Skip to content

Commit cda453a

Browse files
committed
fix tests
1 parent 5900445 commit cda453a

File tree

1 file changed

+4
-14
lines changed

1 file changed

+4
-14
lines changed

mllib/src/test/scala/org/apache/spark/mllib/tree/DecisionTreeSuite.scala

Lines changed: 4 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,6 @@ import org.apache.spark.mllib.tree.impurity.{Entropy, Gini, Variance}
3131
import org.apache.spark.mllib.tree.model.{DecisionTreeModel, Node}
3232
import org.apache.spark.mllib.util.LocalSparkContext
3333

34-
3534
class DecisionTreeSuite extends FunSuite with LocalSparkContext {
3635

3736
def validateClassifier(
@@ -353,8 +352,6 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
353352
assert(splits(0).length === 99)
354353
assert(bins.length === 2)
355354
assert(bins(0).length === 100)
356-
assert(splits(0).length === 99)
357-
assert(bins(0).length === 100)
358355

359356
val treeInput = TreePoint.convertToTreeRDD(rdd, bins, metadata)
360357
val bestSplits = DecisionTree.findBestSplits(treeInput, new Array(8), metadata, 0,
@@ -381,8 +378,6 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
381378
assert(splits(0).length === 99)
382379
assert(bins.length === 2)
383380
assert(bins(0).length === 100)
384-
assert(splits(0).length === 99)
385-
assert(bins(0).length === 100)
386381

387382
val treeInput = TreePoint.convertToTreeRDD(rdd, bins, metadata)
388383
val bestSplits = DecisionTree.findBestSplits(treeInput, new Array(2), metadata, 0,
@@ -410,8 +405,6 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
410405
assert(splits(0).length === 99)
411406
assert(bins.length === 2)
412407
assert(bins(0).length === 100)
413-
assert(splits(0).length === 99)
414-
assert(bins(0).length === 100)
415408

416409
val treeInput = TreePoint.convertToTreeRDD(rdd, bins, metadata)
417410
val bestSplits = DecisionTree.findBestSplits(treeInput, new Array(2), metadata, 0,
@@ -439,8 +432,6 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
439432
assert(splits(0).length === 99)
440433
assert(bins.length === 2)
441434
assert(bins(0).length === 100)
442-
assert(splits(0).length === 99)
443-
assert(bins(0).length === 100)
444435

445436
val treeInput = TreePoint.convertToTreeRDD(rdd, bins, metadata)
446437
val bestSplits = DecisionTree.findBestSplits(treeInput, new Array(2), metadata, 0,
@@ -464,8 +455,6 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
464455
assert(splits(0).length === 99)
465456
assert(bins.length === 2)
466457
assert(bins(0).length === 100)
467-
assert(splits(0).length === 99)
468-
assert(bins(0).length === 100)
469458

470459
// Train a 1-node model
471460
val strategyOneNode = new Strategy(Classification, Entropy, 1, 2, 100)
@@ -600,7 +589,7 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
600589
val arr = DecisionTreeSuite.generateContinuousDataPointsForMulticlass()
601590
val rdd = sc.parallelize(arr)
602591
val strategy = new Strategy(algo = Classification, impurity = Gini, maxDepth = 4,
603-
numClassesForClassification = 3)
592+
numClassesForClassification = 3, maxBins = 100)
604593
assert(strategy.isMulticlassClassification)
605594
val metadata = DecisionTreeMetadata.buildMetadata(rdd, strategy)
606595

@@ -626,7 +615,7 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
626615
val arr = DecisionTreeSuite.generateContinuousDataPointsForMulticlass()
627616
val rdd = sc.parallelize(arr)
628617
val strategy = new Strategy(algo = Classification, impurity = Gini, maxDepth = 4,
629-
numClassesForClassification = 3, categoricalFeaturesInfo = Map(0 -> 3))
618+
numClassesForClassification = 3, maxBins = 100, categoricalFeaturesInfo = Map(0 -> 3))
630619
assert(strategy.isMulticlassClassification)
631620
val metadata = DecisionTreeMetadata.buildMetadata(rdd, strategy)
632621
assert(metadata.isUnordered(featureIndex = 0))
@@ -652,7 +641,8 @@ class DecisionTreeSuite extends FunSuite with LocalSparkContext {
652641
val arr = DecisionTreeSuite.generateCategoricalDataPointsForMulticlassForOrderedFeatures()
653642
val rdd = sc.parallelize(arr)
654643
val strategy = new Strategy(algo = Classification, impurity = Gini, maxDepth = 4,
655-
numClassesForClassification = 3, categoricalFeaturesInfo = Map(0 -> 10, 1 -> 10))
644+
numClassesForClassification = 3, maxBins = 100,
645+
categoricalFeaturesInfo = Map(0 -> 10, 1 -> 10))
656646
assert(strategy.isMulticlassClassification)
657647
val metadata = DecisionTreeMetadata.buildMetadata(rdd, strategy)
658648
assert(!metadata.isUnordered(featureIndex = 0))

0 commit comments

Comments
 (0)