forked from eriklindernoren/Keras-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadversarial_autoencoder.py
216 lines (160 loc) · 7.45 KB
/
adversarial_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, GaussianNoise
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers import MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras import losses
from keras.utils import to_categorical
import keras.backend as K
import matplotlib.pyplot as plt
import numpy as np
class AdversarialAutoencoder():
def __init__(self):
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.encoded_dim = 100
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the encoder / decoder
self.encoder = self.build_encoder()
self.encoder.compile(loss=['binary_crossentropy'],
optimizer=optimizer)
self.decoder = self.build_decoder()
self.decoder.compile(loss=['mse'],
optimizer=optimizer)
img = Input(shape=self.img_shape)
# The generator takes the image, encodes it and reconstructs it
# from the encoding
encoded_repr = self.encoder(img)
reconstructed_img = self.decoder(encoded_repr)
# For the adversarial_autoencoder model we will only train the generator
self.discriminator.trainable = False
# The discriminator determines validity of the encoding
validity = self.discriminator(encoded_repr)
# The adversarial_autoencoder model (stacked generator and discriminator)
self.adversarial_autoencoder = Model(img, [reconstructed_img, validity])
self.adversarial_autoencoder.compile(loss=['mse', 'binary_crossentropy'],
loss_weights=[0.999, 0.001],
optimizer=optimizer)
def build_encoder(self):
# Encoder
encoder = Sequential()
encoder.add(Flatten(input_shape=self.img_shape))
encoder.add(Dense(512))
encoder.add(LeakyReLU(alpha=0.2))
encoder.add(BatchNormalization(momentum=0.8))
encoder.add(Dense(512))
encoder.add(LeakyReLU(alpha=0.2))
encoder.add(BatchNormalization(momentum=0.8))
encoder.add(Dense(self.encoded_dim))
encoder.summary()
img = Input(shape=self.img_shape)
encoded_repr = encoder(img)
return Model(img, encoded_repr)
def build_decoder(self):
# Decoder
decoder = Sequential()
decoder.add(Dense(512, input_dim=self.encoded_dim))
decoder.add(LeakyReLU(alpha=0.2))
decoder.add(BatchNormalization(momentum=0.8))
decoder.add(Dense(512))
decoder.add(LeakyReLU(alpha=0.2))
decoder.add(BatchNormalization(momentum=0.8))
decoder.add(Dense(np.prod(self.img_shape), activation='tanh'))
decoder.add(Reshape(self.img_shape))
decoder.summary()
encoded_repr = Input(shape=(self.encoded_dim,))
gen_img = decoder(encoded_repr)
return Model(encoded_repr, gen_img)
def build_discriminator(self):
model = Sequential()
model.add(Dense(512, input_dim=self.encoded_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1, activation="sigmoid"))
model.summary()
encoded_repr = Input(shape=(self.encoded_dim, ))
validity = model(encoded_repr)
return Model(encoded_repr, validity)
def train(self, epochs, batch_size=128, save_interval=50):
# Load the dataset
(X_train, _), (_, _) = mnist.load_data()
# Rescale -1 to 1
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3)
half_batch = int(batch_size / 2)
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], half_batch)
imgs = X_train[idx]
# Generate a half batch of embedded images
latent_fake = self.encoder.predict(imgs)
latent_real = np.random.normal(size=(half_batch, self.encoded_dim))
valid = np.ones((half_batch, 1))
fake = np.zeros((half_batch, 1))
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(latent_real, valid)
d_loss_fake = self.discriminator.train_on_batch(latent_fake, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
# Generator wants the discriminator to label the generated representations as valid
valid_y = np.ones((batch_size, 1))
# Train the generator
g_loss = self.adversarial_autoencoder.train_on_batch(imgs, [imgs, valid_y])
# Plot the progress
print ("%d [D loss: %f, acc: %.2f%%] [G loss: %f, mse: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss[0], g_loss[1]))
# If at save interval => save generated image samples
if epoch % save_interval == 0:
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], 25)
imgs = X_train[idx]
self.save_imgs(epoch, imgs)
def save_imgs(self, epoch, imgs):
r, c = 5, 5
encoded_imgs = self.encoder.predict(imgs)
gen_imgs = self.decoder.predict(encoded_imgs)
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("aae/images/mnist_%d.png" % epoch)
plt.close()
def save_model(self):
def save(model, model_name):
model_path = "aae/saved_model/%s.json" % model_name
weights_path = "aae/saved_model/%s_weights.hdf5" % model_name
options = {"file_arch": model_path,
"file_weight": weights_path}
json_string = model.to_json()
open(options['file_arch'], 'w').write(json_string)
model.save_weights(options['file_weight'])
save(self.generator, "aae_generator")
save(self.discriminator, "aae_discriminator")
if __name__ == '__main__':
aae = AdversarialAutoencoder()
aae.train(epochs=20000, batch_size=32, save_interval=200)