Skip to content

Commit b27ad2c

Browse files
committed
formatting
1 parent 426bb28 commit b27ad2c

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala

+1-1
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ import org.apache.spark.mllib.tree.configuration.QuantileStrategy._
3636
* 1, 2, ... , k-1. It's important to note that features are
3737
* zero-indexed.
3838
* @param maxMemoryInMB maximum memory in MB allocated to histogram aggregation. Default value is
39-
* 128 MB.
39+
* 128 MB.
4040
*
4141
*/
4242
@Experimental

mllib/src/test/scala/org/apache/spark/mllib/tree/DecisionTreeSuite.scala

+3-3
Original file line numberDiff line numberDiff line change
@@ -407,7 +407,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
407407

408408
val leftFilter = Filter(new Split(0, 400, FeatureType.Continuous, List()), -1)
409409
val rightFilter = Filter(new Split(0, 400, FeatureType.Continuous, List()) ,1)
410-
val filters = Array[List[Filter]](List(),List(leftFilter), List(rightFilter))
410+
val filters = Array[List[Filter]](List(), List(leftFilter), List(rightFilter))
411411
val parentImpurities = Array(0.5, 0.5, 0.5)
412412

413413
// Single group second level tree construction.
@@ -463,7 +463,7 @@ object DecisionTreeSuite {
463463
def generateOrderedLabeledPoints(): Array[LabeledPoint] = {
464464
val arr = new Array[LabeledPoint](1000)
465465
for (i <- 0 until 1000) {
466-
if (i < 600){
466+
if (i < 600) {
467467
val lp = new LabeledPoint(0.0, Vectors.dense(i.toDouble, 1000.0 - i))
468468
arr(i) = lp
469469
} else {
@@ -477,7 +477,7 @@ object DecisionTreeSuite {
477477
def generateCategoricalDataPoints(): Array[LabeledPoint] = {
478478
val arr = new Array[LabeledPoint](1000)
479479
for (i <- 0 until 1000) {
480-
if (i < 600){
480+
if (i < 600) {
481481
arr(i) = new LabeledPoint(1.0, Vectors.dense(0.0, 1.0))
482482
} else {
483483
arr(i) = new LabeledPoint(0.0, Vectors.dense(1.0, 0.0))

0 commit comments

Comments
 (0)