-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
172 lines (128 loc) · 5.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import random
from PIL import Image
from imageio import imsave
from skimage.util.shape import view_as_blocks
#Import the data and libraries
import os
import tensorflow as tf
import keras
from keras.models import Model
from keras.layers import Dense, Input, concatenate, Conv2D, Reshape,MaxPooling2D, Lambda,Activation,Conv2DTranspose, UpSampling2D, merge
from keras.layers import UpSampling2D, Conv2DTranspose, BatchNormalization, Dropout
from keras.callbacks import TensorBoard, ModelCheckpoint, Callback, ReduceLROnPlateau
from keras.regularizers import l1
from keras.optimizers import SGD, Adam
import keras.backend as K
from keras.backend import tf as ktf
from keras.utils import plot_model
from keras.callbacks import TensorBoard, ModelCheckpoint, Callback
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage.filters import gaussian_filter
from random import randint
from keras.models import load_model
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image
from imageio import imsave
from skimage.util.shape import view_as_blocks
from scipy import stats
import matplotlib.pyplot as plt
from random import randint
# %matplotlib inline
# Load the dataset
x_train=np.load("data/shuffle.npy")
y_strain= np.load("data/slabels.npy")
y_rtrain= np.load("data/rlabels.npy")
img_height,img_width, nclasses = 224,224,16
num_images=x_train.shape[0]
# Preprocess the data labels [flow method requires a rank 4 tensor]
y_strain=y_strain.reshape((num_images,224,224,1))
y_rtrain=y_rtrain.reshape((num_images,4,4,1))
# Verify the data types and their shapes
print(x_train.shape, x_train.dtype )
print(y_strain.shape, y_strain.dtype)
print(y_rtrain.shape, y_rtrain.dtype)
# Prepare data generator
image_datagen = ImageDataGenerator()
def generate_data_generator(generator, X, Y1, Y2):
genX = generator.flow(X, seed=7, batch_size=32)
genY1 = generator.flow(Y1, seed=7,batch_size=32)
genY2 = generator.flow(Y2, seed=7,batch_size=32)
while True:
Xi = genX.next()/255.0
Yi1 = genY1.next().reshape(-1,50176,1)
Yi2 = genY2.next().reshape(-1,16,1)
yield (Xi, {'shuf_op': Yi1, 'rotn_op': Yi2})
train_gen = generate_data_generator(image_datagen,
x_train[0:4000,...],
y_strain[0:4000,...],
y_rtrain[0:4000,...])
val_gen = generate_data_generator(image_datagen,
x_train[4000:,...],
y_strain[4000:,...],
y_rtrain[4000:,...])
# Convoltuion blocks
def conv_block(tensor, nfilters, size=3, padding='same', kernel_initializer = 'he_normal'):
x = Conv2D(filters=nfilters, kernel_size=(size,size) , padding=padding, kernel_initializer = 'he_normal')(tensor)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def deconv_block(tensor, residual, nfilters, size=3, padding='same', kernel_initializer = 'he_normal'):
y = UpSampling2D(size = (2,2))(tensor)
y = Conv2D(filters=nfilters, kernel_size=(size,size), activation = 'relu', padding = 'same', kernel_initializer = kernel_initializer)(y)
y = concatenate([y,residual], axis = 3)
y = conv_block(y, nfilters)
return y
# Define the network architecture
def get_jnet():
inputs = Input((224,224,3))
#Contraction path
conv1= conv_block(inputs, 16)
pool1 = MaxPooling2D(pool_size=2)(conv1)
conv2 = conv_block(pool1, 32)
pool2 = MaxPooling2D(pool_size=2)(conv2)
conv3 = conv_block(pool2, 64)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = conv_block(pool3, 128)
pool4 = MaxPooling2D(pool_size=2)(conv4)
conv5 = conv_block(pool4, 256)
#Expansion path
up6 = deconv_block(conv5, conv4, 128)
up7 = deconv_block(up6, conv3, 64)
up8 = deconv_block(up7, conv2, 32)
up9= deconv_block(up8, conv1, 16)
conv10 = Conv2D(16, kernel_size=(1, 1))(up9)
out1 = BatchNormalization()(conv10)
out1 = Reshape((img_height*img_width, nclasses), input_shape=(img_height, img_width, nclasses))(out1)
out1 = Activation('softmax', name="shuf_op")(out1)
pool_fin = MaxPooling2D(pool_size=2)(up9)
conv11 = Conv2D(4, kernel_size=(28, 28), strides=(28, 28))(pool_fin)
out2 = BatchNormalization()(conv11)
out2 = Reshape((-1, 4), input_shape=(4, 4, 4))(out2)
out2 = Activation('softmax', name= "rotn_op")(out2)
losses = { "shuf_op": "sparse_categorical_crossentropy",
"rotn_op": "sparse_categorical_crossentropy" }
lossWeights = {"shuf_op": 1.0, "rotn_op": 1.0}
model = Model(inputs=[inputs], outputs=[out1, out2])
model.compile(optimizer = Adam(lr = 1e-4), loss=losses, loss_weights=lossWeights, metrics = ['sparse_categorical_accuracy'])
return model
model=get_jnet()
# Save the model summary
model.summary()
plot_model(model, to_file='scramble.png')
# Save the checkpoints and monitor training progress
filepath="checkpoints/scramble_model-{epoch:02d}-{val_loss:.2f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_weights_only=False , save_best_only=True, mode='min')
reduce_lr = ReduceLROnPlateau(factor=0.5, patience=15, min_lr=0.00001, verbose=1)
tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0,
write_graph=True, write_images=True)
callbacks_list = [tensorboard, checkpoint,reduce_lr]
# Train the network
model.fit_generator(
train_gen,
epochs=300,
steps_per_epoch=125,
validation_data=val_gen,
validation_steps=31,
callbacks=callbacks_list)