubic,-52.197,-53.257,-4 +tf_mixnet_s,20.474,79.526,36.605,63.395,4.13,224,0.875,bicubic,-55.176,-56.023,-48 +vit_tiny_patch16_224,20.448,79.552,37.599,62.401,5.72,224,0.900,bicubic,-55.008,-55.247,-43 +regnety_004,20.411,79.589,36.996,63.004,4.34,224,0.875,bicubic,-53.613,-54.758,-21 +hrnet_w18_small,20.370,79.630,37.089,62.911,13.19,224,0.875,bilinear,-51.970,-53.589,-3 +tf_mobilenetv3_large_075,20.366,79.634,36.770,63.230,3.99,224,0.875,bilinear,-53.074,-54.578,-17 +resnet18,20.224,79.776,37.258,62.742,11.69,224,0.875,bilinear,-49.520,-51.824,+12 +mixer_l16_224,20.163,79.837,32.942,67.058,208.20,224,0.875,bicubic,-51.885,-54.722,0 +deit_tiny_patch16_224,20.156,79.844,37.556,62.444,5.72,224,0.900,bicubic,-52.010,-53.564,-3 +tf_mobilenetv3_large_minimal_100,20.124,79.876,36.902,63.098,3.92,224,0.875,bilinear,-52.126,-53.728,-5 +vgg16_bn,19.957,80.043,36.303,63.697,138.37,224,0.875,bilinear,-53.393,-55.202,-21 +vit_tiny_r_s16_p8_224,19.330,80.670,36.049,63.951,6.34,224,0.900,bicubic,-52.458,-54.773,-3 +tinynet_c,19.254,80.746,35.994,64.006,2.46,184,0.875,bicubic,-51.974,-53.756,0 +lcnet_075,18.163,81.837,34.416,65.584,2.36,224,0.875,bicubic,-50.655,-53.958,+7 +vgg19,17.929,82.071,33.054,66.946,143.67,224,0.875,bilinear,-54.437,-57.816,-14 +vgg13_bn,17.802,82.198,34.039,65.961,133.05,224,0.875,bilinear,-53.792,-56.337,-5 +vgg16,17.540,82.460,32.769,67.231,138.36,224,0.875,bilinear,-54.050,-57.613,-5 +regnety_002,17.460,82.540,32.447,67.553,3.16,224,0.875,bicubic,-52.794,-57.093,-2 +vgg11_bn,17.403,82.597,33.009,66.991,132.87,224,0.875,bilinear,-52.957,-56.793,-4 +regnetx_002,16.953,83.047,32.227,67.773,2.68,224,0.875,bicubic,-51.797,-56.329,+2 +tinynet_d,16.677,83.323,32.455,67.545,2.34,152,0.875,bicubic,-50.281,-54.609,+4 +mobilenetv2_050,16.670,83.330,31.952,68.048,1.97,224,0.875,bicubic,-49.272,-54.130,+5 +mnasnet_small,16.573,83.427,32.107,67.893,2.03,224,0.875,bicubic,-49.023,-54.081,+6 +dla60x_c,16.310,83.690,31.761,68.239,1.32,224,0.875,bilinear,-51.582,-56.665,0 +tf_mobilenetv3_small_100,16.227,83.772,31.225,68.775,2.54,224,0.875,bilinear,-51.697,-56.439,-2 +vgg13,16.104,83.896,30.983,69.017,133.05,224,0.875,bilinear,-53.822,-58.263,-8 +vgg11,15.730,84.270,30.453,69.547,132.86,224,0.875,bilinear,-53.298,-58.173,-7 +tf_mobilenetv3_small_075,14.944,85.056,29.570,70.430,2.04,224,0.875,bilinear,-50.770,-56.564,0 +dla46_c,14.657,85.343,29.378,70.622,1.30,224,0.875,bilinear,-50.209,-56.916,+1 +dla46x_c,14.382,85.618,29.191,70.809,1.07,224,0.875,bilinear,-51.588,-57.789,-4 +lcnet_050,14.310,85.690,28.645,71.355,1.88,224,0.875,bicubic,-48.790,-55.737,0 +tf_mobilenetv3_small_minimal_100,13.962,86.038,27.986,72.014,2.04,224,0.875,bilinear,-48.946,-56.248,0 +tinynet_e,12.669,87.331,26.389,73.611,2.04,106,0.875,bicubic,-47.187,-55.377,0 diff --git a/tests/test_models.py b/tests/test_models.py index 77155cfa20..a6fc4a4aae 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -28,14 +28,16 @@ NUM_NON_STD = len(NON_STD_FILTERS) # exclude models that cause specific test failures -if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system(): +if 'GITHUB_ACTIONS' in os.environ: # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models EXCLUDE_FILTERS = [ '*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm', '*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*', - '*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*'] + '*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', 'vit_huge*', 'vit_gi*'] + NON_STD_EXCLUDE_FILTERS = ['vit_huge*', 'vit_gi*'] else: EXCLUDE_FILTERS = [] + NON_STD_EXCLUDE_FILTERS = ['vit_gi*'] TARGET_FWD_SIZE = MAX_FWD_SIZE = 384 TARGET_BWD_SIZE = 128 @@ -168,11 +170,12 @@ def test_model_default_cfgs(model_name, batch_size): assert outputs.shape[-1] == pool_size[-1] and outputs.shape[-2] == pool_size[-2] # check classifier name matches default_cfg - classifier = cfg['classifier'] - if not isinstance(classifier, (tuple, list)): - classifier = classifier, - for c in classifier: - assert c + ".weight" in state_dict.keys(), f'{c} not in model params' + if cfg.get('num_classes', None): + classifier = cfg['classifier'] + if not isinstance(classifier, (tuple, list)): + classifier = classifier, + for c in classifier: + assert c + ".weight" in state_dict.keys(), f'{c} not in model params' # check first conv(s) names match default_cfg first_conv = cfg['first_conv'] @@ -184,7 +187,7 @@ def test_model_default_cfgs(model_name, batch_size): @pytest.mark.timeout(300) -@pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS)) +@pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS, exclude_filters=NON_STD_EXCLUDE_FILTERS)) @pytest.mark.parametrize('batch_size', [1]) def test_model_default_cfgs_non_std(model_name, batch_size): """Run a single forward pass with each model""" @@ -220,11 +223,12 @@ def test_model_default_cfgs_non_std(model_name, batch_size): assert outputs.shape[1] == model.num_features # check classifier name matches default_cfg - classifier = cfg['classifier'] - if not isinstance(classifier, (tuple, list)): - classifier = classifier, - for c in classifier: - assert c + ".weight" in state_dict.keys(), f'{c} not in model params' + if cfg.get('num_classes', None): + classifier = cfg['classifier'] + if not isinstance(classifier, (tuple, list)): + classifier = classifier, + for c in classifier: + assert c + ".weight" in state_dict.keys(), f'{c} not in model params' # check first conv(s) names match default_cfg first_conv = cfg['first_conv'] @@ -255,7 +259,7 @@ def test_model_features_pretrained(model_name, batch_size): EXCLUDE_JIT_FILTERS = [ '*iabn*', 'tresnet*', # models using inplace abn unlikely to ever be scriptable 'dla*', 'hrnet*', 'ghostnet*', # hopefully fix at some point - 'vit_large_*', 'vit_huge_*', + 'vit_large_*', 'vit_huge_*', 'vit_gi*', ] @@ -334,7 +338,7 @@ def _create_fx_model(model, train=False): return fx_model -EXCLUDE_FX_FILTERS = [] +EXCLUDE_FX_FILTERS = ['vit_gi*'] # not enough memory to run fx on more models than other tests if 'GITHUB_ACTIONS' in os.environ: EXCLUDE_FX_FILTERS += [ diff --git a/timm/data/auto_augment.py b/timm/data/auto_augment.py index 8907e50462..121a3fc608 100644 --- a/timm/data/auto_augment.py +++ b/timm/data/auto_augment.py @@ -15,7 +15,7 @@ RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719 AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781 -Hacked together by / Copyright 2020 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import random import math diff --git a/timm/data/dataset.py b/timm/data/dataset.py index d3603a233d..20b663ceca 100644 --- a/timm/data/dataset.py +++ b/timm/data/dataset.py @@ -1,6 +1,6 @@ """ Quick n Simple Image Folder, Tarfile based DataSet -Hacked together by / Copyright 2020 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import torch.utils.data as data import os diff --git a/timm/data/dataset_factory.py b/timm/data/dataset_factory.py index e86bcc29dc..194a597ea9 100644 --- a/timm/data/dataset_factory.py +++ b/timm/data/dataset_factory.py @@ -1,3 +1,7 @@ +""" Dataset Factory + +Hacked together by / Copyright 2021, Ross Wightman +""" import os from torchvision.datasets import CIFAR100, CIFAR10, MNIST, QMNIST, KMNIST, FashionMNIST, ImageNet, ImageFolder diff --git a/timm/data/distributed_sampler.py b/timm/data/distributed_sampler.py index 1609018963..1cefc31d6f 100644 --- a/timm/data/distributed_sampler.py +++ b/timm/data/distributed_sampler.py @@ -108,11 +108,11 @@ def __iter__(self): indices = torch.arange(start=0, end=len(self.dataset)) # produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....] - indices = torch.repeat_interleave(indices, repeats=self.num_repeats, dim=0) + indices = torch.repeat_interleave(indices, repeats=self.num_repeats, dim=0).tolist() # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size > 0: - indices = torch.cat([indices, indices[:padding_size]], dim=0) + indices += indices[:padding_size] assert len(indices) == self.total_size # subsample per rank diff --git a/timm/data/loader.py b/timm/data/loader.py index a02399a3f2..67d8cd8307 100644 --- a/timm/data/loader.py +++ b/timm/data/loader.py @@ -3,7 +3,7 @@ Prefetcher and Fast Collate inspired by NVIDIA APEX example at https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf -Hacked together by / Copyright 2021 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import random from functools import partial diff --git a/timm/data/mixup.py b/timm/data/mixup.py index 7e382c5233..c8789a0c35 100644 --- a/timm/data/mixup.py +++ b/timm/data/mixup.py @@ -8,7 +8,7 @@ Code Reference: CutMix: https://github.com/clovaai/CutMix-PyTorch -Hacked together by / Copyright 2020 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import numpy as np import torch diff --git a/timm/data/random_erasing.py b/timm/data/random_erasing.py index 2fa6315326..98108488da 100644 --- a/timm/data/random_erasing.py +++ b/timm/data/random_erasing.py @@ -3,7 +3,7 @@ Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 Copyright Zhun Zhong & Liang Zheng -Hacked together by / Copyright 2020 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import random import math diff --git a/timm/data/transforms_factory.py b/timm/data/transforms_factory.py index d4815d9527..a5facbf525 100644 --- a/timm/data/transforms_factory.py +++ b/timm/data/transforms_factory.py @@ -1,7 +1,7 @@ """ Transforms Factory Factory methods for building image transforms for use with TIMM (PyTorch Image Models) -Hacked together by / Copyright 2020 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import math diff --git a/timm/models/__init__.py b/timm/models/__init__.py index 9682480c0e..306d5aeb95 100644 --- a/timm/models/__init__.py +++ b/timm/models/__init__.py @@ -5,6 +5,7 @@ from .coat import * from .convit import * from .convmixer import * +from .convnext import * from .crossvit import * from .cspnet import * from .densenet import * diff --git a/timm/models/cait.py b/timm/models/cait.py index 28847bf26e..c09f942c05 100644 --- a/timm/models/cait.py +++ b/timm/models/cait.py @@ -4,6 +4,7 @@ Original code and weights from https://github.com/facebookresearch/deit, copyright below +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. diff --git a/timm/models/convit.py b/timm/models/convit.py index a4aafac0d0..51165aefef 100644 --- a/timm/models/convit.py +++ b/timm/models/convit.py @@ -9,6 +9,8 @@ Paper link: https://arxiv.org/abs/2103.10697 Original code: https://github.com/facebookresearch/convit, original copyright below + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. diff --git a/timm/models/convnext.py b/timm/models/convnext.py new file mode 100644 index 0000000000..5f75647bbd --- /dev/null +++ b/timm/models/convnext.py @@ -0,0 +1,427 @@ +""" ConvNeXt + +Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf + +Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below + +Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman +""" +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# This source code is licensed under the MIT license +from collections import OrderedDict +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from .fx_features import register_notrace_module +from .helpers import named_apply, build_model_with_cfg +from .layers import trunc_normal_, ClassifierHead, SelectAdaptivePool2d, DropPath, ConvMlp, Mlp +from .registry import register_model + + +__all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = dict( + convnext_tiny=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth"), + convnext_small=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth"), + convnext_base=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth"), + convnext_large=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth"), + + convnext_tiny_hnf=_cfg(url=''), + + convnext_base_in22ft1k=_cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth'), + convnext_large_in22ft1k=_cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth'), + convnext_xlarge_in22ft1k=_cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth'), + + convnext_base_384_in22ft1k=_cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + convnext_large_384_in22ft1k=_cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + convnext_xlarge_384_in22ft1k=_cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + + convnext_base_in22k=_cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841), + convnext_large_in22k=_cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", num_classes=21841), + convnext_xlarge_in22k=_cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", num_classes=21841), +) + + +def _is_contiguous(tensor: torch.Tensor) -> bool: + # jit is oh so lovely :/ + # if torch.jit.is_tracing(): + # return True + if torch.jit.is_scripting(): + return tensor.is_contiguous() + else: + return tensor.is_contiguous(memory_format=torch.contiguous_format) + + +@register_notrace_module +class LayerNorm2d(nn.LayerNorm): + r""" LayerNorm for channels_first tensors with 2d spatial dimensions (ie N, C, H, W). + """ + + def __init__(self, normalized_shape, eps=1e-6): + super().__init__(normalized_shape, eps=eps) + + def forward(self, x) -> torch.Tensor: + if _is_contiguous(x): + return F.layer_norm( + x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2) + else: + s, u = torch.var_mean(x, dim=1, unbiased=False, keepdim=True) + x = (x - u) * torch.rsqrt(s + self.eps) + x = x * self.weight[:, None, None] + self.bias[:, None, None] + return x + + +class ConvNeXtBlock(nn.Module): + """ ConvNeXt Block + There are two equivalent implementations: + (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) + (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back + + Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate + choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear + is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. + + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + ls_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__(self, dim, drop_path=0., ls_init_value=1e-6, conv_mlp=False, mlp_ratio=4, norm_layer=None): + super().__init__() + if not norm_layer: + norm_layer = partial(LayerNorm2d, eps=1e-6) if conv_mlp else partial(nn.LayerNorm, eps=1e-6) + mlp_layer = ConvMlp if conv_mlp else Mlp + self.use_conv_mlp = conv_mlp + self.conv_dw = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv + self.norm = norm_layer(dim) + self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=nn.GELU) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.conv_dw(x) + if self.use_conv_mlp: + x = self.norm(x) + x = self.mlp(x) + else: + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + x = self.mlp(x) + x = x.permute(0, 3, 1, 2) + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + x = self.drop_path(x) + shortcut + return x + + +class ConvNeXtStage(nn.Module): + + def __init__( + self, in_chs, out_chs, stride=2, depth=2, dp_rates=None, ls_init_value=1.0, conv_mlp=False, + norm_layer=None, cl_norm_layer=None, cross_stage=False): + super().__init__() + + if in_chs != out_chs or stride > 1: + self.downsample = nn.Sequential( + norm_layer(in_chs), + nn.Conv2d(in_chs, out_chs, kernel_size=stride, stride=stride), + ) + else: + self.downsample = nn.Identity() + + dp_rates = dp_rates or [0.] * depth + self.blocks = nn.Sequential(*[ConvNeXtBlock( + dim=out_chs, drop_path=dp_rates[j], ls_init_value=ls_init_value, conv_mlp=conv_mlp, + norm_layer=norm_layer if conv_mlp else cl_norm_layer) + for j in range(depth)] + ) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + + +class ConvNeXt(nn.Module): + r""" ConvNeXt + A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf + + Args: + in_chans (int): Number of input image channels. Default: 3 + num_classes (int): Number of classes for classification head. Default: 1000 + depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] + dims (tuple(int)): Feature dimension at each stage. Default: [96, 192, 384, 768] + drop_rate (float): Head dropout rate + drop_path_rate (float): Stochastic depth rate. Default: 0. + ls_init_value (float): Init value for Layer Scale. Default: 1e-6. + head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. + """ + + def __init__( + self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, patch_size=4, + depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), ls_init_value=1e-6, conv_mlp=False, + head_init_scale=1., head_norm_first=False, norm_layer=None, drop_rate=0., drop_path_rate=0., + ): + super().__init__() + assert output_stride == 32 + if norm_layer is None: + norm_layer = partial(LayerNorm2d, eps=1e-6) + cl_norm_layer = norm_layer if conv_mlp else partial(nn.LayerNorm, eps=1e-6) + else: + assert conv_mlp,\ + 'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' + cl_norm_layer = norm_layer + + self.num_classes = num_classes + self.drop_rate = drop_rate + self.feature_info = [] + + # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 + self.stem = nn.Sequential( + nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size), + norm_layer(dims[0]) + ) + + self.stages = nn.Sequential() + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + curr_stride = patch_size + prev_chs = dims[0] + stages = [] + # 4 feature resolution stages, each consisting of multiple residual blocks + for i in range(4): + stride = 2 if i > 0 else 1 + # FIXME support dilation / output_stride + curr_stride *= stride + out_chs = dims[i] + stages.append(ConvNeXtStage( + prev_chs, out_chs, stride=stride, + depth=depths[i], dp_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp, + norm_layer=norm_layer, cl_norm_layer=cl_norm_layer) + ) + prev_chs = out_chs + # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 + self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + + self.num_features = prev_chs + if head_norm_first: + # norm -> global pool -> fc ordering, like most other nets (not compat with FB weights) + self.norm_pre = norm_layer(self.num_features) # final norm layer, before pooling + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + else: + # pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights) + self.norm_pre = nn.Identity() + self.head = nn.Sequential(OrderedDict([ + ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), + ('norm', norm_layer(self.num_features)), + ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), + ('drop', nn.Dropout(self.drop_rate)), + ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) + ])) + + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + def get_classifier(self): + return self.head.fc + + def reset_classifier(self, num_classes=0, global_pool='avg'): + if isinstance(self.head, ClassifierHead): + # norm -> global pool -> fc + self.head = ClassifierHead( + self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + else: + # pool -> norm -> fc + self.head = nn.Sequential(OrderedDict([ + ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), + ('norm', self.head.norm), + ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), + ('drop', nn.Dropout(self.drop_rate)), + ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) + ])) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm_pre(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.head(x) + return x + + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + trunc_normal_(module.weight, std=.02) + nn.init.constant_(module.bias, 0) + elif isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=.02) + nn.init.constant_(module.bias, 0) + if name and 'head.' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + + +def checkpoint_filter_fn(state_dict, model): + """ Remap FB checkpoints -> timm """ + if 'model' in state_dict: + state_dict = state_dict['model'] + out_dict = {} + import re + for k, v in state_dict.items(): + k = k.replace('downsample_layers.0.', 'stem.') + k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) + k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) + k = k.replace('dwconv', 'conv_dw') + k = k.replace('pwconv', 'mlp.fc') + k = k.replace('head.', 'head.fc.') + if k.startswith('norm.'): + k = k.replace('norm', 'head.norm') + if v.ndim == 2 and 'head' not in k: + model_shape = model.state_dict()[k].shape + v = v.reshape(model_shape) + out_dict[k] = v + return out_dict + + +def _create_convnext(variant, pretrained=False, **kwargs): + model = build_model_with_cfg( + ConvNeXt, variant, pretrained, + default_cfg=default_cfgs[variant], + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), + **kwargs) + return model + + +@register_model +def convnext_tiny(pretrained=False, **kwargs): + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs) + model = _create_convnext('convnext_tiny', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_tiny_hnf(pretrained=False, **kwargs): + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, **kwargs) + model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_small(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) + model = _create_convnext('convnext_small', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_base(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) + model = _create_convnext('convnext_base', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_large(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) + model = _create_convnext('convnext_large', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_base_in22ft1k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) + model = _create_convnext('convnext_base_in22ft1k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_large_in22ft1k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) + model = _create_convnext('convnext_large_in22ft1k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_xlarge_in22ft1k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) + model = _create_convnext('convnext_xlarge_in22ft1k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_base_384_in22ft1k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) + model = _create_convnext('convnext_base_384_in22ft1k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_large_384_in22ft1k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) + model = _create_convnext('convnext_large_384_in22ft1k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_xlarge_384_in22ft1k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) + model = _create_convnext('convnext_xlarge_384_in22ft1k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_base_in22k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) + model = _create_convnext('convnext_base_in22k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_large_in22k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) + model = _create_convnext('convnext_large_in22k', pretrained=pretrained, **model_args) + return model + + +@register_model +def convnext_xlarge_in22k(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) + model = _create_convnext('convnext_xlarge_in22k', pretrained=pretrained, **model_args) + return model + + + diff --git a/timm/models/crossvit.py b/timm/models/crossvit.py index 37a17dba6b..f533a86c5d 100644 --- a/timm/models/crossvit.py +++ b/timm/models/crossvit.py @@ -12,6 +12,8 @@ Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408 + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright IBM All Rights Reserved. diff --git a/timm/models/cspnet.py b/timm/models/cspnet.py index 897b9f3da5..26c9238928 100644 --- a/timm/models/cspnet.py +++ b/timm/models/cspnet.py @@ -411,9 +411,12 @@ def forward(self, x): def _create_cspnet(variant, pretrained=False, **kwargs): cfg_variant = variant.split('_')[0] + # NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5] + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5) if 'darknet' in variant else (0, 1, 2, 3, 4)) return build_model_with_cfg( CspNet, variant, pretrained, - feature_cfg=dict(flatten_sequential=True), model_cfg=model_cfgs[cfg_variant], + model_cfg=model_cfgs[cfg_variant], + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) diff --git a/timm/models/efficientnet.py b/timm/models/efficientnet.py index 87f50e274c..7272468a2d 100644 --- a/timm/models/efficientnet.py +++ b/timm/models/efficientnet.py @@ -33,7 +33,7 @@ by Mingxing Tan, Quoc Le, and other members of their Google Brain team. Thanks for consistently releasing the models and weights open source! -Hacked together by / Copyright 2021 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ from functools import partial from typing import List @@ -73,16 +73,20 @@ def _cfg(url='', **kwargs): 'mnasnet_140': _cfg(url=''), 'semnasnet_050': _cfg(url=''), - 'semnasnet_075': _cfg(url=''), + 'semnasnet_075': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/semnasnet_075-18710866.pth'), 'semnasnet_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth'), 'semnasnet_140': _cfg(url=''), - 'mnasnet_small': _cfg(url=''), + 'mnasnet_small': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth'), 'mobilenetv2_035': _cfg( url=''), 'mobilenetv2_050': _cfg( - url=''), + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_050-3d30d450.pth', + interpolation='bicubic', + ), 'mobilenetv2_075': _cfg( url=''), 'mobilenetv2_100': _cfg( @@ -726,7 +730,7 @@ def _gen_mobilenet_v2( round_chs_fn = partial(round_channels, multiplier=channel_multiplier) model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head), - num_features=1280 if fix_stem_head else round_chs_fn(1280), + num_features=1280 if fix_stem_head else max(1280, round_chs_fn(1280)), stem_size=32, fix_stem=fix_stem_head, round_chs_fn=round_chs_fn, @@ -1474,7 +1478,7 @@ def efficientnet_b0_g16_evos(pretrained=False, **kwargs): """ EfficientNet-B0 w/ group 16 conv + EvoNorm""" model = _gen_efficientnet( 'efficientnet_b0_g16_evos', group_size=16, channel_divisor=16, - pretrained=pretrained, **kwargs) #norm_layer=partial(EvoNorm2dS0, group_size=16), + pretrained=pretrained, **kwargs) #norm_layer=partial(EvoNorm2dS0, group_size=16), return model diff --git a/timm/models/efficientnet_blocks.py b/timm/models/efficientnet_blocks.py index b842e82c31..34a317571c 100644 --- a/timm/models/efficientnet_blocks.py +++ b/timm/models/efficientnet_blocks.py @@ -1,6 +1,6 @@ """ EfficientNet, MobileNetV3, etc Blocks -Hacked together by / Copyright 2020 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import math diff --git a/timm/models/efficientnet_builder.py b/timm/models/efficientnet_builder.py index 023f10a3e7..67d15a8692 100644 --- a/timm/models/efficientnet_builder.py +++ b/timm/models/efficientnet_builder.py @@ -3,7 +3,7 @@ Assembles EfficieNet and related network feature blocks from string definitions. Handles stride, dilation calculations, and selects feature extraction points. -Hacked together by / Copyright 2020 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ import logging diff --git a/timm/models/helpers.py b/timm/models/helpers.py index 169fe8842a..85be33773b 100644 --- a/timm/models/helpers.py +++ b/timm/models/helpers.py @@ -281,8 +281,8 @@ def load_pretrained( if num_classes != pretrained_cfg['num_classes']: for classifier_name in classifiers: # completely discard fully connected if model num_classes doesn't match pretrained weights - del state_dict[classifier_name + '.weight'] - del state_dict[classifier_name + '.bias'] + state_dict.pop(classifier_name + '.weight', None) + state_dict.pop(classifier_name + '.bias', None) strict = False elif label_offset > 0: for classifier_name in classifiers: diff --git a/timm/models/layers/__init__.py b/timm/models/layers/__init__.py index 1319cc7443..7e9e7b19c7 100644 --- a/timm/models/layers/__init__.py +++ b/timm/models/layers/__init__.py @@ -23,7 +23,7 @@ from .inplace_abn import InplaceAbn from .linear import Linear from .mixed_conv2d import MixedConv2d -from .mlp import Mlp, GluMlp, GatedMlp +from .mlp import Mlp, GluMlp, GatedMlp, ConvMlp from .non_local_attn import NonLocalAttn, BatNonLocalAttn from .norm import GroupNorm, LayerNorm2d from .norm_act import BatchNormAct2d, GroupNormAct diff --git a/timm/models/layers/drop.py b/timm/models/layers/drop.py index fb20dfcef1..14945efcd8 100644 --- a/timm/models/layers/drop.py +++ b/timm/models/layers/drop.py @@ -157,7 +157,6 @@ def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: b class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ - def __init__(self, drop_prob=None, scale_by_keep=True): super(DropPath, self).__init__() self.drop_prob = drop_prob diff --git a/timm/models/levit.py b/timm/models/levit.py index fcb237dd07..23f4df3177 100644 --- a/timm/models/levit.py +++ b/timm/models/levit.py @@ -14,7 +14,7 @@ This version combines both conv/linear models and fixes torchscript compatibility. -Modifications by/coyright Copyright 2021 Ross Wightman +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. diff --git a/timm/models/mobilenetv3.py b/timm/models/mobilenetv3.py index 86f599c1de..e92224abe9 100644 --- a/timm/models/mobilenetv3.py +++ b/timm/models/mobilenetv3.py @@ -1,11 +1,10 @@ - """ MobileNet V3 A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl. Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244 -Hacked together by / Copyright 2021 Ross Wightman +Hacked together by / Copyright 2019, Ross Wightman """ from functools import partial from typing import List @@ -48,9 +47,15 @@ def _cfg(url='', **kwargs): interpolation='bilinear', mean=(0, 0, 0), std=(1, 1, 1), url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mobilenetv3_large_100_in21k_miil.pth', num_classes=11221), - 'mobilenetv3_small_050': _cfg(url=''), - 'mobilenetv3_small_075': _cfg(url=''), - 'mobilenetv3_small_100': _cfg(url=''), + 'mobilenetv3_small_050': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth', + interpolation='bicubic'), + 'mobilenetv3_small_075': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth', + interpolation='bicubic'), + 'mobilenetv3_small_100': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth', + interpolation='bicubic'), 'mobilenetv3_rw': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', @@ -75,14 +80,29 @@ def _cfg(url='', **kwargs): url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), - 'fbnetv3_b': _cfg(), - 'fbnetv3_d': _cfg(), - 'fbnetv3_g': _cfg(), + 'fbnetv3_b': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth', + test_input_size=(3, 256, 256), crop_pct=0.95), + 'fbnetv3_d': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth', + test_input_size=(3, 256, 256), crop_pct=0.95), + 'fbnetv3_g': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth', + input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95), "lcnet_035": _cfg(), - "lcnet_050": _cfg(), - "lcnet_075": _cfg(), - "lcnet_100": _cfg(), + "lcnet_050": _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth', + interpolation='bicubic', + ), + "lcnet_075": _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth', + interpolation='bicubic', + ), + "lcnet_100": _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth', + interpolation='bicubic', + ), "lcnet_150": _cfg(), } @@ -102,9 +122,10 @@ class MobileNetV3(nn.Module): * LCNet - https://arxiv.org/abs/2109.15099 """ - def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True, - pad_type='', act_layer=None, norm_layer=None, se_layer=None, se_from_exp=True, - round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'): + def __init__( + self, block_args, num_classes=1000, in_chans=3, stem_size=16, fix_stem=False, num_features=1280, + head_bias=True, pad_type='', act_layer=None, norm_layer=None, se_layer=None, se_from_exp=True, + round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'): super(MobileNetV3, self).__init__() act_layer = act_layer or nn.ReLU norm_layer = norm_layer or nn.BatchNorm2d @@ -115,7 +136,8 @@ def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_f self.drop_rate = drop_rate # Stem - stem_size = round_chs_fn(stem_size) + if not fix_stem: + stem_size = round_chs_fn(stem_size) self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_act_layer(stem_size, inplace=True) @@ -179,8 +201,8 @@ class MobileNetV3Features(nn.Module): """ def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3, - stem_size=16, output_stride=32, pad_type='', round_chs_fn=round_channels, se_from_exp=True, - act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.): + stem_size=16, fix_stem=False, output_stride=32, pad_type='', round_chs_fn=round_channels, + se_from_exp=True, act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.): super(MobileNetV3Features, self).__init__() act_layer = act_layer or nn.ReLU norm_layer = norm_layer or nn.BatchNorm2d @@ -188,7 +210,8 @@ def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bo self.drop_rate = drop_rate # Stem - stem_size = round_chs_fn(stem_size) + if not fix_stem: + stem_size = round_chs_fn(stem_size) self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size) self.act1 = act_layer(inplace=True) @@ -371,6 +394,7 @@ def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwarg block_args=decode_arch_def(arch_def), num_features=num_features, stem_size=16, + fix_stem=channel_multiplier < 0.75, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=act_layer, @@ -480,6 +504,44 @@ def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): return model +def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + """ LCNet + Essentially a MobileNet-V3 crossed with a MobileNet-V1 + + Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099 + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + arch_def = [ + # stage 0, 112x112 in + ['dsa_r1_k3_s1_c32'], + # stage 1, 112x112 in + ['dsa_r2_k3_s2_c64'], + # stage 2, 56x56 in + ['dsa_r2_k3_s2_c128'], + # stage 3, 28x28 in + ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], + # stage 4, 14x14in + ['dsa_r4_k5_s1_c256'], + # stage 5, 14x14in + ['dsa_r2_k5_s2_c512_se0.25'], + # 7x7 + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + stem_size=16, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'hard_swish'), + se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), + num_features=1280, + **kwargs, + ) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + + @register_model def mobilenetv3_large_075(pretrained=False, **kwargs): """ MobileNet V3 """ diff --git a/timm/models/resnet.py b/timm/models/resnet.py index 6305dbcbb2..8d3d90430e 100644 --- a/timm/models/resnet.py +++ b/timm/models/resnet.py @@ -4,7 +4,8 @@ additional dropout and dynamic global avg/max pool. ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman -Copyright 2020 Ross Wightman + +Copyright 2019, Ross Wightman """ import math from functools import partial @@ -250,6 +251,21 @@ def _cfg(url='', **kwargs): 'resnetblur50': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth', interpolation='bicubic'), + 'resnetblur50d': _cfg( + url='', + interpolation='bicubic', first_conv='conv1.0'), + 'resnetblur101d': _cfg( + url='', + interpolation='bicubic', first_conv='conv1.0'), + 'resnetaa50d': _cfg( + url='', + interpolation='bicubic', first_conv='conv1.0'), + 'resnetaa101d': _cfg( + url='', + interpolation='bicubic', first_conv='conv1.0'), + 'seresnetaa50d': _cfg( + url='', + interpolation='bicubic', first_conv='conv1.0'), # ResNet-RS models 'resnetrs50': _cfg( @@ -288,6 +304,12 @@ def get_padding(kernel_size, stride, dilation=1): return padding +def create_aa(aa_layer, channels, stride=2, enable=True): + if not aa_layer or not enable: + return nn.Identity() + return aa_layer(stride) if issubclass(aa_layer, nn.AvgPool2d) else aa_layer(channels=channels, stride=stride) + + class BasicBlock(nn.Module): expansion = 1 @@ -309,7 +331,7 @@ def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, b self.bn1 = norm_layer(first_planes) self.drop_block = drop_block() if drop_block is not None else nn.Identity() self.act1 = act_layer(inplace=True) - self.aa = aa_layer(channels=first_planes, stride=stride) if use_aa else nn.Identity() + self.aa = create_aa(aa_layer, channels=first_planes, stride=stride, enable=use_aa) self.conv2 = nn.Conv2d( first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False) @@ -376,7 +398,7 @@ def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, b self.bn2 = norm_layer(width) self.drop_block = drop_block() if drop_block is not None else nn.Identity() self.act2 = act_layer(inplace=True) - self.aa = aa_layer(channels=width, stride=stride) if use_aa else nn.Identity() + self.aa = create_aa(aa_layer, channels=width, stride=stride, enable=use_aa) self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False) self.bn3 = norm_layer(outplanes) @@ -606,19 +628,22 @@ def __init__(self, block, layers, num_classes=1000, in_chans=3, self.act1 = act_layer(inplace=True) self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')] - # Stem Pooling + # Stem pooling. The name 'maxpool' remains for weight compatibility. if replace_stem_pool: self.maxpool = nn.Sequential(*filter(None, [ nn.Conv2d(inplanes, inplanes, 3, stride=1 if aa_layer else 2, padding=1, bias=False), - aa_layer(channels=inplanes, stride=2) if aa_layer else None, + create_aa(aa_layer, channels=inplanes, stride=2), norm_layer(inplanes), act_layer(inplace=True) ])) else: if aa_layer is not None: - self.maxpool = nn.Sequential(*[ - nn.MaxPool2d(kernel_size=3, stride=1, padding=1), - aa_layer(channels=inplanes, stride=2)]) + if issubclass(aa_layer, nn.AvgPool2d): + self.maxpool = aa_layer(2) + else: + self.maxpool = nn.Sequential(*[ + nn.MaxPool2d(kernel_size=3, stride=1, padding=1), + aa_layer(channels=inplanes, stride=2)]) else: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) @@ -1328,6 +1353,56 @@ def resnetblur50(pretrained=False, **kwargs): return _create_resnet('resnetblur50', pretrained, **model_args) +@register_model +def resnetblur50d(pretrained=False, **kwargs): + """Constructs a ResNet-50-D model with blur anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d, + stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnetblur50d', pretrained, **model_args) + + +@register_model +def resnetblur101d(pretrained=False, **kwargs): + """Constructs a ResNet-101-D model with blur anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=BlurPool2d, + stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnetblur101d', pretrained, **model_args) + + +@register_model +def resnetaa50d(pretrained=False, **kwargs): + """Constructs a ResNet-50-D model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, + stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnetaa50d', pretrained, **model_args) + + +@register_model +def resnetaa101d(pretrained=False, **kwargs): + """Constructs a ResNet-101-D model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=nn.AvgPool2d, + stem_width=32, stem_type='deep', avg_down=True, **kwargs) + return _create_resnet('resnetaa101d', pretrained, **model_args) + + +@register_model +def seresnetaa50d(pretrained=False, **kwargs): + """Constructs a SE=ResNet-50-D model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, + stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se'), **kwargs) + return _create_resnet('seresnetaa50d', pretrained, **model_args) + + @register_model def seresnet18(pretrained=False, **kwargs): model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='se'), **kwargs) diff --git a/timm/models/swin_transformer.py b/timm/models/swin_transformer.py index 2b8747373d..c3151a746e 100644 --- a/timm/models/swin_transformer.py +++ b/timm/models/swin_transformer.py @@ -4,6 +4,7 @@ Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # -------------------------------------------------------- # Swin Transformer diff --git a/timm/models/vgg.py b/timm/models/vgg.py index 0b1c16ba7c..688ab5756a 100644 --- a/timm/models/vgg.py +++ b/timm/models/vgg.py @@ -179,8 +179,8 @@ def _filter_fn(state_dict): def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG: cfg = variant.split('_')[0] - # NOTE: VGG is one of the only models with stride==1 features, so indices are offset from other models - out_indices = kwargs.get('out_indices', (0, 1, 2, 3, 4, 5)) + # NOTE: VGG is one of few models with stride==1 features w/ 6 out_indices [0..5] + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5)) model = build_model_with_cfg( VGG, variant, pretrained, model_cfg=cfgs[cfg], diff --git a/timm/models/visformer.py b/timm/models/visformer.py index 66d50dc72a..506db56e42 100644 --- a/timm/models/visformer.py +++ b/timm/models/visformer.py @@ -4,6 +4,7 @@ From original at https://github.com/danczs/Visformer +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ from copy import deepcopy @@ -23,7 +24,7 @@ def _cfg(url='', **kwargs): return { 'url': url, - 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head', diff --git a/timm/models/vision_transformer.py b/timm/models/vision_transformer.py index e7ce18663c..1bfe30cb13 100644 --- a/timm/models/vision_transformer.py +++ b/timm/models/vision_transformer.py @@ -20,7 +20,7 @@ * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert -Hacked together by / Copyright 2021 Ross Wightman +Hacked together by / Copyright 2020, Ross Wightman """ import math import logging @@ -105,6 +105,12 @@ def _cfg(url='', **kwargs): 'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', input_size=(3, 384, 384), crop_pct=1.0), + 'vit_huge_patch14_224': _cfg(url=''), + 'vit_giant_patch14_224': _cfg(url=''), + 'vit_gigantic_patch14_224': _cfg(url=''), + + 'vit_base2_patch32_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95), + # patch models, imagenet21k (weights from official Google JAX impl) 'vit_tiny_patch16_224_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', @@ -136,11 +142,25 @@ def _cfg(url='', **kwargs): num_classes=21843), # SAM trained models (https://arxiv.org/abs/2106.01548) - 'vit_base_patch32_sam_224': _cfg( + 'vit_base_patch32_224_sam': _cfg( url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'), - 'vit_base_patch16_sam_224': _cfg( + 'vit_base_patch16_224_sam': _cfg( url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'), + # DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only) + 'vit_small_patch16_224_dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_small_patch8_224_dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_base_patch16_224_dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_base_patch8_224_dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + # deit models (FB weights) 'deit_tiny_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth', @@ -184,6 +204,7 @@ def _cfg(url='', **kwargs): class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 @@ -616,6 +637,16 @@ def vit_base_patch32_224(pretrained=False, **kwargs): return model +@register_model +def vit_base2_patch32_256(pretrained=False, **kwargs): + """ ViT-Base (ViT-B/32) + # FIXME experiment + """ + model_kwargs = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, **kwargs) + model = _create_vision_transformer('vit_base2_patch32_256', pretrained=pretrained, **model_kwargs) + return model + + @register_model def vit_base_patch32_384(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). @@ -696,22 +727,29 @@ def vit_large_patch16_384(pretrained=False, **kwargs): @register_model -def vit_base_patch16_sam_224(pretrained=False, **kwargs): - """ ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 +def vit_huge_patch14_224(pretrained=False, **kwargs): + """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). """ - # NOTE original SAM weights release worked with representation_size=768 - model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, representation_size=0, **kwargs) - model = _create_vision_transformer('vit_base_patch16_sam_224', pretrained=pretrained, **model_kwargs) + model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs) + model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **model_kwargs) return model @register_model -def vit_base_patch32_sam_224(pretrained=False, **kwargs): - """ ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 +def vit_giant_patch14_224(pretrained=False, **kwargs): + """ ViT-Giant model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 """ - # NOTE original SAM weights release worked with representation_size=768 - model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, representation_size=0, **kwargs) - model = _create_vision_transformer('vit_base_patch32_sam_224', pretrained=pretrained, **model_kwargs) + model_kwargs = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, **kwargs) + model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_gigantic_patch14_224(pretrained=False, **kwargs): + """ ViT-Gigantic model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 + """ + model_kwargs = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, **kwargs) + model = _create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **model_kwargs) return model @@ -820,6 +858,62 @@ def vit_huge_patch14_224_in21k(pretrained=False, **kwargs): return model +@register_model +def vit_base_patch16_224_sam(pretrained=False, **kwargs): + """ ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 + """ + # NOTE original SAM weights release worked with representation_size=768 + model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) + model = _create_vision_transformer('vit_base_patch16_224_sam', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_base_patch32_224_sam(pretrained=False, **kwargs): + """ ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 + """ + # NOTE original SAM weights release worked with representation_size=768 + model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) + model = _create_vision_transformer('vit_base_patch32_224_sam', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_small_patch16_224_dino(pretrained=False, **kwargs): + """ ViT-Small (ViT-S/16) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 + """ + model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) + model = _create_vision_transformer('vit_small_patch16_224_dino', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_small_patch8_224_dino(pretrained=False, **kwargs): + """ ViT-Small (ViT-S/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 + """ + model_kwargs = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6, **kwargs) + model = _create_vision_transformer('vit_small_patch8_224_dino', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_base_patch16_224_dino(pretrained=False, **kwargs): + """ ViT-Base (ViT-B/16) /w DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 + """ + model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) + model = _create_vision_transformer('vit_base_patch16_224_dino', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def vit_base_patch8_224_dino(pretrained=False, **kwargs): + """ ViT-Base (ViT-B/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 + """ + model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) + model = _create_vision_transformer('vit_base_patch8_224_dino', pretrained=pretrained, **model_kwargs) + return model + + @register_model def deit_tiny_patch16_224(pretrained=False, **kwargs): """ DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). diff --git a/timm/models/vision_transformer_hybrid.py b/timm/models/vision_transformer_hybrid.py index df0fe381d3..cefc8116dd 100644 --- a/timm/models/vision_transformer_hybrid.py +++ b/timm/models/vision_transformer_hybrid.py @@ -11,7 +11,7 @@ NOTE These hybrid model definitions depend on code in vision_transformer.py. They were moved here to keep file sizes sane. -Hacked together by / Copyright 2021 Ross Wightman +Hacked together by / Copyright 2020, Ross Wightman """ from copy import deepcopy from functools import partial diff --git a/timm/models/xcit.py b/timm/models/xcit.py index a7750d120a..55cb27c1bf 100644 --- a/timm/models/xcit.py +++ b/timm/models/xcit.py @@ -1,10 +1,12 @@ """ Cross-Covariance Image Transformer (XCiT) in PyTorch -Same as the official implementation, with some minor adaptations. - - https://github.com/facebookresearch/xcit/blob/master/xcit.py - Paper: - https://arxiv.org/abs/2106.09681 + +Same as the official implementation, with some minor adaptations, original copyright below + - https://github.com/facebookresearch/xcit/blob/master/xcit.py + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. diff --git a/timm/optim/lars.py b/timm/optim/lars.py index 98198e675c..38ca9e0b5c 100644 --- a/timm/optim/lars.py +++ b/timm/optim/lars.py @@ -114,7 +114,7 @@ def step(self, closure=None): ) if group['trust_clip']: trust_ratio = torch.minimum(trust_ratio / group['lr'], one_tensor) - grad.add(p, alpha=weight_decay) + grad.add_(p, alpha=weight_decay) grad.mul_(trust_ratio) # apply SGD update https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100 diff --git a/timm/utils/__init__.py b/timm/utils/__init__.py index 11de9c9c50..b8cef32138 100644 --- a/timm/utils/__init__.py +++ b/timm/utils/__init__.py @@ -3,7 +3,7 @@ from .clip_grad import dispatch_clip_grad from .cuda import ApexScaler, NativeScaler from .distributed import distribute_bn, reduce_tensor -from .jit import set_jit_legacy +from .jit import set_jit_legacy, set_jit_fuser from .log import setup_default_logging, FormatterNoInfo from .metrics import AverageMeter, accuracy from .misc import natural_key, add_bool_arg diff --git a/timm/utils/jit.py b/timm/utils/jit.py index 185ab7a0d8..6039823f38 100644 --- a/timm/utils/jit.py +++ b/timm/utils/jit.py @@ -2,6 +2,8 @@ Hacked together by / Copyright 2020 Ross Wightman """ +import os + import torch @@ -16,3 +18,33 @@ def set_jit_legacy(): torch._C._jit_set_profiling_mode(False) torch._C._jit_override_can_fuse_on_gpu(True) #torch._C._jit_set_texpr_fuser_enabled(True) + + +def set_jit_fuser(fuser): + if fuser == "te": + # default fuser should be == 'te' + torch._C._jit_set_profiling_executor(True) + torch._C._jit_set_profiling_mode(True) + torch._C._jit_override_can_fuse_on_cpu(False) + torch._C._jit_override_can_fuse_on_gpu(True) + torch._C._jit_set_texpr_fuser_enabled(True) + elif fuser == "old" or fuser == "legacy": + torch._C._jit_set_profiling_executor(False) + torch._C._jit_set_profiling_mode(False) + torch._C._jit_override_can_fuse_on_gpu(True) + torch._C._jit_set_texpr_fuser_enabled(False) + elif fuser == "nvfuser" or fuser == "nvf": + os.environ['PYTORCH_CUDA_FUSER_DISABLE_FALLBACK'] = '1' + os.environ['PYTORCH_CUDA_FUSER_DISABLE_FMA'] = '1' + os.environ['PYTORCH_CUDA_FUSER_JIT_OPT_LEVEL'] = '0' + torch._C._jit_set_texpr_fuser_enabled(False) + torch._C._jit_set_profiling_executor(True) + torch._C._jit_set_profiling_mode(True) + torch._C._jit_can_fuse_on_cpu() + torch._C._jit_can_fuse_on_gpu() + torch._C._jit_override_can_fuse_on_cpu(False) + torch._C._jit_override_can_fuse_on_gpu(False) + torch._C._jit_set_nvfuser_guard_mode(True) + torch._C._jit_set_nvfuser_enabled(True) + else: + assert False, f"Invalid jit fuser ({fuser})" diff --git a/timm/version.py b/timm/version.py index 2b8877c505..31d29d8215 100644 --- a/timm/version.py +++ b/timm/version.py @@ -1 +1 @@ -__version__ = '0.5.0' +__version__ = '0.5.5' diff --git a/train.py b/train.py index 8ba8a2a603..60ff10d582 100755 --- a/train.py +++ b/train.py @@ -295,6 +295,8 @@ help='use the multi-epochs-loader to save time at the beginning of every epoch') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') +parser.add_argument('--fuser', default='', type=str, + help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--log-wandb', action='store_true', default=False, help='log training and validation metrics to wandb') @@ -364,6 +366,9 @@ def main(): random_seed(args.seed, args.rank) + if args.fuser: + set_jit_fuser(args.fuser) + model = create_model( args.model, pretrained=args.pretrained, diff --git a/validate.py b/validate.py index 8098e1d952..2720f903f6 100755 --- a/validate.py +++ b/validate.py @@ -11,6 +11,7 @@ import os import csv import glob +import json import time import logging import torch @@ -21,7 +22,7 @@ from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet -from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_legacy +from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser has_apex = False try: @@ -102,8 +103,8 @@ help='use ema version of weights if present') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') -parser.add_argument('--legacy-jit', dest='legacy_jit', action='store_true', - help='use legacy jit mode for pytorch 1.5/1.5.1/1.6 to get back fusion performance') +parser.add_argument('--fuser', default='', type=str, + help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME', @@ -133,8 +134,8 @@ def validate(args): else: _logger.info('Validating in float32. AMP not enabled.') - if args.legacy_jit: - set_jit_legacy() + if args.fuser: + set_jit_fuser(args.fuser) # create model model = create_model( @@ -265,6 +266,7 @@ def validate(args): else: top1a, top5a = top1.avg, top5.avg results = OrderedDict( + model=args.model, top1=round(top1a, 4), top1_err=round(100 - top1a, 4), top5=round(top5a, 4), top5_err=round(100 - top5a, 4), param_count=round(param_count / 1e6, 2), @@ -278,6 +280,27 @@ def validate(args): return results +def _try_run(args, initial_batch_size): + batch_size = initial_batch_size + results = OrderedDict() + error_str = 'Unknown' + while batch_size >= 1: + args.batch_size = batch_size + torch.cuda.empty_cache() + try: + results = validate(args) + return results + except RuntimeError as e: + error_str = str(e) + if 'channels_last' in error_str: + break + _logger.warning(f'"{error_str}" while running validation. Reducing batch size to {batch_size} for retry.') + batch_size = batch_size // 2 + results['error'] = error_str + _logger.error(f'{args.model} failed to validate ({error_str}).') + return results + + def main(): setup_default_logging() args = parser.parse_args() @@ -293,7 +316,7 @@ def main(): if args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True - model_names = list_models(pretrained=True, exclude_filters=['*_in21k', '*_in22k']) + model_names = list_models(pretrained=True, exclude_filters=['*_in21k', '*_in22k', '*_dino']) model_cfgs = [(n, '') for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter @@ -310,36 +333,25 @@ def main(): _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: - start_batch_size = args.batch_size + initial_batch_size = args.batch_size for m, c in model_cfgs: - batch_size = start_batch_size args.model = m args.checkpoint = c - result = OrderedDict(model=args.model) - r = {} - while not r and batch_size >= args.num_gpu: - torch.cuda.empty_cache() - try: - args.batch_size = batch_size - print('Validating with batch size: %d' % args.batch_size) - r = validate(args) - except RuntimeError as e: - if batch_size <= args.num_gpu: - print("Validation failed with no ability to reduce batch size. Exiting.") - raise e - batch_size = max(batch_size // 2, args.num_gpu) - print("Validation failed, reducing batch size by 50%") - result.update(r) + r = _try_run(args, initial_batch_size) + if 'error' in r: + continue if args.checkpoint: - result['checkpoint'] = args.checkpoint - results.append(result) + r['checkpoint'] = args.checkpoint + results.append(r) except KeyboardInterrupt as e: pass results = sorted(results, key=lambda x: x['top1'], reverse=True) if len(results): write_results(results_file, results) else: - validate(args) + results = validate(args) + # output results in JSON to stdout w/ delimiter for runner script + print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results):