Skip to content

antony-a1/ivory

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ivory

ivory: (the ivories) the keys of a piano

Overview

ivory defines a specification for how to store feature data and provides a set of tools for querying it. It does not provide any tooling for producing feature data in the first place. All ivory commands run as MapReduce jobs so it assumed that feature data is maintained on HDFS.

Repository

The tooling provided operates on an ivory repository. An ivory repository is a convention for storing fact sets, feature dictionaries and feature stores. The directory structure is as follows:

ivory_repository/
├── metadata
│   ├── dictionaries
│   │   ├── dictionary1
│   │   └── dictionary2
│   └── stores
│       ├── feature_store1
│       └── feature_store2
└── factsets
    ├── fact_set1
    └── fact_set2

Fact Sets

A fact set is a single directory containing multiple facts, where a fact defines:

  1. The entity the feature value is associated with;
  2. An attribute specifying which feature;
  3. The value itself;
  4. The time from which the feature value is valid.

That is, a fact is simply an EAVT record. Multiple facts form a fact set, which is described within EAVT files that are partitioned by namespace and date. For example:

my_fact_set/
├── widgets
│   └── 2014
│       └── 01
│           ├── 09
│           │   ├── eavt-00000
│           │   ├── eavt-00001
│           │   └── eavt-00002
│           ├── 10
│           │   ├── eavt-00000
│           │   ├── eavt-00001
│           │   └── eavt-00002
│           └── 11
│               ├── eavt-00000
│               ├── eavt-00001
│               └── eavt-00002
└── demo
    └── 2013
        └── 01
            └── 09
                ├── eavt-00000
                └── eavt-00001

In this fact set, facts are partitioned across two namespaces: widgets and demo. The widget facts are spread across three dates, while demographic facts are constrained to one. Note also that a given namespace-partition can contain multiple EAVT files.

EAVT files are simply pipe-delimited text files with one EAVT record per line. For example, a line in the file my_fact_set/widgets/2013/01/10/eavt-00001 might look like:

928340|inbound.count.1W|35|43200

That is, the fact: "feature attribute inbound.count.1W has value 35 for entity 928340 as of 10/01/2014 12:00". The time component of the record is the number of seconds into the day specified by the partition the record belongs to. Note that Ivory does not enforce or specify a time zone for the time component of a fact. A time zone should be chosen that is reflective of the domain, however, for a given Ivory feature store, the time zone for all facts should be the same.

Feature store

A feature store is comprised of one or more fact sets, which is represented by a text file containing an ordered list of references to fact sets. For example:

00005
00004
00003
widget_fixed
00002
00001
00000

The ordering is important as it allows facts to be overriden. When a feature store is queried, if multiple facts with the same entity, attribute and time are identified, the value from the fact contained in the most recent fact set will be used, where most recent means listed higher in the feature store file.

Because a feature store can be specified by just referencing fact sets, Ivory can support poor-man versioning giving rise to use cases such as:

  • overriding buggy values with corrected ones;
  • combining production features with ad-hoc features.

Dictionary

All features are identified by their name and namespace. In the example fact above, the feature is widgets:inbound.count.1W where widgets is the namespace and inbound.count.1W is the name. With Ivory we must also associate with any namespace-name feature identifier the following metadata:

  • An encoding specifying the type encoding of a feature value:

    • boolean
    • int
    • double
    • string
  • A classification type specifying how a feature value can be semantically interpreted and used:

    • numerical
    • categorical
  • A human-readable description.

In Ivory, feature metadata is separated from the features store (facts) in its own set of text files known as feature dictionaries. Dictionary text files are also pipe-delimited and of the following form:

namespace|name|encoding|type|description

So for the fact above, we could specify a dictionary entry such as:

widgets|inbound.count.1W|int|numerical|Count in the last week

Other dictionary entries might look like the following:

demo|gender|string|categorical|Gender
demo|postcode|string|categorical|Postcode

Given a dictionary, we can use Ivory to validate facts in a feature store. The validate command will check that the encoding types specified for features in the dictionary are consistent with facts:

> ivory validate --feature-store feature_store.txt --dictionary feature_dictionary.txt

We can also use Ivory to generate statistics for the values of specific features across a feature store using the inspect command. This will compute statistics such as density, ranges (for numerical features), factors (for categorical features), historgrams, means, etc. Inspections can filter both the features of interest as well which facts to considered by time:

> ivory inspect --feature-store feature_store.txt --dictionary feature_dictionary.txt --features features.txt --start-time '2013-01-01' --end-time '2014-01-01'

Querying

Ivory supports two types of queries: snapshots and chords.

A snapshot query is used to extract the feature values for entities at a certain point in time. Snapshotting can filter the set of features and/or entities considered. By default the output is in EAVT format, but can be output in row-oriented form (i.e. column per feature) using the --pivot option. When a snapshot query is performed, the most recent feature value for a given entity-attribute, with respect to the snapshot time, will be returned in the output:

# get a snapshot of values for specific features and entities as of 1 Nov 2013
> ivory snapshot --feature-store feature_store.txt --dictionary feature_dictionary.txt --features features.txt --entities entities.txt --time '2013-11-01' --output nov2013snapshot

# Pivot the table to be row oriented
> ivory snapshot --pivot --feature-store feature_store.txt --dictionary feature_dictionary.txt --features features.txt --entities entities.txt --time '2013-11-01' --output nov2013snapshot

A chord query is used to extract the feature values for entities at different points in time - instances. That is, for each entity, a different time is specified. In fact, multiple times can be specified per entity. To invoke a chord query, a file of instance descriptors must be specified that are entity-time pairs, for example:

928340|2013-11-01
928340|2013-11-08
928316|2013-11-08
928316|2013-11-15

Like snapshot, chord by default will output in EAVT format, but can be output in row-oriented form using the --pivot option:

> ivory chord --feature-store feature_store.txt --dictionary feature_dictionary.txt --instances instances.txt --output nov2013snapshot

> ivory chord --pivot --feature-store feature_store.txt --dictionary feature_dictionary.txt --instances instances.txt --output nov2013snapshot

Data Generation

Ivory supports generating random dictionaries and fact sets which can be used for testing.

To generate a random dictionary, you need to specify the number of features, and an output location:

> ivory generate-dictionary --features 10000 --output random_dictionary

This outputs two files:

  1. the dictionary itself.
  2. a feature flag file specifying the sparcity and frequency of each feature, where sparcity is a double between 0.0 and 1.0, and frequency is one of daily, weekly, or monthly.

The format of the feature flag file is:

namespace|name|sparcity|frequency

An example is:

widgets|inbound.count.1W|0.4|weekly
demo|postcode|0.7|monthly

To generate random facts, you need to specify a dictionary, feature flag file, number of entities, time range, number of fact sets, and output location:

> ivory generate-facts --dictionary feature_dictionary.txt --flags feature_flags.txt --entities 10000000 --time-range 2012-01-01_to_2012-12-31 --factsets 3 --output random_factsets

This outputs a fact set partitioned by namespace and date so it can be used as part of a feature store.

Versioning

The format of fact sets are versioned. This allows the format of fact sets to be modified in the future but still maintain feature stores that reference fact sets persisted in an older format.

A fact set format version is specified by a .version file that is stored at the root directory of a given fact set.

About

A scalable feature store.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published