Skip to content

[SPARK-5503][MLLIB] Example code for Power Iteration Clustering #4495

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 10 commits into from
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.mllib

import org.apache.log4j.{Level, Logger}
import scopt.OptionParser

import org.apache.spark.mllib.clustering.PowerIterationClustering
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

/**
* An example Power Iteration Clustering http://www.icml2010.org/papers/387.pdf app.
* Takes an input of K concentric circles and the number of points in the innermost circle.
* The output should be K clusters - each cluster containing precisely the points associated
* with each of the input circles.
*
* Run with
* {{{
* ./bin/run-example mllib.PowerIterationClusteringExample [options]
*
* Where options include:
* k: Number of circles/clusters
* n: Number of sampled points on innermost circle.. There are proportionally more points
* within the outer/larger circles
* maxIterations: Number of Power Iterations
* outerRadius: radius of the outermost of the concentric circles
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is actually not configurable. I'm okay with a fixed value, but the doc needs update.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

oh yea.. added configuration param

  opt[Int]('r', "r")
      .text(s"radius of outermost circle, default: ${defaultParams.outerRadius}")
      .action((x, c) => c.copy(numPoints = x))

* }}}
*
* Here is a sample run and output:
*
* ./bin/run-example mllib.PowerIterationClusteringExample
* -k 3 --n 30 --maxIterations 15
*
* Cluster assignments: 1 -> [0,1,2,3,4],2 -> [5,6,7,8,9,10,11,12,13,14],
* 0 -> [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]
*
*
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object PowerIterationClusteringExample {

case class Params(
input: String = null,
k: Int = 3,
numPoints: Int = 5,
maxIterations: Int = 10,
outerRadius: Double = 3.0
) extends AbstractParams[Params]

def main(args: Array[String]) {
val defaultParams = Params()

val parser = new OptionParser[Params]("PIC Circles") {
head("PowerIterationClusteringExample: an example PIC app using concentric circles.")
opt[Int]('k', "k")
.text(s"number of circles (/clusters), default: ${defaultParams.k}")
.action((x, c) => c.copy(k = x))
opt[Int]('n', "n")
.text(s"number of points in smallest circle, default: ${defaultParams.numPoints}")
.action((x, c) => c.copy(numPoints = x))
opt[Int]("maxIterations")
.text(s"number of iterations, default: ${defaultParams.maxIterations}")
.action((x, c) => c.copy(maxIterations = x))
opt[Int]('r', "r")
.text(s"radius of outermost circle, default: ${defaultParams.outerRadius}")
.action((x, c) => c.copy(numPoints = x))
}

parser.parse(args, defaultParams).map { params =>
run(params)
}.getOrElse {
sys.exit(1)
}
}

def run(params: Params) {
val conf = new SparkConf()
.setMaster("local")
.setAppName(s"PowerIterationClustering with $params")
val sc = new SparkContext(conf)

Logger.getRootLogger.setLevel(Level.WARN)

val circlesRdd = generateCirclesRdd(sc, params.k, params.numPoints, params.outerRadius)
val model = new PowerIterationClustering()
.setK(params.k)
.setMaxIterations(params.maxIterations)
.run(circlesRdd)

val clusters = model.assignments.collect.groupBy(_._2).mapValues(_.map(_._1))
val assignments = clusters.toList.sortBy { case (k, v) => v.length}
val assignmentsStr = assignments
.map { case (k, v) =>
s"$k -> ${v.sorted.mkString("[", ",", "]")}"
}.mkString(",")
val sizesStr = assignments.map {
_._2.size
}.sorted.mkString("(", ",", ")")
println(s"Cluster assignments: $assignmentsStr\ncluster sizes: $sizesStr")

sc.stop()
}

def generateCircle(radius: Double, n: Int) = {
Seq.tabulate(n) { i =>
val theta = 2.0 * math.Pi * i / n
(radius * math.cos(theta), radius * math.sin(theta))
}
}

def generateCirclesRdd(sc: SparkContext,
nCircles: Int = 3,
nPoints: Int = 30,
outerRadius: Double): RDD[(Long, Long, Double)] = {

val radii = Array.tabulate(nCircles) { cx => outerRadius / (nCircles - cx)}
val groupSizes = Array.tabulate(nCircles) { cx => (cx + 1) * nPoints}
val points = (0 until nCircles).flatMap { cx =>
generateCircle(radii(cx), groupSizes(cx))
}.zipWithIndex
val rdd = sc.parallelize(points)
val distancesRdd = rdd.cartesian(rdd).flatMap { case (((x0, y0), i0), ((x1, y1), i1)) =>
if (i0 < i1) {
Some((i0.toLong, i1.toLong, gaussianSimilarity((x0, y0), (x1, y1), 1.0)))
} else {
None
}
}
distancesRdd
}

/**
* Gaussian Similarity: http://en.wikipedia.org/wiki/Radial_basis_function_kernel
*/
def gaussianSimilarity(p1: (Double, Double), p2: (Double, Double), sigma: Double) = {
val coeff = 1.0 / (math.sqrt(2.0 * math.Pi) * sigma)
val expCoeff = -1.0 / 2.0 * math.pow(sigma, 2.0)
val ssquares = (p1._1 - p2._1) * (p1._1 - p2._1) + (p1._2 - p2._2) * (p1._2 - p2._2)
coeff * math.exp(expCoeff * ssquares)
// math.exp((p1._1 - p2._1) * (p1._1 - p2._1) + (p1._2 - p2._2) * (p1._2 - p2._2))
}


}