-
Notifications
You must be signed in to change notification settings - Fork 796
/
types.rs
2171 lines (1972 loc) · 75.2 KB
/
types.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Contains structs and methods to build Parquet schema and schema descriptors.
use std::{collections::HashMap, convert::From, fmt, sync::Arc};
use crate::format::SchemaElement;
use crate::basic::{
ColumnOrder, ConvertedType, LogicalType, Repetition, SortOrder, TimeUnit, Type as PhysicalType,
};
use crate::errors::{ParquetError, Result};
// ----------------------------------------------------------------------
// Parquet Type definitions
/// Type alias for `Arc<Type>`.
pub type TypePtr = Arc<Type>;
/// Type alias for `Arc<SchemaDescriptor>`.
pub type SchemaDescPtr = Arc<SchemaDescriptor>;
/// Type alias for `Arc<ColumnDescriptor>`.
pub type ColumnDescPtr = Arc<ColumnDescriptor>;
/// Representation of a Parquet type.
/// Used to describe primitive leaf fields and structs, including top-level schema.
/// Note that the top-level schema type is represented using `GroupType` whose
/// repetition is `None`.
#[derive(Clone, Debug, PartialEq)]
pub enum Type {
PrimitiveType {
basic_info: BasicTypeInfo,
physical_type: PhysicalType,
type_length: i32,
scale: i32,
precision: i32,
},
GroupType {
basic_info: BasicTypeInfo,
fields: Vec<TypePtr>,
},
}
impl Type {
/// Creates primitive type builder with provided field name and physical type.
pub fn primitive_type_builder(name: &str, physical_type: PhysicalType) -> PrimitiveTypeBuilder {
PrimitiveTypeBuilder::new(name, physical_type)
}
/// Creates group type builder with provided column name.
pub fn group_type_builder(name: &str) -> GroupTypeBuilder {
GroupTypeBuilder::new(name)
}
/// Returns [`BasicTypeInfo`] information about the type.
pub fn get_basic_info(&self) -> &BasicTypeInfo {
match *self {
Type::PrimitiveType { ref basic_info, .. } => basic_info,
Type::GroupType { ref basic_info, .. } => basic_info,
}
}
/// Returns this type's field name.
pub fn name(&self) -> &str {
self.get_basic_info().name()
}
/// Gets the fields from this group type.
/// Note that this will panic if called on a non-group type.
// TODO: should we return `&[&Type]` here?
pub fn get_fields(&self) -> &[TypePtr] {
match *self {
Type::GroupType { ref fields, .. } => &fields[..],
_ => panic!("Cannot call get_fields() on a non-group type"),
}
}
/// Gets physical type of this primitive type.
/// Note that this will panic if called on a non-primitive type.
pub fn get_physical_type(&self) -> PhysicalType {
match *self {
Type::PrimitiveType {
basic_info: _,
physical_type,
..
} => physical_type,
_ => panic!("Cannot call get_physical_type() on a non-primitive type"),
}
}
/// Gets precision of this primitive type.
/// Note that this will panic if called on a non-primitive type.
pub fn get_precision(&self) -> i32 {
match *self {
Type::PrimitiveType { precision, .. } => precision,
_ => panic!("Cannot call get_precision() on non-primitive type"),
}
}
/// Gets scale of this primitive type.
/// Note that this will panic if called on a non-primitive type.
pub fn get_scale(&self) -> i32 {
match *self {
Type::PrimitiveType { scale, .. } => scale,
_ => panic!("Cannot call get_scale() on non-primitive type"),
}
}
/// Checks if `sub_type` schema is part of current schema.
/// This method can be used to check if projected columns are part of the root schema.
pub fn check_contains(&self, sub_type: &Type) -> bool {
// Names match, and repetitions match or not set for both
let basic_match = self.get_basic_info().name() == sub_type.get_basic_info().name()
&& (self.is_schema() && sub_type.is_schema()
|| !self.is_schema()
&& !sub_type.is_schema()
&& self.get_basic_info().repetition()
== sub_type.get_basic_info().repetition());
match *self {
Type::PrimitiveType { .. } if basic_match && sub_type.is_primitive() => {
self.get_physical_type() == sub_type.get_physical_type()
}
Type::GroupType { .. } if basic_match && sub_type.is_group() => {
// build hashmap of name -> TypePtr
let mut field_map = HashMap::new();
for field in self.get_fields() {
field_map.insert(field.name(), field);
}
for field in sub_type.get_fields() {
if !field_map
.get(field.name())
.map(|tpe| tpe.check_contains(field))
.unwrap_or(false)
{
return false;
}
}
true
}
_ => false,
}
}
/// Returns `true` if this type is a primitive type, `false` otherwise.
pub fn is_primitive(&self) -> bool {
matches!(*self, Type::PrimitiveType { .. })
}
/// Returns `true` if this type is a group type, `false` otherwise.
pub fn is_group(&self) -> bool {
matches!(*self, Type::GroupType { .. })
}
/// Returns `true` if this type is the top-level schema type (message type).
pub fn is_schema(&self) -> bool {
match *self {
Type::GroupType { ref basic_info, .. } => !basic_info.has_repetition(),
_ => false,
}
}
/// Returns `true` if this type is repeated or optional.
/// If this type doesn't have repetition defined, we still treat it as optional.
pub fn is_optional(&self) -> bool {
self.get_basic_info().has_repetition()
&& self.get_basic_info().repetition() != Repetition::REQUIRED
}
}
/// A builder for primitive types. All attributes are optional
/// except the name and physical type.
/// Note that if not specified explicitly, `Repetition::OPTIONAL` is used.
pub struct PrimitiveTypeBuilder<'a> {
name: &'a str,
repetition: Repetition,
physical_type: PhysicalType,
converted_type: ConvertedType,
logical_type: Option<LogicalType>,
length: i32,
precision: i32,
scale: i32,
id: Option<i32>,
}
impl<'a> PrimitiveTypeBuilder<'a> {
/// Creates new primitive type builder with provided field name and physical type.
pub fn new(name: &'a str, physical_type: PhysicalType) -> Self {
Self {
name,
repetition: Repetition::OPTIONAL,
physical_type,
converted_type: ConvertedType::NONE,
logical_type: None,
length: -1,
precision: -1,
scale: -1,
id: None,
}
}
/// Sets [`Repetition`] for this field and returns itself.
pub fn with_repetition(self, repetition: Repetition) -> Self {
Self { repetition, ..self }
}
/// Sets [`ConvertedType`] for this field and returns itself.
pub fn with_converted_type(self, converted_type: ConvertedType) -> Self {
Self {
converted_type,
..self
}
}
/// Sets [`LogicalType`] for this field and returns itself.
/// If only the logical type is populated for a primitive type, the converted type
/// will be automatically populated, and can thus be omitted.
pub fn with_logical_type(self, logical_type: Option<LogicalType>) -> Self {
Self {
logical_type,
..self
}
}
/// Sets type length and returns itself.
/// This is only applied to FIXED_LEN_BYTE_ARRAY and INT96 (INTERVAL) types, because
/// they maintain fixed size underlying byte array.
/// By default, value is `0`.
pub fn with_length(self, length: i32) -> Self {
Self { length, ..self }
}
/// Sets precision for Parquet DECIMAL physical type and returns itself.
/// By default, it equals to `0` and used only for decimal context.
pub fn with_precision(self, precision: i32) -> Self {
Self { precision, ..self }
}
/// Sets scale for Parquet DECIMAL physical type and returns itself.
/// By default, it equals to `0` and used only for decimal context.
pub fn with_scale(self, scale: i32) -> Self {
Self { scale, ..self }
}
/// Sets optional field id and returns itself.
pub fn with_id(self, id: Option<i32>) -> Self {
Self { id, ..self }
}
/// Creates a new `PrimitiveType` instance from the collected attributes.
/// Returns `Err` in case of any building conditions are not met.
pub fn build(self) -> Result<Type> {
let mut basic_info = BasicTypeInfo {
name: String::from(self.name),
repetition: Some(self.repetition),
converted_type: self.converted_type,
logical_type: self.logical_type.clone(),
id: self.id,
};
// Check length before logical type, since it is used for logical type validation.
if self.physical_type == PhysicalType::FIXED_LEN_BYTE_ARRAY && self.length < 0 {
return Err(general_err!(
"Invalid FIXED_LEN_BYTE_ARRAY length: {} for field '{}'",
self.length,
self.name
));
}
match &self.logical_type {
Some(logical_type) => {
// If a converted type is populated, check that it is consistent with
// its logical type
if self.converted_type != ConvertedType::NONE {
if ConvertedType::from(self.logical_type.clone()) != self.converted_type {
return Err(general_err!(
"Logical type {:?} is incompatible with converted type {} for field '{}'",
logical_type,
self.converted_type,
self.name
));
}
} else {
// Populate the converted type for backwards compatibility
basic_info.converted_type = self.logical_type.clone().into();
}
// Check that logical type and physical type are compatible
match (logical_type, self.physical_type) {
(LogicalType::Map, _) | (LogicalType::List, _) => {
return Err(general_err!(
"{:?} cannot be applied to a primitive type for field '{}'",
logical_type,
self.name
));
}
(LogicalType::Enum, PhysicalType::BYTE_ARRAY) => {}
(LogicalType::Decimal { scale, precision }, _) => {
// Check that scale and precision are consistent with legacy values
if *scale != self.scale {
return Err(general_err!(
"DECIMAL logical type scale {} must match self.scale {} for field '{}'",
scale,
self.scale,
self.name
));
}
if *precision != self.precision {
return Err(general_err!(
"DECIMAL logical type precision {} must match self.precision {} for field '{}'",
precision,
self.precision,
self.name
));
}
self.check_decimal_precision_scale()?;
}
(LogicalType::Date, PhysicalType::INT32) => {}
(
LogicalType::Time {
unit: TimeUnit::MILLIS(_),
..
},
PhysicalType::INT32,
) => {}
(LogicalType::Time { unit, .. }, PhysicalType::INT64) => {
if *unit == TimeUnit::MILLIS(Default::default()) {
return Err(general_err!(
"Cannot use millisecond unit on INT64 type for field '{}'",
self.name
));
}
}
(LogicalType::Timestamp { .. }, PhysicalType::INT64) => {}
(LogicalType::Integer { bit_width, .. }, PhysicalType::INT32)
if *bit_width <= 32 => {}
(LogicalType::Integer { bit_width, .. }, PhysicalType::INT64)
if *bit_width == 64 => {}
// Null type
(LogicalType::Unknown, PhysicalType::INT32) => {}
(LogicalType::String, PhysicalType::BYTE_ARRAY) => {}
(LogicalType::Json, PhysicalType::BYTE_ARRAY) => {}
(LogicalType::Bson, PhysicalType::BYTE_ARRAY) => {}
(LogicalType::Uuid, PhysicalType::FIXED_LEN_BYTE_ARRAY) => {}
(LogicalType::Float16, PhysicalType::FIXED_LEN_BYTE_ARRAY)
if self.length == 2 => {}
(LogicalType::Float16, PhysicalType::FIXED_LEN_BYTE_ARRAY) => {
return Err(general_err!(
"FLOAT16 cannot annotate field '{}' because it is not a FIXED_LEN_BYTE_ARRAY(2) field",
self.name
))
}
(a, b) => {
return Err(general_err!(
"Cannot annotate {:?} from {} for field '{}'",
a,
b,
self.name
))
}
}
}
None => {}
}
match self.converted_type {
ConvertedType::NONE => {}
ConvertedType::UTF8 | ConvertedType::BSON | ConvertedType::JSON => {
if self.physical_type != PhysicalType::BYTE_ARRAY {
return Err(general_err!(
"{} cannot annotate field '{}' because it is not a BYTE_ARRAY field",
self.converted_type,
self.name
));
}
}
ConvertedType::DECIMAL => {
self.check_decimal_precision_scale()?;
}
ConvertedType::DATE
| ConvertedType::TIME_MILLIS
| ConvertedType::UINT_8
| ConvertedType::UINT_16
| ConvertedType::UINT_32
| ConvertedType::INT_8
| ConvertedType::INT_16
| ConvertedType::INT_32 => {
if self.physical_type != PhysicalType::INT32 {
return Err(general_err!(
"{} cannot annotate field '{}' because it is not a INT32 field",
self.converted_type,
self.name
));
}
}
ConvertedType::TIME_MICROS
| ConvertedType::TIMESTAMP_MILLIS
| ConvertedType::TIMESTAMP_MICROS
| ConvertedType::UINT_64
| ConvertedType::INT_64 => {
if self.physical_type != PhysicalType::INT64 {
return Err(general_err!(
"{} cannot annotate field '{}' because it is not a INT64 field",
self.converted_type,
self.name
));
}
}
ConvertedType::INTERVAL => {
if self.physical_type != PhysicalType::FIXED_LEN_BYTE_ARRAY || self.length != 12 {
return Err(general_err!(
"INTERVAL cannot annotate field '{}' because it is not a FIXED_LEN_BYTE_ARRAY(12) field",
self.name
));
}
}
ConvertedType::ENUM => {
if self.physical_type != PhysicalType::BYTE_ARRAY {
return Err(general_err!(
"ENUM cannot annotate field '{}' because it is not a BYTE_ARRAY field",
self.name
));
}
}
_ => {
return Err(general_err!(
"{} cannot be applied to primitive field '{}'",
self.converted_type,
self.name
));
}
}
Ok(Type::PrimitiveType {
basic_info,
physical_type: self.physical_type,
type_length: self.length,
scale: self.scale,
precision: self.precision,
})
}
#[inline]
fn check_decimal_precision_scale(&self) -> Result<()> {
match self.physical_type {
PhysicalType::INT32
| PhysicalType::INT64
| PhysicalType::BYTE_ARRAY
| PhysicalType::FIXED_LEN_BYTE_ARRAY => (),
_ => {
return Err(general_err!(
"DECIMAL can only annotate INT32, INT64, BYTE_ARRAY and FIXED_LEN_BYTE_ARRAY"
));
}
}
// Precision is required and must be a non-zero positive integer.
if self.precision < 1 {
return Err(general_err!(
"Invalid DECIMAL precision: {}",
self.precision
));
}
// Scale must be zero or a positive integer less than the precision.
if self.scale < 0 {
return Err(general_err!("Invalid DECIMAL scale: {}", self.scale));
}
if self.scale > self.precision {
return Err(general_err!(
"Invalid DECIMAL: scale ({}) cannot be greater than precision \
({})",
self.scale,
self.precision
));
}
// Check precision and scale based on physical type limitations.
match self.physical_type {
PhysicalType::INT32 => {
if self.precision > 9 {
return Err(general_err!(
"Cannot represent INT32 as DECIMAL with precision {}",
self.precision
));
}
}
PhysicalType::INT64 => {
if self.precision > 18 {
return Err(general_err!(
"Cannot represent INT64 as DECIMAL with precision {}",
self.precision
));
}
}
PhysicalType::FIXED_LEN_BYTE_ARRAY => {
let max_precision = (2f64.powi(8 * self.length - 1) - 1f64).log10().floor() as i32;
if self.precision > max_precision {
return Err(general_err!(
"Cannot represent FIXED_LEN_BYTE_ARRAY as DECIMAL with length {} and \
precision {}. The max precision can only be {}",
self.length,
self.precision,
max_precision
));
}
}
_ => (), // For BYTE_ARRAY precision is not limited
}
Ok(())
}
}
/// A builder for group types. All attributes are optional except the name.
/// Note that if not specified explicitly, `None` is used as the repetition of the group,
/// which means it is a root (message) type.
pub struct GroupTypeBuilder<'a> {
name: &'a str,
repetition: Option<Repetition>,
converted_type: ConvertedType,
logical_type: Option<LogicalType>,
fields: Vec<TypePtr>,
id: Option<i32>,
}
impl<'a> GroupTypeBuilder<'a> {
/// Creates new group type builder with provided field name.
pub fn new(name: &'a str) -> Self {
Self {
name,
repetition: None,
converted_type: ConvertedType::NONE,
logical_type: None,
fields: Vec::new(),
id: None,
}
}
/// Sets [`Repetition`] for this field and returns itself.
pub fn with_repetition(mut self, repetition: Repetition) -> Self {
self.repetition = Some(repetition);
self
}
/// Sets [`ConvertedType`] for this field and returns itself.
pub fn with_converted_type(self, converted_type: ConvertedType) -> Self {
Self {
converted_type,
..self
}
}
/// Sets [`LogicalType`] for this field and returns itself.
pub fn with_logical_type(self, logical_type: Option<LogicalType>) -> Self {
Self {
logical_type,
..self
}
}
/// Sets a list of fields that should be child nodes of this field.
/// Returns updated self.
pub fn with_fields(self, fields: Vec<TypePtr>) -> Self {
Self { fields, ..self }
}
/// Sets optional field id and returns itself.
pub fn with_id(self, id: Option<i32>) -> Self {
Self { id, ..self }
}
/// Creates a new `GroupType` instance from the gathered attributes.
pub fn build(self) -> Result<Type> {
let mut basic_info = BasicTypeInfo {
name: String::from(self.name),
repetition: self.repetition,
converted_type: self.converted_type,
logical_type: self.logical_type.clone(),
id: self.id,
};
// Populate the converted type if only the logical type is populated
if self.logical_type.is_some() && self.converted_type == ConvertedType::NONE {
basic_info.converted_type = self.logical_type.into();
}
Ok(Type::GroupType {
basic_info,
fields: self.fields,
})
}
}
/// Basic type info. This contains information such as the name of the type,
/// the repetition level, the logical type and the kind of the type (group, primitive).
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct BasicTypeInfo {
name: String,
repetition: Option<Repetition>,
converted_type: ConvertedType,
logical_type: Option<LogicalType>,
id: Option<i32>,
}
impl BasicTypeInfo {
/// Returns field name.
pub fn name(&self) -> &str {
&self.name
}
/// Returns `true` if type has repetition field set, `false` otherwise.
/// This is mostly applied to group type, because primitive type always has
/// repetition set.
pub fn has_repetition(&self) -> bool {
self.repetition.is_some()
}
/// Returns [`Repetition`] value for the type.
pub fn repetition(&self) -> Repetition {
assert!(self.repetition.is_some());
self.repetition.unwrap()
}
/// Returns [`ConvertedType`] value for the type.
pub fn converted_type(&self) -> ConvertedType {
self.converted_type
}
/// Returns [`LogicalType`] value for the type.
pub fn logical_type(&self) -> Option<LogicalType> {
// Unlike ConvertedType, LogicalType cannot implement Copy, thus we clone it
self.logical_type.clone()
}
/// Returns `true` if id is set, `false` otherwise.
pub fn has_id(&self) -> bool {
self.id.is_some()
}
/// Returns id value for the type.
pub fn id(&self) -> i32 {
assert!(self.id.is_some());
self.id.unwrap()
}
}
// ----------------------------------------------------------------------
// Parquet descriptor definitions
/// Represents a path in a nested schema
#[derive(Clone, PartialEq, Debug, Eq, Hash)]
pub struct ColumnPath {
parts: Vec<String>,
}
impl ColumnPath {
/// Creates new column path from vector of field names.
pub fn new(parts: Vec<String>) -> Self {
ColumnPath { parts }
}
/// Returns string representation of this column path.
/// ```rust
/// use parquet::schema::types::ColumnPath;
///
/// let path = ColumnPath::new(vec!["a".to_string(), "b".to_string(), "c".to_string()]);
/// assert_eq!(&path.string(), "a.b.c");
/// ```
pub fn string(&self) -> String {
self.parts.join(".")
}
/// Appends more components to end of column path.
/// ```rust
/// use parquet::schema::types::ColumnPath;
///
/// let mut path = ColumnPath::new(vec!["a".to_string(), "b".to_string(), "c"
/// .to_string()]);
/// assert_eq!(&path.string(), "a.b.c");
///
/// path.append(vec!["d".to_string(), "e".to_string()]);
/// assert_eq!(&path.string(), "a.b.c.d.e");
/// ```
pub fn append(&mut self, mut tail: Vec<String>) {
self.parts.append(&mut tail);
}
pub fn parts(&self) -> &[String] {
&self.parts
}
}
impl fmt::Display for ColumnPath {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.string())
}
}
impl From<Vec<String>> for ColumnPath {
fn from(parts: Vec<String>) -> Self {
ColumnPath { parts }
}
}
impl<'a> From<&'a str> for ColumnPath {
fn from(single_path: &str) -> Self {
let s = String::from(single_path);
ColumnPath::from(s)
}
}
impl From<String> for ColumnPath {
fn from(single_path: String) -> Self {
let v = vec![single_path];
ColumnPath { parts: v }
}
}
impl AsRef<[String]> for ColumnPath {
fn as_ref(&self) -> &[String] {
&self.parts
}
}
/// A descriptor for leaf-level primitive columns.
/// This encapsulates information such as definition and repetition levels and is used to
/// re-assemble nested data.
#[derive(Debug, PartialEq)]
pub struct ColumnDescriptor {
// The "leaf" primitive type of this column
primitive_type: TypePtr,
// The maximum definition level for this column
max_def_level: i16,
// The maximum repetition level for this column
max_rep_level: i16,
// The path of this column. For instance, "a.b.c.d".
path: ColumnPath,
}
impl ColumnDescriptor {
/// Creates new descriptor for leaf-level column.
pub fn new(
primitive_type: TypePtr,
max_def_level: i16,
max_rep_level: i16,
path: ColumnPath,
) -> Self {
Self {
primitive_type,
max_def_level,
max_rep_level,
path,
}
}
/// Returns maximum definition level for this column.
#[inline]
pub fn max_def_level(&self) -> i16 {
self.max_def_level
}
/// Returns maximum repetition level for this column.
#[inline]
pub fn max_rep_level(&self) -> i16 {
self.max_rep_level
}
/// Returns [`ColumnPath`] for this column.
pub fn path(&self) -> &ColumnPath {
&self.path
}
/// Returns self type [`Type`] for this leaf column.
pub fn self_type(&self) -> &Type {
self.primitive_type.as_ref()
}
/// Returns self type [`TypePtr`] for this leaf
/// column.
pub fn self_type_ptr(&self) -> TypePtr {
self.primitive_type.clone()
}
/// Returns column name.
pub fn name(&self) -> &str {
self.primitive_type.name()
}
/// Returns [`ConvertedType`] for this column.
pub fn converted_type(&self) -> ConvertedType {
self.primitive_type.get_basic_info().converted_type()
}
/// Returns [`LogicalType`] for this column.
pub fn logical_type(&self) -> Option<LogicalType> {
self.primitive_type.get_basic_info().logical_type()
}
/// Returns physical type for this column.
/// Note that it will panic if called on a non-primitive type.
pub fn physical_type(&self) -> PhysicalType {
match self.primitive_type.as_ref() {
Type::PrimitiveType { physical_type, .. } => *physical_type,
_ => panic!("Expected primitive type!"),
}
}
/// Returns type length for this column.
/// Note that it will panic if called on a non-primitive type.
pub fn type_length(&self) -> i32 {
match self.primitive_type.as_ref() {
Type::PrimitiveType { type_length, .. } => *type_length,
_ => panic!("Expected primitive type!"),
}
}
/// Returns type precision for this column.
/// Note that it will panic if called on a non-primitive type.
pub fn type_precision(&self) -> i32 {
match self.primitive_type.as_ref() {
Type::PrimitiveType { precision, .. } => *precision,
_ => panic!("Expected primitive type!"),
}
}
/// Returns type scale for this column.
/// Note that it will panic if called on a non-primitive type.
pub fn type_scale(&self) -> i32 {
match self.primitive_type.as_ref() {
Type::PrimitiveType { scale, .. } => *scale,
_ => panic!("Expected primitive type!"),
}
}
/// Returns the sort order for this column
pub fn sort_order(&self) -> SortOrder {
ColumnOrder::get_sort_order(
self.logical_type(),
self.converted_type(),
self.physical_type(),
)
}
}
/// A schema descriptor. This encapsulates the top-level schemas for all the columns,
/// as well as all descriptors for all the primitive columns.
#[derive(PartialEq)]
pub struct SchemaDescriptor {
// The top-level schema (the "message" type).
// This must be a `GroupType` where each field is a root column type in the schema.
schema: TypePtr,
// All the descriptors for primitive columns in this schema, constructed from
// `schema` in DFS order.
leaves: Vec<ColumnDescPtr>,
// Mapping from a leaf column's index to the root column index that it
// comes from. For instance: the leaf `a.b.c.d` would have a link back to `a`:
// -- a <-----+
// -- -- b |
// -- -- -- c |
// -- -- -- -- d
leaf_to_base: Vec<usize>,
}
impl fmt::Debug for SchemaDescriptor {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Skip leaves and leaf_to_base as they only a cache information already found in `schema`
f.debug_struct("SchemaDescriptor")
.field("schema", &self.schema)
.finish()
}
}
impl SchemaDescriptor {
/// Creates new schema descriptor from Parquet schema.
pub fn new(tp: TypePtr) -> Self {
assert!(tp.is_group(), "SchemaDescriptor should take a GroupType");
let mut leaves = vec![];
let mut leaf_to_base = Vec::new();
for (root_idx, f) in tp.get_fields().iter().enumerate() {
let mut path = vec![];
build_tree(f, root_idx, 0, 0, &mut leaves, &mut leaf_to_base, &mut path);
}
Self {
schema: tp,
leaves,
leaf_to_base,
}
}
/// Returns [`ColumnDescriptor`] for a field position.
pub fn column(&self, i: usize) -> ColumnDescPtr {
assert!(
i < self.leaves.len(),
"Index out of bound: {} not in [0, {})",
i,
self.leaves.len()
);
self.leaves[i].clone()
}
/// Returns slice of [`ColumnDescriptor`].
pub fn columns(&self) -> &[ColumnDescPtr] {
&self.leaves
}
/// Returns number of leaf-level columns.
pub fn num_columns(&self) -> usize {
self.leaves.len()
}
/// Returns column root [`Type`] for a leaf position.
pub fn get_column_root(&self, i: usize) -> &Type {
let result = self.column_root_of(i);
result.as_ref()
}
/// Returns column root [`Type`] pointer for a leaf position.
pub fn get_column_root_ptr(&self, i: usize) -> TypePtr {
let result = self.column_root_of(i);
result.clone()
}
/// Returns the index of the root column for a field position
pub fn get_column_root_idx(&self, leaf: usize) -> usize {
assert!(
leaf < self.leaves.len(),
"Index out of bound: {} not in [0, {})",
leaf,
self.leaves.len()
);
*self
.leaf_to_base
.get(leaf)
.unwrap_or_else(|| panic!("Expected a value for index {leaf} but found None"))
}
fn column_root_of(&self, i: usize) -> &TypePtr {
&self.schema.get_fields()[self.get_column_root_idx(i)]
}
/// Returns schema as [`Type`].
pub fn root_schema(&self) -> &Type {
self.schema.as_ref()
}
pub fn root_schema_ptr(&self) -> TypePtr {
self.schema.clone()
}
/// Returns schema name.
pub fn name(&self) -> &str {
self.schema.name()
}
}
fn build_tree<'a>(
tp: &'a TypePtr,
root_idx: usize,
mut max_rep_level: i16,
mut max_def_level: i16,
leaves: &mut Vec<ColumnDescPtr>,
leaf_to_base: &mut Vec<usize>,
path_so_far: &mut Vec<&'a str>,
) {
assert!(tp.get_basic_info().has_repetition());
path_so_far.push(tp.name());
match tp.get_basic_info().repetition() {
Repetition::OPTIONAL => {
max_def_level += 1;
}
Repetition::REPEATED => {
max_def_level += 1;
max_rep_level += 1;
}
_ => {}
}