Skip to content

arangesh/TrackMPNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TrackMPNN: A Message Passing Neural Network for End-to-End Multi-object Tracking

This is the Pytorch implementation of TrackMPNN for the KITTI and BDD100K multi-object tracking (MOT) datasets.

Installation

  1. Clone this repository
  2. Install Pipenv:
pip3 install pipenv
  1. Install all requirements and dependencies in a new virtual environment using Pipenv:
cd TrackMPNN
pipenv install
  1. Get link for desired PyTorch wheel from here and install it in the Pipenv virtual environment as follows:
pipenv install https://download.pytorch.org/whl/cu100/torch-1.2.0-cp36-cp36m-manylinux1_x86_64.whl
  1. Clone and make DCNv2 (note gcc-8 is highest supported version incase you're on ubuntu 20.04 +):
cd models/dla
git clone https://github.com/CharlesShang/DCNv2
cd DCNv2
./make.sh
  1. Download the imagenet pre-trained embedding network weights to the TrackMPNN/weights folder.

KITTI

Dataset

  1. Download and extract the KITTI multi-object tracking (MOT) dataset (including images, labels, and calibration files).
  2. Download the RRC and CenterTrack detections for both training and testing splits and add them to the KITTI MOT folder. The dataset should be organized as follows:
└── kitti-mot
    ├── training/
    |   └── calib/
    |   └── image_02/
    |   └── label_02/
    |   └── rrc_detections/
    |   └── centertrack_detections/
    └── testing/
        └── calib/
        └── image_02/
        └── rrc_detections/
        └── centertrack_detections/

Training

TrackMPNN can be trained using RRC detections as follows:

pipenv shell # activate virtual environment
python train.py --dataset=kitti --dataset-root-path=/path/to/kitti-mot/ --cur-win-size=5 --detections=rrc --feats=2d --category=Car --no-tp-classifier --epochs=30 --random-transforms
exit # exit virtual environment

TrackMPNN can also be trained using CenterTrack detections as follows:

pipenv shell # activate virtual environment
python train.py --dataset=kitti --dataset-root-path=/path/to/kitti-mot/ --cur-win-size=5 --detections=centertrack --feats=2d --category=All --no-tp-classifier --epochs=50 --random-transforms
exit # exit virtual environment

By default, the model is trained to track All object categories, but you can supply the --category argument with any one of the following options: ['Pedestrian', 'Car', 'Cyclist', 'All'].

Inference

Inference on the testing split can be carried out using this script as follows:

pipenv shell # activate virtual environment
python infer.py --snapshot=/path/to/snapshot.pth --dataset-root-path=/path/to/kitti-mot/ --hungarian
exit # exit virtual environment

All settings from training will be carried over for inference.

Config files, logs, results and snapshots from running the above scripts will be stored in the TrackMPNN/experiments folder by default.

Visualizing Inference Results

You can use the utils/visualize_mot.py script to generate a video of the tracking results after running the inference script:

pipenv shell # activate virtual environment
python utils/visualize_mot.py /path/to/testing/inference/results /path/to/kitti-mot/testing/image_02
exit

The videos will be stored in the same folder as the inference results.

BDD100K

Dataset

  1. Download and extract the BDD100K multi-object tracking (MOT) dataset (including images, labels, and calibration files).
  2. Download the HIN and Libra detections for training, validation and testing splits and add them to the BDD100K MOT folder. The dataset should be organized as follows:
└── bdd100k-mot
    ├── training/
    |   └── calib/
    |   └── image_02/
    |   └── label_02/
    |   └── hin_detections/
    |   └── libra_detections/
    ├── validation/
    |   └── calib/
    |   └── image_02/
    |   └── label_02/
    |   └── hin_detections/
    |   └── libra_detections/
    └── testing/
        └── calib/
        └── image_02/
        └── hin_detections/
        └── libra_detections/

Training

TrackMPNN can be trained using HIN detections as follows:

pipenv shell # activate virtual environment
python train.py --dataset=bdd100k --dataset-root-path=/path/to/bdd100k-mot/ --cur-win-size=5 --detections=libra --feats=2d --category=All --no-tp-classifier --epochs=20  --random-transforms
exit # exit virtual environment

By default, the model is trained to track All object categories, but you can supply the --category argument with any one of the following options: ['pedestrian', 'rider', 'car', 'bus', 'truck', 'train', 'motorcycle', 'bicycle', 'All'].

Inference

Inference on the testing split can be carried out using this script as follows:

pipenv shell # activate virtual environment
python infer.py --snapshot=/path/to/snapshot.pth --dataset-root-path=/path/to/bdd100k-mot/ --hungarian
exit # exit virtual environment

All settings from training will be carried over for inference.

Config files, logs, results and snapshots from running the above scripts will be stored in the TrackMPNN/experiments folder by default.

Visualizing Inference Results

You can use the utils/visualize_mot.py script to generate a video of the tracking results after running the inference script:

pipenv shell # activate virtual environment
python utils/visualize_mot.py /path/to/testing/inference/results /path/to/bdd100k-mot/testing/image_02
exit

The videos will be stored in the same folder as the inference results.