Skip to content

archiGAN/SmartCity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI will soon massively empower architects in their day-to-day practice. This potential is around the corner and my work provides a proof of concept. The framework used in my work offers a springboard for discussion, inviting architects to start engaging with AI, and data scientists to consider Architecture as a field of investigation. In this post, I summarize a part of my thesis, submitted at Harvard in May 2019, where Generative Adversarial Neural Networks (or GANs) get leveraged to design floor plans, and entire buildings.

I believe a statistical approach to design conception will shape AI’s potential for Architecture. This approach is less deterministic and more holistic in character. Rather than using machines to optimize a set of variables, relying on them to extract significant qualities and mimicking them all along the design process represents a paradigm shift.

Let’s unpack floor plan design into 3 distinct steps:

(I) building footprint massing (II) program repartition (III) furniture layout Each step corresponds to a Pix2Pix GAN-model trained to perform one of the 3 tasks above. By nesting these models one after the other, I create an entire apartment building “generation stack” while allowing for user input at each step. Additionally, by tackling multi-apartment processing, this project scales beyond the simplicity of single-family houses.

Beyond the mere development of a generation pipeline, this attempt aims at demonstrating the potential of GANs for any design process, whereby nesting GAN models, and allowing user input between them, I try to achieve a back and forth between humans and machines, between disciplinarian intuition and technical innovation.

About

the Smart City Plan

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published