-
Notifications
You must be signed in to change notification settings - Fork 10
/
camera_utils.py
250 lines (160 loc) · 7.24 KB
/
camera_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import numpy as np
import cv2
from scipy.interpolate import griddata
from scipy import ndimage
def vertex_from_depth(depth,
fl,
pp,
depth_range,
png_scale_factor):
'''
This function takes depth map (png image) and
converts it into a point cloud
@params
fl: focal lenth of the camera
pp: principal point, center of the camera
depth_range: depth range from min to max
pnt_scale_factor: the scale factor by which the
depth maps were scaled to convert
to png image
'''
fl_x, fl_y = fl
pp_x, pp_y = pp
min_depth, max_depth = depth_range
rows, cols = depth.shape
# creating evenly spaced coordinates
xx = np.linspace(0, cols-1, cols)
yy = np.linspace(0, rows-1, rows)
# get xpixels and ypixels
xp, yp = np.meshgrid(xx, yy)
# convert depth to values in meters
depth_m = np.copy(depth) / png_scale_factor
# check for range
depth_m[depth_m < min_depth] = min_depth
depth_m[depth_m > max_depth] = max_depth
# depth_mm = np.max(depth_mm, 0.0)
vx = (xp - pp_x) * depth_m / fl_x
vy = (yp - pp_y) * depth_m / fl_y
vz = depth_m
vertices = np.transpose(np.stack([vx, vy, vz]), (1, 2, 0))
return vertices, depth_m
def normal_from_vertex(vertices):
'''
This function takes a point cloud and
returns normal vectors at each point
@params
vertices: input vertices that are used
to compute the normals via
cross product
'''
Vr = np.zeros_like(vertices)
Vu = np.zeros_like(vertices)
rows, cols, _ = vertices.shape
Vu[0: rows-1, :, :] = vertices[1: rows, :, :]
Vr[:, 0: cols-1, :] = vertices[:, 1:cols, :]
a = Vr - vertices
b = Vu - vertices
axb = np.cross(a, b)
mag = np.linalg.norm(axb, axis=-1)
mag[mag < 1e-10] = 1
axb[...,0] = axb[...,0] / mag
axb[...,1] = axb[...,1] / mag
axb[...,2] = axb[...,2] / mag
return axb
def add_gaussian_shifts(depth, std=1/2.0):
rows, cols = depth.shape
gaussian_shifts = np.random.normal(0, std, size=(rows, cols, 2))
gaussian_shifts = gaussian_shifts.astype(np.float32)
# creating evenly spaced coordinates
xx = np.linspace(0, cols-1, cols)
yy = np.linspace(0, rows-1, rows)
# get xpixels and ypixels
xp, yp = np.meshgrid(xx, yy)
xp = xp.astype(np.float32)
yp = yp.astype(np.float32)
xp_interp = np.minimum(np.maximum(xp + gaussian_shifts[:, :, 0], 0.0), cols)
yp_interp = np.minimum(np.maximum(yp + gaussian_shifts[:, :, 1], 0.0), rows)
depth_interp = cv2.remap(depth, xp_interp, yp_interp, cv2.INTER_LINEAR)
return depth_interp
def filterDisp(disp, dot_pattern_):
invalid_disp_ = 99999999.9
size_filt_ = 9
xx = np.linspace(0, size_filt_-1, size_filt_)
yy = np.linspace(0, size_filt_-1, size_filt_)
xf, yf = np.meshgrid(xx, yy)
xf = xf - int(size_filt_ / 2.0)
yf = yf - int(size_filt_ / 2.0)
sqr_radius = (xf**2 + yf**2)
vals = sqr_radius * 1.2**2
vals[vals==0] = 1
weights_ = 1 /vals
fill_weights = 1 / ( 1 + sqr_radius)
fill_weights[sqr_radius > 9] = -1.0
disp_rows, disp_cols = disp.shape
dot_pattern_rows, dot_pattern_cols = dot_pattern_.shape
lim_rows = np.minimum(disp_rows - size_filt_, dot_pattern_rows - size_filt_)
lim_cols = np.minimum(disp_cols - size_filt_, dot_pattern_cols - size_filt_)
center = int(size_filt_ / 2.0)
window_inlier_distance_ = 0.1
out_disp = np.ones_like(disp) * invalid_disp_
interpolation_map = np.zeros_like(disp)
for r in range(0, lim_rows):
for c in range(0, lim_cols):
if dot_pattern_[r+center, c+center] > 0:
# c and r are the top left corner
window = disp[r:r+size_filt_, c:c+size_filt_]
dot_win = dot_pattern_[r:r+size_filt_, c:c+size_filt_]
valid_dots = dot_win[window < invalid_disp_]
n_valids = np.sum(valid_dots) / 255.0
n_thresh = np.sum(dot_win) / 255.0
if n_valids > n_thresh / 1.2:
mean = np.mean(window[window < invalid_disp_])
diffs = np.abs(window - mean)
diffs = np.multiply(diffs, weights_)
cur_valid_dots = np.multiply(np.where(window<invalid_disp_, dot_win, 0),
np.where(diffs < window_inlier_distance_, 1, 0))
n_valids = np.sum(cur_valid_dots) / 255.0
if n_valids > n_thresh / 1.2:
accu = window[center, center]
assert(accu < invalid_disp_)
out_disp[r+center, c + center] = round((accu)*8.0) / 8.0
interpolation_window = interpolation_map[r:r+size_filt_, c:c+size_filt_]
disp_data_window = out_disp[r:r+size_filt_, c:c+size_filt_]
substitutes = np.where(interpolation_window < fill_weights, 1, 0)
interpolation_window[substitutes==1] = fill_weights[substitutes ==1 ]
disp_data_window[substitutes==1] = out_disp[r+center, c+center]
return out_disp
if __name__ == "__main__":
dot_pattern_ = cv2.imread("./data/kinect-pattern_3x3.png", 0)
count = 181
scale_factor = 100
focal_length = 480.0
baseline_m = 0.075
while True:
depth_uint16 = cv2.imread("depth/{}.png".format(count), cv2.IMREAD_UNCHANGED)
h, w = depth_uint16.shape
# Our depth images were scaled by 5000 to store in png format so dividing to get
# depth in meters
depth = depth_uint16.astype('float') / 5000.0
depth_interp = add_gaussian_shifts(depth)
disp_= focal_length * baseline_m / (depth_interp + 1e-10)
depth_f = np.round(disp_ * 8.0)/8.0
out_disp = filterDisp(depth_f, dot_pattern_)
depth = focal_length * baseline_m / out_disp
depth[out_disp == 99999999.9] = 0
# The depth here needs to converted to cms so scale factor is introduced
# though often this can be tuned from [100, 200] to get the desired banding / quantisation effects
noisy_depth = (35130/np.round((35130/np.round(depth*scale_factor)) + np.random.normal(size=(h, w))*(1.0/6.0) + 0.5))/scale_factor
noisy_depth = noisy_depth * 5000.0
noisy_depth = noisy_depth.astype('uint16')
# Displaying side by side the orignal depth map and the noisy depth map with barron noise cvpr 2013 model
cv2.namedWindow('Adding Kinect Noise', cv2.WINDOW_AUTOSIZE)
# cv2.imshow('Adding Kinect Noise', np.hstack((depth_uint16, noisy_depth)))
cv2.imshow('Adding Kinect Noise', np.hstack((depth_uint16, noisy_depth)))
key = cv2.waitKey(1)
# Press esc or 'q' to close the image window
if key & 0xFF == ord('q') or key == 27:
cv2.destroyAllWindows()
break
print(count)
count = (count + 1)% 500