forked from bdu91/group-contribution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_thermo_data.py
116 lines (97 loc) · 4.67 KB
/
process_thermo_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import pandas as pd
import re
class thermo_data(object):
def __init__(self):
"""
A module that processes compound thermodynamic data and reaction thermodynamic data
"""
self.all_thermo_data_dict = {}
@staticmethod
def parse_reaction_formula_side(s):
"""
Parses the side formula, e.g. '2 CHB_15377 + CHB_15422'
Ignores stoichiometry.
Returns:
The set of CIDs.
"""
if s.strip() == "null":
return {}
compound_bag = {}
for member in re.split('\s+\+\s+', s):
tokens = member.split(None, 1)
if len(tokens) == 1:
amount = 1
key = member
else:
try:
amount = float(tokens[0])
except ValueError:
pass
key = tokens[1]
try:
compound_bag[key] = compound_bag.get(key, 0) + amount
except ValueError:
pass
return compound_bag
@staticmethod
def parse_formula(formula, arrow='='):
"""
Parses a two-sided formula such as: 2 C00001 => C00002 + C00003
Return:
The set of substrates, products and the direction of the reaction
"""
tokens = formula.split(arrow)
if len(tokens) < 2:
raise ValueError('Reaction does not contain the arrow sign (%s): %s'
% (arrow, formula))
if len(tokens) > 2:
raise ValueError('Reaction contains more than one arrow sign (%s): %s'
% (arrow, formula))
left = tokens[0].strip()
right = tokens[1].strip()
sparse_reaction = {}
for cid, count in thermo_data.parse_reaction_formula_side(left).iteritems():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) - count
for cid, count in thermo_data.parse_reaction_formula_side(right).iteritems():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) + count
return sparse_reaction
def get_compound_data(self, file_name):
"""
Extract thermodynamic data for compounds, including heat capacity (Cp), formation entropy (dS_f), formation enthalpy (dH_f_, formation energy (dG_f),
and transformed formation energy at pH 7, ionic strength 0.25 and 298.15 K
Write into a dictionary that stores categories of thermodynamic data for different compounds
"""
self.all_thermo_data_dict['Cp'] = {}
self.all_thermo_data_dict['dS_f'] = {}
self.all_thermo_data_dict['dH_f'] = {}
self.all_thermo_data_dict['dG_f'] = {}
self.all_thermo_data_dict['dG_f_prime'] = {}
compounds_thermo_data = pd.read_csv(file_name)
for i, row in compounds_thermo_data.iterrows():
self.all_thermo_data_dict[row['data type']][str(row['updated_species_id'])] = float(row['value'])
def get_TECRDB_rxn_data(self, file_name):
"""
Extract thermodynamic data for reactions, including transformed reaction energy (dG_r), transformed reaction enthalpy (dH_r)
Write into a dictionary that stores dG_r and dH_r, each reaction data point is numerically labeled for convenience of later reference (e.g. Keq_1, deltaH_23)
"""
self.all_thermo_data_dict['dG_r'] = {}
self.all_thermo_data_dict['dH_r'] = {}
rxns_thermo_data = pd.read_csv(file_name)
for i, rxn_data_dict in rxns_thermo_data.iterrows():
cur_r_dict = {'pH': rxn_data_dict['pH'], 'IS': rxn_data_dict['IS'], 'T': rxn_data_dict['T'], 'rxn_formula':rxn_data_dict['rxn_formula'], \
'rxn_dict': self.parse_formula(rxn_data_dict['rxn_formula']), 'metal ions': {}}
metal_ion_list = ['Mg', 'Co', 'Na', 'K', 'Mn', 'Zn', 'Li', 'Ca']
for metal_ion in metal_ion_list:
if not pd.isnull(rxn_data_dict[metal_ion]):
cur_r_dict['metal ions'][metal_ion] = rxn_data_dict[metal_ion]
if not pd.isnull(rxn_data_dict['Keq']):
cur_r_dict['Keq'] = rxn_data_dict['Keq']
self.all_thermo_data_dict['dG_r'][rxn_data_dict['rxn_id']] = cur_r_dict
if not pd.isnull(rxn_data_dict['deltaH']):
cur_r_dict['deltaH'] = rxn_data_dict['deltaH']
self.all_thermo_data_dict['dH_r'][rxn_data_dict['rxn_id']] = cur_r_dict
def get_thermo_data(self):
self.get_compound_data('data/organic_cpd_thermo_data.csv')
self.get_TECRDB_rxn_data('data/TECRDB_rxn_thermo_data.csv')
if __name__ == '__main__':
td = thermo_data()