Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
This repository was archived by the owner on Nov 17, 2023. It is now read-only.

Example on Deconvolution Layer's Configuration #1514

Closed
@tmquan

Description

@tmquan

Dear mxnet community,

The current documentation on Deconvolution layer is somehow difficult to catch up.
In particular, I want to reproduce u-net (for image segmentation purpose) available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
alt text

I stopped by the example https://github.com/dmlc/mxnet/blob/master/example/fcn-xs/symbol_fcnxs.py
and its utilization is still fuzzy, too.

Could you give me some direction (or example) how to use Deconvolution layer for such image segmentation task as follows:
I have a collection of n training volume images (t+xy) and their associative segmentation
(n, 64, 128, 128) ~> (n, 64, 128, 128)
where n is number of training instances, 64 is the temporal dimension, 128 is the spatial dimension.
How to construct a simple fully convolutional network using mxnet on this problem?
data ~> convolutional layer ~> pooling (downsample by 2) ~> deconvolutional layer ~> Upsampling by 2 ~> segmentation?

Thanks a lot

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions