Skip to content

[SPARK-16550] [SPARK-17042] [core] Certain classes fail to deserialize in block manager replication #14311

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ private[spark] class SerializerManager(defaultSerializer: Serializer, conf: Spar
* loaded yet. */
private lazy val compressionCodec: CompressionCodec = CompressionCodec.createCodec(conf)

private def canUseKryo(ct: ClassTag[_]): Boolean = {
def canUseKryo(ct: ClassTag[_]): Boolean = {
primitiveAndPrimitiveArrayClassTags.contains(ct) || ct == stringClassTag
}

Expand Down Expand Up @@ -128,8 +128,18 @@ private[spark] class SerializerManager(defaultSerializer: Serializer, conf: Spar

/** Serializes into a chunked byte buffer. */
def dataSerialize[T: ClassTag](blockId: BlockId, values: Iterator[T]): ChunkedByteBuffer = {
dataSerializeWithExplicitClassTag(blockId, values, implicitly[ClassTag[T]])
}

/** Serializes into a chunked byte buffer. */
def dataSerializeWithExplicitClassTag(
blockId: BlockId,
values: Iterator[_],
classTag: ClassTag[_]): ChunkedByteBuffer = {
val bbos = new ChunkedByteBufferOutputStream(1024 * 1024 * 4, ByteBuffer.allocate)
dataSerializeStream(blockId, bbos, values)
val byteStream = new BufferedOutputStream(bbos)
val ser = getSerializer(classTag).newInstance()
ser.serializeStream(wrapForCompression(blockId, byteStream)).writeAll(values).close()
bbos.toChunkedByteBuffer
}

Expand Down
13 changes: 11 additions & 2 deletions core/src/main/scala/org/apache/spark/storage/BlockManager.scala
Original file line number Diff line number Diff line change
Expand Up @@ -498,7 +498,8 @@ private[spark] class BlockManager(
diskStore.getBytes(blockId)
} else if (level.useMemory && memoryStore.contains(blockId)) {
// The block was not found on disk, so serialize an in-memory copy:
serializerManager.dataSerialize(blockId, memoryStore.getValues(blockId).get)
serializerManager.dataSerializeWithExplicitClassTag(
blockId, memoryStore.getValues(blockId).get, info.classTag)
} else {
handleLocalReadFailure(blockId)
}
Expand Down Expand Up @@ -973,8 +974,16 @@ private[spark] class BlockManager(
if (level.replication > 1) {
val remoteStartTime = System.currentTimeMillis
val bytesToReplicate = doGetLocalBytes(blockId, info)
// [SPARK-16550] Erase the typed classTag when using default serialization, since
// NettyBlockRpcServer crashes when deserializing repl-defined classes.
// TODO(ekl) remove this once the classloader issue on the remote end is fixed.
val remoteClassTag = if (!serializerManager.canUseKryo(classTag)) {
scala.reflect.classTag[Any]
} else {
classTag
}
try {
replicate(blockId, bytesToReplicate, level, classTag)
replicate(blockId, bytesToReplicate, level, remoteClassTag)
} finally {
bytesToReplicate.dispose()
}
Expand Down
77 changes: 23 additions & 54 deletions core/src/test/scala/org/apache/spark/DistributedSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -149,61 +149,16 @@ class DistributedSuite extends SparkFunSuite with Matchers with LocalSparkContex
sc.parallelize(1 to 10).count()
}

test("caching") {
private def testCaching(storageLevel: StorageLevel): Unit = {
sc = new SparkContext(clusterUrl, "test")
val data = sc.parallelize(1 to 1000, 10).cache()
assert(data.count() === 1000)
assert(data.count() === 1000)
assert(data.count() === 1000)
}

test("caching on disk") {
sc = new SparkContext(clusterUrl, "test")
val data = sc.parallelize(1 to 1000, 10).persist(StorageLevel.DISK_ONLY)
assert(data.count() === 1000)
assert(data.count() === 1000)
assert(data.count() === 1000)
}

test("caching in memory, replicated") {
sc = new SparkContext(clusterUrl, "test")
val data = sc.parallelize(1 to 1000, 10).persist(StorageLevel.MEMORY_ONLY_2)
assert(data.count() === 1000)
assert(data.count() === 1000)
assert(data.count() === 1000)
}

test("caching in memory, serialized, replicated") {
sc = new SparkContext(clusterUrl, "test")
val data = sc.parallelize(1 to 1000, 10).persist(StorageLevel.MEMORY_ONLY_SER_2)
assert(data.count() === 1000)
assert(data.count() === 1000)
assert(data.count() === 1000)
}

test("caching on disk, replicated") {
sc = new SparkContext(clusterUrl, "test")
val data = sc.parallelize(1 to 1000, 10).persist(StorageLevel.DISK_ONLY_2)
assert(data.count() === 1000)
assert(data.count() === 1000)
assert(data.count() === 1000)
}

test("caching in memory and disk, replicated") {
sc = new SparkContext(clusterUrl, "test")
val data = sc.parallelize(1 to 1000, 10).persist(StorageLevel.MEMORY_AND_DISK_2)
assert(data.count() === 1000)
assert(data.count() === 1000)
assert(data.count() === 1000)
}

test("caching in memory and disk, serialized, replicated") {
sc = new SparkContext(clusterUrl, "test")
val data = sc.parallelize(1 to 1000, 10).persist(StorageLevel.MEMORY_AND_DISK_SER_2)

assert(data.count() === 1000)
assert(data.count() === 1000)
assert(data.count() === 1000)
sc.jobProgressListener.waitUntilExecutorsUp(2, 30000)
val data = sc.parallelize(1 to 1000, 10)
val cachedData = data.persist(storageLevel)
assert(cachedData.count === 1000)
assert(sc.getExecutorStorageStatus.map(_.rddBlocksById(cachedData.id).size).sum ===
storageLevel.replication * data.getNumPartitions)
assert(cachedData.count === 1000)
assert(cachedData.count === 1000)

// Get all the locations of the first partition and try to fetch the partitions
// from those locations.
Expand All @@ -221,6 +176,20 @@ class DistributedSuite extends SparkFunSuite with Matchers with LocalSparkContex
}
}

Seq(
"caching" -> StorageLevel.MEMORY_ONLY,
"caching on disk" -> StorageLevel.DISK_ONLY,
"caching in memory, replicated" -> StorageLevel.MEMORY_ONLY_2,
"caching in memory, serialized, replicated" -> StorageLevel.MEMORY_ONLY_SER_2,
"caching on disk, replicated" -> StorageLevel.DISK_ONLY_2,
"caching in memory and disk, replicated" -> StorageLevel.MEMORY_AND_DISK_2,
"caching in memory and disk, serialized, replicated" -> StorageLevel.MEMORY_AND_DISK_SER_2
).foreach { case (testName, storageLevel) =>
test(testName) {
testCaching(storageLevel)
}
}

test("compute without caching when no partitions fit in memory") {
val size = 10000
val conf = new SparkConf()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -396,6 +396,20 @@ class ReplSuite extends SparkFunSuite {
assertContains("ret: Array[(Int, Iterable[Foo])] = Array((1,", output)
}

test("replicating blocks of object with class defined in repl") {
val output = runInterpreter("local-cluster[2,1,1024]",
"""
|import org.apache.spark.storage.StorageLevel._
|case class Foo(i: Int)
|val ret = sc.parallelize((1 to 100).map(Foo), 10).persist(MEMORY_ONLY_2)
|ret.count()
|sc.getExecutorStorageStatus.map(s => s.rddBlocksById(ret.id).size).sum
""".stripMargin)
assertDoesNotContain("error:", output)
assertDoesNotContain("Exception", output)
assertContains(": Int = 20", output)
}

test("line wrapper only initialized once when used as encoder outer scope") {
val output = runInterpreter("local",
"""
Expand Down