forked from rstudio/shiny
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender-plot.R
1067 lines (958 loc) · 36.6 KB
/
render-plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#' Plot Output
#'
#' Renders a reactive plot that is suitable for assigning to an `output`
#' slot.
#'
#' The corresponding HTML output tag should be `div` or `img` and have
#' the CSS class name `shiny-plot-output`.
#'
#' @section Interactive plots:
#'
#' With ggplot2 graphics, the code in `renderPlot` should return a ggplot
#' object; if instead the code prints the ggplot2 object with something like
#' `print(p)`, then the coordinates for interactive graphics will not be
#' properly scaled to the data space.
#'
#' See [plotOutput()] for more information about interactive plots.
#'
#' @seealso For the corresponding client-side output function, and example
#' usage, see [plotOutput()]. For more details on how the plots are
#' generated, and how to control the output, see [plotPNG()].
#' [renderCachedPlot()] offers a way to cache generated plots to
#' expedite the rendering of identical plots.
#'
#' @param expr An expression that generates a plot.
#' @param width,height Height and width can be specified in three ways:
#' * `"auto"`, the default, uses the size specified by [plotOutput()]
#' (i.e. the `offsetWidth`/`offsetHeight`` of the HTML element bound to
#' this plot.)
#' * An integer, defining the width/height in pixels.
#' * A function that returns the width/height in pixels (or `"auto"`).
#' The function is executed in a reactive context so that you can refer to
#' reactive values and expression to make the width/height reactive.
#'
#' When rendering an inline plot, you must provide numeric values (in pixels)
#' to both \code{width} and \code{height}.
#' @param res Resolution of resulting plot, in pixels per inch. This value is
#' passed to [grDevices::png()]. Note that this affects the resolution of PNG
#' rendering in R; it won't change the actual ppi of the browser.
#' @param ... Arguments to be passed through to [grDevices::png()].
#' These can be used to set the width, height, background color, etc.
#' @param env The environment in which to evaluate `expr`.
#' @param quoted Is `expr` a quoted expression (with `quote()`)? This
#' is useful if you want to save an expression in a variable.
#' @param execOnResize If `FALSE` (the default), then when a plot is
#' resized, Shiny will *replay* the plot drawing commands with
#' [grDevices::replayPlot()] instead of re-executing `expr`.
#' This can result in faster plot redrawing, but there may be rare cases where
#' it is undesirable. If you encounter problems when resizing a plot, you can
#' have Shiny re-execute the code on resize by setting this to `TRUE`.
#' @param outputArgs A list of arguments to be passed through to the implicit
#' call to [plotOutput()] when `renderPlot` is used in an
#' interactive R Markdown document.
#' @export
renderPlot <- function(expr, width='auto', height='auto', res=72, ...,
env=parent.frame(), quoted=FALSE,
execOnResize=FALSE, outputArgs=list()
) {
# This ..stacktraceon is matched by a ..stacktraceoff.. when plotFunc
# is called
installExprFunction(expr, "func", env, quoted, ..stacktraceon = TRUE)
args <- list(...)
if (is.reactive(width))
widthWrapper <- width
else if (is.function(width))
widthWrapper <- reactive({ width() })
else
widthWrapper <- function() { width }
if (is.reactive(height))
heightWrapper <- height
else if (is.function(height))
heightWrapper <- reactive({ height() })
else
heightWrapper <- function() { height }
getDims <- function() {
width <- widthWrapper()
height <- heightWrapper()
# Note that these are reactive calls. A change to the width and height
# will inherently cause a reactive plot to redraw (unless width and
# height were explicitly specified).
if (width == 'auto')
width <- session$clientData[[paste0('output_', outputName, '_width')]]
if (height == 'auto')
height <- session$clientData[[paste0('output_', outputName, '_height')]]
list(width = width, height = height)
}
# Vars to store session and output, so that they can be accessed from
# the plotObj() reactive.
session <- NULL
outputName <- NULL
# Calls drawPlot, invoking the user-provided `func` (which may or may not
# return a promise). The idea is that the (cached) return value from this
# reactive can be used for varying width/heights, as it includes the
# displaylist, which is resolution independent.
drawReactive <- reactive(label = "plotObj", {
hybrid_chain(
{
# If !execOnResize, don't invalidate when width/height changes.
dims <- if (execOnResize) getDims() else isolate(getDims())
pixelratio <- session$clientData$pixelratio %OR% 1
do.call("drawPlot", c(
list(
name = outputName,
session = session,
func = func,
width = dims$width,
height = dims$height,
pixelratio = pixelratio,
res = res
), args))
},
catch = function(reason) {
# Non-isolating read. A common reason for errors in plotting is because
# the dimensions are too small. By taking a dependency on width/height,
# we can try again if the plot output element changes size.
getDims()
# Propagate the error
stop(reason)
}
)
})
# This function is the one that's returned from renderPlot(), and gets
# wrapped in an observer when the output value is assigned.
renderFunc <- function(shinysession, name, ...) {
outputName <<- name
session <<- shinysession
hybrid_chain(
drawReactive(),
function(result) {
dims <- getDims()
pixelratio <- session$clientData$pixelratio %OR% 1
result <- do.call("resizeSavedPlot", c(
list(name, shinysession, result, dims$width, dims$height, pixelratio, res),
args
))
result$img
}
)
}
# If renderPlot isn't going to adapt to the height of the div, then the
# div needs to adapt to the height of renderPlot. By default, plotOutput
# sets the height to 400px, so to make it adapt we need to override it
# with NULL.
outputFunc <- plotOutput
if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL)
markRenderFunction(outputFunc, renderFunc, outputArgs = outputArgs)
}
resizeSavedPlot <- function(name, session, result, width, height, pixelratio, res, ...) {
if (result$img$width == width && result$img$height == height &&
result$pixelratio == pixelratio && result$res == res) {
return(result)
}
coordmap <- NULL
outfile <- plotPNG(function() {
grDevices::replayPlot(result$recordedPlot)
coordmap <<- getCoordmap(result$plotResult, width*pixelratio, height*pixelratio, res*pixelratio)
}, width = width*pixelratio, height = height*pixelratio, res = res*pixelratio, ...)
on.exit(unlink(outfile), add = TRUE)
result$img <- list(
src = session$fileUrl(name, outfile, contentType = "image/png"),
width = width,
height = height,
coordmap = coordmap,
error = attr(coordmap, "error", exact = TRUE)
)
result
}
drawPlot <- function(name, session, func, width, height, pixelratio, res, ...) {
# 1. Start PNG
# 2. Enable displaylist recording
# 3. Call user-defined func
# 4. Print/save result, if visible
# 5. Snapshot displaylist
# 6. Form coordmap
# 7. End PNG (in finally)
# 8. Form img tag
# 9. Return img, value, displaylist, coordmap
# 10. On error, take width and height dependency
outfile <- tempfile(fileext='.png') # If startPNG throws, this could leak. Shrug.
device <- startPNG(outfile, width*pixelratio, height*pixelratio, res = res*pixelratio, ...)
domain <- createGraphicsDevicePromiseDomain(device)
grDevices::dev.control(displaylist = "enable")
hybrid_chain(
hybrid_chain(
promises::with_promise_domain(domain, {
hybrid_chain(
func(),
function(value, .visible) {
if (.visible) {
# A modified version of print.ggplot which returns the built ggplot object
# as well as the gtable grob. This overrides the ggplot::print.ggplot
# method, but only within the context of renderPlot. The reason this needs
# to be a (pseudo) S3 method is so that, if an object has a class in
# addition to ggplot, and there's a print method for that class, that we
# won't override that method. https://github.com/rstudio/shiny/issues/841
print.ggplot <- custom_print.ggplot
# Use capture.output to squelch printing to the actual console; we
# are only interested in plot output
utils::capture.output({
# This ..stacktraceon.. negates the ..stacktraceoff.. that wraps
# the call to plotFunc. The value needs to be printed just in case
# it's an object that requires printing to generate plot output,
# similar to ggplot2. But for base graphics, it would already have
# been rendered when func was called above, and the print should
# have no effect.
result <- ..stacktraceon..(print(value))
# TODO jcheng 2017-04-11: Verify above ..stacktraceon..
})
result
} else {
# Not necessary, but I wanted to make it explicit
NULL
}
},
function(value) {
list(
plotResult = value,
recordedPlot = grDevices::recordPlot(),
coordmap = getCoordmap(value, width*pixelratio, height*pixelratio, res*pixelratio),
pixelratio = pixelratio,
res = res
)
}
)
}),
finally = function() {
grDevices::dev.off(device)
}
),
function(result) {
result$img <- dropNulls(list(
src = session$fileUrl(name, outfile, contentType='image/png'),
width = width,
height = height,
coordmap = result$coordmap,
# Get coordmap error message if present
error = attr(result$coordmap, "error", exact = TRUE)
))
result
},
finally = function() {
unlink(outfile)
}
)
}
# A modified version of print.ggplot which returns the built ggplot object
# as well as the gtable grob. This overrides the ggplot::print.ggplot
# method, but only within the context of renderPlot. The reason this needs
# to be a (pseudo) S3 method is so that, if an object has a class in
# addition to ggplot, and there's a print method for that class, that we
# won't override that method. https://github.com/rstudio/shiny/issues/841
custom_print.ggplot <- function(x) {
grid::grid.newpage()
build <- ggplot2::ggplot_build(x)
gtable <- ggplot2::ggplot_gtable(build)
grid::grid.draw(gtable)
structure(list(
build = build,
gtable = gtable
), class = "ggplot_build_gtable")
}
# The coordmap extraction functions below return something like the examples
# below. For base graphics:
# plot(mtcars$wt, mtcars$mpg)
# str(getPrevPlotCoordmap(400, 300))
# List of 2
# $ panels:List of 1
# ..$ :List of 4
# .. ..$ domain :List of 4
# .. .. ..$ left : num 1.36
# .. .. ..$ right : num 5.58
# .. .. ..$ bottom: num 9.46
# .. .. ..$ top : num 34.8
# .. ..$ range :List of 4
# .. .. ..$ left : num 65.6
# .. .. ..$ right : num 366
# .. .. ..$ bottom: num 238
# .. .. ..$ top : num 48.2
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ mapping: Named list()
# $ dims :List of 2
# ..$ width : num 400
# ..$ height: num 300
#
# For ggplot2, first you need to define the print.ggplot function from inside
# renderPlot, then use it to print the plot:
# print.ggplot <- function(x) {
# grid::grid.newpage()
#
# build <- ggplot2::ggplot_build(x)
#
# gtable <- ggplot2::ggplot_gtable(build)
# grid::grid.draw(gtable)
#
# structure(list(
# build = build,
# gtable = gtable
# ), class = "ggplot_build_gtable")
# }
#
# p <- print(ggplot(mtcars, aes(wt, mpg)) + geom_point())
# str(getGgplotCoordmap(p, 400, 300, 72))
# List of 2
# $ panels:List of 1
# ..$ :List of 8
# .. ..$ panel : num 1
# .. ..$ row : num 1
# .. ..$ col : num 1
# .. ..$ panel_vars: Named list()
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 4
# .. .. ..$ left : num 1.32
# .. .. ..$ right : num 5.62
# .. .. ..$ bottom: num 9.22
# .. .. ..$ top : num 35.1
# .. ..$ mapping :List of 2
# .. .. ..$ x: chr "wt"
# .. .. ..$ y: chr "mpg"
# .. ..$ range :List of 4
# .. .. ..$ left : num 33.3
# .. .. ..$ right : num 355
# .. .. ..$ bottom: num 328
# .. .. ..$ top : num 5.48
# $ dims :List of 2
# ..$ width : num 400
# ..$ height: num 300
#
# With a faceted ggplot2 plot, the outer list contains two objects, each of
# which represents one panel. In this example, there is one panelvar, but there
# can be up to two of them.
# p <- print(ggplot(mpg) + geom_point(aes(fl, cty), alpha = 0.2) + facet_wrap(~drv, scales = "free_x"))
# str(getGgplotCoordmap(p, 500, 400, 72))
# List of 2
# $ panels:List of 3
# ..$ :List of 8
# .. ..$ panel : num 1
# .. ..$ row : int 1
# .. ..$ col : int 1
# .. ..$ panel_vars:List of 1
# .. .. ..$ panelvar1: chr "4"
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 5
# .. .. ..$ left : num 0.4
# .. .. ..$ right : num 4.6
# .. .. ..$ bottom : num 7.7
# .. .. ..$ top : num 36.3
# .. .. ..$ discrete_limits:List of 1
# .. .. .. ..$ x: chr [1:4] "d" "e" "p" "r"
# .. ..$ mapping :List of 3
# .. .. ..$ x : chr "fl"
# .. .. ..$ y : chr "cty"
# .. .. ..$ panelvar1: chr "drv"
# .. ..$ range :List of 4
# .. .. ..$ left : num 33.3
# .. .. ..$ right : num 177
# .. .. ..$ bottom: num 448
# .. .. ..$ top : num 23.1
# ..$ :List of 8
# .. ..$ panel : num 2
# .. ..$ row : int 1
# .. ..$ col : int 2
# .. ..$ panel_vars:List of 1
# .. .. ..$ panelvar1: chr "f"
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 5
# .. .. ..$ left : num 0.4
# .. .. ..$ right : num 5.6
# .. .. ..$ bottom : num 7.7
# .. .. ..$ top : num 36.3
# .. .. ..$ discrete_limits:List of 1
# .. .. .. ..$ x: chr [1:5] "c" "d" "e" "p" ...
# .. ..$ mapping :List of 3
# .. .. ..$ x : chr "fl"
# .. .. ..$ y : chr "cty"
# .. .. ..$ panelvar1: chr "drv"
# .. ..$ range :List of 4
# .. .. ..$ left : num 182
# .. .. ..$ right : num 326
# .. .. ..$ bottom: num 448
# .. .. ..$ top : num 23.1
# ..$ :List of 8
# .. ..$ panel : num 3
# .. ..$ row : int 1
# .. ..$ col : int 3
# .. ..$ panel_vars:List of 1
# .. .. ..$ panelvar1: chr "r"
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 5
# .. .. ..$ left : num 0.4
# .. .. ..$ right : num 3.6
# .. .. ..$ bottom : num 7.7
# .. .. ..$ top : num 36.3
# .. .. ..$ discrete_limits:List of 1
# .. .. .. ..$ x: chr [1:3] "e" "p" "r"
# .. ..$ mapping :List of 3
# .. .. ..$ x : chr "fl"
# .. .. ..$ y : chr "cty"
# .. .. ..$ panelvar1: chr "drv"
# .. ..$ range :List of 4
# .. .. ..$ left : num 331
# .. .. ..$ right : num 475
# .. .. ..$ bottom: num 448
# .. .. ..$ top : num 23.1
# $ dims :List of 2
# ..$ width : num 500
# ..$ height: num 400
getCoordmap <- function(x, width, height, res) {
if (inherits(x, "ggplot_build_gtable")) {
getGgplotCoordmap(x, width, height, res)
} else {
getPrevPlotCoordmap(width, height)
}
}
# Get a coordmap for the previous plot made with base graphics.
# Requires width and height of output image, in pixels.
# Must be called before the graphics device is closed.
getPrevPlotCoordmap <- function(width, height) {
usrCoords <- graphics::par('usr')
usrBounds <- usrCoords
if (graphics::par('xlog')) {
usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)]
}
if (graphics::par('ylog')) {
usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)]
}
# Wrapped in double list because other types of plots can have multiple panels.
panel_info <- list(list(
# Bounds of the plot area, in data space
domain = list(
left = usrCoords[1],
right = usrCoords[2],
bottom = usrCoords[3],
top = usrCoords[4]
),
# The bounds of the plot area, in DOM pixels
range = list(
left = graphics::grconvertX(usrBounds[1], 'user', 'ndc') * width,
right = graphics::grconvertX(usrBounds[2], 'user', 'ndc') * width,
bottom = (1-graphics::grconvertY(usrBounds[3], 'user', 'ndc')) * height - 1,
top = (1-graphics::grconvertY(usrBounds[4], 'user', 'ndc')) * height - 1
),
log = list(
x = if (graphics::par('xlog')) 10 else NULL,
y = if (graphics::par('ylog')) 10 else NULL
),
# We can't extract the original variable names from a base graphic.
# `mapping` is an empty _named_ list, so that it is converted to an object
# (not an array) in JSON.
mapping = list(x = NULL)[0]
))
list(
panels = panel_info,
dims = list(
width = width,
height =height
)
)
}
# Given a ggplot_build_gtable object, return a coordmap for it.
getGgplotCoordmap <- function(p, width, height, res) {
if (!inherits(p, "ggplot_build_gtable"))
return(NULL)
tryCatch({
# Get info from built ggplot object
panel_info <- find_panel_info(p$build)
# Get ranges from gtable - it's possible for this to return more elements than
# info, because it calculates positions even for panels that aren't present.
# This can happen with facet_wrap.
ranges <- find_panel_ranges(p$gtable, res)
for (i in seq_along(panel_info)) {
panel_info[[i]]$range <- ranges[[i]]
}
return(
list(
panels = panel_info,
dims = list(
width = width,
height = height
)
)
)
}, error = function(e) {
# If there was an error extracting info from the ggplot object, just return
# a list with the error message.
return(structure(list(), error = e$message))
})
}
find_panel_info <- function(b) {
# Structure of ggplot objects changed after 2.1.0. After 2.2.1, there was a
# an API for extracting the necessary information.
ggplot_ver <- utils::packageVersion("ggplot2")
if (ggplot_ver > "2.2.1") {
find_panel_info_api(b)
} else if (ggplot_ver > "2.1.0") {
find_panel_info_non_api(b, ggplot_format = "new")
} else {
find_panel_info_non_api(b, ggplot_format = "old")
}
}
# This is for ggplot2>2.2.1, after an API was introduced for extracting
# information about the plot object.
find_panel_info_api <- function(b) {
# Given a built ggplot object, return x and y domains (data space coords) for
# each panel.
layout <- ggplot2::summarise_layout(b)
coord <- ggplot2::summarise_coord(b)
layers <- ggplot2::summarise_layers(b)
# Given x and y scale objects and a coord object, return a list that has
# the bases of log transformations for x and y, or NULL if it's not a
# log transform.
get_log_bases <- function(xscale, yscale, coord) {
# Given a transform object, find the log base; if the transform object is
# NULL, or if it's not a log transform, return NA.
get_log_base <- function(trans) {
if (!is.null(trans) && grepl("^log-", trans$name)) {
environment(trans$transform)$base
} else {
NA_real_
}
}
# First look for log base in scale, then coord; otherwise NULL.
list(
x = get_log_base(xscale$trans) %OR% coord$xlog %OR% NULL,
y = get_log_base(yscale$trans) %OR% coord$ylog %OR% NULL
)
}
# Given x/y min/max, and the x/y scale objects, create a list that
# represents the domain. Note that the x/y min/max should be taken from
# the layout summary table, not the scale objects.
get_domain <- function(xmin, xmax, ymin, ymax, xscale, yscale) {
is_reverse <- function(scale) {
identical(scale$trans$name, "reverse")
}
domain <- list(
left = xmin,
right = xmax,
bottom = ymin,
top = ymax
)
if (is_reverse(xscale)) {
domain$left <- -domain$left
domain$right <- -domain$right
}
if (is_reverse(yscale)) {
domain$top <- -domain$top
domain$bottom <- -domain$bottom
}
domain <- add_discrete_limits(domain, xscale, "x")
domain <- add_discrete_limits(domain, yscale, "y")
domain
}
# Rename the items in vars to have names like panelvar1, panelvar2.
rename_panel_vars <- function(vars) {
for (i in seq_along(vars)) {
names(vars)[i] <- paste0("panelvar", i)
}
vars
}
get_mappings <- function(layers, layout, coord) {
# For simplicity, we'll just use the mapping from the first layer of the
# ggplot object. The original uses quoted expressions; convert to
# character.
mapping <- layers$mapping[[1]]
# In ggplot2 <=2.2.1, the mappings are expressions. In later versions, they
# are quosures. `deparse(quo_squash(x))` will handle both cases.
# as.character results in unexpected behavior for expressions like `wt/2`,
# which is why we use deparse.
mapping <- lapply(mapping, function(x) deparse(rlang::quo_squash(x)))
# If either x or y is not present, give it a NULL entry.
mapping <- mergeVectors(list(x = NULL, y = NULL), mapping)
# The names (not values) of panel vars are the same across all panels,
# so just look at the first one. Also, the order of panel vars needs
# to be reversed.
vars <- rev(layout$vars[[1]])
for (i in seq_along(vars)) {
mapping[[paste0("panelvar", i)]] <- names(vars)[i]
}
if (isTRUE(coord$flip)) {
mapping[c("x", "y")] <- mapping[c("y", "x")]
}
mapping
}
# Mapping is constant across all panels, so get it here and reuse later.
mapping <- get_mappings(layers, layout, coord)
# If coord_flip is used, these need to be swapped
flip_xy <- function(layout) {
l <- layout
l$xscale <- layout$yscale
l$yscale <- layout$xscale
l$xmin <- layout$ymin
l$xmax <- layout$ymax
l$ymin <- layout$xmin
l$ymax <- layout$xmax
l
}
if (coord$flip) {
layout <- flip_xy(layout)
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row, use it as a list. The (former) list-cols are still
# in lists, so we need to unwrap them.
l <- as.list(layout[i, ])
l$vars <- l$vars[[1]]
l$xscale <- l$xscale[[1]]
l$yscale <- l$yscale[[1]]
list(
panel = as.numeric(l$panel),
row = l$row,
col = l$col,
# Rename panel vars. They must also be in reversed order.
panel_vars = rename_panel_vars(rev(l$vars)),
log = get_log_bases(l$xscale, l$yscale, coord),
domain = get_domain(l$xmin, l$xmax, l$ymin, l$ymax, l$xscale, l$yscale),
mapping = mapping
)
})
}
# This is for ggplot2<=2.2.1, before an API was introduced for extracting
# information about the plot object. The "old" format was used before 2.1.0.
# The "new" format was used after 2.1.0, up to 2.2.1. The reason these two
# formats are mixed together in a single function is historical, and it's not
# worthwhile to separate them at this point.
find_panel_info_non_api <- function(b, ggplot_format) {
# Given a single range object (representing the data domain) from a built
# ggplot object, return the domain.
find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) {
if (ggplot_format == "new") {
range <- b$layout$panel_ranges[[panel_num]]
} else {
range <- b$panel$ranges[[panel_num]]
}
domain <- list(
left = range$x.range[1],
right = range$x.range[2],
bottom = range$y.range[1],
top = range$y.range[2]
)
# Check for reversed scales
if (ggplot_format == "new") {
xscale <- b$layout$panel_scales$x[[scalex_num]]
yscale <- b$layout$panel_scales$y[[scaley_num]]
} else {
xscale <- b$panel$x_scales[[scalex_num]]
yscale <- b$panel$y_scales[[scaley_num]]
}
if (!is.null(xscale$trans) && xscale$trans$name == "reverse") {
domain$left <- -domain$left
domain$right <- -domain$right
}
if (!is.null(yscale$trans) && yscale$trans$name == "reverse") {
domain$top <- -domain$top
domain$bottom <- -domain$bottom
}
domain <- add_discrete_limits(domain, xscale, "x")
domain <- add_discrete_limits(domain, yscale, "y")
domain
}
# Given built ggplot object, return object with the log base for x and y if
# there are log scales or coord transforms.
check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) {
# Given a vector of transformation names like c("log-10", "identity"),
# return the first log base, like 10. If none are present, return NULL.
extract_log_base <- function(names) {
names <- names[grepl("^log-", names)]
if (length(names) == 0)
return(NULL)
names <- names[1]
as.numeric(sub("^log-", "", names))
}
# Look for log scales and log coord transforms. People shouldn't use both.
x_names <- character(0)
y_names <- character(0)
# Continuous scales have a trans; discrete ones don't
if (ggplot_format == "new") {
if (!is.null(b$layout$panel_scales$x[[scalex_num]]$trans))
x_names <- b$layout$panel_scales$x[[scalex_num]]$trans$name
if (!is.null(b$layout$panel_scales$y[[scaley_num]]$trans))
y_names <- b$layout$panel_scales$y[[scaley_num]]$trans$name
} else {
if (!is.null(b$panel$x_scales[[scalex_num]]$trans))
x_names <- b$panel$x_scales[[scalex_num]]$trans$name
if (!is.null(b$panel$y_scales[[scaley_num]]$trans))
y_names <- b$panel$y_scales[[scaley_num]]$trans$name
}
coords <- b$plot$coordinates
if (!is.null(coords$trans)) {
if (!is.null(coords$trans$x))
x_names <- c(x_names, coords$trans$x$name)
if (!is.null(coords$trans$y))
y_names <- c(y_names, coords$trans$y$name)
}
# Keep only scale/trans names that start with "log-"
x_names <- x_names[grepl("^log-", x_names)]
y_names <- y_names[grepl("^log-", y_names)]
# Extract the log base from the trans name -- a string like "log-10".
list(
x = extract_log_base(x_names),
y = extract_log_base(y_names)
)
}
# Given a built ggplot object, return a named list of variables mapped to x
# and y. This function will be called for each panel, but in practice the
# result is always the same across panels, so we'll cache the result.
mappings_cache <- NULL
find_plot_mappings <- function(b) {
if (!is.null(mappings_cache))
return(mappings_cache)
# lapply'ing as.character results in unexpected behavior for expressions
# like `wt/2`. This works better.
mappings <- as.list(as.character(b$plot$mapping))
# If x or y mapping is missing, look in each layer for mappings and return
# the first one.
missing_mappings <- setdiff(c("x", "y"), names(mappings))
if (length(missing_mappings) != 0) {
# Grab mappings for each layer
layer_mappings <- lapply(b$plot$layers, function(layer) {
lapply(layer$mapping, as.character)
})
# Get just the first x or y value in the combined list of plot and layer
# mappings.
mappings <- c(list(mappings), layer_mappings)
mappings <- Reduce(x = mappings, init = list(x = NULL, y = NULL),
function(init, m) {
# Can't use m$x/m$y; you get a partial match with xintercept/yintercept
if (is.null(init[["x"]]) && !is.null(m[["x"]])) init$x <- m[["x"]]
if (is.null(init[["y"]]) && !is.null(m[["y"]])) init$y <- m[["y"]]
init
}
)
}
# Look for CoordFlip
if (inherits(b$plot$coordinates, "CoordFlip")) {
mappings[c("x", "y")] <- mappings[c("y", "x")]
}
mappings_cache <<- mappings
mappings
}
if (ggplot_format == "new") {
layout <- b$layout$panel_layout
} else {
layout <- b$panel$layout
}
# Convert factor to numbers
layout$PANEL <- as.integer(as.character(layout$PANEL))
# Names of facets
facet_vars <- NULL
if (ggplot_format == "new") {
facet <- b$layout$facet
if (inherits(facet, "FacetGrid")) {
facet_vars <- vapply(c(facet$params$cols, facet$params$rows), as.character, character(1))
} else if (inherits(facet, "FacetWrap")) {
facet_vars <- vapply(facet$params$facets, as.character, character(1))
}
} else {
facet <- b$plot$facet
if (inherits(facet, "grid")) {
facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1))
} else if (inherits(facet, "wrap")) {
facet_vars <- vapply(facet$facets, as.character, character(1))
}
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row
l <- layout[i, ]
scale_x <- l$SCALE_X
scale_y <- l$SCALE_Y
mapping <- find_plot_mappings(b)
# For each of the faceting variables, get the value of that variable in
# the current panel. Default to empty _named_ list so that it's sent as a
# JSON object, not array.
panel_vars <- list(a = NULL)[0]
for (i in seq_along(facet_vars)) {
var_name <- facet_vars[[i]]
vname <- paste0("panelvar", i)
mapping[[vname]] <- var_name
panel_vars[[vname]] <- l[[var_name]]
}
list(
panel = l$PANEL,
row = l$ROW,
col = l$COL,
panel_vars = panel_vars,
scale_x = scale_x,
scale_y = scale_x,
log = check_log_scales(b, scale_x, scale_y),
domain = find_panel_domain(b, l$PANEL, scale_x, scale_y),
mapping = mapping
)
})
}
# Use public API for getting the unit's type (grid::unitType(), added in R 4.0)
# https://github.com/wch/r-source/blob/f9b8a42/src/library/grid/R/unit.R#L179
getUnitType <- function(u) {
tryCatch(
get("unitType", envir = asNamespace("grid"))(u),
error = function(e) attr(u, "unit", exact = TRUE)
)
}
# Given a gtable object, return the x and y ranges (in pixel dimensions)
find_panel_ranges <- function(g, res) {
# Given a vector of unit objects, return logical vector indicating which ones
# are "null" units. These units use the remaining available width/height --
# that is, the space not occupied by elements that have an absolute size.
is_null_unit <- function(x) {
# A vector of units can be either a list of individual units (a unit.list
# object), each with their own set of attributes, or an atomic vector with
# one set of attributes. ggplot2 switched from the former (in version
# 1.0.1) to the latter. We need to make sure that we get the correct
# result in both cases.
if (inherits(x, "unit.list")) {
# For ggplot2 <= 1.0.1
vapply(x, FUN.VALUE = logical(1), function(u) {
isTRUE(getUnitType(u) == "null")
})
} else {
# For later versions of ggplot2
getUnitType(x) == "null"
}
}
# Workaround for a bug in the quartz device. If you have a 400x400 image and
# run `convertWidth(unit(1, "npc"), "native")`, the result will depend on
# res setting of the device. If res=72, then it returns 400 (as expected),
# but if, e.g., res=96, it will return 300, which is incorrect.
devScaleFactor <- 1
if (grepl("quartz", names(grDevices::dev.cur()), fixed = TRUE)) {
devScaleFactor <- res / 72
}
# Convert a unit (or vector of units) to a numeric vector of pixel sizes
h_px <- function(x) {
devScaleFactor * grid::convertHeight(x, "native", valueOnly = TRUE)
}
w_px <- function(x) {
devScaleFactor * grid::convertWidth(x, "native", valueOnly = TRUE)
}
# Given a vector of relative sizes (in grid units), and a function for
# converting grid units to numeric pixels, return a list with: known pixel
# dimensions, scalable dimensions, and the overall space for the scalable
# objects.
find_size_info <- function(rel_sizes, unit_to_px) {
# Total pixels (in height or width)
total_px <- unit_to_px(grid::unit(1, "npc"))
# Calculate size of all panel(s) together. Panels (and only panels) have
# null size.
null_idx <- is_null_unit(rel_sizes)
# All the absolute heights. At this point, null heights are 0. We need to
# calculate them separately and add them in later.
px_sizes <- unit_to_px(rel_sizes)
# Mark the null heights as NA.
px_sizes[null_idx] <- NA_real_
# The plotting panels all are 'null' units.
null_sizes <- rep(NA_real_, length(rel_sizes))
# Workaround for `[.unit` forbidding zero-length subsets
# https://github.com/wch/r-source/blob/f9b8a42/src/library/grid/R/unit.R#L448-L450
if (length(null_idx)) {
null_sizes[null_idx] <- as.numeric(rel_sizes[null_idx])
}
# Total size allocated for panels is the total image size minus absolute
# (non-panel) elements.
panel_px_total <- total_px - sum(px_sizes, na.rm = TRUE)
# Size of a 1null unit
null_px <- abs(panel_px_total / sum(null_sizes, na.rm = TRUE))
# This returned list contains:
# * px_sizes: A vector of known pixel dimensions. The values that were
# null units will be assigned NA. The null units are ones that scale
# when the plotting area is resized.
# * null_sizes: A vector of the null units. All others will be assigned
# NA. The null units often are 1, but they may be any value, especially
# when using coord_fixed.
# * null_px: The size (in pixels) of a 1null unit.
# * null_px_scaled: The size (in pixels) of a 1null unit when scaled to
# fit a smaller dimension (used for plots with coord_fixed).
list(
px_sizes = abs(px_sizes),
null_sizes = null_sizes,
null_px = null_px,
null_px_scaled = null_px
)
}
# Given a size_info, return absolute pixel positions
size_info_to_px <- function(info) {
px_sizes <- info$px_sizes
null_idx <- !is.na(info$null_sizes)
px_sizes[null_idx] <- info$null_sizes[null_idx] * info$null_px_scaled
# If this direction is scaled down because of coord_fixed, we need to add an
# offset so that the pixel locations are centered.
offset <- (info$null_px - info$null_px_scaled) *
sum(info$null_sizes, na.rm = TRUE) / 2