carbono is built in such a way that it abstracts away managing feed-forward networks, in fact, you might say it's a web specification for machine learning given how easy it is to make it work with any technology.
These are some basic examples you can try. Keep in mind that some might not work due to the fast-paced working manner i'm approaching on this project, I will try to update this as much as possible though.
// Create a neural network and add layers to it
const nn = new carbono();
nn.layer(2, 4, 'relu');
nn.layer(4, 1, 'sigmoid');
// Prepare training data
const dataset = [
{ input: [0, 0], output: [0] },
{ input: [0, 1], output: [1] },
{ input: [1, 0], output: [1] },
{ input: [1, 1], output: [0] }
];
// Train the neural network
nn.train(dataset, { epochs: 100, learningRate: 0.1, printEveryEpochs: 10 });
// Make predictions
console.log(nn.predict([1, 0])); // Expected output close to [1]
console.log(nn.predict([1, 1])); // Expected output close to [0]
// Save the model
nn.save('xor_model');
// Load the model
nn.load(() => {
console.log('Model loaded successfully!');
// You can now use the loaded model for predictions
});
Note: Ensure that you're running this in an environment where file operations are supported (e.g., a web browser) for the save and load functionality to work properly.
// New vocabulary and tokenization functions
function createVocabulary(texts) {
const vocab = new Set(['<pad>', '<endoftext>']);
texts.forEach(text => {
text.split(' ').forEach(word => vocab.add(word));
});
return Array.from(vocab);
}
function tokenize(text, vocab) {
return text.split(' ').map(word => vocab.indexOf(word));
}
function generateTrainingData(texts, vocab, contextSize = 8) {
const trainingData = [];
texts.forEach(text => {
const tokens = tokenize(text, vocab);
const padToken = vocab.indexOf('<pad>');
const eotToken = vocab.indexOf('<endoftext>');
// Pad the sequence
const paddedTokens = [
...Array(contextSize).fill(padToken),
...tokens,
eotToken
];
// Generate training pairs
for (let i = contextSize; i < paddedTokens.length; i++) {
const context = paddedTokens.slice(i - contextSize, i);
const target = paddedTokens[i];
// Convert target to one-hot encoding
const targetOneHot = Array(vocab.length).fill(0);
targetOneHot[target] = 1;
trainingData.push({
input: context,
output: targetOneHot
});
}
});
return trainingData;
}
// Example usage
const texts = [
"the cat sat on the mat",
"the dog ran in the park",
"a bird flew over the tree",
"she walked through the garden"
];
// Create vocabulary
const vocab = createVocabulary(texts);
console.log("Vocabulary size:", vocab.length);
// Generate training data
const trainSet = generateTrainingData(texts, vocab);
// Create neural network
const nn = new carbono(true);
// Input layer (context size 8)
nn.layer(8, 8, "relu") // Input layer with 8 context words to 32 hidden units
.layer(8, vocab.length, "softmax"); // Output layer (vocab size)
// Train the model
nn.train(trainSet, {
epochs: 80,
learningRate: 0.01,
printEveryEpochs: 20,
optimizer: 'adam',
lossFunction: 'cross-entropy'
}).then((summary) => {
// Test the model
function predictNextWord(context, vocab) {
const contextTokens = tokenize(context, vocab);
const padToken = vocab.indexOf('<pad>');
// Pad context if needed
while (contextTokens.length < 8) {
contextTokens.unshift(padToken);
}
// Take last 8 tokens if context is too long
const inputContext = contextTokens.slice(-8);
const prediction = nn.predict(inputContext);
const predictedIndex = prediction.indexOf(Math.max(...prediction));
return vocab[predictedIndex];
}
// Test examples
const testCases = [
"the cat sat on",
"the dog ran",
"a bird"
];
console.log("\nPredictions:");
testCases.forEach(context => {
const nextWord = predictNextWord(context, vocab);
console.log(`Context: "${context}"`);
console.log(`Predicted next word: "${nextWord}"\n`);
});
});
// Create a new neural network instance
const nn = new carbono();
nn.layer(4, 6, 'tanh');
nn.layer(6, 4, 'softmax');
// Prepare training data
const trainData = [
{
input: [0.8, 0.2, 0.2, 0.1],
output: 'cat'
},
{
input: [0.9, 0.3, 0.4, 0.2],
output: 'dog'
},
{
input: [1.0, 0.5, 0.6, 0.3],
output: 'wolf'
},
{
input: [0.4, 0.2, 0.2, 0.1],
output: 'bird'
}
];
// Train the network
nn.train(trainData, {
epochs: 200,
learningRate: 0.1,
}).then(()=>{
const testInput = [0.9, 0.3, 0.4, 0.3]; // Let's try with the "dog" inputs
const prediction = nn.predict(testInput);
console.log(prediction); // Will return a nicely formatted objects array like: [{'label':'class1','probability': 0.91283},...]
})
function emojiToBinary(emoji) {
return Array.from(emoji)
.map(char => char.codePointAt(0).toString(2).padStart(16, '0'))
.join('');
}
const emojis = [
'😀', '😊', '😂', '😅', '🤣', '😇', '😉', '😍', '😘', '😜',
'😎', '🤩', '🥳', '🤔', '😑', '😒', '🙄', '😏', '😓', '😭',
'😡', '🤬', '🥺', '😱', '😴', '😷', '🤒', '🤢', '🤮', '😵',
'🤯', '🤠', '🤑', '😈', '👿', '🤡', '👻', '💀',
];
const labels = [
'smile', 'joy', 'laugh', 'nervous', 'rofl', 'angel', 'wink',
'love', 'kiss', 'playful', 'cool', 'starstruck', 'celebrate',
'thinking', 'blank', 'annoyed', 'eyeroll', 'smirk', 'sweat',
'cry', 'angry', 'rage', 'pleading', 'shock', 'sleepy', 'mask',
'sick', 'nauseous', 'vomit', 'dizzy', 'exploding_head', 'cowboy',
'lust', 'devil', 'evil', 'clown', 'ghost', 'skull'
];
const emojiClasses = emojis.map((emoji, index) => ({
emoji,
binary: emojiToBinary(emoji),
label: labels[index]
}));
const trainSet = emojiClasses.map(item => ({
input: item.binary.split('').map(bit => parseInt(bit)),
output: Array(labels.length).fill(0).map((_, i) => labels[i] === item.label ? 1 : 0)
}));
const nn = new carbono(true);
// Input layer
const binaryLength = emojiToBinary(emojis[0]).length;
nn.layer(binaryLength, 10, "relu"); // 16 bits for each emoji, 10 neurons in the hidden layer
// Output layer with softmax activation
nn.layer(10, labels.length, "softmax"); // output classes
nn.train(trainSet, {
epochs: 100,
learningRate: 0.1,
printEveryEpochs: 25,
earlyStopThreshold: 1e-5,
}).then((summary) => {
const newEmoji = '😎';
const newInput = emojiToBinary(newEmoji).split('').map(bit => parseInt(bit));
const prediction = nn.predict(newInput);
console.log("Prediction:", prediction);
// Convert softmax output to class label
const predictedClass = prediction.indexOf(Math.max(...prediction));
const predictedLabel = labels[predictedClass];
console.log("Predicted Label:", predictedLabel);
console.log("Predicted Emoji:", emojis[labels.indexOf(predictedLabel)]);
});
// Softmax/Categorical Cross-Entropy Friendly Dataset (Iris Dataset)
const irisTrainSet = [
{ input: [.1, .5, .4, 0.2], output: [1, 0, 0] }, // Setosa
{ input: [.9, .0, .4, 0.2], output: [1, 0, 0] }, // Setosa
{ input: [.2, .4, .4, .3], output: [0, 0, 1] }, // Virginica
{ input: [.9, .0, .1, .8], output: [0, 0, 1] }, // Virginica
{ input: [.4, .9, .7, 0.4], output: [1, 0, 0] }, // Setosa
{ input: [.0, .2, .7, .4], output: [0, 1, 0] }, // Versicolor
{ input: [.4, .2, .5, .5], output: [0, 1, 0] }, // Versicolor
{ input: [.3, .3, .0, .5], output: [0, 0, 1] }, // Virginica
{ input: [.8, .7, .1, .9], output: [0, 0, 1] }, // Virginica
{ input: [.7, .8, .1, .3], output: [0, 1, 0] }, // Versicolor
];
const irisTestSet = [
{ input: [.1, .5, .4, 0.2], output: [1, 0, 0] }, // Setosa
{ input: [.2, .4, .4, .3], output: [0, 0, 1] }, // Virginica
{ input: [.4, .9, .7, 0.4], output: [1, 0, 0] }, // Setosa
{ input: [.0, .2, .7, .4], output: [0, 1, 0] }, // Versicolor
];
// Simpler Dataset with More Inputs (Regression Task)
const simpleTrainSet = [
{ input: [0.1, 0.2, 0.3, 0.4, 0.5], output: [0.1] },
{ input: [0.2, 0.3, 0.4, 0.5, 0.6], output: [0.2] },
{ input: [0.3, 0.4, 0.5, 0.6, 0.7], output: [0.3] },
{ input: [0.4, 0.5, 0.6, 0.7, 0.8], output: [0.4] },
{ input: [0.5, 0.6, 0.7, 0.8, 0.9], output: [0.5] },
{ input: [0.6, 0.7, 0.8, 0.9, 1.0], output: [0.6] },
{ input: [0.7, 0.8, 0.9, 1.0, 0.1], output: [0.7] },
{ input: [0.8, 0.9, 1.0, 0.1, 0.2], output: [0.8] },
{ input: [0.9, 1.0, 0.1, 0.2, 0.3], output: [0.9] },
{ input: [1.0, 0.1, 0.2, 0.3, 0.4], output: [1.0] },
];
const simpleTestSet = [
{ input: [0.1, 0.2, 0.3, 0.4, 0.5], output: [0.1] },
{ input: [0.2, 0.3, 0.4, 0.5, 0.6], output: [0.2] },
{ input: [0.3, 0.4, 0.5, 0.6, 0.7], output: [0.3] },
{ input: [0.4, 0.5, 0.6, 0.7, 0.8], output: [0.4] },
];
// Function to train a model with given parameters
async function trainModel(trainSet, testSet, optimizer, lossFunction, activation) {
const model = new carbono(true);
// Define layers based on activation function and loss function compatibility
if (lossFunction === "cross-entropy") {
if (activation !== "softmax" && activation !== "sigmoid") {
console.warn(
`⚠️ For cross-entropy loss, it's recommended to use 'softmax' (multi-class) or 'sigmoid' (binary) activation. Using 'softmax' by default.`
);
activation = "softmax";
}
if (trainSet[0].output.length > 1) {
model.layer(trainSet[0].input.length, Math.ceil((trainSet[0].input.length + trainSet[0].output.length) / 2), "tanh");
model.layer(Math.ceil((trainSet[0].input.length + trainSet[0].output.length) / 2), trainSet[0].output.length, activation);
} else {
// Binary classification or regression with sigmoid
model.layer(trainSet[0].input.length, Math.ceil((trainSet[0].input.length + trainSet[0].output.length) / 2), "tanh");
model.layer(Math.ceil((trainSet[0].input.length + trainSet[0].output.length) / 2), trainSet[0].output.length, activation);
}
} else {
// For MSE or other loss functions, use appropriate activation
model.layer(trainSet[0].input.length, 3, "tanh");
model.layer(3, trainSet[0].output.length, "tanh");
}
// Train the model
const options = {
epochs: 100,
learningRate: 0.1,
printEveryEpochs: 100,
earlyStopThreshold: lossFunction === "cross-entropy" ? 1e-4 : 1e-6,
testSet,
optimizer,
lossFunction,
};
// Log the summary
console.log(`\n🔍 Training Model with Optimizer: ${optimizer}, Loss Function: ${lossFunction}, Activation: ${activation}`);
const summary = await model.train(trainSet, options);
}
// Train models with different combinations
async function trainAllModels() {
const optimizers = ["sgd", "adam"];
const lossFunctions = ["mse", "cross-entropy"];
const activations = ["tanh", "softmax"];
// Train models on Iris dataset
console.log("📚 Training models on Iris dataset:");
for (const optimizer of optimizers) {
for (const lossFunction of lossFunctions) {
for (let activation of activations) {
// Skip incompatible activation and loss function combinations
if (lossFunction === "cross-entropy" && activation === "tanh") {
console.warn(
`⚠️ Skipping combination: Optimizer=${optimizer}, Loss Function=${lossFunction}, Activation=${activation} (Incompatible)`
);
continue;
}
await trainModel(irisTrainSet, irisTestSet, optimizer, lossFunction, activation);
}
}
}
// Train models on simpler dataset
console.log("\n📚 Training models on simpler dataset:");
for (const optimizer of optimizers) {
for (const lossFunction of lossFunctions) {
for (let activation of activations) {
// Skip cross-entropy loss for regression tasks
if (lossFunction === "cross-entropy") {
console.warn(
`⚠️ Skipping combination: Optimizer=${optimizer}, Loss Function=${lossFunction}, Activation=${activation} (Not suitable for regression)`
);
continue;
}
await trainModel(simpleTrainSet, simpleTestSet, optimizer, lossFunction, activation);
}
}
}
}
// Run the training
trainAllModels();
// First, let's create a function to load and process images
function loadAndProcessImage(url) {
// Create a canvas to process the image
const img = new Image();
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
return new Promise((resolve, reject) => {
img.crossOrigin = "Anonymous"; // Handle CORS issues
img.onload = () => {
// Resize image to a standard size (e.g., 64x64)
canvas.width = 64;
canvas.height = 64;
// Draw and resize image
ctx.drawImage(img, 0, 0, 64, 64);
// Get image data and normalize it
const imageData = ctx.getImageData(0, 0, 64, 64).data;
// Convert to 128-length array
const processed = new Array(128).fill(0);
// Simple processing: take average of RGB values for each pixel
for (let i = 0; i < imageData.length; i += 4) {
const pos = Math.floor(i / 4) % 128;
const avg = (imageData[i] + imageData[i + 1] + imageData[i + 2]) / 765; // Normalize to 0-1
processed[pos] = avg;
}
resolve(processed);
};
img.onerror = reject;
img.src = url;
});
}
// Neural network setup using carbono
const nn = new carbono();
nn.layer(128, 64, 'tanh'); // Input layer
nn.layer(64, 32, 'tanh'); // Hidden layer
nn.layer(32, 2, 'softmax'); // Output layer for 2 categories (cat/dog)
// Array of image URLs
const imageUrls = [
'https://cdn.pixabay.com/photo/2015/11/17/13/13/bulldog-1047518_1280.jpg',
'https://cdn.pixabay.com/photo/2018/03/31/06/31/dog-3277416_1280.jpg',
'https://cdn.pixabay.com/photo/2024/02/17/00/18/cat-8578562_1280.jpg',
'https://cdn.pixabay.com/photo/2024/01/29/20/40/cat-8540772_1280.jpg'
];
// Labels corresponding to the images (one-hot encoded)
const labels = [
'dog', // dog
'dog', // dog
'cat', // cat
'cat' // cat
];
// Process all images and prepare training data
async function prepareTrainingData() {
const trainData = [];
for (let i = 0; i < imageUrls.length; i++) {
try {
const processed = await loadAndProcessImage(imageUrls[i]);
trainData.push({
input: processed,
output: labels[i]
});
} catch (error) {
console.error(`Error processing image ${imageUrls[i]}:`, error);
}
}
return trainData;
}
// Train the network with the processed images
async function trainNetwork() {
try {
const trainData = await prepareTrainingData();
await nn.train(trainData, {
epochs: 100,
learningRate: 0.01,
});
console.log('Training completed');
console.log(nn.details);
// Test with a new image
const testImageUrl = 'https://cdn.pixabay.com/photo/2024/02/17/00/18/cat-8578562_1280.jpg';
const testProcessed = await loadAndProcessImage(testImageUrl);
const prediction = nn.predict(testProcessed);
console.log('Prediction:', prediction);
} catch (error) {
console.error('Training error:', error);
}
}
// Function to make a single prediction
async function predictImage(imageUrl) {
try {
const processed = await loadAndProcessImage(imageUrl);
const prediction = nn.predict(processed);
return prediction;
} catch (error) {
console.error('Prediction error:', error);
return null;
}
}
// Run the training
trainNetwork();