Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Assistance Required with Training Error #22

Open
i-ninte opened this issue Oct 23, 2024 · 2 comments
Open

Assistance Required with Training Error #22

i-ninte opened this issue Oct 23, 2024 · 2 comments

Comments

@i-ninte
Copy link

i-ninte commented Oct 23, 2024

Dear Ankandrew,

I hope this message finds you well. I would like to take a moment to thank you for your ongoing support and contributions to the Fast Plate OCR project. Your work is invaluable, and I truly appreciate your dedication.

I am currently working on training a model for recognizing Ghanaian license plates using the Fast Plate OCR framework on my Mac M3. However, I have encountered an issue during the training process, and I would greatly appreciate your assistance.

Below are the contents of the training log leading up to the error:

                                 CLI Training Parameters                        
╭─────────────────────────┬─────────────────────────────────────────────────────
│ Parameter               │ Details                                             
├─────────────────────────┼─────────────────────────────────────────────────────
│ dense                   │ True                                                
│ config_file             │ '/Users/ninte/desktop/fast-plate-ocr/ghanaocr/config
│ annotations             │ '/Users/ninte/desktop/fast-plate-ocr/ghanaocr/Ghanai
│                         │ License Plates.v2i.tensorflow/train/annotations.csv'
│ val_annotations         │ '/Users/ninte/desktop/fast-plate-ocr/ghanaocr/Ghanai
│                         │ License Plates.v2i.tensorflow/valid/annotations.csv'
│ augmentation_path       │ None                                                
│ lr                      │ 0.001                                               
│ batch_size              │ 128                                                 
│ num_workers             │ 0                                                   
│ output_dir              │ 'trained_models'                                    
│ epochs                  │ 750                                                 
│ tensorboard             │ False                                               
│ tensorboard_dir         │ 'tensorboard_logs'                                  
│ early_stopping_patience │ 100                                                 
│ reduce_lr_patience      │ 50                                                  
│ reduce_lr_factor        │ 0.85                                                
│ activation              │ 'relu'                                              
│ pool_layer              │ 'max'                                               
╰─────────────────────────┴─────────────────────────────────────────────────────


Augmentation Pipeline:
Compose([
  ShiftScaleRotate(p=1.0, shift_limit_x=(-0.06, 0.06), shift_limit_y=(-0.06, 
0.06), scale_limit=(-0.09999999999999998, 0.10000000000000009), 
rotate_limit=(-9, 9), interpolation=1, border_mode=0, value=(0.0, 0.0, 0.0), 
mask_value=0.0, rotate_method='largest_box'),
  RandomBrightnessContrast(p=1.0, brightness_limit=(-0.1, 0.1), 
contrast_limit=(-0.1, 0.1), brightness_by_max=True),
  MotionBlur(p=0.1, blur_limit=(3, 5), allow_shifted=True),
  OneOf([
    CoarseDropout(p=0.3, fill_value=0.0, mask_fill_value=None, 
num_holes_range=(10, 10), hole_height_range=(4, 4), hole_width_range=(4, 4)),
    PixelDropout(p=0.2, dropout_prob=0.01, per_channel=False, drop_value=0.0, 
mask_drop_value=None),
  ], p=0.7),
], p=1.0, bbox_params=None, keypoint_params=None, additional_targets={}, 
is_check_shapes=True)


Configuration:
{
    'max_plate_slots': 10,
    'alphabet': '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ- ',
    'pad_char': ' ',
    'img_height': 70,
    'img_width': 140,
    'vocabulary_size': 38
}

Epoch 1/750

I ran the following command to initiate the training:

KERAS_BACKEND=tensorflow fast_plate_ocr train \
    --annotations '/Users/ninte/desktop/fast-plate-ocr/ghanaocr/Ghanaian License Plates.v2i.tensorflow/train/annotations.csv' \
    --val-annotations '/Users/ninte/desktop/fast-plate-ocr/ghanaocr/Ghanaian License Plates.v2i.tensorflow/valid/annotations.csv' \
    --config-file '/Users/ninte/desktop/fast-plate-ocr/ghanaocr/config.yaml' \
    --batch-size 128 \
    --epochs 750 \
    --dense \
    --early-stopping-patience 100 \
    --reduce-lr-patience 50

Unfortunately, I encountered the following error:

zsh: bus error  KERAS_BACKEND=tensorflow fast_plate_ocr train --annotations  --val-annotation

I would greatly appreciate any guidance or assistance you could provide to help resolve this issue.

Thank you once again for your time and support.

Best regards,

Ninte

@ankandrew
Copy link
Owner

Hi! Great that you want to train on your custom dataset 🚀! See this issues that is exact same problem, I'm aware of the issue. You can try changing ML framework i.e. to PyTorch/JAX or try this solution #21 (comment).

@i-ninte
Copy link
Author

i-ninte commented Oct 25, 2024

thank you very much will do

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants