Skip to content

Commit 3133823

Browse files
Refactor ConvNet for TF1.0
Signed-off-by: Norman Heckscher <norman.heckscher@gmail.com>
1 parent 53a7228 commit 3133823

File tree

2 files changed

+20
-187
lines changed

2 files changed

+20
-187
lines changed

examples/3_NeuralNetworks/convolutional_network.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -96,15 +96,15 @@ def conv_net(x, weights, biases, dropout):
9696
pred = conv_net(x, weights, biases, keep_prob)
9797

9898
# Define loss and optimizer
99-
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
99+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
100100
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
101101

102102
# Evaluate model
103103
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
104104
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
105105

106106
# Initializing the variables
107-
init = tf.initialize_all_variables()
107+
init = tf.global_variables_initializer()
108108

109109
# Launch the graph
110110
with tf.Session() as sess:

notebooks/3_NeuralNetworks/convolutional_network.ipynb

Lines changed: 18 additions & 185 deletions
Original file line numberDiff line numberDiff line change
@@ -20,28 +20,17 @@
2020
},
2121
{
2222
"cell_type": "code",
23-
"execution_count": 1,
23+
"execution_count": null,
2424
"metadata": {
2525
"collapsed": false
2626
},
27-
"outputs": [
28-
{
29-
"name": "stdout",
30-
"output_type": "stream",
31-
"text": [
32-
"Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
33-
"Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
34-
"Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
35-
"Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
36-
]
37-
}
38-
],
27+
"outputs": [],
3928
"source": [
4029
"import tensorflow as tf\n",
4130
"\n",
4231
"# Import MNIST data\n",
4332
"from tensorflow.examples.tutorials.mnist import input_data\n",
44-
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
33+
"mnist = input_data.read_data_sets(\"MNIST_data/\", one_hot=True)"
4534
]
4635
},
4736
{
@@ -150,189 +139,24 @@
150139
"pred = conv_net(x, weights, biases, keep_prob)\n",
151140
"\n",
152141
"# Define loss and optimizer\n",
153-
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n",
142+
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n",
154143
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n",
155144
"\n",
156145
"# Evaluate model\n",
157146
"correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n",
158147
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n",
159148
"\n",
160149
"# Initializing the variables\n",
161-
"init = tf.initialize_all_variables()"
150+
"init = tf.global_variables_initializer()"
162151
]
163152
},
164153
{
165154
"cell_type": "code",
166-
"execution_count": 5,
155+
"execution_count": null,
167156
"metadata": {
168157
"collapsed": false
169158
},
170-
"outputs": [
171-
{
172-
"name": "stdout",
173-
"output_type": "stream",
174-
"text": [
175-
"Iter 1280, Minibatch Loss= 17231.589844, Training Accuracy= 0.25000\n",
176-
"Iter 2560, Minibatch Loss= 10580.260742, Training Accuracy= 0.54688\n",
177-
"Iter 3840, Minibatch Loss= 7395.362793, Training Accuracy= 0.64062\n",
178-
"Iter 5120, Minibatch Loss= 4864.292480, Training Accuracy= 0.75781\n",
179-
"Iter 6400, Minibatch Loss= 3830.062012, Training Accuracy= 0.80469\n",
180-
"Iter 7680, Minibatch Loss= 6031.701172, Training Accuracy= 0.72656\n",
181-
"Iter 8960, Minibatch Loss= 2549.708740, Training Accuracy= 0.81250\n",
182-
"Iter 10240, Minibatch Loss= 2010.484985, Training Accuracy= 0.84375\n",
183-
"Iter 11520, Minibatch Loss= 1607.380981, Training Accuracy= 0.89062\n",
184-
"Iter 12800, Minibatch Loss= 1983.302856, Training Accuracy= 0.82812\n",
185-
"Iter 14080, Minibatch Loss= 401.215088, Training Accuracy= 0.94531\n",
186-
"Iter 15360, Minibatch Loss= 976.289307, Training Accuracy= 0.95312\n",
187-
"Iter 16640, Minibatch Loss= 1844.699951, Training Accuracy= 0.89844\n",
188-
"Iter 17920, Minibatch Loss= 1009.859863, Training Accuracy= 0.92969\n",
189-
"Iter 19200, Minibatch Loss= 1397.939453, Training Accuracy= 0.88281\n",
190-
"Iter 20480, Minibatch Loss= 540.369995, Training Accuracy= 0.96094\n",
191-
"Iter 21760, Minibatch Loss= 2589.246826, Training Accuracy= 0.87500\n",
192-
"Iter 23040, Minibatch Loss= 404.981293, Training Accuracy= 0.96094\n",
193-
"Iter 24320, Minibatch Loss= 742.155396, Training Accuracy= 0.93750\n",
194-
"Iter 25600, Minibatch Loss= 851.599731, Training Accuracy= 0.93750\n",
195-
"Iter 26880, Minibatch Loss= 1527.609619, Training Accuracy= 0.90625\n",
196-
"Iter 28160, Minibatch Loss= 1209.633301, Training Accuracy= 0.91406\n",
197-
"Iter 29440, Minibatch Loss= 1123.146851, Training Accuracy= 0.93750\n",
198-
"Iter 30720, Minibatch Loss= 950.860596, Training Accuracy= 0.92188\n",
199-
"Iter 32000, Minibatch Loss= 1217.373779, Training Accuracy= 0.92188\n",
200-
"Iter 33280, Minibatch Loss= 859.433105, Training Accuracy= 0.91406\n",
201-
"Iter 34560, Minibatch Loss= 487.426331, Training Accuracy= 0.95312\n",
202-
"Iter 35840, Minibatch Loss= 287.507721, Training Accuracy= 0.96875\n",
203-
"Iter 37120, Minibatch Loss= 786.797485, Training Accuracy= 0.91406\n",
204-
"Iter 38400, Minibatch Loss= 248.981216, Training Accuracy= 0.97656\n",
205-
"Iter 39680, Minibatch Loss= 147.081467, Training Accuracy= 0.97656\n",
206-
"Iter 40960, Minibatch Loss= 1198.459106, Training Accuracy= 0.93750\n",
207-
"Iter 42240, Minibatch Loss= 717.058716, Training Accuracy= 0.92188\n",
208-
"Iter 43520, Minibatch Loss= 351.870453, Training Accuracy= 0.96094\n",
209-
"Iter 44800, Minibatch Loss= 271.505554, Training Accuracy= 0.96875\n",
210-
"Iter 46080, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
211-
"Iter 47360, Minibatch Loss= 806.163818, Training Accuracy= 0.95312\n",
212-
"Iter 48640, Minibatch Loss= 1055.359009, Training Accuracy= 0.91406\n",
213-
"Iter 49920, Minibatch Loss= 459.845520, Training Accuracy= 0.94531\n",
214-
"Iter 51200, Minibatch Loss= 133.995087, Training Accuracy= 0.97656\n",
215-
"Iter 52480, Minibatch Loss= 378.886780, Training Accuracy= 0.96094\n",
216-
"Iter 53760, Minibatch Loss= 122.112671, Training Accuracy= 0.98438\n",
217-
"Iter 55040, Minibatch Loss= 357.410950, Training Accuracy= 0.96875\n",
218-
"Iter 56320, Minibatch Loss= 164.791595, Training Accuracy= 0.98438\n",
219-
"Iter 57600, Minibatch Loss= 740.711060, Training Accuracy= 0.95312\n",
220-
"Iter 58880, Minibatch Loss= 755.948364, Training Accuracy= 0.92969\n",
221-
"Iter 60160, Minibatch Loss= 289.819153, Training Accuracy= 0.94531\n",
222-
"Iter 61440, Minibatch Loss= 162.940323, Training Accuracy= 0.96875\n",
223-
"Iter 62720, Minibatch Loss= 616.192200, Training Accuracy= 0.92969\n",
224-
"Iter 64000, Minibatch Loss= 649.317993, Training Accuracy= 0.92188\n",
225-
"Iter 65280, Minibatch Loss= 1021.529785, Training Accuracy= 0.93750\n",
226-
"Iter 66560, Minibatch Loss= 203.839050, Training Accuracy= 0.96094\n",
227-
"Iter 67840, Minibatch Loss= 469.755249, Training Accuracy= 0.96094\n",
228-
"Iter 69120, Minibatch Loss= 36.496567, Training Accuracy= 0.98438\n",
229-
"Iter 70400, Minibatch Loss= 214.677551, Training Accuracy= 0.95312\n",
230-
"Iter 71680, Minibatch Loss= 115.657990, Training Accuracy= 0.96875\n",
231-
"Iter 72960, Minibatch Loss= 354.555115, Training Accuracy= 0.96875\n",
232-
"Iter 74240, Minibatch Loss= 124.091103, Training Accuracy= 0.97656\n",
233-
"Iter 75520, Minibatch Loss= 614.557251, Training Accuracy= 0.94531\n",
234-
"Iter 76800, Minibatch Loss= 343.182983, Training Accuracy= 0.95312\n",
235-
"Iter 78080, Minibatch Loss= 678.875183, Training Accuracy= 0.94531\n",
236-
"Iter 79360, Minibatch Loss= 313.656494, Training Accuracy= 0.95312\n",
237-
"Iter 80640, Minibatch Loss= 169.024185, Training Accuracy= 0.96094\n",
238-
"Iter 81920, Minibatch Loss= 98.455017, Training Accuracy= 0.96875\n",
239-
"Iter 83200, Minibatch Loss= 359.754517, Training Accuracy= 0.92188\n",
240-
"Iter 84480, Minibatch Loss= 214.993103, Training Accuracy= 0.96875\n",
241-
"Iter 85760, Minibatch Loss= 262.921265, Training Accuracy= 0.97656\n",
242-
"Iter 87040, Minibatch Loss= 558.218445, Training Accuracy= 0.89844\n",
243-
"Iter 88320, Minibatch Loss= 122.281952, Training Accuracy= 0.99219\n",
244-
"Iter 89600, Minibatch Loss= 300.606689, Training Accuracy= 0.93750\n",
245-
"Iter 90880, Minibatch Loss= 261.051025, Training Accuracy= 0.98438\n",
246-
"Iter 92160, Minibatch Loss= 59.812164, Training Accuracy= 0.98438\n",
247-
"Iter 93440, Minibatch Loss= 309.307312, Training Accuracy= 0.96875\n",
248-
"Iter 94720, Minibatch Loss= 626.035706, Training Accuracy= 0.95312\n",
249-
"Iter 96000, Minibatch Loss= 317.929260, Training Accuracy= 0.96875\n",
250-
"Iter 97280, Minibatch Loss= 196.908218, Training Accuracy= 0.97656\n",
251-
"Iter 98560, Minibatch Loss= 843.143250, Training Accuracy= 0.95312\n",
252-
"Iter 99840, Minibatch Loss= 389.142761, Training Accuracy= 0.96875\n",
253-
"Iter 101120, Minibatch Loss= 246.468994, Training Accuracy= 0.96094\n",
254-
"Iter 102400, Minibatch Loss= 110.580948, Training Accuracy= 0.98438\n",
255-
"Iter 103680, Minibatch Loss= 208.350586, Training Accuracy= 0.96875\n",
256-
"Iter 104960, Minibatch Loss= 506.229462, Training Accuracy= 0.94531\n",
257-
"Iter 106240, Minibatch Loss= 49.548233, Training Accuracy= 0.98438\n",
258-
"Iter 107520, Minibatch Loss= 728.496582, Training Accuracy= 0.92969\n",
259-
"Iter 108800, Minibatch Loss= 187.256622, Training Accuracy= 0.97656\n",
260-
"Iter 110080, Minibatch Loss= 273.696899, Training Accuracy= 0.97656\n",
261-
"Iter 111360, Minibatch Loss= 317.126678, Training Accuracy= 0.96094\n",
262-
"Iter 112640, Minibatch Loss= 148.293365, Training Accuracy= 0.98438\n",
263-
"Iter 113920, Minibatch Loss= 139.360168, Training Accuracy= 0.97656\n",
264-
"Iter 115200, Minibatch Loss= 167.539093, Training Accuracy= 0.98438\n",
265-
"Iter 116480, Minibatch Loss= 565.433594, Training Accuracy= 0.94531\n",
266-
"Iter 117760, Minibatch Loss= 8.117203, Training Accuracy= 0.99219\n",
267-
"Iter 119040, Minibatch Loss= 348.071472, Training Accuracy= 0.96875\n",
268-
"Iter 120320, Minibatch Loss= 287.732849, Training Accuracy= 0.97656\n",
269-
"Iter 121600, Minibatch Loss= 156.525284, Training Accuracy= 0.96875\n",
270-
"Iter 122880, Minibatch Loss= 296.147339, Training Accuracy= 0.98438\n",
271-
"Iter 124160, Minibatch Loss= 260.941956, Training Accuracy= 0.98438\n",
272-
"Iter 125440, Minibatch Loss= 241.011719, Training Accuracy= 0.98438\n",
273-
"Iter 126720, Minibatch Loss= 185.330444, Training Accuracy= 0.98438\n",
274-
"Iter 128000, Minibatch Loss= 346.407013, Training Accuracy= 0.96875\n",
275-
"Iter 129280, Minibatch Loss= 522.477173, Training Accuracy= 0.94531\n",
276-
"Iter 130560, Minibatch Loss= 97.665955, Training Accuracy= 0.96094\n",
277-
"Iter 131840, Minibatch Loss= 111.370262, Training Accuracy= 0.96875\n",
278-
"Iter 133120, Minibatch Loss= 106.377136, Training Accuracy= 0.97656\n",
279-
"Iter 134400, Minibatch Loss= 432.294983, Training Accuracy= 0.96094\n",
280-
"Iter 135680, Minibatch Loss= 104.584610, Training Accuracy= 0.98438\n",
281-
"Iter 136960, Minibatch Loss= 439.611053, Training Accuracy= 0.95312\n",
282-
"Iter 138240, Minibatch Loss= 171.394562, Training Accuracy= 0.96875\n",
283-
"Iter 139520, Minibatch Loss= 83.505905, Training Accuracy= 0.98438\n",
284-
"Iter 140800, Minibatch Loss= 240.278427, Training Accuracy= 0.98438\n",
285-
"Iter 142080, Minibatch Loss= 417.140320, Training Accuracy= 0.96094\n",
286-
"Iter 143360, Minibatch Loss= 77.656067, Training Accuracy= 0.97656\n",
287-
"Iter 144640, Minibatch Loss= 284.589844, Training Accuracy= 0.97656\n",
288-
"Iter 145920, Minibatch Loss= 372.114288, Training Accuracy= 0.96875\n",
289-
"Iter 147200, Minibatch Loss= 352.900024, Training Accuracy= 0.96094\n",
290-
"Iter 148480, Minibatch Loss= 148.120621, Training Accuracy= 0.97656\n",
291-
"Iter 149760, Minibatch Loss= 127.385742, Training Accuracy= 0.98438\n",
292-
"Iter 151040, Minibatch Loss= 383.167175, Training Accuracy= 0.96094\n",
293-
"Iter 152320, Minibatch Loss= 331.846649, Training Accuracy= 0.94531\n",
294-
"Iter 153600, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
295-
"Iter 154880, Minibatch Loss= 24.065147, Training Accuracy= 0.99219\n",
296-
"Iter 156160, Minibatch Loss= 43.433868, Training Accuracy= 0.99219\n",
297-
"Iter 157440, Minibatch Loss= 205.383972, Training Accuracy= 0.96875\n",
298-
"Iter 158720, Minibatch Loss= 83.019257, Training Accuracy= 0.97656\n",
299-
"Iter 160000, Minibatch Loss= 195.710556, Training Accuracy= 0.96875\n",
300-
"Iter 161280, Minibatch Loss= 177.192932, Training Accuracy= 0.95312\n",
301-
"Iter 162560, Minibatch Loss= 261.618713, Training Accuracy= 0.96875\n",
302-
"Iter 163840, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
303-
"Iter 165120, Minibatch Loss= 62.901100, Training Accuracy= 0.97656\n",
304-
"Iter 166400, Minibatch Loss= 17.181839, Training Accuracy= 0.98438\n",
305-
"Iter 167680, Minibatch Loss= 102.738960, Training Accuracy= 0.96875\n",
306-
"Iter 168960, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
307-
"Iter 170240, Minibatch Loss= 71.784363, Training Accuracy= 0.99219\n",
308-
"Iter 171520, Minibatch Loss= 260.672852, Training Accuracy= 0.96875\n",
309-
"Iter 172800, Minibatch Loss= 186.616119, Training Accuracy= 0.96094\n",
310-
"Iter 174080, Minibatch Loss= 312.432312, Training Accuracy= 0.96875\n",
311-
"Iter 175360, Minibatch Loss= 45.828953, Training Accuracy= 0.99219\n",
312-
"Iter 176640, Minibatch Loss= 62.931808, Training Accuracy= 0.98438\n",
313-
"Iter 177920, Minibatch Loss= 63.452362, Training Accuracy= 0.97656\n",
314-
"Iter 179200, Minibatch Loss= 53.608818, Training Accuracy= 0.98438\n",
315-
"Iter 180480, Minibatch Loss= 57.089508, Training Accuracy= 0.97656\n",
316-
"Iter 181760, Minibatch Loss= 601.268799, Training Accuracy= 0.93750\n",
317-
"Iter 183040, Minibatch Loss= 59.850044, Training Accuracy= 0.97656\n",
318-
"Iter 184320, Minibatch Loss= 145.267883, Training Accuracy= 0.96875\n",
319-
"Iter 185600, Minibatch Loss= 24.205322, Training Accuracy= 0.99219\n",
320-
"Iter 186880, Minibatch Loss= 51.866646, Training Accuracy= 0.98438\n",
321-
"Iter 188160, Minibatch Loss= 166.911987, Training Accuracy= 0.96875\n",
322-
"Iter 189440, Minibatch Loss= 32.308147, Training Accuracy= 0.98438\n",
323-
"Iter 190720, Minibatch Loss= 514.898071, Training Accuracy= 0.92188\n",
324-
"Iter 192000, Minibatch Loss= 146.610031, Training Accuracy= 0.98438\n",
325-
"Iter 193280, Minibatch Loss= 23.939758, Training Accuracy= 0.99219\n",
326-
"Iter 194560, Minibatch Loss= 224.806641, Training Accuracy= 0.97656\n",
327-
"Iter 195840, Minibatch Loss= 71.935089, Training Accuracy= 0.98438\n",
328-
"Iter 197120, Minibatch Loss= 182.021210, Training Accuracy= 0.96875\n",
329-
"Iter 198400, Minibatch Loss= 125.573784, Training Accuracy= 0.96875\n",
330-
"Iter 199680, Minibatch Loss= 122.506104, Training Accuracy= 0.96875\n",
331-
"Optimization Finished!\n",
332-
"Testing Accuracy: 0.972656\n"
333-
]
334-
}
335-
],
159+
"outputs": [],
336160
"source": [
337161
"# Launch the graph\n",
338162
"with tf.Session() as sess:\n",
@@ -361,6 +185,15 @@
361185
" y: mnist.test.labels[:256],\n",
362186
" keep_prob: 1.})"
363187
]
188+
},
189+
{
190+
"cell_type": "code",
191+
"execution_count": null,
192+
"metadata": {
193+
"collapsed": true
194+
},
195+
"outputs": [],
196+
"source": []
364197
}
365198
],
366199
"metadata": {
@@ -372,14 +205,14 @@
372205
"language_info": {
373206
"codemirror_mode": {
374207
"name": "ipython",
375-
"version": 2.0
208+
"version": 2
376209
},
377210
"file_extension": ".py",
378211
"mimetype": "text/x-python",
379212
"name": "python",
380213
"nbconvert_exporter": "python",
381214
"pygments_lexer": "ipython2",
382-
"version": "2.7.11"
215+
"version": "2.7.13"
383216
}
384217
},
385218
"nbformat": 4,

0 commit comments

Comments
 (0)