Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-21332][SQL] Incorrect result type inferred for some decimal expressions #18583

Closed
wants to merge 1 commit into from

Conversation

aokolnychyi
Copy link
Contributor

What changes were proposed in this pull request?

This PR changes the direction of expression transformation in the DecimalPrecision rule. Previously, the expressions were transformed down, which led to incorrect result types when decimal expressions had other decimal expressions as their operands. The root cause of this issue was in visiting outer nodes before their children. Consider the example below:

    val inputSchema = StructType(StructField("col", DecimalType(26, 6)) :: Nil)
    val sc = spark.sparkContext
    val rdd = sc.parallelize(1 to 2).map(_ => Row(BigDecimal(12)))
    val df = spark.createDataFrame(rdd, inputSchema)

    // Works correctly since no nested decimal expression is involved
    // Expected result type: (26, 6) * (26, 6) = (38, 12)
    df.select($"col" * $"col").explain(true)
    df.select($"col" * $"col").printSchema()

    // Gives a wrong result since there is a nested decimal expression that should be visited first
    // Expected result type: ((26, 6) * (26, 6)) * (26, 6) = (38, 12) * (26, 6) = (38, 18)
    df.select($"col" * $"col" * $"col").explain(true)
    df.select($"col" * $"col" * $"col").printSchema()

The example above gives the following output:

// Correct result without sub-expressions
== Parsed Logical Plan ==
'Project [('col * 'col) AS (col * col)#4]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
(col * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- (col * col): decimal(38,12) (nullable = true)


// Incorrect result with sub-expressions
== Parsed Logical Plan ==
'Project [(('col * 'col) * 'col) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
((col * col) * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- ((col * col) * col): decimal(38,12) (nullable = true)

How was this patch tested?

This PR was tested with available unit tests. Moreover, there are tests to cover previously failing scenarios.

@SparkQA
Copy link

SparkQA commented Jul 10, 2017

Test build #79458 has finished for PR 18583 at commit 7b35ed2.

  • This patch fails PySpark pip packaging tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@aokolnychyi
Copy link
Contributor Author

Can we, please, trigger this one more time?

@kiszk
Copy link
Member

kiszk commented Jul 17, 2017

Jenkins, retest this please

@SparkQA
Copy link

SparkQA commented Jul 17, 2017

Test build #79676 has finished for PR 18583 at commit 7b35ed2.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

Copy link
Member

@gatorsmile gatorsmile left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@cloud-fan
Copy link
Contributor

LGTM

Copy link
Contributor

@jiangxb1987 jiangxb1987 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

asfgit pushed a commit that referenced this pull request Jul 18, 2017
…pressions

## What changes were proposed in this pull request?

This PR changes the direction of expression transformation in the DecimalPrecision rule. Previously, the expressions were transformed down, which led to incorrect result types when decimal expressions had other decimal expressions as their operands. The root cause of this issue was in visiting outer nodes before their children. Consider the example below:

```
    val inputSchema = StructType(StructField("col", DecimalType(26, 6)) :: Nil)
    val sc = spark.sparkContext
    val rdd = sc.parallelize(1 to 2).map(_ => Row(BigDecimal(12)))
    val df = spark.createDataFrame(rdd, inputSchema)

    // Works correctly since no nested decimal expression is involved
    // Expected result type: (26, 6) * (26, 6) = (38, 12)
    df.select($"col" * $"col").explain(true)
    df.select($"col" * $"col").printSchema()

    // Gives a wrong result since there is a nested decimal expression that should be visited first
    // Expected result type: ((26, 6) * (26, 6)) * (26, 6) = (38, 12) * (26, 6) = (38, 18)
    df.select($"col" * $"col" * $"col").explain(true)
    df.select($"col" * $"col" * $"col").printSchema()
```

The example above gives the following output:

```
// Correct result without sub-expressions
== Parsed Logical Plan ==
'Project [('col * 'col) AS (col * col)#4]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
(col * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- (col * col): decimal(38,12) (nullable = true)

// Incorrect result with sub-expressions
== Parsed Logical Plan ==
'Project [(('col * 'col) * 'col) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
((col * col) * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- ((col * col) * col): decimal(38,12) (nullable = true)
```

## How was this patch tested?

This PR was tested with available unit tests. Moreover, there are tests to cover previously failing scenarios.

Author: aokolnychyi <anton.okolnychyi@sap.com>

Closes #18583 from aokolnychyi/spark-21332.

(cherry picked from commit 0be5fb4)
Signed-off-by: gatorsmile <gatorsmile@gmail.com>
asfgit pushed a commit that referenced this pull request Jul 18, 2017
…pressions

## What changes were proposed in this pull request?

This PR changes the direction of expression transformation in the DecimalPrecision rule. Previously, the expressions were transformed down, which led to incorrect result types when decimal expressions had other decimal expressions as their operands. The root cause of this issue was in visiting outer nodes before their children. Consider the example below:

```
    val inputSchema = StructType(StructField("col", DecimalType(26, 6)) :: Nil)
    val sc = spark.sparkContext
    val rdd = sc.parallelize(1 to 2).map(_ => Row(BigDecimal(12)))
    val df = spark.createDataFrame(rdd, inputSchema)

    // Works correctly since no nested decimal expression is involved
    // Expected result type: (26, 6) * (26, 6) = (38, 12)
    df.select($"col" * $"col").explain(true)
    df.select($"col" * $"col").printSchema()

    // Gives a wrong result since there is a nested decimal expression that should be visited first
    // Expected result type: ((26, 6) * (26, 6)) * (26, 6) = (38, 12) * (26, 6) = (38, 18)
    df.select($"col" * $"col" * $"col").explain(true)
    df.select($"col" * $"col" * $"col").printSchema()
```

The example above gives the following output:

```
// Correct result without sub-expressions
== Parsed Logical Plan ==
'Project [('col * 'col) AS (col * col)#4]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
(col * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- (col * col): decimal(38,12) (nullable = true)

// Incorrect result with sub-expressions
== Parsed Logical Plan ==
'Project [(('col * 'col) * 'col) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
((col * col) * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- ((col * col) * col): decimal(38,12) (nullable = true)
```

## How was this patch tested?

This PR was tested with available unit tests. Moreover, there are tests to cover previously failing scenarios.

Author: aokolnychyi <anton.okolnychyi@sap.com>

Closes #18583 from aokolnychyi/spark-21332.

(cherry picked from commit 0be5fb4)
Signed-off-by: gatorsmile <gatorsmile@gmail.com>
asfgit pushed a commit that referenced this pull request Jul 18, 2017
…pressions

## What changes were proposed in this pull request?

This PR changes the direction of expression transformation in the DecimalPrecision rule. Previously, the expressions were transformed down, which led to incorrect result types when decimal expressions had other decimal expressions as their operands. The root cause of this issue was in visiting outer nodes before their children. Consider the example below:

```
    val inputSchema = StructType(StructField("col", DecimalType(26, 6)) :: Nil)
    val sc = spark.sparkContext
    val rdd = sc.parallelize(1 to 2).map(_ => Row(BigDecimal(12)))
    val df = spark.createDataFrame(rdd, inputSchema)

    // Works correctly since no nested decimal expression is involved
    // Expected result type: (26, 6) * (26, 6) = (38, 12)
    df.select($"col" * $"col").explain(true)
    df.select($"col" * $"col").printSchema()

    // Gives a wrong result since there is a nested decimal expression that should be visited first
    // Expected result type: ((26, 6) * (26, 6)) * (26, 6) = (38, 12) * (26, 6) = (38, 18)
    df.select($"col" * $"col" * $"col").explain(true)
    df.select($"col" * $"col" * $"col").printSchema()
```

The example above gives the following output:

```
// Correct result without sub-expressions
== Parsed Logical Plan ==
'Project [('col * 'col) AS (col * col)#4]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
(col * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- (col * col): decimal(38,12) (nullable = true)

// Incorrect result with sub-expressions
== Parsed Logical Plan ==
'Project [(('col * 'col) * 'col) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
((col * col) * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- ((col * col) * col): decimal(38,12) (nullable = true)
```

## How was this patch tested?

This PR was tested with available unit tests. Moreover, there are tests to cover previously failing scenarios.

Author: aokolnychyi <anton.okolnychyi@sap.com>

Closes #18583 from aokolnychyi/spark-21332.

(cherry picked from commit 0be5fb4)
Signed-off-by: gatorsmile <gatorsmile@gmail.com>
@gatorsmile
Copy link
Member

Thanks! Merging to master/2.2/2.1/2.0

@asfgit asfgit closed this in 0be5fb4 Jul 18, 2017
MatthewRBruce pushed a commit to Shopify/spark that referenced this pull request Jul 31, 2018
…pressions

## What changes were proposed in this pull request?

This PR changes the direction of expression transformation in the DecimalPrecision rule. Previously, the expressions were transformed down, which led to incorrect result types when decimal expressions had other decimal expressions as their operands. The root cause of this issue was in visiting outer nodes before their children. Consider the example below:

```
    val inputSchema = StructType(StructField("col", DecimalType(26, 6)) :: Nil)
    val sc = spark.sparkContext
    val rdd = sc.parallelize(1 to 2).map(_ => Row(BigDecimal(12)))
    val df = spark.createDataFrame(rdd, inputSchema)

    // Works correctly since no nested decimal expression is involved
    // Expected result type: (26, 6) * (26, 6) = (38, 12)
    df.select($"col" * $"col").explain(true)
    df.select($"col" * $"col").printSchema()

    // Gives a wrong result since there is a nested decimal expression that should be visited first
    // Expected result type: ((26, 6) * (26, 6)) * (26, 6) = (38, 12) * (26, 6) = (38, 18)
    df.select($"col" * $"col" * $"col").explain(true)
    df.select($"col" * $"col" * $"col").printSchema()
```

The example above gives the following output:

```
// Correct result without sub-expressions
== Parsed Logical Plan ==
'Project [('col * 'col) AS (col * col)#4]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
(col * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)#4]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- (col * col): decimal(38,12) (nullable = true)

// Incorrect result with sub-expressions
== Parsed Logical Plan ==
'Project [(('col * 'col) * 'col) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
((col * col) * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)#11]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- ((col * col) * col): decimal(38,12) (nullable = true)
```

## How was this patch tested?

This PR was tested with available unit tests. Moreover, there are tests to cover previously failing scenarios.

Author: aokolnychyi <anton.okolnychyi@sap.com>

Closes apache#18583 from aokolnychyi/spark-21332.

(cherry picked from commit 0be5fb4)
Signed-off-by: gatorsmile <gatorsmile@gmail.com>
jzhuge pushed a commit to jzhuge/spark that referenced this pull request Aug 20, 2018
…pressions

This PR changes the direction of expression transformation in the DecimalPrecision rule. Previously, the expressions were transformed down, which led to incorrect result types when decimal expressions had other decimal expressions as their operands. The root cause of this issue was in visiting outer nodes before their children. Consider the example below:

```
    val inputSchema = StructType(StructField("col", DecimalType(26, 6)) :: Nil)
    val sc = spark.sparkContext
    val rdd = sc.parallelize(1 to 2).map(_ => Row(BigDecimal(12)))
    val df = spark.createDataFrame(rdd, inputSchema)

    // Works correctly since no nested decimal expression is involved
    // Expected result type: (26, 6) * (26, 6) = (38, 12)
    df.select($"col" * $"col").explain(true)
    df.select($"col" * $"col").printSchema()

    // Gives a wrong result since there is a nested decimal expression that should be visited first
    // Expected result type: ((26, 6) * (26, 6)) * (26, 6) = (38, 12) * (26, 6) = (38, 18)
    df.select($"col" * $"col" * $"col").explain(true)
    df.select($"col" * $"col" * $"col").printSchema()
```

The example above gives the following output:

```
// Correct result without sub-expressions
== Parsed Logical Plan ==
'Project [('col * 'col) AS (col * col)apache#4]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
(col * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS (col * col)apache#4]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)apache#4]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((col#1 * col#1), DecimalType(38,12)) AS (col * col)apache#4]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- (col * col): decimal(38,12) (nullable = true)

// Incorrect result with sub-expressions
== Parsed Logical Plan ==
'Project [(('col * 'col) * 'col) AS ((col * col) * col)apache#11]
+- LogicalRDD [col#1]

== Analyzed Logical Plan ==
((col * col) * col): decimal(38,12)
Project [CheckOverflow((promote_precision(cast(CheckOverflow((promote_precision(cast(col#1 as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) as decimal(26,6))) * promote_precision(cast(col#1 as decimal(26,6)))), DecimalType(38,12)) AS ((col * col) * col)apache#11]
+- LogicalRDD [col#1]

== Optimized Logical Plan ==
Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)apache#11]
+- LogicalRDD [col#1]

== Physical Plan ==
*Project [CheckOverflow((cast(CheckOverflow((col#1 * col#1), DecimalType(38,12)) as decimal(26,6)) * col#1), DecimalType(38,12)) AS ((col * col) * col)apache#11]
+- Scan ExistingRDD[col#1]

// Schema
root
 |-- ((col * col) * col): decimal(38,12) (nullable = true)
```

This PR was tested with available unit tests. Moreover, there are tests to cover previously failing scenarios.

Author: aokolnychyi <anton.okolnychyi@sap.com>

Closes apache#18583 from aokolnychyi/spark-21332.

(cherry picked from commit 0be5fb4)
Signed-off-by: gatorsmile <gatorsmile@gmail.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

6 participants