Skip to content

Latest commit

 

History

History
161 lines (121 loc) · 6.04 KB

README.zh-CN.md

File metadata and controls

161 lines (121 loc) · 6.04 KB

English | 简体中文 | 日本語

GPT-Vis

Components for GPTs, generative AI, and LLM projects. Not only UI Components.

文档知识库体验 Agent

agent.mov

特性

  • 🤖 LLM 协议:面向 LLM Agent 卡片的可视化协议,针对 LLM 对话式交互,以及服务序列化输出而设计,方便快速集成到 AI 应用中。
  • 🍡 LLM 组件:面向 LLM 应用研发组件, 内置有 20+ 常用 VIS 组件,对于定制 UI 需求,提供方便的扩展机制和架构设计。
  • 📈 LLM 接入:面向 LLM 无缝接入的图表知识库和图表推荐模型,针对 LLM 直接输出可视化卡片,为 Agent 提供知识库以及推荐模型方案。

📦 安装

$ npm i @antv/gpt-vis --save

🔨 使用

import { GPTVis } from '@antv/gpt-vis';

const markdownContent = `
# GPT-VIS \n\nComponents for GPTs, generative AI, and LLM projects. Not only UI Components.

Here’s a visualization of Haidilao's food delivery revenue from 2013 to 2022. You can see a steady increase over the years, with notable *growth* particularly in recent years.

\`\`\`vis-chart
{
  "type": "line",
  "data": [
    { "time":2013,"value":59.3 },
    { "time":2014,"value":64.4 },
    { "time":2015,"value":68.9 },
    { "time":2016,"value":74.4 },
    { "time":2017,"value":82.7 },
    { "time":2018,"value":91.9 },
    { "time":2019,"value":99.1 },
    { "time":2020,"value":101.6 },
    { "time":2021,"value":114.4 },
    { "time":2022,"value":121 }
  ]
}
\`\`\`
`;

export default () => {
  return <GPTVis>{markdownContent}</GPTVis>;
};
🛠 定制渲染 UI
import { GPTVisLite, withChartCode, ChartType, Pie } from '@antv/gpt-vis';

const markdownContent = `
\`\`\`my-ui
my data
\`\`\`

\`\`\`vis-chart
{
  "type": "pie",
  "data": [
    { "category": "分类一", "value": 27 },
    { "category": "分类二", "value": 25 },
    { "category": "分类三", "value": 18 },
    { "category": "其他", "value": 5 }
  ]
}
\`\`\`
`;

const customRenderers = { 'my-ui': ({ children }) => <div>{children}</div> };
const components = {
  code: withChartCode({
    languageRenderers: customRenderers, // register custom block renderer
    components: { [ChartType.Pie]: Pie }, // register a pie chart
  }),
};

export default () => {
  return <GPTVisLite components={components}>{markdownContent}</GPTVisLite>;
};

🐍 Streamlit

import streamlit as st
from streamlit_gpt_vis import set_gpt_vis

content = '''
Here’s a visualization of Haidilao's food delivery revenue from 2013 to 2022. You can see a steady increase over the years, with notable *growth* particularly in recent years.

\`\`\`vis-chart
{"type": "line","data": [{"time":2013,"value":59.3},{"time":2014,"value":64.4},{"time":2015,"value":68.9},{"time":2016,"value":74.4},{"time":2017,"value":82.7},{"time":2018,"value":91.9},{"time":2019,"value":99.1},{"time":2020,"value":101.6},{"time":2021,"value":114.4},{"time":2022,"value":121}]}
\`\`\`
'''

set_gpt_vis(content)

更多了解 👉 streamlit-gpt-vis

🗂 可视化知识库

可视化知识库的目的是为了提供一个全面、系统的资源,帮助 Agent 理解、选择、创建各种数据可视化图表,以下是 Agent 通过 RAG 方式接入知识,根据评测数据集生成准确图表协议的指标。

Line(Multi) Column(Grouped/Stacked) Pie Area(Stacked) Bar(Grouped/Stacked) Scatter(Bubble) Heatmap
40/40 25/27 13/14 18/18 18/20 10/10 9/10
Histogram Tree Map Word Cloud Radar Dual Axis Rich Text NTV Pin Map
15/16 13/15 11/12 23/23 13/14 7.3/10 10/11
Network Graph Mind Map Organizational Chart Flow Diagram Fishbone Diagram
8/10 12/14 10/12 10/11 10/12

🤖 图表模型推荐数据集

图表推荐数据集用于评测/微调大模型在“给定数据,推荐图表类型”任务上的能力。数据集目前涵盖了 16 种图表类型,每种图表类型下 1-3 个不同数据场景,每个场景下 15+ 个图表数据。数据会持续更新,也欢迎向我们贡献你的使用场景中收集的图表数据。数据集详细信息见 evaluations/recommend

💻 本地开发

# install dependencies
$ pnpm install

# develop library by docs demo
$ pnpm dev

# build library source code
$ pnpm build

License

MIT