forked from lukas-blecher/LaTeX-OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
153 lines (124 loc) · 5.88 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torch.nn as nn
import torch.nn.functional as F
# from x_transformers import *
from x_transformers import TransformerWrapper, Decoder
from x_transformers.autoregressive_wrapper import AutoregressiveWrapper, top_k, top_p, entmax, ENTMAX_ALPHA
from timm.models.vision_transformer import VisionTransformer
from timm.models.vision_transformer_hybrid import HybridEmbed
from timm.models.resnetv2 import ResNetV2
from timm.models.layers import StdConv2dSame
from einops import rearrange, repeat
class CustomARWrapper(AutoregressiveWrapper):
def __init__(self, *args, **kwargs):
super(CustomARWrapper, self).__init__(*args, **kwargs)
@torch.no_grad()
def forward(self, start_tokens, seq_len=256, eos_token=None, temperature=1., filter_logits_fn=top_k, filter_thres=0.9, **kwargs):
device = start_tokens.device
was_training = self.net.training
num_dims = len(start_tokens.shape)
if num_dims == 1:
start_tokens = start_tokens[None, :]
b, t = start_tokens.shape
self.net.eval()
out = start_tokens
mask = kwargs.pop('mask', None)
if mask is None:
mask = torch.full_like(out, True, dtype=torch.bool, device=out.device)
for _ in range(seq_len):
x = out[:, -self.max_seq_len:]
mask = mask[:, -self.max_seq_len:]
# print('arw:',out.shape)
logits = self.net(x, mask=mask, **kwargs)[:, -1, :]
if filter_logits_fn in {top_k, top_p}:
filtered_logits = filter_logits_fn(logits, thres=filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
mask = F.pad(mask, (0, 1), value=True)
if eos_token is not None and (torch.cumsum(out == eos_token, 1)[:, -1] >= 1).all():
break
out = out[:, t:]
if num_dims == 1:
out = out.squeeze(0)
self.net.train(was_training)
return out
class CustomVisionTransformer(VisionTransformer):
def __init__(self, img_size=224, patch_size=16, *args, **kwargs):
super(CustomVisionTransformer, self).__init__(img_size=img_size, patch_size=patch_size, *args, **kwargs)
self.height, self.width = img_size
self.patch_size = patch_size
def forward_features(self, x):
B, c, h, w = x.shape
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
h, w = h//self.patch_size, w//self.patch_size
pos_emb_ind = repeat(torch.arange(h)*(self.width//self.patch_size-w), 'h -> (h w)', w=w)+torch.arange(h*w)
pos_emb_ind = torch.cat((torch.zeros(1), pos_emb_ind+1), dim=0).long()
x += self.pos_embed[:, pos_emb_ind]
#x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
class Model(nn.Module):
def __init__(self, encoder: CustomVisionTransformer, decoder: CustomARWrapper, args, temp: float = .333):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.bos_token = args.bos_token
self.eos_token = args.eos_token
self.max_seq_len = args.max_seq_len
self.temperature = temp
@torch.no_grad()
def forward(self, x: torch.Tensor):
device = x.device
encoded = self.encoder(x.to(device))
dec = self.decoder.generate(torch.LongTensor([self.bos_token]*len(x))[:, None].to(device), self.max_seq_len,
eos_token=self.eos_token, context=encoded, temperature=self.temperature)
return dec
def get_model(args, training=False):
backbone = ResNetV2(
layers=args.backbone_layers, num_classes=0, global_pool='', in_chans=args.channels,
preact=False, stem_type='same', conv_layer=StdConv2dSame)
min_patch_size = 2**(len(args.backbone_layers)+1)
def embed_layer(**x):
ps = x.pop('patch_size', min_patch_size)
assert ps % min_patch_size == 0 and ps >= min_patch_size, 'patch_size needs to be multiple of %i with current backbone configuration' % min_patch_size
return HybridEmbed(**x, patch_size=ps//min_patch_size, backbone=backbone)
encoder = CustomVisionTransformer(img_size=(args.max_height, args.max_width),
patch_size=args.patch_size,
in_chans=args.channels,
num_classes=0,
embed_dim=args.dim,
depth=args.encoder_depth,
num_heads=args.heads,
embed_layer=embed_layer
).to(args.device)
decoder = CustomARWrapper(
TransformerWrapper(
num_tokens=args.num_tokens,
max_seq_len=args.max_seq_len,
attn_layers=Decoder(
dim=args.dim,
depth=args.num_layers,
heads=args.heads,
**args.decoder_args
)),
pad_value=args.pad_token
).to(args.device)
if 'wandb' in args and args.wandb:
import wandb
wandb.watch((encoder, decoder.net.attn_layers))
model = Model(encoder, decoder, args)
if training:
# check if largest batch can be handled by system
im = torch.empty(args.batchsize, args.channels, args.max_height, args.min_height, device=args.device).float()
seq = torch.randint(0, args.num_tokens, (args.batchsize, args.max_seq_len), device=args.device).long()
decoder(seq, context=encoder(im)).sum().backward()
model.zero_grad()
torch.cuda.empty_cache()
del im, seq
return model