A Ultralight Digital Human model can run on mobile devices in real time!!!
一个能在移动设备上实时运行的数字人模型,据我所知,这应该是第一个开源的如此轻量级的数字人模型。
Lets see the demo.⬇️⬇️⬇️
先来看个demo⬇️⬇️⬇️
最近issue里提到很多效果不佳的案例。我尝试复现,并没有复现出来。但是我发现如果你视频中声音质量比较差的话,效果大概率不会好。声音质量比较差指的是:1)存在难以忽略的噪声。2)在空旷的房间里录制的视频有回音。3)视频人声不清楚。建议录制视频时候使用外接麦克风,不用拍摄设备自带的麦克风。我自己尝试了声音清晰的情况,不论是wenet还是hubert,效果都非常棒。
It's so easy to train your own digital human.I will show you step by step.
训练一个你自己的数字人非常简单,我将一步步向你展示。
conda create -n dh python=3.10
conda activate dh
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
conda install mkl=2024.0
pip install opencv-python
pip install transformers
pip install numpy==1.23.5
pip install soundfile
pip install librosa
pip install onnxruntime
I only ran on pytorch==1.13.1, Other versions should also work.
我是在1.13.1版本的pytorch跑的,其他版本的pytorch应该也可以。
Download wenet encoder.onnx from https://drive.google.com/file/d/1e4Z9zS053JEWl6Mj3W9Lbc9GDtzHIg6b/view?usp=drive_link
and put it in data_utils/
Prepare your video, 3~5min is good. Make sure that every frame of the video has the person's full face exposed and the sound is clear without any noise, put it in a new folder.I will provide a demo video.
准备好你的视频,3到5分钟的就可以,必须保证视频中每一帧都有整张脸露出来的人物,声音清晰没有杂音,把它放到一个新的文件夹里面。我会提供一个demo视频,来自康辉老师的口播,侵删。
First of all, we need to extract audio feature.I'm using 2 different extractor from wenet and hubert, thank them for their great work.
wenet的代码和与训练模型来自:https://github.com/Tzenthin/wenet_mnn
首先我们需要提取音频特征,我用了两个不同的特征提取起,分别是wenet和hubert,感谢他们。
When you using wenet, you neet to ensure that your video frame rate is 20, and for hubert,your video frame rate should be 25.
如果你选择使用wenet的话,你必须保证你视频的帧率是20fps,如果选择hubert,视频帧率必须是25fps。
In my experiments, hubert performs better, but wenet is faster and can run in real time on mobile devices.
在我的实验中,hubert的效果更好,但是wenet速度更快,可以在移动端上实时运行
And other steps are in data_utils/process.py, you just run it like this.
其他步骤都写在data_utils/process.py里面了,没什么特别要注意的。
cd data_utils
python process.py YOUR_VIDEO_PATH --asr hubert
Then you wait.
然后等它运行完就行了
After the preprocessing step, you can start training the model.
上面步骤结束后,就可以开始训练模型了。
Train a syncnet first for better results.
先训练一个syncnet,效果会更好。
cd ..
python syncnet.py --save_dir ./syncnet_ckpt/ --dataset_dir ./data_dir/ --asr hubert
Then find a best one(low loss) to train digital human model.
然后找一个loss最低的checkpoint来训练数字人模型。
cd ..
python train.py --dataset_dir ./data_dir/ --save_dir ./checkpoint/ --asr hubert --use_syncnet --syncnet_checkpoint syncnet_ckpt
Before run inference, you need to extract test audio feature(i will merge this step and inference step), run this
在推理之前,需要先提取测试音频的特征(之后会把这步和推理合并到一起去),运行(音频采样率需要是16000)
python data_utils/hubert.py --wav your_test_audio.wav # when using hubert
or
python data_utils/python wenet_infer.py your_test_audio.wav # when using wenet
then you get your_test_audio_hu.npy or your_test_audio_wenet.npy
then run
python inference.py --asr hubert --dataset ./your_data_dir/ --audio_feat your_test_audio_hu.npy --save_path xxx.mp4 --checkpoint your_trained_ckpt.pth
To merge the audio and the video, run
ffmpeg -i xxx.mp4 -i your_audio.wav -c:v libx264 -c:a aac result_test.mp4
这个模型是支持流式推理的,但是代码还没有完善,之后我会提上来。
关于在移动端上运行也是没问题的,只需要把现在这个模型通道数改小一点,音频特征用wenet就没问题了。相关代码我也会在之后放上来。
if you have some advice, open an issue or PR.
如果你有改进的建议,可以提个issue或者PR。
If you think this repo is useful to you, please give me a star.
如果你觉的这个repo对你有用的话,记得给我点个star
BUY ME A CUP OF COFFE⬇️⬇️⬇️