A library for audio visualization using the following rendering techniques:
- Canvas2D with @antv/g-canvas.
- WebGPU WGSL compute shader with @antv/g-device-api. For more information: https://observablehq.com/@antv/compute-toys
We provide the following effects now:
Install from NPM.
npm install @antv/a8
Create a audio, set effect and start playing.
import { Audio, Sine } from '@antv/a8';
const audio = new Audio({
canvas: $canvas,
});
audio.data($audio).effect(new Sine()).play();
new Audio({
canvas: $canvas,
});
- canvas
HTMLCanvasElement
Pass in an HTMLAudioElement
, create a AudioContext and Analyser later.
audio.data($audio);
Mount an effect.
import { Sine } from '@antv/a8';
audio.effect(new Sine());
audio.effect(new Sine()); // switch to another
Update style options of effect.
audio.style({ blur: 1 });
Start visualizing the audio.
audio.play();
Destroy rAF and GPU resources(if any).
audio.destroy();
We provide the following effect now.
- GPU Particles
When creating GPU particle effects, we should use a WASM to compile shader chunks. For more informations, see https://observablehq.com/@antv/compute-toys#cell-712
const shaderCompilerPath = new URL(
'/public/glsl_wgsl_compiler_bg.wasm',
import.meta.url,
).href;
const effect = new Stardust(shaderCompilerPath, {});
Let me briefly describe the implementation. The whole process inside compute shaders can be divided into four stages:
- Simulate particles
- Clear
- Rasterize
- Output to storage buffer
- Blit to screen
The particle structure is really simple, it consists of 2 properties: position
and velocity
. We will load/store particles from/to storage textures later.
struct Particle {
position: float4,
velocity: float4,
}
fn LoadParticle(pix: int2) -> Particle {
var p: Particle;
p.position = textureLoad(pass_in, pix, 0, 0);
p.velocity = textureLoad(pass_in, pix, 1, 0);
return p;
}
fn SaveParticle(pix: int2, p: Particle) {
textureStore(pass_out, pix, 0, p.position);
textureStore(pass_out, pix, 1, p.velocity);
}
At the first frame, we assign the initial position
& velocity
for each particle.
@compute @workgroup_size(16, 16)
fn SimulateParticles(@builtin(global_invocation_id) id: uint3) {
if (time.frame == 0u) {
let rng = rand4();
// Normalize from [0, 1] to [-1, 1].
p.position = float4(2.0 * rng.xyz - 1.0, 0.0);
p.velocity = float4(0.0, 0.0, 0.0, 0.0);
}
}
And in each of the next frames, position
will be updated with velocity
.
let dt = custom.Speed * custom.TimeStep;
p.velocity += (ForceField(p.position.xyz, t) - custom.VelocityDecay * p.velocity) * dt;
p.position += p.velocity * dt;
- radius
number
- sinea
number
- sineb
number
- speed
number
- blur
number
- samples
number
- mode
number
- radius
number
- timeStep
number
- samples
number
- blurRadius
number
- velocityDecay
number
- speed
number
- blurExponentA
number
- blurExponentB
number
- animatedNoise
number
- accumulation
number
- exposure
number
https://en.wikipedia.org/wiki/Kerr%E2%80%93Newman_metric
- radius
number
- timeStep
number
- samples
number
- animatedNoise
number
- accumulation
number
- exposure
number
- blurExponentA
number
- blurExponentB
number
- blurRadius
number
- kerrA
number
- kerrQ
number
- initSpeed
number
- initThick
number
- steps
number
- focalPlane
number
- motionBlur
number
- gamma
number