|
| 1 | +#################################################################### |
| 2 | +################ SESSIÓ 2 #################################### |
| 3 | +#################################################################### |
| 4 | + |
| 5 | + |
| 6 | + |
| 7 | +#################### 2.1 SEPIA VERDA ############################## |
| 8 | + |
| 9 | +##### prior distribution and prior predictive distribution |
| 10 | + |
| 11 | + |
| 12 | +prior <- c(alpha =19 , beta =1) |
| 13 | + |
| 14 | +prior <- c(alpha =9 , beta =0.5) |
| 15 | + |
| 16 | +par(mfrow=c(1,2)) |
| 17 | + |
| 18 | +plot(function(x)dgamma(x, prior[1], prior[2]), xlim=c(0,60), ylab="", xlab = expression(lambda)) |
| 19 | +title("prior distribution") |
| 20 | + |
| 21 | + |
| 22 | + |
| 23 | +# simulated prior predictive distribution |
| 24 | +M <- 100000 |
| 25 | +prior.sim <- rgamma(M, prior[1], prior[2]) |
| 26 | +pre.prior.sim <- rpois(M, prior.sim) |
| 27 | + |
| 28 | + |
| 29 | +plot(table(pre.prior.sim)/M, ty="h") |
| 30 | +abline(v= c(5,40), lty= 2, col= "blue") |
| 31 | + |
| 32 | +###### data |
| 33 | + |
| 34 | +y <- read.table("G:\\200611 - ANALISI BAYESIANA\\data\\sepiaverda.txt", header = F) |
| 35 | + |
| 36 | +n <- dim(y)[1] |
| 37 | + |
| 38 | +y |
| 39 | + |
| 40 | +####### standardaized likelihood function |
| 41 | + |
| 42 | +sd.like <- function(th) { |
| 43 | + (th^sum(y)*exp(-n*th))/integrate(function(th)(th^sum(y)*exp(-n*th)), lower = 0, upper = 50)$value |
| 44 | +} |
| 45 | + |
| 46 | + |
| 47 | +par(mfrow=c(1, 1)) |
| 48 | +plot(function(th)sd.like(th), xlim=c(0,60), ylab="", xlab = expression(lambda)) |
| 49 | + plot(function(th)dgamma(th, prior[1], prior[2]), xlim=c(0,60), add=T, lty=2) |
| 50 | + legend("topright", c("prior", "likelihood"), lty = c(2,1)) |
| 51 | + |
| 52 | + |
| 53 | + |
| 54 | +######### posterior distribution |
| 55 | + |
| 56 | + |
| 57 | +posterior <- c(a = prior[1] + sum(y) , b = prior[2] + n ) |
| 58 | + |
| 59 | + |
| 60 | + |
| 61 | +# prior, likelihood and posterior |
| 62 | + |
| 63 | +plot(function(th)dgamma(th, posterior[1], posterior[2]), xlim=c(0,60), lty=1) |
| 64 | + plot(function(th)sd.like(th), xlim=c(0,60), ylab="", xlab = expression(lambda), add=T, lty=3) |
| 65 | + plot(function(th)dgamma(th, prior[1], prior[2]), xlim=c(0,60), add=T, lty=2) |
| 66 | + legend("topright", c("prior", "likelihood", "posterior"), lty = c(2,3,1)) |
| 67 | + |
| 68 | + |
| 69 | + |
| 70 | +# summary results |
| 71 | + |
| 72 | +results <- matrix(nrow = 7, ncol = 2) |
| 73 | + |
| 74 | +colnames(results ) <- c('prior', 'posterior') |
| 75 | +rownames(results ) <- c('alpha', 'beta', 'mean', 'variance', '2,5%', 'median', '97.5%') |
| 76 | + |
| 77 | +results [1:2, 1] <- prior |
| 78 | +results [3, 1] <- prior[1]/prior[2] |
| 79 | +results [4, 1] <- prior[1]/prior[2]^2 |
| 80 | +results [5, 1] <- qgamma(0.025, shape = prior[1], prior[2]) |
| 81 | +results [6, 1] <- qgamma(0.5, shape = prior[1], prior[2]) |
| 82 | +results [7, 1] <- qgamma(0.975, shape = prior[1], prior[2]) |
| 83 | + |
| 84 | +results [1:2, 2] <- posterior |
| 85 | +results [3, 2] <- posterior[1]/posterior[2] |
| 86 | +results [4, 2] <- posterior[1]/posterior[2]^2 |
| 87 | +results [5, 2] <- qgamma(0.025, shape = posterior[1], posterior[2]) |
| 88 | +results [6, 2] <- qgamma(0.5, shape = posterior[1], posterior[2]) |
| 89 | +results [7, 2] <- qgamma(0.975, shape = posterior[1], posterior[2]) |
| 90 | + |
| 91 | +round(results , 3) |
| 92 | + |
| 93 | + |
| 94 | + |
| 95 | +# priror and posterior predictive distribution |
| 96 | + |
| 97 | +par(mfrow=c(2,1)) |
| 98 | + |
| 99 | +M <- 100000 |
| 100 | + |
| 101 | +prior.sim <- rgamma(M, prior[1], prior[2]) |
| 102 | +pre.prior.sim <- rpois(M, prior.sim) |
| 103 | + |
| 104 | +post.sim <- rgamma(M, shape = posterior[1], posterior[2]) |
| 105 | +post.pre.sim <- rpois(M, post.sim) |
| 106 | + |
| 107 | +plot(table(pre.prior.sim)/M, ty="h", xlim=c(0, 60), ylab = "", xlab = "", col="blue", lwd=0.5) |
| 108 | + title("prior predictive distribution") |
| 109 | + |
| 110 | +plot(table(post.pre.sim)/M, ty="h", xlim=c(0, 60), ylab = "", xlab = "", col="blue", lwd=0.5) |
| 111 | +title("posterior predictive distribution") |
| 112 | + |
| 113 | + |
| 114 | + |
| 115 | + |
| 116 | +first <- round(sum(post.pre.sim < 16)/M, 4) |
| 117 | +second<- round(sum(post.pre.sim > 24)/M, 4) |
| 118 | + |
| 119 | + |
| 120 | + |
| 121 | +h1 <- pgamma(15, posterior[1], posterior[2]) |
| 122 | +h3 <- 1 - pgamma(20, posterior[1], posterior[2]) |
| 123 | +h2 <- 1-h1-h3 |
| 124 | + |
| 125 | + |
| 126 | + |
| 127 | + |
| 128 | + |
| 129 | + |
| 130 | + |
| 131 | +#################### 2.2 ASMA ################################################# |
| 132 | + |
| 133 | + |
| 134 | +# prior distribution |
| 135 | + |
| 136 | +prior <- c(a = 1.25, b = 25 ) |
| 137 | + |
| 138 | + |
| 139 | +par(mfrow=c(1,1)) |
| 140 | + |
| 141 | +#plot(function(x)dbeta(x, prior[1],prior[2]), xlim=c(0,1), ylab="", xlab = "theta") |
| 142 | +curve(dbeta(x, prior[1],prior[2]), xlim=c(0,1), ylab="", xlab = "theta", n=10000) |
| 143 | + title(paste("Prior: Beta","(","a=",prior[1],",","b=",prior[2],")")) |
| 144 | + |
| 145 | + |
| 146 | + |
| 147 | +# prior predictive distribution |
| 148 | + |
| 149 | +M <- 1000000 |
| 150 | +th.prior <- rbeta(M, prior[1],prior[2]) |
| 151 | +pre.prior <- rbinom(M, 50, th.prior) |
| 152 | + |
| 153 | +plot(table(pre.prior)/M, xlim=c(0,50),ty="h", ylab="") |
| 154 | + |
| 155 | + |
| 156 | + |
| 157 | + |
| 158 | +# data |
| 159 | + |
| 160 | +N <- 200 |
| 161 | +y <- 11 |
| 162 | + |
| 163 | + |
| 164 | + |
| 165 | +# likelihood |
| 166 | + |
| 167 | +curve(dbinom(y, N, x),ylab="",xlab=expression(theta), xlim=c(0,1), n=10000) |
| 168 | + abline(v=y/N, lty=2, col="blue") |
| 169 | + |
| 170 | +K <- integrate(function(th)dbinom(y,N,th), lower=0, upper=1)$value |
| 171 | + |
| 172 | +curve(dbeta(x, prior[1], prior[2]), xlim=c(0,1), ylab="", xlab =expression(theta), ylim=c(0,25), n=10000) |
| 173 | +curve(dbinom(y, N, x)/K, add=T, lty=2) |
| 174 | + legend("topright", c("prior","likelihood"),lty=c(1,2)) |
| 175 | + title("prior & likelihood") |
| 176 | + |
| 177 | + |
| 178 | + |
| 179 | + |
| 180 | +# posterior distribution |
| 181 | + |
| 182 | + |
| 183 | +posterior <- c(a = prior[1] + y, b = prior[2] + N -y ) |
| 184 | + |
| 185 | + |
| 186 | + |
| 187 | +# DIBUIX DE LA DISTRIBU DISTRIBUCIO A PRIORI, A POSTERIORI I LA VERSEMBLANÇA |
| 188 | + |
| 189 | +curve(dbeta(x, posterior[1], posterior[2]), xlim=c(0,1), ylab="", xlab =expression(theta), n=10000) |
| 190 | + curve(dbinom(y, N, x)/K, add=T, lty=3, n=10000) |
| 191 | + curve(dbeta(x, prior[1], prior[2]), add=T, lty=2, n=10000) |
| 192 | + |
| 193 | + legend("topright", c("prior","posterior","likelihood"), lty = c(2,1,3)) |
| 194 | + title("prior , posterior & likelihood") |
| 195 | + |
| 196 | + |
| 197 | + |
| 198 | +# summnary |
| 199 | + |
| 200 | +sortida <- matrix(nrow = 7, ncol = 2) |
| 201 | + |
| 202 | +colnames(sortida) <- c('prior', 'posterior') |
| 203 | +rownames(sortida) <- c('alpha', 'beta', 'mean', 'variance', '2,5%', 'median', '97.5%') |
| 204 | + |
| 205 | +sortida[1:2, 1] <- prior |
| 206 | +sortida[3, 1] <- prior[1]/(prior[1] + prior[2]) |
| 207 | +sortida[4, 1] <- (prior[1]*prior[2])/(((prior[1]+prior[2])^2)*(prior[1]+prior[2]+1)) |
| 208 | +sortida[5, 1] <- qbeta(0.025, prior[1], prior[2]) |
| 209 | +sortida[6, 1] <- qbeta(0.5, prior[1], prior[2]) |
| 210 | +sortida[7, 1] <- qbeta(0.975, prior[1], prior[2]) |
| 211 | + |
| 212 | +sortida[1:2, 2] <- posterior |
| 213 | +sortida[3, 2] <- posterior[1]/(posterior[1] + posterior[2]) |
| 214 | +sortida[4, 2] <- (posterior[1]*posterior[2])/(((posterior[1]+posterior[2])^2)*(posterior[1]+posterior[2]+1)) |
| 215 | +sortida[5, 2] <- qbeta(0.025, posterior[1], posterior[2]) |
| 216 | +sortida[6, 2] <- qbeta(0.5, posterior[1], posterior[2]) |
| 217 | +sortida[7, 2] <- qbeta(0.975, posterior[1], posterior[2]) |
| 218 | + |
| 219 | + |
| 220 | +round(sortida, 3) |
| 221 | + |
| 222 | + |
| 223 | + |
| 224 | + |
| 225 | +# prior and posterior predictive distribution |
| 226 | + |
| 227 | + |
| 228 | +M <- 1000000 |
| 229 | +th.prior <- rbeta(M, prior[1],prior[2]) |
| 230 | +pre.prior <- rbinom(M, 50, th.prior) |
| 231 | + |
| 232 | +th.posterior <- rbeta(M, posterior[1],posterior[2]) |
| 233 | +pre.posterior <- rbinom(M, 50, th.posterior) |
| 234 | + |
| 235 | + |
| 236 | +par(mfrow=c(2,1)) |
| 237 | + |
| 238 | +plot(table(pre.prior)/M, xlim=c(0,50),ty="h", ylab="") |
| 239 | + title("prior predictive distribution") |
| 240 | +plot(table(pre.posterior)/M, xlim=c(0,50),ty="h", ylab="") |
| 241 | + title("posterior predictive distribution") |
| 242 | + |
| 243 | + |
| 244 | + |
| 245 | + |
| 246 | + |
0 commit comments