Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

RNN cell demo with ptb LSTM language model #3197

Merged
merged 2 commits into from
Sep 3, 2016
Merged

RNN cell demo with ptb LSTM language model #3197

merged 2 commits into from
Sep 3, 2016

Conversation

pluskid
Copy link
Contributor

@pluskid pluskid commented Sep 1, 2016

As people are asking (#3142) how to use the new RNN symbol in mxnet, we provide this simple example as a demo. More importantly, this allow us to identify the use cases and issues we need to address. Currently we only have a wrapper to cuDNN RNN cell, so it is not available for CPU mode. Also we are working to stabilize the interfaces, as you can see from the comments of the demo, there are still many workarounds need to be applied to be able to work nicely with the rest of the mxnet high level APIs.

@sbodenstein @antinucleon One important issue I need to mention is that currently the LSTM cell takes all the parameters as a concatenated big vector. This is not compatible with our initializer architecture.

I only verified it is able to run and the perplexity is decreasing. But I did not compare with our old LSTM implementation results.

@sbodenstein
Copy link
Contributor

@pluskid: one simple solution (which we use) is to have a high-level function create a view of all the sub-weights and biases (a dictionary of sub-dictionaries, one per layer), and then use this for initialization. If we decide on keeping the single parameter design, I can contribute a Python version of this.

Then for the Python initalizer: it already has special initialization logic for things like BatchNorm, you can have one for the RNN, which calls the extractor function and decides one the init method (like IRNN https://arxiv.org/pdf/1504.00941.pdf etc).

@pluskid pluskid merged commit 9cf17b9 into apache:master Sep 3, 2016
@pluskid
Copy link
Contributor Author

pluskid commented Sep 3, 2016

@sbodenstein I'm OK with a single concatenated parameter, which presumbly should be more efficient. Currently the initializer does not have access to much information, apart from the name and the array itself. How do you plan to extract information used to decide which part is weights and which part is bias?

@sbodenstein
Copy link
Contributor

sbodenstein commented Sep 3, 2016

@pluskid: I've already written a version for Mathematica. Its pretty simple: cuDNN has an API function for splitting this: cudnnGetRNNLinLayerBiasParams + cudnnGetRNNLinLayerMatrixParams. Using this + the docs for this makes it possible to work out whats going on (eg the biases are all at the end of the parameter vector). I then simply write a test making use of the definitions for GRU, LSTM, etc cuDNN uses, and check that my interpretation of the parameters are correct (and ensure that the splitter remains correct for future cuDNN versions).

@pluskid
Copy link
Contributor Author

pluskid commented Sep 6, 2016

@sbodenstein Great! One potential issue with the existing high-level API implementation is that the models tries to allocate the memory for the reported parameters (separately), instead of continuous chunk of concatenated vector. I guess what seems to be a feasible solution is to let the rnn parameters to have a special name (postfix) so that a customized initializer could recognize it, split it accordingly and do proper initialization.

taoari pushed a commit to taoari/mxnet that referenced this pull request Sep 10, 2016
* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell
piiswrong pushed a commit that referenced this pull request Sep 22, 2016
* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin
piiswrong pushed a commit to piiswrong/mxnet that referenced this pull request Sep 23, 2016
* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin
piiswrong pushed a commit that referenced this pull request Sep 23, 2016
* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin
piiswrong pushed a commit that referenced this pull request Oct 9, 2016
* NNVM Refactor (#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (#3214)

* [PYTHON] Optional Cython Module for Symbols (#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (#3261)

* Fix path in setup.py (#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (#3290)

* Fix breaking changes after pull master (#3291)

* [CYTHON] Cython module for NDArray (#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (#3303)

* Update run_test.sh

* add nnvm cmake with windows (#3255)

* [WIP] binary broadcast wip (#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (#3308)

* [IO] Python based ImageIter and Augumenter (#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (#3314)

* fix cpython in windows (#3309)

* Add Mathematical functions (#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (#3335)

* add recent examples, collect some missing tutorials (#3340)

* Improving docs & utilities for distributed training example. (#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (#3346)

* Add channel_ to Shape2D calculation (#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (#3369)

* Fix metric & im2rec.py (#3375)

image io fix

* Update legacy op FBackwardInGradIndex (#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit to piiswrong/mxnet that referenced this pull request Oct 19, 2016
* NNVM Refactor (apache#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (apache#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (apache#3214)

* [PYTHON] Optional Cython Module for Symbols (apache#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (apache#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (apache#3261)

* Fix path in setup.py (apache#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (apache#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (apache#3290)

* Fix breaking changes after pull master (apache#3291)

* [CYTHON] Cython module for NDArray (apache#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (apache#3303)

* Update run_test.sh

* add nnvm cmake with windows (apache#3255)

* [WIP] binary broadcast wip (apache#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (apache#3308)

* [IO] Python based ImageIter and Augumenter (apache#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (apache#3314)

* fix cpython in windows (apache#3309)

* Add Mathematical functions (apache#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (apache#3335)

* add recent examples, collect some missing tutorials (apache#3340)

* Improving docs & utilities for distributed training example. (apache#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (apache#3346)

* Add channel_ to Shape2D calculation (apache#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (apache#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (apache#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (apache#3369)

* Fix metric & im2rec.py (apache#3375)

image io fix

* Update legacy op FBackwardInGradIndex (apache#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (apache#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (apache#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (apache#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit to piiswrong/mxnet that referenced this pull request Oct 19, 2016
* NNVM Refactor (apache#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (apache#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (apache#3214)

* [PYTHON] Optional Cython Module for Symbols (apache#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (apache#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (apache#3261)

* Fix path in setup.py (apache#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (apache#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (apache#3290)

* Fix breaking changes after pull master (apache#3291)

* [CYTHON] Cython module for NDArray (apache#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (apache#3303)

* Update run_test.sh

* add nnvm cmake with windows (apache#3255)

* [WIP] binary broadcast wip (apache#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (apache#3308)

* [IO] Python based ImageIter and Augumenter (apache#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (apache#3314)

* fix cpython in windows (apache#3309)

* Add Mathematical functions (apache#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (apache#3335)

* add recent examples, collect some missing tutorials (apache#3340)

* Improving docs & utilities for distributed training example. (apache#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (apache#3346)

* Add channel_ to Shape2D calculation (apache#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (apache#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (apache#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (apache#3369)

* Fix metric & im2rec.py (apache#3375)

image io fix

* Update legacy op FBackwardInGradIndex (apache#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (apache#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (apache#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (apache#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
tqchen pushed a commit that referenced this pull request Oct 31, 2016
* NNVM Refactor (#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (#3214)

* [PYTHON] Optional Cython Module for Symbols (#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (#3261)

* Fix path in setup.py (#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (#3290)

* Fix breaking changes after pull master (#3291)

* [CYTHON] Cython module for NDArray (#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (#3303)

* Update run_test.sh

* add nnvm cmake with windows (#3255)

* [WIP] binary broadcast wip (#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (#3308)

* [IO] Python based ImageIter and Augumenter (#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (#3314)

* fix cpython in windows (#3309)

* Add Mathematical functions (#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (#3335)

* add recent examples, collect some missing tutorials (#3340)

* Improving docs & utilities for distributed training example. (#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (#3346)

* Add channel_ to Shape2D calculation (#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (#3369)

* Fix metric & im2rec.py (#3375)

image io fix

* Update legacy op FBackwardInGradIndex (#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit to piiswrong/mxnet that referenced this pull request Nov 17, 2016
* NNVM Refactor (apache#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (apache#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (apache#3214)

* [PYTHON] Optional Cython Module for Symbols (apache#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (apache#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (apache#3261)

* Fix path in setup.py (apache#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (apache#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (apache#3290)

* Fix breaking changes after pull master (apache#3291)

* [CYTHON] Cython module for NDArray (apache#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (apache#3303)

* Update run_test.sh

* add nnvm cmake with windows (apache#3255)

* [WIP] binary broadcast wip (apache#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (apache#3308)

* [IO] Python based ImageIter and Augumenter (apache#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (apache#3314)

* fix cpython in windows (apache#3309)

* Add Mathematical functions (apache#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (apache#3335)

* add recent examples, collect some missing tutorials (apache#3340)

* Improving docs & utilities for distributed training example. (apache#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (apache#3346)

* Add channel_ to Shape2D calculation (apache#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (apache#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (apache#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (apache#3369)

* Fix metric & im2rec.py (apache#3375)

image io fix

* Update legacy op FBackwardInGradIndex (apache#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (apache#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (apache#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (apache#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit that referenced this pull request Nov 18, 2016
* NNVM Refactor (#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (#3214)

* [PYTHON] Optional Cython Module for Symbols (#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (#3261)

* Fix path in setup.py (#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (#3290)

* Fix breaking changes after pull master (#3291)

* [CYTHON] Cython module for NDArray (#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (#3303)

* Update run_test.sh

* add nnvm cmake with windows (#3255)

* [WIP] binary broadcast wip (#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (#3308)

* [IO] Python based ImageIter and Augumenter (#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (#3314)

* fix cpython in windows (#3309)

* Add Mathematical functions (#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (#3335)

* add recent examples, collect some missing tutorials (#3340)

* Improving docs & utilities for distributed training example. (#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (#3346)

* Add channel_ to Shape2D calculation (#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (#3369)

* Fix metric & im2rec.py (#3375)

image io fix

* Update legacy op FBackwardInGradIndex (#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit that referenced this pull request Nov 30, 2016
* NNVM Refactor (#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (#3214)

* [PYTHON] Optional Cython Module for Symbols (#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (#3261)

* Fix path in setup.py (#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (#3290)

* Fix breaking changes after pull master (#3291)

* [CYTHON] Cython module for NDArray (#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (#3303)

* Update run_test.sh

* add nnvm cmake with windows (#3255)

* [WIP] binary broadcast wip (#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (#3308)

* [IO] Python based ImageIter and Augumenter (#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (#3314)

* fix cpython in windows (#3309)

* Add Mathematical functions (#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (#3335)

* add recent examples, collect some missing tutorials (#3340)

* Improving docs & utilities for distributed training example. (#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (#3346)

* Add channel_ to Shape2D calculation (#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (#3369)

* Fix metric & im2rec.py (#3375)

image io fix

* Update legacy op FBackwardInGradIndex (#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit that referenced this pull request Dec 11, 2016
* NNVM Refactor (#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (#3214)

* [PYTHON] Optional Cython Module for Symbols (#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (#3261)

* Fix path in setup.py (#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (#3290)

* Fix breaking changes after pull master (#3291)

* [CYTHON] Cython module for NDArray (#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (#3303)

* Update run_test.sh

* add nnvm cmake with windows (#3255)

* [WIP] binary broadcast wip (#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (#3308)

* [IO] Python based ImageIter and Augumenter (#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (#3314)

* fix cpython in windows (#3309)

* Add Mathematical functions (#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (#3335)

* add recent examples, collect some missing tutorials (#3340)

* Improving docs & utilities for distributed training example. (#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (#3346)

* Add channel_ to Shape2D calculation (#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (#3369)

* Fix metric & im2rec.py (#3375)

image io fix

* Update legacy op FBackwardInGradIndex (#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit to piiswrong/mxnet that referenced this pull request Dec 24, 2016
* NNVM Refactor (apache#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (apache#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (apache#3214)

* [PYTHON] Optional Cython Module for Symbols (apache#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (apache#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (apache#3261)

* Fix path in setup.py (apache#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (apache#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (apache#3290)

* Fix breaking changes after pull master (apache#3291)

* [CYTHON] Cython module for NDArray (apache#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (apache#3303)

* Update run_test.sh

* add nnvm cmake with windows (apache#3255)

* [WIP] binary broadcast wip (apache#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (apache#3308)

* [IO] Python based ImageIter and Augumenter (apache#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (apache#3314)

* fix cpython in windows (apache#3309)

* Add Mathematical functions (apache#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (apache#3335)

* add recent examples, collect some missing tutorials (apache#3340)

* Improving docs & utilities for distributed training example. (apache#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (apache#3346)

* Add channel_ to Shape2D calculation (apache#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (apache#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (apache#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (apache#3369)

* Fix metric & im2rec.py (apache#3375)

image io fix

* Update legacy op FBackwardInGradIndex (apache#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (apache#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (apache#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (apache#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit to piiswrong/mxnet that referenced this pull request Dec 29, 2016
* NNVM Refactor (apache#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (apache#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (apache#3214)

* [PYTHON] Optional Cython Module for Symbols (apache#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (apache#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (apache#3261)

* Fix path in setup.py (apache#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (apache#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (apache#3290)

* Fix breaking changes after pull master (apache#3291)

* [CYTHON] Cython module for NDArray (apache#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (apache#3303)

* Update run_test.sh

* add nnvm cmake with windows (apache#3255)

* [WIP] binary broadcast wip (apache#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (apache#3308)

* [IO] Python based ImageIter and Augumenter (apache#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (apache#3314)

* fix cpython in windows (apache#3309)

* Add Mathematical functions (apache#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (apache#3335)

* add recent examples, collect some missing tutorials (apache#3340)

* Improving docs & utilities for distributed training example. (apache#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (apache#3346)

* Add channel_ to Shape2D calculation (apache#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (apache#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (apache#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (apache#3369)

* Fix metric & im2rec.py (apache#3375)

image io fix

* Update legacy op FBackwardInGradIndex (apache#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (apache#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (apache#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (apache#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit to piiswrong/mxnet that referenced this pull request Dec 29, 2016
* NNVM Refactor (apache#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (apache#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (apache#3214)

* [PYTHON] Optional Cython Module for Symbols (apache#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (apache#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (apache#3261)

* Fix path in setup.py (apache#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (apache#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (apache#3290)

* Fix breaking changes after pull master (apache#3291)

* [CYTHON] Cython module for NDArray (apache#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (apache#3303)

* Update run_test.sh

* add nnvm cmake with windows (apache#3255)

* [WIP] binary broadcast wip (apache#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (apache#3308)

* [IO] Python based ImageIter and Augumenter (apache#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (apache#3314)

* fix cpython in windows (apache#3309)

* Add Mathematical functions (apache#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (apache#3335)

* add recent examples, collect some missing tutorials (apache#3340)

* Improving docs & utilities for distributed training example. (apache#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (apache#3346)

* Add channel_ to Shape2D calculation (apache#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (apache#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (apache#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (apache#3369)

* Fix metric & im2rec.py (apache#3375)

image io fix

* Update legacy op FBackwardInGradIndex (apache#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (apache#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (apache#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (apache#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit that referenced this pull request Dec 29, 2016
* NNVM Refactor (#3194)

* Init nnvm change

* temp checkin

* Move TShape to NNVM

* Redirect Symbolic API to NNVM

* Add Op Prop Adapter

* Finish migrate in shape infer

* Pass all symbolic test

* temp commit

* enable aux data

* [EXEC] Basic version of exec for forward only

* [EXEC] Enable most optimizations, still wait grad and context

* fix legacy op with latest one

* Update NNVM NodeRef

* Adapt to newer interface

* ALl registry of backop is complete

* temp commit

* Hack finish backward pass

* [EXEC] One day pass

* [EXEC] Pass all operator unittest

* [EXEC] enable model parallel

* Fully pass all legacy tests

* Remove legacy symbolic code

* update news

* Make travis compile

* Fix python3

* Update viz module to new json format

* [NNVM] Imperative Invoke (#3208)

* [Engine] Deduplicate Variable Util

* [NNVM] NNVM Imperative Invoke

* [NNVM] Imperative improve speed

* fix

* fix

* [scala] link libnnvm.a (#3214)

* [PYTHON] Optional Cython Module for Symbols (#3242)

* [CYTHON] Checkin cython enhancement

* fix lint

* [DOC] Move common doc to base

* [EXEC] Support fcompute (#3249)

* [EXEC] Support fcompute

* Fix lint

* fix lint

* [OP] Add alias support (#3261)

* Fix path in setup.py (#3276)

* Fix path in setup.py

* revert the nnvm version

* [WIP] Element wise op refactor (#3245)

* [OPERATOR] Refactor Unary Ops

* [OPERATOR] Refactor Binary Scalar Ops

* Use alias

* update nnvm version (#3290)

* Fix breaking changes after pull master (#3291)

* [CYTHON] Cython module for NDArray (#3292)

* [NDARRAY] Cython module for ndarray

* More strict tests

* [NNVM] change of attr to set_attr (#3303)

* Update run_test.sh

* add nnvm cmake with windows (#3255)

* [WIP] binary broadcast wip (#3301)

* [WIP] binary broadcast wip

[OPERATOR] Binary Broadcast ops

fix lint

lint

fix

max and min

update submodule

before removing reduce axis

broad cast reduce ops

* update

* fix

* fix warning

* fix

* x (#3308)

* [IO] Python based ImageIter and Augumenter (#3227)

* [IO] Python based ImageIter and Augumenter

* fix

* fix

* fix

* [OPT] NNVM Optimizer (#3314)

* fix cpython in windows (#3309)

* Add Mathematical functions (#3317)

* fix image io

* add hypot degrees radians cosh sinh tanh arcsinh arccosh arctanh (#3335)

* add recent examples, collect some missing tutorials (#3340)

* Improving docs & utilities for distributed training example. (#3341)

* add init dict

* disable SSE for arm hardware e.g. Raspberry Pi (#3346)

* Add channel_ to Shape2D calculation (#3181)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)

[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin

* Fix metric & im2rec.py

* [Scala] Nnvm ops for NDArray & Symbol (#3361)

* [scala] nnvm op support

* [scala] remove unused codes

* fix scala native code style

* [R] Fix the R interface (#3334)

* [R] Fix the R interface. remove man

* Fix BN legacy issue

* Locate compiled library on Windows (#3369)

* Fix metric & im2rec.py (#3375)

image io fix

* Update legacy op FBackwardInGradIndex (#3376)

* Update legacy op FBackwardInGradIndex

* fix test

* Fix for LRN Layer (#3366)

* fixed cpu forward bug

* added out_data[lrn_enum::kOut] as backward req.

* removed lint

* removed duplicate out_data[lrn_enum::kTmpNorm],

* removed inplace option

* add backward index

* include some special functions (#3337)

- gamma
- gammaln
- log1p
- expm1

* fix kv build (#3385)

* initial profiler branch based on dmlc/mxnet:nnvm

* [profiler] add profiler & modify engine API

* [profiler] add USE_PROFILER compile flag & modify code for changed engine api

* [profiler] add c_api interface & modify graph_executor

* [profiler] add python api

* [profiler] typo & lint error

* [profiler] reduce overhead & add PROFIELR_MESSAGE_FUNCNAME macro

* [profiler] remove profiling argument from PushSync/PushAsync

* [profiler] refactor profiler.h/.cc

* [profiler] improve readability

* [profiler] typo && add TODO comment

* [profiler] fix ndarray op name & add WaitForVar back

* [profiler] add example/profiler/profiler_ndarray.py

* [profiler] fix memleak by using op->name

* [profiler] fix lint

* [profiler] fix lint
piiswrong pushed a commit that referenced this pull request Jan 12, 2017
#4641)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (#3186)

* RNN cell demo with ptb LSTM language model (#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (#3238)

* Fix little bug on context (#3202)

* add PennTreeBank Language Model using lstm model in R (#2659)

* Add function 'print_summary' and some revise (#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (#3260)

* Copy slice along arbitrary axis (#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (#3264)

* fix PReLU backward computing (#3277)

* Add `reverse` option in Reshape (#3280)

* add scala example, end2end neural-style (#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (#3293)

* Fix newer version of gtest and cpptest (#3294)

* when set use_global_stats then do not use cudnn (#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (#3270)

* add support for building on power (#3302)

* add recent examples, collect some missing tutorials (#3340)

* CMake for caffe plugin

* CMake python deployment changes

* CMake python deployment changes

* CMake python deployment changes

* CMake python deployment changes
rravu3 pushed a commit to rravu3/mxnet that referenced this pull request Jan 21, 2017
apache#4641)

* Add channel_ to Shape2D calculation

* scalapkg, add example multitask (apache#3186)

* RNN cell demo with ptb LSTM language model (apache#3197)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* Bulk lint fix (apache#3211)

* [TENSOR] Add FlatTo1D for all elementwise ops (apache#3238)

* Fix little bug on context (apache#3202)

* add PennTreeBank Language Model using lstm model in R (apache#2659)

* Add function 'print_summary' and some revise (apache#3161)

* Add function 'print_summary' and some revise

Add function 'print_summary' for print detail information of network, and format argument was add in 'plot_network'.
You can use 'print_summary' like:
"""
net = get_symbol(1000)
shape = {'softmax_label': (64, 12), 'data': (64, 3, 224, 224)}
mx.viz.print_summary(net, shape=shape)
"""
If without shape, the number of arguments would be nonsense currently.

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Update visualization.py

* Added my CmakeLists.txt for caffe plugin, etc.

* Revert "fix travis scala test config" (apache#3246)

This reverts parts of commit 3e15f62.
Reenables testing the Julia bindings

* [Scala] Code generation for Symbol (apache#3217)


[scala] auto-generate Symbol functions

* fix spelling errors (apache#3258)

Also align grammar and punctuation in short descriptions of features

* fix typo in run_test.sh (apache#3260)

* Copy slice along arbitrary axis (apache#3259)

* rnn-cell demo (push to server for testing)

* a running example with cuDNN RNN cell

* add copyslice along arbitrary axis for NDArray

* copy_slice_to as an ndarray operator

* Python interface to the _copy_slice_to operator

* fix lint error

* Enable concatenation for dim-1 vectors (apache#3264)

* fix PReLU backward computing (apache#3277)

* Add `reverse` option in Reshape (apache#3280)

* add scala example, end2end neural-style (apache#3267)

add scala example, end2end neural-style

* Improve multi-GPU performance (apache#3241)

* update kvstore

* update model.py

* bandwith tool

* update readme

* tiny

* fix lint

* fix batch size of dist_device_sync

* fix

* fix perf problem of kvstore when only using a single device

* roll back to previous strategy how to choose update_on_kvsotre

* add an optionl MXNET_ENABLE_GPU_P2P to control whether or not use p2p

* update dmlccore (apache#3293)

* Fix newer version of gtest and cpptest (apache#3294)

* when set use_global_stats then do not use cudnn (apache#3289)

* when set use_global_stats then do not use cudnn

* fix batch norm with use_global_stats

* Fix req+reserve_space in cudnn_rnn (apache#3274)

Fix req

Fix reserve_space

Allocate reserve_space using Storage

* add cudnn off option in Convolution (apache#3270)

* add support for building on power (apache#3302)

* add recent examples, collect some missing tutorials (apache#3340)

* CMake for caffe plugin

* CMake python deployment changes

* CMake python deployment changes

* CMake python deployment changes

* CMake python deployment changes
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants