@@ -78,7 +78,7 @@ def matmul_add(N, L, M, dtype):
7878# * see :any:`auto_schedule.TuningOptions`: for more parameters
7979
8080tune_option = auto_scheduler .TuningOptions (
81- num_measure_trials = 10 , measure_callbacks = [auto_scheduler .RecordToFile (' matmul.json' )]
81+ num_measure_trials = 10 , measure_callbacks = [auto_scheduler .RecordToFile (" matmul.json" )]
8282)
8383
8484######################################################################
@@ -97,7 +97,7 @@ def matmul_add(N, L, M, dtype):
9797
9898######################################################################
9999# Check correctness
100- # ^^^^^^^^^^^^^^^^^^^^^^^^^^^
100+ # ^^^^^^^^^^^^^^^^^
101101# We build the binary and check its correctness
102102
103103func = tvm .build (sch , args )
@@ -115,7 +115,7 @@ def matmul_add(N, L, M, dtype):
115115# Using the record file
116116# ^^^^^^^^^^^^^^^^^^^^^
117117# During the search, all measuremnt records is dumpped into the record
118- # file "matmul.json". The measurement records can be used to resume the
118+ # file "matmul.json". The measurement records can be used to resume the
119119# search, re-apply search results and other analysis.
120120#
121121# Here we show an example where we load the best schedule from a file,
@@ -131,4 +131,3 @@ def matmul_add(N, L, M, dtype):
131131# log file without reruning the search again.
132132sch , args = task .compute_dag .apply_steps_from_state (inp .state )
133133func = tvm .build (sch , args )
134-
0 commit comments