@@ -43,8 +43,8 @@ class PythonDStream[T: ClassTag](
43
43
preservePartitoning : Boolean ,
44
44
pythonExec : String ,
45
45
broadcastVars : JList [Broadcast [Array [Byte ]]],
46
- accumulator : Accumulator [JList [Array [Byte ]]])
47
- extends DStream [Array [Byte ]](parent.ssc) {
46
+ accumulator : Accumulator [JList [Array [Byte ]]]
47
+ ) extends DStream [Array [Byte ]](parent.ssc) {
48
48
49
49
override def dependencies = List (parent)
50
50
@@ -70,8 +70,10 @@ class PythonDStream[T: ClassTag](
70
70
}
71
71
72
72
73
- private class PythonPairwiseDStream (prev: DStream [Array [Byte ]], partitioner : Partitioner ) extends
74
- DStream [Array [Byte ]](prev.ssc){
73
+ private class PythonPairwiseDStream (
74
+ prev: DStream [Array [Byte ]],
75
+ partitioner : Partitioner
76
+ ) extends DStream [Array [Byte ]](prev.ssc){
75
77
override def dependencies = List (prev)
76
78
77
79
override def slideDuration : Duration = prev.slideDuration
@@ -116,14 +118,14 @@ class PythonForeachDStream(
116
118
117
119
/**
118
120
* This is a input stream just for the unitest. This is equivalent to a checkpointable,
119
- * replayable, reliable message queue like Kafka. It requires a JArrayList input of JavaRDD,
121
+ * replayable, reliable message queue like Kafka. It requires a JArrayList of JavaRDD,
120
122
* and returns the i_th element at the i_th batch under manual clock.
121
123
*/
122
124
123
125
class PythonTestInputStream (
124
126
ssc_ : JavaStreamingContext ,
125
- inputRDDs : JArrayList [JavaRDD [Array [Byte ]]])
126
- extends InputDStream [Array [Byte ]](JavaStreamingContext .toStreamingContext(ssc_)) {
127
+ inputRDDs : JArrayList [JavaRDD [Array [Byte ]]]
128
+ ) extends InputDStream [Array [Byte ]](JavaStreamingContext .toStreamingContext(ssc_)) {
127
129
128
130
def start () {}
129
131
@@ -146,4 +148,4 @@ class PythonTestInputStream(
146
148
}
147
149
148
150
val asJavaDStream = JavaDStream .fromDStream(this )
149
- }
151
+ }
0 commit comments