|
5 | 5 | #include <tvm/operation.h>
|
6 | 6 | #include <tvm/tensor.h>
|
7 | 7 | #include <tvm/ir.h>
|
| 8 | +#include <tvm/ir_pass.h> |
8 | 9 | #include <memory>
|
9 | 10 |
|
10 | 11 | namespace tvm {
|
@@ -120,4 +121,90 @@ TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
|
120 | 121 |
|
121 | 122 | TVM_REGISTER_NODE_TYPE(ComputeOpNode);
|
122 | 123 |
|
| 124 | +// Scan |
| 125 | +inline bool prove_equal(Expr lhs, Expr rhs) { |
| 126 | + return is_zero(ir::Simplify(lhs - rhs)); |
| 127 | +} |
| 128 | + |
| 129 | +int ScanOpNode::num_outputs() const { |
| 130 | + return update.size(); |
| 131 | +} |
| 132 | +Array<IterVar> ScanOpNode::root_iter_vars() const { |
| 133 | + return Array<IterVar>{scan_axis}; |
| 134 | +} |
| 135 | + |
| 136 | +Type ScanOpNode::output_dtype(size_t i) const { |
| 137 | + return update[i]->dtype; |
| 138 | +} |
| 139 | + |
| 140 | +Array<Expr> ScanOpNode::output_shape(size_t i) const { |
| 141 | + CHECK_LT(i, state_placeholder.size()); |
| 142 | + return state_placeholder[i]->shape; |
| 143 | +} |
| 144 | + |
| 145 | +Operation ScanOpNode::make(std::string name, |
| 146 | + IterVar axis, |
| 147 | + Array<Tensor> init, |
| 148 | + Array<Tensor> update, |
| 149 | + Array<Tensor> state_placeholder) { |
| 150 | + auto n = std::make_shared<ScanOpNode>(); |
| 151 | + CHECK_EQ(init.size(), update.size()); |
| 152 | + CHECK_EQ(init.size(), state_placeholder.size()); |
| 153 | + |
| 154 | + for (size_t i = 0; i < init.size(); ++i) { |
| 155 | + CHECK_EQ(init[i]->dtype, state_placeholder[i]->dtype); |
| 156 | + CHECK_EQ(init[i]->dtype, update[i]->dtype); |
| 157 | + CHECK(can_prove(init[i]->shape[0] == axis->dom->min)) |
| 158 | + << "init.shape[0] need to match scan_axis.dom.min"; |
| 159 | + CHECK(prove_equal( |
| 160 | + state_placeholder[i]->shape[0], axis->dom->min + axis->dom->extent)) |
| 161 | + << "shate_placeholder.shape[0] need to match" |
| 162 | + << " scan_axis.dom.min + scan_axis.dom.extent"; |
| 163 | + CHECK_EQ(state_placeholder[i].ndim(), init[i].ndim()) |
| 164 | + << "The dimension of init need to match state_placeholder"; |
| 165 | + CHECK_EQ(update[i].ndim() + 1, state_placeholder[i].ndim()) |
| 166 | + << "The update.ndim need to be state_placeholder.ndim - 1"; |
| 167 | + for (size_t k = 0; k < update[i].ndim(); ++k) { |
| 168 | + CHECK(prove_equal( |
| 169 | + update[i]->shape[k], state_placeholder[i]->shape[k + 1])); |
| 170 | + // setup spatial axis |
| 171 | + std::ostringstream spatial_name; |
| 172 | + spatial_name << name << ".out" << i << ".i" << k + 1; |
| 173 | + n->spatial_axis_.push_back( |
| 174 | + IterVar(Range::make_with_min_extent(0, update[i]->shape[k]), |
| 175 | + spatial_name.str())); |
| 176 | + } |
| 177 | + for (size_t k = 1; k < init[i].ndim(); ++k) { |
| 178 | + CHECK(prove_equal( |
| 179 | + init[i]->shape[k], state_placeholder[i]->shape[k])); |
| 180 | + } |
| 181 | + } |
| 182 | + |
| 183 | + n->name = name; |
| 184 | + n->scan_axis = axis; |
| 185 | + n->init = init; |
| 186 | + n->update = update; |
| 187 | + n->state_placeholder = state_placeholder; |
| 188 | + return Operation(n); |
| 189 | +} |
| 190 | + |
| 191 | +Array<Tensor> Scan(IterVar scan_axis, |
| 192 | + Array<Tensor> init, |
| 193 | + Array<Tensor> update, |
| 194 | + Array<Tensor> state_placeholder, |
| 195 | + std::string name) { |
| 196 | + Operation op = ScanOpNode::make( |
| 197 | + name, scan_axis, init, update, state_placeholder); |
| 198 | + Array<Tensor> res; |
| 199 | + for (int i = 0; i < op->num_outputs(); ++i) { |
| 200 | + res.push_back(op.output(i)); |
| 201 | + } |
| 202 | + return res; |
| 203 | +} |
| 204 | + |
| 205 | +TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable) |
| 206 | +.set_dispatch<ScanOpNode>([](const ScanOpNode *op, IRPrinter *p) { |
| 207 | + p->stream << "scan(" << op->name << ", " << op << ")"; |
| 208 | +}); |
| 209 | + |
123 | 210 | } // namespace tvm
|
0 commit comments