diff --git a/Prudential-life-insurance-assessment.ipynb b/Prudential-life-insurance-assessment.ipynb
new file mode 100644
index 0000000..5bfa475
--- /dev/null
+++ b/Prudential-life-insurance-assessment.ipynb
@@ -0,0 +1,5685 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "d652a156-492c-4a62-9e28-d3281f49b349",
+ "metadata": {},
+ "source": [
+ "## IMPORTANDO BIBLIOTECAS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "7456d8ed-d019-4375-925b-b0bd482c8bab",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# BIBLIOTECAS UTILIZADAS NESTE PROJETO\n",
+ "\n",
+ "from collections import Counter\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "from sklearn.compose import ColumnTransformer\n",
+ "from sklearn.pipeline import Pipeline\n",
+ "\n",
+ "from sklearn.experimental import enable_iterative_imputer\n",
+ "from sklearn.impute import IterativeImputer\n",
+ "from sklearn.impute import SimpleImputer\n",
+ "from sklearn.preprocessing import OrdinalEncoder\n",
+ "\n",
+ "from imblearn.combine import SMOTEENN\n",
+ "\n",
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "from sklearn.model_selection import GridSearchCV\n",
+ "\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "from sklearn.model_selection import validation_curve\n",
+ "from sklearn.model_selection import learning_curve\n",
+ "\n",
+ "from sklearn.metrics import plot_confusion_matrix\n",
+ "from sklearn.metrics import recall_score\n",
+ "from sklearn.metrics import f1_score\n",
+ "from sklearn.metrics import accuracy_score\n",
+ "from sklearn.metrics import classification_report"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "d95deae8-42d7-4baa-961a-57574271d1e2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Author: Apolo Ferreira Santos\n",
+ "\n",
+ "seaborn : 0.11.1\n",
+ "sklearn : 0.24.1\n",
+ "pandas : 1.2.4\n",
+ "matplotlib: 3.3.4\n",
+ "numpy : 1.20.1\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# VERSÕES DOS PACOTES USADOS NESTE JUPYTER NOTEBOOK\n",
+ "%reload_ext watermark\n",
+ "%watermark -a \"Apolo Ferreira Santos\" --iversions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "4a171a48-323d-481e-9691-4a2e4fb1d5d3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CONFIGURAÇÃO PARA MOSTRAR TODAS COLUNAS DE UM DATAFRAME\n",
+ "pd.set_option(\"display.max_columns\", None)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "303c9293-0862-4625-933b-89943007950b",
+ "metadata": {},
+ "source": [
+ "##
ANÁLISE DO CONJUNTO DE DADOS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "46f9902e-31ee-4550-9374-34000fa5d754",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# IMPORTANDO CONJUNTO DE DADOS DE TREINO\n",
+ "dataset = pd.read_csv('train.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "c737d379-cee2-4dee-bd96-684ef1285452",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Id | \n",
+ " Product_Info_1 | \n",
+ " Product_Info_2 | \n",
+ " Product_Info_3 | \n",
+ " Product_Info_4 | \n",
+ " Product_Info_5 | \n",
+ " Product_Info_6 | \n",
+ " Product_Info_7 | \n",
+ " Ins_Age | \n",
+ " Ht | \n",
+ " Wt | \n",
+ " BMI | \n",
+ " Employment_Info_1 | \n",
+ " Employment_Info_2 | \n",
+ " Employment_Info_3 | \n",
+ " Employment_Info_4 | \n",
+ " Employment_Info_5 | \n",
+ " Employment_Info_6 | \n",
+ " InsuredInfo_1 | \n",
+ " InsuredInfo_2 | \n",
+ " InsuredInfo_3 | \n",
+ " InsuredInfo_4 | \n",
+ " InsuredInfo_5 | \n",
+ " InsuredInfo_6 | \n",
+ " InsuredInfo_7 | \n",
+ " Insurance_History_1 | \n",
+ " Insurance_History_2 | \n",
+ " Insurance_History_3 | \n",
+ " Insurance_History_4 | \n",
+ " Insurance_History_5 | \n",
+ " Insurance_History_7 | \n",
+ " Insurance_History_8 | \n",
+ " Insurance_History_9 | \n",
+ " Family_Hist_1 | \n",
+ " Family_Hist_2 | \n",
+ " Family_Hist_3 | \n",
+ " Family_Hist_4 | \n",
+ " Family_Hist_5 | \n",
+ " Medical_History_1 | \n",
+ " Medical_History_2 | \n",
+ " Medical_History_3 | \n",
+ " Medical_History_4 | \n",
+ " Medical_History_5 | \n",
+ " Medical_History_6 | \n",
+ " Medical_History_7 | \n",
+ " Medical_History_8 | \n",
+ " Medical_History_9 | \n",
+ " Medical_History_10 | \n",
+ " Medical_History_11 | \n",
+ " Medical_History_12 | \n",
+ " Medical_History_13 | \n",
+ " Medical_History_14 | \n",
+ " Medical_History_15 | \n",
+ " Medical_History_16 | \n",
+ " Medical_History_17 | \n",
+ " Medical_History_18 | \n",
+ " Medical_History_19 | \n",
+ " Medical_History_20 | \n",
+ " Medical_History_21 | \n",
+ " Medical_History_22 | \n",
+ " Medical_History_23 | \n",
+ " Medical_History_24 | \n",
+ " Medical_History_25 | \n",
+ " Medical_History_26 | \n",
+ " Medical_History_27 | \n",
+ " Medical_History_28 | \n",
+ " Medical_History_29 | \n",
+ " Medical_History_30 | \n",
+ " Medical_History_31 | \n",
+ " Medical_History_32 | \n",
+ " Medical_History_33 | \n",
+ " Medical_History_34 | \n",
+ " Medical_History_35 | \n",
+ " Medical_History_36 | \n",
+ " Medical_History_37 | \n",
+ " Medical_History_38 | \n",
+ " Medical_History_39 | \n",
+ " Medical_History_40 | \n",
+ " Medical_History_41 | \n",
+ " Medical_Keyword_1 | \n",
+ " Medical_Keyword_2 | \n",
+ " Medical_Keyword_3 | \n",
+ " Medical_Keyword_4 | \n",
+ " Medical_Keyword_5 | \n",
+ " Medical_Keyword_6 | \n",
+ " Medical_Keyword_7 | \n",
+ " Medical_Keyword_8 | \n",
+ " Medical_Keyword_9 | \n",
+ " Medical_Keyword_10 | \n",
+ " Medical_Keyword_11 | \n",
+ " Medical_Keyword_12 | \n",
+ " Medical_Keyword_13 | \n",
+ " Medical_Keyword_14 | \n",
+ " Medical_Keyword_15 | \n",
+ " Medical_Keyword_16 | \n",
+ " Medical_Keyword_17 | \n",
+ " Medical_Keyword_18 | \n",
+ " Medical_Keyword_19 | \n",
+ " Medical_Keyword_20 | \n",
+ " Medical_Keyword_21 | \n",
+ " Medical_Keyword_22 | \n",
+ " Medical_Keyword_23 | \n",
+ " Medical_Keyword_24 | \n",
+ " Medical_Keyword_25 | \n",
+ " Medical_Keyword_26 | \n",
+ " Medical_Keyword_27 | \n",
+ " Medical_Keyword_28 | \n",
+ " Medical_Keyword_29 | \n",
+ " Medical_Keyword_30 | \n",
+ " Medical_Keyword_31 | \n",
+ " Medical_Keyword_32 | \n",
+ " Medical_Keyword_33 | \n",
+ " Medical_Keyword_34 | \n",
+ " Medical_Keyword_35 | \n",
+ " Medical_Keyword_36 | \n",
+ " Medical_Keyword_37 | \n",
+ " Medical_Keyword_38 | \n",
+ " Medical_Keyword_39 | \n",
+ " Medical_Keyword_40 | \n",
+ " Medical_Keyword_41 | \n",
+ " Medical_Keyword_42 | \n",
+ " Medical_Keyword_43 | \n",
+ " Medical_Keyword_44 | \n",
+ " Medical_Keyword_45 | \n",
+ " Medical_Keyword_46 | \n",
+ " Medical_Keyword_47 | \n",
+ " Medical_Keyword_48 | \n",
+ " Response | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " D3 | \n",
+ " 10 | \n",
+ " 0.076923 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.641791 | \n",
+ " 0.581818 | \n",
+ " 0.148536 | \n",
+ " 0.323008 | \n",
+ " 0.028 | \n",
+ " 12 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.000667 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " 0.598039 | \n",
+ " NaN | \n",
+ " 0.526786 | \n",
+ " 4.0 | \n",
+ " 112 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 240.0 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " A1 | \n",
+ " 26 | \n",
+ " 0.076923 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.059701 | \n",
+ " 0.600000 | \n",
+ " 0.131799 | \n",
+ " 0.272288 | \n",
+ " 0.000 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0.0018 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.000133 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0.188406 | \n",
+ " NaN | \n",
+ " 0.084507 | \n",
+ " NaN | \n",
+ " 5.0 | \n",
+ " 412 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 6 | \n",
+ " 1 | \n",
+ " E1 | \n",
+ " 26 | \n",
+ " 0.076923 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.029851 | \n",
+ " 0.745455 | \n",
+ " 0.288703 | \n",
+ " 0.428780 | \n",
+ " 0.030 | \n",
+ " 9 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0.0300 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 8 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0.304348 | \n",
+ " NaN | \n",
+ " 0.225352 | \n",
+ " NaN | \n",
+ " 10.0 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 7 | \n",
+ " 1 | \n",
+ " D4 | \n",
+ " 10 | \n",
+ " 0.487179 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.164179 | \n",
+ " 0.672727 | \n",
+ " 0.205021 | \n",
+ " 0.352438 | \n",
+ " 0.042 | \n",
+ " 9 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " 3 | \n",
+ " 0.2000 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 8 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0.420290 | \n",
+ " NaN | \n",
+ " 0.352113 | \n",
+ " NaN | \n",
+ " 0.0 | \n",
+ " 350 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 8 | \n",
+ " 1 | \n",
+ " D2 | \n",
+ " 26 | \n",
+ " 0.230769 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.417910 | \n",
+ " 0.654545 | \n",
+ " 0.234310 | \n",
+ " 0.424046 | \n",
+ " 0.027 | \n",
+ " 9 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0.0500 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 0.463768 | \n",
+ " NaN | \n",
+ " 0.408451 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 162 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Id Product_Info_1 Product_Info_2 Product_Info_3 Product_Info_4 \\\n",
+ "0 2 1 D3 10 0.076923 \n",
+ "1 5 1 A1 26 0.076923 \n",
+ "2 6 1 E1 26 0.076923 \n",
+ "3 7 1 D4 10 0.487179 \n",
+ "4 8 1 D2 26 0.230769 \n",
+ "\n",
+ " Product_Info_5 Product_Info_6 Product_Info_7 Ins_Age Ht \\\n",
+ "0 2 1 1 0.641791 0.581818 \n",
+ "1 2 3 1 0.059701 0.600000 \n",
+ "2 2 3 1 0.029851 0.745455 \n",
+ "3 2 3 1 0.164179 0.672727 \n",
+ "4 2 3 1 0.417910 0.654545 \n",
+ "\n",
+ " Wt BMI Employment_Info_1 Employment_Info_2 \\\n",
+ "0 0.148536 0.323008 0.028 12 \n",
+ "1 0.131799 0.272288 0.000 1 \n",
+ "2 0.288703 0.428780 0.030 9 \n",
+ "3 0.205021 0.352438 0.042 9 \n",
+ "4 0.234310 0.424046 0.027 9 \n",
+ "\n",
+ " Employment_Info_3 Employment_Info_4 Employment_Info_5 Employment_Info_6 \\\n",
+ "0 1 0.0 3 NaN \n",
+ "1 3 0.0 2 0.0018 \n",
+ "2 1 0.0 2 0.0300 \n",
+ "3 1 0.0 3 0.2000 \n",
+ "4 1 0.0 2 0.0500 \n",
+ "\n",
+ " InsuredInfo_1 InsuredInfo_2 InsuredInfo_3 InsuredInfo_4 InsuredInfo_5 \\\n",
+ "0 1 2 6 3 1 \n",
+ "1 1 2 6 3 1 \n",
+ "2 1 2 8 3 1 \n",
+ "3 2 2 8 3 1 \n",
+ "4 1 2 6 3 1 \n",
+ "\n",
+ " InsuredInfo_6 InsuredInfo_7 Insurance_History_1 Insurance_History_2 \\\n",
+ "0 2 1 1 1 \n",
+ "1 2 1 2 1 \n",
+ "2 1 1 2 1 \n",
+ "3 2 1 2 1 \n",
+ "4 2 1 2 1 \n",
+ "\n",
+ " Insurance_History_3 Insurance_History_4 Insurance_History_5 \\\n",
+ "0 3 1 0.000667 \n",
+ "1 3 1 0.000133 \n",
+ "2 1 3 NaN \n",
+ "3 1 3 NaN \n",
+ "4 1 3 NaN \n",
+ "\n",
+ " Insurance_History_7 Insurance_History_8 Insurance_History_9 \\\n",
+ "0 1 1 2 \n",
+ "1 1 3 2 \n",
+ "2 3 2 3 \n",
+ "3 3 2 3 \n",
+ "4 3 2 3 \n",
+ "\n",
+ " Family_Hist_1 Family_Hist_2 Family_Hist_3 Family_Hist_4 Family_Hist_5 \\\n",
+ "0 2 NaN 0.598039 NaN 0.526786 \n",
+ "1 2 0.188406 NaN 0.084507 NaN \n",
+ "2 3 0.304348 NaN 0.225352 NaN \n",
+ "3 3 0.420290 NaN 0.352113 NaN \n",
+ "4 2 0.463768 NaN 0.408451 NaN \n",
+ "\n",
+ " Medical_History_1 Medical_History_2 Medical_History_3 Medical_History_4 \\\n",
+ "0 4.0 112 2 1 \n",
+ "1 5.0 412 2 1 \n",
+ "2 10.0 3 2 2 \n",
+ "3 0.0 350 2 2 \n",
+ "4 NaN 162 2 2 \n",
+ "\n",
+ " Medical_History_5 Medical_History_6 Medical_History_7 Medical_History_8 \\\n",
+ "0 1 3 2 2 \n",
+ "1 1 3 2 2 \n",
+ "2 1 3 2 2 \n",
+ "3 1 3 2 2 \n",
+ "4 1 3 2 2 \n",
+ "\n",
+ " Medical_History_9 Medical_History_10 Medical_History_11 \\\n",
+ "0 1 NaN 3 \n",
+ "1 1 NaN 3 \n",
+ "2 2 NaN 3 \n",
+ "3 2 NaN 3 \n",
+ "4 2 NaN 3 \n",
+ "\n",
+ " Medical_History_12 Medical_History_13 Medical_History_14 \\\n",
+ "0 2 3 3 \n",
+ "1 2 3 3 \n",
+ "2 2 3 3 \n",
+ "3 2 3 3 \n",
+ "4 2 3 3 \n",
+ "\n",
+ " Medical_History_15 Medical_History_16 Medical_History_17 \\\n",
+ "0 240.0 3 3 \n",
+ "1 0.0 1 3 \n",
+ "2 NaN 1 3 \n",
+ "3 NaN 1 3 \n",
+ "4 NaN 1 3 \n",
+ "\n",
+ " Medical_History_18 Medical_History_19 Medical_History_20 \\\n",
+ "0 1 1 2 \n",
+ "1 1 1 2 \n",
+ "2 1 1 2 \n",
+ "3 1 1 2 \n",
+ "4 1 1 2 \n",
+ "\n",
+ " Medical_History_21 Medical_History_22 Medical_History_23 \\\n",
+ "0 1 2 3 \n",
+ "1 1 2 3 \n",
+ "2 1 2 3 \n",
+ "3 2 2 3 \n",
+ "4 1 2 3 \n",
+ "\n",
+ " Medical_History_24 Medical_History_25 Medical_History_26 \\\n",
+ "0 NaN 1 3 \n",
+ "1 NaN 1 3 \n",
+ "2 NaN 2 2 \n",
+ "3 NaN 1 3 \n",
+ "4 NaN 2 2 \n",
+ "\n",
+ " Medical_History_27 Medical_History_28 Medical_History_29 \\\n",
+ "0 3 1 3 \n",
+ "1 3 1 3 \n",
+ "2 3 1 3 \n",
+ "3 3 1 3 \n",
+ "4 3 1 3 \n",
+ "\n",
+ " Medical_History_30 Medical_History_31 Medical_History_32 \\\n",
+ "0 2 3 NaN \n",
+ "1 2 3 NaN \n",
+ "2 2 3 NaN \n",
+ "3 2 3 NaN \n",
+ "4 2 3 NaN \n",
+ "\n",
+ " Medical_History_33 Medical_History_34 Medical_History_35 \\\n",
+ "0 1 3 1 \n",
+ "1 3 1 1 \n",
+ "2 3 3 1 \n",
+ "3 3 3 1 \n",
+ "4 3 3 1 \n",
+ "\n",
+ " Medical_History_36 Medical_History_37 Medical_History_38 \\\n",
+ "0 2 2 1 \n",
+ "1 2 2 1 \n",
+ "2 3 2 1 \n",
+ "3 2 2 1 \n",
+ "4 3 2 1 \n",
+ "\n",
+ " Medical_History_39 Medical_History_40 Medical_History_41 \\\n",
+ "0 3 3 3 \n",
+ "1 3 3 1 \n",
+ "2 3 3 1 \n",
+ "3 3 3 1 \n",
+ "4 3 3 1 \n",
+ "\n",
+ " Medical_Keyword_1 Medical_Keyword_2 Medical_Keyword_3 Medical_Keyword_4 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_5 Medical_Keyword_6 Medical_Keyword_7 Medical_Keyword_8 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_9 Medical_Keyword_10 Medical_Keyword_11 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_12 Medical_Keyword_13 Medical_Keyword_14 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_15 Medical_Keyword_16 Medical_Keyword_17 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_18 Medical_Keyword_19 Medical_Keyword_20 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_21 Medical_Keyword_22 Medical_Keyword_23 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_24 Medical_Keyword_25 Medical_Keyword_26 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_27 Medical_Keyword_28 Medical_Keyword_29 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_30 Medical_Keyword_31 Medical_Keyword_32 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 1 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_33 Medical_Keyword_34 Medical_Keyword_35 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_36 Medical_Keyword_37 Medical_Keyword_38 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_39 Medical_Keyword_40 Medical_Keyword_41 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_42 Medical_Keyword_43 Medical_Keyword_44 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_45 Medical_Keyword_46 Medical_Keyword_47 \\\n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_48 Response \n",
+ "0 0 8 \n",
+ "1 0 4 \n",
+ "2 0 8 \n",
+ "3 0 8 \n",
+ "4 0 8 "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZAÇÃO DO DATASET\n",
+ "dataset.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "129b50d4-27e3-4d49-92d6-c41791f9fe92",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FUNÇÃO PARA VERIFICAR O SHAPE DO DATASET, A EXISTÊNCIA DE VALORES NULOS E SUA QUANTIDADE\n",
+ "\n",
+ "def valuesDataset(df):\n",
+ " print('\\033[1mTamanho do dataset\\033[0m -> {} x {}'.format(df.shape[0], df.shape[1]))\n",
+ " print('\\033[1mExiste valores faltantes:\\033[0m {}'.format(df.isnull().values.any()))\n",
+ " print('\\033[1mQuantidade de valores faltantes:\\033[0m {}'.format(df.isnull().values.sum()))\n",
+ " print('\\033[1mPorcentagem dos valores faltantes:\\033[0m {:.3}%'.format((df.isnull().values.sum()/(df.shape[0]*df.shape[1]) * 100))) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "aafbfb9b-cb61-452b-8a22-5b1347602166",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[1mTamanho do dataset\u001b[0m -> 59381 x 128\n",
+ "\u001b[1mExiste valores faltantes:\u001b[0m True\n",
+ "\u001b[1mQuantidade de valores faltantes:\u001b[0m 393103\n",
+ "\u001b[1mPorcentagem dos valores faltantes:\u001b[0m 5.17%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# FAZENDO A CHAMADA DA FUNÇÃO\n",
+ "valuesDataset(dataset)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "00cdf78c-789a-4aae-9c47-adc57bc7ff62",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FUNÇÃO PARA CALCULAR A PORCENTAGEM DE VALORES FALTANTES DE CADA COLUNA E ORGANIZAR EM UM DATAFRAME DE ORDEM DECRESCENTE\n",
+ "\n",
+ "def missing_percentage(df): \n",
+ " total = df.isnull().sum().sort_values(ascending = False)[df.isnull().sum().sort_values(ascending = False) != 0] \n",
+ " percent = round(df.isnull().sum().sort_values(ascending = False)/len(df)*100,2)[round(df.isnull().sum().sort_values(ascending = False)/len(df)*100,2) != 0] \n",
+ " return pd.concat([total, percent], axis=1, keys=['Total','Percent'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "f9a38aa9-1297-4d2e-b6d7-17d2fd94503d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Total | \n",
+ " Percent | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Medical_History_10 | \n",
+ " 58824 | \n",
+ " 99.06 | \n",
+ "
\n",
+ " \n",
+ " Medical_History_32 | \n",
+ " 58274 | \n",
+ " 98.14 | \n",
+ "
\n",
+ " \n",
+ " Medical_History_24 | \n",
+ " 55580 | \n",
+ " 93.60 | \n",
+ "
\n",
+ " \n",
+ " Medical_History_15 | \n",
+ " 44596 | \n",
+ " 75.10 | \n",
+ "
\n",
+ " \n",
+ " Family_Hist_5 | \n",
+ " 41811 | \n",
+ " 70.41 | \n",
+ "
\n",
+ " \n",
+ " Family_Hist_3 | \n",
+ " 34241 | \n",
+ " 57.66 | \n",
+ "
\n",
+ " \n",
+ " Family_Hist_2 | \n",
+ " 28656 | \n",
+ " 48.26 | \n",
+ "
\n",
+ " \n",
+ " Insurance_History_5 | \n",
+ " 25396 | \n",
+ " 42.77 | \n",
+ "
\n",
+ " \n",
+ " Family_Hist_4 | \n",
+ " 19184 | \n",
+ " 32.31 | \n",
+ "
\n",
+ " \n",
+ " Employment_Info_6 | \n",
+ " 10854 | \n",
+ " 18.28 | \n",
+ "
\n",
+ " \n",
+ " Medical_History_1 | \n",
+ " 8889 | \n",
+ " 14.97 | \n",
+ "
\n",
+ " \n",
+ " Employment_Info_4 | \n",
+ " 6779 | \n",
+ " 11.42 | \n",
+ "
\n",
+ " \n",
+ " Employment_Info_1 | \n",
+ " 19 | \n",
+ " 0.03 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Total Percent\n",
+ "Medical_History_10 58824 99.06\n",
+ "Medical_History_32 58274 98.14\n",
+ "Medical_History_24 55580 93.60\n",
+ "Medical_History_15 44596 75.10\n",
+ "Family_Hist_5 41811 70.41\n",
+ "Family_Hist_3 34241 57.66\n",
+ "Family_Hist_2 28656 48.26\n",
+ "Insurance_History_5 25396 42.77\n",
+ "Family_Hist_4 19184 32.31\n",
+ "Employment_Info_6 10854 18.28\n",
+ "Medical_History_1 8889 14.97\n",
+ "Employment_Info_4 6779 11.42\n",
+ "Employment_Info_1 19 0.03"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# CHAMANDO FUNÇÃO\n",
+ "df_missing = missing_percentage(dataset)\n",
+ "\n",
+ "# VISUALIZANDO ATRIBUTOS COM DADOS FALTANTES E SUAS RESPECTIVAS PORCENTAGENS\n",
+ "df_missing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "11844316-9cc2-4b85-85d8-fc29d9124d68",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CRIANDO LISTAS COM IDENTIFICAÇÃO DOS ATRIBUTOS COM DADOS FALTANTES QUE SERÃO MANTIDOS E EXCLUIDOS COM LIMIAR DE 70%\n",
+ "# ATRIBUTOS COM MAIS DE 70% DOS DADOS FALTANTES SERÃO EXCLUÍDOS\n",
+ "\n",
+ "missing_values_drop = df_missing[df_missing.Percent >= 70].index.tolist()\n",
+ "missing_values_keep = df_missing[df_missing.Percent < 70].index.tolist()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "e88902b7-288c-4b57-8736-237dd2d2d8c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " count | \n",
+ " mean | \n",
+ " std | \n",
+ " min | \n",
+ " 25% | \n",
+ " 50% | \n",
+ " 75% | \n",
+ " max | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Family_Hist_3 | \n",
+ " 25140.0 | \n",
+ " 0.497737 | \n",
+ " 0.140187 | \n",
+ " 0.0 | \n",
+ " 0.401961 | \n",
+ " 0.519608 | \n",
+ " 0.598039 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " Family_Hist_2 | \n",
+ " 30725.0 | \n",
+ " 0.474550 | \n",
+ " 0.154959 | \n",
+ " 0.0 | \n",
+ " 0.362319 | \n",
+ " 0.463768 | \n",
+ " 0.579710 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " Insurance_History_5 | \n",
+ " 33985.0 | \n",
+ " 0.001733 | \n",
+ " 0.007338 | \n",
+ " 0.0 | \n",
+ " 0.000400 | \n",
+ " 0.000973 | \n",
+ " 0.002000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " Family_Hist_4 | \n",
+ " 40197.0 | \n",
+ " 0.444890 | \n",
+ " 0.163012 | \n",
+ " 0.0 | \n",
+ " 0.323944 | \n",
+ " 0.422535 | \n",
+ " 0.563380 | \n",
+ " 0.943662 | \n",
+ "
\n",
+ " \n",
+ " Employment_Info_6 | \n",
+ " 48527.0 | \n",
+ " 0.361469 | \n",
+ " 0.349551 | \n",
+ " 0.0 | \n",
+ " 0.060000 | \n",
+ " 0.250000 | \n",
+ " 0.550000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " Medical_History_1 | \n",
+ " 50492.0 | \n",
+ " 7.962172 | \n",
+ " 13.027697 | \n",
+ " 0.0 | \n",
+ " 2.000000 | \n",
+ " 4.000000 | \n",
+ " 9.000000 | \n",
+ " 240.000000 | \n",
+ "
\n",
+ " \n",
+ " Employment_Info_4 | \n",
+ " 52602.0 | \n",
+ " 0.006283 | \n",
+ " 0.032816 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " Employment_Info_1 | \n",
+ " 59362.0 | \n",
+ " 0.077582 | \n",
+ " 0.082347 | \n",
+ " 0.0 | \n",
+ " 0.035000 | \n",
+ " 0.060000 | \n",
+ " 0.100000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " count mean std min 25% 50% \\\n",
+ "Family_Hist_3 25140.0 0.497737 0.140187 0.0 0.401961 0.519608 \n",
+ "Family_Hist_2 30725.0 0.474550 0.154959 0.0 0.362319 0.463768 \n",
+ "Insurance_History_5 33985.0 0.001733 0.007338 0.0 0.000400 0.000973 \n",
+ "Family_Hist_4 40197.0 0.444890 0.163012 0.0 0.323944 0.422535 \n",
+ "Employment_Info_6 48527.0 0.361469 0.349551 0.0 0.060000 0.250000 \n",
+ "Medical_History_1 50492.0 7.962172 13.027697 0.0 2.000000 4.000000 \n",
+ "Employment_Info_4 52602.0 0.006283 0.032816 0.0 0.000000 0.000000 \n",
+ "Employment_Info_1 59362.0 0.077582 0.082347 0.0 0.035000 0.060000 \n",
+ "\n",
+ " 75% max \n",
+ "Family_Hist_3 0.598039 1.000000 \n",
+ "Family_Hist_2 0.579710 1.000000 \n",
+ "Insurance_History_5 0.002000 1.000000 \n",
+ "Family_Hist_4 0.563380 0.943662 \n",
+ "Employment_Info_6 0.550000 1.000000 \n",
+ "Medical_History_1 9.000000 240.000000 \n",
+ "Employment_Info_4 0.000000 1.000000 \n",
+ "Employment_Info_1 0.100000 1.000000 "
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# ATRIBUTOS COM VALORES FALTANTES ENTRE 70 E 0.02% DO TOTAL\n",
+ "dataset[missing_values_keep].describe().T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "a3a82275-3618-47ad-bbc2-7bd332fcf8e7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 59381 entries, 0 to 59380\n",
+ "Data columns (total 128 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 Id 59381 non-null int64 \n",
+ " 1 Product_Info_1 59381 non-null int64 \n",
+ " 2 Product_Info_2 59381 non-null object \n",
+ " 3 Product_Info_3 59381 non-null int64 \n",
+ " 4 Product_Info_4 59381 non-null float64\n",
+ " 5 Product_Info_5 59381 non-null int64 \n",
+ " 6 Product_Info_6 59381 non-null int64 \n",
+ " 7 Product_Info_7 59381 non-null int64 \n",
+ " 8 Ins_Age 59381 non-null float64\n",
+ " 9 Ht 59381 non-null float64\n",
+ " 10 Wt 59381 non-null float64\n",
+ " 11 BMI 59381 non-null float64\n",
+ " 12 Employment_Info_1 59362 non-null float64\n",
+ " 13 Employment_Info_2 59381 non-null int64 \n",
+ " 14 Employment_Info_3 59381 non-null int64 \n",
+ " 15 Employment_Info_4 52602 non-null float64\n",
+ " 16 Employment_Info_5 59381 non-null int64 \n",
+ " 17 Employment_Info_6 48527 non-null float64\n",
+ " 18 InsuredInfo_1 59381 non-null int64 \n",
+ " 19 InsuredInfo_2 59381 non-null int64 \n",
+ " 20 InsuredInfo_3 59381 non-null int64 \n",
+ " 21 InsuredInfo_4 59381 non-null int64 \n",
+ " 22 InsuredInfo_5 59381 non-null int64 \n",
+ " 23 InsuredInfo_6 59381 non-null int64 \n",
+ " 24 InsuredInfo_7 59381 non-null int64 \n",
+ " 25 Insurance_History_1 59381 non-null int64 \n",
+ " 26 Insurance_History_2 59381 non-null int64 \n",
+ " 27 Insurance_History_3 59381 non-null int64 \n",
+ " 28 Insurance_History_4 59381 non-null int64 \n",
+ " 29 Insurance_History_5 33985 non-null float64\n",
+ " 30 Insurance_History_7 59381 non-null int64 \n",
+ " 31 Insurance_History_8 59381 non-null int64 \n",
+ " 32 Insurance_History_9 59381 non-null int64 \n",
+ " 33 Family_Hist_1 59381 non-null int64 \n",
+ " 34 Family_Hist_2 30725 non-null float64\n",
+ " 35 Family_Hist_3 25140 non-null float64\n",
+ " 36 Family_Hist_4 40197 non-null float64\n",
+ " 37 Family_Hist_5 17570 non-null float64\n",
+ " 38 Medical_History_1 50492 non-null float64\n",
+ " 39 Medical_History_2 59381 non-null int64 \n",
+ " 40 Medical_History_3 59381 non-null int64 \n",
+ " 41 Medical_History_4 59381 non-null int64 \n",
+ " 42 Medical_History_5 59381 non-null int64 \n",
+ " 43 Medical_History_6 59381 non-null int64 \n",
+ " 44 Medical_History_7 59381 non-null int64 \n",
+ " 45 Medical_History_8 59381 non-null int64 \n",
+ " 46 Medical_History_9 59381 non-null int64 \n",
+ " 47 Medical_History_10 557 non-null float64\n",
+ " 48 Medical_History_11 59381 non-null int64 \n",
+ " 49 Medical_History_12 59381 non-null int64 \n",
+ " 50 Medical_History_13 59381 non-null int64 \n",
+ " 51 Medical_History_14 59381 non-null int64 \n",
+ " 52 Medical_History_15 14785 non-null float64\n",
+ " 53 Medical_History_16 59381 non-null int64 \n",
+ " 54 Medical_History_17 59381 non-null int64 \n",
+ " 55 Medical_History_18 59381 non-null int64 \n",
+ " 56 Medical_History_19 59381 non-null int64 \n",
+ " 57 Medical_History_20 59381 non-null int64 \n",
+ " 58 Medical_History_21 59381 non-null int64 \n",
+ " 59 Medical_History_22 59381 non-null int64 \n",
+ " 60 Medical_History_23 59381 non-null int64 \n",
+ " 61 Medical_History_24 3801 non-null float64\n",
+ " 62 Medical_History_25 59381 non-null int64 \n",
+ " 63 Medical_History_26 59381 non-null int64 \n",
+ " 64 Medical_History_27 59381 non-null int64 \n",
+ " 65 Medical_History_28 59381 non-null int64 \n",
+ " 66 Medical_History_29 59381 non-null int64 \n",
+ " 67 Medical_History_30 59381 non-null int64 \n",
+ " 68 Medical_History_31 59381 non-null int64 \n",
+ " 69 Medical_History_32 1107 non-null float64\n",
+ " 70 Medical_History_33 59381 non-null int64 \n",
+ " 71 Medical_History_34 59381 non-null int64 \n",
+ " 72 Medical_History_35 59381 non-null int64 \n",
+ " 73 Medical_History_36 59381 non-null int64 \n",
+ " 74 Medical_History_37 59381 non-null int64 \n",
+ " 75 Medical_History_38 59381 non-null int64 \n",
+ " 76 Medical_History_39 59381 non-null int64 \n",
+ " 77 Medical_History_40 59381 non-null int64 \n",
+ " 78 Medical_History_41 59381 non-null int64 \n",
+ " 79 Medical_Keyword_1 59381 non-null int64 \n",
+ " 80 Medical_Keyword_2 59381 non-null int64 \n",
+ " 81 Medical_Keyword_3 59381 non-null int64 \n",
+ " 82 Medical_Keyword_4 59381 non-null int64 \n",
+ " 83 Medical_Keyword_5 59381 non-null int64 \n",
+ " 84 Medical_Keyword_6 59381 non-null int64 \n",
+ " 85 Medical_Keyword_7 59381 non-null int64 \n",
+ " 86 Medical_Keyword_8 59381 non-null int64 \n",
+ " 87 Medical_Keyword_9 59381 non-null int64 \n",
+ " 88 Medical_Keyword_10 59381 non-null int64 \n",
+ " 89 Medical_Keyword_11 59381 non-null int64 \n",
+ " 90 Medical_Keyword_12 59381 non-null int64 \n",
+ " 91 Medical_Keyword_13 59381 non-null int64 \n",
+ " 92 Medical_Keyword_14 59381 non-null int64 \n",
+ " 93 Medical_Keyword_15 59381 non-null int64 \n",
+ " 94 Medical_Keyword_16 59381 non-null int64 \n",
+ " 95 Medical_Keyword_17 59381 non-null int64 \n",
+ " 96 Medical_Keyword_18 59381 non-null int64 \n",
+ " 97 Medical_Keyword_19 59381 non-null int64 \n",
+ " 98 Medical_Keyword_20 59381 non-null int64 \n",
+ " 99 Medical_Keyword_21 59381 non-null int64 \n",
+ " 100 Medical_Keyword_22 59381 non-null int64 \n",
+ " 101 Medical_Keyword_23 59381 non-null int64 \n",
+ " 102 Medical_Keyword_24 59381 non-null int64 \n",
+ " 103 Medical_Keyword_25 59381 non-null int64 \n",
+ " 104 Medical_Keyword_26 59381 non-null int64 \n",
+ " 105 Medical_Keyword_27 59381 non-null int64 \n",
+ " 106 Medical_Keyword_28 59381 non-null int64 \n",
+ " 107 Medical_Keyword_29 59381 non-null int64 \n",
+ " 108 Medical_Keyword_30 59381 non-null int64 \n",
+ " 109 Medical_Keyword_31 59381 non-null int64 \n",
+ " 110 Medical_Keyword_32 59381 non-null int64 \n",
+ " 111 Medical_Keyword_33 59381 non-null int64 \n",
+ " 112 Medical_Keyword_34 59381 non-null int64 \n",
+ " 113 Medical_Keyword_35 59381 non-null int64 \n",
+ " 114 Medical_Keyword_36 59381 non-null int64 \n",
+ " 115 Medical_Keyword_37 59381 non-null int64 \n",
+ " 116 Medical_Keyword_38 59381 non-null int64 \n",
+ " 117 Medical_Keyword_39 59381 non-null int64 \n",
+ " 118 Medical_Keyword_40 59381 non-null int64 \n",
+ " 119 Medical_Keyword_41 59381 non-null int64 \n",
+ " 120 Medical_Keyword_42 59381 non-null int64 \n",
+ " 121 Medical_Keyword_43 59381 non-null int64 \n",
+ " 122 Medical_Keyword_44 59381 non-null int64 \n",
+ " 123 Medical_Keyword_45 59381 non-null int64 \n",
+ " 124 Medical_Keyword_46 59381 non-null int64 \n",
+ " 125 Medical_Keyword_47 59381 non-null int64 \n",
+ " 126 Medical_Keyword_48 59381 non-null int64 \n",
+ " 127 Response 59381 non-null int64 \n",
+ "dtypes: float64(18), int64(109), object(1)\n",
+ "memory usage: 58.0+ MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO INFORMAÇÕES INDIVIDUAIS DE CADA ATRIBUTO\n",
+ "dataset.info(verbose=True, show_counts=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "7665736a-2385-4e89-addf-e2500e56ad72",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Column Type | \n",
+ " Count | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " int64 | \n",
+ " 109 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " float64 | \n",
+ " 18 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " object | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Column Type Count\n",
+ "0 int64 109\n",
+ "1 float64 18\n",
+ "2 object 1"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# FAZENDO O AGRUPAMENTO DOS TIPOS DE VARIÁVEIS DE CADA TRIBUTO\n",
+ "\n",
+ "dtype_data = dataset.dtypes.reset_index()\n",
+ "dtype_data.columns = [\"Count\", \"Column Type\"]\n",
+ "dtype_data.groupby(\"Column Type\").aggregate('count').reset_index()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "9c8276d9-e547-456e-aee4-391825403505",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FUNÇÃO PARA FAZER A CONTAGEM DE QUANTOS VALORES ÚNICOS TEM CADA ATRIBUTO\n",
+ "\n",
+ "def uniqueValues(df):\n",
+ " df = df.drop(columns=['Response','Id'], axis=1)\n",
+ " count_values = {}\n",
+ " features_group = {}\n",
+ " two_values = []\n",
+ " tree_values = []\n",
+ " more_values = [] \n",
+ " \n",
+ " for column in df.columns:\n",
+ " unique_values = df[column].unique()\n",
+ " len_unique = len(unique_values)\n",
+ " count_values[column] = len_unique\n",
+ " \n",
+ " if len_unique == 2:\n",
+ " two_values.append(column) \n",
+ " elif len_unique == 3: \n",
+ " tree_values.append(column)\n",
+ " else: \n",
+ " more_values.append(column)\n",
+ " \n",
+ " features_group[2] = two_values\n",
+ " features_group[3] = tree_values\n",
+ " features_group['more'] = more_values \n",
+ " features_group = pd.DataFrame(data=features_group.items(), columns=['unique_values', 'features']) \n",
+ " \n",
+ " df_unique = pd.DataFrame(data=count_values.items(), columns=['Features', 'Unique_values'])\n",
+ " df_unique.sort_values(by='Unique_values', ascending=True, inplace=True)\n",
+ " df_unique.reset_index(inplace=True, drop=True)\n",
+ " df_unique = df_unique\n",
+ " return df_unique, features_group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "698b565c-d5d8-46f3-b50f-b4e4ca0bbe1d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CHAMANDO A FUNÇÃO\n",
+ "df_unique_values, df_group = uniqueValues(dataset)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "bad1da7f-6b5f-4220-82b1-342b1dc3ea5e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " 10 | \n",
+ " 11 | \n",
+ " 12 | \n",
+ " 13 | \n",
+ " 14 | \n",
+ " 15 | \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 25 | \n",
+ " 26 | \n",
+ " 27 | \n",
+ " 28 | \n",
+ " 29 | \n",
+ " 30 | \n",
+ " 31 | \n",
+ " 32 | \n",
+ " 33 | \n",
+ " 34 | \n",
+ " 35 | \n",
+ " 36 | \n",
+ " 37 | \n",
+ " 38 | \n",
+ " 39 | \n",
+ " 40 | \n",
+ " 41 | \n",
+ " 42 | \n",
+ " 43 | \n",
+ " 44 | \n",
+ " 45 | \n",
+ " 46 | \n",
+ " 47 | \n",
+ " 48 | \n",
+ " 49 | \n",
+ " 50 | \n",
+ " 51 | \n",
+ " 52 | \n",
+ " 53 | \n",
+ " 54 | \n",
+ " 55 | \n",
+ " 56 | \n",
+ " 57 | \n",
+ " 58 | \n",
+ " 59 | \n",
+ " 60 | \n",
+ " 61 | \n",
+ " 62 | \n",
+ " 63 | \n",
+ " 64 | \n",
+ " 65 | \n",
+ " 66 | \n",
+ " 67 | \n",
+ " 68 | \n",
+ " 69 | \n",
+ " 70 | \n",
+ " 71 | \n",
+ " 72 | \n",
+ " 73 | \n",
+ " 74 | \n",
+ " 75 | \n",
+ " 76 | \n",
+ " 77 | \n",
+ " 78 | \n",
+ " 79 | \n",
+ " 80 | \n",
+ " 81 | \n",
+ " 82 | \n",
+ " 83 | \n",
+ " 84 | \n",
+ " 85 | \n",
+ " 86 | \n",
+ " 87 | \n",
+ " 88 | \n",
+ " 89 | \n",
+ " 90 | \n",
+ " 91 | \n",
+ " 92 | \n",
+ " 93 | \n",
+ " 94 | \n",
+ " 95 | \n",
+ " 96 | \n",
+ " 97 | \n",
+ " 98 | \n",
+ " 99 | \n",
+ " 100 | \n",
+ " 101 | \n",
+ " 102 | \n",
+ " 103 | \n",
+ " 104 | \n",
+ " 105 | \n",
+ " 106 | \n",
+ " 107 | \n",
+ " 108 | \n",
+ " 109 | \n",
+ " 110 | \n",
+ " 111 | \n",
+ " 112 | \n",
+ " 113 | \n",
+ " 114 | \n",
+ " 115 | \n",
+ " 116 | \n",
+ " 117 | \n",
+ " 118 | \n",
+ " 119 | \n",
+ " 120 | \n",
+ " 121 | \n",
+ " 122 | \n",
+ " 123 | \n",
+ " 124 | \n",
+ " 125 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Features | \n",
+ " Product_Info_1 | \n",
+ " Medical_Keyword_20 | \n",
+ " Medical_Keyword_19 | \n",
+ " Medical_Keyword_18 | \n",
+ " Medical_Keyword_17 | \n",
+ " Medical_Keyword_16 | \n",
+ " Medical_Keyword_15 | \n",
+ " Medical_Keyword_14 | \n",
+ " Medical_Keyword_13 | \n",
+ " Medical_Keyword_12 | \n",
+ " Medical_Keyword_11 | \n",
+ " Medical_Keyword_21 | \n",
+ " Medical_Keyword_10 | \n",
+ " Medical_Keyword_8 | \n",
+ " Medical_Keyword_7 | \n",
+ " Medical_Keyword_6 | \n",
+ " Medical_Keyword_5 | \n",
+ " Medical_Keyword_4 | \n",
+ " Medical_Keyword_3 | \n",
+ " Medical_Keyword_2 | \n",
+ " Medical_Keyword_1 | \n",
+ " Medical_History_38 | \n",
+ " Medical_History_33 | \n",
+ " Medical_Keyword_9 | \n",
+ " Medical_Keyword_47 | \n",
+ " Medical_Keyword_22 | \n",
+ " Medical_Keyword_24 | \n",
+ " Medical_Keyword_46 | \n",
+ " Medical_Keyword_45 | \n",
+ " Medical_Keyword_44 | \n",
+ " Medical_Keyword_43 | \n",
+ " Medical_Keyword_42 | \n",
+ " Medical_Keyword_41 | \n",
+ " Medical_Keyword_40 | \n",
+ " Medical_Keyword_39 | \n",
+ " Medical_Keyword_38 | \n",
+ " Medical_Keyword_37 | \n",
+ " Medical_Keyword_23 | \n",
+ " Medical_Keyword_36 | \n",
+ " Medical_Keyword_34 | \n",
+ " Medical_Keyword_33 | \n",
+ " Medical_Keyword_32 | \n",
+ " Medical_Keyword_31 | \n",
+ " Medical_Keyword_30 | \n",
+ " Medical_Keyword_29 | \n",
+ " Medical_Keyword_28 | \n",
+ " Medical_Keyword_27 | \n",
+ " Medical_Keyword_26 | \n",
+ " Medical_Keyword_25 | \n",
+ " Medical_Keyword_35 | \n",
+ " Medical_History_22 | \n",
+ " Medical_Keyword_48 | \n",
+ " InsuredInfo_4 | \n",
+ " Product_Info_5 | \n",
+ " Product_Info_6 | \n",
+ " Employment_Info_3 | \n",
+ " Employment_Info_5 | \n",
+ " Medical_History_4 | \n",
+ " InsuredInfo_2 | \n",
+ " InsuredInfo_5 | \n",
+ " InsuredInfo_6 | \n",
+ " InsuredInfo_7 | \n",
+ " Insurance_History_1 | \n",
+ " Medical_History_3 | \n",
+ " Medical_History_5 | \n",
+ " Medical_History_16 | \n",
+ " Medical_History_6 | \n",
+ " Medical_History_7 | \n",
+ " Family_Hist_1 | \n",
+ " Insurance_History_9 | \n",
+ " Insurance_History_2 | \n",
+ " Insurance_History_7 | \n",
+ " Insurance_History_4 | \n",
+ " Insurance_History_3 | \n",
+ " Medical_History_8 | \n",
+ " InsuredInfo_1 | \n",
+ " Product_Info_7 | \n",
+ " Insurance_History_8 | \n",
+ " Medical_History_9 | \n",
+ " Medical_History_26 | \n",
+ " Medical_History_41 | \n",
+ " Medical_History_17 | \n",
+ " Medical_History_18 | \n",
+ " Medical_History_19 | \n",
+ " Medical_History_20 | \n",
+ " Medical_History_21 | \n",
+ " Medical_History_14 | \n",
+ " Medical_History_23 | \n",
+ " Medical_History_25 | \n",
+ " Medical_History_27 | \n",
+ " Medical_History_28 | \n",
+ " Medical_History_29 | \n",
+ " Medical_History_30 | \n",
+ " Medical_History_31 | \n",
+ " Medical_History_13 | \n",
+ " Medical_History_40 | \n",
+ " Medical_History_34 | \n",
+ " Medical_History_35 | \n",
+ " Medical_History_12 | \n",
+ " Medical_History_36 | \n",
+ " Medical_History_11 | \n",
+ " Medical_History_37 | \n",
+ " Medical_History_39 | \n",
+ " InsuredInfo_3 | \n",
+ " Product_Info_2 | \n",
+ " Product_Info_3 | \n",
+ " Employment_Info_2 | \n",
+ " Ht | \n",
+ " Ins_Age | \n",
+ " Family_Hist_2 | \n",
+ " Family_Hist_4 | \n",
+ " Family_Hist_3 | \n",
+ " Family_Hist_5 | \n",
+ " Medical_History_32 | \n",
+ " Medical_History_10 | \n",
+ " Medical_History_1 | \n",
+ " Medical_History_24 | \n",
+ " Medical_History_15 | \n",
+ " Wt | \n",
+ " Medical_History_2 | \n",
+ " Employment_Info_4 | \n",
+ " Employment_Info_6 | \n",
+ " Product_Info_4 | \n",
+ " Employment_Info_1 | \n",
+ " Insurance_History_5 | \n",
+ " BMI | \n",
+ "
\n",
+ " \n",
+ " Unique_values | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 11 | \n",
+ " 19 | \n",
+ " 34 | \n",
+ " 36 | \n",
+ " 39 | \n",
+ " 65 | \n",
+ " 69 | \n",
+ " 69 | \n",
+ " 91 | \n",
+ " 91 | \n",
+ " 96 | \n",
+ " 104 | \n",
+ " 172 | \n",
+ " 228 | \n",
+ " 242 | \n",
+ " 300 | \n",
+ " 579 | \n",
+ " 872 | \n",
+ " 993 | \n",
+ " 1491 | \n",
+ " 1937 | \n",
+ " 2266 | \n",
+ " 3256 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 \\\n",
+ "Features Product_Info_1 Medical_Keyword_20 Medical_Keyword_19 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 3 4 5 \\\n",
+ "Features Medical_Keyword_18 Medical_Keyword_17 Medical_Keyword_16 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 6 7 8 \\\n",
+ "Features Medical_Keyword_15 Medical_Keyword_14 Medical_Keyword_13 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 9 10 11 \\\n",
+ "Features Medical_Keyword_12 Medical_Keyword_11 Medical_Keyword_21 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 12 13 14 \\\n",
+ "Features Medical_Keyword_10 Medical_Keyword_8 Medical_Keyword_7 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 15 16 17 \\\n",
+ "Features Medical_Keyword_6 Medical_Keyword_5 Medical_Keyword_4 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 18 19 20 \\\n",
+ "Features Medical_Keyword_3 Medical_Keyword_2 Medical_Keyword_1 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 21 22 23 \\\n",
+ "Features Medical_History_38 Medical_History_33 Medical_Keyword_9 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 24 25 26 \\\n",
+ "Features Medical_Keyword_47 Medical_Keyword_22 Medical_Keyword_24 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 27 28 29 \\\n",
+ "Features Medical_Keyword_46 Medical_Keyword_45 Medical_Keyword_44 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 30 31 32 \\\n",
+ "Features Medical_Keyword_43 Medical_Keyword_42 Medical_Keyword_41 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 33 34 35 \\\n",
+ "Features Medical_Keyword_40 Medical_Keyword_39 Medical_Keyword_38 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 36 37 38 \\\n",
+ "Features Medical_Keyword_37 Medical_Keyword_23 Medical_Keyword_36 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 39 40 41 \\\n",
+ "Features Medical_Keyword_34 Medical_Keyword_33 Medical_Keyword_32 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 42 43 44 \\\n",
+ "Features Medical_Keyword_31 Medical_Keyword_30 Medical_Keyword_29 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 45 46 47 \\\n",
+ "Features Medical_Keyword_28 Medical_Keyword_27 Medical_Keyword_26 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 48 49 50 \\\n",
+ "Features Medical_Keyword_25 Medical_Keyword_35 Medical_History_22 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 51 52 53 \\\n",
+ "Features Medical_Keyword_48 InsuredInfo_4 Product_Info_5 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 54 55 56 \\\n",
+ "Features Product_Info_6 Employment_Info_3 Employment_Info_5 \n",
+ "Unique_values 2 2 2 \n",
+ "\n",
+ " 57 58 59 60 \\\n",
+ "Features Medical_History_4 InsuredInfo_2 InsuredInfo_5 InsuredInfo_6 \n",
+ "Unique_values 2 2 2 2 \n",
+ "\n",
+ " 61 62 63 \\\n",
+ "Features InsuredInfo_7 Insurance_History_1 Medical_History_3 \n",
+ "Unique_values 2 2 3 \n",
+ "\n",
+ " 64 65 66 \\\n",
+ "Features Medical_History_5 Medical_History_16 Medical_History_6 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 67 68 69 \\\n",
+ "Features Medical_History_7 Family_Hist_1 Insurance_History_9 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 70 71 72 \\\n",
+ "Features Insurance_History_2 Insurance_History_7 Insurance_History_4 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 73 74 75 \\\n",
+ "Features Insurance_History_3 Medical_History_8 InsuredInfo_1 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 76 77 78 \\\n",
+ "Features Product_Info_7 Insurance_History_8 Medical_History_9 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 79 80 81 \\\n",
+ "Features Medical_History_26 Medical_History_41 Medical_History_17 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 82 83 84 \\\n",
+ "Features Medical_History_18 Medical_History_19 Medical_History_20 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 85 86 87 \\\n",
+ "Features Medical_History_21 Medical_History_14 Medical_History_23 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 88 89 90 \\\n",
+ "Features Medical_History_25 Medical_History_27 Medical_History_28 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 91 92 93 \\\n",
+ "Features Medical_History_29 Medical_History_30 Medical_History_31 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 94 95 96 \\\n",
+ "Features Medical_History_13 Medical_History_40 Medical_History_34 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 97 98 99 \\\n",
+ "Features Medical_History_35 Medical_History_12 Medical_History_36 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 100 101 102 \\\n",
+ "Features Medical_History_11 Medical_History_37 Medical_History_39 \n",
+ "Unique_values 3 3 3 \n",
+ "\n",
+ " 103 104 105 \\\n",
+ "Features InsuredInfo_3 Product_Info_2 Product_Info_3 \n",
+ "Unique_values 11 19 34 \n",
+ "\n",
+ " 106 107 108 109 110 \\\n",
+ "Features Employment_Info_2 Ht Ins_Age Family_Hist_2 Family_Hist_4 \n",
+ "Unique_values 36 39 65 69 69 \n",
+ "\n",
+ " 111 112 113 \\\n",
+ "Features Family_Hist_3 Family_Hist_5 Medical_History_32 \n",
+ "Unique_values 91 91 96 \n",
+ "\n",
+ " 114 115 116 \\\n",
+ "Features Medical_History_10 Medical_History_1 Medical_History_24 \n",
+ "Unique_values 104 172 228 \n",
+ "\n",
+ " 117 118 119 120 \\\n",
+ "Features Medical_History_15 Wt Medical_History_2 Employment_Info_4 \n",
+ "Unique_values 242 300 579 872 \n",
+ "\n",
+ " 121 122 123 \\\n",
+ "Features Employment_Info_6 Product_Info_4 Employment_Info_1 \n",
+ "Unique_values 993 1491 1937 \n",
+ "\n",
+ " 124 125 \n",
+ "Features Insurance_History_5 BMI \n",
+ "Unique_values 2266 3256 "
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO QUANTOS VALORES ÚNICOS TEM CADA ATRIBUTO\n",
+ "df_unique_values.T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "ba10d10d-b5f5-49de-b8ed-6ba56db18e20",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Features | \n",
+ "
\n",
+ " \n",
+ " Unique_values | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 | \n",
+ " 63 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 40 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 65 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 69 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 91 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 96 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 104 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 172 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 228 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 242 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 300 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 579 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 872 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 993 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1491 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1937 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2266 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3256 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Features\n",
+ "Unique_values \n",
+ "2 63\n",
+ "3 40\n",
+ "11 1\n",
+ "19 1\n",
+ "34 1\n",
+ "36 1\n",
+ "39 1\n",
+ "65 1\n",
+ "69 2\n",
+ "91 2\n",
+ "96 1\n",
+ "104 1\n",
+ "172 1\n",
+ "228 1\n",
+ "242 1\n",
+ "300 1\n",
+ "579 1\n",
+ "872 1\n",
+ "993 1\n",
+ "1491 1\n",
+ "1937 1\n",
+ "2266 1\n",
+ "3256 1"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# FAZENDO AGRUPAMENTO DOS ATRIBUTOS PELA QUANTIDADE DE VALORES ÚNICOS\n",
+ "df_unique_values.groupby('Unique_values').count()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "0d6753eb-60d3-40e1-8826-6bd1f28e4c45",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CRIANDO UMA LISTA INDIVIDUAL COM O NOME DOS ATRIBUTOS COM 2 VALORES ÚNICOS, 3 VALORES ÚNICOS E MAIS DE 3 VALORES ÚNICOS\n",
+ "\n",
+ "two_values = df_group[df_group.unique_values == 2]['features'].item()\n",
+ "tree_values = df_group[df_group.unique_values == 3]['features'].item()\n",
+ "more_values = df_group[df_group.unique_values == 'more']['features'].item()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "253d7c85-db6f-4d07-97c7-3a3f1eafde66",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Não existe valores faltantes na lista: \"two_values\"\n",
+ "Não existe valores faltantes na lista: \"tree_values\n",
+ "Existe valores faltantes na lista \"more_values\"\n"
+ ]
+ }
+ ],
+ "source": [
+ "# VERIFICANDO A EXISTÊNCIA DE VALORES FALTANTES EM CADA UMA DAS LISTA DE CONTAGEM DE VALORES ÚNICOS\n",
+ "\n",
+ "for row in df_group.itertuples():\n",
+ " if set(row.features).intersection(missing_values_keep):\n",
+ " print('Existe valores faltantes na lista \"two_values\"') if row.unique_values==2 else print('Não existe valores faltantes na lista: \"two_values\"')\n",
+ " print('Existe valores faltantes na lista \"tree_values\"') if row.unique_values==3 else print('Não existe valores faltantes na lista: \"tree_values')\n",
+ " print('Existe valores faltantes na lista \"more_values\"') if row.unique_values=='more' else print('Não existe valores faltantes na lista: \"more_values')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "530e46d9-83d8-4d77-98f1-77f017b7b1ea",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAGSCAYAAAChYu8aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAo3UlEQVR4nO3de7RdZXnv8e+vBLmIQQSkmARBQCxSjaKItXqwWAl4AXvUxqpQi0aserReAT1H9IjDO5bRikahgBcughZUsKJYURtBQCRcD+Ei2ZAmKgjBC5D4nD/Wu2Wx2ezshL323Nn5fsaYY8/1zMt61lpD4cc75ztTVUiSJEmS9CddNyBJkiRJmhoMiJIkSZIkwIAoSZIkSWoMiJIkSZIkwIAoSZIkSWoMiJIkSZIkwIAoSdKUkOSoJF9c384tSZpeDIiSpEmX5O+SXJzkriTLkpyb5C8n4LwnJvngRPS4vhnUdypJ2rAYECVJkyrJ24BPAR8CtgN2AD4NHNhhW+s1v1NJ0kQxIEqSJk2SLYEPAG+sqq9W1W+q6t6q+npVvbPts0mSTyW5tS2fSrJJ27ZPkqEkb0+yoo2UvaZtWwC8EnhXG0X7eqsfnuT6JCuTXJXkJX39bJTkE0l+meTGJG9KUklmDPeb5Pj2Prck+WCSjdq2v0/yoyTHJPl1khuS/EWrL239HTLGd7FTku+3vs4Dthmxfe8k/9XO/bMk+6zrdzrKMV9J8t9J7khyQZIn9m07oH1PK9tnfkerb5PkG62f25L8IMmftG2PSXJmkl+07/F/9Z1vrzayeWeS5Uk++WDfiSSpewZESdJkeiawKfC1MfZ5D7A3MBd4MrAX8N6+7X8KbAnMAg4F/jXJVlW1EPgS8NGq2qKqXtT2vx54djvm/cAXk2zftr0O2L+911OBg0b0chKwCtgFeArwfOC1fdufAVwObA18GTgVeHrb/1XAvyTZ4kE+55eBS+gFw/8L/DFMJpkFfBP4IPAo4B3AmUm2HeU84/lORzoX2BV4NHApve9t2PHA66vqEcAewPmt/nZgCNiW3ijlkUC1kPh14Gf0fpN9gbcm2a8d98/AP1fVTGBn4PS16FOSNMkMiJKkybQ18MuqWjXGPq8EPlBVK6rqF/RC3av7tt/btt9bVecAdwG7PdjJquorVXVrVf2hqk4DrqMXOgFeTi+8DFXV7cCHh49Lsh298PjWNiq3AjgGmN93+hur6t+qajVwGjCn9XZ3VX0buIdeWLyfJDvQC5L/u+17Ab2QNexVwDlVdU7r+zzgYuCAUT7ieL7Tkd/JCVW1sqruBo4CntxGIqH3/e6eZGZV3V5Vl/bVtwce2777H1RVtc+xbVV9oKruqaobgM/1fU/3Arsk2aaq7qqqH4+3T0nS5DMgSpIm06+AbYYv4XwQjwF+3vf65632x3OMCEO/BR5slI4kBye5rF0a+Wt6o2LDl3M+Bljat3v/+mOBjYFlfcd+lt6o27Dlfeu/A6iqkbXRensMcHtV/aav1v+ZHwu8bPh923v/Jb2ANtJ4vtM/apfVfrhddnsncFPbNPyd/E96QfTn7RLYZ7b6x4AlwLfb5bSH9/X6mBG9HklvlBF6o7yPB65J8pMkLxxPn5KkbozrHyaSJE2QRcDv6V3KecaD7HMrvdBxZXu9Q6uNR/W/SPJYeqNZ+wKLqmp1ksuAtF2WAbP7DpnTt74UuBvYZm1G58ZpGbBVkof3hcQd+vpfCnyhql43jnON5zvt93f0Jq95Hr1wuCVwO+07qaqfAAcm2Rh4E71LQudU1Up6l5m+vd2z+L0kP2m93lhVu472ZlV1HfCKdinq3wBnJNl6RDiWJE0RjiBKkiZNVd0B/B969w0elGTzJBsn2T/JR9tupwDvTbJtkm3a/uN9ht9y4HF9rx9OL3T9AqBNaLNH3/bTgbckmZXkkcC7+3pdBnwb+ESSmUn+JMnOSf7H2n7ukarq5/QuGX1/koel9ziKF/Xt8kXgRUn2ayN+m6Y3Qc/sUc41nu+03yPoBd9fAZvTm/kUgNbLK5NsWVX3AncCq9u2FybZJUn66quBi4A7k7w7yWat3z2SPL0d96ok21bVH4Bft7dava7fnSRpsAyIkqRJVVWfBN5Gb+KZX9AbgXoT8O9tlw/SC0+XA4vpTaIy3mcbHk/v/rlfJ/n3qroK+AS9UbblwJ8DP+rb/3P0QuDlwE+Bc+hNSjMcYA4GHgZcRW+U7QxGv8xzXfwdvUlubgPeB5w8vKGqltIb5TuS+76jd/Ig/9wex3fa72R6l7PeQu9zjbwn8NXATe3y08Po3Q8JvUltvkPvns9FwKer6j/b/ZcvojfRz43AL4HP0xuZBJgHXJnkLnoT1syvqt+P9cVIkrqT3v3lkiQpyf7AZ6rqsV33IklSFxxBlCRtsNolkQckmdEeLfE+1u5xEZIkTSuOIEqSNlhJNge+DzyB3oyj3wTeUlV3dtqYJEkdMSBKkiRJkgAvMZUkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQMLiEnmJPlekquTXJnkLa3+qCTnJbmu/d2q75gjkixJcm2S/frqeyZZ3LYdmyStvkmS01r9wiQ7DurzSJIkSdJ0N8gRxFXA26vqz4C9gTcm2R04HPhuVe0KfLe9pm2bDzwRmAd8OslG7VzHAQuAXdsyr9UPBW6vql2AY4CPDPDzSJIkSdK0NrCAWFXLqurStr4SuBqYBRwInNR2Owk4qK0fCJxaVXdX1Y3AEmCvJNsDM6tqUVUVcPKIY4bPdQaw7/DooiRJkiRp7UzKPYjt0s+nABcC21XVMuiFSODRbbdZwNK+w4ZabVZbH1m/3zFVtQq4A9h6lPdfkOTitiyYoI8lSZIkSdPKjEG/QZItgDOBt1bVnWMM8I22ocaoj3XM/QtVC4GFa+5WkiRJkjZcAx1BTLIxvXD4par6aisvb5eN0v6uaPUhYE7f4bOBW1t99ij1+x2TZAawJXDbxH8SSZIkSZr+BjmLaYDjgaur6pN9m84GDmnrhwBn9dXnt5lJd6I3Gc1F7TLUlUn2buc8eMQxw+d6KXB+u09RkiRJkrSWMqg8leQvgR8Ai4E/tPKR9O5DPB3YAbgZeFlV3daOeQ/wD/RmQH1rVZ3b6k8DTgQ2A84F3lxVlWRT4Av07m+8DZhfVTcM5ANJkiRJ0jQ3sIAoSZIkSVq/TMosppIkSZKkqc+AKEmSJEkCJuExF5IkSZI0ms9st533u02gw5Yvf9BnCo6XI4iSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJGCAATHJCUlWJLmir3ZaksvaclOSy1p9xyS/69v2mb5j9kyyOMmSJMcmSatv0s63JMmFSXYc1GeRJEmSpA3BIEcQTwTm9Req6m+ram5VzQXOBL7at/n64W1VdVhf/ThgAbBrW4bPeShwe1XtAhwDfGQgn0KSJEmSNhADC4hVdQFw22jb2ijgy4FTxjpHku2BmVW1qKoKOBk4qG0+EDiprZ8B7Ds8uihJkiRJWntd3YP4bGB5VV3XV9spyU+TfD/Js1ttFjDUt89Qqw1vWwpQVauAO4CtB9u2JEmSJE1fXQXEV3D/0cNlwA5V9RTgbcCXk8wERhsRrPZ3rG33k2RBkovbsuAh9C1JkiRJ09aMyX7DJDOAvwH2HK5V1d3A3W39kiTXA4+nN2I4u+/w2cCtbX0ImAMMtXNuyYNc0lpVC4GFE/tJJEmSJGl66WIE8XnANVX1x0tHk2ybZKO2/jh6k9HcUFXLgJVJ9m73Fx4MnNUOOxs4pK2/FDi/3acoSZIkSVoHg3zMxSnAImC3JENJDm2b5vPAyWmeA1ye5Gf0Jpw5rKqGRwPfAHweWAJcD5zb6scDWydZQu+y1MMH9VkkSZIkaUMQB90kSZIkdeEz221nGJlAhy1f/pCf6tDVJDWSJEmSpCnGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqRmYAExyQlJViS5oq92VJJbklzWlgP6th2RZEmSa5Ps11ffM8nitu3YJGn1TZKc1uoXJtlxUJ9FkiRJkjYEgxxBPBGYN0r9mKqa25ZzAJLsDswHntiO+XSSjdr+xwELgF3bMnzOQ4Hbq2oX4BjgI4P6IJIkSZK0IRhYQKyqC4Dbxrn7gcCpVXV3Vd0ILAH2SrI9MLOqFlVVAScDB/Udc1JbPwPYd3h0UZIkSZK09rq4B/FNSS5vl6Bu1WqzgKV9+wy12qy2PrJ+v2OqahVwB7D1IBuXJEmSpOlssgPiccDOwFxgGfCJVh9t5K/GqI91zAMkWZDk4rYsWKuOJUmSJGkDMWMy36yqlg+vJ/kc8I32cgiY07frbODWVp89Sr3/mKEkM4AteZBLWqtqIbBwAj6CJEmSJE1bkzqC2O4pHPYSYHiG07OB+W1m0p3oTUZzUVUtA1Ym2bvdX3gwcFbfMYe09ZcC57f7FCVJkiRJ62BgI4hJTgH2AbZJMgS8D9gnyVx6l4LeBLweoKquTHI6cBWwCnhjVa1up3oDvRlRNwPObQvA8cAXkiyhN3I4f1CfRZIkSZI2BHHQTZIkSVIXPrPddoaRCXTY8uUP+akOXcxiKkmSJEmaggyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagYWEJOckGRFkiv6ah9Lck2Sy5N8LckjW33HJL9LcllbPtN3zJ5JFidZkuTYJGn1TZKc1uoXJtlxUJ9FkiRJkjYEgxxBPBGYN6J2HrBHVT0J+H/AEX3brq+quW05rK9+HLAA2LUtw+c8FLi9qnYBjgE+MvEfQZIkSZI2HAMLiFV1AXDbiNq3q2pVe/ljYPZY50iyPTCzqhZVVQEnAwe1zQcCJ7X1M4B9h0cXJUmSJElrr8t7EP8BOLfv9U5Jfprk+0me3WqzgKG+fYZabXjbUoAWOu8Ath5sy5IkSZI0fXUSEJO8B1gFfKmVlgE7VNVTgLcBX04yExhtRLCGTzPGtpHvtyDJxW1Z8NC6lyRJkqTpacZkv2GSQ4AXAvu2y0apqruBu9v6JUmuBx5Pb8Sw/zLU2cCtbX0ImAMMJZkBbMmIS1qHVdVCYOHEfxpJkiRJmj4mdQQxyTzg3cCLq+q3ffVtk2zU1h9HbzKaG6pqGbAyyd7t/sKDgbPaYWcDh7T1lwLnDwdOSZIkSdLaG9gIYpJTgH2AbZIMAe+jN2vpJsB5bT6ZH7cZS58DfCDJKmA1cFhVDY8GvoHejKib0btncfi+xeOBLyRZQm/kcP6gPoskSZIkbQjioJskSZKkLnxmu+0MIxPosOXLH/JTHbqcxVSSJEmSNIWMKyAm2TzJB5N8ub1+QpKDBtqZJEmSJGlSjXcE8Th69ys+ub0evqdQkiRJkjRNjDcg/nlVHQ7cA1BVd63FsZIkSZKk9cB4Q949/S+SbLoWx0qSJEmS1gPjDXkXJDkS2CTJPsDp3Pc8QkmSJEnSNDDegPgeIMBK4KPARcBRA+pJkiRJktSBGePZqaruBY5uiyRJkiRpGhozICb56Fjbq+pdE9uOJEmSJKkra7rE9Ddt+VPgb4GN2/JyYMvBtiZJkiRJmkxjjiBW1fsBkpwDPLWqftVefxA4afDtSZIkSZImy3gnqdlhOBwCtPUdB9KRJEmSJKkT45qkBrg6yeeB49vr1wDXDKYlSZIkSVIXxjuCeCjwa+BfgH8F7gD+YUA9SZIkSZI6MN7HXNwJvGPAvUiSJEmSOjTeS0xJ8nxgLrDpcK2qPjCAniRJktYLl7/2JdV1D9PFkz7/tXTdg6RxBsQkHwaeDjwROAs4EPjOAPuSJEmSJE2y8d6D+AJgP2B5Vb0e2BPYYmBdSZIkSZIm3XgD4u+rahVQSTauqluAOQPsS5IkSZI0ycZ7D+LKJJsD/wWclGQZsGpwbUmSJEmSJtt4RxBfAaymN5PpVUABLxtUU5IkSZKkyTfex1ws73v5wQH1IkmSJEnq0JgBMclP6I0Wjqqq9prwjiRJkiRJnVjTCOI72t8XAE8Ajm+vXwNcOqimJEmSJEmTb8yAWFXfB0hyFPBXVVXt9TfoPQfxA4NuUJIkSZI0OcY7Sc1sYNO+15sAsya+HUmSJElSV8b7mIvTgEVJTmuvX95qkiRJkqRpYryzmL43yYXAPkCA91bVNwfZmCRJkiRpco13BJGq+jrw9QH2IkmSJEnq0Joec/GRqnp3kq8wyuMuqurlA+tMkiRJkjSp1jSC+MP29xuDbkSSJEmS1K0xZzFtl5UCLK2qk/oXYOlYxyY5IcmKJFf01R6V5Lwk17W/W/VtOyLJkiTXJtmvr75nksVt27FJ0uqbJDmt1S9MsuM6fH5JkiRJUjPex1x8fJTax9ZwzInAvBG1w4HvVtWuwHfba5LsDswHntiO+XSSjdoxxwELgF3bMnzOQ4Hbq2oX4BjgI+P8LJIkSZKkUazpHsRdgMcDM5Mc0LdpS2DzsY6tqgtGGdU7kN5MqAAnAf8JvLvVT62qu4EbkywB9kpyEzCzqha1fk4GDgLObccc1c51BvAvSVJVD7hXUpIkSZK0Zmu6B/FZwN8D2wHv7KvfCbxjHd5vu6paBlBVy5I8utVnAT/u22+o1e5t6yPrw8csbedaleQOYGvglyPfNMkCeqOQAAurauE69C5JkiRJ09qYAbHda3hSkr+vqhMH2EdGe/sx6mMd88BiLxAaCiVJkiRpDON6DmJVnZhkZ2Dn/mOq6py1fL/lSbZvo4fbAytafQiY07ffbODWVp89Sr3/mKEkM+hd9nrbWvYjSZIkSWrGNUlNkg/RuwT0vfQuNX0n63aJ6dnAIW39EOCsvvr8NjPpTvQmo7moXY66MsnebfbSg0ccM3yulwLne/+hJEmSJK27cY0gAi8Hdq6qO8d74iSn0JuQZpskQ8D7gA8Dpyc5FLgZeBlAVV2Z5HTgKmAV8MaqWt1O9QZ6M6JuRm9ymnNb/XjgC21Cm9vozYIqSZIkSVpH4w2Iy9YmHAJU1SseZNO+D7L/0cDRo9QvBvYYpf57WsCUJEmSJD104w2Ii9qI4FeA3w8X1+EeREmSJEnSFDXegPj09vfNfbUCDIiSJEmSNE2MdxbT5w66EUmSJElSt8Y7gkiSLYHdgE2Ha1V1wSCakiRJkiRNvnEFxCR/C3wc2Aq4BdgF+Bnw1MG1JkmSJEmaTON6DiJwJLAncF1V7QbMAy4cWFeSJEmSpEk33oC4qqpW0EYcq+o84EkD60qSJEmSNOnGew/i3UkCXJfkzcBNwLYD60qSJEmSNOnGGxDfC8wE3g0cB2wJ/OOgmpIkSZIkTb7xPubi/LZ6B/C8wbUjSZIkSerKeGcx/eho9ap618S2I0mSJEnqyngnqflN37Ia2B/vQZQkSZKkaWW8l5i+v/91kg8BXxxIR5IkSZKkTox3BHGku4BdJrIRSZIkSVK3xnsP4seAai//BNgTuHZQTUmSJEmSJt94H3NxF/cFxFXAZ4EzB9KRJEmSJKkTawyISZ4L/BXw5/RC4o+Ab1TVvUkeVlX3DLhHSZIkSdIkGPMexCQvBb4AnEIvJO4LnAucnuRJwNcH3qEkSZIkaVKsaQTxSGC/qrqyr3ZZkh8AFwFfHlhnkiRJkqRJtaZZTDcdEQ4BqKorgFuBwwbSlSRJkiRp0q0pID4sycYji0k2AVJVqwbTliRJkiRpsq0pIJ4FnJxky+FCkkcCJ7ZtkiRJkqRpYk0B8Qjgt8DSJJcmuRS4udUOH3RzkiRJkqTJM+YkNe0RFocmeT+9x1wEWFxVP5+M5iRJkiRJk2eNz0EEqKqb6Y0cSpIkSZKmqTVdYipJkiRJ2kCMawRRkiRJWt9865lPrq57mE7mLfpZuu5Bg+cIoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkppJD4hJdktyWd9yZ5K3JjkqyS199QP6jjkiyZIk1ybZr6++Z5LFbduxSbxxVpIkSZLW0aQHxKq6tqrmVtVcYE/gt8DX2uZjhrdV1TkASXYH5gNPBOYBn06yUdv/OGABsGtb5k3eJ5EkSZKk6aXrS0z3Ba6vqp+Psc+BwKlVdXdV3QgsAfZKsj0ws6oWVVUBJwMHDbxjSZIkSZqmug6I84FT+l6/KcnlSU5IslWrzQKW9u0z1Gqz2vrI+gMkWZDk4rYsmLj2JUmSJGn66CwgJnkY8GLgK610HLAzMBdYBnxieNdRDq8x6g8sVi2sqqe1ZeFD6VuSJEmSpqsuRxD3By6tquUAVbW8qlZX1R+AzwF7tf2GgDl9x80Gbm312aPUJUmSJEnroMuA+Ar6Li9t9xQOewlwRVs/G5ifZJMkO9GbjOaiqloGrEyyd5u99GDgrMlpXZIkSZKmnxldvGmSzYG/Bl7fV/5okrn0LhO9aXhbVV2Z5HTgKmAV8MaqWt2OeQNwIrAZcG5bJEmSJEnroJOAWFW/BbYeUXv1GPsfDRw9Sv1iYI8Jb1CSJEmSNkBdz2IqSZIkSZoiDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqZnTdgLSu7rrmG9V1D9PJFk94YbruQZIkSd1yBFGSJEmSBBgQJUmSJEmNAVGSJEmSBBgQJUmSJEmNAVGSJEmSBDiL6ZjuXnGFs2ROkE0evYczZEqSJElTnCOIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiTAgChJkiRJagyIkiRJkiQAZnTdgCRJGt3NH3p9dd3DdLLDkZ9N1z1I0lTnCKIkSZIkCTAgSpIkSZIaA6IkSZIkCegoICa5KcniJJclubjVHpXkvCTXtb9b9e1/RJIlSa5Nsl9ffc92niVJjk3ivQWSJEmStI66HEF8blXNraqntdeHA9+tql2B77bXJNkdmA88EZgHfDrJRu2Y44AFwK5tmTeJ/UuSJEnStDKVLjE9EDiprZ8EHNRXP7Wq7q6qG4ElwF5JtgdmVtWiqirg5L5jJEmSJElrqauAWMC3k1ySZEGrbVdVywDa30e3+ixgad+xQ602q62PrD9AkgVJLm7LgtH2kSRJkqQNXVfPQXxWVd2a5NHAeUmuGWPf0e4rrDHqDyxWLQQWrn2bkiRJkrTh6GQEsapubX9XAF8D9gKWt8tGaX9XtN2HgDl9h88Gbm312aPUJUmSJEnrYNIDYpKHJ3nE8DrwfOAK4GzgkLbbIcBZbf1sYH6STZLsRG8ymovaZagrk+zdZi89uO8YSZIkSdJa6uIS0+2Ar7UnUswAvlxV30ryE+D0JIcCNwMvA6iqK5OcDlwFrALeWFWr27neAJwIbAac2xZJkiRJ0jqY9IBYVTcATx6l/itg3wc55mjg6FHqFwN7THSPkiRJkrQhmkqPuZAkSZIkdciAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpGbSA2KSOUm+l+TqJFcmeUurH5XkliSXteWAvmOOSLIkybVJ9uur75lkcdt2bJJM9ueRJEmSpOliRgfvuQp4e1VdmuQRwCVJzmvbjqmqj/fvnGR3YD7wROAxwHeSPL6qVgPHAQuAHwPnAPOAcyfpc0iSJEnStDLpI4hVtayqLm3rK4GrgVljHHIgcGpV3V1VNwJLgL2SbA/MrKpFVVXAycBBg+1ekiRJkqavTu9BTLIj8BTgwlZ6U5LLk5yQZKtWmwUs7TtsqNVmtfWR9dHeZ0GSi9uyYCI/gyRJkiRNF50FxCRbAGcCb62qO+ldLrozMBdYBnxieNdRDq8x6g8sVi2sqqe1ZeFD7V2SJEmSpqNOAmKSjemFwy9V1VcBqmp5Va2uqj8AnwP2arsPAXP6Dp8N3Nrqs0epS5IkSZLWQRezmAY4Hri6qj7ZV9++b7eXAFe09bOB+Uk2SbITsCtwUVUtA1Ym2bud82DgrEn5EJIkSZI0DXUxi+mzgFcDi5Nc1mpHAq9IMpfeZaI3Aa8HqKork5wOXEVvBtQ3thlMAd4AnAhsRm/2UmcwlSRJkqR1NOkBsap+yOj3D54zxjFHA0ePUr8Y2GPiupMkSZKkDVens5hKkiRJkqYOA6IkSZIkCTAgSpIkSZIaA6IkSZIkCTAgSpIkSZIaA6IkSZIkCTAgSpIkSZIaA6IkSZIkCTAgSpIkSZIaA6IkSZIkCTAgSpIkSZKaGV03IEnqxi9OPaq67mE62Xb+Uem6B0mSHipHECVJkiRJgAFRkiRJktQYECVJkiRJgAFRkiRJktQYECVJkiRJgAFRkiRJktT4mAtJA/PrH33exyhMkEc+67U+QkGSJA2cI4iSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJMCAKEmSJElqDIiSJEmSJGAaBMQk85Jcm2RJksO77keSJEmS1lfrdUBMshHwr8D+wO7AK5Ls3m1XkiRJkrR+Wq8DIrAXsKSqbqiqe4BTgQM77kmSJEmS1kvre0CcBSztez3UapIkSZKktZSq6rqHdZbkZcB+VfXa9vrVwF5V9eYR+y0AFrSXC6tq4eR2OjhJFkynzzMd+RtNff5GU5u/z9TnbzT1+RtNbf4+U9+G9But7yOIQ8CcvtezgVtH7lRVC6vqaW2Zbj/sgjXvoo75G019/kZTm7/P1OdvNPX5G01t/j5T3wbzG63vAfEnwK5JdkryMGA+cHbHPUmSJEnSemlG1w08FFW1KsmbgP8ANgJOqKorO25LkiRJktZL63VABKiqc4Bzuu6jQ9PtktnpyN9o6vM3mtr8faY+f6Opz99oavP3mfo2mN9ovZ6kRpIkSZI0cdb3exAlSZIkSRPEgLieSnJCkhVJrui6F40uyZwk30tydZIrk7yl6550nySbJrkoyc/a7/P+rnvS6JJslOSnSb7RdS96oCQ3JVmc5LIkF3fdj+4vySOTnJHkmvbPo2d23ZPuk2S39r+d4eXOJG/tui/dJ8k/tX9PuCLJKUk27bqnQfMS0/VUkucAdwEnV9UeXfejB0qyPbB9VV2a5BHAJcBBVXVVx60JSBLg4VV1V5KNgR8Cb6mqH3fcmkZI8jbgacDMqnph1/3o/pLcBDytqn7ZdS96oCQnAT+oqs+3Gd83r6pfd9yWRpFkI+AW4BlV9fOu+xEkmUXv3w92r6rfJTkdOKeqTuy2s8FyBHE9VVUXALd13YceXFUtq6pL2/pK4GpgVrddaVj13NVebtwW/4vZFJNkNvAC4PNd9yKtb5LMBJ4DHA9QVfcYDqe0fYHrDYdTzgxgsyQzgM0Z5Znr040BUZoESXYEngJc2HEr6tMuXbwMWAGcV1X+PlPPp4B3AX/ouA89uAK+neSSJBvMg6TXE48DfgH8W7tM+/NJHt51U3pQ84FTum5C96mqW4CPAzcDy4A7qurb3XY1eAZEacCSbAGcCby1qu7suh/dp6pWV9VcYDawVxIv155CkrwQWFFVl3Tdi8b0rKp6KrA/8MZ2C4SmhhnAU4HjquopwG+Aw7ttSaNpl/++GPhK173oPkm2Ag4EdgIeAzw8yau67WrwDIjSALV7284EvlRVX+26H42uXXL1n8C8bjvRCM8CXtzucTsV+KskX+y2JY1UVbe2vyuArwF7dduR+gwBQ31XR5xBLzBq6tkfuLSqlnfdiO7necCNVfWLqroX+CrwFx33NHAGRGlA2iQoxwNXV9Unu+5H95dk2ySPbOub0fuHwDWdNqX7qaojqmp2Ve1I79Kr86tq2v+X2/VJkoe3Sbholy4+H3B27Smiqv4bWJpkt1baF3CitKnpFXh56VR0M7B3ks3bv9ftS29OiWnNgLieSnIKsAjYLclQkkO77kkP8Czg1fRGPYanrz6g66b0R9sD30tyOfATevcg+hgFae1sB/wwyc+Ai4BvVtW3Ou5J9/dm4Evt/+vmAh/qth2NlGRz4K/pjU5pCmmj72cAlwKL6WWnhZ02NQl8zIUkSZIkCXAEUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUzOi6AUmSprokGwP/m97zGO+l9x9Yz6H37Mz9quqlHbYnSdKEMSBKkrRm/wZsBuxZVStbYHwNsEm3bUmSNLG8xFSSpDEk2RV4CfDaqloJUFX3VtVC4K6+/f40yfeSXJLkyiQf7dt2YJLFSS5LckWSfVr9fUmuafWfJnlkqz+j71yXJHlBqz86yXfauRYnOWayvgdJ0obBEURJksb2FOC6qrp9Dfv9GnhRVd3VRhj/I8m8qvoW8AHgH6vqB0k2Ah6eZCvgHcCjq+p3SR4B/K6FxM8AB1TVsiTbAz9JsgfwSuDnVfU8gHYOSZImjCOIkiSNLePcbyPgY0l+BlwC7AHMbdvOBz6R5J3An1XVncCdwLXAF5O8DtiiqlYBfwHsBJyb5DLgXKCAXYAfA89P8rEkL6RvBFOSpIlgQJQkaWyXAruOY7TubcBWwDOq6knAvwObAlTVPwGHAvcAX0nyuqpaDewNHAvMBi5J8iR6gfTyqprbt8ypqourahG90HkJ8GrgexP8WSVJGzgDoiRJY6iq64Czgc+2y0BJslGStwBb9O36SGBZVf0+ySzgwOENSXarqsVV9c/AF4Gnt3NtW1Xfr6r3AVfQG3X8L3qB9Ll9xz89PTsBd1bVqfQC6Z5J/Ge5JGnCeA+iJElrdgjwPnqjfPdw32Muru3b51h6o4M/BZYC3+3b9uE22c0qevcqHgpsCZyZZLN2vkuBr7aA+WJ6l6t+CngYcAPwImAf4O1JVrVjDquqPwzkE0uSNkipqq57kCRJkiRNAV6WIkmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpMaAKEmSJEkCDIiSJEmSpOb/A6mzw94GRR5mAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# PLOTANDO A QUANTIDADE DE AMOSTRAS POR CLASSE\n",
+ "\n",
+ "plt.figure(figsize=(15,6))\n",
+ "sns.countplot(data=dataset, x='Response', palette = \"OrRd\")\n",
+ "plt.box(False)\n",
+ "plt.xlabel('Classes', fontsize = 11)\n",
+ "plt.ylabel('Quantidade', fontsize = 11)\n",
+ "plt.title('Contagem de Classes\\n')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "07815c68-be10-4d76-bec8-ba1df8660a8f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# MAIORES CORRELAÇÕES POSITIVAS E NEGATIVAS EM RELAÇÃO A VARIÁVEL ALVO\n",
+ "\n",
+ "corr_positivo = dataset.corr()['Response'].sort_values(ascending=False)[0:10]\n",
+ "corr_negative = dataset.corr()['Response'].sort_values(ascending=True)[0:10]\n",
+ "correlacao = pd.concat([corr_positivo, corr_negative], axis=1, keys=['Corr Positiva','Corr Negativa'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "4a2a2e09-1201-4a67-a3ad-af13a7078cbe",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Corr Positiva | \n",
+ " Corr Negativa | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Response | \n",
+ " 1.000000 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_23 | \n",
+ " 0.286584 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_15 | \n",
+ " 0.277311 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_4 | \n",
+ " 0.239896 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_39 | \n",
+ " 0.220176 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Product_Info_4 | \n",
+ " 0.202434 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_6 | \n",
+ " 0.159230 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_32 | \n",
+ " 0.144536 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_13 | \n",
+ " 0.134863 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " Medical_History_40 | \n",
+ " 0.131519 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " BMI | \n",
+ " NaN | \n",
+ " -0.381601 | \n",
+ "
\n",
+ " \n",
+ " Wt | \n",
+ " NaN | \n",
+ " -0.351395 | \n",
+ "
\n",
+ " \n",
+ " Medical_Keyword_15 | \n",
+ " NaN | \n",
+ " -0.259169 | \n",
+ "
\n",
+ " \n",
+ " Medical_Keyword_3 | \n",
+ " NaN | \n",
+ " -0.257706 | \n",
+ "
\n",
+ " \n",
+ " Ins_Age | \n",
+ " NaN | \n",
+ " -0.209610 | \n",
+ "
\n",
+ " \n",
+ " Medical_Keyword_48 | \n",
+ " NaN | \n",
+ " -0.159557 | \n",
+ "
\n",
+ " \n",
+ " Medical_History_16 | \n",
+ " NaN | \n",
+ " -0.137542 | \n",
+ "
\n",
+ " \n",
+ " Insurance_History_2 | \n",
+ " NaN | \n",
+ " -0.122196 | \n",
+ "
\n",
+ " \n",
+ " Employment_Info_3 | \n",
+ " NaN | \n",
+ " -0.116408 | \n",
+ "
\n",
+ " \n",
+ " Medical_History_30 | \n",
+ " NaN | \n",
+ " -0.114870 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Corr Positiva Corr Negativa\n",
+ "Response 1.000000 NaN\n",
+ "Medical_History_23 0.286584 NaN\n",
+ "Medical_History_15 0.277311 NaN\n",
+ "Medical_History_4 0.239896 NaN\n",
+ "Medical_History_39 0.220176 NaN\n",
+ "Product_Info_4 0.202434 NaN\n",
+ "Medical_History_6 0.159230 NaN\n",
+ "Medical_History_32 0.144536 NaN\n",
+ "Medical_History_13 0.134863 NaN\n",
+ "Medical_History_40 0.131519 NaN\n",
+ "BMI NaN -0.381601\n",
+ "Wt NaN -0.351395\n",
+ "Medical_Keyword_15 NaN -0.259169\n",
+ "Medical_Keyword_3 NaN -0.257706\n",
+ "Ins_Age NaN -0.209610\n",
+ "Medical_Keyword_48 NaN -0.159557\n",
+ "Medical_History_16 NaN -0.137542\n",
+ "Insurance_History_2 NaN -0.122196\n",
+ "Employment_Info_3 NaN -0.116408\n",
+ "Medical_History_30 NaN -0.114870"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO CORRELAÇÕES\n",
+ "correlacao"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "e9e4f5ce-2a5f-4913-806b-9b978ba644e6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABrIAAAIrCAYAAACjyQmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB/t0lEQVR4nOzdd5h8Z1k//vcdQg+9REEJUsQWQEJVWgAFBEFFUYQfXWxfQOWrICBIEyxIF2wgPRQF6SU9hCBVRL92CCIgVUqEIJDn98c5m2w2u7O7s7vn8+zZ1+u65tpp77nv8+zZ2Zl55pxTrbUAAAAAAABAbw471A0AAAAAAADAekxkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAsANVdd+qescuPM73VtWnq+rhVfWrVXWXXerv6lXVqurw3Xi8vVBVV6uqs6rqQmuuv3BV/W1V/cgu1XlzVd1nFx7nzKq63W70dKhV1V9U1RMPdR+HSlWdXFUPPNR9rOdQ/W6q6lJV9S9VdeN1btuV5zsAANgOE1kAAOx7VfWzVfXecTLkk+OExc0PdV/bdIsk909ypSR3SXLyIe1mgar6p6q6/zrXP7Sq3rvdx2ut/Udr7YjW2jfX3PSbSd7QWnvTsr2uqXPH1toLd+OxllFVt66qc8b1dPXpZlvIdj8h2aOqukhV/XZV/WtV/c84Cfn8qrr6oe5tL1XVXcdJ4C9V1Wer6oRtLPMfJnl6a+3de9giAABsmTdBAADsa1X1a0kekeQXkrw1yf8muUOSuybZ1pYDVXV4a+0bm123F1przxvPvmGva+2CFya5d5Lnr7n+/xtv27KNxnfcOusLSZ69ZI+9+kRr7dv24oGnWlf3mVcn+bYkP5vkA0kumeReSW6b5M8PYV97pqquleRFSX4iyYlJjkjyw0nO2UL20kk+0Fr7oz1tEgAAtsEWWQAA7FtVdZkkj0/yy621v2qt/U9r7euttde31n59vM9Fq+rpVfWJ8fT0qrroeNutq+o/x935/VeSF4xbb7y6ql5SVV9Kct+qukxV/fm4tdfHq+qJa3eDt6qnZ1TVx8YtId5XVbdYdduFquqRVfXvVfXl8fZv30Juw2VYp/6FquoPxq0wPpzkTmtuv19V/eNY/8NV9fOrbrtiVb2hqr5QVZ+vqtOqar33DC9OcvOqOmpV9ruTXDfJy6vqTlX1gXFZPlZVv73qfitbFj2gqv4jyYlrtzaqqvsl+fskT0ryb2t6/MequvOqy4ePy3qD8fJNq+qd4zJ8sKpuveq+5+5GrqquVVWnVNUXx/wr1hvP8b7/X1V9tKo+V1WPWnPbYVX1iPF3+rmqemVVXX6jx1pk7O8JVXX6+Pt5W1Vdcbz51PHnF2rciquG3bydXlVPq6rPJ/ntqrpmVZ049vLZqnppVV12VY3vr6r3j4//iiQXW3Xb5cbf/2eq6r/H8xtOulXVt1fVX433/1xVPXvVmDx6HLNPV9WLavhbXf37v9+4bvx3Vf1CVd2oqv5u/L1tOHlZVTeuqjPG+32yqp5dVRfZ4L63S/JDSe7aWntPa+0brbUvttae01q7wCTWFsbu4TX8/X+5qv65qm67qqf3juv7p6rqD1dlNlwf16m/4e9mvP3ONWxl9YXxMa+7wUNdP8lHWmsntMGXW2t/2Vr7j83GsLX2pSTPqWEyLFV1hap63bhs705yzTU9PaM2eN4CAIDdYiILAID97GYZPux9zYL7PCrJTTN8uHu9JDdO8uhVt39LkssnOSrJg8br7pphS47LJnlphq2MvpHkWkm+P8PWDRsdV+c9Y63LJ3lZkldV1coH0r+W5B5JfiTJpTPsSvArW8httgyr/VySO4993jDJT665/dPj7ZdOcr8kT6txEijJw5L8Z4bdGx6Z5JFJ2toCrbX/THJShi2wVtw7yZtaa59N8j/j5ctmmEj7xar6sTUPc6sk353k9ussw2cX9PjyDGO44vZJPttae39VXTXJG5M8McM4/t8kf1lVV1qnxhOSvC3J5TJssfOsde6TqvqeJM8dl/UqSa4w3n/FQ5L82Lg8V0ny30mes95jbdHPZljmKye5yLgMSXLL8edlx90wnjFevkmSD4/3f1KSSvLksZfvTvLtSX57XJaLJHlthonIyyd5VZK7rap9WJIXZPhbuFqSr2aDLeJqmMh9Q5KPJrl6kqsmOW68+b7j6dgk18iwRdDax7lJkmsn+ekkT8+wjt8uyfcmuXtV3Wr94ck3k/xqkitm+Pu/bZJf2uC+t0vy7tbaxza4/QKLlY3H7jpJ/k+SG7XWLpVhvTtzzD0jyTNaa5fOMNHzyjGz5fVxs9/NuP4/P8nPZ1gH/zjJ62r9Ce33J/mucYLz2Ko6Ys3t2xnD5yQ5O8m3Zni+WrtL0UXPWwAAsCtMZAEAsJ9dIcMkxqLdqd0zyeNba59urX0myeNy/gmYc5I8trX2tdbaV8frzmitvba1dk6GyZQ7JvmVcYuvTyd5WpKfWa9Ya+0lrbXPjVt/PDXJRZNcZ7z5gUke3Vr753FLiQ+21j63hdxmy7Da3TMc3+ZjrbXPZ/hgfnV/b2yt/ftY/5QMkzkrW1F8PcMH1keNW7ad1lq7wETW6IUrPdSw1dY9x+vSWju5tfah1to5rbW/yzD5tHZi4rfH8fzqmuszblG3UY8vS3KXqrrEePlnx+uSYZdxb2qtvWms/fYk780wcbjW1zNM2FyltXZ2a22j3VD+ZIbjdJ3aWvtakt/K+XfR9vNJHtVa+8/x9t9O8pO18bGsrjJuCbP6dMlVt7+gtfYv47i8MsMkwSKfaK09a1xvvtpa+7fW2tvH9fkzGY53tDL2N01y4Qzrx9dba6/OMBGRJBnXv79srX2ltfblDBNjG00o3TjDhM+vj7/H1WN4zyR/2Fr7cGvtrAzHOvuZNWPyhDHztgwTny8f1++PJzktw0TsBbTW3tdae9e4vGdmmNDZqMcrJPnkhiN3wcdeNHbfzPA3+T1VdeHW2pmttX8fb/t6kmtV1RVba2e11t41Xr+d9XHh7ybDBPUft9b+prX2zTYc6+1rY27tcnw4ya0zTC6+Mslnq+ovVia0tjqG42Tl3ZI8Zvwd/33W7Dp0k+ctAADYFSayAADYzz6X5IoLJg2S4cP2j666/NHxuhWfaa2dvSazeguOozJ8wPzJlYmHDB/8Xnm9YlX1sBp2f/fF8b6XybDlQzJs4fHvS+Q2W4bVrrKm/9W5VNUdq+pdNew68AsZPlRfqfP7Sf4tydtq2O3gIzaokSR/leRbq+qmGT40v0SGrU9SVTepqpNq2OXcFzMcv+yKa/IbbiVTVbetYTd7/1FVZ2bYsuaKyTDZkOQfk/zoOJl1l5w3kXVUkp9aPUmU5OYZJufW+o0MW+C8u6r+oarWbmmy4nzj2Vr7nwzr3YqjkrxmVb1/zDDpceQGj/eJ1tpl15z+Z9Xt/7Xq/FcybM20yPnGsaquXFXHjbvA+1KSl+T869HH10xOfnRV9hJV9cc17BLwSxl2Z3jZWn83mt+e5KNt/Unk9dbXw3P+MfnUqvNfXefyustdVd9Zwy4P/2vs8XdywXVrxeey/u9+XYvGblzvfiXDROWnx/ut/A0+IMl3JvmnqnpPnbfry+2sjwt/N+NjPWzNY317NngeGCeq7t5au1KGSeBbZtjqbTtjeKUMv7dFzyeLnrcAAGBXmMgCAGA/OyPDbq9+bMF9PpHhQ+AVVxuvW7HeFkerr/tYhi0frrhq4uHSrbXvXRsajw/z8AxbRV2utXbZJF/MMGGy8ljXXCK32TKs9skMH3Cvvu9KnYsm+cskf5DkyLHOm1bqtOFYOg9rrV0jyY8m+bUajwO0VmvtKxl2v3jvDFtmHdda+9/x5pcleV2Sb2+tXSbJ81Yty7kPsd7jjrtY++skT82wZdjVk5ywJr+ye8G7Jvl/4yRDMozvi9dMEl2ytfaUdfr/r9baz7XWrpJhq6o/Wjku0BrnG89x8uwKq27/WJI7rql5sXHLot200ZZxa69/8njddduwq7t75byx+2SSq1bV6rG82qrzD8uwNc1NxuzK7gzX/u6SYbmvtsEk8nrr6zdy/smqZT03yT8lufbY4yM36C9Jjk9y41pwnK81Fo1dWmsva63dPMOytSS/O17/r621e2SY3P7dJK8et7Lb8vqYzX83H0vypDWPdYnW2ss3W6jW2nsyTDx/33jVVsfwMxl+bxs9n2z2vAUAALvCRBYAAPtWa+2LSR6T5DlV9WPjFiUXHrc6+r3xbi9P8uiqulJVXXG8/0u2UeOTGXZt99SqunRVHVZV19zgGD6XyvDB72eSHF5Vj8mwa8IVf5bkCVV17Rpct6qusIXcdpbhlUkeUlXfVlWXS7J6q6qLZNj112eSfKOq7pjheF9Jkqq6c1Vda/ww/UsZtiz65oLheWGGYxzdLeff5dilkny+tXZ2Vd04w+7/tuqiSS6eYXdzGXv8oTX3OW7s+xdz3tZYyTAmP1pVt6+qC1XVxarq1utNZFTVT626/r8zTEyst6yvTnLnqrr5OMn2+Jz/fdTzkjypqo4aH/dKVXXXbSzvVn0mwy4Nr7HJ/S6V5KwkX6jhGE2/vuq2MzKsZw+pqsOr6icy7CJwdfarY/bySR67oM67M0y+PKWqLjmO9Q+Ot708ya9W1XfUsDu730nyig223tquS2VYN8+qqu/KsA6sq7V2fJK3Z9hi7phxmS9VVb+wwRZ4G45dVV2nqm4zTgafnWGcvjnedq+qulIbdkX6hTHyzWxjfczmv5s/TfILNWztWOOY36mqLrX2gcZ19eeq6srj5e/KsOXiyi4PtzSGrbVvZpgA++3xufV7ktxnzXgtet4CAIBdYSILAIB9rbX2h0l+LcmjM3yg+rEk/yfJa8e7PDHDcWn+LsmHkrx/vG477p1hEuj/ZZj0eHXW3z3YW5O8Ocm/ZNgF19k5/265/jDDRNPbMkxK/HmGSZvNcttZhj8dH++D4/3+auWG8bhHDxl7+O8ME0yvW5W9doatWM7K8MH6H7XWTt6gTjLseu6LGXaJtvp4Pr+U5PFV9eUMk26vXPAY57Oqx5dv0OPK5OIZSX4gyStWXf+xDFtpPTLnrQu/nvXf99woyd9U1Vnj4z+0tfaRdfr5hyS/nGHC7JNjT/+56i7PGPNvG5f3XUlusmARr1JVZ6053W3B/Vf6+EqGY1adPu5a7gLHRho9LskNMvxe3pjz//7/N8lPJLnvuBw/vfr2JE/PsD5+dlyOtyzo55sZttq7VpL/yDAmPz3e/PwkL86wfnwkw/r84M2WcYv+b4Z14ssZ1vVXLL57fjLDVoevyDAmf5/khhnW87U2HLsME6xPyTA2/5Vh66tHjrfdIck/jOvSM5L8zHj8ry2vj5v9blpr781wnKxnj7f/23jf9Xwhw8TVh8ae3pLkNUlWJve3M4b/J8NuHv8ryV8kecGq2zZ73gIAgF1RbcNjNwMAAHulql6T5P6ttf8+1L0AAABAr2yRBQAAExp3fXjRDFtNHHOI2wEAAICumcgCAIBpXT7Jp5PcPMOuAgEAAIAN2LUgAAAAAAAAXbJFFgAAAAAAAF06/FA3sOKKV7xiu/rVr36B6//nf/4nl7zkJbf1WMtkpqzVc2bKWnPLTFmr58yUteaWmbJWz5kpa80tM2WtnjNT1ppbZspaPWemrDW3zJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa25ZaasNbfMlLV6zkxZa26ZKWv1nJmy1twyU9bqOTNlrd3OvO997/tsa+1KF7ihtdbF6ZhjjmnrOemkk9a9fpFlMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWj1npqw1t8yUtXrOTFlrbpkpa/WcmbLW3DJT1ppbZspaPWemrDW3zJS1es5MWWtumSlr9ZyZstZuZ5K8t60zf2TXggAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl3Y0kVVVV6mq91fV2VV1+Dq3nVhV76yq2+2sTQAAAAAAAA6anW6R9fkkt03yrnVue0SSRyf54fEnAAAAAAAAbNmOJrJaa2e31v57g5uvm+SM1tpZSb5cVZfaSS0AAAAAAAAOlmqt7fxBqk5OcrvW2jdWXXdaa+0W4/mXJHlka+0/1uQelORBSXLkkUcec9xxx13gsc8666wcccQR2+pnmcyUtXrOTFlrbpkpa/WcmbLW3DJT1uo5M2WtuWWmrNVzZspac8tMWavnzJS15paZslbPmSlrzS0zZa2eM1PWmltmylo9Z6asNbfMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWj1npqy11cyHPv7Fc88fefHkU18dzh991cuc737HHnvs+1prN7zAA7TWdnxKcnKSw9det+r865JcetFjHHPMMW09J5100rrXL7JMZspaPWemrDW3zJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWnPLTFmr58yUteaWmbJWz5kpa80tM2WtnjNT1tpq5qiHv+Hc0zNf8tpzz6+V5L1tnfmjnR4ja5G/q6qbVdUlx0msL+1hLQAAAAAAAGZmRxNZVXXhqjo+yfWSvLWqblJVzxpv/r0kT0pyfJLf2VmbAAAAAAAAHDSH7yTcWvt6ktutufpvxtv+M8ltdvL4AAAAAAAAHFx7uWtBAAAAAAAAWJqJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALq0o4msqnpaVZ1WVc9Yc/2tqupvqupdVfULO2sRAAAAAACAg2jpiayqukGSS7bWbpHkIlV1o1U3PyzJTyX5gST321mLAAAAAAAAHETVWlsuWPXLST7TWntlVd0tyVVaa88ab3tykpcl+bckb2yt3WaDx3hQkgclyZFHHnnMcccdd4H7nHXWWTniiCO21dsymSlr9ZyZstbcMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWj1npqw1t8yUtXrOTFlrbpkpa80tM2WtnjNT1ppbZspaPWemrDW3zJS1es5MWWurmQ99/Ivnnj/y4smnvjqcP/qqlznf/Y499tj3tdZueIEHaK0tdUryqCR3GM/fLsljVt12kyQfHU8P2MrjHXPMMW09J5100rrXL7JMZspaPWemrDW3zJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWnPLTFmr58yUteaWmbJWz5kpa80tM2WtnjNT1tpq5qiHv+Hc0zNf8tpzz6+V5L1tnfmjnRwj6wtJLj2ev/R4ecXvJ7l5kmsnuXdVXWIHdQAAAAAAADiAdjKRdUaS247nb5fkXatu+2aSL7TW/jfJOUkuvIM6AAAAAAAAHEBLT2S11t6f5OyqOi3JOa21d1fVs8abfzfJ8VV1RpKTWmtf3PCBAAAAAAAAYB2H7yTcWnvomssPHn++JclbdvLYAAAAAAAAHGw72bUgAAAAAAAA7BkTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0KUdTWRV1dOq6rSqesaa6y9WVX9eVSdW1bN21iIAAAAAAAAH0dITWVV1gySXbK3dIslFqupGq25+SJKXtdZu01p78E6bBAAAAAAA4ODZyRZZN0ty/Hj++CQ3XXXbrZPcpapOrqq77KAGAAAAAAAAB1S11pYLVj0qyftaa2+pqtsl+YHW2uPH2/45yYOTnJ7k5CQ3a619Y53HeFCSByXJkUceecxxxx13gTpnnXVWjjjiiG31tkxmylo9Z6asNbfMlLV6zkxZa26ZKWv1nJmy1twyU9bqOTNlrbllpqzVc2bKWnPLTFmr58yUteaWmbJWz5kpa80tM2WtnjNT1ppbZspac8tMWavnzJS15paZslbPmSlrzS0zZa2eM1PW2mrmQx//4rnnj7x48qmvDuePvuplzne/Y4899n2ttRte4AFaa0udkvxykruP538iyUNW3fbuJBcdz788yVU3e7xjjjmmreekk05a9/pFlslMWavnzJS15paZslbPmSlrzS0zZa2eM1PWmltmylo9Z6asNbfMlLV6zkxZa26ZKWv1nJmy1twyU9bqOTNlrbllpqzVc2bKWnPLTFlrbpkpa/WcmbLW3DJT1uo5M2WtuWWmrNVzZspaW80c9fA3nHt65ktee+75tZK8t60zf7STXQuekeS24/nbJXnXqtvemeS6VXWhJFdP8pkd1AEAAAAAAOAAWnoiq7X2/iRnV9VpSc5prb27qp413vy7SZ6UYdeCf9Za+9+dtwoAAAAAAMBBcvhOwq21h665/ODx5yeT/PBOHhsAAAAAAICDbSe7FgQAAAAAAIA9YyILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6tKOJrKp6WlWdVlXPWOe2qqoPVtUDd1IDAAAAAACAg2npiayqukGSS7bWbpHkIlV1ozV3uUuST++kOQAAAAAAAA6unWyRdbMkx4/nj09y0zW33yPJK3bw+AAAAAAAABxg1VpbLlj1qCTva629papul+QHWmuPH2+7fZJrJPlqksNba3+2wWM8KMmDkuTII4885rjjjrvAfc4666wcccQR2+ptmcyUtXrOTFlrbpkpa/WcmbLW3DJT1uo5M2WtuWWmrNVzZspac8tMWavnzJS15paZslbPmSlrzS0zZa2eM1PWmltmylo9Z6asNbfMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWj1npqy11cyHPv7Fc88fefHkU18dzh991cuc737HHnvs+1prN7zAA7TWljol+eUkdx/P/0SSh6y67VVJLpbkvkkeuJXHO+aYY9p6TjrppHWvX2SZzJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWj1npqw1t8yUteaWmbJWz5kpa80tM2WtnjNT1ppbZspaPWemrLXVzFEPf8O5p2e+5LXnnl8ryXvbOvNHO9m14BlJbjuev12Sd6267dpJXpvkYUl+paq+awd1AAAAAAAAOIAOXzbYWnt/VZ1dVacl+WBr7d1V9azW2oNba9dPkqq6b4ZdC/7T7rQLAAAAAADAQbH0RFaStNYeuubyg9dc/oudPD4AAAAAAAAH1052LQgAAAAAAAB7xkQWAAAAAAAAXTKRBQAAAAAAQJdMZAEAAAAAANAlE1kAAAAAAAB0yUQWAAAAAAAAXTKRBQAAAAAAQJdMZAEAAAAAANAlE1kAAAAAAAB0yUQWAAAAAAAAXTKRBQAAAAAAQJdMZAEAAAAAANAlE1kAAAAAAAB0yUQWAAAAAAAAXTKRBQAAAAAAQJdMZAEAAAAAANAlE1kAAAAAAAB0yUQWAAAAAAAAXTKRBQAAAAAAQJdMZAEAAAAAANAlE1kAAAAAAAB0yUQWAAAAAAAAXTKRBQAAAAAAQJdMZAEAAAAAANAlE1kAAAAAAAB0yUQWAAAAAAAAXTKRBQAAAAAAQJcOP9QNAAAAbMXVH/HGc88/7Ohv5L7j5TOfcqdD1RIAAAB7zBZZAAAAAAAAdMlEFgAAAAAAAF2ya0EAAA681busS+y2DgAAAHphiywAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALh1+qBsAANipqz/ijee7/LCjv5H7jted+ZQ7HYqWAAAAANgFtsgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALpkIgsAAAAAAIAuHX6oGwAAAACmc/VHvPHc8w87+hu573j5zKfc6VC1BAAAG7JFFgAAAAAAAF0ykQUAAAAAAECXdjSRVVVPq6rTquoZa65/bFWdMZ5uu7MWAQAAAAAAOIiWnsiqqhskuWRr7RZJLlJVN1p184taazdLcsckj91hjwAAAAAAABxAh+8ge7Mkx4/nj09y0yTvSZLW2kfG67+WpO2gRpccGBcAAAAAAGDvVWvLzTNV1aOSvK+19paqul2SH2itPX7NfX43yQdbay/b4DEelORBSXLkkUcec9xxx13gPmeddVaOOOKIbfW2TGY7uQ99/Ivnnj/y4smnvjqcP/qql9mz/nocB5lDV6vnzJS15paZslbPmSlrzS0zZa3eMqv/Nyfz+/9sHdr7jHVodzJ7XWu/vA6fstbcMlPW6jmz17X2y99Sj2O3XzJT1ppbZspac8tMWavnzJS15paZslbPmSlrzS0zZa2eM1PW2u3Xn8cee+z7Wms3vMADtNaWOiX55SR3H8//RJKHrLn9x5P82VYf75hjjmnrOemkk9a9fpFlMtvJHfXwN5x7euZLXnvu+b3sr8dxkDl0tXrOTFlrbpkpa/WcmbLW3DJT1uots/p/8xz/P1uH9j5jHdqdzF7X2i+/oylrzS0zZa2eM3tda7/8LfU4dvslM2WtuWWmrDW3zJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa3dfv2Z5L1tnfmjpY+RleSMJLcdz98uybtWbqiq644TXb+8g8cHAAAAAADgAFt6Iqu19v4kZ1fVaUnOaa29u6qeNd78+0mOTPLWqvrrXegTAAAAAACAA+bwnYRbaw9dc/nB48/b7+RxAQAAAAAAYCe7FgQAAAAAAIA9YyILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEuHH+oGAAD2k6s/4o3nnn/Y0d/IfcfLZz7lToeqJQAAAIDZskUWAAAAAAAAXTKRBQAAAAAAQJdMZAEAAAAAANAlx8gCAADgkFl97MHE8QcBAIDzs0UWAAAAAAAAXTKRBQAAAAAAQJfsWhAAgG6t3uWY3Y0BAADAwWMiC2AdG31wmvjwFACAg8cXCwAAOFTsWhAAAAAAAIAumcgCAAAAAACgSyayAAAAAAAA6JKJLAAAAAAAALp0+KFuAAAAALbj6o944/kuP+zob+S+43VnPuVOh6IlAABgj9giCwAAAAAAgC6ZyAIAAAAAAKBLdi0IAGzJ6t042YUTAAAAAFOwRRYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTp8EPdANCXqz/ijeeef9jR38h9V10+8yl3OhQtAQDM0urXXcn5X3t53QUAADCwRRYAAAAAAABdskUWjGyJBAAcdF4PzddGv1u/VwAAoHcmsgAAYEImFAAAAGDrTGQBwCZ86AwAAAAAh4aJLACAmbBbOAAAAGBuDjvUDQAAAAAAAMB6TGQBAAAAAADQJRNZAAAAAAAAdMkxsmCf2Oi4J455AgAAAADAXNkiCwAAAAAAgC7ZIgsAAJjU6i3NE1ubz8lGexFI+vjd2ssBAADsP7bIAgAAAAAAoEu2yGKWev8mKAAAAAAAsDkTWQAAbJvdcwEAAABTMJEFAMCs2DIb2I8cOw4AANZnIgsAYI/1vPWSD04BAACAnh12qBsAAAAAAACA9dgiC9hXet6qgYFderFT1iEAAAAAVpjIghkz6QMAAAAAwH42m4ks394GgP6YUAcONc9DAAAA+5tjZAEAAAAAANClHW2RVVVPS3LDJO9vrT101fVXSfKSJBdL8pjW2vE76hKAHZvbN9JXL08yj2UCAIDEXmeYv7m9PwUuyP8ydtPSE1lVdYMkl2yt3aKqnltVN2qtvWe8+RFJHp3k75K8IYmJLAAAAICO+HIYAPTHJOAFVWttuWDVLyf5TGvtlVV1tyRXaa09a7zt5CTHttZaVb0+yc+21r68zmM8KMmDkuTII4885rjjjrtAnbPOOitHHHHEtnrbauZDH//i+S4fefHkU18dzh991cvsWa2t1tnNzKLcMuOw7NhNNQ6r9bgO9bxMy2SmXId22t+hqDNlrYO0Du1Grd7Wh6mewxfV2q/r0DK5Kde7ZTI7fU7Zy7FbNrNf1rut5np/7ppqHer9b+lQZPa6Vs//y5apsxu5OYz3Mrne//56fj00x/e0+/X/0l5+xnGQ16Gex26t3l4PWYcWZxblen9PO7dx6H3sVpvqtcN2+jvU61APrwN6/Ezp2GOPfV9r7YZrr9/JRNajkryvtfaWqrpdkh9orT1+vO201totxvMvSfLI1tp/LHq8G97whu29733vBa4/+eSTc+tb33pbvW01s943j576oWEjta3ObE7V3172tsw4LDt2yyzTVOOwTGbKcVimv6kyU65DO+3vUNSZstZBWod2o1bP64PnoeUzW83t19cBW+1vL8du2cx+We+2muv9uav356Flau2XzF7Xmtv/st3IzWG8l8n1/ve3zDq008za3EF6T7tf/y/t9v8y69DizKLcVGO3Vm+vh6xDizOLclOuQ8ah/7FbbarXDtvp71CvQz28DujxM6WqWnciayfHyPpCkkuP5y89Xl7xzVXn194GAOez9h/dySefnDPvees9r7WXdQAAAA4V73vggvxdzNOUnylx6OxkIuuMJD+f5JVJbpfkL1bd9ndVdbMMx8i6dGvtSzuoA8yQfzIAAAAAAGxm6Yms1tr7q+rsqjotyQdba++uqme11h6c5PeSvCjJxZM8dpd6BQAAADgfX5IDDhJbFQEH0U62yEpr7aFrLj94/PmfSW6zk8cGAAAA2O986AwcFJ7v4IL8XeyOHU1kAQD7kxdSAADzYsu0aRlvAJiOiSw4BHyADAAAAIt578xq1odpTTXeJoWBrTjsUDcAAAAAAAAA67FFVsd80wQAAABgb9kiBNhNPtOF3WciCwAAZsgbaIDd57kVzs8kIHPX8/O+vz8OEhNZAAAAwK7r+cM/5st6tzxjB4eOSSlYzEQWAAAAAFtmwgMAmJKJLACADvmACKAPno8BAODQMpEFAAAszW5QAIBe+TLCYI7jMMdlAjZmIgsAAACAPeVD5+UZOwAOOhNZALAHvNkEAAAAmI+eP+uZ+54yTGQBAADAPjT3DywAANg7++m15GGHugEAAAAAAABYj4ksAAAAAAAAunSgdy24nzadAwB2l9cB0+t5f+IAAABAnw70RBYAAAAAwE74khzA3jKRBQAAAAAAHFL24sFGTGQBO+abRwAAAADQP5NF7EeHHeoGAAAAAAAAYD0msgAAAAAAAOiSXQsCwD5m155wMNj9B3BQeL4DAGAtE1ksxQencEHedAMAU/CaAwCAKc3x9eccl2nOTGQBs+cfEwAAAADA/mQiCwAAAABgQvZ2BLB1hx3qBgAAAAAAAGA9JrIAAAAAAADokoksAAAAAAAAuuQYWQAAAFzA6mN3OG4HAAeF/38A/TGRBTvgwJwAAAAAALB3TGQB7EO+IQYAAAAAHASOkQUAAAAAAECXTGQBAAAAAADQJRNZAAAAAAAAdMlEFgAAAAAAAF06/FA3AAAA+9GZT7nT+S6ffPLJOfOetz40zQAAAMBM2SILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALh1+qBsAAAAAAACgf2c+5U7nnj/55JNz5j1vvec1bZEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdMpEFAAAAAABAl0xkAQAAAAAA0CUTWQAAAAAAAHTJRBYAAAAAAABdWnoiq6ouVVWvr6rTq+re69z++qo6rapOqKpv21mbAAAAAAAAHDQ72SLr55K8PMktkzywqi6y5vaHtNZukeQpSX51B3UAAAAAAAA4gKq1tlyw6lVJfrm19umqelaSP2mtfWid+x2b5I6ttd9Y57YHJXlQkhx55JHHHHfccReoc9ZZZ+WII47YVm/LZKas1VvmQx//4vkuH3nx5FNfHc4ffdXL7FmtrdZZJrNMbzvNTFmr58yUteaWmbJWz5kpa80tM2WtnjNT1ppbZspaPWemrDW3zJS1es5MWWtumSlr9ZyZstbcMlvNTfk++FBkpqw1t8xe19ovn3H0OHb7JTNlrbllpqzVc2bKWnPLTFmr58yUtXY7c+yxx76vtXbDC9zQWlvqlOTtSS42nn9ikluuc58LJTk+yTU3e7xjjjmmreekk05a9/pFlslMWau3zFEPf8P5Ts98yWvPPb+XtbZaZ6redpqZslbPmSlrzS0zZa2eM1PWmltmylo9Z6asNbfMlLV6zkxZa26ZKWv1nJmy1twyU9bqOTNlrblltpqb8n3wochMWWtumb2uZb2bf2bKWnPLTFmr58yUteaWmbJWz5kpa+12Jsl72zrzR4dvNjtWVd+SZO2mUv+V5AtJLp3k7PHnF9aJPzXJi1pr/75ZHQAAAAAAAFht04ms1tp/Jbn12uur6teS3LaqXpnk+kn+ec3tDxji7UW70il75syn3Ol8l08++eScec9bH5pmAAAAAAAARoftIPtnSe6Z5LQkz2+tfa2qrj9OYCXJHyW5YVWdXFWP22mjAAAAAAAAHCybbpG1kdbal5Lcec11f5vkb8fzF91JYwAAAAAAABxsO9kiCwAAAAAAAPaMiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALpnIAgAAAAAAoEsmsgAAAAAAAOiSiSwAAAAAAAC6ZCILAAAAAACALh1+qBsAAAAAmNKZT7nT+S6ffPLJOfOetz40zXCgrF73rHcAsDW2yAIAAAAAAKBLJrIAAAAAAADokoksAAAAAAAAumQiCwAAAAAAgC6ZyAIAAAAAAKBLJrIAAAAAAADokoksAAAAAAAAumQiCwAAAAAAgC6ZyAIAAAAAAKBLJrIAAAAAAADokoksAAAAAAAAumQiCwAAAAAAgC6ZyAIAAAAAAKBLJrIAAAAAAADokoksAAAAAAAAumQiCwAAAAAAgC6ZyAIAAAAAAKBLJrIAAAAAAADokoksAAAAAAAAumQiCwAAAAAAgC6ZyAIAAAAAAKBLJrIAAAAAAADokoksAAAAAAAAumQiCwAAAAAAgC6ZyAIAAAAAAKBLJrIAAAAAAADo0uGHugEOljOfcqdzz5988sk58563PnTNAAAAAAAAXbNFFgAAAAAAAF0ykQUAAAAAAECXTGQBAAAAAADQJRNZAAAAAAAAdMlEFgAAAAAAAF0ykQUAAAAAAECXTGQBAAAAAADQpcMPdQOwmTOfcqdzz5988sk58563PnTNAAAAAAAAk7FFFgAAAAAAAF0ykQUAAAAAAECXlp7IqqpLVdXrq+r0qrr3Bve5SlWdXVXXWr5FAAAAAAAADqKdbJH1c0lenuSWSR5YVRdZ5z6/kuRdO6gBAAAAAADAAbWTiaybJTm+tfbNJB9Mcp3VN1bVlZJcKsmZO6gBAAAAAADAAVWtteWCVW9P8qOttbOr6olJ3tZaO3XV7U9K8rIkv57kia21f1vnMR6U5EFJcuSRRx5z3HHHXaDOWWedlSOOOGJbvS2TmbJWz5kpa80tM2WtnjNT1ppbZspaPWemrDW3zJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmy1twyU9bqOTNlrbllpqzVc2bKWnPLTFmr58yUtXY7c+yxx76vtXbDC9zQWlt4SvItSU5eczouyauSXHm8zzOTXHdV5rJJXjSe/4sk19qszjHHHNPWc9JJJ617/SLLZKas1XNmylpzy0xZq+fMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWj1npqw1t8yUtXrOTFlrbpkpa/WcmbLW3DJT1uo5M2WtuWWmrDW3zJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa3dziR5b1tn/ujwzWbHWmv/leTWa6+vql9LctuqemWS6yf551U3XyfJtavqLUmOTvJtSW63WS0AAAAAAABYsZNjZP1ZknsmOS3J81trX6uq61fVA1prf9Nau1lr7Q5J3p7kF3ajWQAAAAAAAA6OTbfI2khr7UtJ7rzmur9N8rdrrrvvsjUAAAAAAAA4uHayRRYAAAAAAADsGRNZAAAAAAAAdMlEFgAAAAAAAF0ykQUAAAAAAECXTGQBAAAAAADQJRNZAAAAAAAAdMlEFgAAAAAAAF0ykQUAAAAAAECXTGQBAAAAAADQpWqtHeoekiRV9ZkkH13npism+ew2H26ZzJS1es5MWWtumSlr9ZyZstbcMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmyVs+ZKWvNLTNlrZ4zU9aaW2bKWj1npqw1t8yUteaWmbJWz5kpa80tM2WtnjNT1ppbZspaPWemrLXbmaNaa1e6wLWtta5PSd47RWbKWj1neu+v50zv/RmH/jO992cc+s/03p9x6D/Te3/Gof9M7/0Zh/4zvfdnHPrP9N6fceg/03t/PWd678849J/pvT/j0H+m9/6Mw/IZuxYEAAAAAACgSyayAAAAAAAA6NJ+mMj6k4kyU9bqOTNlrbllpqzVc2bKWnPLTFmr58yUteaWmbJWz5kpa80tM2WtnjNT1ppbZspaPWemrDW3zJS1es5MWWtumSlr9ZyZstbcMlPWmltmylo9Z6asNbfMlLV6zkxZa26ZKWv1nJmy1iSZGvdJCAAAAAAAAF3ZD1tkAQAAAAAAcACZyAIAAAAAAKBLJrIAAAAAAADokoksAAAAAAAAutTdRFZVvaCqnr/eacnHu8g27nu5qrrEEjVusY37VlV9S1VdaBuZK1XVzarqKlu472W3+rhrcpepqkdU1e9W1YWq6s5byLx4zeVn7EWGQ6+qrraF+1yqqi655rqjNslcoaouPJ6/XlV95xK9/eQ27nuFqrppVX3LNjLXr6p7VNVNt3Df6271cTd5nC0/b63KXHQb993z57rx/lt6vtvB89alV5a7qq5WVd+7hcxhVfWdVXWTqrr6MnXZH6rqMoe6h/2kqi5ZVd9WVUcc6l72wjL/X7b5+IdV1bdW1eF7WWesdbGqutQ27n/Rqjpym689Z7s+7PW6MNbocn2wLlyQ9cH6ALvJ609Wsz6wmvWBFQd9Xaiqw6vqW5cKt9a6OiU5ajw9I8k9knxnkp9O8swlH+9tC277xSR/m+RlSR6W5G+SnJjk5xdkHr/m9IQk/5rk8QsyTxl/3ibJ+5Mcl+S9Se62IPOK8ecDk5yU5HeSvCHJozdZ3rPGZfiVJEdtY5xen+QOSU4dLx+/4L7fn+QBSf4xyf3H04NWshtkrr9E5rQkp44/V582zGyyjBuOXZKrJPmDJE9J8h2rrn/sgsy1kzwryc8lOTrJa8d16ToLMtdYc7pmkrclucaCzK3Hn5dN8tQkb0nynCTfuiBzv1U9vibJKePv+Aa7/Xc03v6rSU5OcnyS5yW52Hj9iQsyTxjX1ZcmeebY50uSPG5B5kVrTi9O8p9JXrQg8xfjz59J8s7xd3xCkgcvyJw4/vytJC8f19U/SvLcTcbh8xn+xp+e5FZJarfHO8Pz4nuTvCvJI1ZqbDLWkzzXjbllnu+2/byV5HHj385bk/x2kr9K8oIkz1uQ+anx/i9K8i9J/jrJK5N8/xK/o82ei2f1nLLgsZ614LbvS/LqcR34gVXXb/Z3dLMM/++emOTWSc5I8vbVj7FO5jZrTrcd1/PbLMj8zPjzakleleH/y+uSfM+CzG+OP2863v/kJO9IcocFmfePf0PX3+bY/uj4+H+d5HZjvXcluf+CzHeO4/2eJF8ef7dPS3K5TcbupLHOi8efJya53RLrw6sW3HZshv9FJ62M/Xj9axZkfmz8/f9Jhufwv09yepIf26SP+685PSDJ320ydr8y/rxehtcep4y1brEg84xVv6t3Z/h7PT3j/+ANMp/L8Bz0Yxn/V25hXB80/u6PT3K/cb04IZs/D/1gkjePy/O5cexfmAXPs3NbH5ZZF+a4PhzqdWE/rw/LrAvWh+XXhU1yB+a93Hj/bb+fy/B6+P5JrrCNcb3JmPuTDK/d3jj+rn9kQebKSf4ww3urfxzXh/+b5KILMt83jvGJ43p60rhc111iXdjw9eeqWtt6DZqZvf4c77/t16CZ7vXnJOvDMuvCHNeHZdYF68Py68Ic14dl1gXrw/LrwlzXhzF7n3HMPpjk8GzzdeG2VoApT0lOWXR5nfufus7ptCSfX5B5V5JKcvEk/5HkwuPldyzI/PX4h3eXJLfM8GH13yS55YLMyofiJye54nj+4knOWJB5+/jzpCSHrbr+tE3G4aQkV8jwRuZ1Gd4wPXrRij7mjl/T6wkL7nuDDG/8Pp7z3gT+VpJrL1qeJL8xZu49nu6RBS/6d7DurH2TutLj32/S320zPBG9Pck9V4/HgnXuFkl+JMm/ZZjgu3YWTwJ+NcOT8fPH0wsyTMQ8fwvrz8syvFG/2PhE8dYFmRPGn29e+d0nuWqS0zcZuw9v9+9ozJ2+6vwdM7yBvvom43f6+PNCGSZIViZkFk1uPmP8G7xthifzo8a/q6ttYfxOSXKJVTXfuWh9WO/3n+SkTcbhpPGxj83wxvgDSf4sG7wRXGest/K89c4kh4/nf2Ecj8su6i0TPdetGe+Ts/Xnu20/b2V8LhzH+19WXb/h/4qxp5X17BIZPgy4WBZPHG77+WRlHcq8nlPWTmyuTG7++ybLc80Mf6cvS/KoLf4dnZHk25N8b5KPZXjuuuwmv9tPZvgg6THj6bEZnlces4Vx+OskPziev84mdVb+V56Q5Mrj+Utusn6/M8OHki9M8r4MH2LdfNEYrBqHiya50jgOR4zr+6JaJyT5lvH8d43rxLWSvHJB5h0ZnxtXXXfJLPh/kQt+qWDliwUfX5A5Pcmlx/XtKRk+MLvwovUhw3POJcYx+HiSSyW5SBY8d425v80waX3/DK837pPhw+p7b2F9eFuSa43nr7jJOKysDydl6/9fTsrw5Z7Hjcv3l0nuleQyi9ah8efFk3wk5/0P2Ox/+ilJLj6ev1KGN0BXSPL6g7I+LLMuzHF9mGpdmOP6sMy6YH1Yfl0Ycwf+vdx4/22/n8vwYdSvjD0en+TBSb59kzqnZ5gIXHnddZUMf0/vWpB50zheF0ryQxkmtW6V5M8XZE7Lmsm7sdaGn29kidefq36323oNmpm9/hzvs+3XoJnu9eck68My68Ic14dl1gXrw/LrwhzXh2XWBevD8uvCXNeHld/v6nHOgtdq6532fPcGO3ByVb0pw5uLozO84F7kShlmZ7+++sqqevuCzNfaMGpfrao/XclW1dc3CrTW7jruPuwhST6V4YP1z7XWTl1Q5ypVtfLNqM+Oj/PVqmoLMn9bVffLsBLdv6pOyfBNwE8vyKz0+LkML6pfMO7q7UeSPCrJPRfE/qWqHp7k8lX1q0n+YcF9Hzz+fFuGWei3ZPhQ/DczvNFYz5OT3DDDH8iDk/xXhhn5/84weXIBi3Yn2VrbqE4yvAH+v2NP54styFy0tXbCWPfUJE+tqhtk+EPcyDmttdPGzG+21j4wnl9bd7VrJnlohjcHz2qt/WNVvXmT5amqOizDE/lx43XHV9VvLch8paqukOQrGcY6GbYW+uaCTDJsGXP71tpX1zSw6O8oSQ6rqmqDN1fVP2d4Erz6gsw5SdJa+2ZV/d74t5hFPbbWHlpVV86wBdjPJHl2kq+01v5jQZ1rVNXjM/yD+dqqmot+t2+vqscl+ceqemKG55/rZviAYKHW2jczfBBxUpJU1Y2S/HiGN3xrLfO8Va21b4y1nldVH8gwIXPlBZmpnuuS5Z7vlnneqqr6wSSXS3LO+Pf638nC/2vfTHKjqvpQhjfbX2+tnb3Jrn6WeT5J5vec8oAkP7vO9XdckDmstfbv4/mfraqHVtUrMnzwuMjXWmsfGxt9T2vt4+P5Rc9f35HhW+k3ybCF5lur6iattccvyFy8qq6RYcL19CRprf3zODYb+dy4G6r/zPCC9dMZxv7sBZmzW2uvTfLa8Xnn2CT3qKpntNaOWZBb6aOtOS1aHy6R5Avj+c9n+Hb9v1XVFRdkvpbhddbfrLru6Cxepptn+BBu9e+ksvg5v1prXxrPP6KqfizD8+LlF2TObq19JcP/tNe21r6cLH7uSpLW2vWr6i4ZvjBzcpK/SPLTrbUXLYhdvqpuk+TyrbV/Gx/ns5s8d51ZVcdm+DbZzca/9etl+Lbhgvba32b4QP2xVXWtDP8j/jrDB7DrOayqrprh+a6SXLmqvpjFzycZb79shg9er5TkUq21z9Wa3QCvMav1Ycl1IZnf+jDVupDMb31YZl1IrA/JcutC4r3cimXez32htfb0JE+vqisluWuS51bVZVprG+0i/EKttU9U1cpjf2p8r3TOgjqXXTVepyd5ZGvt16rqMZss09qxXTTWyXKvP5PlXoPO7fVnstxr0Klef2adx9yL9cH7kUHv70eyzmP2sj4ssy4k81sfllkXEutDsty6kMxzfUiSb9Swi+pWVRfP+NnwlrVtzHpNccowY7oyc/pnGb5R9WfZfHdWd8g631ZLcsyCzL0zvHBbfd1FsmAXBGvue50kf5zkzZvc7z6rTpcer7tUFs/EV4bdYL0ww0TRcRk+UD5ik1oP38HY3znJryf50W1kTlqizlEZdnX2d0k+ueB+b8gwQ/7wDJt8HrVy2uTxn5PkyHWuf+SCzOvWPm6GJ8KzF2ResbL+JLnw+PPwrYxJhm9yPnH8/W72jc6VSZETMrxpWFl/3rMgc7UM33g8NcOH+6dn+AbqZlvTXD/JJde5/tu2sO5825rrjkjyiAWZH9rg72/D3d2tue/lMuxS7oWb3O9Wq04r34i9VJIHbJK7YYZvxD4vye9meCN4oU0y99lK76vuv8zz1gOzZgu0DJN0i3apN8lz3coYZPvPd9t+3kry3Rkm134uwzd6jhtPi3a38u0ZJj/flOGboyvfUFm065RtP5+Mt8/tOeWRSa60zvWLdivxvHXG4IeT/NMm/T19g/X1NVsYhwtneJH4l0n+ZpP7vmA8PX/NOLxuQeZyY3/HZ/hg6QPj7+27F2Revt31e8z9ZIbn7j/P8Bz7gQzffFq05cDtct7Wnackuclm62uSbx3/lk4aMyeOy3jVBZn7ZfhQd+31d1qQecw668N1k7xlQeYRG6wLC3cHs84698ok79/kfo9ddVq9Pix6br1ohtdNb0zyTxm2fv3DjN863CDztCXWhVtm+CD7SUluPP6eTsjwxZNFueuNuVMz7DZjZWuSRX+3q9eHU+e0Pmx1XZjj+rBL68JJm60L+3R9+MBurwv7cH249hLrw548N4y3H/j3cuN9tv1+bqPeM0xWbpR5SIYtuV6R5Odz3i7IF72Pu1eGL6i+IsOuM+88Xr/h4SAyfHv9r3Le642TM7xeO3pBZtuvP8fbt/0aNDN7/Tnmtv0aNBu//rzPgswyrz9X1oeTx9yerA/LrAtzXB+WWResDztfF+a0PmT4fHpb68IG68NND+r6sJ11YR+sD9t+bliVvXGGeY5PZnidfKPt1F7ZxVI3qupWG93WWttsq6xFj/vnrbUHHOTMolxV3XLNVV9PcmZr7ZObPN6JrbXbbKHuYzNMQh2WYddm783wQcJ/bpI7IsmdMsyiXyTJi1trb96s3iaP+VOttVftVaaqLtpa+9pWMjUc4O86rbV370VvNWxpcsUM3847eyuZTWq9sbV2pylyc8ssk+v5+WS3n4P2cWbZv6V9+ZyyIPPg1tqz9jqz1dz4TaIjW2ufmLK/3sZht2oBwFrjVj5f3OvMOo9xYN7Ljbfv2vu5LS7TpTJsrfY/izLja60rJPlsa+2cNbct9fp4v1v7+pODzfrAatYHVlgXzlNVV26tbbrnudUWbY52SLTWTtnotMOHvobMwtyvZdjy6Q4ZjmX1qCR/WlVPWHvHqnpCVT1+vO0a4/nH17D7to1cOcPs8zeSfDbJZ8afC7XWzsqwO7dPZtjC50qbZbbgF/cy01r72lYzrbUvrrzx2W6drWRaa99orf3X6jc9O6iTbL4J/m7m5pZZJtfz88luPwft18yyf0v78jllgR+fKLOlXGvtm2teGE7VX1fjsJNMVS0zudZtZspaPWc2y1XV91XVq6vquKq62arrn7vFzA/s98wu1ep57Lba282q6vVV9cSqunVVnVFVb19dc0HuDdvJLcjcbKLMrva2B7U2y2zr97Rk5jZrT0neNv7caua2m2W26MC8lxtr7Ob7ua0s05dXJrEWZcbXWp9eO4m13d6q6tFbve9OMlPUWnn9OdUy9ToOW8lU1VWq6ver6ilVdfVV1z92k8wfjJnv2KvMbtVatT5slvn9Jers+dhN3N+1q+pZVfVzVXV0Vb22ql5WVdeZKPOdu1lnvVyGrXD+YMJlOuSZHdS6xjqnt61eB7eQuWavmQwbefzFeH5Du9TfythtWGtBne1kNv0drcoeN/78lSQvrqrNdvl+Pj0fI2u3LbPp2dwyi3KHr95SpKre1Fr7kao6I8na/Xcfv8H5jYu29svj4144w65CfjDJs6vqQq2166+XqapnZNilwrsz7LbhX8brD9vgBfNWbWWfnTLr2+317iBllsn1vDzWhcGyf0s9/60vu0zsQ7X+l1Aqw3HqHrzObV1neu+v93FI8kcZdgf2jSRPrqrbtNaelOHgzBtZmzl2n2d2q1bPY7eV3v4wyd2TXDrD7j9umuR/MuySbsM9aCyZm1um9/6Wybw0yYeSvCPnvU64fIbjYJ24hUzG3GaZrej59dCUr7t67u8CmRqOobve/X4mw24aL3jjEpkpa/Wc2Qf9vTDD8fC+meEL1H/RWntpFj+vrs78yR5mpqy108xejt2U/f15hi/TXyrJazLsxu6sJM/NsGu6/Zbpvb/ex+EfMuym7syc9//kezJ8Nr3RMSlXZzLmesysXp5HL8hMWWujOlvNbPV3tGJlA5VjWmu3r6p3bnL/8zlIE1n76oXeHmUW5S5RVXfPcNyq6ya5+Hj9BQ6YvMzWcVX1XUlulGFfmNcfrz4jwyTVRq47/vyhDPspXf0h806/ycdyDsQbrT3KLJPreXmsC6xmHZo2s5u1ljkwbs+ZKWv1nFk2t8xBj+eW6b2/qTLLHtx8mdzcMr33N9WBypfJMF9PSfJ/c8HXIou+SLZMZspaPWd67++irbUTkqSqTk3y1Kq6QZILdZDpvb85jsM5rbXTxsxvttY+MJ5f9H6n50zv/fU+DtdM8tAMk1/Paq39Y1W9ubW2aIJkbpne+1t2mZLkK1X1/CTvH9eDb2whc562zQN67YdTkm9JcrMk37rqug0PijrHzHZzGb4d9xsZZsV/PcMB4ioLDgy7zd/JC5P8UobJrAtvMfNdGQ5S97gk35fk9RkO8vcjO+zld2Q2z4y/q3skufGq675zL3Jzy2w3l2F3XxdZ5/pFB3PuNtN7f0tmvnfN5e8cfy78W1om13nmihtc/5DdzExZq+fMFLWy3IFxu8303t8+GIdlDno8q0zv/U2YeXqWOJj1Mrm5ZXrvb9llGu+3rQOVL5vZ5PG6eb90qDK997deJslzMhwTZO31j1zwONvOTFmr50zv/SV5XS74f+kBSc4+1Jne+5vpOLwi4/+ljJ8XZtjw4qT9mOm9v97HYVX2ihm26nxhktM3u/8cM733t2Tmwkmuser8tbY6Fq211Bicjar6jQxb63wgyfdn+OP43YOU2WHuohm2gPrx1toDNrv/Xqqq0zJMql0myfMzbMn1P0mOb60t3D//mD86ye9k2G3GF5P8VmvtgzKLM2Pu6Rm+pfu+JDfM8KJjw90X7SQ3t8wyuap6aIZvyH8iyXEZ1vGFu8/sOdN7f0tmTmyt3WbV5Ve11n5qUWbZXOeZV2d44fmaJH/VWvvyovsvm5myVs+ZqWtt8FgPbq1t61hMPWemrNVzZspac8tMWWtumSlr9ZyZstZeZWrNgcp3M1NVL8gGW3K0Db7pO7dM7/0tu0yLVNVPtdZetdeZKWv1nJmy1twyU9bqOTNFraq6aGvta3PJ9N5fr+NQVZdJcp02HpPyIGZ67287mar64SS/kOGz/sOStNWfS22qbWPWaz+ckpy25vI7Dlpmu7kMmwLeI8mLk/xrhm/MXaeD3+WJq86fst71m41Bxm+CJLn6Vsf7oGfG+5685vIpe5WbW2aHuaOSvDLJp5I8M1v4ZkLPmd7720omwzFFTkvyhSSnjudPTfLSTR5727meM2vyl0py7wxbyf5lkrtlzTe7dyMzZa2eM1PXWudxtvQ/d79keu/POPSf6b2/njO992cc+shkeH12VJJnZHiP+p1JfjrJMxc81qwyvfe37DL1sN71sI73kOm9v54zvfdnHPrP9N6fceg/03t/izJJ3p9Ve47b7mmOx8j636r6gQxbIt0w6xzj6QBktpyrqjcl+UqSv8qw679Xttb+ZIs19to1ajhQeSU5atX579hi/vAkHxvP/2c23/+vzHm+XFX3zPAEc8MMB2Pcq9zcMtvOVdX3ZHgTeJMk70ny2+NNL0zyg/st03t/28m01l6Q5AVV9XOttT9dd2HXsUyu58yKqqoMu828eYbn4xOSXDnJm5LcfrcyU9bqOTN1LQA41FprH02Sqrp+a+2h49X/UlW/dFAyvfe37DJtYj8eZ3Q/Z6asNbfMlLV6zkxZa26ZKWv1nJmy1twyU9ba7czpSf53icdMkllOZN03ycOT/FaSf09ynwOY2U7ujCQ3zXAsrY9n+T+gvbC65+M3OL/Is5OcUVVnZtga6dkyizNVVW2YIr9nhi3zHpLkw1n/YPE7ys0ts5Nckl9O8rLW2m+tebyH79NM7/0tk7nCeJ87ZDhu30tba89ccP+d5HrOnJDhOfjJrbWPrFxZi4/xukxmylo9Z6autZ4eXuzuZmbKWj1npqw1t8yUteaWmbJWz5kpa+3nzMnjly7/LsnRGbYe38zcMr33t+wyAQAH0zFJ3llVn8mwm+LWWrvlltPLbsrV2ynJK8afjz+omR3mrp7kV5O8PcPxqO53qH+nO1gX7jf+/IEM+9s8MslhMosz4/1PHn/+yTbHfNu5uWV2UKuSvHWbdbrN9N7fDpbphPHnizMckPI9e5XrNTOO3VOXGO9tZaas1XPmENS64gbXP2Q/Znrvzzj0n+m9v54zvfdnHPZFpjJsQfwtGbag/5ZF4zzHTO/9LbtMCx7vd6bITFmr50zv/fWc6b0/49B/pvf+jEP/md77W3aZtnKqscC+V1XvyPANoJVjPZ2rtfaYg5DZSW7NY1w5yY+11v5kKwd1601VvT/Jz2TYTdjPZtW3/VprH5ZZPzPm3pDkS0luk+Rtq29rrd17N3Nzy+ww96wk70jyviTnjPff8PfUe6b3/pbMnJ7kj5Ncr7X2sKo6tW3hWyPL5DrPPCfJE1trn1x0v51mpqzVc2bi/l6dYUv91yT5q9bal/dzpvf+jEP/md776znTe3/Gof/MmPvr1tpdt3LfuWamrLXXmap6QYZvXl9Aa+3+u5WZslbPmd776znTe3/Gof9M7/0Zh/4zvfe37DKN2aOT/E6SSyf5YpJHt9b+blHmfPk2n4msSyS5XpLfS/KonP+D+1MOQmYnuQWPd2Jr7TbbzR1KVXXHJD+W5C5J3rLqprbgj/DAZ1Zlr5Lkd3PB9eeju52bW2YHtV6w5qqt/J66zfTe35KZaya5VZJXJvlGkru01l65KLNsrvPMGUmumORTydY2A18mM2WtnjOHoNalkvx4kp/KsN/qlyV5bWvtm/sx03t/xqH/TO/99ZzpvT/jsC8yf51hi/H357wvHi38YubcMr33t51MVR01nv21JO/K8IWy70/yg621h+xWZspaPWd676/nTO/9GYf+M733Zxz6z/Te37LLNGZPS3Kv1tpHq+rqSV7SWrv5osz58m0mE1mrjbN7l834IXJrbdN9Nc8ts5Pcmsc4qbV27HZzPaiqH2ytnS6zvcyYu2SGrYoum/PWnxftRW5umR3UulCSKyf59GYfiOyHTO/9bTVTVXdsrb25qi4w0dVae/5u5nrOMH9VVUmOzbA171WSvCnDJNiPtdZuv98yvfdnHPrP9N5fz5ne+zMO/WfG3K3WXtc2+WLm3DK997dk5pTW2q02urxbmSlr9Zzpvb+eM733Zxz6z/Ten3HoP9N7f0tmzsgw4XVOVR2e5LTW2s0WZVY7fKt33C9q2LXXx5N8YryqZZODjs4ts5PczHxnVf1OknM/pG6bb10mM3hLhjeZn9jsjruQm1tm27mq+tkkD07ykSTXqKpnt9Zesl8zvfe3zcw548+1k11tUY0lcz1nkiS1xGbgy2SmrNVzZuJaJyQ5PsmTW2sfWfVY+zXTe3/Gof9M7/31nOm9P+PQfyZJTktytyTXSvLvSf5ys8AMM733t0zm5Kp6U5K/S3J0tvYZxTKZKWv1nOm9v54zvfdnHPrP9N6fceg/03t/y2Sek+SMqvpokqOSPHsLmfO0PTr41qE6JXnjQc/sJLfO4+zZAdomWBf+JslFZLaXGXOvW3LMt52bW2aZXJJ3Jjl8PH/hJGfs50zv/W0nk+QaG502qbHtXM+ZVdnTkhw1nr96knfsRWbKWj1npqqVpJI8dSv97IdM7/0Zh/4zvffXc6b3/oxD/5lV2ZcmeWSS22fYZffLD1qm9/62mxnXh9sn+ZYkN0nyLVtch7aVmbJWz5ne++s503t/xqH/TO/9GYf+M733t+wyjdnDMuwh6bCtZlZOs9siK8kXq+ppSf4+47fL2+a7SppbZtu5qnp6a+1XqupeSR6W5G2ttYe31h65hVq9OiHJd1XVP+S8MThncURmdE5VvSbnX3823Yf7krm5ZZbJnZPkW5N8bPy5pd9Rx5ne+9tO5rcy/A5X/km/ZTzfktx/l3M9Z1YcnmHckuQ/k1xok/svm5myVs+ZSWq11lpVXayqvrW19smtNNVzpvf+jEP/md776znTe3/Gof/MKt/WWrvneP6tVbXpbvhmmOm9v21lxvXhl1prd03yX1t4/KUyU9bqOdN7fz1neu/POPSf6b0/49B/pvf+ll2mqjomyW9n2HvMl6rq8a2192w1P8eJrLfKLJU7evx5h9ba99ewz8r97mbjaUXLcNwimc09bQv32a3c3DLL5H4pybOr6nJJ/nu8vJ8zvfe35Uxr7X4r52s4ZuBmEz1L53rOrPLsDJuBn5lhS5+tbAa+TGbKWj1npqx1gySnVtWnMvyvaK21W+7jTO/9GYf+M73313Om9/6MQ/+ZJPl4VT0qyfuT3DDJVibC5pbpvb+llqmG3RC9P+OXydoWvii4TGbKWj1neu+v50zv/RmH/jO992cc+s/03t8SmecluWtr7RNVdZUkf53kRpvVObdeGzbp2veq6hob3dZa+/BByOwwd1KSk5JcqLX22Ko6rbV2i43uzzxV1YaTXK21E3czN7fMDnP3bK29dNXlH2+tvWaj+/ee6b2/HSzTiW1rx5jbca7XTFV9b5J/THKlJJ9Jcq3W2r/sdmbKWj1npq4FAL2oqgsl+fEk10zy4SSvaa194yBleu9vycyt1l7XWlu4JdcymSlr9Zzpvb+eM733Zxz6z/Ten3HoP9N7f0tmXpbkAa21r1bVxZM8v7V2j0WZ8+VnNJH1gg1uam2Db5vPLbPD3OWSfH+SUzLsgugmrbXTNrp/z6rqtAzf9ruAtsG3/2TOzT12g5taa+3xu5mbW2YHtS6U4QDYt0lSGf7+Xttau9OCOt1meu9vu5mqekJy7m74/r8kL1q5rS34pskyuZ4zq7Lnm/iqqle11n5qtzNT1uo5M3F/Ryf5nQyb+H8xyaNba3+3XzO992cc+s/03l/Pmd77Mw79Z8bcc5KcnuT01tpHN7v/HDO997dk5rAkd0tyrST/nuQvW2vf3O3MlLV6zvTeX8+Z3vszDv1neu/POPSf6b2/JTMfTHLV8f7XynBIhC9ni1vsz2YiazNV9aTW2qMOcmZRrqqum+S+SS6T4aBrrW1vd1P7RlXdom1zkk6GvVBV98nwd3f9JB/IMLHwv0ne1Fp7xn7L9N7fkpkLfMNkRWvtlKq6VGvty7uR6zxzvwzHzzo6yd8l5x5T62PtvGMjZKeZKWv1nJm61pg9Lcm9WmsfraqrJ3lJa+3m+zXTe3/Gof9M7/31nOm9P+PQf2bMfUeSH8iwm/TvSvLfbfMvZcwq03t/S2ZemuQfkrwvw+4Iv69t8k3sZTJT1uo503t/PWd678849J/pvT/j0H+m9/6WXaYdaa0diFOSEw96ZlEuw4e6N0ty1MrpUP/OrAvTZzLsXvLEJO/NsDuq08ef79nk8badm1tmh7kbrTp/5S3+DrvN9N7fssu0wWPt6nNx75kkP7fE4207M2WtnjMT93dGksPG84cnOWM/Z3rvzzj0n+m9v54zvfdnHPrPjPe9S5KnJHlBhuMpPPCgZXrvb8nMKYsu71Zmylo9Z3rvr+dM7/0Zh/4zvfdnHPrP9N7fkplHjD/vkORvkjxkK+Owcjo8MPi7JO9rrf3voW5kAiWzfqa1dmxy7qz6rVpr/1NVl0zyZ4sebJnc3DI7ySV5WJKfqapfSXLHqvpUa+3e+zjTe3/LLtN6lvn7WzbXQ+YKSVJVd0jyuCQvba09c5PHWyYzZa2eM1PWenaSM6rqzCRXHy9vpudM7/0Zh/4zvffXc6b3/oxD/5kk+Y0kn0vyxgy7rvuHA5jpvb9lMh+vqkdlODD8DZN8co8yU9bqOdN7fz1neu/POPSf6b0/49B/pvf+lsn8UIYvwdwzyc2TvDPJVj4XGWxn1ms/n5KcdNAzi3JJ/nZc4U5LcmqSUw/172wP14VDvlVD75kMm4VedTx/lQyTnFt53G3n5pZZJpfkhPHni8ef79xCjW4zvfe37DJt8FgHbYusc8cuyYWzydaGy2amrNVzZuL+vjfDroWPHH9+537O9N6fceg/03t/PWd678849J9Zlb1Ihg86PpDkcwcx03t/281kOD7tTyZ5eJKfSnL4XmSmrNVzpvf+es703p9x6D/Te3/Gof9M7/0tmTk9yb2TPHW8vK35h8MyM1V1zzWXf3w8+9yDktlOrqqeUFWPT/L6DFuNnJzklPG0r1XVFdZcvux49kyZjTOjX0jy3Ko6JcNuIn5xk/vvJDe3zDK5r1TV85O8v6oqyTe2UKPnTO/9LbtM6zloW2RdrKruneTTrbWvJ/nqFh5vmcyUtXrOTFnrWa21c1prn2qtnZPkSfs803t/xqH/TO/99ZzpvT/j0H8mVXVcktdmOAbTHyQ55qBleu9vyWV6ZobJr+Naa69qrW3ldfgymSlr9Zzpvb+eM733Zxz6z/Ten3HoP9N7f8tk7p1hV9OPraqLZetb6idJqg2zX7NQVRdKcnyS22T4IO7wJK9prd3poGS2m6uqW230OK21fT2ZVVUnttZus+ryK1trd5dZnFl136smuWqS9yS5eGvtK3uVm1tmu7mqunCSq7XW/n08f1Rr7d82efxuM733t2TmmUle1lp715rrL91a+9Ju5jrPXDPJrZK8MsME4F1aa69c7747yUxZq+fMFLWq6n5J7p/k6Ay7Ga4kLcnHWmv33G+Z3vszDv1neu+v50zv/RmH/jNr8t/eWvvYZvebc2bKWhNmviPDxNfNknxXkv9urf3UbmemrNVzpvf+es703p9x6D/Te3/Gof9M7/0tmblakkcmOSLJfZLcr7W22eFYzsu3mUxkVdV9ktw3yfUzbNZeSf43yZtaa884CJmd5Oakhq3PfiLDfjffNl59eJLLt9buILN+Zk3+kUm+L8l1Muzn9E2ttTvuRW5ume3kquo3W2tPrqoXZ3hjn4xv8tsGx2zqOdN7f8su05i9XpKfTnLjJO9O8vLW2ocWZZbN9Zipqju21t5cVfdfe1tr7fm7lZmyVs+ZqWuN2Z9rrf3povvsp8yUtXrOTFlrbpkpa80tM2WtnjNT1ppbZsy9OuMXMpP8VWvtywct03t/S2bukuFDryOTfC3Jezf7AGuZzJS1es703l/Pmd77Mw79Z3rvzzj0n+m9vyUzxyf5P0n+qLV2m6o6obV220WZ1Q7f6h1711p7YZIXVtWNWmvvOYiZneRm5sQMB5r7jyR/nOGD6q8n+S+ZhZnVfqi1dmxVndRaa1V1kT3MzS2zndzKB8uP3uLj9p6ZstaUy5TW2geTfLCqvj3JU5O8tao+lOTP24KtY5bJdZo5Z/z5zbUPs9GyL5mZslbPmalrJckVkqSq7pDkcUle2lp75j7O9N6fceg/03t/PWd678849J9Ja+0nq+pSSX48ycuq6n+TvCzJa1tra//PzTLTe39LLtNvJPlckjcmOb219g8bLfsOM1PW6jnTe389Z3rvzzj0n+m9P+PQf6b3/pbJXKi19k9VtXL5sC1kztO2cUCt/XBK8sZV5yvJGw5aZie5OZ0y7NbtwUl+K8ljkjxGZvPMmHvrmD0xw8z6m/YqN7fMdnIZdrey7mnBY3eb6b2/ZZdpzP5Shn/Oz8+wpeNhGQ5seeJu53rMJLnGRqcFj7/tzJS1es5MXWvMnjD+fHGSCyd5z37O9N6fceg/03t/PWd678849J8Z718ZdpX/J0nekOF1yy8meetByfTe3w6W6SJJ7plhDzKf2+L6sO3MlLV6zvTeX8+Z3vszDv1neu/POPSf6b2/7WYyfD79vCT/lOQZSX5zq+PQWpvPFlmrXHLlTGutjd8QOmiZneTm5LVJ/jDDPtlltueXMmyhcbkkT88wGbZXublltpNb/U3Fhyd5SoY3hIv0nOm9v2WXKUk+m+QnWmtfW31lVd1tD3I9Zn4rw1Y9leT2Sd4ynm8ZJgPXs0xmylo9Z6aulSQXq6p7J/l0a+3rVfXVTe7fe6b3/oxD/5ne++s503t/xqH/TJKckOG4z09urX1k5cpV3+A9CJne+9t2pqqOS3LpJB9J8gdJTl9UYNnMlLV6zvTeX8+Z3vszDv1neu/POPSf6b2/7WSq6nJJ7pFhC66/TvKJDIdF+u4kT96s1rm2M+u1H05J/jTJE5P8SJInJPmzg5bZSW5OpySvklkqU0n+YIrc3DI7zJ00p0zv/W01Mz5/Pn7Vz3NPu53rOWMdmv84JLlmhsmuI5JcLMnd93Om9/6MQ/+Z3vvrOdN7f8ah/8yq7E0z7LbusCRHHcRM7/1tN5Pk27e63DvJTFmr50zv/fWc6b0/49B/pvf+jEP/md77204mw56r7pnkl5N8MMmfJ/nO7dac4xZZD0py1yTfl+S9SV53ADM7yc3J5avqfUn+X8bjg7TW7i2zONNaa1V18ar61tbaJzd5/B3l5pbZSS5bO4bNfspMWWsvM8cv8djL5nrOrGYdmjazp7Wq6o6ttTcnudV41d33c6b3/oxD/5ne++s503t/xqH/zJr8s5OcleQ2rbXXVNWfJvnhg5Tpvb8ll+lpVXV4ktck+avW2pc3uf+ymSlr9Zzpvb+eM733Zxz6z/Ten3HoP9N7f9vJHN5ae2mSVNUDkzywjTNc2zHHiaxbJPl8knetunzqAcvsJDcnm+1GSWZjN0hyalV9KsOHoa21dss9ys0ts+VcVZ2W83YDdnRVnTqe37BOz5ne+1tymb7UWvtAVd1mo2XexVy3map6Qs4bu2tU1eNXbmutPWa3MlPW6jkzca1zxp9rD8q+6EVlz5kpa/WcmbLW3DJT1ppbZspaPWemrDW3zGrf3Vq7bVWdNF6+0AHM9N7ftjOttZ+s4bAHP57kZVX1v0leluS1rbW168rSmSlr9Zzpvb+eM733Zxz6z/Ten3HoP9N7f9vMXHP8fKIyHIblcTXuinjR5yJrzXEi69jxZyU5OsML5c0mcOaW2UluTlqSR2bYjcV9ktwvyZ/JbJpJa+1mm91nt3Jzy2wn11q7xaLbq+oWrbXT9kum9/6WXKbrZjho5dpsS3LigodbJtdz5vgNzidJqupS7YLfvlkmM2WtnjNT1vrXqrpGkgv8PS/Qc2bKWj1npqw1t8yUteaWmbJWz5kpa80ts9pZVXWTJKmq70/yxQOY6b2/bWdq+NTqRklunuGzihOSXDnJmzIc33NXMlPW6jnTe389Z3rvzzj0n+m9P+PQf6b3/raZuc+q80vvJWh2E1mttcetvlxVrz1omZ3kZub5Sf5Pkj9qrX2zqu6RzSdxZJJU1Quy5tuSrbVNt+5aJje3zE5y63hcku1uCdRzZspau5Jprb1w/Pm45Nx/1LXZAy2T6zxzyqLbMxysc+3YbTszZa2eMxPX+q3k3K24bp/kLeP5lo236u0503t/xqH/TO/99ZzpvT/j0H9mtQckeUSSryS5V5KfP4CZ3vtbJnNChg+wntxa+8jKlVULX4ouk5myVs+Z3vvrOdN7f8ah/0zv/RmH/jO997flzBY+q9iatsSBxno+ZXhRvHJ6dJJ3HLTMTnJzOmU80H2SE1dfltnS2B01nq6e5EeT/P5e5eaW2Uluo9/fXDK997coMz6PvifDFksnrfxNbeExt53rOXOof0e9rA+HOrNXtXpe5p7Gab9leu+v50zv/fWc6b0/49BvJsmrklxkzXXXSfLug5Lpvb9ll2nVfW+aYTdEhyU5aq8yU9bqOdN7fz1neu/POPSf6b0/49B/pvf+ll2mZU+HZX6+OZ6+keRDSe5wADM7yc3JiVX1vCRXqapnJHm7zJYyaa19dDyd2Vp7fZKb7FVubpmd5NZ7qJllpqy125k7tdZu1Fq7TWvt2NbaVrf2WibXc2Yj1qFpM3tVq+dl7mmc9ltmylpzy0xZa26ZKWv1nJmy1lwyxyV5U1VdNkmq6vZJXpzk3gco03t/yy5TqurZSX4syW+21s5J8qd7kZmyVs+Z3vvrOdN7f8ah/0zv/RmH/jO997fsMu3EbHYtWFW3HM9+ZM1NN8gGx4aaW2YnuTlqrT2hqr4vw6aO/9Ra+5DM5pkkqarTct6uQC6aYf+me5KbW2YnuXWcObPMlLV2O/PGqrprkr/P+GFMa+3DW3jMZXI9Zzay6fbwu5SZslbPmV2rVVVPyHnPV9eo4QCsSZK2wUFXe8703p9x6D/Te389Z3rvzzj0nxlv+8uq+mSG1ylvTfIDSX64tfaFg5Lpvb9ll2n03a2121bVSePlC+1RZspaPWd676/nTO/9GYf+M733Zxz6z/Te37LLtLTZTGQlOXb8eb0kl0jy/iTfn+TsbDyBM7fMTnKzU1UXT3KtJEckuVFV3ai19nyZxZkkaa3dYrP77FZubpllclV1/SSPTXLpJD+c5BGttSe1BcfV6jnTe39LLtNVk9wiySfGyy1bO77DMrnuMlW14dZarbUTk9x1NzJT1uo5M3Gt4zc4v/KYl2qtfXkfZXrvzzj0n+m9v54zvfdnHPrPrJ4A+3iSX0vy3CS/VlVbmTSbRab3/pZdptFZVXWT8XG+P8kXN7n/spkpa/Wc6b2/njO992cc+s/03p9x6D/Te3/LLtPSqg37M5yNqnpDa+3Oqy6/sbV2p4OU2UluTqrq1Axbwnxy5brW2gtlFmfG3NNba79SVffK8Obk7a21h+9Fbm6ZZXJVdUqGzXH/qrV2bFWd0Fq77SY1us303t+Smbe11n540X12K9djpqoeu8FNrbX2+PVuWCYzZa2eM1PXWqSqTmzb3O1kz5kpa/WcmbLW3DJT1ppbZspaPWemrLUfM1V1q40yrbVTap0JsLlleu9v2WUas1dM8ogk353kn5I8pbX2mY0eb9nMlLV6zvTeX8+Z3vszDv1neu/POPSf6b2/ZZdpR9oeH4Rr6lOGg9bfI8l3JfmZbOHAsnPL7CQ3p1OSt8psPzPmThh/vmT8ecZe5eaWWSaX5NTx54njz1O2UKPbTO/9LZn5kyQPTXLbJLdJcpstjsO2cz1nnA7eKUu8fug503t/xqH/TO/99ZzpvT/j0H9mzJ140DO997deJsmrklxkzXXXSfLuBY+z7cyUtXrO9N5fz5ne+zMO/Wd678849J/pvb9ll2k3Todlfu6W5NuSPCTJt4+XD1pmJ7k5eV5VvaaqnlBVj69V+2WX2dRhVfWYJP8+Xv7GHubmllkm98Kq+usMxw94ZZIXbKFGz5ne+1sm8/Ekl01y8wy749vq7iOXyXWbqap7VdVpVfW5qvpwVb13LzJT1uo5M3WtDbSZZaas1XNmylpzy0xZa26ZKWv1nJmy1twySbo+huVUmSlr7VbmuCRvqqrLJklV3T7Ji5Pce8HjLJOZslbPmd776znTe3/Gof9M7/0Zh/4zvfe37DLt3F7PlB2KU5IbJ/nZJDc+qJmd5OZySvK+DFul3WrlJLN5ZsxdLsMWGhdKcpEkt9ir3NwyO6h1hSQ3SnLFbazj3WZ672/ZZTropyTvHtfrkzMcZ/Mv9iIzZa2eM1PX2uCxTppTpvf+jEP/md776znTe3/Gof/MmNtXWyLtRab3/jbKJPmBJKcneUyStyS57BYea9uZKWv1nOm9v54zvfdnHPrP9N6fceg/03t/yy7TTk9zPEbW05NcIsMH+DdMcnZr7cEHKbOT3JxU1Staaz8ts73MmLtukvsmuUySwzIcX+X+e5GbW2aZXFU9qbX2qPF8JXlCa+3Rm9ToNtN7f0tm7pXk55N8T4YDWH6+tXbDRZllc51nTm6t3bqq3p7kAUle11q7/m5npqzVc2aKWlW14TFNWmsnVtWlW2tf2i+Z3vszDv1neu+v50zv/RmH/jNbUVUntdaOPciZKWvtVqaqnpBhK7zvSvLDSZ6b5OtJ0lp7zAaPs+3MlLV6zvTeX8+Z3vszDv1neu/POPSf6b2/ZZdpNxy+lw9+iFy/tXbr8fwfV9UpBzCzk9ycXLGq3pfk/2XcdUVrbbPNHGUGL0zyS0k+sYX77jQ3t8wyuZutnGmttar6gX2e6b2/ZTIPGXMnJLldkj/bQmbZXM+ZJ1fVxZI8LsmzkzxjjzJT1uo5M0WtjXYp2TJ8o3q9Dxl7zvTen3HoP9N7fz1neu/POPSf2XQCLMld557pvb8ll+n48ecJSZ6zzmNeqrX25V3ITFmr50zv/fWc6b0/49B/pvf+jEP/md77W3aZdmyOW2S9PsO+Gt+fYUukn2mt3ekgZXaSm5OqOmrtda21j8oszoy5Fyb5udba/252353m5pZZJldVb0ryh0nemWFi4ddba3fYr5ne+9tOZuUfcG1zq5hlcj1nVmWv3Vr71/F8JbnWyuXdzExZq+fM1LUA4FCrqsducFNrra17vN+5ZXrvb9llWqSqTmytbThBtluZKWv1nJmy1twyU9bqOTNlrbllpqzVc2bKWnPLTFlrymXakjbB/gunPCW5dJL/m2Gztv+b5DIHLbOT3JxOSf4yyc8kubjM1jNj7m+TfDLJaUlOTXLqXuXmllkml+TIJE9PsjLBcuQWanSb6b2/7WQy7uM/yR2S/HmSmyd5XZL7bVJj27meM6uyJyy6vFuZKWv1nJm4v3tleM76XJIPJ3nvfs703p9x6D/Te389Z3rvzzj0n3E6eKc4Rp1x2CeZ3vszDv1neu/POPSf6b2/ZZdpK6dZ7Vpw/NbxK9sWthaYa2YnuRl6UJK7JXllVX0hySuTvLm19g2Z9TN13n5OX7/gMXclN7fMTnKttU9V1WOSXHa86qL7OdN7f0tm3lJVv9Fae0eSd2x2/53kes5kOPZiknP/11xiwX13kpmyVs+ZKWv1vEtLu/ZcPtN7fz1neu+v50zv/RmH/jOpvo8ZOkmm9/6WXaYNtIkyU9bqOTNlrbllpqzVc2bKWnPLTFmr58yUteaWmbLWlMu0qVlNZLXWWlX9a1XdPcMu9c4Zr//wQcnsJDc3rbXPJfmTqvqHJL+a5LeS/GJVndBae6rMupnj17luK5bJzS2zdK6q/iTJ1TIcU6syPOnff79meu9vm5lrVNXjx/utnE+StMUHsVwm13NmxYuq6vgM/1u+P8mLNrn/spkpa/WcmbLWV1pr36yqrye5SpLr7/NM7/0Zh/4zvffXc6b3/oxD/5mk74k2k6HLZzZSE2WmrNVzZspac8tMWavnzJS15paZslbPmSlrzS0zZa0pl2nzB25tzybJJlVVF0nyUxlePJ2dYTdJ52SY11n3A8q5ZXaSm6Oq+r0kN8iwK4uXtfOOF/KG1tqdZdbPML2qentr7Yfmkpmy1l5nqupWG93WWjtlN3M9Z9bkr5TkO5J8uLX22c3uv2xmylo9Z6aqVVW3T3JKhuNq/kaS17TWXrBfM733Zxz6z/TeX8+Z3vszDv1nxtzJbfvH8pxVpvf+tpOpqg2PldFaO7GqLt1a+9JOM1PW6jnTe389Z3rvzzj0n+m9P+PQf6b3/pZdpt0wpy2yXpHknUnumuRWSS7dWnvwAcvsJDdHr26t/cbaK9viCRwZDoUzq+qhSf4+4ya4rbUT93Gm9/62nGlbmNjZrVzPmaq6X2vtBXXe7jNXrt9wK65lMlPW6jkzda3Rh1trZyd5R1WdnuRam9y/90zv/RmH/jO999dzpvf+jEP/mSR5clVdLMnjkjw7yTMOYKb3/raTucUG17cMx29d7wOvZTJT1uo503t/PWd678849J/pvT/j0H+m9/6WXaYdm9MWWSe21m6z6vIJrbXbHqTMTnJzVFXXTfKkJJfOsM/u32qtfVBmcYbpVdVj117XWnvcfs303t+yy3SQVdX1WmsfrHW25tpoYmyZzJS1es5MXWvMnu/1whZfq3Sb6b0/49B/pvf+es703p9x6D8z3u/a7by9SVSSa61cPiiZ3vtbdpkAAJYxpy2yVh/no5Jcc+Vy2/w4IXPJ7CQ3R89Jcq/W2ker6upJXpLk5jKbZpjYMpMoPWemrDXlMh1wl6mqW2bVVj57lJmyVs+ZqWslySVWzowfRl1iwX33Q6b3/oxD/5ne++s503t/xqH/TJI8L8ltk6S11qrq3MsHKNN7f9vOVNW9kvx8ku/J8EXLz7fWbrjbmSlr9Zzpvb+eM733Zxz6z/Ten3HoP9N7f8su007MaSLrPmsuH38AMzvJzdHhST42nv/PJBeS2VKGifX8T8Y/W0bHjj+vl+EDqPcn+f4Mx2I8dRczU9bqOTN1rSR5UVUdvyrzok3u33um9/6MQ/+Z3vvrOdN7f8ah/0zS90SbydDlMw9JcrMkJyS5XYZje+9FZspaPWd676/nTO/9GYf+M733Zxz6z/Te37LLtLzWmpPTLE9J7pXkb5K8cvx5b5nNM07Tn5K8O8Mk48kZJh//Yj9neu9v2WVyaknyhjWX37gXmSlr9Zw5BLWulOTGSa64jXWi20zv/RmH/jO999dzpvf+jMO+yPxihi9l/l6Styf5xYOW6b2/JTMnjz/fnuRqSf52LzJT1uo503t/PWd678849J/pvT/j0H+m9/6WXaadnOa0RRacT2vtJVX1sgxvnD7TWjtHZvMMh8RXWmvfrKqvJ7lKkuvv80zv/S27TCSXqKp7JPlAhnHb0rd1l8hMWavnzJ7Xqqr7tdZeUFVPyKpdElZV2ga7JO4503t/xqH/TO/99ZzpvT/j0H9mtdbac6vq1Um+I8nvtdY+e9Ayvfe35DI9uaouluRxSZ6d5Bl7lJmyVs+Z3vvrOdN7f8ah/0zv/RmH/jO997fsMi3NRBazU1UvzjrHBxnfNN1bZv0Mh1TP/2T8s2W1uyV5YJJbJPnIeHkvMlPW6jkzRa33jz+3syvinjNT1uo5M2WtuWWmrDW3zJS1es5MWWtuma4n2kyG7myZRh9urZ2d5B1VdXqSa21y/2UzU9bqOdN7fz1neu/POPSf6b0/49B/pvf+ll2mpZnIYo4eLbNUhkOgqirJD7XW3prkHeNp32Z672/ZZeJcX8pw3L2zkzw3w7EuPr8HmSlr9ZyZotZlquqWWefLDwv0nJmyVs+ZKWvNLTNlrbllpqzVc2bKWnPLJH1PtJkMXT6z4nlJbpskrbVWVede3uXMlLV6zvTeX8+Z3vszDv1neu/POPSf6b2/ZZdpaSaymJ3W2keTpKoum+Tnk1wzyb8n+ROZjTMcGuOT/cWr6ltba5/c75ne+1t2mTjXS5KckuQerbVnVdWTMxzUc7czU9bqOTNFrWPHn9fLsAvC92eY+Do7yan7MNN7f8ah/0zv/fWc6b0/49B/Jul7os1k6PKZFefu7nj8gtmWdpm8RGbKWj1neu+v50zv/RmH/jO992cc+s/03t+yy7Q0E1nM2auT/HGS12R4A/WXSW4js2mG6d0gyalV9akMbwhba+2W+zjTe3/LLhPJlVprz6uqu+9xZspaPWf2vFZr7XFJUlVvaK3dYeX6qnrjfsz03p9x6D/Te389Z3rvzzj0nxn1PNFmMnRny5QkL6qq41dlXrTJ/ZfNTFmr50zv/fWc6b0/49B/pvf+jEP/md77W3aZltdac3Ka5SnJm9ZcfrPM5hknJyenjU5JXpbkp5OckeTHk7x4LzJT1uo5M3F/Jya5R5LvSvIzSU7az5ne+zMO/Wd676/nTO/9GYf+M2PuDWsuv/GgZXrvbwfLdKUkN05yxa3cf9nMlLV6zvTeX8+Z3vszDv1neu/POPSf6b2/ZZdp2VONRWF2qup1SS6a5AMZvi32jfF82sYHrj3wGaZXVS/Iml1ztNbuv18zvfe37DIdZFV1tfHsJTLsou6OSd6S5G2ttX/ercyUtXrOTF1rzF4uyQOTfEeSjyT589ba5/drpvf+jEP/md776znTe3/Gof/MmDsxyZ9meO9y/SQ/31o79iBleu9vO5mqul9r7QVV9YRc8HX4Ru9lt52ZslbPmd776znTe3/Gof9M7/0Zh/4zvfe37DLtBrsWZM6euur8m2W2nGF6vz3+rCRHJ7nlPs/03t8ymYPuzCTvSfIP4+VPZ9hF4/cn2WgScJnMlLV6zkxdK0m+lORjGXYL9Nwxs9kHjT1neu/POPSf6b2/njO992cc+s8kyd0yTIDdIsME2N0OYKb3/raTef/48/gtPO5OMlPW6jkzZa25Zaas1XNmylpzy0xZq+fMlLXmlpmy1pTLtGOHTV0QptJaOyXJFzOs5xdKcqHW2inj9TJ0o7X20fF0Zmvt9Ulusp8zvfe37DIdcDfJ8CLl8kk+leQ5rbX7tcVbsi2TmbJWz5mpayXJS5JcNsk9WmvfSPLkfZ7pvT/j0H+m9/56zvTen3HoP5OcNwH2j0meluSaBzDTe3/byVymqm6Z4Zvba0+7mZmyVs+Z3vvrOdN7f8ah/0zv/RmH/jO997fsMu2YLbKYrap6fZKPJ/nkeFXLsI92GbpSVadl+N1Uhl1Bvmk/Z3rvb9llOshaa+/JsKVPquomSf60qt7bWvu53cxMWavnzNS1RldqrT2vqu6+hfvuh0zv/RmH/jO999dzpvf+jEP/mWSYADslwwTYs6rqyRl2m3uQMr33t53Myi4Hr5dhF8jvz7B13tlJTt3FzJS1es703l/Pmd77Mw79Z3rvzzj0n+m9v2WXacdMZDFnF2+t/YLMtjNMrLV2izllpqw15TIdZFV1xSR3TXLbDC9OnpRNJgCXyUxZq+fM1LVGn66qn05y8ar68Zz3BYj9mum9P+PQf6b3/nrO9N6fceg/k/Q90WYydJuZ1trjkqSq3tBau8PK9VX1xt3MTFmr50zv/fWc6b0/49B/pvf+jEP/md77W3aZdoOJLObs+VX1tCR/n3Hzxtba82U2zTCxqnp6a+1XqupeSX4tydtbaw/fr5ne+1t2mQ64T2Y4kPdJSf43yXWTXLeqFh3Mc5nMlLV6zkxWq6quNp59fIZvUX8+ybcleeJGjfWc6b0/49B/pvf+es703p9x6D+zRs8TbSZDl89coqrukeH1yvUzfJN7LzJT1uo503t/PWd678849J/pvT/j0H+m9/6WXaalVWttr2vAIVHD7sPelOQTK9e11l4oszjD9KrqhNbabavqJa21e1XVGa21m+3XTO/9LbtMB1lV3Wqj29oGx9xbJjNlrZ4zE/d3TobdEf7DylXnRdY/tlbPmd77Mw79Z3rvr+dM7/0Zh/4zY25lAuwSGSbA7pjkLUne1lr754OQ6b2/ZZdpzF4uyQOTfEeSjyT589ba53c7M2WtnjO999dzpvf+jEP/md77Mw79Z3rvb9ll2glbZDFnn2utPVlm2xmmd1hVPSbJv4+Xv7HPM733t+wyHViLJlx2MzNlrZ4zE9e6SZIfS/K9GQ7W/pettffu40zv/RmH/jO999dzpvf+jEP/mSQ5M+efAPt0khtkOPbCRhNgc8v03t8ymRVfSvKxDLtAfu6Y2exDr2UyU9bqOdN7fz1neu/POPSf6b0/49B/pvf+ll2m5bXWnJxmeUrymvH0hAy7tHi8zOYZp+lPSS6X5DZJLpTkIklusZ8zvfe37DI5Oc39lOFDxw8k+dM5ZHrvzzj0n+m9v54zvfdnHPrNJLlRhmM8vjbJk5Pc8KBleu9v2WUasy9P8gtJ3jlePn4vMlPW6jnTe389Z3rvzzj0n+m9P+PQf6b3/pZdpp2cbJHF7FTVnVtrb0jy9CQ3TvLu8aZvk9k4wyH17UnunOSeSQ7LcDyz0/Zxpvf+ll0mmJ2qumKSuya5bYZvUj0pwy5p92Wm9/6MQ/+Z3vvrOdN7f8ah/0yStNbek2Frn1TVTZL8aVW9t7X2cwcl03t/yy7T6EqttedV1d23cN+dZKas1XOm9/56zvTen3HoP9N7f8ah/0zv/S27TEszkcUc/VqSN7TWTqmqx7bWfj9JqurEJC+V2TDDofPCJL+UVccy+//bu2MWu6ooCsDriI29YCdYC+nEzhSmj1Y22gj+jKRQf0Tq9LZpg32CIoiNhV0ghaXIBHJSvBFFkubmvjNrbr6vesxjzV5n84qBM3PnmmdWzlp5JjiiJzn9lvzDJBdJbiS5McbInPPuNcy097OH/kx7v+ZMez976M9UX7S5DH29M116Osb4Isk7Y4zPc/qcnCOzclZzpr1fc6a9nz30Z9r72UN/pr3f1jNt5iIL4Or9kuTxnPPiIJmVs1aeCY7o1sEyK2c1Z1bOOlpm5ayjZVbOas6snHW0TNJ90eYydGNmjPH+5ctvc/ps/JnT00K+f8WMTZmVs5oz7f2aM+397KE/097PHvoz7f22nmkPY56eYQiHMcb4I8n9JCPJV/95/eWc8wOZl2e4OmOMn5O8l+T3nB5zlznnJ9c1095v65kAADivMcbNV7035/zxTci099uYeZ7T4wh//edL/0bm13tlVs5qzrT3a86097OH/kx7P3voz7T323qmPbjI4nDKf4CvzbDeGOO7nC5Sxv/fm3PeuW6Z9n5bzwQAAGw3xvgoyWdJPkzyW5If5pyP9s6snNWcae/XnGnvZw/9mfZ+9tCfae+39Ux7cJEFcEWaLzb99igAALC3McbHSe4leTTn/OZcmZWzmjPt/Zoz7f3soT/T3s8e+jPt/baeaSsXWQAAAACcxRjj3SS3k3ya5O8kD5I8mHP+tWdm5azmTHu/5kx7P3voz7T3s4f+THu/rWfag4ssAAAAAM5ijPEsyU9JHia5yOX/qU2SOefdvTIrZzVn2vs1Z9r72UN/pr2fPfRn2vttPdMe3j7nNwcAAADgjXZrUWblrObMyllHy6yc1ZxZOetomZWzmjMrZx0ts3LWyjO9Nn+RBQAAAAAAQKW3rroAAAAAAAAAvIyLLAAAAAAAACq5yAIAAAAAAKCSiywAAAAAAAAqvQAD3DGs0jpPRQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# PLOTANDO GRÁFICO PARA VISUALIZAÇÃO DAS CORRELAÇÕES COM A CLASSE\n",
+ "\n",
+ "dataset.corrwith(dataset.Response).plot.bar(figsize = (30, 8), \n",
+ " title = \"Correlação das Variáveis de Entrada com a Classe de Saída\", \n",
+ " fontsize = 8,\n",
+ " grid = True, \n",
+ " legend=False)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "038513f1-43e0-47e1-97ef-b76ffa4016ec",
+ "metadata": {},
+ "source": [
+ "# ENGENHARIA DE ATRIBUTOS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "b2dd9a1d-a8c2-4dc9-9a39-9a873a7cf34a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# SEPARANDO OS ATRIBUTOS DA VARIÁVEL ALVO E REMOVENDO ATRIBUTOS COM VALORES FALTANTES ACIMA DE 70%\n",
+ "\n",
+ "x = dataset.drop(columns = missing_values_drop + ['Response', 'Id'], axis=1)\n",
+ "y_train = dataset[['Response']].values.ravel()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "783aa71b-e812-49b0-823a-b1f39f4b4295",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['Product_Info_2']"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO ATRIBUTOS DO TIPO 'OBJECT' DO DATASET\n",
+ "list(x.select_dtypes(include=['object']).columns)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "5388b083-5861-43d4-9f92-6a58dc04318a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array(['D3', 'A1', 'E1', 'D4', 'D2', 'A8', 'A2', 'D1', 'A7', 'A6', 'A3',\n",
+ " 'A5', 'C4', 'C1', 'B2', 'C3', 'C2', 'A4', 'B1'], dtype=object)"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO OS VALORES DO ATRIBUTO TIPO 'OBJECT'\n",
+ "x['Product_Info_2'].unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "ee0d1d75-93b6-4cd7-9a9b-d42b2edacf5c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# SEPARANDO OS CARACTERES ALFABÉTICOS E NUMÉRICOS DA VARIÁVEL 'PRODUCT_INFO_2' E CRIANDO UMA NOVA COLUNA PARA CADA\n",
+ "x['Product_Info_2_char'] = x.Product_Info_2.str[0]\n",
+ "x['Product_Info_2_num'] = x.Product_Info_2.str[1]\n",
+ "\n",
+ "# OBTENDO OS CARACTERES ÚNICOS E OS ORDENANDO EM ORDEM DECRESCENTE\n",
+ "producto_info_2_char = np.sort(x['Product_Info_2_char'].unique()).tolist()\n",
+ "\n",
+ "# ELIMINANDO A COLUNA QUE FOI DESDOBRADA EM DUAS\n",
+ "x = x.drop(columns='Product_Info_2', axis=1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cf81e375-92d5-4560-8257-d79f0b3eba6a",
+ "metadata": {},
+ "source": [
+ "# Criando Pipeline para Tratamento dos Dados"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "281f5cbd-1c38-4c01-a595-4bf014e97bb7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# PIPELINE PARA TRATAMENTO DOS ATRIBUTOS NUMÉRICOS\n",
+ "\n",
+ "pipeline_numerical = Pipeline([ \n",
+ " ('simple_imputer', SimpleImputer(strategy='mean')), \n",
+ " ('iterative_imputer', IterativeImputer())\n",
+ " ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "1bca9a65-1f60-4512-86d1-150fd358c585",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# PIPELINE PARA TRATAMENTO DOS ATRIBUTOS TIPO OBJECT\n",
+ "pipeline_object = Pipeline([('ordinal_encoder', OrdinalEncoder(categories=[producto_info_2_char]))])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "3aa211df-06c3-4566-8b30-0528bce738f8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FAZENDO TRANFORMAÇÕES NOS ATRIBUTOS UTILIZADOS NOS PIPELINES\n",
+ "\n",
+ "ct_preprocessor = ColumnTransformer([\n",
+ " ('numerical', pipeline_numerical, missing_values_keep), \n",
+ " ('object', pipeline_object, ['Product_Info_2_char'])\n",
+ " ], remainder='passthrough')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "8a495dc2-74f6-4338-99e5-af5e92432c23",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "ColumnTransformer(remainder='passthrough',\n",
+ " transformers=[('numerical',\n",
+ " Pipeline(steps=[('simple_imputer',\n",
+ " SimpleImputer()),\n",
+ " ('iterative_imputer',\n",
+ " IterativeImputer())]),\n",
+ " ['Family_Hist_3', 'Family_Hist_2',\n",
+ " 'Insurance_History_5', 'Family_Hist_4',\n",
+ " 'Employment_Info_6', 'Medical_History_1',\n",
+ " 'Employment_Info_4', 'Employment_Info_1']),\n",
+ " ('object',\n",
+ " Pipeline(steps=[('ordinal_encoder',\n",
+ " OrdinalEncoder(categories=[['A',\n",
+ " 'B',\n",
+ " 'C',\n",
+ " 'D',\n",
+ " 'E']]))]),\n",
+ " ['Product_Info_2_char'])])"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# TREINAMNDO ALGORITMO PARA TRATAMENTO DOS DADOS\n",
+ "ct_preprocessor.fit(x)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "id": "b898d50e-0f93-497c-afec-dc762cd6c9f8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# TRANSFORMANDO OS DADOS E ATRIBUINDO-OS A UM DATAFRAME\n",
+ "x_train = pd.DataFrame(ct_preprocessor.transform(x), columns=x.columns.tolist())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "1f7859bc-ea2f-4f17-805d-4f1ac757cadc",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Product_Info_1 | \n",
+ " Product_Info_3 | \n",
+ " Product_Info_4 | \n",
+ " Product_Info_5 | \n",
+ " Product_Info_6 | \n",
+ " Product_Info_7 | \n",
+ " Ins_Age | \n",
+ " Ht | \n",
+ " Wt | \n",
+ " BMI | \n",
+ " Employment_Info_1 | \n",
+ " Employment_Info_2 | \n",
+ " Employment_Info_3 | \n",
+ " Employment_Info_4 | \n",
+ " Employment_Info_5 | \n",
+ " Employment_Info_6 | \n",
+ " InsuredInfo_1 | \n",
+ " InsuredInfo_2 | \n",
+ " InsuredInfo_3 | \n",
+ " InsuredInfo_4 | \n",
+ " InsuredInfo_5 | \n",
+ " InsuredInfo_6 | \n",
+ " InsuredInfo_7 | \n",
+ " Insurance_History_1 | \n",
+ " Insurance_History_2 | \n",
+ " Insurance_History_3 | \n",
+ " Insurance_History_4 | \n",
+ " Insurance_History_5 | \n",
+ " Insurance_History_7 | \n",
+ " Insurance_History_8 | \n",
+ " Insurance_History_9 | \n",
+ " Family_Hist_1 | \n",
+ " Family_Hist_2 | \n",
+ " Family_Hist_3 | \n",
+ " Family_Hist_4 | \n",
+ " Medical_History_1 | \n",
+ " Medical_History_2 | \n",
+ " Medical_History_3 | \n",
+ " Medical_History_4 | \n",
+ " Medical_History_5 | \n",
+ " Medical_History_6 | \n",
+ " Medical_History_7 | \n",
+ " Medical_History_8 | \n",
+ " Medical_History_9 | \n",
+ " Medical_History_11 | \n",
+ " Medical_History_12 | \n",
+ " Medical_History_13 | \n",
+ " Medical_History_14 | \n",
+ " Medical_History_16 | \n",
+ " Medical_History_17 | \n",
+ " Medical_History_18 | \n",
+ " Medical_History_19 | \n",
+ " Medical_History_20 | \n",
+ " Medical_History_21 | \n",
+ " Medical_History_22 | \n",
+ " Medical_History_23 | \n",
+ " Medical_History_25 | \n",
+ " Medical_History_26 | \n",
+ " Medical_History_27 | \n",
+ " Medical_History_28 | \n",
+ " Medical_History_29 | \n",
+ " Medical_History_30 | \n",
+ " Medical_History_31 | \n",
+ " Medical_History_33 | \n",
+ " Medical_History_34 | \n",
+ " Medical_History_35 | \n",
+ " Medical_History_36 | \n",
+ " Medical_History_37 | \n",
+ " Medical_History_38 | \n",
+ " Medical_History_39 | \n",
+ " Medical_History_40 | \n",
+ " Medical_History_41 | \n",
+ " Medical_Keyword_1 | \n",
+ " Medical_Keyword_2 | \n",
+ " Medical_Keyword_3 | \n",
+ " Medical_Keyword_4 | \n",
+ " Medical_Keyword_5 | \n",
+ " Medical_Keyword_6 | \n",
+ " Medical_Keyword_7 | \n",
+ " Medical_Keyword_8 | \n",
+ " Medical_Keyword_9 | \n",
+ " Medical_Keyword_10 | \n",
+ " Medical_Keyword_11 | \n",
+ " Medical_Keyword_12 | \n",
+ " Medical_Keyword_13 | \n",
+ " Medical_Keyword_14 | \n",
+ " Medical_Keyword_15 | \n",
+ " Medical_Keyword_16 | \n",
+ " Medical_Keyword_17 | \n",
+ " Medical_Keyword_18 | \n",
+ " Medical_Keyword_19 | \n",
+ " Medical_Keyword_20 | \n",
+ " Medical_Keyword_21 | \n",
+ " Medical_Keyword_22 | \n",
+ " Medical_Keyword_23 | \n",
+ " Medical_Keyword_24 | \n",
+ " Medical_Keyword_25 | \n",
+ " Medical_Keyword_26 | \n",
+ " Medical_Keyword_27 | \n",
+ " Medical_Keyword_28 | \n",
+ " Medical_Keyword_29 | \n",
+ " Medical_Keyword_30 | \n",
+ " Medical_Keyword_31 | \n",
+ " Medical_Keyword_32 | \n",
+ " Medical_Keyword_33 | \n",
+ " Medical_Keyword_34 | \n",
+ " Medical_Keyword_35 | \n",
+ " Medical_Keyword_36 | \n",
+ " Medical_Keyword_37 | \n",
+ " Medical_Keyword_38 | \n",
+ " Medical_Keyword_39 | \n",
+ " Medical_Keyword_40 | \n",
+ " Medical_Keyword_41 | \n",
+ " Medical_Keyword_42 | \n",
+ " Medical_Keyword_43 | \n",
+ " Medical_Keyword_44 | \n",
+ " Medical_Keyword_45 | \n",
+ " Medical_Keyword_46 | \n",
+ " Medical_Keyword_47 | \n",
+ " Medical_Keyword_48 | \n",
+ " Product_Info_2_char | \n",
+ " Product_Info_2_num | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.598039 | \n",
+ " 0.47455 | \n",
+ " 0.000667 | \n",
+ " 0.44489 | \n",
+ " 0.361469 | \n",
+ " 4.0 | \n",
+ " 0.0 | \n",
+ " 0.028 | \n",
+ " 3.0 | \n",
+ " 1 | \n",
+ " 10 | \n",
+ " 0.076923 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.641791 | \n",
+ " 0.581818 | \n",
+ " 0.148536 | \n",
+ " 0.323008 | \n",
+ " 12 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 112 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.497737 | \n",
+ " 0.188406 | \n",
+ " 0.000133 | \n",
+ " 0.084507 | \n",
+ " 0.0018 | \n",
+ " 5.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 26 | \n",
+ " 0.076923 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.059701 | \n",
+ " 0.6 | \n",
+ " 0.131799 | \n",
+ " 0.272288 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 412 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.497737 | \n",
+ " 0.304348 | \n",
+ " 0.001733 | \n",
+ " 0.225352 | \n",
+ " 0.03 | \n",
+ " 10.0 | \n",
+ " 0.0 | \n",
+ " 0.03 | \n",
+ " 4.0 | \n",
+ " 1 | \n",
+ " 26 | \n",
+ " 0.076923 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.029851 | \n",
+ " 0.745455 | \n",
+ " 0.288703 | \n",
+ " 0.42878 | \n",
+ " 9 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 8 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.497737 | \n",
+ " 0.42029 | \n",
+ " 0.001733 | \n",
+ " 0.352113 | \n",
+ " 0.2 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.042 | \n",
+ " 3.0 | \n",
+ " 1 | \n",
+ " 10 | \n",
+ " 0.487179 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.164179 | \n",
+ " 0.672727 | \n",
+ " 0.205021 | \n",
+ " 0.352438 | \n",
+ " 9 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 8 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 350 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.497737 | \n",
+ " 0.463768 | \n",
+ " 0.001733 | \n",
+ " 0.408451 | \n",
+ " 0.05 | \n",
+ " 7.962172 | \n",
+ " 0.0 | \n",
+ " 0.027 | \n",
+ " 3.0 | \n",
+ " 1 | \n",
+ " 26 | \n",
+ " 0.230769 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0.41791 | \n",
+ " 0.654545 | \n",
+ " 0.23431 | \n",
+ " 0.424046 | \n",
+ " 9 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 162 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Product_Info_1 Product_Info_3 Product_Info_4 Product_Info_5 Product_Info_6 \\\n",
+ "0 0.598039 0.47455 0.000667 0.44489 0.361469 \n",
+ "1 0.497737 0.188406 0.000133 0.084507 0.0018 \n",
+ "2 0.497737 0.304348 0.001733 0.225352 0.03 \n",
+ "3 0.497737 0.42029 0.001733 0.352113 0.2 \n",
+ "4 0.497737 0.463768 0.001733 0.408451 0.05 \n",
+ "\n",
+ " Product_Info_7 Ins_Age Ht Wt BMI Employment_Info_1 Employment_Info_2 \\\n",
+ "0 4.0 0.0 0.028 3.0 1 10 0.076923 \n",
+ "1 5.0 0.0 0.0 0.0 1 26 0.076923 \n",
+ "2 10.0 0.0 0.03 4.0 1 26 0.076923 \n",
+ "3 0.0 0.0 0.042 3.0 1 10 0.487179 \n",
+ "4 7.962172 0.0 0.027 3.0 1 26 0.230769 \n",
+ "\n",
+ " Employment_Info_3 Employment_Info_4 Employment_Info_5 Employment_Info_6 \\\n",
+ "0 2 1 1 0.641791 \n",
+ "1 2 3 1 0.059701 \n",
+ "2 2 3 1 0.029851 \n",
+ "3 2 3 1 0.164179 \n",
+ "4 2 3 1 0.41791 \n",
+ "\n",
+ " InsuredInfo_1 InsuredInfo_2 InsuredInfo_3 InsuredInfo_4 InsuredInfo_5 \\\n",
+ "0 0.581818 0.148536 0.323008 12 1 \n",
+ "1 0.6 0.131799 0.272288 1 3 \n",
+ "2 0.745455 0.288703 0.42878 9 1 \n",
+ "3 0.672727 0.205021 0.352438 9 1 \n",
+ "4 0.654545 0.23431 0.424046 9 1 \n",
+ "\n",
+ " InsuredInfo_6 InsuredInfo_7 Insurance_History_1 Insurance_History_2 \\\n",
+ "0 3 1 2 6 \n",
+ "1 2 1 2 6 \n",
+ "2 2 1 2 8 \n",
+ "3 3 2 2 8 \n",
+ "4 2 1 2 6 \n",
+ "\n",
+ " Insurance_History_3 Insurance_History_4 Insurance_History_5 \\\n",
+ "0 3 1 2 \n",
+ "1 3 1 2 \n",
+ "2 3 1 1 \n",
+ "3 3 1 2 \n",
+ "4 3 1 2 \n",
+ "\n",
+ " Insurance_History_7 Insurance_History_8 Insurance_History_9 Family_Hist_1 \\\n",
+ "0 1 1 1 3 \n",
+ "1 1 2 1 3 \n",
+ "2 1 2 1 1 \n",
+ "3 1 2 1 1 \n",
+ "4 1 2 1 1 \n",
+ "\n",
+ " Family_Hist_2 Family_Hist_3 Family_Hist_4 Medical_History_1 \\\n",
+ "0 1 1 1 2 \n",
+ "1 1 1 3 2 \n",
+ "2 3 3 2 3 \n",
+ "3 3 3 2 3 \n",
+ "4 3 3 2 3 \n",
+ "\n",
+ " Medical_History_2 Medical_History_3 Medical_History_4 Medical_History_5 \\\n",
+ "0 2 112 2 1 \n",
+ "1 2 412 2 1 \n",
+ "2 3 3 2 2 \n",
+ "3 3 350 2 2 \n",
+ "4 2 162 2 2 \n",
+ "\n",
+ " Medical_History_6 Medical_History_7 Medical_History_8 Medical_History_9 \\\n",
+ "0 1 3 2 2 \n",
+ "1 1 3 2 2 \n",
+ "2 1 3 2 2 \n",
+ "3 1 3 2 2 \n",
+ "4 1 3 2 2 \n",
+ "\n",
+ " Medical_History_11 Medical_History_12 Medical_History_13 Medical_History_14 \\\n",
+ "0 1 3 2 3 \n",
+ "1 1 3 2 3 \n",
+ "2 2 3 2 3 \n",
+ "3 2 3 2 3 \n",
+ "4 2 3 2 3 \n",
+ "\n",
+ " Medical_History_16 Medical_History_17 Medical_History_18 Medical_History_19 \\\n",
+ "0 3 3 3 1 \n",
+ "1 3 1 3 1 \n",
+ "2 3 1 3 1 \n",
+ "3 3 1 3 1 \n",
+ "4 3 1 3 1 \n",
+ "\n",
+ " Medical_History_20 Medical_History_21 Medical_History_22 Medical_History_23 \\\n",
+ "0 1 2 1 2 \n",
+ "1 1 2 1 2 \n",
+ "2 1 2 1 2 \n",
+ "3 1 2 2 2 \n",
+ "4 1 2 1 2 \n",
+ "\n",
+ " Medical_History_25 Medical_History_26 Medical_History_27 Medical_History_28 \\\n",
+ "0 3 1 3 3 \n",
+ "1 3 1 3 3 \n",
+ "2 3 2 2 3 \n",
+ "3 3 1 3 3 \n",
+ "4 3 2 2 3 \n",
+ "\n",
+ " Medical_History_29 Medical_History_30 Medical_History_31 Medical_History_33 \\\n",
+ "0 1 3 2 3 \n",
+ "1 1 3 2 3 \n",
+ "2 1 3 2 3 \n",
+ "3 1 3 2 3 \n",
+ "4 1 3 2 3 \n",
+ "\n",
+ " Medical_History_34 Medical_History_35 Medical_History_36 Medical_History_37 \\\n",
+ "0 1 3 1 2 \n",
+ "1 3 1 1 2 \n",
+ "2 3 3 1 3 \n",
+ "3 3 3 1 2 \n",
+ "4 3 3 1 3 \n",
+ "\n",
+ " Medical_History_38 Medical_History_39 Medical_History_40 Medical_History_41 \\\n",
+ "0 2 1 3 3 \n",
+ "1 2 1 3 3 \n",
+ "2 2 1 3 3 \n",
+ "3 2 1 3 3 \n",
+ "4 2 1 3 3 \n",
+ "\n",
+ " Medical_Keyword_1 Medical_Keyword_2 Medical_Keyword_3 Medical_Keyword_4 \\\n",
+ "0 3 0 0 0 \n",
+ "1 1 0 0 0 \n",
+ "2 1 0 0 0 \n",
+ "3 1 0 0 0 \n",
+ "4 1 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_5 Medical_Keyword_6 Medical_Keyword_7 Medical_Keyword_8 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_9 Medical_Keyword_10 Medical_Keyword_11 Medical_Keyword_12 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_13 Medical_Keyword_14 Medical_Keyword_15 Medical_Keyword_16 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_17 Medical_Keyword_18 Medical_Keyword_19 Medical_Keyword_20 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_21 Medical_Keyword_22 Medical_Keyword_23 Medical_Keyword_24 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_25 Medical_Keyword_26 Medical_Keyword_27 Medical_Keyword_28 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_29 Medical_Keyword_30 Medical_Keyword_31 Medical_Keyword_32 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_33 Medical_Keyword_34 Medical_Keyword_35 Medical_Keyword_36 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 1 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_37 Medical_Keyword_38 Medical_Keyword_39 Medical_Keyword_40 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_41 Medical_Keyword_42 Medical_Keyword_43 Medical_Keyword_44 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Medical_Keyword_45 Medical_Keyword_46 Medical_Keyword_47 Medical_Keyword_48 \\\n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ " Product_Info_2_char Product_Info_2_num \n",
+ "0 0 3 \n",
+ "1 0 1 \n",
+ "2 0 1 \n",
+ "3 0 4 \n",
+ "4 0 2 "
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO DADOS TRATADOS\n",
+ "x_train.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ce8d1ae4-449a-4021-875c-208364ccb828",
+ "metadata": {},
+ "source": [
+ "# Balanceamento das Classes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1d9ae14e-bc06-46e0-913c-de1aeeb5650d",
+ "metadata": {},
+ "source": [
+ "-> SMOTE cria dados sinteticos para os atributos minoritários dentro da variação padrão, fazendo assim o balanceanto igualitário da distribuição de dados para cada classe alvo.\n",
+ "\n",
+ "-> SMOTE + ENN é uma técnica híbrida de sub-amostragem onde os vizinhos mais próximos da classe majoritária são estimados. Caso os vizinhos mais próximos classifiquem incorretamente essa instância \n",
+ " particular da classe majoritária, então essa instância é excluída.\n",
+ " O resultado do balanceamento ocorre de forma inversa a distribuição normal da entrada de dados. \n",
+ " Considerando que o modelo recebera mais dados de uma determinada classe ele gera menos valores da mesma, visto que o modelo tende a prever com mais frequência\n",
+ " as classes que mais foram analisadas no treinamento. Ou seja, se treinarmos com mais dados as classes que naturalmente tem um quantidade menor, o modelo não terá dificuldade para prevê-las em operação."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "22f1072a-1f13-409e-bc10-80357f8fd9de",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CONTAGEM DE CADA CLASSE\n",
+ "counter = Counter(y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "cc3b0cc7-4d96-4223-b1af-150ec775537c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CRIANDO SMOTEENN\n",
+ "smote_enn = SMOTEENN(sampling_strategy='all')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "96ccb080-372d-45fc-b4ce-282df78bd35b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# TREINANDO E APLICANDO BALANCEAMENTO DAS CLASSES\n",
+ "x_balanced, y_balanced = smote_enn.fit_resample(x_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "id": "00317208-ecb5-4635-9d58-513f2dc74a19",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAGSCAYAAAChYu8aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAApBUlEQVR4nO3de7RdZXnv8e9PglxELgJSTIJQQSxQjUYj1rYHi5WIF7BHbKgVqmjUqkfrFdAe0IrDSxXLaMVGoYAXLoIKWmhFsWLbCAZEwvUQBM2GNFFBCCqXxOf8sd4ti83Ozk7I2nNn5/sZY4491zMv65lrjTb+eN85V6oKSZIkSZIe1XUDkiRJkqTJwYAoSZIkSQIMiJIkSZKkxoAoSZIkSQIMiJIkSZKkxoAoSZIkSQIMiJIkTQpJjk/y+Y3t3JKkqcWAKEmacEn+IsmiJPckWZbkoiR/uAHOe1qSD26IHjc2g/pMJUmbFgOiJGlCJXk78EngQ8AuwG7Ap4BDOmxro+ZnKknaUAyIkqQJk2Q74APAm6rqy1X1y6p6oKq+VlXvavtskeSTSW5vyyeTbNG2HZBkKMk7kqxoI2WvbtvmA68E3t1G0b7W6kcnuTnJyiTXJXlZXz+bJfl4kp8luSXJm5NUkmnD/SY5pb3PbUk+mGSztu2vkvxXkhOT/CLJj5L8Qasvbf0dOcZnsUeS77S+LgZ2GrF9/yT/3c79wyQHrO9nOsoxX0ryP0nuSnJpkn37th3cPqeV7Zrf2eo7Jfl66+eOJN9N8qi27QlJzkvy0/Y5/p++881pI5t3J1me5BNr+kwkSd0zIEqSJtJzgC2Br4yxz3uB/YFZwNOAOcD7+rb/DrAdMB04CvinJDtU1QLgC8BHq2qbqnpJ2/9m4I/aMe8HPp9k17btdcAL23s9Azh0RC+nA6uAPYGnAy8AXtu3/dnA1cCOwBeBs4Bntf3/EvjHJNus4Tq/CFxBLxj+HfDbMJlkOvCvwAeBxwHvBM5LsvMo5xnPZzrSRcBewOOBK+l9bsNOAV5fVY8F9gMuafV3AEPAzvRGKY8FqoXErwE/pPedHAi8LclB7bh/AP6hqrYFngScsw59SpImmAFRkjSRdgR+VlWrxtjnlcAHqmpFVf2UXqh7Vd/2B9r2B6rqQuAeYO81nayqvlRVt1fVb6rqbOAmeqET4BX0wstQVd0JfHj4uCS70AuPb2ujciuAE4F5fae/par+papWA2cDM1tv91XVN4D76YXFh0iyG70g+bdt30vphaxhfwlcWFUXtr4vBhYBB49yieP5TEd+JqdW1cqqug84HnhaG4mE3ue7T5Jtq+rOqrqyr74r8MT22X+3qqpdx85V9YGqur+qfgR8pu9zegDYM8lOVXVPVX1vvH1KkiaeAVGSNJF+Duw0PIVzDZ4A/Ljv9Y9b7bfnGBGGfgWsaZSOJEckuapNjfwFvVGx4emcTwCW9u3ev/5EYHNgWd+x/0xv1G3Y8r71XwNU1cjaaL09Abizqn7ZV+u/5icChw2/b3vvP6QX0EYaz2f6W21a7YfbtNu7gVvbpuHP5H/TC6I/blNgn9PqHwOWAN9o02mP7uv1CSN6PZbeKCP0RnmfDNyQ5PtJXjyePiVJ3RjXPyaSJG0gC4F76U3lPHcN+9xOL3Rc217v1mrjUf0vkjyR3mjWgcDCqlqd5CogbZdlwIy+Q2b2rS8F7gN2WpfRuXFaBuyQ5DF9IXG3vv6XAp+rqteN41zj+Uz7/QW9h9c8n1443A64k/aZVNX3gUOSbA68md6U0JlVtZLeNNN3tHsWv53k+63XW6pqr9HerKpuAg5vU1H/DDg3yY4jwrEkaZJwBFGSNGGq6i7g/9K7b/DQJFsn2TzJC5N8tO12JvC+JDsn2antP97f8FsO/G7f68fQC10/BWgPtNmvb/s5wFuTTE+yPfCevl6XAd8APp5k2ySPSvKkJP9rXa97pKr6Mb0po+9P8uj0fo7iJX27fB54SZKD2ojfluk9oGfGKOcaz2fa77H0gu/Pga3pPfkUgNbLK5NsV1UPAHcDq9u2FyfZM0n66quBy4G7k7wnyVat3/2SPKsd95dJdq6q3wC/aG+1en0/O0nSYBkQJUkTqqo+Abyd3oNnfkpvBOrNwFfbLh+kF56uBhbTe4jKeH/b8BR698/9IslXq+o64OP0RtmWA78P/Fff/p+hFwKvBn4AXEjvoTTDAeYI4NHAdfRG2c5l9Gme6+Mv6D3k5g7gOOCM4Q1VtZTeKN+xPPgZvYs1/Ls9js+03xn0prPeRu+6Rt4T+Crg1jb99A307oeE3kNtvknvns+FwKeq6j/a/Zcvofegn1uAnwGfpTcyCTAXuDbJPfQeWDOvqu4d64ORJHUnvfvLJUlSkhcCn66qJ3bdiyRJXXAEUZK0yWpTIg9OMq39tMRxrNvPRUiSNKU4gihJ2mQl2Rr4DvAUek8c/VfgrVV1d6eNSZLUEQOiJEmSJAlwiqkkSZIkqTEgSpIkSZIAA6IkSZIkqTEgSpIkSZIAA6IkSZIkqTEgSpIkSZIAA6IkSZIkqTEgSpIkSZIAA6IkSZIkqTEgSpIkSZIAA6IkSZIkqTEgSpIkSZIAA6IkSZIkqRlYQEwyM8m3k1yf5Nokb231xyW5OMlN7e8Ofccck2RJkhuTHNRXn51kcdt2UpK0+hZJzm71y5LsPqjrkSRJkqSpbpAjiKuAd1TV7wH7A29Ksg9wNPCtqtoL+FZ7Tds2D9gXmAt8Kslm7VwnA/OBvdoyt9WPAu6sqj2BE4GPDPB6JEmSJGlKG1hArKplVXVlW18JXA9MBw4BTm+7nQ4c2tYPAc6qqvuq6hZgCTAnya7AtlW1sKoKOGPEMcPnOhc4cHh0UZIkSZK0bibkHsQ29fPpwGXALlW1DHohEnh82206sLTvsKFWm97WR9YfckxVrQLuAnYcyEVIkiRJ0hQ38ICYZBvgPOBtVXX3WLuOUqsx6mMdM7KH+UkWtWX+2nqWJEmSpE3RtEGePMnm9MLhF6rqy628PMmuVbWsTR9d0epDwMy+w2cAt7f6jFHq/ccMJZkGbAfcMbKPqloALNgwVyVJkiRJU9Mgn2Ia4BTg+qr6RN+mC4Aj2/qRwPl99XntyaR70HsYzeVtGurKJPu3cx4x4pjhc70cuKTdpyhJkiRJWkcZVJ5K8ofAd4HFwG9a+Vh69yGeA+wG/AQ4rKruaMe8F3gNvSegvq2qLmr1ZwKnAVsBFwFvqapKsiXwOXr3N94BzKuqHw3kgiRJkiRpihtYQJQkSZIkbVwm5CmmkiRJkqTJz4AoSZIkSQIMiJIkSZKkxoAoSZIkSQIMiJIkSZKkxoAoSZIkSQIMiJIkSZKkxoAoSZIkSQIMiJIkSZKkxoAoSZIkSQJgWtcNSJq6fvFfn62ue5gqtn/ua9N1D5IkaepzBFGSJEmSBBgQJUmSJEmNU0wlaRP107OOdwrwBrTzvOOdBixJ2ug5gihJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqRmYAExyalJViS5pq92dpKr2nJrkqtaffckv+7b9um+Y2YnWZxkSZKTkqTVt2jnW5LksiS7D+paJEmSJGlTMMgRxNOAuf2FqvrzqppVVbOA84Av922+eXhbVb2hr34yMB/Yqy3D5zwKuLOq9gROBD4ykKuQJEmSpE3EwAJiVV0K3DHatjYK+ArgzLHOkWRXYNuqWlhVBZwBHNo2HwKc3tbPBQ4cHl2UJEmSJK27ru5B/CNgeVXd1FfbI8kPknwnyR+12nRgqG+foVYb3rYUoKpWAXcBO472ZknmJ1nUlvkb8kIkSZIkaaqY1tH7Hs5DRw+XAbtV1c+TzAa+mmRfYLQRwWp/x9r20GLVAmDBI+hXkiRJkqa8CQ+ISaYBfwbMHq5V1X3AfW39iiQ3A0+mN2I4o+/wGcDtbX0ImAkMtXNuxxqmtEqSJEmS1q6LKabPB26oqt9OHU2yc5LN2vrv0nsYzY+qahmwMsn+7f7CI4Dz22EXAEe29ZcDl7T7FCVJkiRJ62GQP3NxJrAQ2DvJUJKj2qZ5PPzhNH8MXJ3kh/QeOPOGqhoeDXwj8FlgCXAzcFGrnwLsmGQJ8Hbg6EFdiyRJkiRtCgY2xbSqDl9D/a9GqZ1H72cvRtt/EbDfKPV7gcMeWZeSJEmSpGFdPcVUkiRJkjTJGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkSYABUZIkSZLUGBAlSZIkScAAA2KSU5OsSHJNX+34JLcluaotB/dtOybJkiQ3Jjmorz47yeK27aQkafUtkpzd6pcl2X1Q1yJJkiRJm4JBjiCeBswdpX5iVc1qy4UASfYB5gH7tmM+lWSztv/JwHxgr7YMn/Mo4M6q2hM4EfjIoC5EkiRJkjYFAwuIVXUpcMc4dz8EOKuq7quqW4AlwJwkuwLbVtXCqirgDODQvmNOb+vnAgcOjy5KkiRJktZdF/cgvjnJ1W0K6g6tNh1Y2rfPUKtNb+sj6w85pqpWAXcBO472hknmJ1nUlvkb7lIkSZIkaeqYNsHvdzLwd0C1vx8HXgOMNvJXY9RZy7aHFqsWAAvWtVlJkrr0kw+9ftR/17R+djv2n51pJElrMaEjiFW1vKpWV9VvgM8Ac9qmIWBm364zgNtbfcYo9Ycck2QasB3jn9IqSZIkSRphQgNiu6dw2MuA4SecXgDMa08m3YPew2gur6plwMok+7f7C48Azu875si2/nLgknafoiRJkiRpPQxsimmSM4EDgJ2SDAHHAQckmUVvKuitwOsBquraJOcA1wGrgDdV1ep2qjfSeyLqVsBFbQE4BfhckiX0Rg7nDepaJEmSJGlTMLCAWFWHj1I+ZYz9TwBOGKW+CNhvlPq9wGGPpEdJkiRJ0oO6eIqpJEmSJGkSMiBKkiRJkgADoiRJkiSpMSBKkiRJkgADoiRJkiSpMSBKkiRJkgADoiRJkiSpMSBKkiRJkgADoiRJkiSpmdZ1A5PZfSuuqa57mCq2ePx+6boHSZIkSWNzBFGSJEmSBBgQJUmSJEmNAVGSJEmSBBgQJUmSJEmNAVGSJEmSBBgQJUmSJEmNAVGSJEmSBBgQJUmSJEmNAVGSJEmSBBgQJUmSJEmNAVGSJEmSBBgQJUmSJEmNAVGSJEmSBBgQJUmSJEnNtK4bkNbXPTd8vbruYSrZ5ikvTtc9SJIkqVuOIEqSJEmSAAOiJEmSJKkxIEqSJEmSAAOiJEmSJKkxIEqSJEmSAAOiJEmSJKkxIEqSJEmSgAEGxCSnJlmR5Jq+2seS3JDk6iRfSbJ9q++e5NdJrmrLp/uOmZ1kcZIlSU5KklbfIsnZrX5Zkt0HdS2SJEmStCkY5AjiacDcEbWLgf2q6qnA/wOO6dt2c1XNassb+uonA/OBvdoyfM6jgDurak/gROAjG/4SJEmSJGnTMbCAWFWXAneMqH2jqla1l98DZox1jiS7AttW1cKqKuAM4NC2+RDg9LZ+LnDg8OiiJEmSJGnddXkP4muAi/pe75HkB0m+k+SPWm06MNS3z1CrDW9bCtBC513AjqO9UZL5SRa1Zf6GvAhJkiRJmiqmdfGmSd4LrAK+0ErLgN2q6udJZgNfTbIvMNqIYA2fZoxtDy1WLQAWPLKuJUmSJGlqm/CAmORI4MXAgW3aKFV1H3BfW78iyc3Ak+mNGPZPQ50B3N7Wh4CZwFCSacB2jJjSKkmSJEkavwmdYppkLvAe4KVV9au++s5JNmvrv0vvYTQ/qqplwMok+7f7C48Azm+HXQAc2dZfDlwyHDglSZIkSetuYCOISc4EDgB2SjIEHEfvqaVbABe358l8rz2x9I+BDyRZBawG3lBVw6OBb6T3RNSt6N2zOHzf4inA55IsoTdyOG9Q1yJJkiRJm4KBBcSqOnyU8ilr2Pc84Lw1bFsE7DdK/V7gsEfSoyRJkiTpQV0+xVSSJEmSNIkYECVJkiRJgAFRkiRJktQYECVJkiRJgAFRkiRJktSMKyAm2TrJB5N8sb1+SpJDB9qZJEmSJGlCjXcE8WR6P4nxtPZ6+HcNJUmSJElTxHgD4u9X1dHA/QBVdc86HCtJkiRJ2giMN+Td3/8iyZbrcKwkSZIkaSMw3pB3aZJjgS2SHACcA5w/qKYkSZIkSRNvvAHxvUCAlcBHgcuB4wfUkyRJkiSpA9PGs1NVPQCc0BZJkiRJ0hQ0ZkBM8tGxtlfVuzdsO5IkSZKkrqxtiukv2/I7wJ8Dm7flFcB2g21NkiRJkjSRxhxBrKr3AyS5EHhGVf28vf4gcPrg25MkSZIkTZTxPqRmt+FwCNDWdx9IR5IkSZKkTozrITXA9Uk+C5zSXr8auGEwLUmSJEmSujDeEcSjgF8A/wj8E3AX8JoB9SRJkiRJ6sB4f+bibuCdA+5FkiRJktSh8U4xJckLgFnAlsO1qvrAAHqSJEmSJHVgXAExyYeBZwH7AucDhwDfHGBfkiRJkqQJNt57EF8EHAQsr6rXA7OBbQbWlSRJkiRpwo03IN5bVauASrJ5Vd0GzBxgX5IkSZKkCTbeexBXJtka+G/g9CTLgFWDa0uSJEmSNNHGGxAPB1bTe5Lp24HtgcMG1JMkSZL0iP3bc55WXfcwlcxd+MN03YMGb7w/c7G87+UHB9SLJEmSJKlDYwbEJN8H1vhfXqpqzgbvSJIkSZLUibWNIL6z/X0R8BTglPb61cCVg2pKkiRJkjTxxgyIVfUdgCTHA39SVdVef53e7yB+YNANSpIkSZImxnh/5mIGsGXf6y2A6Ru+HUmSJElSV8b7FNOzgYVJzm6vX9FqkiRJkqQpYlwjiFX1PuBvgZ2AnYH3VdXfjnVMklOTrEhyTV/tcUkuTnJT+7tD37ZjkixJcmOSg/rqs5MsbttOSpJW3yLJ2a1+WZLd1+nKJUmSJEkPMd4pplTV16rqHVX19qr613Ecchowd0TtaOBbVbUX8K32miT7APOAfdsxn0qyWTvmZGA+sFdbhs95FHBnVe0JnAh8ZLzXIkmSJEl6uDEDYpKPtL9fSnLOyGWsY6vqUuCOEeVDgNPb+unAoX31s6rqvqq6BVgCzEmyK7BtVS1sD8g5Y8Qxw+c6FzhweHRRkiRJkrTu1nYP4n+2v1/fQO+3S1UtA6iqZUke3+rTge/17TfUag+09ZH14WOWtnOtSnIXsCPwsw3UqyRJkiRtUtb2Mxdfa6tLq+qS/m1J/mQD9jHayF+NUR/rmIefPJlPb5oqwIKqWrDOHUqSJEnSFDfeexD/fpTax9bj/Za3aaO0vytafQiY2bffDOD2Vp8xSv0hxySZBmzHw6e0AlBVC6rqmW0xHEqSJEnSKNZ2D+KeSQ4Gtk1ycN9yOLD1erzfBcCRbf1I4Py++rz2ZNI96D2M5vI2HXVlkv3b/YVHjDhm+FwvBy5p9ylKkiRJktbD2u5BfC7wV8AuwLv66ncD7xzrwCRnAgcAOyUZAo4DPgyck+Qo4CfAYQBVdW176M11wCrgTVW1up3qjfSeiLoVcFFbAE4BPpdkCb2Rw3lruRZJkiRJ0hjWdg/i6cDpSf6qqk5blxNX1eFr2HTgGvY/AThhlPoiYL9R6vfSAqYkSZIk6ZFb2wgiAFV1WpInAU/qP6aqLhxUY5IkSZKkiTWugJjkQ8DrgOuB4amfBRgQJUmSJGmKGFdABF4BPKmq7h5kM5IkSZKk7oz3Zy6WGQ4lSZIkaWob7wjiwvZU0i8B9w4XvQdRkiRJkqaO8QbEZ7W/b+mreQ+iJEmSJE0h432K6fMG3YgkSZIkqVvjHUEkyXbA3sCWw7WqunQQTUmSJEmSJt54f+biz4G/B3YAbgP2BH4IPGNwrUmSJEmSJtJ4n2J6LDAbuKmq9gbmApcNrCtJkiRJ0oQbb0BcVVUraCOOVXUx8NSBdSVJkiRJmnDjvQfxviQBbkryFuBWYOeBdSVJkiRJmnDjDYjvA7YF3gOcDGwH/PWgmpIkSZIkTbzx/szFJW31LuD5g2tHkiRJktSV8T7F9KOj1avq3Ru2HUmSJElSV8b7kJpf9i2rgRfiPYiSJEmSNKWMd4rp+/tfJ/kQ8PmBdCRJkiRJ6sR4RxBHugfYc0M2IkmSJEnq1njvQfwYUO3lo4DZwI2DakqSJEmSNPHG+zMX9/BgQFwF/DNw3kA6kiRJkiR1Yq0BMcnzgD8Bfp9eSPwv4OtV9UCSR1fV/QPuUZIkSZI0Aca8BzHJy4HPAWfSC4kHAhcB5yR5KvC1gXcoSZIkSZoQaxtBPBY4qKqu7atdleS7wOXAFwfWmSRJkiRpQq3tKaZbjgiHAFTVNcDtwBsG0pUkSZIkacKtLSA+OsnmI4tJtgBSVasG05YkSZIkaaKtLSCeD5yRZLvhQpLtgdPaNkmSJEnSFLG2gHgM8CtgaZIrk1wJ/KTVjh50c5IkSZKkiTPmQ2raT1gcleT99H7mIsDiqvrxRDQnSZIkSZo4a/0dRICq+gm9kUNJkiRJ0hS1timmkiRJkqRNhAFRkiRJkgQYECVJkiRJzYQHxCR7J7mqb7k7yduSHJ/ktr76wX3HHJNkSZIbkxzUV5+dZHHbdlKSTPT1SJIkSdJUMeEBsapurKpZVTULmE3vJzO+0jafOLytqi4ESLIPMA/YF5gLfCrJZm3/k4H5wF5tmTtxVyJJkiRJU0vXU0wPBG5ey89mHAKcVVX3VdUtwBJgTpJdgW2ramFVFXAGcOjAO5YkSZKkKarrgDgPOLPv9ZuTXJ3k1CQ7tNp0YGnfPkOtNr2tj6w/TJL5SRa1Zf6Ga1+SJEmSpo7OAmKSRwMvBb7USicDTwJmAcuAjw/vOsrhNUb94cWqBVX1zLYseCR9S5IkSdJU1eUI4guBK6tqOUBVLa+q1VX1G+AzwJy23xAws++4GcDtrT5jlLokSZIkaT10GRAPp296abuncNjLgGva+gXAvCRbJNmD3sNoLq+qZcDKJPu3p5ceAZw/Ma1LkiRJ0tQzrYs3TbI18KfA6/vKH00yi9400VuHt1XVtUnOAa4DVgFvqqrV7Zg3AqcBWwEXtUWSJEmStB46CYhV9StgxxG1V42x/wnACaPUFwH7bfAGJUmSJGkT1PVTTCVJkiRJk4QBUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEwLSuG5AkSdpYXf3al1XXPUwVT/3sV9J1D5IcQZQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNQZESZIkSRJgQJQkSZIkNZ0ExCS3Jlmc5Koki1rtcUkuTnJT+7tD3/7HJFmS5MYkB/XVZ7fzLElyUpJ0cT2SJEmSNBV0OYL4vKqaVVXPbK+PBr5VVXsB32qvSbIPMA/YF5gLfCrJZu2Yk4H5wF5tmTuB/UuSJEnSlDKZppgeApze1k8HDu2rn1VV91XVLcASYE6SXYFtq2phVRVwRt8xkiRJkqR11FVALOAbSa5IMr/VdqmqZQDt7+NbfTqwtO/YoVab3tZH1h8myfwki9oyf7R9JEmSJGlTN62j931uVd2e5PHAxUluGGPf0e4rrDHqDy9WLQAWrHubkiRJkrTp6GQEsapub39XAF8B5gDL27RR2t8VbfchYGbf4TOA21t9xih1SZIkSdJ6mPCAmOQxSR47vA68ALgGuAA4su12JHB+W78AmJdkiyR70HsYzeVtGurKJPu3p5ce0XeMJEmSJGkddTHFdBfgK+0XKaYBX6yqf0vyfeCcJEcBPwEOA6iqa5OcA1wHrALeVFWr27neCJwGbAVc1BZJkiRJ0nqY8IBYVT8CnjZK/efAgWs45gTghFHqi4D9NnSPkiRJkrQpmkw/cyFJkiRJ6pABUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEdBAQk8xM8u0k1ye5NslbW/34JLcluaotB/cdc0ySJUluTHJQX312ksVt20lJMtHXI0mSJElTxbQO3nMV8I6qujLJY4Erklzctp1YVX/fv3OSfYB5wL7AE4BvJnlyVa0GTgbmA98DLgTmAhdN0HVIkiRJ0pQy4SOIVbWsqq5s6yuB64HpYxxyCHBWVd1XVbcAS4A5SXYFtq2qhVVVwBnAoYPtXpIkSZKmrk7vQUyyO/B04LJWenOSq5OcmmSHVpsOLO07bKjVprf1kfXR3md+kkVtmb8hr0GSJEmSporOAmKSbYDzgLdV1d30pos+CZgFLAM+PrzrKIfXGPWHF6sWVNUz27LgkfYuSZIkSVNRJwExyeb0wuEXqurLAFW1vKpWV9VvgM8Ac9ruQ8DMvsNnALe3+oxR6pIkSZKk9dDFU0wDnAJcX1Wf6Kvv2rfby4Br2voFwLwkWyTZA9gLuLyqlgErk+zfznkEcP6EXIQkSZIkTUFdPMX0ucCrgMVJrmq1Y4HDk8yiN030VuD1AFV1bZJzgOvoPQH1Te0JpgBvBE4DtqL39FKfYCpJkiRJ62nCA2JV/Sej3z944RjHnACcMEp9EbDfhutOkiRJkjZdnT7FVJIkSZI0eRgQJUmSJEmAAVGSJEmS1BgQJUmSJEmAAVGSJEmS1BgQJUmSJEmAAVGSJEmS1BgQJUmSJEmAAVGSJEmS1BgQJUmSJEmAAVGSJEmS1BgQJUmSJEkATOu6AUmSJEmbpk/vskt13cNU8obly/NIz+EIoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkhoDoiRJkiQJMCBKkiRJkpqNPiAmmZvkxiRLkhzddT+SJEmStLHaqANiks2AfwJeCOwDHJ5kn267kiRJkqSN00YdEIE5wJKq+lFV3Q+cBRzScU+SJEmStFHa2APidGBp3+uhVpMkSZIkraNUVdc9rLckhwEHVdVr2+tXAXOq6i0j9psPzG8vF1TVgontdHCSzJ9K1zMV+R1Nfn5Hk5vfz+TndzT5+R1Nbn4/k9+m9B1t7COIQ8DMvtczgNtH7lRVC6rqmW2Zal/s/LXvoo75HU1+fkeTm9/P5Od3NPn5HU1ufj+T3ybzHW3sAfH7wF5J9kjyaGAecEHHPUmSJEnSRmla1w08ElW1KsmbgX8HNgNOraprO25LkiRJkjZKG3VABKiqC4ELu+6jQ1NtyuxU5Hc0+fkdTW5+P5Of39Hk53c0ufn9TH6bzHe0UT+kRpIkSZK04Wzs9yBKkiRJkjYQA+JGKsmpSVYkuabrXjS6JDOTfDvJ9UmuTfLWrnvSg5JsmeTyJD9s38/7u+5Jo0uyWZIfJPl6173o4ZLcmmRxkquSLOq6Hz1Uku2TnJvkhvbv0XO67kkPSrJ3+7+d4eXuJG/rui89KMnftP+dcE2SM5Ns2XVPg+YU041Ukj8G7gHOqKr9uu5HD5dkV2DXqroyyWOBK4BDq+q6jlsTkCTAY6rqniSbA/8JvLWqvtdxaxohyduBZwLbVtWLu+5HD5XkVuCZVfWzrnvRwyU5HfhuVX22PfF966r6RcdtaRRJNgNuA55dVT/uuh9Bkun0/vfBPlX16yTnABdW1WnddjZYjiBupKrqUuCOrvvQmlXVsqq6sq2vBK4HpnfblYZVzz3t5eZt8b+YTTJJZgAvAj7bdS/SxibJtsAfA6cAVNX9hsNJ7UDgZsPhpDMN2CrJNGBrRvnN9anGgChNgCS7A08HLuu4FfVpUxevAlYAF1eV38/k80ng3cBvOu5Da1bAN5JckWST+SHpjcTvAj8F/qVN0/5sksd03ZTWaB5wZtdN6EFVdRvw98BPgGXAXVX1jW67GjwDojRgSbYBzgPeVlV3d92PHlRVq6tqFjADmJPE6dqTSJIXAyuq6oque9GYnltVzwBeCLyp3QKhyWEa8Azg5Kp6OvBL4OhuW9Jo2vTflwJf6roXPSjJDsAhwB7AE4DHJPnLbrsaPAOiNEDt3rbzgC9U1Ze77keja1Ou/gOY220nGuG5wEvbPW5nAX+S5PPdtqSRqur29ncF8BVgTrcdqc8QMNQ3O+JceoFRk88LgSurannXjeghng/cUlU/raoHgC8Df9BxTwNnQJQGpD0E5RTg+qr6RNf96KGS7Jxk+7a+Fb1/BG7otCk9RFUdU1Uzqmp3elOvLqmqKf9fbjcmSR7THsJFm7r4AsCna08SVfU/wNIke7fSgYAPSpucDsfppZPRT4D9k2zd/nfdgfSeKTGlGRA3UknOBBYCeycZSnJU1z3pYZ4LvIreqMfw46sP7rop/dauwLeTXA18n949iP6MgrRudgH+M8kPgcuBf62qf+u4Jz3UW4AvtP9fNwv4ULftaKQkWwN/Sm90SpNIG30/F7gSWEwvOy3otKkJ4M9cSJIkSZIARxAlSZIkSY0BUZIkSZIEGBAlSZIkSY0BUZIkSZIEGBAlSZIkSc20rhuQJGmyS7I58Lf0fo/xAXr/gfVCer+deVBVvbzD9iRJ2mAMiJIkrd2/AFsBs6tqZQuMrwa26LYtSZI2LKeYSpI0hiR7AS8DXltVKwGq6oGqWgDc07ff7yT5dpIrklyb5KN92w5JsjjJVUmuSXJAqx+X5IZW/0GS7Vv92X3nuiLJi1r98Um+2c61OMmJE/U5SJI2DY4gSpI0tqcDN1XVnWvZ7xfAS6rqnjbC+O9J5lbVvwEfAP66qr6bZDPgMUl2AN4JPL6qfp3kscCvW0j8NHBwVS1Lsivw/ST7Aa8EflxVzwdo55AkaYNxBFGSpLFlnPttBnwsyQ+BK4D9gFlt2yXAx5O8C/i9qrobuBu4Efh8ktcB21TVKuAPgD2Ai5JcBVwEFLAn8D3gBUk+luTF9I1gSpK0IRgQJUka25XAXuMYrXs7sAPw7Kp6KvBVYEuAqvob4CjgfuBLSV5XVauB/YGTgBnAFUmeSi+QXl1Vs/qWmVW1qKoW0gudVwCvAr69ga9VkrSJMyBKkjSGqroJuAD45zYNlCSbJXkrsE3frtsDy6rq3iTTgUOGNyTZu6oWV9U/AJ8HntXOtXNVfaeqjgOuoTfq+N/0Aunz+o5/Vnr2AO6uqrPoBdLZSfy3XJK0wXgPoiRJa3ckcBy9Ub77efBnLm7s2+ckeqODPwCWAt/q2/bh9rCbVfTuVTwK2A44L8lW7XxXAl9uAfOl9KarfhJ4NPAj4CXAAcA7kqxqx7yhqn4zkCuWJG2SUlVd9yBJkiRJmgScliJJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTGgChJkiRJAgyIkiRJkqTm/wMNo/F06zlJwQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# PLOTANDO QUANTIDADE DE AMOSTRAS POR CLASSE ÁPOS BALANCEAMENTO\n",
+ "\n",
+ "plt.figure(figsize=(15,6))\n",
+ "sns.countplot(x=y_balanced, palette = \"OrRd\")\n",
+ "plt.box(False)\n",
+ "plt.xlabel('Classes', fontsize = 11)\n",
+ "plt.ylabel('Quantidade', fontsize = 11)\n",
+ "plt.title('Contagem de Classes\\n')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "id": "09859742-0717-4095-a873-d0a67c682130",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Shape dos dados de treino antes do balanceamento -> atributos:(59381, 122) label:(59381,)\n",
+ "Shape dos dados de treino depois do balanceamento -> atributos:(98269, 122) label:(98269,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO ALTERAÇÕES FEITAS NO TAMANHO DO DADOS\n",
+ "\n",
+ "print('Shape dos dados de treino antes do balanceamento -> atributos:{} label:{}'.format(x_train.shape, y_train.shape))\n",
+ "print('Shape dos dados de treino depois do balanceamento -> atributos:{} label:{}'.format(x_balanced.shape, y_balanced.shape))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e8ba5b70-fe92-47b9-9af4-568709ac17db",
+ "metadata": {},
+ "source": [
+ "## Salvando dados tratados em um csv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "id": "66cdc414-6ec4-40a9-b7cc-4775eec347e6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_data = pd.DataFrame(x_balanced, columns=x.columns.tolist())\n",
+ "train_data['Response'] = y_balanced"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "id": "85b0a3ca-fadb-432d-907b-163683327e67",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Product_Info_1 | \n",
+ " Product_Info_3 | \n",
+ " Product_Info_4 | \n",
+ " Product_Info_5 | \n",
+ " Product_Info_6 | \n",
+ " Product_Info_7 | \n",
+ " Ins_Age | \n",
+ " Ht | \n",
+ " Wt | \n",
+ " BMI | \n",
+ " Employment_Info_1 | \n",
+ " Employment_Info_2 | \n",
+ " Employment_Info_3 | \n",
+ " Employment_Info_4 | \n",
+ " Employment_Info_5 | \n",
+ " Employment_Info_6 | \n",
+ " InsuredInfo_1 | \n",
+ " InsuredInfo_2 | \n",
+ " InsuredInfo_3 | \n",
+ " InsuredInfo_4 | \n",
+ " InsuredInfo_5 | \n",
+ " InsuredInfo_6 | \n",
+ " InsuredInfo_7 | \n",
+ " Insurance_History_1 | \n",
+ " Insurance_History_2 | \n",
+ " Insurance_History_3 | \n",
+ " Insurance_History_4 | \n",
+ " Insurance_History_5 | \n",
+ " Insurance_History_7 | \n",
+ " Insurance_History_8 | \n",
+ " Insurance_History_9 | \n",
+ " Family_Hist_1 | \n",
+ " Family_Hist_2 | \n",
+ " Family_Hist_3 | \n",
+ " Family_Hist_4 | \n",
+ " Medical_History_1 | \n",
+ " Medical_History_2 | \n",
+ " Medical_History_3 | \n",
+ " Medical_History_4 | \n",
+ " Medical_History_5 | \n",
+ " Medical_History_6 | \n",
+ " Medical_History_7 | \n",
+ " Medical_History_8 | \n",
+ " Medical_History_9 | \n",
+ " Medical_History_11 | \n",
+ " Medical_History_12 | \n",
+ " Medical_History_13 | \n",
+ " Medical_History_14 | \n",
+ " Medical_History_16 | \n",
+ " Medical_History_17 | \n",
+ " Medical_History_18 | \n",
+ " Medical_History_19 | \n",
+ " Medical_History_20 | \n",
+ " Medical_History_21 | \n",
+ " Medical_History_22 | \n",
+ " Medical_History_23 | \n",
+ " Medical_History_25 | \n",
+ " Medical_History_26 | \n",
+ " Medical_History_27 | \n",
+ " Medical_History_28 | \n",
+ " Medical_History_29 | \n",
+ " Medical_History_30 | \n",
+ " Medical_History_31 | \n",
+ " Medical_History_33 | \n",
+ " Medical_History_34 | \n",
+ " Medical_History_35 | \n",
+ " Medical_History_36 | \n",
+ " Medical_History_37 | \n",
+ " Medical_History_38 | \n",
+ " Medical_History_39 | \n",
+ " Medical_History_40 | \n",
+ " Medical_History_41 | \n",
+ " Medical_Keyword_1 | \n",
+ " Medical_Keyword_2 | \n",
+ " Medical_Keyword_3 | \n",
+ " Medical_Keyword_4 | \n",
+ " Medical_Keyword_5 | \n",
+ " Medical_Keyword_6 | \n",
+ " Medical_Keyword_7 | \n",
+ " Medical_Keyword_8 | \n",
+ " Medical_Keyword_9 | \n",
+ " Medical_Keyword_10 | \n",
+ " Medical_Keyword_11 | \n",
+ " Medical_Keyword_12 | \n",
+ " Medical_Keyword_13 | \n",
+ " Medical_Keyword_14 | \n",
+ " Medical_Keyword_15 | \n",
+ " Medical_Keyword_16 | \n",
+ " Medical_Keyword_17 | \n",
+ " Medical_Keyword_18 | \n",
+ " Medical_Keyword_19 | \n",
+ " Medical_Keyword_20 | \n",
+ " Medical_Keyword_21 | \n",
+ " Medical_Keyword_22 | \n",
+ " Medical_Keyword_23 | \n",
+ " Medical_Keyword_24 | \n",
+ " Medical_Keyword_25 | \n",
+ " Medical_Keyword_26 | \n",
+ " Medical_Keyword_27 | \n",
+ " Medical_Keyword_28 | \n",
+ " Medical_Keyword_29 | \n",
+ " Medical_Keyword_30 | \n",
+ " Medical_Keyword_31 | \n",
+ " Medical_Keyword_32 | \n",
+ " Medical_Keyword_33 | \n",
+ " Medical_Keyword_34 | \n",
+ " Medical_Keyword_35 | \n",
+ " Medical_Keyword_36 | \n",
+ " Medical_Keyword_37 | \n",
+ " Medical_Keyword_38 | \n",
+ " Medical_Keyword_39 | \n",
+ " Medical_Keyword_40 | \n",
+ " Medical_Keyword_41 | \n",
+ " Medical_Keyword_42 | \n",
+ " Medical_Keyword_43 | \n",
+ " Medical_Keyword_44 | \n",
+ " Medical_Keyword_45 | \n",
+ " Medical_Keyword_46 | \n",
+ " Medical_Keyword_47 | \n",
+ " Medical_Keyword_48 | \n",
+ " Product_Info_2_char | \n",
+ " Product_Info_2_num | \n",
+ " Response | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.497737 | \n",
+ " 0.797101 | \n",
+ " 0.000667 | \n",
+ " 0.44489 | \n",
+ " 0.05 | \n",
+ " 7.962172 | \n",
+ " 0.0 | \n",
+ " 0.025 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " 21.0 | \n",
+ " 0.076923 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.552239 | \n",
+ " 0.6 | \n",
+ " 0.284519 | \n",
+ " 0.587796 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 162.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.5 | \n",
+ " 0.47455 | \n",
+ " 0.001733 | \n",
+ " 0.661972 | \n",
+ " 0.05 | \n",
+ " 6.0 | \n",
+ " 0.0 | \n",
+ " 0.1 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 26.0 | \n",
+ " 0.230769 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.447761 | \n",
+ " 0.727273 | \n",
+ " 0.330544 | \n",
+ " 0.51639 | \n",
+ " 9.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 6.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 112.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 3.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.578431 | \n",
+ " 0.47455 | \n",
+ " 0.000667 | \n",
+ " 0.44489 | \n",
+ " 1.0 | \n",
+ " 7.962172 | \n",
+ " 0.006283 | \n",
+ " 0.15 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 26.0 | \n",
+ " 0.076923 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.791045 | \n",
+ " 0.818182 | \n",
+ " 0.560669 | \n",
+ " 0.758997 | \n",
+ " 12.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 6.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 162.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.431373 | \n",
+ " 0.47455 | \n",
+ " 0.001733 | \n",
+ " 0.44489 | \n",
+ " 0.361469 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.02 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 26.0 | \n",
+ " 0.025641 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 0.492537 | \n",
+ " 0.745455 | \n",
+ " 0.320084 | \n",
+ " 0.479639 | \n",
+ " 9.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 8.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 373.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 8.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.497737 | \n",
+ " 0.681159 | \n",
+ " 0.000167 | \n",
+ " 0.647887 | \n",
+ " 1.0 | \n",
+ " 6.0 | \n",
+ " 0.0 | \n",
+ " 0.09 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 26.0 | \n",
+ " 0.487179 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 0.567164 | \n",
+ " 0.672727 | \n",
+ " 0.288703 | \n",
+ " 0.504999 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 8.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 112.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 3.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Product_Info_1 Product_Info_3 Product_Info_4 Product_Info_5 Product_Info_6 \\\n",
+ "0 0.497737 0.797101 0.000667 0.44489 0.05 \n",
+ "1 0.5 0.47455 0.001733 0.661972 0.05 \n",
+ "2 0.578431 0.47455 0.000667 0.44489 1.0 \n",
+ "3 0.431373 0.47455 0.001733 0.44489 0.361469 \n",
+ "4 0.497737 0.681159 0.000167 0.647887 1.0 \n",
+ "\n",
+ " Product_Info_7 Ins_Age Ht Wt BMI Employment_Info_1 \\\n",
+ "0 7.962172 0.0 0.025 4.0 1.0 21.0 \n",
+ "1 6.0 0.0 0.1 3.0 1.0 26.0 \n",
+ "2 7.962172 0.006283 0.15 3.0 1.0 26.0 \n",
+ "3 1.0 0.0 0.02 0.0 1.0 26.0 \n",
+ "4 6.0 0.0 0.09 3.0 1.0 26.0 \n",
+ "\n",
+ " Employment_Info_2 Employment_Info_3 Employment_Info_4 Employment_Info_5 \\\n",
+ "0 0.076923 2.0 3.0 1.0 \n",
+ "1 0.230769 2.0 3.0 1.0 \n",
+ "2 0.076923 2.0 3.0 1.0 \n",
+ "3 0.025641 2.0 1.0 1.0 \n",
+ "4 0.487179 2.0 3.0 1.0 \n",
+ "\n",
+ " Employment_Info_6 InsuredInfo_1 InsuredInfo_2 InsuredInfo_3 InsuredInfo_4 \\\n",
+ "0 0.552239 0.6 0.284519 0.587796 1.0 \n",
+ "1 0.447761 0.727273 0.330544 0.51639 9.0 \n",
+ "2 0.791045 0.818182 0.560669 0.758997 12.0 \n",
+ "3 0.492537 0.745455 0.320084 0.479639 9.0 \n",
+ "4 0.567164 0.672727 0.288703 0.504999 3.0 \n",
+ "\n",
+ " InsuredInfo_5 InsuredInfo_6 InsuredInfo_7 Insurance_History_1 \\\n",
+ "0 3.0 3.0 2.0 2.0 \n",
+ "1 1.0 2.0 1.0 2.0 \n",
+ "2 1.0 2.0 1.0 2.0 \n",
+ "3 1.0 2.0 2.0 2.0 \n",
+ "4 1.0 2.0 1.0 2.0 \n",
+ "\n",
+ " Insurance_History_2 Insurance_History_3 Insurance_History_4 \\\n",
+ "0 3.0 3.0 1.0 \n",
+ "1 6.0 3.0 1.0 \n",
+ "2 6.0 3.0 1.0 \n",
+ "3 8.0 3.0 1.0 \n",
+ "4 8.0 3.0 1.0 \n",
+ "\n",
+ " Insurance_History_5 Insurance_History_7 Insurance_History_8 \\\n",
+ "0 2.0 1.0 2.0 \n",
+ "1 1.0 1.0 2.0 \n",
+ "2 1.0 1.0 2.0 \n",
+ "3 1.0 1.0 2.0 \n",
+ "4 1.0 1.0 2.0 \n",
+ "\n",
+ " Insurance_History_9 Family_Hist_1 Family_Hist_2 Family_Hist_3 Family_Hist_4 \\\n",
+ "0 1.0 3.0 1.0 1.0 3.0 \n",
+ "1 1.0 1.0 3.0 3.0 2.0 \n",
+ "2 1.0 3.0 1.0 1.0 3.0 \n",
+ "3 1.0 1.0 3.0 3.0 2.0 \n",
+ "4 3.0 3.0 1.0 1.0 3.0 \n",
+ "\n",
+ " Medical_History_1 Medical_History_2 Medical_History_3 Medical_History_4 \\\n",
+ "0 2.0 3.0 162.0 2.0 \n",
+ "1 3.0 3.0 112.0 2.0 \n",
+ "2 2.0 3.0 162.0 2.0 \n",
+ "3 3.0 3.0 373.0 2.0 \n",
+ "4 2.0 3.0 112.0 2.0 \n",
+ "\n",
+ " Medical_History_5 Medical_History_6 Medical_History_7 Medical_History_8 \\\n",
+ "0 2.0 1.0 3.0 2.0 \n",
+ "1 2.0 1.0 3.0 2.0 \n",
+ "2 2.0 1.0 3.0 2.0 \n",
+ "3 2.0 1.0 3.0 2.0 \n",
+ "4 1.0 1.0 3.0 2.0 \n",
+ "\n",
+ " Medical_History_9 Medical_History_11 Medical_History_12 Medical_History_13 \\\n",
+ "0 2.0 2.0 3.0 2.0 \n",
+ "1 2.0 2.0 3.0 2.0 \n",
+ "2 2.0 2.0 3.0 2.0 \n",
+ "3 2.0 2.0 3.0 2.0 \n",
+ "4 2.0 2.0 3.0 2.0 \n",
+ "\n",
+ " Medical_History_14 Medical_History_16 Medical_History_17 Medical_History_18 \\\n",
+ "0 3.0 3.0 3.0 3.0 \n",
+ "1 3.0 3.0 1.0 3.0 \n",
+ "2 3.0 3.0 1.0 3.0 \n",
+ "3 3.0 3.0 1.0 3.0 \n",
+ "4 3.0 3.0 1.0 3.0 \n",
+ "\n",
+ " Medical_History_19 Medical_History_20 Medical_History_21 Medical_History_22 \\\n",
+ "0 1.0 1.0 2.0 1.0 \n",
+ "1 1.0 1.0 2.0 1.0 \n",
+ "2 1.0 1.0 2.0 1.0 \n",
+ "3 1.0 1.0 2.0 1.0 \n",
+ "4 1.0 1.0 2.0 2.0 \n",
+ "\n",
+ " Medical_History_23 Medical_History_25 Medical_History_26 Medical_History_27 \\\n",
+ "0 2.0 1.0 1.0 3.0 \n",
+ "1 2.0 3.0 1.0 3.0 \n",
+ "2 2.0 3.0 1.0 3.0 \n",
+ "3 2.0 3.0 2.0 2.0 \n",
+ "4 2.0 3.0 1.0 3.0 \n",
+ "\n",
+ " Medical_History_28 Medical_History_29 Medical_History_30 Medical_History_31 \\\n",
+ "0 3.0 1.0 3.0 2.0 \n",
+ "1 3.0 1.0 3.0 2.0 \n",
+ "2 3.0 1.0 1.0 2.0 \n",
+ "3 3.0 1.0 3.0 2.0 \n",
+ "4 3.0 1.0 3.0 2.0 \n",
+ "\n",
+ " Medical_History_33 Medical_History_34 Medical_History_35 Medical_History_36 \\\n",
+ "0 3.0 3.0 3.0 1.0 \n",
+ "1 3.0 3.0 3.0 1.0 \n",
+ "2 3.0 3.0 3.0 1.0 \n",
+ "3 3.0 3.0 3.0 1.0 \n",
+ "4 3.0 3.0 3.0 1.0 \n",
+ "\n",
+ " Medical_History_37 Medical_History_38 Medical_History_39 Medical_History_40 \\\n",
+ "0 2.0 2.0 1.0 3.0 \n",
+ "1 2.0 2.0 1.0 3.0 \n",
+ "2 2.0 2.0 1.0 3.0 \n",
+ "3 3.0 2.0 1.0 1.0 \n",
+ "4 2.0 2.0 1.0 3.0 \n",
+ "\n",
+ " Medical_History_41 Medical_Keyword_1 Medical_Keyword_2 Medical_Keyword_3 \\\n",
+ "0 3.0 1.0 0.0 0.0 \n",
+ "1 3.0 1.0 0.0 0.0 \n",
+ "2 3.0 1.0 0.0 0.0 \n",
+ "3 3.0 1.0 0.0 0.0 \n",
+ "4 1.0 3.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_4 Medical_Keyword_5 Medical_Keyword_6 Medical_Keyword_7 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 1.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_8 Medical_Keyword_9 Medical_Keyword_10 Medical_Keyword_11 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_12 Medical_Keyword_13 Medical_Keyword_14 Medical_Keyword_15 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 1.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_16 Medical_Keyword_17 Medical_Keyword_18 Medical_Keyword_19 \\\n",
+ "0 1.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_20 Medical_Keyword_21 Medical_Keyword_22 Medical_Keyword_23 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_24 Medical_Keyword_25 Medical_Keyword_26 Medical_Keyword_27 \\\n",
+ "0 0.0 0.0 1.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_28 Medical_Keyword_29 Medical_Keyword_30 Medical_Keyword_31 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_32 Medical_Keyword_33 Medical_Keyword_34 Medical_Keyword_35 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_36 Medical_Keyword_37 Medical_Keyword_38 Medical_Keyword_39 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_40 Medical_Keyword_41 Medical_Keyword_42 Medical_Keyword_43 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_44 Medical_Keyword_45 Medical_Keyword_46 Medical_Keyword_47 \\\n",
+ "0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Medical_Keyword_48 Product_Info_2_char Product_Info_2_num Response \n",
+ "0 0.0 0.0 1.0 1 \n",
+ "1 0.0 0.0 3.0 1 \n",
+ "2 0.0 0.0 1.0 1 \n",
+ "3 0.0 0.0 8.0 1 \n",
+ "4 0.0 0.0 3.0 1 "
+ ]
+ },
+ "execution_count": 56,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "train_data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "id": "35f8335f-dcaa-40b7-ba05-885be2c0fa1c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_data.to_csv(\"/train_data_trated.csv\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4868f0c3-b1c8-4c39-9108-bd5a9abd81d9",
+ "metadata": {},
+ "source": [
+ "# CRIANDO MODELO"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "41bd4800-5e97-4e61-aeb5-aa2f60922e65",
+ "metadata": {},
+ "source": [
+ "## Otimização de Hyper-Parâmetros"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "id": "ddb5a4bb-fb1d-47f1-a936-6bc7af7ff868",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# PARÂMETROS A SEREM TESTADOS\n",
+ "\n",
+ "param = {'min_samples_leaf': [1, 3, 5, 7], \n",
+ " 'max_features': ['auto', 'sqrt', 'log2']}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "id": "162464a1-9146-4f27-b312-6be8085094dd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CRIANDO OTMIZADOR DE PARÂMETROS\n",
+ "\n",
+ "grid_search = GridSearchCV(estimator = RandomForestClassifier(n_estimators=50, criterion='gini', random_state=42), \n",
+ " param_grid = param, \n",
+ " cv = 5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "id": "0a27a2fd-f1f9-4785-a26c-fed4714ad5cb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# REALIZANDO TREINAMENTO\n",
+ "grid_random_forest = grid_search.fit(x_balanced, y_balanced)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "id": "6a9e3f15-7b17-48e2-8bf6-74692dbd8593",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "RandomForestClassifier(max_features='log2', n_estimators=50, random_state=42)"
+ ]
+ },
+ "execution_count": 56,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO A MELHOR COMBINAÇÃO DE PARÂMETROS\n",
+ "grid_search.best_estimator_"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "id": "966d2ffa-3db8-4709-bd32-8374eb9417b5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'max_features': 'log2', 'min_samples_leaf': 1}"
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# VISUALIZANDO A MELHOR COMBINAÇÃO DE PARÂMETROS DENTRO DAS OPÇÕES DADAS\n",
+ "grid_search.best_params_"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "id": "e5792cdb-da31-4147-9f51-03a4969e7623",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.8440200136456252"
+ ]
+ },
+ "execution_count": 58,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# MELHOR PONTUAÇÃO OBTIDA NO TREINAMENTO\n",
+ "grid_search.best_score_"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a7b008dd-7f35-4ea9-b740-04e309575f36",
+ "metadata": {},
+ "source": [
+ "## Curvas de Validação"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d9edb4a2-53ad-4b9b-ab63-58f17d6e6ef1",
+ "metadata": {},
+ "source": [
+ "-> A curva de validação serve para verificar como se comporta a pontuação do modelo em detrimento da alteração de algum hyper-parâmetro.
\n",
+ "-> Neste caso, foi alterado o número de árvores utilizados pelo algoritmo RandomForestClassifier."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "id": "b748b82d-c2a8-4950-be50-a761d63a55b9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CRIANDO ARRAY COM VALORES PARA SEREM TESTADOS ([ 20, 60, 100, 140, 180, 220, 260, 300])\n",
+ "range_estimators = np.arange(20, 301, 40)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "id": "e74b9193-2a5a-4d0a-83c3-fbf051257b73",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# EXECUÇÃO DO ALGORITMO DE VALIDAÇÃO\n",
+ "\n",
+ "train_scores, test_scores = validation_curve(RandomForestClassifier(criterion='gini', max_features='log2', min_samples_leaf=1), \n",
+ " x_balanced, y_balanced, \n",
+ " param_name = 'n_estimators', \n",
+ " param_range = range_estimators,\n",
+ " cv = 10, \n",
+ " scoring = 'accuracy')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "id": "120021bf-2489-41b5-b0f1-0697fe5480d8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# OBTENDO MÉDIAS E DESVIO PADRÃO PARA PLOTAGEM\n",
+ "\n",
+ "train_mean = np.mean(train_scores, axis=1)\n",
+ "train_std = np.std(train_scores, axis=1)\n",
+ "\n",
+ "test_mean = np.mean(test_scores, axis=1)\n",
+ "test_std = np.std(test_scores, axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "359d1d5e-f351-45b7-acb2-945c27ab0aac",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/9UlEQVR4nO3deZwU1bn/8c93VkC2YRGGHQ3iiqN3ghGNGnfFJZgYxEQNmqhRNGpMJMbcYExuuP40ZjMaNK4hcYliuIIRohAEE2XAYVNBgqgDCMO+KMz2/P6o6rFoemZ6oHumZ3jer1e9upZTVed0z9TT51T1OTIznHPOuUyT1dwZcM455xLxAOWccy4jeYByzjmXkTxAOeecy0geoJxzzmUkD1DOOecykgco1+wkDZBkknKa+LyPSfpZOP9FSUuTSbuP5/ympHWSTpX0gqSO+3rM1krSSkmnN3c+XPPxANWKSbpUUomk7ZLWSHpJ0onNna9UkTQqvIgpbn1OGATOS/ZYZvaamQ1OfS73cArwBeAGoNzMtjbBOVNC0imSasK/p22Slkoa3dz52lfhl4+KsFyxaWQTnn+cpD811flaEg9QrZSkW4BfAf8D9AD6Ab8HLtyLYzVpzaYRJgGdgZPj1p8NGPD3ps5QQ8zsm2a2wsxGmNm3mzs/e2G1mbUHOgI3Aw9JaorAnm53m1n7yPR0Y3bO4P+RFs0DVCskqRPwU+B6M3vezHaYWaWZ/Z+ZfT9Ms1uTVfjtuCyyvFLSbZIWAjsk3SHpr3Hn+bWk34TzoyW9E36zXiHpmnryly3pHknrJa0AhsfnX9Ifw1rfKkk/k5Qdfxwz2wk8A1wet+lyYKKZVUl6VtLHkrZImiXpiDryFF/+YyTND8vzNNAmsq1A0ouSyiVtCuf7RLZ3kfSopNXh9heS3K+XpMmSNkpaLqnOACapraR7JX0Qlm22pLbhtgskLZG0WdJMSYdF9lsp6fuSFkraEb7PPcLa9TZJ/5BUUNd5I++9mdlUYCMwJMnyzZR0l6Q54bmmSeoW2X5ZWJ4Nkn4UV958Sb8K39PV4Xx+9LOT9AMFNec1kr4s6VxJy8L38/aGylTH+/zt8LPYGH42vSLbTNL1kt4D3gvXnSepNHzvX5c0JJL+tvDvOVb7PE3S2cDtwEgFNbcFe5PPVsvMfGplE0ENogrIqSfNY8DPIsunAGWR5ZVAKdAXaAv0Bz4BOobbs4E1wBfC5eHAwYAIajSfAMfWce5rgXfDY3cBZhDUeHLC7S8AfwAOAA4E3gSuqeNYJwBbgbbhcifgU6AoXL4S6ADkE9QoSxO9B9HyA3nABwQ1hFzgq0BlJG1X4CtAu/DYzwIvRI47BXgaKAj3PznJ/f5JUMttAxQB5cBpdZT7fmAm0Dv8LIaFZTwE2AGcEZ77B8ByIC/yuf6boFbdG1gHzAeOCfd/FfhJHeeMvkdZwAVADXBMkuWbCfwnzGPbcHl8uO1wYDtwUpiPXxL8DZ8ebv9pmO8Dge7A68BdkXxVAf8dlvnb4Xv35zAfRwA7gYOS+V+IrD8VWA8cG+bpt8CsyHYDphP8DbcN060Djgs/kyvC9zsfGAx8BPQK9x0AHBzOjwP+1NzXjUycmj0DPqXhQ4WvAx83kGa3f0oSB6gr4/aZDVwezp8B/Kee478AfLeOba8C10aWzwz/2XPCC+cuwoATbh8FzKjnXO8Bl4bz3wYW1JGuc3ieTvHvAbtffE8CVgOK7Pt6ootYuK0I2BTOFxJctAuS+Jyi+/UFqoEOke2/AB5LsF8WQRA+OsG2HwPPxKVdBZwS+Vy/Htn+HPBAZPkGIkEl7tinhGXbHH5G1cBNyZQvXJ4J3BFZvg74ezj/38BTkW0HABV8FqD+A5wb2X4WsDKSr0+B7HC5Q/g5HxdJPw/4cj3/CzvDcm0G1ofr/0jQ9BdL157gi8qAcNmAUyPbHyAMmpF1Swm+sH2OIHidDuTGpRmHB6iEkzfxtU4bgG7a93bxj+KW/0wQLAAuDZcBkHSOpH+HTSGbgXOBbiTWK+7YH0Tm+xN8C14TNpNsJqhNHVhPPp/gs2a+y4DHwzxlSxov6T+SthJcnKknX9H8rbLw6hGfR0ntJP0hbI7aCswCOitohuwLbDSzTfEHbWC/XuF+2+LO2TtB/roR1LL+U0fea/NqZjUE73X0OGsj858mWG6f4Lgxq82sM8E9qN8Q1DKSKV/Mx5H5TyLn2u1vwsx2EPwdJyxXON8rsrzBzKojZUhUzvrKdY+ZdQ6n2N9H/Hu5PcxT9L2M/h33B74X+7sN/3b7EtSalgM3EQSjdZKeijYXusQ8QLVO/yL4RvjletLsIGiKiemZIE18V/fPAqeE9xVGEAao8F7Ac8A9QI/wAjaVoLkvkTUE/7gx/SLzHxF8O+8WuWB0NLOE945CTwCnSTqe4Am5WOC8lOChkNMJmv4GhOvrylc0f72l3Z4OjObxewRNNseZWUeCGlfsuB8BXSR1TnDc+vZbHe7XIe6cqxIcZz3B53twgm2rCS6UwYGDMvSt4zh7zcx2AbcBR0n6cri6vvI1ZLe/CUntCJoMY3YrF8F7s3qvMp+8+PfygDBP0fcy+j/yEfDzyN9tZzNrZ2Z/ATCzP5vZieExDfjfBMdwER6gWiEz20LQZHJ/eLO4naTcsJZzd5isFDhXwQ39ngTf7ho6bjlBM82jwPtm9k64KY+gnb0cqJJ0DkGzXV2eAW6U1Ce8IT82co41wDTgXkkdJWVJOlhS/JN60Xx9QND8+BdgupnFvqV3IAh2GwiC8f80VMbQvwjuadyo4JH1i4Chke0dCL6Rb5bUBfhJXP5fAn4fPjSQK+mkJPb7iKAZ8ReS2oQ3168CJiYobw3wCPBLBQ9WZEs6Pvyi8AwwPLwBn0sQNHaFx04pM6sA7iX4W6u3fEn4K3CepBMl5RHcc4pen/4C3CGpe/hgxX8D6X40+8/AaElF4Xv7P8AbZrayjvQPAddKOk6BAyQNl9RB0mAFv33LJ/hy8SlBEykENb0Bkvx6HMffkFbKzH4J3ALcQRA4PgLGENwbAngSWEDQ7DWN4KZ+Mv5MUCOpbd4Lm6VuJLg4biKouUyu5xgPAS+H558PPB+3/XKCoPd2eLy/Etzbqc/jBN9Mn4ise4KgiWZVeKx/N3AMoPbCexHwzfD8I+Py+CuCm+Lrw2PGP85+GcG9io8I7qPclOR+owhqeasJHqH/iZlNryObtwKLgLkET9L9L5BlZkuBbxDc0F8PnA+cH5YpHR4B+kk6n4bLVyczWwJcT/B3tYbgfS+LJPkZUAIsJCj3/HBd2pjZKwT39J4L83QwcEk96UsI7oH+jiD/ywn+hiD4Ajee4L35mKDJOvZk4bPh6wZJ81NaiBZOuzezO+dSJWwSesbMhjeY2Dm3B69BOZcGYXCqAD4XNlk55xrJA5Rz6XE6sAVYlsbmNedaNW/ic845l5G8BuWccy4j7RcdHHbr1s0GDBjQ3NlwzjmXwLx589abWff49ftFgBowYAAlJSXNnQ3nnHMJSPog0Xpv4nPOOZeRPEA555zLSB6gnHPOZSQPUM455zKSByjnnHMZKW0BStIjCoZfXlzHdkn6jYLhlBdKOjay7exwSOTlksZG1neRNF3Se+Frg0NTO+eca5nSWYN6jGDo8bqcAwwKp6sJRqMkHNzs/nD74cAoSYeH+4wFXjGzQcArRIZpcM4517qk7XdQZjZL0oB6klwIPBGOWvpvSZ0lFRIMN7DczFYASHoqTPt2+HpKuP/jBGMT3ZaO/Md8/PHHrFixIjY0c51DE+/ttnQdN7bNOefSKScnh8suuyw9x07LUZPTm92HSy4L1yVaf1w43yMcEA4zWyOpzmHAJV1NUDOjX79+dSVr0KRJk7juuuv2en/nnGvN2uXDZRedBAf0bzhxIzVngEo0DLTVs75RzGwCMAGguLh4r6sSw4cP5+9P3IGW/IzYAOBSkMndXgUoCyGUpc9elYXCBCILZQXLwfTZPMrabTlIl/XZtt2OFx6HcFvtMSOvWVmAwlfnnEsP5bSDvK5pOXZzBqgyoG9kuQ/BSKJ5dawHWCupMKw9FQLr0p3Jfv360e+yu4C70n0q55xzEc359XoycHn4NN8XgC1h891cYJCkgeFAb5fw2fDhk4ErwvkrgL81daadc841jbTVoCT9heCBhm6SyoCfALkAZvYgMBU4F1gOfAKMDrdVSRoDvAxkA4+Y2ZLwsOOBZyRdBXwIXJyu/DvnnGte+8WAhcXFxea9mTvnXGaSNM/MiuPX+x1055xzGckDlHPOuYzkAco551xG8gDlnHMuI3mAcs45l5E8QDnnnMtIHqCcc85lJA9QzjnnMpIHKOeccxnJA5RzzrmM5AHKOedcRvIA5ZxzLiN5gHLOOZeRPEA555zLSB6gnHPOZSQPUM455zJSWgOUpLMlLZW0XNLYBNsLJE2StFDSm5KODNcPllQambZKuincNk7Sqsi2c9NZBuecc80jnUO+ZwP3A2cAZcBcSZPN7O1IstuBUjMbIenQMP1pZrYUKIocZxUwKbLffWZ2T7ry7pxzrvmlswY1FFhuZivMrAJ4CrgwLs3hwCsAZvYuMEBSj7g0pwH/MbMP0phX55xzGSadAao38FFkuSxcF7UAuAhA0lCgP9AnLs0lwF/i1o0JmwUfkVSQuiw755zLFOkMUEqwzuKWxwMFkkqBG4C3gKraA0h5wAXAs5F9HgAOJmgCXAPcm/Dk0tWSSiSVlJeX72URnHPONZe03YMiqDH1jSz3AVZHE5jZVmA0gCQB74dTzDnAfDNbG9mndl7SQ8CLiU5uZhOACQDFxcXxgdE551yGS2cNai4wSNLAsCZ0CTA5mkBS53AbwLeAWWHQihlFXPOepMLI4ghgccpz7pxzrtmlrQZlZlWSxgAvA9nAI2a2RNK14fYHgcOAJyRVA28DV8X2l9SO4AnAa+IOfbekIoLmwpUJtjvnnGsFZNb6W7+Ki4utpKSkubPhnHMuAUnzzKw4fr33JOGccy4jeYByzjmXkTxAOeecy0geoJxzzmUkD1DOOecykgco55xzGckDlHPOuYzkAco551xG8gDlnHMuI3mAcs45l5E8QDnnnMtIHqCcc85lJA9QzjnnMpIHKOeccxnJA5RzzrmM5AHKOedcRvIA5ZxzLiOlNUBJOlvSUknLJY1NsL1A0iRJCyW9KenIyLaVkhZJKpVUElnfRdJ0Se+FrwXpLINzzrnmkbYAJSkbuB84BzgcGCXp8LhktwOlZjYEuBz4ddz2L5lZUdxQwGOBV8xsEPBKuOycc66VSWcNaiiw3MxWmFkF8BRwYVyawwmCDGb2LjBAUo8Gjnsh8Hg4/zjw5ZTl2DnnXMZIZ4DqDXwUWS4L10UtAC4CkDQU6A/0CbcZME3SPElXR/bpYWZrAMLXAxOdXNLVkkoklZSXl+9zYZxzzjWtdAYoJVhnccvjgQJJpcANwFtAVbjtBDM7lqCJ8HpJJzXm5GY2wcyKzay4e/fujcu5c865ZpeTxmOXAX0jy32A1dEEZrYVGA0gScD74YSZrQ5f10maRNBkOAtYK6nQzNZIKgTWpbEMzjnnmkk6a1BzgUGSBkrKAy4BJkcTSOocbgP4FjDLzLZKOkBShzDNAcCZwOIw3WTginD+CuBvaSyDc865ZpK2GpSZVUkaA7wMZAOPmNkSSdeG2x8EDgOekFQNvA1cFe7eA5gUVKrIAf5sZn8Pt40HnpF0FfAhcHG6yuCcc675yCz+tlDrU1xcbCUlJQ0ndM451+QkzYv7ORHgPUk455zLUB6gnHPOZSQPUM455zKSByjnnHMZyQOUc865jOQByjnnXEZKOkCFP5h1zjnnmkSDAUrSMElvA++Ey0dL+n3ac+acc26/lkwN6j7gLGADgJktABrVcatzzjnXWEk18ZnZR3GrqtOQF+ecc65WMn3xfSRpGGBhx643Ejb3Oeecc+mSTA3qWuB6gsEGy4CicNk555xLm3prUJKygV+Z2debKD/OOecc0EANysyqge6RMZucc865JpHMPaiVwBxJk4EdsZVm9st0Zco555xLJkCtDqcsoEN6s+Occ84FGgxQZnYnQDgEu5nZ9mQPLuls4NcEI+o+bGbj47YXAI8ABwM7gSvNbLGkvsATQE+gBphgZr8O9xkHfBsoDw9zu5lNTTZPzjnnWoZkepI4UtJbwGJgiaR5ko5IYr9s4H7gHOBwYJSkw+OS3Q6UmtkQ4HKCYAZQBXzPzA4DvgBcH7fvfWZWFE4enJxzrhVK5jHzCcAtZtbfzPoD3wMeSmK/ocByM1thZhXAU8CFcWkOB14BMLN3gQGSepjZGjObH67fRvC7q95Jlcg551yrkEyAOsDMZsQWzGwmkEzHsb2BaA8UZewZZBYAFwFIGgr0B/pEE0gaABwDvBFZPUbSQkmPhM2Ee5B0taQSSSXl5eWJkjjnnMtgyQSoFZJ+LGlAON0BvJ/EfkqwzuKWxwMFkkqBG4C3CJr3ggNI7YHngJvMbGu4+gGCe1ZFwBrg3kQnN7MJZlZsZsXdu3dPIrvOOecySTJP8V0J3Ak8Hy7PAkYnsV8Z0Dey3IfgacBaYdAZDSBJBIHv/XA5lyA4TTSz5yP7rI3NS3oIeDGJvDjnnGthknmKbxNB/3uNNRcYJGkgsAq4BLg0mkBSZ+CT8B7Vt4BZZrY1DFZ/BN6J/72VpEIzWxMujiB4eMM551wrk8xTfNPDQBJbLpD0ckP7mVkVMAZ4meAhh2fMbImkayVdGyY7jODJwHcJnvb7brj+BOAy4FRJpeF0brjtbkmLJC0EvgTcnFRJnXPOtSjJNPF1M7PNsQUz2yTpwGQOHj4CPjVu3YOR+X8BgxLsN5vE97Aws8uSObdzzrmWLZmHJGok9YstSOrPng87OOeccymVTA3qR8BsSf8Ml08Crk5flpxzzrnkHpL4u6RjCXp0ALjZzNanN1vOOef2d3U28UnqL6kTQBiQdgBnAJf78BvOOefSrb57UM8Q9hghqQh4FvgQOBr4fdpz5pxzbr9WXxNfWzOL/bD2G8AjZnavpCygNO05c845t1+rrwYVfcz7VD7r1LUmrTlyzjnnqL8G9aqkZwj6uysAXoWgJwegogny5pxzbj9WX4C6CRgJFAInmllluL4nwaPnzjnnXNrUGaDMzAjGcIpf/1Zac+Scc86RXE8SzjnnXJPzAOWccy4jJdOb+Xnho+XOOedck0km8FwCvCfpbkmHpTtDzjnnHCQRoMzsG8AxwH+ARyX9S9LVkjqkPXfOOef2W0k13YVDsz9H8FRfIcFItvMl3ZDGvDnnnNuPJXMP6nxJkwh+qJsLDDWzcwj65Lu1gX3PlrRU0nJJYxNsL5A0SdJCSW9KOrKhfSV1CUf5fS98LWhEeZ1zzrUQydSgLgbuM7MhZvb/zGwdgJl9AlxZ106SsoH7CYZyPxwYJenwuGS3A6VmNgS4HPh1EvuOBV4xs0EE3S/tEficc861fMkEqJ8Ab8YWJLWVNADAzF6pZ7+hwHIzW2FmFQTNgxfGpTmcz/r4excYIKlHA/teCDwezj8OfDmJMjjnnGthkglQzwLRDmKrw3UN6Q18FFkuC9dFLQAuApA0FOgP9Glg3x5mtgYgfD0w0cnDBzlKJJWUl5cnkV3nnHOZJJkAlRPWYgAI55MZsFAJ1lnc8nigQFIpcAPwFlCV5L71MrMJZlZsZsXdu3dvzK7OOecyQINDvgPlki4ws8kAki4EkhnyvQzoG1nuA6yOJgifDhwdHlfA++HUrp5910oqNLM1Yc/q65LIi3POuRYmmRrUtcDtkj6U9BFwG3BNEvvNBQZJGhgOEX8JMDmaQFLnyPDx3wJmhUGrvn0nA1eE81cAf0siL84551qYBmtQZvYf4AuS2gMys23JHNjMqiSNAV4GsglG5F0i6dpw+4PAYcATkqqBt4Gr6ts3PPR44BlJVxEMQX9x8sV1zjnXUigYVaOBRNJw4AigTWydmf00jflKqeLiYispKWnubDjnnEtA0jwzK45fn8wPdR8kGLjwBoKHFy4meNrOOeecS5tk7kENM7PLgU1mdidwPLs/wOCcc86lXDIBamf4+omkXkAlMDB9WXLOOeeSe8z8/yR1Bv4fMJ/g90gPpTNTzjnnXL0BKhyo8BUz2ww8J+lFoI2ZbWmKzDnnnNt/1dvEZ2Y1wL2R5V0enJxzzjWFZO5BTZP0lbCnB+ecc65JJHMP6hbgAKBK0k6CR83NzDqmNWfOOef2a8n0JOFDuzvnnGtyDQYoSSclWm9ms1KfHeeccy6QTBPf9yPzbQgGE5wHnJqWHDnnnHMk18R3fnRZUl/g7rTlyDnnnCO5GlS8MuDIVGfEOedc/cyMWAffieYbuxy/raEp0bEACgsLycnZm3BSv2TuQf2Wz0azzQKKCIZqd85lODOjpqamdqqurt5jOTbFls2M6K9KYvPxr7H5urZHX+tbl8w5kt0WLXf0NdG6xmxLtD3Zdft6rvj5+LLXJbY99nkmOkYyo1k0RBJVVVXNE6CA6DgVVcBfzGxOynPinNtDfICJDzTxwSWaJnqxS3QxS8XFKR2S+cll7IIbfxGuaz6Zsmbq+1GXhvLbUIBLlXT+RDaZAPVXYKeZVYeZyZbUzsw+SVuunGslGgowiWox6QgwLeni25hgUtdFuKkuzi69kglQrwCnA9vD5bbANGBYQztKOhv4NcGouA+b2fi47Z2APwH9wrzcY2aPShoMPB1JehDw32b2K0njgG8D5eG2281sahLlcC4pscAQDRSJgkxdASeWfn8NMM6lSjIBqo2ZxYITZrZdUruGdpKUDdwPnEHwYMVcSZPN7O1IsuuBt83sfEndgaWSJprZUoJ7XbHjrAImRfa7z8zuSSLvbj/RUECJrouvrcQHlLqCSrSpqLEBwwOMc42XTIDaIelYM5sPIOm/gE+T2G8osNzMVoT7PQVcCEQDlAEdwn7+2gMbCe5zRZ0G/MfMPkjinK4FMzOqq6upqqqqnRLdW0kUWGLib6DvbUBJtI8HGeeaVjIB6ibgWUmrw+VCgiHgG9Ib+CiyXAYcF5fmd8BkYDXQARhpQQ/qUZcAf4lbN0bS5QQPcHzPzDYlkR/XzGpqanYLPpWVlbVTrFYTe7or/jHWZPm9B+daj2R+qDtX0qHAYIKOYt81s8okjp3o0Y74K8ZZQClBrxQHA9MlvWZmWwEk5QEXAD+M7PMAcFd4rLsIhgO5co+TS1cDVwP069cviey6fRGrzcQCT6IAFHuiqr4AtLeByTnX+iTzO6jrgYlmtjhcLpA0ysx+38CuZUDfyHIfgppS1GhgvAVXpOWS3gcOBd4Mt58DzDeztbEdovOSHgJeTHRyM5sATAAoLi72K94+MrPdaj7RAFRVVVVb+4mmr+s4HoCcc8lIponv22Z2f2zBzDZJ+jbQUICaCwySNJDgIYdLgEvj0nxIcI/pNUk9CGppKyLbRxHXvCep0MzWhIsjgMVJlMHVI1r7iU0VFRW7BZ+ampoGA5AHHudcKiUToLIkKazlxJ6qy2toJzOrkjQGeJngMfNHzGyJpGvD7Q8SNNE9JmkRQZPgbWa2PjxPO4InAK+JO/TdkooImvhWJtju4kRrP/FNb7EABLv/8ryu4zjnXFNJJkC9DDwj6UGCoHAt8PdkDh7+Pmlq3LoHI/OrgTPr2PcToGuC9Zclc24Hn376KevWraOqqirp5jfn9jfxP5Zujin+adSoVPy/7s0xkt2Wm5vLnXfemXReGiOZAHUbwcMG3yGo5UwDHkpLblxKVFdXs379enbs2LFPj1k7l0gyP1yO/zlA7CGZxuxX1/71HWtvgkOq/zeys7MbnHJycsjPz69dzsrKStjHYEPqS5eObYnSZWdnJ5V+byTzFF8N8GA4IelE4LcEP7J1GcTM2LFjB+Xl5dTUxD+t71q7mpoaKisrqaioqL2HmGi+vm2xJy7rCxDN9WVHUu2FPDs7u3Y5OsUHgry8vKQCRqqm+ECzP8jKykrbsZPqfja85zOK4PdP7wPPpy1Hbq9UVVWxbt06du7c6bWlFqKmpqbRAaS+bVVV8b9xr1tubi55eXnk5eXVzrdv357c3NzaC210igWFhgJEMtPe7r+/XfhdPQFK0iEET96NAjYQ9I0nM/tSE+XNJcHM2Lp1Kxs2bPDA1ATMjMrKSnbt2kVFRQW7du2qnaLLydRUGhNQ4oNJXl4eHTp0SLi+oeXc3Fy/2LsWob4a1LvAa8D5ZrYcQNLNTZIrl5SKigrWrl1LZWWlB6ckRINLoqCSTNDZtWtXg++1pIRBom3btnUGjPqCS05OjgcUt1+qL0B9haAGNUPS34GnSNw7hGtiZsamTZvYvHnzfhOYzKw2QOxNUInNJxNc8vPzycvLIz8/n/z8fDp06EC3bt1ql6PbEi17DcW51KgzQJnZJGCSpAOALwM3Az0kPQBMMrNpTZNFF7Vz507Wrl2blqePmouZsX37djZu3MimTZtqX7dv375bkGlILLhEg0bHjh2TCiqxZQ8uzmWOZJ7i2wFMBCZK6gJcDIwleNzcNZGamho2bNjAtm3bWmxgqqioqA1A8cEoej8mNzeXgoICOnXqlFRQiU3eFOZc69KoQeTNbCPwh3ByTeSTTz5h7dq1LaIfu5qaGrZu3bpb8InWiKI6depEQUEBffv2paCggC5dulBQUED79u090DjnGhegXNOqrq6mvLycTz75JOMC06effrpb8InNb968ubbrJIA2bdpQUFBA//79KSgoqA1EnTt3JifH//ycc3XzK0QGMjO2bdvG+vXrmzUwVVdXs3nz5oS1oU8//WzMyqysLDp16kSXLl0YOHBgbU2oS5cutG3b1mtDzrm94gEqw1RWVrJu3bqkHmdOBTPjk08+2ePeUKKnBNu1a0eXLl343Oc+VxuEYveK0tndiXNu/+QBKkOYGVu2bGHjxo1pCUyVlZVs3rx5j5rQpk2bdntCLicnh86dO9O9e3cOOeSQ3QJRmzZtUp4v51qiWKtAXSMARJdjg3TGT7HeMWI9ZcT2i95rrms5eo6GXuvLf33bYgOMNtRpbDq/SHuAygC7du1i7dq1VFVVpfTDXrp0KYsWLWLTpk1s3bp1t20dOnSgoKCAQw89lC5dutQGoo4dO3qTnGvR0hE84pejaeLTx6/LBHUFuH2Zj77m5TU4AtNe8QDVjGpqati0aRNbtmxJaWCqrKzk1VdfZfHixRQUFNCrVy+OPPLI3Z6Uy83NTdn5nNsb9V286woiiQJHoj77WlLwaArxQbul8ADVTD799FPWrl2b8t6hy8vLefHFF9m4cSPHHXccw4YNS2tvw671i17c4pt96quNJOocNtoRbaKAkyiguP2XB6gmVl1dzYYNG9i+fXtKA5OZsWDBAmbOnEmbNm24+OKL6devX8qO7zJL/IU72eas2GtdtZLYa7Tn8oaCiAcSly5pDVCSzgZ+TTDk+8NmNj5ueyfgT0C/MC/3mNmj4baVwDagGqgys+JwfReCntUHEAz5/jUz25TOcqTKjh07WLduXcrHatq5cyfTpk3jvffeY8CAAZxzzjm0a9cupedwyUkUOKJBIj6A1HUPJFHgiA5RkShdQ9uca2nSFqAkZQP3A2cAZcBcSZPN7O1IsuuBt83sfEndgaWSJppZRbj9S2a2Pu7QY4FXzGy8pLHh8m3pKkcqpHOsplWrVjFlyhR27NjBSSedRHFxsV+M9lF8kxZ8Fljim6+ig+Tl5OQkvB9SV/Dwz8m5+qWzBjUUWG5mKwAkPQVcCEQDlAEdFPyntgc2Ag0NknMhcEo4/zgwkwwNUOkcq6mmpoa5c+cyZ84cOnbsyCWXXEJhYWFKz9GSJbr4Jwoysaas+FFRo/dK4u+bOOeaRjoDVG/go8hyGXBcXJrfAZOB1UAHYGQ4xDwEwWuaJAP+YGYTwvU9zGwNgJmtkXRgopNLuhq4GmiWezGVlZWsXbs2qSEeGmvHjh1MnTqVDz/8kMGDB3PGGWeQn5+f0nNkgoZqMvUN9Z0ouHiQca5lSWeASnQViL9SnwWUAqcCBwPTJb1mZluBE8xsdRiApkt618xmJXvyMKBNACguLm6y/oLMrLZ7oHT8gG3lypW89NJLVFRUcOaZZ3LkkUe2igtutAy5ubnk5+fTpk2bhMHGm8ec2z+kM0CVAX0jy30IakpRo4HxFlzJl0t6HzgUeNPMVgOY2TpJkwiaDGcBayUVhrWnQmBdGsvQKLt27eLjjz9Oy1hN1dXVzJ49m5KSErp168bXvvY1unbtmtJzNJVYjSgrK6t2pNnY8Bk+ZIZzLiadAWouMEjSQGAVwei8l8al+RA4DXhNUg9gMLBCwSCJWWa2LZw/E/hpuM9k4ApgfPj6tzSWISk1NTVs3LiRrVu3pqXWtHnzZqZMmcLHH3/M0Ucfzcknn9wifmgbffQ5JyeH/Pz83YY99/77nHP1SVuAMrMqSWOAlwkeM3/EzJZIujbc/iBwF/CYpEUETYK3mdl6SQcRjOYby+Ofzezv4aHHA89IuoogwF2crjIk45NPPql9dDwdwendd99l+vTpSOL888/nkEMOSfk5UiFa68nLy6NNmza1taK8vDyvFTnnGk2ZNs5QOhQXF1tJSUlKj5nusZoqKyuZMWMGixYtorCwkOHDh9OpU6eUn6exorWi7Ozs3YJRfn5+7W91nHMuWZLmxX7rGuU9STSSmbFjxw7Ky8tT/oPbmPLycqZMmcKGDRsYOnQow4YNa5bmsGgwys3N3S0Q5eXleRdKzrm08gDVCFVVVaxduzZtYzWZGQsXLmTmzJnk5eXxla98hQEDBqT8PInEP7gQbaLLzc31WpFzrsl5gEpCusdqgqC7ounTp7Ns2TL69+/POeecwwEHHJDy88Q/uBB7ii4vL6+2ic455zKBB6gkrF+/nm3btqUtOK1evZopU6awfft2vvjFL/L5z38+ZTWW2HGivy3Kz88nNzfXm+iccxnNA1QSKisr09akN3fuXGbPnk2HDh1S3l2RJLp27eqDEDrnWiQPUM1kx44dvPTSS3zwwQcccsghnHHGGSkdUj0rK4uePXvStm3blB3TOeeakgeoZhDtruiMM87gqKOOSmkNJycnh169erWIH/M651xdPEA1oerqaubMmcPcuXPp2rUrF198Md26dUvZ8SXRpk0bevbs6feXnHMtngeoJrJlyxamTJnCmjVrGDJkCKecckpKaziS6NSpE126dPH7Tc65VsEDVBNYunQp06dPx8w477zzGDx4cEqPL4nu3bvToUOHlB7XOeeakweoNKqsrGTmzJksXLiQnj17ct5556W8u6KsrCwKCwtT+oCFc85lAg9QabJ+/XpefPFFNmzYwOc//3lOOOGElP4IVlLtwxA5Of4xOudaH7+ypZiZsWjRImbMmJG27ook0bZtW3r06OEPQzjnWi0PUCm0a9cupk2bxrJly+jXrx/nnntuyrsrkkTnzp0pKCjwhyGcc62aB6gUWbNmDS+++CLbtm3jxBNPZOjQoSkPIJLo0aNHWvroc64hlZWVlJWVsXPnzubOimuh2rRpQ58+fZJ+gtkD1D6KdVc0Z84c2rdvzyWXXEKvXr1Sfp7s7GwKCwvJz89P+bGdS0ZZWRkdOnRgwIABXnt3jWZmbNiwgbKyMgYOHJjUPmm9gSHpbElLJS2XNDbB9k6S/k/SAklLJI0O1/eVNEPSO+H670b2GSdplaTScDo3nWWoz44dO3j++ed57bXXOPjgg7nssstSHpwkkZeXR58+fTw4uWa1c+dOunbt6sHJ7ZVY36CNqYGnrQYlKRu4HzgDKAPmSppsZm9Hkl0PvG1m50vqDiyVNBGoAr5nZvMldQDmSZoe2fc+M7snXXlPxgcffMDUqVPZtWsXp59+OkOGDElLk94BBxzAgQce6BcFlxH879Dti8b+/aSziW8osNzMVgBIegq4EIgGKAM6KMh1e2AjUGVma4A1AGa2TdI7QO+4fZtFdXU1r7/+Om+++SZdunThq1/9Kt27d0/5eSTRpUsXOnXq5BcF59x+KZ1NfL2BjyLLZeG6qN8BhwGrgUXAd81st3HUJQ0AjgHeiKweI2mhpEckFSQ6uaSrJZVIKikvL9+3koS2bNnC008/zZtvvslRRx3FN77xjbQFp549e9K5c2cPTs6FNmzYQFFREUVFRfTs2ZPevXvXLldUVNS7b0lJCTfeeGOD5xg2bFiqsutSIJ01qERX1vhBlc4CSoFTgYOB6ZJeM7OtAJLaA88BN8XWAQ8Ad4XHugu4F7hyjxOZTQAmABQXF+/zYE7Lli1j2rRpmBnDhw/n0EMP3ddDJpSdnU2vXr3Iy8tLy/Gda6m6du1KaWkpAOPGjaN9+/bceuuttdurqqrq/NF6cXExxcXFDZ7j9ddfT0leU62+srVm6SxxGdA3styHoKYUNRoYb8FogMslvQ8cCrwpKZcgOE00s+djO5jZ2ti8pIeAF9OUfwAqKiqYOnUq8+fPp2fPngwfPpzOnTun/DyxhyEKCwt92HWX8W666abaYJEqRUVF/OpXv2rUPt/85jfp0qULb731FsceeywjR47kpptu4tNPP6Vt27Y8+uijDB48mJkzZ3LPPffw4osvMm7cOD788ENWrFjBhx9+yE033VRbu2rfvj3bt29n5syZjBs3jm7durF48WL+67/+iz/96U9IYurUqdxyyy1069aNY489lhUrVvDii7tfhpYsWcLo0aOpqKigpqaG5557jkGDBvHEE09wzz33IIkhQ4bw5JNP8sEHH3DllVdSXl5O9+7defTRR+nXr98eZbvuuuu4/vrrKS8vp127djz00ENp+6KcKdIZoOYCgyQNBFYBlwCXxqX5EDgNeE1SD2AwsCK8J/VH4B0z+2V0B0mF4T0qgBHA4jSWgRkzZjB//nyKi4s58cQT0xI8JNG+fXu6d+/uTXrONdKyZcv4xz/+QXZ2Nlu3bmXWrFnk5OTwj3/8g9tvv53nnntuj33effddZsyYwbZt2xg8eDDf+c539vhtzltvvcWSJUvo1asXJ5xwAnPmzKG4uJhrrrmGWbNmMXDgQEaNGpUwTw8++CDf/e53+frXv05FRQXV1dUsWbKEn//858yZM4du3bqxceNGAMaMGcPll1/OFVdcwSOPPMKNN97ICy+8sEfZTjvtNB588EEGDRrEG2+8wXXXXcerr76a2jczw6QtQJlZlaQxwMtANvCImS2RdG24/UGCJrrHJC0iaBK8zczWSzoRuAxYJKk0POTtZjYVuFtSEUET30rgmnSVAeDUU0+lQ4cO9OjRIy3Hjz16mepOZJ1Lp8bWdNLp4osvrv3iuGXLFq644gree+89JFFZWZlwn+HDh5Ofn09+fj4HHngga9eupU+fPrulGTp0aO26oqIiVq5cSfv27TnooINqf8czatQoJkyYsMfxjz/+eH7+859TVlbGRRddxKBBg3j11Vf56le/WjsGXJcuXQD417/+xfPPB41El112GT/4wQ/2KNv27dt5/fXXufjii2u37dq1a6/er5YkrY2aYUCZGrfuwcj8auDMBPvNJvE9LMzsshRns165ubkMGDCATz/9NOXHlkRhYaEPy+7cPoj2rPLjH/+YL33pS0yaNImVK1dyyimnJNwn+pvC7OxsqqqqkkoT3I1o2KWXXspxxx3HlClTOOuss3j44Ycxs6RaSKJpYmWrqamhc+fOKW9WzXTe02gzycnJoW/fvh6cnEuhLVu20Lt38LDwY489lvLjH3rooaxYsYKVK1cC8PTTTydMt2LFCg466CBuvPFGLrjgAhYuXMhpp53GM888w4YNGwBqm/iGDRvGU089BcDEiRM58cQT9zhex44dGThwIM8++ywQ9MqwYMGCVBcv43iAamKxYdn79u2b0hF1nXPwgx/8gB/+8IeccMIJVFdXp/z4bdu25fe//z1nn302J554Ij169EjYPP/0009z5JFHUlRUxLvvvsvll1/OEUccwY9+9CNOPvlkjj76aG655RYAfvOb3/Doo4/WPjTx61//OuG5J06cyB//+EeOPvpojjjiCP72t7+lvHyZRslWWVuy4uJiKykp2ev9V69enZImPkl07NjRu4txLdI777zDYYcd1tzZaHbbt2+nffv2mBnXX389gwYN4uabb27ubLUYif6OJM0zsz1+B+A1qCYiiW7dutGtWzcPTs61YA899BBFRUUcccQRbNmyhWuuSetzWvu1/e+XX83Ah2V3rvW4+eabvcbURDxApVFsWPbCwkK/3+Scc43kASpNYg9D9OzZ04dld865veABKg0k0alTJ7p06eL3m5xzbi95gEoxSXTv3p0OHTo0d1acc65F87anFMrKyqJ3794enJxLk48//phLLrmEgw8+mMMPP5xzzz2XZcuWNXe29vDYY48xZswYIOiX74knntgjzcqVKznyyCPrPc7KlSv585//XLuc7LAhrYXXoFJAErm5uRQWFu6XXeI71xTMjBEjRnDFFVfU9rxQWlrK2rVrOeSQQ2rTVVdXZ9SIANdee+1e7xsLUJdeGvSzneywIU0tXe+5X033kSTatWvHgQce6A9DuP3Gs88+S1lZWUqP2adPn906Q403Y8YMcnNzd7vgFxUVATBz5kzuvPNOCgsLKS0tZf78+XznO9+hpKSEnJwcfvnLX/KlL30p4TAYvXr14mtf+xplZWVUV1fz4x//mJEjR9aeo6amhoMOOojS0tLaoXY+97nPMWfOHN58801+9rOfUVFRQdeuXZk4ceIeHUtHx66aN28eV155Je3atdutS6OVK1dy2WWXsWPHDgB+97vfMWzYMMaOHcs777xDUVERV1xxBcccc0ztsCEbN27kyiuvZMWKFbRr144JEyYwZMiQeocTiamuruaqq66ipKQESVx55ZXcfPPNLF++nGuvvZby8nKys7N59tlnOeigg/jBD37ASy+9hCTuuOMORo4cucd7vmjRIsaOHcvMmTPZtWsX119//T7/RswD1D6QROfOnSkoKPCHIZxLs9i4THV58803Wbx4MQMHDuTee+8FYNGiRbz77ruceeaZLFu2LOEwGFOnTqVXr15MmTIFCPrzi8rKyuLCCy9k0qRJjB49mjfeeIMBAwbQo0cPTjzxRP79738jiYcffpi777679tyJjB49mt/+9recfPLJfP/7369df+CBBzJ9+nTatGnDe++9x6hRoygpKWH8+PG1AQmCQBzzk5/8hGOOOYYXXniBV199lcsvv7y2M9mGhhMpLS1l1apVLF4cjFa0efNmAL7+9a8zduxYRowYwc6dO6mpqeH555+ntLSUBQsWsH79ej7/+c9z0kkn7fGeT5gwgU6dOjF37lx27drFCSecwJlnnlnb8/ve8AC1lyTRo0eP3XpSdm5/UV9Np7kMHTq09mI4e/ZsbrjhBiDo4LV///4sW7Ys4TAYRx11FLfeeiu33XYb5513Hl/84hf3OPbIkSP56U9/yujRo3nqqadqa1hlZWWMHDmSNWvWUFFRUe/FeMuWLWzevJmTTz4ZCIbWeOmllwCorKxkzJgxlJaWkp2dndR9tdmzZ9eOdXXqqaeyYcOG2uDa0HAiBx10ECtWrOCGG25g+PDhnHnmmWzbto1Vq1YxYsQIgNqOBWbPns2oUaPIzs6mR48enHzyycydO5eOHTvu9p5PmzaNhQsX8te//rW2vO+9994+BShvk9oL2dnZ9O7d24OTc03oiCOOYN68eXVuj/4/1tXH6KWXXsrkyZNp27YtZ511Fq+++iqHHHII8+bN46ijjuKHP/whP/3pT3njjTcoKiqiqKiIyZMnc/zxx7N8+XLKy8t54YUXuOiiiwC44YYbGDNmDIsWLeIPf/gDO3furDN/9Q23cd9999GjRw8WLFhASUkJFRUVDb4ficoYO35Dw4kUFBSwYMECTjnlFO6//36+9a1v1fme1ddfa/x7/tvf/pbS0lJKS0t5//33OfPMPUZTahQPUI0QG5a9b9++u/0BOOfS79RTT2XXrl089NBDtevmzp3LP//5zz3SnnTSSUycOBEIRqX98MMPGTx4cMJhMFavXk27du34xje+wa233sr8+fM57rjjai+0F1xwAZIYMWIEt9xyC4cddhhdu3YFdh/e4/HHH683/507d6ZTp07Mnj0boDZ/seMUFhaSlZXFk08+WdsTe4cOHdi2bVvC40XLOHPmTLp160bHjh2Tei/Xr19PTU0NX/nKV7jrrruYP38+HTt2pE+fPrWj+e7atYtPPvmEk046iaeffprq6mrKy8uZNWsWQ4cO3eOYZ511Fg888EDtIJHLli2rvae2t9IaoCSdLWmppOWSxibY3knS/0laIGmJpNEN7Supi6Tpkt4LXwvSWYaoAw44gD59+mTUE0LO7S8kMWnSJKZPn87BBx/MEUccwbhx4+jVq9ceaa+77jqqq6s56qijGDlyJI899hj5+fkJh8FYtGgRQ4cOpaioiJ///OfccccdCc8/cuRI/vSnP+32AMW4ceO4+OKL+eIXv1g7Um59Hn30Ua6//nqOP/743caCu+6663j88cf5whe+wLJly2prJkOGDCEnJ4ejjz6a++67b7djjRs3jpKSEoYMGcLYsWMbDJBRq1at4pRTTqGoqIhvfvOb/OIXvwDgySef5De/+Q1Dhgxh2LBhfPzxx4wYMYIhQ4Zw9NFHc+qpp3L33XfTs2fPPY75rW99i8MPP5xjjz2WI488kmuuuSbhQJCNkbbhNiRlA8uAM4AyYC4wyszejqS5HehkZrdJ6g4sBXoC1XXtK+luYKOZjQ8DV4GZ3VZfXvZ1uI1NmzbV9g7hD0O4/ZUPt+FSIVOG2xgKLDezFWZWATwFXBiXxoAOCq767YGNQFUD+14IxL4qPA58OY1lAIL22s6dO3twcs65JpTOANUb+CiyXBaui/odcBiwGlgEfNfMahrYt4eZrQEIXw9MdHJJV0sqkVRSXl6+r2VxzjnXxNIZoBJVN+LbE88CSoFeQBHwO0kdk9y3XmY2wcyKzay4e/fujdnVOVeH/WEEbpc+jf37SWeAKgP6Rpb7ENSUokYDz1tgOfA+cGgD+66VVAgQvq5LQ96dc3HatGnDhg0bPEi5vWJmbNiwoVEDt6bzh7pzgUGSBgKrgEuAS+PSfAicBrwmqQcwGFgBbK5n38nAFcD48PVvaSyDcy7Up08fysrK8CZzt7fatGmz2w+GG5K2AGVmVZLGAC8D2cAjZrZE0rXh9geBu4DHJC0iaNa7zczWAyTaNzz0eOAZSVcRBLjM+0m7c61Qbm7uPvUK4Fxjpe0x80yyr4+ZO+ecS5/meMzcOeec22seoJxzzmWk/aKJT1I58EFz5yNFugHrmzsTTcTL2vrsL+WE/aesqShnfzPb4/dA+0WAak0klSRqq22NvKytz/5STth/yprOcnoTn3POuYzkAco551xG8gDV8kxo7gw0IS9r67O/lBP2n7KmrZx+D8o551xG8hqUc865jOQByjnnXEbyAJXhJK2UtEhSqaSScF2zDXufSpIekbRO0uLIujrLJumHkpZLWirprObJdePVUc5xklaFn2uppHMj21pqOftKmiHpHUlLJH03XN8aP9O6ytqqPldJbSS9KWlBWM47w/VN85mamU8ZPAErgW5x6+4GxobzY4H/be587mXZTgKOBRY3VDbgcGABkA8MBP4DZDd3GfahnOOAWxOkbcnlLASODec7AMvC8rTGz7Susraqz5WgE+/24Xwu8Abwhab6TL0G1TI1+bD36WBms4CNcavrKtuFwFNmtsvM3geWA0ObIp/7qo5y1qUll3ONmc0P57cB7xCMhN0aP9O6ylqXFllWC2wPF3PDyWiiz9QDVOYzYJqkeZKuDtclNex9C1VX2XoDH0XSlVH/BaElGCNpYdgEGGsiaRXllDQAOIbgG3er/kzjygqt7HOVlC2plGBw2Olm1mSfqQeozHeCmR0LnANcL+mk5s5QM1GCdS35NxIPAAcDRcAa4N5wfYsvp6T2wHPATWa2tb6kCda19LK2us/VzKrNrIhgZPOhko6sJ3lKy+kBKsOZ2erwdR0wiaC63JqHva+rbGVA30i6PsDqJs5bypjZ2vAfvwZ4iM+aQVp0OSXlElywJ5rZ8+HqVvmZJipra/1cAcxsMzATOJsm+kw9QGUwSQdI6hCbB84EFvPZsPfQ+oa9r6tsk4FLJOVLGggMAt5shvylROyfOzSC4HOFFlxOSQL+CLxjZr+MbGp1n2ldZW1tn6uk7pI6h/NtgdOBd2mqz7S5nxLxqd4naA4ieCJmAbAE+FG4vivwCvBe+NqlufO6l+X7C0EzSCXBN6+r6isb8COCp4KWAuc0d/73sZxPAouAheE/dWErKOeJBM05C4HScDq3lX6mdZW1VX2uwBDgrbA8i4H/Dtc3yWfqXR0555zLSN7E55xzLiN5gHLOOZeRPEA555zLSB6gnHPOZSQPUM455zKSByjXakkySfdGlm+VNK4Zs5SUsAf7bo1I/7CkwxtI8+WG0qSCpOMkzZE0WdK3030+17rlNHcGnEujXcBFkn5hZuub+uSScsysKt3nMbNvJZHsy8CLwNvJHndv8m9BP20nNGYf5+riNSjXmlUBE4Cb4zdIekzSVyPL28PXUyT9U9IzkpZJGi/p6+GYOIskHRym6y7pOUlzw+mEcP04SRMkTQOekNRf0ith56GvSOqXIC9dJU2T9JakPxDpz0zSN8Jzl0r6g6TsBPvPlFQcK4ekn4fj9/xbUg9Jw4ALgP8XHufgcPp72Anxa5IOjbwvv5Q0A/hfSUMlvR7m7XVJg8N02ZLulbQ4LNvV4fpR4fu0WNL/RvJ4pqR/SZov6dmwDzvC9/ft8Bj3NPLzda1dc/9S2Sef0jUB24GOBGNqdQJuBcaF2x4DvhpNG76eAmwmGO8nH1gF3Blu+y7wq3D+z8CJ4Xw/gi5vIBgPaB7QNlz+P+CKcP5K4IUE+fwNn/1CfzhBDwXdgMPC/XPDbb8HLk+w/0ygOJw34Pxw/m7gjjrK+wowKJw/Dng1ku5FwjF8wvcvJ5w/HXgunP8O8EwkXRegF0FP1j0IWmdeJai5dQNmAQeEaW8D/jvcZynUdhjQubn/ZnzKrMmb+FyrZmZbJT0B3Ah8muRucy0cSkDSf4Bp4fpFwJfC+dOBw4Mu2QDoGOs3EZhsZrFzHQ9cFM4/SRA04p0US2NmUyRtCtefBvwXMDc8T1sa7hi4giDAQBAoz4hPENZehgHPRvKfH0nyrJlVh/OdgMclDSIIfrnh+tOBB2LpzGyjpAuBmWa2NjzPxLBsVQQD2c0Jz5cH/AvYCuwEHpY0JZJv5wC/B+X2D78C5gOPRtZVETZxhx1/5kW27YrM10SWa/jsfyYLOD4SiAiPBbCjnrzU1bdYovUCHjezH9ZzvHiVZhY7VjWJ/8ezgM0WDKGQSDT/dwEzzGyEgnGPZkbylii/dZVjupmN2mODNJQgEF8CjAFOrSNPbj/k96Bcq2dmGwmao66KrF5JUDuBYBTQXBpnGsEFFQBJRXWke53g4gvwdWB2gjSzwm1IOgeIDXL3CvBVSQeG27pI6t/IfMZsIxiaHAvGLXpf0sXhcSXp6Dr260TQzAnwzcj6acDVsXtikroQDNh3sqRu4fpRwD+BfwMnSPpcmLadpEPCmlwnM5sK3EQwhpJztTxAuf3FvQT3QmIeIriYvklwD6a+Wk8iNwLF4c39t4Fr60k3WtJC4DKC+1jx7gROkjSfYEiVDwHM7G3gDoIRlRcC0wnuje2Np4Dvhw87HEwQEK+SFOsp/8I69rsb+IWkOUD0AY2HCXpmf0/ScuArYbPoD4EZBD3wzzezv5lZOUFw+0tYjn8DhxIEzBfDdf8kwcMsbv/mvZk75/aapDbAPWY2psHEzjWS16Ccc3tF0iHAXHZ/wMK5lPEalHPOuYzkNSjnnHMZyQOUc865jOQByjnnXEbyAOWccy4jeYByzjmXkf4/8LJ918MuFJIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "