@@ -720,8 +720,9 @@ setMethod("predict", signature(object = "MultilayerPerceptronClassificationModel
720720# Returns the summary of a Multilayer Perceptron Classification Model produced by \code{spark.mlp}
721721
722722# ' @param object a Multilayer Perceptron Classification Model fitted by \code{spark.mlp}
723- # ' @return \code{summary} returns a list containing \code{layers}, the label distribution, and
724- # ' \code{tables}, conditional probabilities given the target label.
723+ # ' @return \code{summary} returns a list containing \code{labelCount}, \code{layers}, and
724+ # ' \code{weights}. For \code{weights}, it is a numeric vector with length equal to
725+ # ' the expected given the architecture (i.e., for 8-10-2 network, 100 connection weights).
725726# ' @rdname spark.mlp
726727# ' @export
727728# ' @aliases summary,MultilayerPerceptronClassificationModel-method
@@ -732,7 +733,6 @@ setMethod("summary", signature(object = "MultilayerPerceptronClassificationModel
732733 labelCount <- callJMethod(jobj , " labelCount" )
733734 layers <- unlist(callJMethod(jobj , " layers" ))
734735 weights <- callJMethod(jobj , " weights" )
735- weights <- matrix (weights , nrow = length(weights ))
736736 list (labelCount = labelCount , layers = layers , weights = weights )
737737 })
738738
@@ -1241,7 +1241,7 @@ setMethod("predict", signature(object = "GaussianMixtureModel"),
12411241# ' @note spark.als since 2.1.0
12421242setMethod ("spark.als ", signature(data = "SparkDataFrame"),
12431243 function (data , ratingCol = " rating" , userCol = " user" , itemCol = " item" ,
1244- rank = 10 , reg = 1.0 , maxIter = 10 , nonnegative = FALSE ,
1244+ rank = 10 , reg = 0.1 , maxIter = 10 , nonnegative = FALSE ,
12451245 implicitPrefs = FALSE , alpha = 1.0 , numUserBlocks = 10 , numItemBlocks = 10 ,
12461246 checkpointInterval = 10 , seed = 0 ) {
12471247
0 commit comments