|
| 1 | +// Databricks notebook source |
| 2 | +import org.apache.spark.sql.{DataFrame, functions} |
| 3 | + |
| 4 | +def formatData(df: DataFrame, fields: Seq[String], continuousFieldIndexes: Seq[Int]): DataFrame = { |
| 5 | + var data = df |
| 6 | + |
| 7 | + // Trim leading spaces from data |
| 8 | + for (colName <- data.columns) |
| 9 | + data = data.withColumn(colName, functions.ltrim(functions.col(colName))) |
| 10 | + |
| 11 | + // Assign column names |
| 12 | + for (i <- fields.indices) |
| 13 | + data = data.withColumnRenamed("_c" + i, fields(i)) |
| 14 | + |
| 15 | + data = data.withColumnRenamed("_c14", "label") |
| 16 | + |
| 17 | + // Convert continuous values from string to double |
| 18 | + for (i <- continuousFieldIndexes) { |
| 19 | + data = data.withColumn(fields(i), functions.col(fields(i)).cast("double")) |
| 20 | + } |
| 21 | + |
| 22 | + // Remove '.' character from label |
| 23 | + data = data.withColumn("label", functions.regexp_replace(functions.col("label"), "\\.", "")) |
| 24 | + |
| 25 | + data |
| 26 | +} |
| 27 | + |
| 28 | +def showCategories(df: DataFrame, fields: Seq[String], categoricalFieldIndexes: Seq[Int]): Unit = { |
| 29 | + for (i <- categoricalFieldIndexes) { |
| 30 | + val colName = fields(i) |
| 31 | + df.select(colName + "Indexed", colName).distinct().sort(colName + "Indexed").show(100) |
| 32 | + } |
| 33 | +} |
| 34 | + |
| 35 | +// COMMAND ---------- |
| 36 | + |
| 37 | +val fields = Seq( |
| 38 | + "age", |
| 39 | + "workclass", |
| 40 | + "fnlwgt", |
| 41 | + "education", |
| 42 | + "education-num", |
| 43 | + "marital-status", |
| 44 | + "occupation", |
| 45 | + "relationship", |
| 46 | + "race", |
| 47 | + "sex", |
| 48 | + "capital-gain", |
| 49 | + "capital-loss", |
| 50 | + "hours-per-week", |
| 51 | + "native-country" |
| 52 | +) |
| 53 | + |
| 54 | +val categoricalFieldIndexes = Seq(1, 3, 5, 6, 7, 8, 9, 13) |
| 55 | +val continuousFieldIndexes = Seq(0, 2, 4, 10, 11, 12) |
| 56 | + |
| 57 | +// COMMAND ---------- |
| 58 | + |
| 59 | +// Create dataframe to hold census income training data |
| 60 | +// Data retrieved from http://archive.ics.uci.edu/ml/datasets/Census+Income |
| 61 | +val trainingUrl = "https://raw.githubusercontent.com/aosama/MachineLearningSamples/master/src/main/resources/adult.data" |
| 62 | +val trainingContent = scala.io.Source.fromURL(trainingUrl).mkString |
| 63 | + |
| 64 | +val trainingList = trainingContent.split("\n").filter(_ != "") |
| 65 | + |
| 66 | +val trainingDs = sc.parallelize(trainingList).toDS() |
| 67 | +var trainingData = spark.read.csv(trainingDs).cache |
| 68 | + |
| 69 | +// COMMAND ---------- |
| 70 | + |
| 71 | +// Create dataframe to hold census income test data |
| 72 | +// Data retrieved from http://archive.ics.uci.edu/ml/datasets/Census+Income |
| 73 | +val testUrl = "https://raw.githubusercontent.com/aosama/MachineLearningSamples/master/src/main/resources/adult.test" |
| 74 | +val testContent = scala.io.Source.fromURL(testUrl).mkString |
| 75 | + |
| 76 | +val testList = testContent.split("\n").filter(_ != "") |
| 77 | + |
| 78 | +val testDs = sc.parallelize(testList).toDS() |
| 79 | +var testData = spark.read.csv(testDs).cache |
| 80 | + |
| 81 | +// COMMAND ---------- |
| 82 | + |
| 83 | +// Format the data |
| 84 | +trainingData = formatData(trainingData, fields, continuousFieldIndexes) |
| 85 | +testData = formatData(testData, fields, continuousFieldIndexes) |
| 86 | + |
| 87 | +// COMMAND ---------- |
| 88 | + |
| 89 | +import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorAssembler} |
| 90 | + |
| 91 | +// Create object to convert categorical values to index values |
| 92 | +val categoricalIndexerArray = |
| 93 | + for (i <- categoricalFieldIndexes) |
| 94 | + yield new StringIndexer() |
| 95 | + .setInputCol(fields(i)) |
| 96 | + .setOutputCol(fields(i) + "Indexed") |
| 97 | + |
| 98 | +// Create object to index label values |
| 99 | +val labelIndexer = new StringIndexer() |
| 100 | + .setInputCol("label") |
| 101 | + .setOutputCol("indexedLabel") |
| 102 | + .fit(trainingData) |
| 103 | + |
| 104 | +// Create object to generate feature vector from categorical and continuous values |
| 105 | +val vectorAssembler = new VectorAssembler() |
| 106 | + .setInputCols((categoricalFieldIndexes.map(i => fields(i) + "Indexed") ++ continuousFieldIndexes.map(i => fields(i))).toArray) |
| 107 | + .setOutputCol("features") |
| 108 | + |
| 109 | +// Create object to convert indexed labels back to actual labels for predictions |
| 110 | +val labelConverter = new IndexToString() |
| 111 | + .setInputCol("prediction") |
| 112 | + .setOutputCol("predictedLabel") |
| 113 | + .setLabels(labelIndexer.labels) |
| 114 | + |
| 115 | +// COMMAND ---------- |
| 116 | + |
| 117 | +import org.apache.spark.ml.Pipeline |
| 118 | +import org.apache.spark.ml.classification.DecisionTreeClassifier |
| 119 | + |
| 120 | +// Create decision tree |
| 121 | +val dt = new DecisionTreeClassifier() |
| 122 | + .setLabelCol("indexedLabel") |
| 123 | + .setFeaturesCol("features") |
| 124 | + .setMaxBins(50) // Since feature "native-country" contains 42 distinct values, need to increase max bins. |
| 125 | + .setMaxDepth(6) |
| 126 | + |
| 127 | +// Array of stages to run in pipeline |
| 128 | +val indexerArray = Array(labelIndexer) ++ categoricalIndexerArray |
| 129 | +val stageArray = indexerArray ++ Array(vectorAssembler, dt, labelConverter) |
| 130 | + |
| 131 | +val pipeline = new Pipeline() |
| 132 | + .setStages(stageArray) |
| 133 | + |
| 134 | +// Train the model |
| 135 | +val model = pipeline.fit(trainingData) |
| 136 | + |
| 137 | +// Test the model |
| 138 | +val predictions = model.transform(testData) |
| 139 | + |
| 140 | +// COMMAND ---------- |
| 141 | + |
| 142 | +display(predictions.select("label", Seq("predictedLabel" ,"indexedLabel", "prediction") ++ fields:_*)) |
| 143 | + |
| 144 | +// COMMAND ---------- |
| 145 | + |
| 146 | +val wrongPredictions = predictions |
| 147 | + .select("label", Seq("predictedLabel" ,"indexedLabel", "prediction") ++ fields:_*) |
| 148 | + .where("indexedLabel != prediction") |
| 149 | +display(wrongPredictions) |
| 150 | + |
| 151 | +// COMMAND ---------- |
| 152 | + |
| 153 | +// Show the label and all the categorical features mapped to indexes |
| 154 | +val indexedData = new Pipeline() |
| 155 | + .setStages(indexerArray) |
| 156 | + .fit(trainingData) |
| 157 | + .transform(trainingData) |
| 158 | +indexedData.select("indexedLabel", "label").distinct().sort("indexedLabel").show() |
| 159 | +showCategories(indexedData, fields, categoricalFieldIndexes) |
| 160 | + |
| 161 | +// COMMAND ---------- |
| 162 | + |
| 163 | +import org.apache.spark.ml.classification.DecisionTreeClassificationModel |
| 164 | +import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator |
| 165 | +import org.apache.spark.mllib.evaluation.MulticlassMetrics |
| 166 | + |
| 167 | +val evaluator = new MulticlassClassificationEvaluator() |
| 168 | + .setLabelCol("indexedLabel") |
| 169 | + .setPredictionCol("prediction") |
| 170 | + .setMetricName("accuracy") |
| 171 | + |
| 172 | +val accuracy = evaluator.evaluate(predictions) |
| 173 | +println(s"Test error = ${1.0 - accuracy}\n") |
| 174 | + |
| 175 | +val metrics = new MulticlassMetrics( |
| 176 | + predictions.select("indexedLabel", "prediction") |
| 177 | + .rdd.map(x => (x.getDouble(0), x.getDouble(1))) |
| 178 | +) |
| 179 | + |
| 180 | +println(s"Confusion matrix:\n ${metrics.confusionMatrix}\n") |
| 181 | + |
| 182 | +val treeModel = model.stages(stageArray.length - 2).asInstanceOf[DecisionTreeClassificationModel] |
| 183 | + |
| 184 | +// Print out the tree with actual column names for features |
| 185 | +var treeModelString = treeModel.toDebugString |
| 186 | + |
| 187 | +val featureFieldIndexes = categoricalFieldIndexes ++ continuousFieldIndexes |
| 188 | +for (i <- featureFieldIndexes.indices) |
| 189 | + treeModelString = treeModelString |
| 190 | + .replace("feature " + i + " ", fields(featureFieldIndexes(i)) + " ") |
| 191 | + |
| 192 | +println(s"Learned classification tree model:\n $treeModelString") |
| 193 | + |
| 194 | +// COMMAND ---------- |
| 195 | + |
| 196 | +for (i <- featureFieldIndexes.indices) |
| 197 | + println(s"feature " + i + " -> " + fields(featureFieldIndexes(i))) |
| 198 | + |
| 199 | +// COMMAND ---------- |
| 200 | + |
| 201 | +display(treeModel) |
| 202 | + |
| 203 | +// COMMAND ---------- |
| 204 | + |
| 205 | +display(testData.filter('age === 25)) |
| 206 | + |
| 207 | +// COMMAND ---------- |
| 208 | + |
| 209 | +testData.printSchema |
| 210 | + |
| 211 | +// COMMAND ---------- |
| 212 | + |
| 213 | +import org.apache.spark.ml.linalg.Vector |
| 214 | +val vectorElem = udf{ (x:Vector,i:Int) => x(i) } |
| 215 | +val predictionsExpanded = predictions.withColumn("rawPrediction0",vectorElem('rawPrediction,functions.lit(0))) |
| 216 | + .withColumn("rawPrediction1",vectorElem('rawPrediction,functions.lit(1))) |
| 217 | + .withColumn("score0",vectorElem('probability,functions.lit(0))) |
| 218 | + .withColumn("score1",vectorElem('probability,functions.lit(1))) |
| 219 | + |
| 220 | +// COMMAND ---------- |
| 221 | + |
| 222 | +display(predictionsExpanded.orderBy($"age".asc)) |
| 223 | + |
| 224 | +// COMMAND ---------- |
| 225 | + |
| 226 | +val record = Seq((50,"Private",220931,"Bachelors",13,"Married-civ-spouse","Prof-specialty","Not-in-family","White","Male",10,0,43,"United-States")).toDF("age", |
| 227 | + "workclass", |
| 228 | + "fnlwgt", |
| 229 | + "education", |
| 230 | + "education-num", |
| 231 | + "marital-status", |
| 232 | + "occupation", |
| 233 | + "relationship", |
| 234 | + "race", |
| 235 | + "sex", |
| 236 | + "capital-gain", |
| 237 | + "capital-loss", |
| 238 | + "hours-per-week", |
| 239 | + "native-country") |
| 240 | + |
| 241 | +// COMMAND ---------- |
| 242 | + |
| 243 | +val singlePrediction = model.transform(record) |
| 244 | + .withColumn("rawPrediction0",vectorElem('rawPrediction,functions.lit(0))) |
| 245 | + .withColumn("rawPrediction1",vectorElem('rawPrediction,functions.lit(1))) |
| 246 | + .withColumn("score0",vectorElem('probability,functions.lit(0))) |
| 247 | + .withColumn("score1",vectorElem('probability,functions.lit(1))) |
| 248 | + |
| 249 | +// COMMAND ---------- |
| 250 | + |
| 251 | +display(singlePrediction) |
| 252 | + |
| 253 | +// COMMAND ---------- |
| 254 | + |
| 255 | +display(trainingData.groupBy('age).count.orderBy('age.asc)) |
0 commit comments