forked from TheAlgorithms/C-Plus-Plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdsu_union_rank.cpp
188 lines (181 loc) · 5.7 KB
/
dsu_union_rank.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/**
* @file
* @brief [DSU (Disjoint
* sets)](https://en.wikipedia.org/wiki/Disjoint-set-data_structure)
* @details
* dsu : It is a very powerful data structure which keeps track of different
* clusters(sets) of elements, these sets are disjoint(doesnot have a common
* element). Disjoint sets uses cases : for finding connected components in a
* graph, used in Kruskal's algorithm for finding Minimum Spanning tree.
* Operations that can be performed:
* 1) UnionSet(i,j): add(element i and j to the set)
* 2) findSet(i): returns the representative of the set to which i belogngs to.
* 3) getParents(i): prints the parent of i and so on and so forth.
* Below is the class-based approach which uses the heuristic of union-ranks.
* Using union-rank in findSet(i),we are able to get to the representative of i
* in slightly delayed O(logN) time but it allows us to keep tracks of the
* parent of i.
* @author [AayushVyasKIIT](https://github.com/AayushVyasKIIT)
* @see dsu_path_compression.cpp
*/
#include <cassert> /// for assert
#include <cstdint>
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
using std::cout;
using std::endl;
using std::vector;
/**
* @brief Disjoint sets union data structure, class based representation.
* @param n number of elements
*/
class dsu {
private:
vector<uint64_t> p; ///< keeps track of the parent of ith element
vector<uint64_t> depth; ///< tracks the depth(rank) of i in the tree
vector<uint64_t> setSize; ///< size of each chunk(set)
public:
/**
* @brief constructor for initialising all data members
* @param n number of elements
*/
explicit dsu(uint64_t n) {
p.assign(n, 0);
/// initially all of them are their own parents
depth.assign(n, 0);
setSize.assign(n, 0);
for (uint64_t i = 0; i < n; i++) {
p[i] = i;
depth[i] = 0;
setSize[i] = 1;
}
}
/**
* @brief Method to find the representative of the set to which i belongs
* to, T(n) = O(logN)
* @param i element of some set
* @returns representative of the set to which i belongs to
*/
uint64_t findSet(uint64_t i) {
/// using union-rank
while (i != p[i]) {
i = p[i];
}
return i;
}
/**
* @brief Method that combines two disjoint sets to which i and j belongs to
* and make a single set having a common representative.
* @param i element of some set
* @param j element of some set
* @returns void
*/
void unionSet(uint64_t i, uint64_t j) {
/// checks if both belongs to same set or not
if (isSame(i, j)) {
return;
}
/// we find representative of the i and j
uint64_t x = findSet(i);
uint64_t y = findSet(j);
/// always keeping the min as x
/// in order to create a shallow tree
if (depth[x] > depth[y]) {
std::swap(x, y);
}
/// making the shallower tree, root parent of the deeper root
p[x] = y;
/// if same depth, then increase one's depth
if (depth[x] == depth[y]) {
depth[y]++;
}
/// total size of the resultant set
setSize[y] += setSize[x];
}
/**
* @brief A utility function which check whether i and j belongs to same set
* or not
* @param i element of some set
* @param j element of some set
* @returns `true` if element i and j are in same set
* @returns `false` if element i and j are not in same set
*/
bool isSame(uint64_t i, uint64_t j) {
if (findSet(i) == findSet(j)) {
return true;
}
return false;
}
/**
* @brief Method to print all the parents of i, or the path from i to
* representative.
* @param i element of some set
* @returns void
*/
vector<uint64_t> getParents(uint64_t i) {
vector<uint64_t> ans;
while (p[i] != i) {
ans.push_back(i);
i = p[i];
}
ans.push_back(i);
return ans;
}
};
/**
* @brief Self-implementations, 1st test
* @returns void
*/
static void test1() {
/* checks the parents in the resultant structures */
uint64_t n = 10; ///< number of elements
dsu d(n + 1); ///< object of class disjoint sets
d.unionSet(2, 1); ///< performs union operation on 1 and 2
d.unionSet(1, 4);
d.unionSet(8, 1);
d.unionSet(3, 5);
d.unionSet(5, 6);
d.unionSet(5, 7);
d.unionSet(9, 10);
d.unionSet(2, 10);
// keeping track of the changes using parent pointers
vector<uint64_t> ans = {7, 5};
for (uint64_t i = 0; i < ans.size(); i++) {
assert(d.getParents(7).at(i) ==
ans[i]); // makes sure algorithm works fine
}
cout << "1st test passed!" << endl;
}
/**
* @brief Self-implementations, 2nd test
* @returns void
*/
static void test2() {
// checks the parents in the resultant structures
uint64_t n = 10; ///< number of elements
dsu d(n + 1); ///< object of class disjoint sets
d.unionSet(2, 1); /// performs union operation on 1 and 2
d.unionSet(1, 4);
d.unionSet(8, 1);
d.unionSet(3, 5);
d.unionSet(5, 6);
d.unionSet(5, 7);
d.unionSet(9, 10);
d.unionSet(2, 10);
/// keeping track of the changes using parent pointers
vector<uint64_t> ans = {2, 1, 10};
for (uint64_t i = 0; i < ans.size(); i++) {
assert(d.getParents(2).at(i) ==
ans[i]); /// makes sure algorithm works fine
}
cout << "2nd test passed!" << endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test1(); // run 1st test case
test2(); // run 2nd test case
return 0;
}