Skip to content

Commit c298e78

Browse files
committed
fixed scala style errors
1 parent b85b0c9 commit c298e78

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -55,9 +55,9 @@ class NaiveBayesModel private[mllib] (
5555
private val brzPi = new BDV[Double](pi)
5656
private val brzTheta = new BDM(theta(0).length, theta.length, theta.flatten).t
5757

58-
//Bernoulli scoring requires log(condprob) if 1 log(1-condprob) if 0
59-
//this precomputes log(1.0 - exp(theta)) and its sum for linear algebra application
60-
//of this condition in predict function
58+
// Bernoulli scoring requires log(condprob) if 1 log(1-condprob) if 0
59+
// this precomputes log(1.0 - exp(theta)) and its sum for linear algebra application
60+
// of this condition in predict function
6161
private val (brzNegTheta, brzNegThetaSum) = modelType match {
6262
case NaiveBayes.Multinomial => (None, None)
6363
case NaiveBayes.Bernoulli =>
@@ -276,9 +276,9 @@ object NaiveBayes {
276276
/**
277277
* Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
278278
*
279-
* This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all kinds of
280-
* discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
281-
* document classification.
279+
* This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all
280+
* kinds of discrete data. For example, by converting documents into TF-IDF vectors, it
281+
* can be used for document classification.
282282
*
283283
* This version of the method uses a default smoothing parameter of 1.0.
284284
*
@@ -292,9 +292,9 @@ object NaiveBayes {
292292
/**
293293
* Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
294294
*
295-
* This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all kinds of
296-
* discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
297-
* document classification.
295+
* This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all
296+
* kinds of discrete data. For example, by converting documents into TF-IDF vectors, it
297+
* can be used for document classification.
298298
*
299299
* @param input RDD of `(label, array of features)` pairs. Every vector should be a frequency
300300
* vector or a count vector.

0 commit comments

Comments
 (0)