Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allows a required value in a config_for_{function,class} to be specified via **kwargs in instantiate(). #1013

Merged
merged 2 commits into from
Feb 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions axlearn/common/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -862,8 +862,12 @@ def instantiate(self, **kwargs) -> T:

The values specified in **kwargs take precedence over those set in the config.
"""
_validate_required_fields(self)
args = _prepare_args_and_kwargs(kwargs, sig=inspect.signature(self.fn), cfg=self)
for k, v in kwargs.items():
if isinstance(v, RequiredFieldValue):
raise RequiredFieldMissingError(
f"Missing value for required field when instantiating {type(self)}: {k}"
)
return self.fn(*args, **kwargs)


Expand Down Expand Up @@ -930,10 +934,14 @@ def instantiate(self, **kwargs) -> T:

The field values specified in **kwargs take precedence over those set in the config.
"""
_validate_required_fields(self)
args = _prepare_args_and_kwargs(
kwargs, sig=inspect.signature(self.klass.__init__), cfg=self
)
for k, v in kwargs.items():
if isinstance(v, RequiredFieldValue):
raise RequiredFieldMissingError(
f"Missing value for required field when instantiating {type(self)}: {k}"
)
return self.klass(*args, **kwargs)


Expand Down
23 changes: 19 additions & 4 deletions axlearn/common/config_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -520,12 +520,17 @@ def test_class_with_tensor_fields(self):
@dataclasses.dataclass
class Bias:
shape: tuple[int, ...]
positions: Optional[np.ndarray] = None
target_positions: np.ndarray
source_positions: Optional[np.ndarray] = None

cfg = config.config_for_class(Bias).set(shape=[1, 2])
positions = np.asarray([0, 1])
bias = cfg.instantiate(positions=positions)
np.testing.assert_array_equal(bias.positions, positions)
target_positions = np.asarray([0, 1])
source_positions = np.asarray([2, 3])
bias = cfg.instantiate(target_positions=target_positions, source_positions=source_positions)
np.testing.assert_array_equal(bias.target_positions, target_positions)
np.testing.assert_array_equal(bias.source_positions, source_positions)
with self.assertRaisesRegex(RequiredFieldMissingError, "target_positions"):
cfg.instantiate(source_positions=source_positions)

def test_instantiable_config_from_function_signature(self):
def load(name: str, *, split: Optional[str] = None, download: bool = True):
Expand Down Expand Up @@ -604,6 +609,16 @@ def build_and_invoke():
else:
self.assertEqual(build_and_invoke(), expected)

def test_function_with_tensor_fields(self):
def fn(axis: int, x: np.ndarray) -> np.ndarray:
return x.sum(axis=axis)

cfg = config.config_for_function(fn).set(axis=0)
x = np.asarray([[0, 1, 3], [2, 5, 7]])
np.testing.assert_array_equal([2, 6, 10], cfg.instantiate(x=x))
with self.assertRaisesRegex(RequiredFieldMissingError, "x"):
cfg.instantiate()

def test_config_for_function_has_type_information(self):
"""Tests that type information is available when using `config_for_function`."""

Expand Down
Loading