-
Notifications
You must be signed in to change notification settings - Fork 796
/
byte_view_array.rs
1052 lines (953 loc) · 39.9 KB
/
byte_view_array.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::array::print_long_array;
use crate::builder::{ArrayBuilder, GenericByteViewBuilder};
use crate::iterator::ArrayIter;
use crate::types::bytes::ByteArrayNativeType;
use crate::types::{BinaryViewType, ByteViewType, StringViewType};
use crate::{Array, ArrayAccessor, ArrayRef, GenericByteArray, OffsetSizeTrait, Scalar};
use arrow_buffer::{ArrowNativeType, Buffer, NullBuffer, ScalarBuffer};
use arrow_data::{ArrayData, ArrayDataBuilder, ByteView};
use arrow_schema::{ArrowError, DataType};
use core::str;
use num::ToPrimitive;
use std::any::Any;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::sync::Arc;
use super::ByteArrayType;
/// [Variable-size Binary View Layout]: An array of variable length bytes views.
///
/// This array type is used to store variable length byte data (e.g. Strings, Binary)
/// and has efficient operations such as `take`, `filter`, and comparison.
///
/// [Variable-size Binary View Layout]: https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
///
/// This is different from [`GenericByteArray`], which also stores variable
/// length byte data, as it represents strings with an offset and length. `take`
/// and `filter` like operations are implemented by manipulating the "views"
/// (`u128`) without modifying the bytes. Each view also stores an inlined
/// prefix which speed up comparisons.
///
/// # See Also
///
/// * [`StringViewArray`] for storing utf8 encoded string data
/// * [`BinaryViewArray`] for storing bytes
/// * [`ByteView`] to interpret `u128`s layout of the views.
///
/// [`ByteView`]: arrow_data::ByteView
///
/// # Layout: "views" and buffers
///
/// A `GenericByteViewArray` stores variable length byte strings. An array of
/// `N` elements is stored as `N` fixed length "views" and a variable number
/// of variable length "buffers".
///
/// Each view is a `u128` value whose layout is different depending on the
/// length of the string stored at that location:
///
/// ```text
/// ┌──────┬────────────────────────┐
/// │length│ string value │
/// Strings (len <= 12) │ │ (padded with 0) │
/// └──────┴────────────────────────┘
/// 0 31 127
///
/// ┌───────┬───────┬───────┬───────┐
/// │length │prefix │ buf │offset │
/// Strings (len > 12) │ │ │ index │ │
/// └───────┴───────┴───────┴───────┘
/// 0 31 63 95 127
/// ```
///
/// * Strings with length <= 12 are stored directly in the view. See
/// [`Self::inline_value`] to access the inlined prefix from a short view.
///
/// * Strings with length > 12: The first four bytes are stored inline in the
/// view and the entire string is stored in one of the buffers. See [`ByteView`]
/// to access the fields of the these views.
///
/// As with other arrays, the optimized kernels in [`arrow_compute`] are likely
/// the easiest and fastest way to work with this data. However, it is possible
/// to access the views and buffers directly for more control.
///
/// For example
///
/// ```rust
/// # use arrow_array::StringViewArray;
/// # use arrow_array::Array;
/// use arrow_data::ByteView;
/// let array = StringViewArray::from(vec![
/// "hello",
/// "this string is longer than 12 bytes",
/// "this string is also longer than 12 bytes"
/// ]);
///
/// // ** Examine the first view (short string) **
/// assert!(array.is_valid(0)); // Check for nulls
/// let short_view: u128 = array.views()[0]; // "hello"
/// // get length of the string
/// let len = short_view as u32;
/// assert_eq!(len, 5); // strings less than 12 bytes are stored in the view
/// // SAFETY: `view` is a valid view
/// let value = unsafe {
/// StringViewArray::inline_value(&short_view, len as usize)
/// };
/// assert_eq!(value, b"hello");
///
/// // ** Examine the third view (long string) **
/// assert!(array.is_valid(12)); // Check for nulls
/// let long_view: u128 = array.views()[2]; // "this string is also longer than 12 bytes"
/// let len = long_view as u32;
/// assert_eq!(len, 40); // strings longer than 12 bytes are stored in the buffer
/// let view = ByteView::from(long_view); // use ByteView to access the fields
/// assert_eq!(view.length, 40);
/// assert_eq!(view.buffer_index, 0);
/// assert_eq!(view.offset, 35); // data starts after the first long string
/// // Views for long strings store a 4 byte prefix
/// let prefix = view.prefix.to_le_bytes();
/// assert_eq!(&prefix, b"this");
/// let value = array.value(2); // get the string value (see `value` implementation for how to access the bytes directly)
/// assert_eq!(value, "this string is also longer than 12 bytes");
/// ```
///
/// [`arrow_compute`]: https://docs.rs/arrow/latest/arrow/compute/index.html
///
/// Unlike [`GenericByteArray`], there are no constraints on the offsets other
/// than they must point into a valid buffer. However, they can be out of order,
/// non continuous and overlapping.
///
/// For example, in the following diagram, the strings "FishWasInTownToday" and
/// "CrumpleFacedFish" are both longer than 12 bytes and thus are stored in a
/// separate buffer while the string "LavaMonster" is stored inlined in the
/// view. In this case, the same bytes for "Fish" are used to store both strings.
///
/// [`ByteView`]: arrow_data::ByteView
///
/// ```text
/// ┌───┐
/// ┌──────┬──────┬──────┬──────┐ offset │...│
/// "FishWasInTownTodayYay" │ 21 │ Fish │ 0 │ 115 │─ ─ 103 │Mr.│
/// └──────┴──────┴──────┴──────┘ │ ┌ ─ ─ ─ ─ ▶ │Cru│
/// ┌──────┬──────┬──────┬──────┐ │mpl│
/// "CrumpleFacedFish" │ 16 │ Crum │ 0 │ 103 │─ ─│─ ─ ─ ┘ │eFa│
/// └──────┴──────┴──────┴──────┘ │ced│
/// ┌──────┬────────────────────┐ └ ─ ─ ─ ─ ─ ─ ─ ─ ▶│Fis│
/// "LavaMonster" │ 11 │ LavaMonster\0 │ │hWa│
/// └──────┴────────────────────┘ offset │sIn│
/// 115 │Tow│
/// │nTo│
/// │day│
/// u128 "views" │Yay│
/// buffer 0 │...│
/// └───┘
/// ```
pub struct GenericByteViewArray<T: ByteViewType + ?Sized> {
data_type: DataType,
views: ScalarBuffer<u128>,
buffers: Vec<Buffer>,
phantom: PhantomData<T>,
nulls: Option<NullBuffer>,
}
impl<T: ByteViewType + ?Sized> Clone for GenericByteViewArray<T> {
fn clone(&self) -> Self {
Self {
data_type: T::DATA_TYPE,
views: self.views.clone(),
buffers: self.buffers.clone(),
nulls: self.nulls.clone(),
phantom: Default::default(),
}
}
}
impl<T: ByteViewType + ?Sized> GenericByteViewArray<T> {
/// Create a new [`GenericByteViewArray`] from the provided parts, panicking on failure
///
/// # Panics
///
/// Panics if [`GenericByteViewArray::try_new`] returns an error
pub fn new(views: ScalarBuffer<u128>, buffers: Vec<Buffer>, nulls: Option<NullBuffer>) -> Self {
Self::try_new(views, buffers, nulls).unwrap()
}
/// Create a new [`GenericByteViewArray`] from the provided parts, returning an error on failure
///
/// # Errors
///
/// * `views.len() != nulls.len()`
/// * [ByteViewType::validate] fails
pub fn try_new(
views: ScalarBuffer<u128>,
buffers: Vec<Buffer>,
nulls: Option<NullBuffer>,
) -> Result<Self, ArrowError> {
T::validate(&views, &buffers)?;
if let Some(n) = nulls.as_ref() {
if n.len() != views.len() {
return Err(ArrowError::InvalidArgumentError(format!(
"Incorrect length of null buffer for {}ViewArray, expected {} got {}",
T::PREFIX,
views.len(),
n.len(),
)));
}
}
Ok(Self {
data_type: T::DATA_TYPE,
views,
buffers,
nulls,
phantom: Default::default(),
})
}
/// Create a new [`GenericByteViewArray`] from the provided parts, without validation
///
/// # Safety
///
/// Safe if [`Self::try_new`] would not error
pub unsafe fn new_unchecked(
views: ScalarBuffer<u128>,
buffers: Vec<Buffer>,
nulls: Option<NullBuffer>,
) -> Self {
Self {
data_type: T::DATA_TYPE,
phantom: Default::default(),
views,
buffers,
nulls,
}
}
/// Create a new [`GenericByteViewArray`] of length `len` where all values are null
pub fn new_null(len: usize) -> Self {
Self {
data_type: T::DATA_TYPE,
views: vec![0; len].into(),
buffers: vec![],
nulls: Some(NullBuffer::new_null(len)),
phantom: Default::default(),
}
}
/// Create a new [`Scalar`] from `value`
pub fn new_scalar(value: impl AsRef<T::Native>) -> Scalar<Self> {
Scalar::new(Self::from_iter_values(std::iter::once(value)))
}
/// Creates a [`GenericByteViewArray`] based on an iterator of values without nulls
pub fn from_iter_values<Ptr, I>(iter: I) -> Self
where
Ptr: AsRef<T::Native>,
I: IntoIterator<Item = Ptr>,
{
let iter = iter.into_iter();
let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
for v in iter {
builder.append_value(v);
}
builder.finish()
}
/// Deconstruct this array into its constituent parts
pub fn into_parts(self) -> (ScalarBuffer<u128>, Vec<Buffer>, Option<NullBuffer>) {
(self.views, self.buffers, self.nulls)
}
/// Returns the views buffer
#[inline]
pub fn views(&self) -> &ScalarBuffer<u128> {
&self.views
}
/// Returns the buffers storing string data
#[inline]
pub fn data_buffers(&self) -> &[Buffer] {
&self.buffers
}
/// Returns the element at index `i`
/// # Panics
/// Panics if index `i` is out of bounds.
pub fn value(&self, i: usize) -> &T::Native {
assert!(
i < self.len(),
"Trying to access an element at index {} from a {}ViewArray of length {}",
i,
T::PREFIX,
self.len()
);
unsafe { self.value_unchecked(i) }
}
/// Returns the element at index `i` without bounds checking
///
/// # Safety
///
/// Caller is responsible for ensuring that the index is within the bounds
/// of the array
pub unsafe fn value_unchecked(&self, idx: usize) -> &T::Native {
let v = self.views.get_unchecked(idx);
let len = *v as u32;
let b = if len <= 12 {
Self::inline_value(v, len as usize)
} else {
let view = ByteView::from(*v);
let data = self.buffers.get_unchecked(view.buffer_index as usize);
let offset = view.offset as usize;
data.get_unchecked(offset..offset + len as usize)
};
T::Native::from_bytes_unchecked(b)
}
/// Returns the first `len` bytes the inline value of the view.
///
/// # Safety
/// - The `view` must be a valid element from `Self::views()` that adheres to the view layout.
/// - The `len` must be the length of the inlined value. It should never be larger than 12.
#[inline(always)]
pub unsafe fn inline_value(view: &u128, len: usize) -> &[u8] {
debug_assert!(len <= 12);
std::slice::from_raw_parts((view as *const u128 as *const u8).wrapping_add(4), len)
}
/// Constructs a new iterator for iterating over the values of this array
pub fn iter(&self) -> ArrayIter<&Self> {
ArrayIter::new(self)
}
/// Returns an iterator over the bytes of this array, including null values
pub fn bytes_iter(&self) -> impl Iterator<Item = &[u8]> {
self.views.iter().map(move |v| {
let len = *v as u32;
if len <= 12 {
unsafe { Self::inline_value(v, len as usize) }
} else {
let view = ByteView::from(*v);
let data = &self.buffers[view.buffer_index as usize];
let offset = view.offset as usize;
unsafe { data.get_unchecked(offset..offset + len as usize) }
}
})
}
/// Returns an iterator over the first `prefix_len` bytes of each array
/// element, including null values.
///
/// If `prefix_len` is larger than the element's length, the iterator will
/// return an empty slice (`&[]`).
pub fn prefix_bytes_iter(&self, prefix_len: usize) -> impl Iterator<Item = &[u8]> {
self.views().into_iter().map(move |v| {
let len = (*v as u32) as usize;
if len < prefix_len {
return &[] as &[u8];
}
if prefix_len <= 4 || len <= 12 {
unsafe { StringViewArray::inline_value(v, prefix_len) }
} else {
let view = ByteView::from(*v);
let data = unsafe {
self.data_buffers()
.get_unchecked(view.buffer_index as usize)
};
let offset = view.offset as usize;
unsafe { data.get_unchecked(offset..offset + prefix_len) }
}
})
}
/// Returns an iterator over the last `suffix_len` bytes of each array
/// element, including null values.
///
/// Note that for [`StringViewArray`] the last bytes may start in the middle
/// of a UTF-8 codepoint, and thus may not be a valid `&str`.
///
/// If `suffix_len` is larger than the element's length, the iterator will
/// return an empty slice (`&[]`).
pub fn suffix_bytes_iter(&self, suffix_len: usize) -> impl Iterator<Item = &[u8]> {
self.views().into_iter().map(move |v| {
let len = (*v as u32) as usize;
if len < suffix_len {
return &[] as &[u8];
}
if len <= 12 {
unsafe { &StringViewArray::inline_value(v, len)[len - suffix_len..] }
} else {
let view = ByteView::from(*v);
let data = unsafe {
self.data_buffers()
.get_unchecked(view.buffer_index as usize)
};
let offset = view.offset as usize;
unsafe { data.get_unchecked(offset + len - suffix_len..offset + len) }
}
})
}
/// Returns a zero-copy slice of this array with the indicated offset and length.
pub fn slice(&self, offset: usize, length: usize) -> Self {
Self {
data_type: T::DATA_TYPE,
views: self.views.slice(offset, length),
buffers: self.buffers.clone(),
nulls: self.nulls.as_ref().map(|n| n.slice(offset, length)),
phantom: Default::default(),
}
}
/// Returns a "compacted" version of this array
///
/// The original array will *not* be modified
///
/// # Garbage Collection
///
/// Before GC:
/// ```text
/// ┌──────┐
/// │......│
/// │......│
/// ┌────────────────────┐ ┌ ─ ─ ─ ▶ │Data1 │ Large buffer
/// │ View 1 │─ ─ ─ ─ │......│ with data that
/// ├────────────────────┤ │......│ is not referred
/// │ View 2 │─ ─ ─ ─ ─ ─ ─ ─▶ │Data2 │ to by View 1 or
/// └────────────────────┘ │......│ View 2
/// │......│
/// 2 views, refer to │......│
/// small portions of a └──────┘
/// large buffer
/// ```
///
/// After GC:
///
/// ```text
/// ┌────────────────────┐ ┌─────┐ After gc, only
/// │ View 1 │─ ─ ─ ─ ─ ─ ─ ─▶ │Data1│ data that is
/// ├────────────────────┤ ┌ ─ ─ ─ ▶ │Data2│ pointed to by
/// │ View 2 │─ ─ ─ ─ └─────┘ the views is
/// └────────────────────┘ left
///
///
/// 2 views
/// ```
/// This method will compact the data buffers by recreating the view array and only include the data
/// that is pointed to by the views.
///
/// Note that it will copy the array regardless of whether the original array is compact.
/// Use with caution as this can be an expensive operation, only use it when you are sure that the view
/// array is significantly smaller than when it is originally created, e.g., after filtering or slicing.
///
/// Note: this function does not attempt to canonicalize / deduplicate values. For this
/// feature see [`GenericByteViewBuilder::with_deduplicate_strings`].
pub fn gc(&self) -> Self {
let mut builder = GenericByteViewBuilder::<T>::with_capacity(self.len());
for v in self.iter() {
builder.append_option(v);
}
builder.finish()
}
/// Compare two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
///
/// Comparing two ByteView types are non-trivial.
/// It takes a bit of patience to understand why we don't just compare two &[u8] directly.
///
/// ByteView types give us the following two advantages, and we need to be careful not to lose them:
/// (1) For string/byte smaller than 12 bytes, the entire data is inlined in the view.
/// Meaning that reading one array element requires only one memory access
/// (two memory access required for StringArray, one for offset buffer, the other for value buffer).
///
/// (2) For string/byte larger than 12 bytes, we can still be faster than (for certain operations) StringArray/ByteArray,
/// thanks to the inlined 4 bytes.
/// Consider equality check:
/// If the first four bytes of the two strings are different, we can return false immediately (with just one memory access).
///
/// If we directly compare two &[u8], we materialize the entire string (i.e., make multiple memory accesses), which might be unnecessary.
/// - Most of the time (eq, ord), we only need to look at the first 4 bytes to know the answer,
/// e.g., if the inlined 4 bytes are different, we can directly return unequal without looking at the full string.
///
/// # Order check flow
/// (1) if both string are smaller than 12 bytes, we can directly compare the data inlined to the view.
/// (2) if any of the string is larger than 12 bytes, we need to compare the full string.
/// (2.1) if the inlined 4 bytes are different, we can return the result immediately.
/// (2.2) o.w., we need to compare the full string.
///
/// # Safety
/// The left/right_idx must within range of each array
pub unsafe fn compare_unchecked(
left: &GenericByteViewArray<T>,
left_idx: usize,
right: &GenericByteViewArray<T>,
right_idx: usize,
) -> std::cmp::Ordering {
let l_view = left.views().get_unchecked(left_idx);
let l_len = *l_view as u32;
let r_view = right.views().get_unchecked(right_idx);
let r_len = *r_view as u32;
if l_len <= 12 && r_len <= 12 {
let l_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, l_len as usize) };
let r_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, r_len as usize) };
return l_data.cmp(r_data);
}
// one of the string is larger than 12 bytes,
// we then try to compare the inlined data first
let l_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, 4) };
let r_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, 4) };
if r_inlined_data != l_inlined_data {
return l_inlined_data.cmp(r_inlined_data);
}
// unfortunately, we need to compare the full data
let l_full_data: &[u8] = unsafe { left.value_unchecked(left_idx).as_ref() };
let r_full_data: &[u8] = unsafe { right.value_unchecked(right_idx).as_ref() };
l_full_data.cmp(r_full_data)
}
}
impl<T: ByteViewType + ?Sized> Debug for GenericByteViewArray<T> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}ViewArray\n[\n", T::PREFIX)?;
print_long_array(self, f, |array, index, f| {
std::fmt::Debug::fmt(&array.value(index), f)
})?;
write!(f, "]")
}
}
impl<T: ByteViewType + ?Sized> Array for GenericByteViewArray<T> {
fn as_any(&self) -> &dyn Any {
self
}
fn to_data(&self) -> ArrayData {
self.clone().into()
}
fn into_data(self) -> ArrayData {
self.into()
}
fn data_type(&self) -> &DataType {
&self.data_type
}
fn slice(&self, offset: usize, length: usize) -> ArrayRef {
Arc::new(self.slice(offset, length))
}
fn len(&self) -> usize {
self.views.len()
}
fn is_empty(&self) -> bool {
self.views.is_empty()
}
fn offset(&self) -> usize {
0
}
fn nulls(&self) -> Option<&NullBuffer> {
self.nulls.as_ref()
}
fn logical_null_count(&self) -> usize {
// More efficient that the default implementation
self.null_count()
}
fn get_buffer_memory_size(&self) -> usize {
let mut sum = self.buffers.iter().map(|b| b.capacity()).sum::<usize>();
sum += self.views.inner().capacity();
if let Some(x) = &self.nulls {
sum += x.buffer().capacity()
}
sum
}
fn get_array_memory_size(&self) -> usize {
std::mem::size_of::<Self>() + self.get_buffer_memory_size()
}
}
impl<'a, T: ByteViewType + ?Sized> ArrayAccessor for &'a GenericByteViewArray<T> {
type Item = &'a T::Native;
fn value(&self, index: usize) -> Self::Item {
GenericByteViewArray::value(self, index)
}
unsafe fn value_unchecked(&self, index: usize) -> Self::Item {
GenericByteViewArray::value_unchecked(self, index)
}
}
impl<'a, T: ByteViewType + ?Sized> IntoIterator for &'a GenericByteViewArray<T> {
type Item = Option<&'a T::Native>;
type IntoIter = ArrayIter<Self>;
fn into_iter(self) -> Self::IntoIter {
ArrayIter::new(self)
}
}
impl<T: ByteViewType + ?Sized> From<ArrayData> for GenericByteViewArray<T> {
fn from(value: ArrayData) -> Self {
let views = value.buffers()[0].clone();
let views = ScalarBuffer::new(views, value.offset(), value.len());
let buffers = value.buffers()[1..].to_vec();
Self {
data_type: T::DATA_TYPE,
views,
buffers,
nulls: value.nulls().cloned(),
phantom: Default::default(),
}
}
}
/// Efficiently convert a [`GenericByteArray`] to a [`GenericByteViewArray`]
///
/// For example this method can convert a [`StringArray`] to a
/// [`StringViewArray`].
///
/// If the offsets are all less than u32::MAX, the new [`GenericByteViewArray`]
/// is built without copying the underlying string data (views are created
/// directly into the existing buffer)
///
/// [`StringArray`]: crate::StringArray
impl<FROM, V> From<&GenericByteArray<FROM>> for GenericByteViewArray<V>
where
FROM: ByteArrayType,
FROM::Offset: OffsetSizeTrait + ToPrimitive,
V: ByteViewType<Native = FROM::Native>,
{
fn from(byte_array: &GenericByteArray<FROM>) -> Self {
let offsets = byte_array.offsets();
let can_reuse_buffer = match offsets.last() {
Some(offset) => offset.as_usize() < u32::MAX as usize,
None => true,
};
if can_reuse_buffer {
// build views directly pointing to the existing buffer
let len = byte_array.len();
let mut views_builder = GenericByteViewBuilder::<V>::with_capacity(len);
let str_values_buf = byte_array.values().clone();
let block = views_builder.append_block(str_values_buf);
for (i, w) in offsets.windows(2).enumerate() {
let offset = w[0].as_usize();
let end = w[1].as_usize();
let length = end - offset;
if byte_array.is_null(i) {
views_builder.append_null();
} else {
// Safety: the input was a valid array so it valid UTF8 (if string). And
// all offsets were valid
unsafe {
views_builder.append_view_unchecked(block, offset as u32, length as u32)
}
}
}
assert_eq!(views_builder.len(), len);
views_builder.finish()
} else {
// Otherwise, create a new buffer for large strings
// TODO: the original buffer could still be used
// by making multiple slices of u32::MAX length
GenericByteViewArray::<V>::from_iter(byte_array.iter())
}
}
}
impl<T: ByteViewType + ?Sized> From<GenericByteViewArray<T>> for ArrayData {
fn from(mut array: GenericByteViewArray<T>) -> Self {
let len = array.len();
array.buffers.insert(0, array.views.into_inner());
let builder = ArrayDataBuilder::new(T::DATA_TYPE)
.len(len)
.buffers(array.buffers)
.nulls(array.nulls);
unsafe { builder.build_unchecked() }
}
}
impl<'a, Ptr, T> FromIterator<&'a Option<Ptr>> for GenericByteViewArray<T>
where
Ptr: AsRef<T::Native> + 'a,
T: ByteViewType + ?Sized,
{
fn from_iter<I: IntoIterator<Item = &'a Option<Ptr>>>(iter: I) -> Self {
iter.into_iter()
.map(|o| o.as_ref().map(|p| p.as_ref()))
.collect()
}
}
impl<Ptr, T: ByteViewType + ?Sized> FromIterator<Option<Ptr>> for GenericByteViewArray<T>
where
Ptr: AsRef<T::Native>,
{
fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
let iter = iter.into_iter();
let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
builder.extend(iter);
builder.finish()
}
}
/// A [`GenericByteViewArray`] of `[u8]`
///
/// See [`GenericByteViewArray`] for format and layout details.
///
/// # Example
/// ```
/// use arrow_array::BinaryViewArray;
/// let array = BinaryViewArray::from_iter_values(vec![b"hello" as &[u8], b"world", b"lulu", b"large payload over 12 bytes"]);
/// assert_eq!(array.value(0), b"hello");
/// assert_eq!(array.value(3), b"large payload over 12 bytes");
/// ```
pub type BinaryViewArray = GenericByteViewArray<BinaryViewType>;
impl BinaryViewArray {
/// Convert the [`BinaryViewArray`] to [`StringViewArray`]
/// If items not utf8 data, validate will fail and error returned.
pub fn to_string_view(self) -> Result<StringViewArray, ArrowError> {
StringViewType::validate(self.views(), self.data_buffers())?;
unsafe { Ok(self.to_string_view_unchecked()) }
}
/// Convert the [`BinaryViewArray`] to [`StringViewArray`]
/// # Safety
/// Caller is responsible for ensuring that items in array are utf8 data.
pub unsafe fn to_string_view_unchecked(self) -> StringViewArray {
StringViewArray::new_unchecked(self.views, self.buffers, self.nulls)
}
}
impl From<Vec<&[u8]>> for BinaryViewArray {
fn from(v: Vec<&[u8]>) -> Self {
Self::from_iter_values(v)
}
}
impl From<Vec<Option<&[u8]>>> for BinaryViewArray {
fn from(v: Vec<Option<&[u8]>>) -> Self {
v.into_iter().collect()
}
}
/// A [`GenericByteViewArray`] that stores utf8 data
///
/// See [`GenericByteViewArray`] for format and layout details.
///
/// # Example
/// ```
/// use arrow_array::StringViewArray;
/// let array = StringViewArray::from_iter_values(vec!["hello", "world", "lulu", "large payload over 12 bytes"]);
/// assert_eq!(array.value(0), "hello");
/// assert_eq!(array.value(3), "large payload over 12 bytes");
/// ```
pub type StringViewArray = GenericByteViewArray<StringViewType>;
impl StringViewArray {
/// Convert the [`StringViewArray`] to [`BinaryViewArray`]
pub fn to_binary_view(self) -> BinaryViewArray {
unsafe { BinaryViewArray::new_unchecked(self.views, self.buffers, self.nulls) }
}
/// Returns true if all data within this array is ASCII
pub fn is_ascii(&self) -> bool {
// Alternative (but incorrect): directly check the underlying buffers
// (1) Our string view might be sparse, i.e., a subset of the buffers,
// so even if the buffer is not ascii, we can still be ascii.
// (2) It is quite difficult to know the range of each buffer (unlike StringArray)
// This means that this operation is quite expensive, shall we cache the result?
// i.e. track `is_ascii` in the builder.
self.iter().all(|v| match v {
Some(v) => v.is_ascii(),
None => true,
})
}
}
impl From<Vec<&str>> for StringViewArray {
fn from(v: Vec<&str>) -> Self {
Self::from_iter_values(v)
}
}
impl From<Vec<Option<&str>>> for StringViewArray {
fn from(v: Vec<Option<&str>>) -> Self {
v.into_iter().collect()
}
}
impl From<Vec<String>> for StringViewArray {
fn from(v: Vec<String>) -> Self {
Self::from_iter_values(v)
}
}
impl From<Vec<Option<String>>> for StringViewArray {
fn from(v: Vec<Option<String>>) -> Self {
v.into_iter().collect()
}
}
#[cfg(test)]
mod tests {
use crate::builder::{BinaryViewBuilder, StringViewBuilder};
use crate::{Array, BinaryViewArray, StringViewArray};
use arrow_buffer::{Buffer, ScalarBuffer};
use arrow_data::ByteView;
#[test]
fn try_new_string() {
let array = StringViewArray::from_iter_values(vec![
"hello",
"world",
"lulu",
"large payload over 12 bytes",
]);
assert_eq!(array.value(0), "hello");
assert_eq!(array.value(3), "large payload over 12 bytes");
}
#[test]
fn try_new_binary() {
let array = BinaryViewArray::from_iter_values(vec![
b"hello".as_slice(),
b"world".as_slice(),
b"lulu".as_slice(),
b"large payload over 12 bytes".as_slice(),
]);
assert_eq!(array.value(0), b"hello");
assert_eq!(array.value(3), b"large payload over 12 bytes");
}
#[test]
fn try_new_empty_string() {
// test empty array
let array = {
let mut builder = StringViewBuilder::new();
builder.finish()
};
assert!(array.is_empty());
}
#[test]
fn try_new_empty_binary() {
// test empty array
let array = {
let mut builder = BinaryViewBuilder::new();
builder.finish()
};
assert!(array.is_empty());
}
#[test]
fn test_append_string() {
// test builder append
let array = {
let mut builder = StringViewBuilder::new();
builder.append_value("hello");
builder.append_null();
builder.append_option(Some("large payload over 12 bytes"));
builder.finish()
};
assert_eq!(array.value(0), "hello");
assert!(array.is_null(1));
assert_eq!(array.value(2), "large payload over 12 bytes");
}
#[test]
fn test_append_binary() {
// test builder append
let array = {
let mut builder = BinaryViewBuilder::new();
builder.append_value(b"hello");
builder.append_null();
builder.append_option(Some(b"large payload over 12 bytes"));
builder.finish()
};
assert_eq!(array.value(0), b"hello");
assert!(array.is_null(1));
assert_eq!(array.value(2), b"large payload over 12 bytes");
}
#[test]
fn test_in_progress_recreation() {
let array = {
// make a builder with small block size.
let mut builder = StringViewBuilder::new().with_fixed_block_size(14);
builder.append_value("large payload over 12 bytes");
builder.append_option(Some("another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created"));
builder.finish()
};
assert_eq!(array.value(0), "large payload over 12 bytes");
assert_eq!(array.value(1), "another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created");
assert_eq!(2, array.buffers.len());
}
#[test]
#[should_panic(expected = "Invalid buffer index at 0: got index 3 but only has 1 buffers")]
fn new_with_invalid_view_data() {
let v = "large payload over 12 bytes";
let view = ByteView::new(13, &v.as_bytes()[0..4])
.with_buffer_index(3)
.with_offset(1);
let views = ScalarBuffer::from(vec![view.into()]);
let buffers = vec![Buffer::from_slice_ref(v)];
StringViewArray::new(views, buffers, None);
}
#[test]
#[should_panic(
expected = "Encountered non-UTF-8 data at index 0: invalid utf-8 sequence of 1 bytes from index 0"
)]
fn new_with_invalid_utf8_data() {
let v: Vec<u8> = vec![
// invalid UTF8
0xf0, 0x80, 0x80, 0x80, // more bytes to make it larger than 12
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let view = ByteView::new(v.len() as u32, &v[0..4]);
let views = ScalarBuffer::from(vec![view.into()]);
let buffers = vec![Buffer::from_slice_ref(v)];
StringViewArray::new(views, buffers, None);
}
#[test]
#[should_panic(expected = "View at index 0 contained non-zero padding for string of length 1")]
fn new_with_invalid_zero_padding() {
let mut data = [0; 12];
data[0] = b'H';
data[11] = 1; // no zero padding
let mut view_buffer = [0; 16];
view_buffer[0..4].copy_from_slice(&1u32.to_le_bytes());
view_buffer[4..].copy_from_slice(&data);
let view = ByteView::from(u128::from_le_bytes(view_buffer));
let views = ScalarBuffer::from(vec![view.into()]);
let buffers = vec![];
StringViewArray::new(views, buffers, None);
}
#[test]
#[should_panic(expected = "Mismatch between embedded prefix and data")]
fn test_mismatch_between_embedded_prefix_and_data() {
let input_str_1 = "Hello, Rustaceans!";
let input_str_2 = "Hallo, Rustaceans!";
let length = input_str_1.len() as u32;
assert!(input_str_1.len() > 12);
let mut view_buffer = [0; 16];
view_buffer[0..4].copy_from_slice(&length.to_le_bytes());
view_buffer[4..8].copy_from_slice(&input_str_1.as_bytes()[0..4]);
view_buffer[8..12].copy_from_slice(&0u32.to_le_bytes());
view_buffer[12..].copy_from_slice(&0u32.to_le_bytes());
let view = ByteView::from(u128::from_le_bytes(view_buffer));
let views = ScalarBuffer::from(vec![view.into()]);
let buffers = vec![Buffer::from_slice_ref(input_str_2.as_bytes())];
StringViewArray::new(views, buffers, None);
}
#[test]
fn test_gc() {
let test_data = [
Some("longer than 12 bytes"),
Some("short"),
Some("t"),
Some("longer than 12 bytes"),
None,