18
18
},
19
19
{
20
20
"cell_type" : " code" ,
21
- "execution_count" : 2 ,
21
+ "execution_count" : 1 ,
22
22
"metadata" : {
23
23
"collapsed" : false
24
24
},
27
27
"name" : " stdout" ,
28
28
"output_type" : " stream" ,
29
29
"text" : [
30
- " Extracting /tmp/data /train-images-idx3-ubyte.gz\n " ,
31
- " Extracting /tmp/data /train-labels-idx1-ubyte.gz\n " ,
32
- " Extracting /tmp/data /t10k-images-idx3-ubyte.gz\n " ,
33
- " Extracting /tmp/data /t10k-labels-idx1-ubyte.gz\n "
30
+ " Extracting MNIST_data /train-images-idx3-ubyte.gz\n " ,
31
+ " Extracting MNIST_data /train-labels-idx1-ubyte.gz\n " ,
32
+ " Extracting MNIST_data /t10k-images-idx3-ubyte.gz\n " ,
33
+ " Extracting MNIST_data /t10k-labels-idx1-ubyte.gz\n "
34
34
]
35
35
}
36
36
],
39
39
" \n " ,
40
40
" # Import MINST data\n " ,
41
41
" from tensorflow.examples.tutorials.mnist import input_data\n " ,
42
- " mnist = input_data.read_data_sets(\" /tmp/data /\" , one_hot=True)"
42
+ " mnist = input_data.read_data_sets(\" MNIST_data /\" , one_hot=True)"
43
43
]
44
44
},
45
45
{
46
46
"cell_type" : " code" ,
47
47
"execution_count" : 3 ,
48
48
"metadata" : {
49
- "collapsed" : true
49
+ "collapsed" : false
50
50
},
51
51
"outputs" : [],
52
52
"source" : [
73
73
" optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n " ,
74
74
" \n " ,
75
75
" # Initializing the variables\n " ,
76
- " init = tf.initialize_all_variables ()"
76
+ " init = tf.global_variables_initializer ()"
77
77
]
78
78
},
79
79
{
80
80
"cell_type" : " code" ,
81
- "execution_count" : 4 ,
81
+ "execution_count" : null ,
82
82
"metadata" : {
83
83
"collapsed" : false
84
84
},
87
87
"name" : " stdout" ,
88
88
"output_type" : " stream" ,
89
89
"text" : [
90
- " Epoch: 0001 cost= 1.182138961\n " ,
91
- " Epoch: 0002 cost= 0.664670898\n " ,
92
- " Epoch: 0003 cost= 0.552613988\n " ,
93
- " Epoch: 0004 cost= 0.498497931\n " ,
94
- " Epoch: 0005 cost= 0.465418769\n " ,
95
- " Epoch: 0006 cost= 0.442546219\n " ,
96
- " Epoch: 0007 cost= 0.425473814\n " ,
97
- " Epoch: 0008 cost= 0.412171735\n " ,
98
- " Epoch: 0009 cost= 0.401359516\n " ,
99
- " Epoch: 0010 cost= 0.392401536\n " ,
100
- " Epoch: 0011 cost= 0.384750201\n " ,
101
- " Epoch: 0012 cost= 0.378185581\n " ,
102
- " Epoch: 0013 cost= 0.372401533\n " ,
103
- " Epoch: 0014 cost= 0.367302442\n " ,
104
- " Epoch: 0015 cost= 0.362702316\n " ,
105
- " Epoch: 0016 cost= 0.358568827\n " ,
106
- " Epoch: 0017 cost= 0.354882155\n " ,
107
- " Epoch: 0018 cost= 0.351430912\n " ,
108
- " Epoch: 0019 cost= 0.348316068\n " ,
109
- " Epoch: 0020 cost= 0.345392556\n " ,
110
- " Epoch: 0021 cost= 0.342737278\n " ,
111
- " Epoch: 0022 cost= 0.340264994\n " ,
112
- " Epoch: 0023 cost= 0.337890242\n " ,
113
- " Epoch: 0024 cost= 0.335708558\n " ,
114
- " Epoch: 0025 cost= 0.333686476\n " ,
115
- " Optimization Finished!\n " ,
116
- " Accuracy: 0.889667\n "
90
+ " Epoch: 0001 cost= 1.182138959\n " ,
91
+ " Epoch: 0002 cost= 0.664778162\n " ,
92
+ " Epoch: 0003 cost= 0.552686284\n " ,
93
+ " Epoch: 0004 cost= 0.498628905\n " ,
94
+ " Epoch: 0005 cost= 0.465469866\n " ,
95
+ " Epoch: 0006 cost= 0.442537872\n " ,
96
+ " Epoch: 0007 cost= 0.425462044\n " ,
97
+ " Epoch: 0008 cost= 0.412185303\n " ,
98
+ " Epoch: 0009 cost= 0.401311587\n " ,
99
+ " Epoch: 0010 cost= 0.392326203\n " ,
100
+ " Epoch: 0011 cost= 0.384736038\n " ,
101
+ " Epoch: 0012 cost= 0.378137191\n " ,
102
+ " Epoch: 0013 cost= 0.372363752\n " ,
103
+ " Epoch: 0014 cost= 0.367308579\n " ,
104
+ " Epoch: 0015 cost= 0.362704660\n " ,
105
+ " Epoch: 0016 cost= 0.358588599\n " ,
106
+ " Epoch: 0017 cost= 0.354823110\n "
117
107
]
118
108
}
119
109
],
146
136
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))\n " ,
147
137
" print \" Accuracy:\" , accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]})"
148
138
]
139
+ },
140
+ {
141
+ "cell_type" : " code" ,
142
+ "execution_count" : null ,
143
+ "metadata" : {
144
+ "collapsed" : true
145
+ },
146
+ "outputs" : [],
147
+ "source" : []
149
148
}
150
149
],
151
150
"metadata" : {
157
156
"language_info" : {
158
157
"codemirror_mode" : {
159
158
"name" : " ipython" ,
160
- "version" : 2.0
159
+ "version" : 2
161
160
},
162
161
"file_extension" : " .py" ,
163
162
"mimetype" : " text/x-python" ,
164
163
"name" : " python" ,
165
164
"nbconvert_exporter" : " python" ,
166
165
"pygments_lexer" : " ipython2" ,
167
- "version" : " 2.7.11 "
166
+ "version" : " 2.7.13 "
168
167
}
169
168
},
170
169
"nbformat" : 4 ,
171
170
"nbformat_minor" : 0
172
- }
171
+ }
0 commit comments