|
4 | 4 |
|
5 | 5 | ### Computer Vision
|
6 | 6 |
|
7 |
| -#### [Image Classification](http://mxnet.io/tutorials/computer_vision/image_classification.html) |
| 7 | +- [Image Classification](http://mxnet.io/tutorials/computer_vision/image_classification.html) |
8 | 8 | *A simple example of classifying images using a convolutional neural network.*
|
9 |
| - |
10 |
| -#### [Image Segmentation](http://mxnet.io/tutorials/computer_vision/segmentation.html) |
| 9 | +- [Image Segmentation](http://mxnet.io/tutorials/computer_vision/segmentation.html) |
11 | 10 | *An example of segmenting various object out of an image using a convolutional neural network.*
|
12 |
| - |
13 |
| -#### [Object Detection using Faster R-CNN](http://mxnet.io/tutorials/computer_vision/detection.html) |
| 11 | +- [Object Detection using Faster R-CNN](http://mxnet.io/tutorials/computer_vision/detection.html) |
14 | 12 | *An example of detecting object bounding boxes in an image using a region proposal network.*
|
15 |
| - |
16 |
| -#### [Neural Art: Adding Artistic Style to Images](http://mxnet.io/tutorials/computer_vision/neural_art.html) |
| 13 | +- [Neural Art: Adding Artistic Style to Images](http://mxnet.io/tutorials/computer_vision/neural_art.html) |
17 | 14 | *An example of transferring styles of famous artists onto an image using a convolutional neural network.*
|
18 |
| - |
19 |
| -#### [Large Scale Image Classification: Training With 14 Million Images on a Single Machine](http://mxnet.io/tutorials/computer_vision/imagenet_full.html) |
| 15 | +- [Large Scale Image Classification: Training With 14 Million Images on a Single Machine](http://mxnet.io/tutorials/computer_vision/imagenet_full.html) |
20 | 16 | *An advanced example of training a deep convolutional network on the large ImageNet dataset efficiently.*
|
21 | 17 |
|
22 | 18 | ### Natural Language Processing
|
23 | 19 |
|
24 |
| -#### [Recurrent Neural Networks](http://mxnet.io/tutorials/nlp/rnn.html) |
25 |
| -#### [Text Classification using Convolutional Neural Network](http://mxnet.io/tutorials/nlp/cnn.html) |
26 |
| -#### [NCE Loss](http://mxnet.io/tutorials/nlp/nce_loss.html) |
| 20 | +- [Recurrent Neural Networks](http://mxnet.io/tutorials/nlp/rnn.html) |
| 21 | +- [Text Classification using Convolutional Neural Network](http://mxnet.io/tutorials/nlp/cnn.html) |
| 22 | +- [NCE Loss](http://mxnet.io/tutorials/nlp/nce_loss.html) |
| 23 | +*Using Noise Contrastive Estimation (NCE) loss \[[Mnih 2013](http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf)\] to scale efficiently when predicting against large vocabularies.* |
27 | 24 |
|
28 | 25 | ### Speech Recognition
|
29 | 26 |
|
30 |
| -#### [Speech LSTM](http://mxnet.io/tutorials/speech_recognition/speech_lstm.html) |
31 |
| -#### [Baidu Warp CTC](http://mxnet.io/tutorials/speech_recognition/baidu_warp_ctc.html) |
| 27 | +- [Speech LSTM](http://mxnet.io/tutorials/speech_recognition/speech_lstm.html) |
| 28 | +- [Baidu Warp CTC](http://mxnet.io/tutorials/speech_recognition/baidu_warp_ctc.html) |
| 29 | +*Connectionist Temporal Classification (CTC) \[[Graves, 2006](http://www.cs.toronto.edu/~graves/icml_2006.pdf)\] allows prediction against a sequence when the alignment to the input is not known beforehand. Warp CTC provides an efficient GPU implementation of this technique.* |
32 | 30 |
|
33 | 31 | ### Unsupervised Learning
|
34 | 32 |
|
35 |
| -#### [Generative Adversarial Network](http://mxnet.io/tutorials/unsupervised_learning/gan.html) |
36 |
| -#### [Auto Encoders](http://mxnet.io/tutorials/unsupervised_learning/auto_encoders.html) |
| 33 | +- [Generative Adversarial Network](http://mxnet.io/tutorials/unsupervised_learning/gan.html) |
| 34 | +- [Auto Encoders](http://mxnet.io/tutorials/unsupervised_learning/auto_encoders.html) |
37 | 35 |
|
38 | 36 | ### General Machine Learning
|
39 | 37 |
|
40 |
| -#### [Recommendation Systems](http://mxnet.io/tutorials/general_ml/recommendation_systems.html) |
| 38 | +- [Recommendation Systems](http://mxnet.io/tutorials/general_ml/recommendation_systems.html) |
41 | 39 |
|
42 | 40 | ## Language Tutorials
|
43 | 41 |
|
44 | 42 | ### Python Tutorials
|
45 |
| -* [NDArray](http://mxnet.io/tutorials/python/ndarray.html) |
46 |
| -* [Symbol](http://mxnet.io/tutorials/python/symbol.html) |
47 |
| -* [KVStore](http://mxnet.io/tutorials/python/kvstore.html) |
| 43 | +- [NDArray](http://mxnet.io/tutorials/python/ndarray.html) |
| 44 | +- [Symbol](http://mxnet.io/tutorials/python/symbol.html) |
| 45 | +- [KVStore](http://mxnet.io/tutorials/python/kvstore.html) |
48 | 46 |
|
49 | 47 | ### R Tutorials
|
50 |
| -* [NDArray](http://mxnet.io/tutorials/r/ndarray.html) |
51 |
| -* [Symbol](http://mxnet.io/tutorials/r/symbol.html) |
52 |
| -* [Write and use callback functions](http://mxnet.io/tutorials/r/CallbackFunctionTutorial.html) |
53 |
| -* [Neural Networks with MXNet in Five Minutes](http://mxnet.io/tutorials/r/fiveMinutesNeuralNetwork.html) |
54 |
| -* [Classify Real-World Images with Pre-trained Model](http://mxnet.io/tutorials/r/classifyRealImageWithPretrainedModel.html) |
55 |
| -* [Handwritten Digits Classification Competition](http://mxnet.io/tutorials/r/mnistCompetition.html) |
56 |
| -* [Character Language Model using RNN](http://mxnet.io/tutorials/r/charRnnModel.html) |
| 48 | +- [NDArray](http://mxnet.io/tutorials/r/ndarray.html) |
| 49 | +- [Symbol](http://mxnet.io/tutorials/r/symbol.html) |
| 50 | +- [Write and use callback functions](http://mxnet.io/tutorials/r/CallbackFunctionTutorial.html) |
| 51 | +- [Neural Networks with MXNet in Five Minutes](http://mxnet.io/tutorials/r/fiveMinutesNeuralNetwork.html) |
| 52 | +- [Classify Real-World Images with Pre-trained Model](http://mxnet.io/tutorials/r/classifyRealImageWithPretrainedModel.html) |
| 53 | +- [Handwritten Digits Classification Competition](http://mxnet.io/tutorials/r/mnistCompetition.html) |
| 54 | +- [Character Language Model using RNN](http://mxnet.io/tutorials/r/charRnnModel.html) |
57 | 55 |
|
58 | 56 | ## Other Resources
|
59 | 57 | - Collection of MXNet Tutorials for NVidia GTC 2016. [MXNet GTC 15 Tutorials](https://github.com/dmlc/mxnet-gtc-tutorial)
|
60 |
| -- Collection of [MXNet Code Examples](https://github.com/dmlc/mxnet/tree/master/example) |
| 58 | +- Collection of [MXNet Code Examples](https://github.com/dmlc/mxnet/tree/master/example) |
0 commit comments