Skip to content

Latest commit

 

History

History
99 lines (90 loc) · 4.68 KB

index.md

File metadata and controls

99 lines (90 loc) · 4.68 KB
pagetitle author header-includes
Aravind Gollakota
Aravind Gollakota
<style> body { max-width: 800px; font-family: initial !important; font-size: 16px; overflow-wrap: normal; } h1, h2, h3, h4, h5, h6 { overflow-wrap: normal; hyphens: none; } img { margin-left: 16px; } li { margin: 12px 0; } a:link { color: blue; } a:visited { color: purple; } a:hover { background-color: #b3ccff; } </style>

Photo of me

Aravind Gollakota

I am an ML research engineer at Apple, working broadly on principled methods for reliable machine learning, including uncertainty quantification and related topics. My background is in machine learning theory and theoretical computer science. I received my PhD in CS at UT Austin in 2023 under Adam Klivans, and my undergraduate degree in math and CS at Cornell University in 2017.

Email, LinkedIn

Papers

(authors in alphabetical order unless indicated by *)

  • When does a predictor know its own loss?
    Aravind Gollakota, Parikshit Gopalan, Aayush Karan, Charlotte Peale, Udi Wieder
    Submitted, 2025
    [arxiv]
  • Provable Uncertainty Decomposition via Higher-Order Calibration
    Gustaf Ahdritz, Aravind Gollakota, Parikshit Gopalan, Charlotte Peale, Udi Wieder
    International Conference on Learning Representations (ICLR) 2025, to appear (Spotlight presentation)
    [arxiv]
  • An Efficient Tester-Learner for Halfspaces
    Aravind Gollakota, Adam R. Klivans, Konstantinos Stavropoulos, Arsen Vasilyan
    International Conference on Learning Representations (ICLR) 2024
    [arxiv]
  • Agnostically Learning Single-Index Models using Omnipredictors
    Aravind Gollakota, Parikshit Gopalan, Adam R. Klivans, Konstantinos Stavropoulos
    Neural Information Processing Systems (NeurIPS) 2023
    [arxiv]
  • Ambient Diffusion: Learning Clean Distributions from Corrupted Data
    Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alexandros G. Dimakis, Adam R. Klivans (*)
    Neural Information Processing Systems (NeurIPS) 2023
    [arxiv]
  • Tester-Learners for Halfspaces: Universal Algorithms
    Aravind Gollakota, Adam R. Klivans, Konstantinos Stavropoulos, Arsen Vasilyan
    Neural Information Processing Systems (NeurIPS) 2023 (Oral presentation)
    [arxiv]
  • A Moment-Matching Approach to Testable Learning and a New Characterization of Rademacher Complexity
    Aravind Gollakota, Adam R. Klivans, Pravesh K. Kothari
    Symposium on Theory of Computing (STOC) 2023 (invited to SIAM Journal of Computing special issue)
    [arxiv] [video]
  • Hardness of Noise-Free Learning for Two-Hidden-Layer Neural Networks
    Sitan Chen, Aravind Gollakota, Adam R. Klivans, Raghu Meka
    Neural Information Processing Systems (NeurIPS) 2022 (Oral presentation)
    [arxiv] [video]
  • On the Hardness of PAC-learning Stabilizer States with Noise
    Aravind Gollakota, Daniel Liang
    Quantum 6, 2022
    [arxiv]
  • The Polynomial Method is Universal for Distribution-Free Correlational SQ Learning
    Aravind Gollakota, Sushrut Karmalkar, Adam R. Klivans
    Technical note, 2020
    [arxiv]
  • Statistical-Query Lower Bounds via Functional Gradients
    Surbhi Goel, Aravind Gollakota, Adam R. Klivans
    Neural Information Processing Systems (NeurIPS) 2020
    [arxiv] [video]
  • Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent
    Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, Adam R. Klivans
    International Conference on Machine Learning (ICML) 2020
    [arxiv] [video]
  • Packing Tree Degree Sequences
    Aravind Gollakota, Will Hardt, István Miklós
    Graphs and Combinatorics 36, 2020
    [arxiv]