'
-
-hr_faded: '
'
-hr_shaded: '
'
\ No newline at end of file
diff --git a/docs/old_source/_data/definitions.yml b/docs/old_source/_data/definitions.yml
deleted file mode 100644
index 8b137891..00000000
--- a/docs/old_source/_data/definitions.yml
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/docs/old_source/_data/glossary.yml b/docs/old_source/_data/glossary.yml
deleted file mode 100644
index 8b137891..00000000
--- a/docs/old_source/_data/glossary.yml
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/docs/old_source/_data/sidebars/home_sidebar.yml b/docs/old_source/_data/sidebars/home_sidebar.yml
deleted file mode 100644
index 7a049b4d..00000000
--- a/docs/old_source/_data/sidebars/home_sidebar.yml
+++ /dev/null
@@ -1,42 +0,0 @@
-
-#################################################
-### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ###
-#################################################
-# Instead edit ../../sidebar.json
-entries:
-- folders:
- - folderitems:
- - output: web,pdf
- title: Overview
- url: /
- - output: web,pdf
- title: core
- url: core
- - output: web,pdf
- title: image
- url: image
- - output: web,pdf
- title: dataloader
- url: dataloader
- - output: web,pdf
- title: datagenerator
- url: datagenerator
- - output: web,pdf
- title: trainer
- url: trainer
- - output: web,pdf
- title: visualization
- url: visualization
- - output: web,pdf
- title: utils
- url: utils
- output: web
- title: chitra
- - folderitems:
- - output: web,pdf
- title: Image classification w Chitra
- url: examples
- output: web
- title: Examples
- output: web
- title: Sidebar
diff --git a/docs/old_source/_data/tags.yml b/docs/old_source/_data/tags.yml
deleted file mode 100644
index 7853ec71..00000000
--- a/docs/old_source/_data/tags.yml
+++ /dev/null
@@ -1,3 +0,0 @@
-allowed-tags:
- - getting_started
- - navigation
diff --git a/docs/old_source/_data/topnav.yml b/docs/old_source/_data/topnav.yml
deleted file mode 100644
index f2b5c690..00000000
--- a/docs/old_source/_data/topnav.yml
+++ /dev/null
@@ -1,10 +0,0 @@
-topnav:
-- title: Topnav
- items:
- - title: GitHub
- external_url: https://github.com/aniketmaurya/chitra
-
-#Topnav dropdowns
-topnav_dropdowns:
-- title: Topnav dropdowns
- folders:
\ No newline at end of file
diff --git a/docs/old_source/_includes/archive.html b/docs/old_source/_includes/archive.html
deleted file mode 100644
index 275850c9..00000000
--- a/docs/old_source/_includes/archive.html
+++ /dev/null
@@ -1,15 +0,0 @@
----
-layout: default
-type: archive
----
-
-
-
-
-{{ content }}
-
-
-
-
diff --git a/docs/old_source/_includes/callout.html b/docs/old_source/_includes/callout.html
deleted file mode 100644
index d492b183..00000000
--- a/docs/old_source/_includes/callout.html
+++ /dev/null
@@ -1 +0,0 @@
-
{{include.content}}
diff --git a/docs/old_source/_includes/footer.html b/docs/old_source/_includes/footer.html
deleted file mode 100755
index 178b47cb..00000000
--- a/docs/old_source/_includes/footer.html
+++ /dev/null
@@ -1,9 +0,0 @@
-
diff --git a/docs/old_source/_includes/google_analytics.html b/docs/old_source/_includes/google_analytics.html
deleted file mode 100644
index 56b2ee88..00000000
--- a/docs/old_source/_includes/google_analytics.html
+++ /dev/null
@@ -1,6 +0,0 @@
-
-
-{% if site.google_analytics %}
-
-
-{% endif %}
\ No newline at end of file
diff --git a/docs/old_source/_includes/head.html b/docs/old_source/_includes/head.html
deleted file mode 100644
index 02eb796a..00000000
--- a/docs/old_source/_includes/head.html
+++ /dev/null
@@ -1,82 +0,0 @@
-
-
-
-
-
-
{{ page.title }} | {{ site.site_title }}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-{% if site.use_math %}
-
-
-
-
-{% endif %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-{% if site.twitter_username %}
-
-
-
-{% endif %}
-
-{% if page.summary %}
-
-{% else %}
-
-{% endif %}
-
-{% if page.image %}
-
-
-{% else %}
-
-
-{% endif %}
-
-
-
-
diff --git a/docs/old_source/_includes/head_print.html b/docs/old_source/_includes/head_print.html
deleted file mode 100644
index 12b861e6..00000000
--- a/docs/old_source/_includes/head_print.html
+++ /dev/null
@@ -1,28 +0,0 @@
-
-
-
-
-
-
{% if page.homepage == true %} {{site.homepage_title}} {% elsif page.title %}{{ page.title }}{% endif %} | {{ site.site_title }}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/docs/old_source/_includes/image.html b/docs/old_source/_includes/image.html
deleted file mode 100644
index fb5ab053..00000000
--- a/docs/old_source/_includes/image.html
+++ /dev/null
@@ -1 +0,0 @@
-
{% if {{include.url}} %}{% endif %} {% if {{include.url}} %} {% endif %}{% if {{include.caption}} %}{{include.caption}} {% endif %}
diff --git a/docs/old_source/_includes/important.html b/docs/old_source/_includes/important.html
deleted file mode 100644
index af8824b9..00000000
--- a/docs/old_source/_includes/important.html
+++ /dev/null
@@ -1 +0,0 @@
-
Important: {{include.content}}
\ No newline at end of file
diff --git a/docs/old_source/_includes/initialize_shuffle.html b/docs/old_source/_includes/initialize_shuffle.html
deleted file mode 100644
index 9a0f048d..00000000
--- a/docs/old_source/_includes/initialize_shuffle.html
+++ /dev/null
@@ -1,130 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
diff --git a/docs/old_source/_includes/inline_image.html b/docs/old_source/_includes/inline_image.html
deleted file mode 100644
index 1e7fd187..00000000
--- a/docs/old_source/_includes/inline_image.html
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/docs/old_source/_includes/links.html b/docs/old_source/_includes/links.html
deleted file mode 100644
index 4f99e942..00000000
--- a/docs/old_source/_includes/links.html
+++ /dev/null
@@ -1,44 +0,0 @@
-{% comment %}Get links from each sidebar, as listed in the _config.yml file under sidebars{% endcomment %}
-
-{% for sidebar in site.sidebars %}
-{% for entry in site.data.sidebars[sidebar].entries %}
-{% for folder in entry.folders %}
-{% for folderitem in folder.folderitems %}
-{% if folderitem.url contains "html#" %}
-[{{folderitem.url | remove: "/" }}]: {{folderitem.url | remove: "/"}}
-{% else %}
-[{{folderitem.url | remove: "/" | remove: ".html"}}]: {{folderitem.url | remove: "/"}}
-{% endif %}
-{% for subfolders in folderitem.subfolders %}
-{% for subfolderitem in subfolders.subfolderitems %}
-[{{subfolderitem.url | remove: "/" | remove: ".html"}}]: {{subfolderitem.url | remove: "/"}}
-{% endfor %}
-{% endfor %}
-{% endfor %}
-{% endfor %}
-{% endfor %}
-{% endfor %}
-
-
-{% comment %} Get links from topnav {% endcomment %}
-
-{% for entry in site.data.topnav.topnav %}
-{% for item in entry.items %}
-{% if item.external_url == null %}
-[{{item.url | remove: "/" | remove: ".html"}}]: {{item.url | remove: "/"}}
-{% endif %}
-{% endfor %}
-{% endfor %}
-
-{% comment %}Get links from topnav dropdowns {% endcomment %}
-
-{% for entry in site.data.topnav.topnav_dropdowns %}
-{% for folder in entry.folders %}
-{% for folderitem in folder.folderitems %}
-{% if folderitem.external_url == null %}
-[{{folderitem.url | remove: "/" | remove: ".html"}}]: {{folderitem.url | remove: "/"}}
-{% endif %}
-{% endfor %}
-{% endfor %}
-{% endfor %}
-
diff --git a/docs/old_source/_includes/note.html b/docs/old_source/_includes/note.html
deleted file mode 100644
index 2c1cfe96..00000000
--- a/docs/old_source/_includes/note.html
+++ /dev/null
@@ -1 +0,0 @@
-
Note: {{include.content}}
diff --git a/docs/old_source/_includes/search_google_custom.html b/docs/old_source/_includes/search_google_custom.html
deleted file mode 100644
index 27ca1c44..00000000
--- a/docs/old_source/_includes/search_google_custom.html
+++ /dev/null
@@ -1,16 +0,0 @@
-
-
-
-
-
-
diff --git a/docs/old_source/_includes/search_simple_jekyll.html b/docs/old_source/_includes/search_simple_jekyll.html
deleted file mode 100644
index eee4d3ce..00000000
--- a/docs/old_source/_includes/search_simple_jekyll.html
+++ /dev/null
@@ -1,16 +0,0 @@
-
-
-
diff --git a/docs/old_source/_includes/sidebar.html b/docs/old_source/_includes/sidebar.html
deleted file mode 100644
index b402b9b5..00000000
--- a/docs/old_source/_includes/sidebar.html
+++ /dev/null
@@ -1,59 +0,0 @@
-{% assign sidebar = site.data.sidebars[page.sidebar].entries %}
-{% assign pageurl = page.url | remove: ".html" %}
-
-
-
-
-
diff --git a/docs/old_source/_includes/tip.html b/docs/old_source/_includes/tip.html
deleted file mode 100644
index faf48afd..00000000
--- a/docs/old_source/_includes/tip.html
+++ /dev/null
@@ -1 +0,0 @@
-
Tip: {{include.content}}
\ No newline at end of file
diff --git a/docs/old_source/_includes/toc.html b/docs/old_source/_includes/toc.html
deleted file mode 100644
index 067141a6..00000000
--- a/docs/old_source/_includes/toc.html
+++ /dev/null
@@ -1,21 +0,0 @@
-
-
-
-
-
diff --git a/docs/old_source/_includes/topnav.html b/docs/old_source/_includes/topnav.html
deleted file mode 100644
index 4d93732e..00000000
--- a/docs/old_source/_includes/topnav.html
+++ /dev/null
@@ -1,62 +0,0 @@
-
-
-
-
-
-
-
- Nav
-
-
-{% assign topnav = site.data[page.topnav] %}
-{% assign topnav_dropdowns = site.data[page.topnav].topnav_dropdowns %}
-
- {% for entry in topnav.topnav %}
- {% for item in entry.items %}
- {% if item.external_url %}
- {{item.title}}
- {% elsif page.url contains item.url %}
- {{item.title}}
- {% else %}
- {{item.title}}
- {% endif %}
- {% endfor %}
- {% endfor %}
-
-
- {% for entry in topnav_dropdowns %}
- {% for folder in entry.folders %}
-
- {{ folder.title }}
-
-
- {% endfor %}
- {% endfor %}
- {% if site.google_search %}
-
- {% include search_google_custom.html %}
-
- {% endif %}
-
-
-
-
-
diff --git a/docs/old_source/_includes/warning.html b/docs/old_source/_includes/warning.html
deleted file mode 100644
index e08268c9..00000000
--- a/docs/old_source/_includes/warning.html
+++ /dev/null
@@ -1 +0,0 @@
-
Warning: {{include.content}}
\ No newline at end of file
diff --git a/docs/old_source/_layouts/default.html b/docs/old_source/_layouts/default.html
deleted file mode 100644
index c940af55..00000000
--- a/docs/old_source/_layouts/default.html
+++ /dev/null
@@ -1,110 +0,0 @@
-
-
-
- {% include head.html %}
-
-
-
- {% if page.datatable == true %}
-
-
-
-
-
- {% endif %}
-
-
-
-{% include topnav.html %}
-
-
-
-
-
- {% assign content_col_size = "col-md-12" %}
- {% unless page.hide_sidebar %}
-
-
- {% assign content_col_size = "col-md-9" %}
- {% endunless %}
-
-
-
- {{content}}
-
-
-
-
-
-
-
-
-
-{% if site.google_analytics %}
-{% include google_analytics.html %}
-{% endif %}
-
diff --git a/docs/old_source/_layouts/default_print.html b/docs/old_source/_layouts/default_print.html
deleted file mode 100644
index 4bf619b4..00000000
--- a/docs/old_source/_layouts/default_print.html
+++ /dev/null
@@ -1,25 +0,0 @@
-
-
-
-
- {% include head_print.html %}
-
-
-
-
-
-
-
-
-
-
-
- {{content}}
-
-
-
-
-
-
-
-
diff --git a/docs/old_source/_layouts/none.html b/docs/old_source/_layouts/none.html
deleted file mode 100644
index 60887a92..00000000
--- a/docs/old_source/_layouts/none.html
+++ /dev/null
@@ -1,3 +0,0 @@
----
----
-{{content}}
\ No newline at end of file
diff --git a/docs/old_source/_layouts/page.html b/docs/old_source/_layouts/page.html
deleted file mode 100644
index 6962adda..00000000
--- a/docs/old_source/_layouts/page.html
+++ /dev/null
@@ -1,67 +0,0 @@
----
-layout: default
----
-
-
-
-{% if page.simple_map == true %}
-
-
-
-{% include custom/{{page.map_name}}.html %}
-
-{% elsif page.complex_map == true %}
-
-
-
-{% include custom/{{page.map_name}}.html %}
-
-{% endif %}
-
-
-
- {% if page.summary %}
-
{{page.summary}}
- {% endif %}
-
- {% unless page.toc == false %}
- {% include toc.html %}
- {% endunless %}
-
-
- {% if site.github_editme_path %}
-
-
Edit me
-
- {% endif %}
-
- {{content}}
-
-
-
-
-
-{{site.data.alerts.hr_shaded}}
-
-{% include footer.html %}
diff --git a/docs/old_source/_layouts/page_print.html b/docs/old_source/_layouts/page_print.html
deleted file mode 100644
index 9e04604a..00000000
--- a/docs/old_source/_layouts/page_print.html
+++ /dev/null
@@ -1,15 +0,0 @@
----
-layout: default_print
-comments: true
----
-
-
-
-
- {% if page.summary %}
-
{{page.summary}}
- {% endif %}
- {{ content }}
-
diff --git a/docs/old_source/assets/chitra_banner.png b/docs/old_source/assets/chitra_banner.png
deleted file mode 100644
index 3b515a40..00000000
Binary files a/docs/old_source/assets/chitra_banner.png and /dev/null differ
diff --git a/docs/old_source/classification.html b/docs/old_source/classification.html
deleted file mode 100644
index 1791569c..00000000
--- a/docs/old_source/classification.html
+++ /dev/null
@@ -1,27 +0,0 @@
----
-
-title: classification
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
----
-
-
-
-
-
diff --git a/docs/old_source/core.html b/docs/old_source/core.html
deleted file mode 100644
index a0fbddcb..00000000
--- a/docs/old_source/core.html
+++ /dev/null
@@ -1,141 +0,0 @@
----
-
-title: core
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/00_core.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
remove_dsstore
(path
)
-
-
Deletes .DS_Store files from path and sub-folders of path.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
get_basename
(path
:<dtype: 'string'>
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Converted 00_core.ipynb.
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/css/bootstrap.min.css b/docs/old_source/css/bootstrap.min.css
deleted file mode 100755
index 783f60d1..00000000
--- a/docs/old_source/css/bootstrap.min.css
+++ /dev/null
@@ -1,7535 +0,0 @@
-/*!
- * Bootstrap v3.3.2 (http://getbootstrap.com)
- * Copyright 2011-2016 Twitter, Inc.
- * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE)
- */
-
-
-/*! normalize.css v3.0.2 | MIT License | git.io/normalize */
-
-html {
- font-family: sans-serif;
- -webkit-text-size-adjust: 100%;
- -ms-text-size-adjust: 100%
-}
-
-body {
- margin: 0
-}
-
-article,
-aside,
-details,
-figcaption,
-figure,
-footer,
-header,
-hgroup,
-main,
-menu,
-nav,
-section,
-summary {
- display: block
-}
-
-audio,
-canvas,
-progress,
-video {
- display: inline-block;
- vertical-align: baseline
-}
-
-audio:not([controls]) {
- display: none;
- height: 0
-}
-
-[hidden],
-template {
- display: none
-}
-
-a {
- background-color: transparent
-}
-
-a:active,
-a:hover {
- outline: 0
-}
-
-abbr[title] {
- border-bottom: 1px dotted
-}
-
-b,
-strong {
- font-weight: 700
-}
-
-dfn {
- font-style: italic
-}
-
-h1 {
- margin: .67em 0;
- font-size: 2em
-}
-
-mark {
- color: #000;
- background: #ff0
-}
-
-small {
- font-size: 80%
-}
-
-sub,
-sup {
- position: relative;
- font-size: 75%;
- line-height: 0;
- vertical-align: baseline
-}
-
-sup {
- top: -.5em
-}
-
-sub {
- bottom: -.25em
-}
-
-img {
- border: 0
-}
-
-svg:not(:root) {
- overflow: hidden
-}
-
-figure {
- margin: 1em 40px
-}
-
-hr {
- height: 0;
- -webkit-box-sizing: content-box;
- -moz-box-sizing: content-box;
- box-sizing: content-box
-}
-
-pre {
- overflow: auto
-}
-
-code,
-kbd,
-pre,
-samp {
- font-family: monospace, monospace;
- font-size: 1em
-}
-
-button,
-input,
-optgroup,
-select,
-textarea {
- margin: 0;
- font: inherit;
- color: inherit
-}
-
-button {
- overflow: visible
-}
-
-button,
-select {
- text-transform: none
-}
-
-button,
-html input[type=button],
-input[type=reset],
-input[type=submit] {
- -webkit-appearance: button;
- cursor: pointer
-}
-
-button[disabled],
-html input[disabled] {
- cursor: default
-}
-
-button::-moz-focus-inner,
-input::-moz-focus-inner {
- padding: 0;
- border: 0
-}
-
-input {
- line-height: normal
-}
-
-input[type=checkbox],
-input[type=radio] {
- -webkit-box-sizing: border-box;
- -moz-box-sizing: border-box;
- box-sizing: border-box;
- padding: 0
-}
-
-input[type=number]::-webkit-inner-spin-button,
-input[type=number]::-webkit-outer-spin-button {
- height: auto
-}
-
-input[type=search] {
- -webkit-box-sizing: content-box;
- -moz-box-sizing: content-box;
- box-sizing: content-box;
- -webkit-appearance: textfield
-}
-
-input[type=search]::-webkit-search-cancel-button,
-input[type=search]::-webkit-search-decoration {
- -webkit-appearance: none
-}
-
-fieldset {
- padding: .35em .625em .75em;
- margin: 0 2px;
- border: 1px solid silver
-}
-
-legend {
- padding: 0;
- border: 0
-}
-
-textarea {
- overflow: auto
-}
-
-optgroup {
- font-weight: 700
-}
-
-table {
- border-spacing: 0;
- border-collapse: collapse
-}
-
-td,
-th {
- padding: 0
-}
-
-
-/*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */
-
-@media print {
- *,
- :after,
- :before {
- /*color:#000!important;*/
- /*background:0 0!important*/
- ;
- }
- a,
- a:visited {
- text-decoration: underline
- }
- a[href]:after {
- content: " (" attr(href) ")"
- }
- abbr[title]:after {
- content: " (" attr(title) ")"
- }
- a[href^="javascript:"]:after,
- a[href^="#"]:after {
- content: ""
- }
- blockquote,
- pre {
- border: 1px solid #999;
- page-break-inside: avoid
- }
- thead {
- display: table-header-group
- }
- img,
- tr {
- page-break-inside: avoid
- }
- img {
- max-width: 100%!important
- }
- h2,
- h3,
- p {
- orphans: 3;
- widows: 3
- }
- h2,
- h3 {
- page-break-after: avoid
- }
- select {
- background: #fff!important
- }
- .navbar {
- display: none
- }
- .btn>.caret,
- .dropup>.btn>.caret {
- border-top-color: #000!important
- }
- .label {
- border: 1px solid #000
- }
- .table {
- border-collapse: collapse!important
- }
- .table td,
- .table th {
- background-color: #fff!important
- }
- .table-bordered td,
- .table-bordered th {
- border: 1px solid #ddd!important
- }
-}
-
-@font-face {
- font-family: 'Glyphicons Halflings';
- src: url(../fonts/glyphicons-halflings-regular.eot);
- src: url(../fonts/glyphicons-halflings-regular.eot?#iefix) format('embedded-opentype'), url(../fonts/glyphicons-halflings-regular.woff2) format('woff2'), url(../fonts/glyphicons-halflings-regular.woff) format('woff'), url(../fonts/glyphicons-halflings-regular.ttf) format('truetype'), url(../fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular) format('svg')
-}
-
-.glyphicon {
- position: relative;
- top: 1px;
- display: inline-block;
- font-family: 'Glyphicons Halflings';
- font-style: normal;
- font-weight: 400;
- line-height: 1;
- -webkit-font-smoothing: antialiased;
- -moz-osx-font-smoothing: grayscale
-}
-
-.glyphicon-asterisk:before {
- content: "\2a"
-}
-
-.glyphicon-plus:before {
- content: "\2b"
-}
-
-.glyphicon-eur:before,
-.glyphicon-euro:before {
- content: "\20ac"
-}
-
-.glyphicon-minus:before {
- content: "\2212"
-}
-
-.glyphicon-cloud:before {
- content: "\2601"
-}
-
-.glyphicon-envelope:before {
- content: "\2709"
-}
-
-.glyphicon-pencil:before {
- content: "\270f"
-}
-
-.glyphicon-glass:before {
- content: "\e001"
-}
-
-.glyphicon-music:before {
- content: "\e002"
-}
-
-.glyphicon-search:before {
- content: "\e003"
-}
-
-.glyphicon-heart:before {
- content: "\e005"
-}
-
-.glyphicon-star:before {
- content: "\e006"
-}
-
-.glyphicon-star-empty:before {
- content: "\e007"
-}
-
-.glyphicon-user:before {
- content: "\e008"
-}
-
-.glyphicon-film:before {
- content: "\e009"
-}
-
-.glyphicon-th-large:before {
- content: "\e010"
-}
-
-.glyphicon-th:before {
- content: "\e011"
-}
-
-.glyphicon-th-list:before {
- content: "\e012"
-}
-
-.glyphicon-ok:before {
- content: "\e013"
-}
-
-.glyphicon-remove:before {
- content: "\e014"
-}
-
-.glyphicon-zoom-in:before {
- content: "\e015"
-}
-
-.glyphicon-zoom-out:before {
- content: "\e016"
-}
-
-.glyphicon-off:before {
- content: "\e017"
-}
-
-.glyphicon-signal:before {
- content: "\e018"
-}
-
-.glyphicon-cog:before {
- content: "\e019"
-}
-
-.glyphicon-trash:before {
- content: "\e020"
-}
-
-.glyphicon-home:before {
- content: "\e021"
-}
-
-.glyphicon-file:before {
- content: "\e022"
-}
-
-.glyphicon-time:before {
- content: "\e023"
-}
-
-.glyphicon-road:before {
- content: "\e024"
-}
-
-.glyphicon-download-alt:before {
- content: "\e025"
-}
-
-.glyphicon-download:before {
- content: "\e026"
-}
-
-.glyphicon-upload:before {
- content: "\e027"
-}
-
-.glyphicon-inbox:before {
- content: "\e028"
-}
-
-.glyphicon-play-circle:before {
- content: "\e029"
-}
-
-.glyphicon-repeat:before {
- content: "\e030"
-}
-
-.glyphicon-refresh:before {
- content: "\e031"
-}
-
-.glyphicon-list-alt:before {
- content: "\e032"
-}
-
-.glyphicon-lock:before {
- content: "\e033"
-}
-
-.glyphicon-flag:before {
- content: "\e034"
-}
-
-.glyphicon-headphones:before {
- content: "\e035"
-}
-
-.glyphicon-volume-off:before {
- content: "\e036"
-}
-
-.glyphicon-volume-down:before {
- content: "\e037"
-}
-
-.glyphicon-volume-up:before {
- content: "\e038"
-}
-
-.glyphicon-qrcode:before {
- content: "\e039"
-}
-
-.glyphicon-barcode:before {
- content: "\e040"
-}
-
-.glyphicon-tag:before {
- content: "\e041"
-}
-
-.glyphicon-tags:before {
- content: "\e042"
-}
-
-.glyphicon-book:before {
- content: "\e043"
-}
-
-.glyphicon-bookmark:before {
- content: "\e044"
-}
-
-.glyphicon-print:before {
- content: "\e045"
-}
-
-.glyphicon-camera:before {
- content: "\e046"
-}
-
-.glyphicon-font:before {
- content: "\e047"
-}
-
-.glyphicon-bold:before {
- content: "\e048"
-}
-
-.glyphicon-italic:before {
- content: "\e049"
-}
-
-.glyphicon-text-height:before {
- content: "\e050"
-}
-
-.glyphicon-text-width:before {
- content: "\e051"
-}
-
-.glyphicon-align-left:before {
- content: "\e052"
-}
-
-.glyphicon-align-center:before {
- content: "\e053"
-}
-
-.glyphicon-align-right:before {
- content: "\e054"
-}
-
-.glyphicon-align-justify:before {
- content: "\e055"
-}
-
-.glyphicon-list:before {
- content: "\e056"
-}
-
-.glyphicon-indent-left:before {
- content: "\e057"
-}
-
-.glyphicon-indent-right:before {
- content: "\e058"
-}
-
-.glyphicon-facetime-video:before {
- content: "\e059"
-}
-
-.glyphicon-picture:before {
- content: "\e060"
-}
-
-.glyphicon-map-marker:before {
- content: "\e062"
-}
-
-.glyphicon-adjust:before {
- content: "\e063"
-}
-
-.glyphicon-tint:before {
- content: "\e064"
-}
-
-.glyphicon-edit:before {
- content: "\e065"
-}
-
-.glyphicon-share:before {
- content: "\e066"
-}
-
-.glyphicon-check:before {
- content: "\e067"
-}
-
-.glyphicon-move:before {
- content: "\e068"
-}
-
-.glyphicon-step-backward:before {
- content: "\e069"
-}
-
-.glyphicon-fast-backward:before {
- content: "\e070"
-}
-
-.glyphicon-backward:before {
- content: "\e071"
-}
-
-.glyphicon-play:before {
- content: "\e072"
-}
-
-.glyphicon-pause:before {
- content: "\e073"
-}
-
-.glyphicon-stop:before {
- content: "\e074"
-}
-
-.glyphicon-forward:before {
- content: "\e075"
-}
-
-.glyphicon-fast-forward:before {
- content: "\e076"
-}
-
-.glyphicon-step-forward:before {
- content: "\e077"
-}
-
-.glyphicon-eject:before {
- content: "\e078"
-}
-
-.glyphicon-chevron-left:before {
- content: "\e079"
-}
-
-.glyphicon-chevron-right:before {
- content: "\e080"
-}
-
-.glyphicon-plus-sign:before {
- content: "\e081"
-}
-
-.glyphicon-minus-sign:before {
- content: "\e082"
-}
-
-.glyphicon-remove-sign:before {
- content: "\e083"
-}
-
-.glyphicon-ok-sign:before {
- content: "\e084"
-}
-
-.glyphicon-question-sign:before {
- content: "\e085"
-}
-
-.glyphicon-info-sign:before {
- content: "\e086"
-}
-
-.glyphicon-screenshot:before {
- content: "\e087"
-}
-
-.glyphicon-remove-circle:before {
- content: "\e088"
-}
-
-.glyphicon-ok-circle:before {
- content: "\e089"
-}
-
-.glyphicon-ban-circle:before {
- content: "\e090"
-}
-
-.glyphicon-arrow-left:before {
- content: "\e091"
-}
-
-.glyphicon-arrow-right:before {
- content: "\e092"
-}
-
-.glyphicon-arrow-up:before {
- content: "\e093"
-}
-
-.glyphicon-arrow-down:before {
- content: "\e094"
-}
-
-.glyphicon-share-alt:before {
- content: "\e095"
-}
-
-.glyphicon-resize-full:before {
- content: "\e096"
-}
-
-.glyphicon-resize-small:before {
- content: "\e097"
-}
-
-.glyphicon-exclamation-sign:before {
- content: "\e101"
-}
-
-.glyphicon-gift:before {
- content: "\e102"
-}
-
-.glyphicon-leaf:before {
- content: "\e103"
-}
-
-.glyphicon-fire:before {
- content: "\e104"
-}
-
-.glyphicon-eye-open:before {
- content: "\e105"
-}
-
-.glyphicon-eye-close:before {
- content: "\e106"
-}
-
-.glyphicon-warning-sign:before {
- content: "\e107"
-}
-
-.glyphicon-plane:before {
- content: "\e108"
-}
-
-.glyphicon-calendar:before {
- content: "\e109"
-}
-
-.glyphicon-random:before {
- content: "\e110"
-}
-
-.glyphicon-comment:before {
- content: "\e111"
-}
-
-.glyphicon-magnet:before {
- content: "\e112"
-}
-
-.glyphicon-chevron-up:before {
- content: "\e113"
-}
-
-.glyphicon-chevron-down:before {
- content: "\e114"
-}
-
-.glyphicon-retweet:before {
- content: "\e115"
-}
-
-.glyphicon-shopping-cart:before {
- content: "\e116"
-}
-
-.glyphicon-folder-close:before {
- content: "\e117"
-}
-
-.glyphicon-folder-open:before {
- content: "\e118"
-}
-
-.glyphicon-resize-vertical:before {
- content: "\e119"
-}
-
-.glyphicon-resize-horizontal:before {
- content: "\e120"
-}
-
-.glyphicon-hdd:before {
- content: "\e121"
-}
-
-.glyphicon-bullhorn:before {
- content: "\e122"
-}
-
-.glyphicon-bell:before {
- content: "\e123"
-}
-
-.glyphicon-certificate:before {
- content: "\e124"
-}
-
-.glyphicon-thumbs-up:before {
- content: "\e125"
-}
-
-.glyphicon-thumbs-down:before {
- content: "\e126"
-}
-
-.glyphicon-hand-right:before {
- content: "\e127"
-}
-
-.glyphicon-hand-left:before {
- content: "\e128"
-}
-
-.glyphicon-hand-up:before {
- content: "\e129"
-}
-
-.glyphicon-hand-down:before {
- content: "\e130"
-}
-
-.glyphicon-circle-arrow-right:before {
- content: "\e131"
-}
-
-.glyphicon-circle-arrow-left:before {
- content: "\e132"
-}
-
-.glyphicon-circle-arrow-up:before {
- content: "\e133"
-}
-
-.glyphicon-circle-arrow-down:before {
- content: "\e134"
-}
-
-.glyphicon-globe:before {
- content: "\e135"
-}
-
-.glyphicon-wrench:before {
- content: "\e136"
-}
-
-.glyphicon-tasks:before {
- content: "\e137"
-}
-
-.glyphicon-filter:before {
- content: "\e138"
-}
-
-.glyphicon-briefcase:before {
- content: "\e139"
-}
-
-.glyphicon-fullscreen:before {
- content: "\e140"
-}
-
-.glyphicon-dashboard:before {
- content: "\e141"
-}
-
-.glyphicon-paperclip:before {
- content: "\e142"
-}
-
-.glyphicon-heart-empty:before {
- content: "\e143"
-}
-
-.glyphicon-link:before {
- content: "\e144"
-}
-
-.glyphicon-phone:before {
- content: "\e145"
-}
-
-.glyphicon-pushpin:before {
- content: "\e146"
-}
-
-.glyphicon-usd:before {
- content: "\e148"
-}
-
-.glyphicon-gbp:before {
- content: "\e149"
-}
-
-.glyphicon-sort:before {
- content: "\e150"
-}
-
-.glyphicon-sort-by-alphabet:before {
- content: "\e151"
-}
-
-.glyphicon-sort-by-alphabet-alt:before {
- content: "\e152"
-}
-
-.glyphicon-sort-by-order:before {
- content: "\e153"
-}
-
-.glyphicon-sort-by-order-alt:before {
- content: "\e154"
-}
-
-.glyphicon-sort-by-attributes:before {
- content: "\e155"
-}
-
-.glyphicon-sort-by-attributes-alt:before {
- content: "\e156"
-}
-
-.glyphicon-unchecked:before {
- content: "\e157"
-}
-
-.glyphicon-expand:before {
- content: "\e158"
-}
-
-.glyphicon-collapse-down:before {
- content: "\e159"
-}
-
-.glyphicon-collapse-up:before {
- content: "\e160"
-}
-
-.glyphicon-log-in:before {
- content: "\e161"
-}
-
-.glyphicon-flash:before {
- content: "\e162"
-}
-
-.glyphicon-log-out:before {
- content: "\e163"
-}
-
-.glyphicon-new-window:before {
- content: "\e164"
-}
-
-.glyphicon-record:before {
- content: "\e165"
-}
-
-.glyphicon-save:before {
- content: "\e166"
-}
-
-.glyphicon-open:before {
- content: "\e167"
-}
-
-.glyphicon-saved:before {
- content: "\e168"
-}
-
-.glyphicon-import:before {
- content: "\e169"
-}
-
-.glyphicon-export:before {
- content: "\e170"
-}
-
-.glyphicon-send:before {
- content: "\e171"
-}
-
-.glyphicon-floppy-disk:before {
- content: "\e172"
-}
-
-.glyphicon-floppy-saved:before {
- content: "\e173"
-}
-
-.glyphicon-floppy-remove:before {
- content: "\e174"
-}
-
-.glyphicon-floppy-save:before {
- content: "\e175"
-}
-
-.glyphicon-floppy-open:before {
- content: "\e176"
-}
-
-.glyphicon-credit-card:before {
- content: "\e177"
-}
-
-.glyphicon-transfer:before {
- content: "\e178"
-}
-
-.glyphicon-cutlery:before {
- content: "\e179"
-}
-
-.glyphicon-header:before {
- content: "\e180"
-}
-
-.glyphicon-compressed:before {
- content: "\e181"
-}
-
-.glyphicon-earphone:before {
- content: "\e182"
-}
-
-.glyphicon-phone-alt:before {
- content: "\e183"
-}
-
-.glyphicon-tower:before {
- content: "\e184"
-}
-
-.glyphicon-stats:before {
- content: "\e185"
-}
-
-.glyphicon-sd-video:before {
- content: "\e186"
-}
-
-.glyphicon-hd-video:before {
- content: "\e187"
-}
-
-.glyphicon-subtitles:before {
- content: "\e188"
-}
-
-.glyphicon-sound-stereo:before {
- content: "\e189"
-}
-
-.glyphicon-sound-dolby:before {
- content: "\e190"
-}
-
-.glyphicon-sound-5-1:before {
- content: "\e191"
-}
-
-.glyphicon-sound-6-1:before {
- content: "\e192"
-}
-
-.glyphicon-sound-7-1:before {
- content: "\e193"
-}
-
-.glyphicon-copyright-mark:before {
- content: "\e194"
-}
-
-.glyphicon-registration-mark:before {
- content: "\e195"
-}
-
-.glyphicon-cloud-download:before {
- content: "\e197"
-}
-
-.glyphicon-cloud-upload:before {
- content: "\e198"
-}
-
-.glyphicon-tree-conifer:before {
- content: "\e199"
-}
-
-.glyphicon-tree-deciduous:before {
- content: "\e200"
-}
-
-.glyphicon-cd:before {
- content: "\e201"
-}
-
-.glyphicon-save-file:before {
- content: "\e202"
-}
-
-.glyphicon-open-file:before {
- content: "\e203"
-}
-
-.glyphicon-level-up:before {
- content: "\e204"
-}
-
-.glyphicon-copy:before {
- content: "\e205"
-}
-
-.glyphicon-paste:before {
- content: "\e206"
-}
-
-.glyphicon-alert:before {
- content: "\e209"
-}
-
-.glyphicon-equalizer:before {
- content: "\e210"
-}
-
-.glyphicon-king:before {
- content: "\e211"
-}
-
-.glyphicon-queen:before {
- content: "\e212"
-}
-
-.glyphicon-pawn:before {
- content: "\e213"
-}
-
-.glyphicon-bishop:before {
- content: "\e214"
-}
-
-.glyphicon-knight:before {
- content: "\e215"
-}
-
-.glyphicon-baby-formula:before {
- content: "\e216"
-}
-
-.glyphicon-tent:before {
- content: "\26fa"
-}
-
-.glyphicon-blackboard:before {
- content: "\e218"
-}
-
-.glyphicon-bed:before {
- content: "\e219"
-}
-
-.glyphicon-apple:before {
- content: "\f8ff"
-}
-
-.glyphicon-erase:before {
- content: "\e221"
-}
-
-.glyphicon-hourglass:before {
- content: "\231b"
-}
-
-.glyphicon-lamp:before {
- content: "\e223"
-}
-
-.glyphicon-duplicate:before {
- content: "\e224"
-}
-
-.glyphicon-piggy-bank:before {
- content: "\e225"
-}
-
-.glyphicon-scissors:before {
- content: "\e226"
-}
-
-.glyphicon-bitcoin:before {
- content: "\e227"
-}
-
-.glyphicon-yen:before {
- content: "\00a5"
-}
-
-.glyphicon-ruble:before {
- content: "\20bd"
-}
-
-.glyphicon-scale:before {
- content: "\e230"
-}
-
-.glyphicon-ice-lolly:before {
- content: "\e231"
-}
-
-.glyphicon-ice-lolly-tasted:before {
- content: "\e232"
-}
-
-.glyphicon-education:before {
- content: "\e233"
-}
-
-.glyphicon-option-horizontal:before {
- content: "\e234"
-}
-
-.glyphicon-option-vertical:before {
- content: "\e235"
-}
-
-.glyphicon-menu-hamburger:before {
- content: "\e236"
-}
-
-.glyphicon-modal-window:before {
- content: "\e237"
-}
-
-.glyphicon-oil:before {
- content: "\e238"
-}
-
-.glyphicon-grain:before {
- content: "\e239"
-}
-
-.glyphicon-sunglasses:before {
- content: "\e240"
-}
-
-.glyphicon-text-size:before {
- content: "\e241"
-}
-
-.glyphicon-text-color:before {
- content: "\e242"
-}
-
-.glyphicon-text-background:before {
- content: "\e243"
-}
-
-.glyphicon-object-align-top:before {
- content: "\e244"
-}
-
-.glyphicon-object-align-bottom:before {
- content: "\e245"
-}
-
-.glyphicon-object-align-horizontal:before {
- content: "\e246"
-}
-
-.glyphicon-object-align-left:before {
- content: "\e247"
-}
-
-.glyphicon-object-align-vertical:before {
- content: "\e248"
-}
-
-.glyphicon-object-align-right:before {
- content: "\e249"
-}
-
-.glyphicon-triangle-right:before {
- content: "\e250"
-}
-
-.glyphicon-triangle-left:before {
- content: "\e251"
-}
-
-.glyphicon-triangle-bottom:before {
- content: "\e252"
-}
-
-.glyphicon-triangle-top:before {
- content: "\e253"
-}
-
-.glyphicon-console:before {
- content: "\e254"
-}
-
-.glyphicon-superscript:before {
- content: "\e255"
-}
-
-.glyphicon-subscript:before {
- content: "\e256"
-}
-
-.glyphicon-menu-left:before {
- content: "\e257"
-}
-
-.glyphicon-menu-right:before {
- content: "\e258"
-}
-
-.glyphicon-menu-down:before {
- content: "\e259"
-}
-
-.glyphicon-menu-up:before {
- content: "\e260"
-}
-
-* {
- -webkit-box-sizing: border-box;
- -moz-box-sizing: border-box;
- box-sizing: border-box
-}
-
-:after,
-:before {
- -webkit-box-sizing: border-box;
- -moz-box-sizing: border-box;
- box-sizing: border-box
-}
-
-html {
- font-size: 10px;
- -webkit-tap-highlight-color: rgba(0, 0, 0, 0)
-}
-
-body {
- font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
- font-size: 14px;
- line-height: 1.42857143;
- color: #333;
- background-color: #fff
-}
-
-button,
-input,
-select,
-textarea {
- font-family: inherit;
- font-size: inherit;
- line-height: inherit
-}
-
-a {
- color: #337ab7;
- text-decoration: none
-}
-
-a:focus,
-a:hover {
- color: #23527c;
- text-decoration: underline
-}
-
-a:focus {
- outline: thin dotted;
- outline: 5px auto -webkit-focus-ring-color;
- outline-offset: -2px
-}
-
-figure {
- margin: 0
-}
-
-img {
- vertical-align: middle
-}
-
-.carousel-inner>.item>a>img,
-.carousel-inner>.item>img,
-.img-responsive,
-.thumbnail a>img,
-.thumbnail>img {
- display: block;
- max-width: 100%;
- height: auto
-}
-
-.img-rounded {
- border-radius: 6px
-}
-
-.img-thumbnail {
- display: inline-block;
- max-width: 100%;
- height: auto;
- padding: 4px;
- line-height: 1.42857143;
- background-color: #fff;
- border: 1px solid #ddd;
- border-radius: 4px;
- -webkit-transition: all .2s ease-in-out;
- -o-transition: all .2s ease-in-out;
- transition: all .2s ease-in-out
-}
-
-.img-circle {
- border-radius: 50%
-}
-
-hr {
- margin-top: 20px;
- margin-bottom: 20px;
- border: 0;
- border-top: 1px solid #eee
-}
-
-.sr-only {
- position: absolute;
- width: 1px;
- height: 1px;
- padding: 0;
- margin: -1px;
- overflow: hidden;
- clip: rect(0, 0, 0, 0);
- border: 0
-}
-
-.sr-only-focusable:active,
-.sr-only-focusable:focus {
- position: static;
- width: auto;
- height: auto;
- margin: 0;
- overflow: visible;
- clip: auto
-}
-
-.h1,
-.h2,
-.h3,
-.h4,
-.h5,
-.h6,
-h1,
-h2,
-h3,
-h4,
-h5,
-h6 {
- font-family: inherit;
- font-weight: 500;
- line-height: 1.1;
- color: inherit
-}
-
-.h1 .small,
-.h1 small,
-.h2 .small,
-.h2 small,
-.h3 .small,
-.h3 small,
-.h4 .small,
-.h4 small,
-.h5 .small,
-.h5 small,
-.h6 .small,
-.h6 small,
-h1 .small,
-h1 small,
-h2 .small,
-h2 small,
-h3 .small,
-h3 small,
-h4 .small,
-h4 small,
-h5 .small,
-h5 small,
-h6 .small,
-h6 small {
- font-weight: 400;
- line-height: 1;
- color: #777
-}
-
-.h1,
-.h2,
-.h3,
-h1,
-h2,
-h3 {
- margin-top: 20px;
- margin-bottom: 10px
-}
-
-.h1 .small,
-.h1 small,
-.h2 .small,
-.h2 small,
-.h3 .small,
-.h3 small,
-h1 .small,
-h1 small,
-h2 .small,
-h2 small,
-h3 .small,
-h3 small {
- font-size: 65%
-}
-
-.h4,
-.h5,
-.h6,
-h4,
-h5,
-h6 {
- margin-top: 10px;
- margin-bottom: 10px
-}
-
-.h4 .small,
-.h4 small,
-.h5 .small,
-.h5 small,
-.h6 .small,
-.h6 small,
-h4 .small,
-h4 small,
-h5 .small,
-h5 small,
-h6 .small,
-h6 small {
- font-size: 75%
-}
-
-.h1,
-h1 {
- font-size: 36px
-}
-
-.h2,
-h2 {
- font-size: 30px
-}
-
-.h3,
-h3 {
- font-size: 24px
-}
-
-.h4,
-h4 {
- font-size: 18px
-}
-
-.h5,
-h5 {
- font-size: 14px
-}
-
-.h6,
-h6 {
- font-size: 12px
-}
-
-p {
- margin: 0 0 10px
-}
-
-.lead {
- margin-bottom: 20px;
- font-size: 16px;
- font-weight: 300;
- line-height: 1.4
-}
-
-@media (min-width:768px) {
- .lead {
- font-size: 21px
- }
-}
-
-.small,
-small {
- font-size: 85%
-}
-
-.mark,
-mark {
- padding: .2em;
- background-color: #fcf8e3
-}
-
-.text-left {
- text-align: left
-}
-
-.text-right {
- text-align: right
-}
-
-.text-center {
- text-align: center
-}
-
-.text-justify {
- text-align: justify
-}
-
-.text-nowrap {
- white-space: nowrap
-}
-
-.text-lowercase {
- text-transform: lowercase
-}
-
-.text-uppercase {
- text-transform: uppercase
-}
-
-.text-capitalize {
- text-transform: capitalize
-}
-
-.text-muted {
- color: #777
-}
-
-.text-primary {
- color: #337ab7
-}
-
-a.text-primary:hover {
- color: #286090
-}
-
-.text-success {
- color: #3c763d
-}
-
-a.text-success:hover {
- color: #2b542c
-}
-
-.text-info {
- color: #31708f
-}
-
-a.text-info:hover {
- color: #245269
-}
-
-.text-warning {
- color: #8a6d3b
-}
-
-a.text-warning:hover {
- color: #66512c
-}
-
-.text-danger {
- color: #a94442
-}
-
-a.text-danger:hover {
- color: #843534
-}
-
-.bg-primary {
- color: #fff;
- background-color: #337ab7
-}
-
-a.bg-primary:hover {
- background-color: #286090
-}
-
-.bg-success {
- background-color: #dff0d8
-}
-
-a.bg-success:hover {
- background-color: #c1e2b3
-}
-
-.bg-info {
- background-color: #d9edf7
-}
-
-a.bg-info:hover {
- background-color: #afd9ee
-}
-
-.bg-warning {
- background-color: #fcf8e3
-}
-
-a.bg-warning:hover {
- background-color: #f7ecb5
-}
-
-.bg-danger {
- background-color: #f2dede
-}
-
-a.bg-danger:hover {
- background-color: #e4b9b9
-}
-
-.page-header {
- padding-bottom: 9px;
- margin: 40px 0 20px;
- border-bottom: 1px solid #eee
-}
-
-ol,
-ul {
- margin-top: 0;
- margin-bottom: 10px
-}
-
-ol ol,
-ol ul,
-ul ol,
-ul ul {
- margin-bottom: 0
-}
-
-.list-unstyled {
- padding-left: 0;
- list-style: none
-}
-
-.list-inline {
- padding-left: 0;
- margin-left: -5px;
- list-style: none
-}
-
-.list-inline>li {
- display: inline-block;
- padding-right: 5px;
- padding-left: 5px
-}
-
-dl {
- margin-top: 0;
- margin-bottom: 20px
-}
-
-dd,
-dt {
- line-height: 1.42857143
-}
-
-dt {
- font-weight: 700
-}
-
-dd {
- margin-left: 0
-}
-
-@media (min-width:768px) {
- .dl-horizontal dt {
- float: left;
- width: 160px;
- overflow: hidden;
- clear: left;
- text-align: right;
- text-overflow: ellipsis;
- white-space: nowrap
- }
- .dl-horizontal dd {
- margin-left: 180px
- }
-}
-
-abbr[data-original-title],
-abbr[title] {
- cursor: help;
- border-bottom: 1px dotted #777
-}
-
-.initialism {
- font-size: 90%;
- text-transform: uppercase
-}
-
-blockquote {
- padding: 10px 20px;
- margin: 0 0 20px;
- font-size: 17.5px;
- border-left: 5px solid #eee
-}
-
-blockquote ol:last-child,
-blockquote p:last-child,
-blockquote ul:last-child {
- margin-bottom: 0
-}
-
-blockquote .small,
-blockquote footer,
-blockquote small {
- display: block;
- font-size: 80%;
- line-height: 1.42857143;
- color: #777
-}
-
-blockquote .small:before,
-blockquote footer:before,
-blockquote small:before {
- content: '\2014 \00A0'
-}
-
-.blockquote-reverse,
-blockquote.pull-right {
- padding-right: 15px;
- padding-left: 0;
- text-align: right;
- border-right: 5px solid #eee;
- border-left: 0
-}
-
-.blockquote-reverse .small:before,
-.blockquote-reverse footer:before,
-.blockquote-reverse small:before,
-blockquote.pull-right .small:before,
-blockquote.pull-right footer:before,
-blockquote.pull-right small:before {
- content: ''
-}
-
-.blockquote-reverse .small:after,
-.blockquote-reverse footer:after,
-.blockquote-reverse small:after,
-blockquote.pull-right .small:after,
-blockquote.pull-right footer:after,
-blockquote.pull-right small:after {
- content: '\00A0 \2014'
-}
-
-address {
- margin-bottom: 20px;
- font-style: normal;
- line-height: 1.42857143
-}
-
-code,
-kbd,
-pre,
-samp,
-ouput_html{
- font-family: Menlo, Monaco, Consolas, "Courier New", monospace
-}
-
-code,
-ouput_html{
- padding: 2px 4px;
- font-size: 90%;
- color: #c7254e;
- background-color: #f9f2f4;
- border-radius: 4px
-}
-
-kbd {
- padding: 2px 4px;
- font-size: 90%;
- color: #fff;
- background-color: #333;
- border-radius: 3px;
-}
-
-kbd kbd {
- padding: 0;
- font-size: 100%;
- font-weight: 700;
-}
-
-pre,
-output_html{
- display: block;
- padding: 9.5px;
- margin: 0 0 10px;
- font-size: 13px;
- line-height: 1.42857143;
- color: #333;
- word-break: break-all;
- word-wrap: break-word;
- background-color: #f5f5f5;
- border: 1px solid #ccc;
- border-radius: 4px
-}
-
-
-pre,
-code,
-output_html{
- padding: 0;
- font-size: inherit;
- color: inherit;
- white-space: pre-wrap;
- background-color: transparent;
- border-radius: 0
-}
-
-.pre-scrollable {
- max-height: 340px;
- overflow-y: scroll
-}
-
-.container {
- padding-right: 15px;
- padding-left: 15px;
- margin-right: auto;
- margin-left: auto
-}
-
-@media (min-width:768px) {
- .container {
- width: 750px
- }
-}
-
-@media (min-width:992px) {
- .container {
- width: 970px
- }
-}
-
-@media (min-width:1200px) {
- .container {
- width: 1170px
- }
-}
-
-.container-fluid {
- padding-right: 15px;
- padding-left: 15px;
- margin-right: auto;
- margin-left: auto
-}
-
-.row {
- margin-right: -15px;
- margin-left: -15px
-}
-
-.col-lg-1,
-.col-lg-10,
-.col-lg-11,
-.col-lg-12,
-.col-lg-2,
-.col-lg-3,
-.col-lg-4,
-.col-lg-5,
-.col-lg-6,
-.col-lg-7,
-.col-lg-8,
-.col-lg-9,
-.col-md-1,
-.col-md-10,
-.col-md-11,
-.col-md-12,
-.col-md-2,
-.col-md-3,
-.col-md-4,
-.col-md-5,
-.col-md-6,
-.col-md-7,
-.col-md-8,
-.col-md-9,
-.col-sm-1,
-.col-sm-10,
-.col-sm-11,
-.col-sm-12,
-.col-sm-2,
-.col-sm-3,
-.col-sm-4,
-.col-sm-5,
-.col-sm-6,
-.col-sm-7,
-.col-sm-8,
-.col-sm-9,
-.col-xs-1,
-.col-xs-10,
-.col-xs-11,
-.col-xs-12,
-.col-xs-2,
-.col-xs-3,
-.col-xs-4,
-.col-xs-5,
-.col-xs-6,
-.col-xs-7,
-.col-xs-8,
-.col-xs-9 {
- position: relative;
- min-height: 1px;
- padding-right: 15px;
- padding-left: 15px
-}
-
-.col-xs-1,
-.col-xs-10,
-.col-xs-11,
-.col-xs-12,
-.col-xs-2,
-.col-xs-3,
-.col-xs-4,
-.col-xs-5,
-.col-xs-6,
-.col-xs-7,
-.col-xs-8,
-.col-xs-9 {
- float: left
-}
-
-.col-xs-12 {
- width: 100%
-}
-
-.col-xs-11 {
- width: 91.66666667%
-}
-
-.col-xs-10 {
- width: 83.33333333%
-}
-
-.col-xs-9 {
- width: 75%
-}
-
-.col-xs-8 {
- width: 66.66666667%
-}
-
-.col-xs-7 {
- width: 58.33333333%
-}
-
-.col-xs-6 {
- width: 50%
-}
-
-.col-xs-5 {
- width: 41.66666667%
-}
-
-.col-xs-4 {
- width: 33.33333333%
-}
-
-.col-xs-3 {
- width: 25%
-}
-
-.col-xs-2 {
- width: 16.66666667%
-}
-
-.col-xs-1 {
- width: 8.33333333%
-}
-
-.col-xs-pull-12 {
- right: 100%
-}
-
-.col-xs-pull-11 {
- right: 91.66666667%
-}
-
-.col-xs-pull-10 {
- right: 83.33333333%
-}
-
-.col-xs-pull-9 {
- right: 75%
-}
-
-.col-xs-pull-8 {
- right: 66.66666667%
-}
-
-.col-xs-pull-7 {
- right: 58.33333333%
-}
-
-.col-xs-pull-6 {
- right: 50%
-}
-
-.col-xs-pull-5 {
- right: 41.66666667%
-}
-
-.col-xs-pull-4 {
- right: 33.33333333%
-}
-
-.col-xs-pull-3 {
- right: 25%
-}
-
-.col-xs-pull-2 {
- right: 16.66666667%
-}
-
-.col-xs-pull-1 {
- right: 8.33333333%
-}
-
-.col-xs-pull-0 {
- right: auto
-}
-
-.col-xs-push-12 {
- left: 100%
-}
-
-.col-xs-push-11 {
- left: 91.66666667%
-}
-
-.col-xs-push-10 {
- left: 83.33333333%
-}
-
-.col-xs-push-9 {
- left: 75%
-}
-
-.col-xs-push-8 {
- left: 66.66666667%
-}
-
-.col-xs-push-7 {
- left: 58.33333333%
-}
-
-.col-xs-push-6 {
- left: 50%
-}
-
-.col-xs-push-5 {
- left: 41.66666667%
-}
-
-.col-xs-push-4 {
- left: 33.33333333%
-}
-
-.col-xs-push-3 {
- left: 25%
-}
-
-.col-xs-push-2 {
- left: 16.66666667%
-}
-
-.col-xs-push-1 {
- left: 8.33333333%
-}
-
-.col-xs-push-0 {
- left: auto
-}
-
-.col-xs-offset-12 {
- margin-left: 100%
-}
-
-.col-xs-offset-11 {
- margin-left: 91.66666667%
-}
-
-.col-xs-offset-10 {
- margin-left: 83.33333333%
-}
-
-.col-xs-offset-9 {
- margin-left: 75%
-}
-
-.col-xs-offset-8 {
- margin-left: 66.66666667%
-}
-
-.col-xs-offset-7 {
- margin-left: 58.33333333%
-}
-
-.col-xs-offset-6 {
- margin-left: 50%
-}
-
-.col-xs-offset-5 {
- margin-left: 41.66666667%
-}
-
-.col-xs-offset-4 {
- margin-left: 33.33333333%
-}
-
-.col-xs-offset-3 {
- margin-left: 25%
-}
-
-.col-xs-offset-2 {
- margin-left: 16.66666667%
-}
-
-.col-xs-offset-1 {
- margin-left: 8.33333333%
-}
-
-.col-xs-offset-0 {
- margin-left: 0
-}
-
-@media (min-width:768px) {
- .col-sm-1,
- .col-sm-10,
- .col-sm-11,
- .col-sm-12,
- .col-sm-2,
- .col-sm-3,
- .col-sm-4,
- .col-sm-5,
- .col-sm-6,
- .col-sm-7,
- .col-sm-8,
- .col-sm-9 {
- float: left
- }
- .col-sm-12 {
- width: 100%
- }
- .col-sm-11 {
- width: 91.66666667%
- }
- .col-sm-10 {
- width: 83.33333333%
- }
- .col-sm-9 {
- width: 75%
- }
- .col-sm-8 {
- width: 66.66666667%
- }
- .col-sm-7 {
- width: 58.33333333%
- }
- .col-sm-6 {
- width: 50%
- }
- .col-sm-5 {
- width: 41.66666667%
- }
- .col-sm-4 {
- width: 33.33333333%
- }
- .col-sm-3 {
- width: 25%
- }
- .col-sm-2 {
- width: 16.66666667%
- }
- .col-sm-1 {
- width: 8.33333333%
- }
- .col-sm-pull-12 {
- right: 100%
- }
- .col-sm-pull-11 {
- right: 91.66666667%
- }
- .col-sm-pull-10 {
- right: 83.33333333%
- }
- .col-sm-pull-9 {
- right: 75%
- }
- .col-sm-pull-8 {
- right: 66.66666667%
- }
- .col-sm-pull-7 {
- right: 58.33333333%
- }
- .col-sm-pull-6 {
- right: 50%
- }
- .col-sm-pull-5 {
- right: 41.66666667%
- }
- .col-sm-pull-4 {
- right: 33.33333333%
- }
- .col-sm-pull-3 {
- right: 25%
- }
- .col-sm-pull-2 {
- right: 16.66666667%
- }
- .col-sm-pull-1 {
- right: 8.33333333%
- }
- .col-sm-pull-0 {
- right: auto
- }
- .col-sm-push-12 {
- left: 100%
- }
- .col-sm-push-11 {
- left: 91.66666667%
- }
- .col-sm-push-10 {
- left: 83.33333333%
- }
- .col-sm-push-9 {
- left: 75%
- }
- .col-sm-push-8 {
- left: 66.66666667%
- }
- .col-sm-push-7 {
- left: 58.33333333%
- }
- .col-sm-push-6 {
- left: 50%
- }
- .col-sm-push-5 {
- left: 41.66666667%
- }
- .col-sm-push-4 {
- left: 33.33333333%
- }
- .col-sm-push-3 {
- left: 25%
- }
- .col-sm-push-2 {
- left: 16.66666667%
- }
- .col-sm-push-1 {
- left: 8.33333333%
- }
- .col-sm-push-0 {
- left: auto
- }
- .col-sm-offset-12 {
- margin-left: 100%
- }
- .col-sm-offset-11 {
- margin-left: 91.66666667%
- }
- .col-sm-offset-10 {
- margin-left: 83.33333333%
- }
- .col-sm-offset-9 {
- margin-left: 75%
- }
- .col-sm-offset-8 {
- margin-left: 66.66666667%
- }
- .col-sm-offset-7 {
- margin-left: 58.33333333%
- }
- .col-sm-offset-6 {
- margin-left: 50%
- }
- .col-sm-offset-5 {
- margin-left: 41.66666667%
- }
- .col-sm-offset-4 {
- margin-left: 33.33333333%
- }
- .col-sm-offset-3 {
- margin-left: 25%
- }
- .col-sm-offset-2 {
- margin-left: 16.66666667%
- }
- .col-sm-offset-1 {
- margin-left: 8.33333333%
- }
- .col-sm-offset-0 {
- margin-left: 0
- }
-}
-
-@media (min-width:992px) {
- .col-md-1,
- .col-md-10,
- .col-md-11,
- .col-md-12,
- .col-md-2,
- .col-md-3,
- .col-md-4,
- .col-md-5,
- .col-md-6,
- .col-md-7,
- .col-md-8,
- .col-md-9 {
- float: left
- }
- .col-md-12 {
- width: 100%
- }
- .col-md-11 {
- width: 91.66666667%
- }
- .col-md-10 {
- width: 83.33333333%
- }
- .col-md-9 {
- width: 75%
- }
- .col-md-8 {
- width: 66.66666667%
- }
- .col-md-7 {
- width: 58.33333333%
- }
- .col-md-6 {
- width: 50%
- }
- .col-md-5 {
- width: 41.66666667%
- }
- .col-md-4 {
- width: 33.33333333%
- }
- .col-md-3 {
- width: 25%
- }
- .col-md-2 {
- width: 16.66666667%
- }
- .col-md-1 {
- width: 8.33333333%
- }
- .col-md-pull-12 {
- right: 100%
- }
- .col-md-pull-11 {
- right: 91.66666667%
- }
- .col-md-pull-10 {
- right: 83.33333333%
- }
- .col-md-pull-9 {
- right: 75%
- }
- .col-md-pull-8 {
- right: 66.66666667%
- }
- .col-md-pull-7 {
- right: 58.33333333%
- }
- .col-md-pull-6 {
- right: 50%
- }
- .col-md-pull-5 {
- right: 41.66666667%
- }
- .col-md-pull-4 {
- right: 33.33333333%
- }
- .col-md-pull-3 {
- right: 25%
- }
- .col-md-pull-2 {
- right: 16.66666667%
- }
- .col-md-pull-1 {
- right: 8.33333333%
- }
- .col-md-pull-0 {
- right: auto
- }
- .col-md-push-12 {
- left: 100%
- }
- .col-md-push-11 {
- left: 91.66666667%
- }
- .col-md-push-10 {
- left: 83.33333333%
- }
- .col-md-push-9 {
- left: 75%
- }
- .col-md-push-8 {
- left: 66.66666667%
- }
- .col-md-push-7 {
- left: 58.33333333%
- }
- .col-md-push-6 {
- left: 50%
- }
- .col-md-push-5 {
- left: 41.66666667%
- }
- .col-md-push-4 {
- left: 33.33333333%
- }
- .col-md-push-3 {
- left: 25%
- }
- .col-md-push-2 {
- left: 16.66666667%
- }
- .col-md-push-1 {
- left: 8.33333333%
- }
- .col-md-push-0 {
- left: auto
- }
- .col-md-offset-12 {
- margin-left: 100%
- }
- .col-md-offset-11 {
- margin-left: 91.66666667%
- }
- .col-md-offset-10 {
- margin-left: 83.33333333%
- }
- .col-md-offset-9 {
- margin-left: 75%
- }
- .col-md-offset-8 {
- margin-left: 66.66666667%
- }
- .col-md-offset-7 {
- margin-left: 58.33333333%
- }
- .col-md-offset-6 {
- margin-left: 50%
- }
- .col-md-offset-5 {
- margin-left: 41.66666667%
- }
- .col-md-offset-4 {
- margin-left: 33.33333333%
- }
- .col-md-offset-3 {
- margin-left: 25%
- }
- .col-md-offset-2 {
- margin-left: 16.66666667%
- }
- .col-md-offset-1 {
- margin-left: 8.33333333%
- }
- .col-md-offset-0 {
- margin-left: 0
- }
-}
-
-@media (min-width:1200px) {
- .col-lg-1,
- .col-lg-10,
- .col-lg-11,
- .col-lg-12,
- .col-lg-2,
- .col-lg-3,
- .col-lg-4,
- .col-lg-5,
- .col-lg-6,
- .col-lg-7,
- .col-lg-8,
- .col-lg-9 {
- float: left
- }
- .col-lg-12 {
- width: 100%
- }
- .col-lg-11 {
- width: 91.66666667%
- }
- .col-lg-10 {
- width: 83.33333333%
- }
- .col-lg-9 {
- width: 75%
- }
- .col-lg-8 {
- width: 66.66666667%
- }
- .col-lg-7 {
- width: 58.33333333%
- }
- .col-lg-6 {
- width: 50%
- }
- .col-lg-5 {
- width: 41.66666667%
- }
- .col-lg-4 {
- width: 33.33333333%
- }
- .col-lg-3 {
- width: 25%
- }
- .col-lg-2 {
- width: 16.66666667%
- }
- .col-lg-1 {
- width: 8.33333333%
- }
- .col-lg-pull-12 {
- right: 100%
- }
- .col-lg-pull-11 {
- right: 91.66666667%
- }
- .col-lg-pull-10 {
- right: 83.33333333%
- }
- .col-lg-pull-9 {
- right: 75%
- }
- .col-lg-pull-8 {
- right: 66.66666667%
- }
- .col-lg-pull-7 {
- right: 58.33333333%
- }
- .col-lg-pull-6 {
- right: 50%
- }
- .col-lg-pull-5 {
- right: 41.66666667%
- }
- .col-lg-pull-4 {
- right: 33.33333333%
- }
- .col-lg-pull-3 {
- right: 25%
- }
- .col-lg-pull-2 {
- right: 16.66666667%
- }
- .col-lg-pull-1 {
- right: 8.33333333%
- }
- .col-lg-pull-0 {
- right: auto
- }
- .col-lg-push-12 {
- left: 100%
- }
- .col-lg-push-11 {
- left: 91.66666667%
- }
- .col-lg-push-10 {
- left: 83.33333333%
- }
- .col-lg-push-9 {
- left: 75%
- }
- .col-lg-push-8 {
- left: 66.66666667%
- }
- .col-lg-push-7 {
- left: 58.33333333%
- }
- .col-lg-push-6 {
- left: 50%
- }
- .col-lg-push-5 {
- left: 41.66666667%
- }
- .col-lg-push-4 {
- left: 33.33333333%
- }
- .col-lg-push-3 {
- left: 25%
- }
- .col-lg-push-2 {
- left: 16.66666667%
- }
- .col-lg-push-1 {
- left: 8.33333333%
- }
- .col-lg-push-0 {
- left: auto
- }
- .col-lg-offset-12 {
- margin-left: 100%
- }
- .col-lg-offset-11 {
- margin-left: 91.66666667%
- }
- .col-lg-offset-10 {
- margin-left: 83.33333333%
- }
- .col-lg-offset-9 {
- margin-left: 75%
- }
- .col-lg-offset-8 {
- margin-left: 66.66666667%
- }
- .col-lg-offset-7 {
- margin-left: 58.33333333%
- }
- .col-lg-offset-6 {
- margin-left: 50%
- }
- .col-lg-offset-5 {
- margin-left: 41.66666667%
- }
- .col-lg-offset-4 {
- margin-left: 33.33333333%
- }
- .col-lg-offset-3 {
- margin-left: 25%
- }
- .col-lg-offset-2 {
- margin-left: 16.66666667%
- }
- .col-lg-offset-1 {
- margin-left: 8.33333333%
- }
- .col-lg-offset-0 {
- margin-left: 0
- }
-}
-
-table {
- background-color: transparent
-}
-
-caption {
- padding-top: 8px;
- padding-bottom: 8px;
- color: #777;
- text-align: left
-}
-
-th {
- text-align: left
-}
-
-.table {
- width: 100%;
- max-width: 100%;
- margin-bottom: 20px
-}
-
-.table>tbody>tr>td,
-.table>tbody>tr>th,
-.table>tfoot>tr>td,
-.table>tfoot>tr>th,
-.table>thead>tr>td,
-.table>thead>tr>th {
- padding: 8px;
- line-height: 1.42857143;
- vertical-align: top;
- border-top: 1px solid #ddd
-}
-
-.table>thead>tr>th {
- vertical-align: bottom;
- border-bottom: 2px solid #ddd
-}
-
-.table>caption+thead>tr:first-child>td,
-.table>caption+thead>tr:first-child>th,
-.table>colgroup+thead>tr:first-child>td,
-.table>colgroup+thead>tr:first-child>th,
-.table>thead:first-child>tr:first-child>td,
-.table>thead:first-child>tr:first-child>th {
- border-top: 0
-}
-
-.table>tbody+tbody {
- border-top: 2px solid #ddd
-}
-
-.table .table {
- background-color: #fff
-}
-
-.table-condensed>tbody>tr>td,
-.table-condensed>tbody>tr>th,
-.table-condensed>tfoot>tr>td,
-.table-condensed>tfoot>tr>th,
-.table-condensed>thead>tr>td,
-.table-condensed>thead>tr>th {
- padding: 5px
-}
-
-.table-bordered {
- border: 1px solid #ddd
-}
-
-.table-bordered>tbody>tr>td,
-.table-bordered>tbody>tr>th,
-.table-bordered>tfoot>tr>td,
-.table-bordered>tfoot>tr>th,
-.table-bordered>thead>tr>td,
-.table-bordered>thead>tr>th {
- border: 1px solid #ddd
-}
-
-.table-bordered>thead>tr>td,
-.table-bordered>thead>tr>th {
- border-bottom-width: 2px
-}
-
-.table-striped>tbody>tr:nth-of-type(odd) {
- background-color: #f9f9f9
-}
-
-.table-hover>tbody>tr:hover {
- background-color: #f5f5f5
-}
-
-table col[class*=col-] {
- position: static;
- display: table-column;
- float: none
-}
-
-table td[class*=col-],
-table th[class*=col-] {
- position: static;
- display: table-cell;
- float: none
-}
-
-.table>tbody>tr.active>td,
-.table>tbody>tr.active>th,
-.table>tbody>tr>td.active,
-.table>tbody>tr>th.active,
-.table>tfoot>tr.active>td,
-.table>tfoot>tr.active>th,
-.table>tfoot>tr>td.active,
-.table>tfoot>tr>th.active,
-.table>thead>tr.active>td,
-.table>thead>tr.active>th,
-.table>thead>tr>td.active,
-.table>thead>tr>th.active {
- background-color: #f5f5f5
-}
-
-.table-hover>tbody>tr.active:hover>td,
-.table-hover>tbody>tr.active:hover>th,
-.table-hover>tbody>tr:hover>.active,
-.table-hover>tbody>tr>td.active:hover,
-.table-hover>tbody>tr>th.active:hover {
- background-color: #e8e8e8
-}
-
-.table>tbody>tr.success>td,
-.table>tbody>tr.success>th,
-.table>tbody>tr>td.success,
-.table>tbody>tr>th.success,
-.table>tfoot>tr.success>td,
-.table>tfoot>tr.success>th,
-.table>tfoot>tr>td.success,
-.table>tfoot>tr>th.success,
-.table>thead>tr.success>td,
-.table>thead>tr.success>th,
-.table>thead>tr>td.success,
-.table>thead>tr>th.success {
- background-color: #dff0d8
-}
-
-.table-hover>tbody>tr.success:hover>td,
-.table-hover>tbody>tr.success:hover>th,
-.table-hover>tbody>tr:hover>.success,
-.table-hover>tbody>tr>td.success:hover,
-.table-hover>tbody>tr>th.success:hover {
- background-color: #d0e9c6
-}
-
-.table>tbody>tr.info>td,
-.table>tbody>tr.info>th,
-.table>tbody>tr>td.info,
-.table>tbody>tr>th.info,
-.table>tfoot>tr.info>td,
-.table>tfoot>tr.info>th,
-.table>tfoot>tr>td.info,
-.table>tfoot>tr>th.info,
-.table>thead>tr.info>td,
-.table>thead>tr.info>th,
-.table>thead>tr>td.info,
-.table>thead>tr>th.info {
- background-color: #d9edf7
-}
-
-.table-hover>tbody>tr.info:hover>td,
-.table-hover>tbody>tr.info:hover>th,
-.table-hover>tbody>tr:hover>.info,
-.table-hover>tbody>tr>td.info:hover,
-.table-hover>tbody>tr>th.info:hover {
- background-color: #c4e3f3
-}
-
-.table>tbody>tr.warning>td,
-.table>tbody>tr.warning>th,
-.table>tbody>tr>td.warning,
-.table>tbody>tr>th.warning,
-.table>tfoot>tr.warning>td,
-.table>tfoot>tr.warning>th,
-.table>tfoot>tr>td.warning,
-.table>tfoot>tr>th.warning,
-.table>thead>tr.warning>td,
-.table>thead>tr.warning>th,
-.table>thead>tr>td.warning,
-.table>thead>tr>th.warning {
- background-color: #fcf8e3
-}
-
-.table-hover>tbody>tr.warning:hover>td,
-.table-hover>tbody>tr.warning:hover>th,
-.table-hover>tbody>tr:hover>.warning,
-.table-hover>tbody>tr>td.warning:hover,
-.table-hover>tbody>tr>th.warning:hover {
- background-color: #faf2cc
-}
-
-.table>tbody>tr.danger>td,
-.table>tbody>tr.danger>th,
-.table>tbody>tr>td.danger,
-.table>tbody>tr>th.danger,
-.table>tfoot>tr.danger>td,
-.table>tfoot>tr.danger>th,
-.table>tfoot>tr>td.danger,
-.table>tfoot>tr>th.danger,
-.table>thead>tr.danger>td,
-.table>thead>tr.danger>th,
-.table>thead>tr>td.danger,
-.table>thead>tr>th.danger {
- background-color: #f2dede
-}
-
-.table-hover>tbody>tr.danger:hover>td,
-.table-hover>tbody>tr.danger:hover>th,
-.table-hover>tbody>tr:hover>.danger,
-.table-hover>tbody>tr>td.danger:hover,
-.table-hover>tbody>tr>th.danger:hover {
- background-color: #ebcccc
-}
-
-.table-responsive {
- min-height: .01%;
- overflow-x: auto
-}
-
-@media screen and (max-width:767px) {
- .table-responsive {
- width: 100%;
- margin-bottom: 15px;
- overflow-y: hidden;
- -ms-overflow-style: -ms-autohiding-scrollbar;
- border: 1px solid #ddd
- }
- .table-responsive>.table {
- margin-bottom: 0
- }
- .table-responsive>.table>tbody>tr>td,
- .table-responsive>.table>tbody>tr>th,
- .table-responsive>.table>tfoot>tr>td,
- .table-responsive>.table>tfoot>tr>th,
- .table-responsive>.table>thead>tr>td,
- .table-responsive>.table>thead>tr>th {
- white-space: nowrap
- }
- .table-responsive>.table-bordered {
- border: 0
- }
- .table-responsive>.table-bordered>tbody>tr>td:first-child,
- .table-responsive>.table-bordered>tbody>tr>th:first-child,
- .table-responsive>.table-bordered>tfoot>tr>td:first-child,
- .table-responsive>.table-bordered>tfoot>tr>th:first-child,
- .table-responsive>.table-bordered>thead>tr>td:first-child,
- .table-responsive>.table-bordered>thead>tr>th:first-child {
- border-left: 0
- }
- .table-responsive>.table-bordered>tbody>tr>td:last-child,
- .table-responsive>.table-bordered>tbody>tr>th:last-child,
- .table-responsive>.table-bordered>tfoot>tr>td:last-child,
- .table-responsive>.table-bordered>tfoot>tr>th:last-child,
- .table-responsive>.table-bordered>thead>tr>td:last-child,
- .table-responsive>.table-bordered>thead>tr>th:last-child {
- border-right: 0
- }
- .table-responsive>.table-bordered>tbody>tr:last-child>td,
- .table-responsive>.table-bordered>tbody>tr:last-child>th,
- .table-responsive>.table-bordered>tfoot>tr:last-child>td,
- .table-responsive>.table-bordered>tfoot>tr:last-child>th {
- border-bottom: 0
- }
-}
-
-fieldset {
- min-width: 0;
- padding: 0;
- margin: 0;
- border: 0
-}
-
-legend {
- display: block;
- width: 100%;
- padding: 0;
- margin-bottom: 20px;
- font-size: 21px;
- line-height: inherit;
- color: #333;
- border: 0;
- border-bottom: 1px solid #e5e5e5
-}
-
-label {
- display: inline-block;
- max-width: 100%;
- margin-bottom: 5px;
- font-weight: 700
-}
-
-input[type=search] {
- -webkit-box-sizing: border-box;
- -moz-box-sizing: border-box;
- box-sizing: border-box
-}
-
-input[type=checkbox],
-input[type=radio] {
- margin: 4px 0 0;
- margin-top: 1px \9;
- line-height: normal
-}
-
-input[type=file] {
- display: block
-}
-
-input[type=range] {
- display: block;
- width: 100%
-}
-
-select[multiple],
-select[size] {
- height: auto
-}
-
-input[type=file]:focus,
-input[type=checkbox]:focus,
-input[type=radio]:focus {
- outline: thin dotted;
- outline: 5px auto -webkit-focus-ring-color;
- outline-offset: -2px
-}
-
-output {
- display: block;
- padding-top: 7px;
- font-size: 14px;
- line-height: 1.42857143;
- color: #555
-}
-
-.form-control {
- display: block;
- width: 100%;
- height: 34px;
- padding: 6px 12px;
- font-size: 14px;
- line-height: 1.42857143;
- color: #555;
- background-color: #fff;
- background-image: none;
- border: 1px solid #ccc;
- border-radius: 4px;
-}
-
-.form-control:focus {
- border-color: #66afe9;
- outline: 0;
-}
-
-.form-control::-moz-placeholder {
- color: #999;
- opacity: 1
-}
-
-.form-control:-ms-input-placeholder {
- color: #999
-}
-
-.form-control::-webkit-input-placeholder {
- color: #999
-}
-
-.form-control[disabled],
-.form-control[readonly],
-fieldset[disabled] .form-control {
- cursor: not-allowed;
- background-color: #eee;
- opacity: 1
-}
-
-textarea.form-control {
- height: auto
-}
-
-input[type=search] {
- -webkit-appearance: none
-}
-
-@media screen and (-webkit-min-device-pixel-ratio:0) {
- input[type=date],
- input[type=time],
- input[type=datetime-local],
- input[type=month] {
- line-height: 34px
- }
- .input-group-sm input[type=date],
- .input-group-sm input[type=time],
- .input-group-sm input[type=datetime-local],
- .input-group-sm input[type=month],
- input[type=date].input-sm,
- input[type=time].input-sm,
- input[type=datetime-local].input-sm,
- input[type=month].input-sm {
- line-height: 30px
- }
- .input-group-lg input[type=date],
- .input-group-lg input[type=time],
- .input-group-lg input[type=datetime-local],
- .input-group-lg input[type=month],
- input[type=date].input-lg,
- input[type=time].input-lg,
- input[type=datetime-local].input-lg,
- input[type=month].input-lg {
- line-height: 46px
- }
-}
-
-.form-group {
- margin-bottom: 15px
-}
-
-.checkbox,
-.radio {
- position: relative;
- display: block;
- margin-top: 10px;
- margin-bottom: 10px
-}
-
-.checkbox label,
-.radio label {
- min-height: 20px;
- padding-left: 20px;
- margin-bottom: 0;
- font-weight: 400;
- cursor: pointer
-}
-
-.checkbox input[type=checkbox],
-.checkbox-inline input[type=checkbox],
-.radio input[type=radio],
-.radio-inline input[type=radio] {
- position: absolute;
- margin-top: 4px \9;
- margin-left: -20px
-}
-
-.checkbox+.checkbox,
-.radio+.radio {
- margin-top: -5px
-}
-
-.checkbox-inline,
-.radio-inline {
- display: inline-block;
- padding-left: 20px;
- margin-bottom: 0;
- font-weight: 400;
- vertical-align: middle;
- cursor: pointer
-}
-
-.checkbox-inline+.checkbox-inline,
-.radio-inline+.radio-inline {
- margin-top: 0;
- margin-left: 10px
-}
-
-fieldset[disabled] input[type=checkbox],
-fieldset[disabled] input[type=radio],
-input[type=checkbox].disabled,
-input[type=checkbox][disabled],
-input[type=radio].disabled,
-input[type=radio][disabled] {
- cursor: not-allowed
-}
-
-.checkbox-inline.disabled,
-.radio-inline.disabled,
-fieldset[disabled] .checkbox-inline,
-fieldset[disabled] .radio-inline {
- cursor: not-allowed
-}
-
-.checkbox.disabled label,
-.radio.disabled label,
-fieldset[disabled] .checkbox label,
-fieldset[disabled] .radio label {
- cursor: not-allowed
-}
-
-.form-control-static {
- padding-top: 7px;
- padding-bottom: 7px;
- margin-bottom: 0
-}
-
-.form-control-static.input-lg,
-.form-control-static.input-sm {
- padding-right: 0;
- padding-left: 0
-}
-
-.input-sm {
- height: 30px;
- padding: 5px 10px;
- font-size: 12px;
- line-height: 1.5;
- border-radius: 3px
-}
-
-select.input-sm {
- height: 30px;
- line-height: 30px
-}
-
-select[multiple].input-sm,
-textarea.input-sm {
- height: auto
-}
-
-.form-group-sm .form-control {
- height: 30px;
- padding: 5px 10px;
- font-size: 12px;
- line-height: 1.5;
- border-radius: 3px
-}
-
-select.form-group-sm .form-control {
- height: 30px;
- line-height: 30px
-}
-
-select[multiple].form-group-sm .form-control,
-textarea.form-group-sm .form-control {
- height: auto
-}
-
-.form-group-sm .form-control-static {
- height: 30px;
- padding: 5px 10px;
- font-size: 12px;
- line-height: 1.5
-}
-
-.input-lg {
- height: 46px;
- padding: 10px 16px;
- font-size: 18px;
- line-height: 1.3333333;
- border-radius: 6px
-}
-
-select.input-lg {
- height: 46px;
- line-height: 46px
-}
-
-select[multiple].input-lg,
-textarea.input-lg {
- height: auto
-}
-
-.form-group-lg .form-control {
- height: 46px;
- padding: 10px 16px;
- font-size: 18px;
- line-height: 1.3333333;
- border-radius: 6px
-}
-
-select.form-group-lg .form-control {
- height: 46px;
- line-height: 46px
-}
-
-select[multiple].form-group-lg .form-control,
-textarea.form-group-lg .form-control {
- height: auto
-}
-
-.form-group-lg .form-control-static {
- height: 46px;
- padding: 10px 16px;
- font-size: 18px;
- line-height: 1.3333333
-}
-
-.has-feedback {
- position: relative
-}
-
-.has-feedback .form-control {
- padding-right: 42.5px
-}
-
-.form-control-feedback {
- position: absolute;
- top: 0;
- right: 0;
- z-index: 2;
- display: block;
- width: 34px;
- height: 34px;
- line-height: 34px;
- text-align: center;
-}
-
-.input-lg+.form-control-feedback {
- width: 46px;
- height: 46px;
- line-height: 46px
-}
-
-.input-sm+.form-control-feedback {
- width: 30px;
- height: 30px;
- line-height: 30px
-}
-
-.has-success .checkbox,
-.has-success .checkbox-inline,
-.has-success .control-label,
-.has-success .help-block,
-.has-success .radio,
-.has-success .radio-inline,
-.has-success.checkbox label,
-.has-success.checkbox-inline label,
-.has-success.radio label,
-.has-success.radio-inline label {
- color: #3c763d
-}
-
-.has-success .form-control {
- border-color: #3c763d;
-}
-
-.has-success .form-control:focus {
- border-color: #2b542c;
-}
-
-.has-success .input-group-addon {
- color: #3c763d;
- background-color: #dff0d8;
- border-color: #3c763d
-}
-
-.has-success .form-control-feedback {
- color: #3c763d
-}
-
-.has-warning .checkbox,
-.has-warning .checkbox-inline,
-.has-warning .control-label,
-.has-warning .help-block,
-.has-warning .radio,
-.has-warning .radio-inline,
-.has-warning.checkbox label,
-.has-warning.checkbox-inline label,
-.has-warning.radio label,
-.has-warning.radio-inline label {
- color: #8a6d3b
-}
-
-.has-warning .form-control {
- border-color: #8a6d3b;
-}
-
-.has-warning .form-control:focus {
- border-color: #66512c;
-}
-
-.has-warning .input-group-addon {
- color: #8a6d3b;
- background-color: #fcf8e3;
- border-color: #8a6d3b
-}
-
-.has-warning .form-control-feedback {
- color: #8a6d3b
-}
-
-.has-error .checkbox,
-.has-error .checkbox-inline,
-.has-error .control-label,
-.has-error .help-block,
-.has-error .radio,
-.has-error .radio-inline,
-.has-error.checkbox label,
-.has-error.checkbox-inline label,
-.has-error.radio label,
-.has-error.radio-inline label {
- color: #a94442
-}
-
-.has-error .form-control {
- border-color: #a94442;
-}
-
-.has-error .form-control:focus {
- border-color: #843534;
-}
-
-.has-error .input-group-addon {
- color: #a94442;
- background-color: #f2dede;
- border-color: #a94442
-}
-
-.has-error .form-control-feedback {
- color: #a94442
-}
-
-.has-feedback label~.form-control-feedback {
- top: 25px
-}
-
-.has-feedback label.sr-only~.form-control-feedback {
- top: 0
-}
-
-.help-block {
- display: block;
- margin-top: 5px;
- margin-bottom: 10px;
- color: #737373
-}
-
-@media (min-width:768px) {
- .form-inline .form-group {
- display: inline-block;
- margin-bottom: 0;
- vertical-align: middle
- }
- .form-inline .form-control {
- display: inline-block;
- width: auto;
- vertical-align: middle
- }
- .form-inline .form-control-static {
- display: inline-block
- }
- .form-inline .input-group {
- display: inline-table;
- vertical-align: middle
- }
- .form-inline .input-group .form-control,
- .form-inline .input-group .input-group-addon,
- .form-inline .input-group .input-group-btn {
- width: auto
- }
- .form-inline .input-group>.form-control {
- width: 100%
- }
- .form-inline .control-label {
- margin-bottom: 0;
- vertical-align: middle
- }
- .form-inline .checkbox,
- .form-inline .radio {
- display: inline-block;
- margin-top: 0;
- margin-bottom: 0;
- vertical-align: middle
- }
- .form-inline .checkbox label,
- .form-inline .radio label {
- padding-left: 0
- }
- .form-inline .checkbox input[type=checkbox],
- .form-inline .radio input[type=radio] {
- position: relative;
- margin-left: 0
- }
- .form-inline .has-feedback .form-control-feedback {
- top: 0
- }
-}
-
-.form-horizontal .checkbox,
-.form-horizontal .checkbox-inline,
-.form-horizontal .radio,
-.form-horizontal .radio-inline {
- padding-top: 7px;
- margin-top: 0;
- margin-bottom: 0
-}
-
-.form-horizontal .checkbox,
-.form-horizontal .radio {
- min-height: 27px
-}
-
-.form-horizontal .form-group {
- margin-right: -15px;
- margin-left: -15px
-}
-
-@media (min-width:768px) {
- .form-horizontal .control-label {
- padding-top: 7px;
- margin-bottom: 0;
- text-align: right
- }
-}
-
-.form-horizontal .has-feedback .form-control-feedback {
- right: 15px
-}
-
-@media (min-width:768px) {
- .form-horizontal .form-group-lg .control-label {
- padding-top: 14.33px
- }
-}
-
-@media (min-width:768px) {
- .form-horizontal .form-group-sm .control-label {
- padding-top: 6px
- }
-}
-
-.btn {
- display: inline-block;
- padding: 6px 12px;
- margin-bottom: 0;
- font-size: 14px;
- font-weight: 400;
- line-height: 1.42857143;
- text-align: center;
- white-space: nowrap;
- vertical-align: middle;
- -ms-touch-action: manipulation;
- touch-action: manipulation;
- cursor: pointer;
- -webkit-user-select: none;
- -moz-user-select: none;
- -ms-user-select: none;
- user-select: none;
- background-image: none;
- border: 1px solid transparent;
- border-radius: 4px
-}
-
-.btn.active.focus,
-.btn.active:focus,
-.btn.focus,
-.btn:active.focus,
-.btn:active:focus,
-.btn:focus {
- outline: thin dotted;
- outline: 5px auto -webkit-focus-ring-color;
- outline-offset: -2px
-}
-
-.btn.focus,
-.btn:focus,
-.btn:hover {
- color: #333;
- text-decoration: none
-}
-
-.btn.active,
-.btn:active {
- background-image: none;
- outline: 0;
-}
-
-.btn.disabled,
-.btn[disabled],
-fieldset[disabled] .btn {
- cursor: not-allowed;
- filter: alpha(opacity=65);
- opacity: .65
-}
-
-.btn-default {
- color: #333;
- background-color: #fff;
- border-color: #ccc
-}
-
-.btn-default.active,
-.btn-default.focus,
-.btn-default:active,
-.btn-default:focus,
-.btn-default:hover,
-.open>.dropdown-toggle.btn-default {
- color: #333;
- background-color: #e6e6e6;
- border-color: #adadad
-}
-
-.btn-default.active,
-.btn-default:active,
-.open>.dropdown-toggle.btn-default {
- background-image: none
-}
-
-.btn-default.disabled,
-.btn-default.disabled.active,
-.btn-default.disabled.focus,
-.btn-default.disabled:active,
-.btn-default.disabled:focus,
-.btn-default.disabled:hover,
-.btn-default[disabled],
-.btn-default[disabled].active,
-.btn-default[disabled].focus,
-.btn-default[disabled]:active,
-.btn-default[disabled]:focus,
-.btn-default[disabled]:hover,
-fieldset[disabled] .btn-default,
-fieldset[disabled] .btn-default.active,
-fieldset[disabled] .btn-default.focus,
-fieldset[disabled] .btn-default:active,
-fieldset[disabled] .btn-default:focus,
-fieldset[disabled] .btn-default:hover {
- background-color: #fff;
- border-color: #ccc
-}
-
-.btn-default .badge {
- color: #fff;
- background-color: #333
-}
-
-.btn-primary {
- color: #fff;
- background-color: #337ab7;
- border-color: #2e6da4
-}
-
-.btn-primary.active,
-.btn-primary.focus,
-.btn-primary:active,
-.btn-primary:focus,
-.btn-primary:hover,
-.open>.dropdown-toggle.btn-primary {
- color: #fff;
- background-color: #286090;
- border-color: #204d74
-}
-
-.btn-primary.active,
-.btn-primary:active,
-.open>.dropdown-toggle.btn-primary {
- background-image: none
-}
-
-.btn-primary.disabled,
-.btn-primary.disabled.active,
-.btn-primary.disabled.focus,
-.btn-primary.disabled:active,
-.btn-primary.disabled:focus,
-.btn-primary.disabled:hover,
-.btn-primary[disabled],
-.btn-primary[disabled].active,
-.btn-primary[disabled].focus,
-.btn-primary[disabled]:active,
-.btn-primary[disabled]:focus,
-.btn-primary[disabled]:hover,
-fieldset[disabled] .btn-primary,
-fieldset[disabled] .btn-primary.active,
-fieldset[disabled] .btn-primary.focus,
-fieldset[disabled] .btn-primary:active,
-fieldset[disabled] .btn-primary:focus,
-fieldset[disabled] .btn-primary:hover {
- background-color: #337ab7;
- border-color: #2e6da4
-}
-
-.btn-primary .badge {
- color: #337ab7;
- background-color: #fff
-}
-
-.btn-success {
- color: #fff;
- background-color: #5cb85c;
- border-color: #4cae4c
-}
-
-.btn-success.active,
-.btn-success.focus,
-.btn-success:active,
-.btn-success:focus,
-.btn-success:hover,
-.open>.dropdown-toggle.btn-success {
- color: #fff;
- background-color: #449d44;
- border-color: #398439
-}
-
-.btn-success.active,
-.btn-success:active,
-.open>.dropdown-toggle.btn-success {
- background-image: none
-}
-
-.btn-success.disabled,
-.btn-success.disabled.active,
-.btn-success.disabled.focus,
-.btn-success.disabled:active,
-.btn-success.disabled:focus,
-.btn-success.disabled:hover,
-.btn-success[disabled],
-.btn-success[disabled].active,
-.btn-success[disabled].focus,
-.btn-success[disabled]:active,
-.btn-success[disabled]:focus,
-.btn-success[disabled]:hover,
-fieldset[disabled] .btn-success,
-fieldset[disabled] .btn-success.active,
-fieldset[disabled] .btn-success.focus,
-fieldset[disabled] .btn-success:active,
-fieldset[disabled] .btn-success:focus,
-fieldset[disabled] .btn-success:hover {
- background-color: #5cb85c;
- border-color: #4cae4c
-}
-
-.btn-success .badge {
- color: #5cb85c;
- background-color: #fff
-}
-
-.btn-info {
- color: #fff;
- background-color: #5bc0de;
- border-color: #46b8da
-}
-
-.btn-info.active,
-.btn-info.focus,
-.btn-info:active,
-.btn-info:focus,
-.btn-info:hover,
-.open>.dropdown-toggle.btn-info {
- color: #fff;
- background-color: #31b0d5;
- border-color: #269abc
-}
-
-.btn-info.active,
-.btn-info:active,
-.open>.dropdown-toggle.btn-info {
- background-image: none
-}
-
-.btn-info.disabled,
-.btn-info.disabled.active,
-.btn-info.disabled.focus,
-.btn-info.disabled:active,
-.btn-info.disabled:focus,
-.btn-info.disabled:hover,
-.btn-info[disabled],
-.btn-info[disabled].active,
-.btn-info[disabled].focus,
-.btn-info[disabled]:active,
-.btn-info[disabled]:focus,
-.btn-info[disabled]:hover,
-fieldset[disabled] .btn-info,
-fieldset[disabled] .btn-info.active,
-fieldset[disabled] .btn-info.focus,
-fieldset[disabled] .btn-info:active,
-fieldset[disabled] .btn-info:focus,
-fieldset[disabled] .btn-info:hover {
- background-color: #5bc0de;
- border-color: #46b8da
-}
-
-.btn-info .badge {
- color: #5bc0de;
- background-color: #fff
-}
-
-.btn-warning {
- color: #fff;
- background-color: #f0ad4e;
- border-color: #eea236
-}
-
-.btn-warning.active,
-.btn-warning.focus,
-.btn-warning:active,
-.btn-warning:focus,
-.btn-warning:hover,
-.open>.dropdown-toggle.btn-warning {
- color: #fff;
- background-color: #ec971f;
- border-color: #d58512
-}
-
-.btn-warning.active,
-.btn-warning:active,
-.open>.dropdown-toggle.btn-warning {
- background-image: none
-}
-
-.btn-warning.disabled,
-.btn-warning.disabled.active,
-.btn-warning.disabled.focus,
-.btn-warning.disabled:active,
-.btn-warning.disabled:focus,
-.btn-warning.disabled:hover,
-.btn-warning[disabled],
-.btn-warning[disabled].active,
-.btn-warning[disabled].focus,
-.btn-warning[disabled]:active,
-.btn-warning[disabled]:focus,
-.btn-warning[disabled]:hover,
-fieldset[disabled] .btn-warning,
-fieldset[disabled] .btn-warning.active,
-fieldset[disabled] .btn-warning.focus,
-fieldset[disabled] .btn-warning:active,
-fieldset[disabled] .btn-warning:focus,
-fieldset[disabled] .btn-warning:hover {
- background-color: #f0ad4e;
- border-color: #eea236
-}
-
-.btn-warning .badge {
- color: #f0ad4e;
- background-color: #fff
-}
-
-.btn-danger {
- color: #fff;
- background-color: #d9534f;
- border-color: #d43f3a
-}
-
-.btn-danger.active,
-.btn-danger.focus,
-.btn-danger:active,
-.btn-danger:focus,
-.btn-danger:hover,
-.open>.dropdown-toggle.btn-danger {
- color: #fff;
- background-color: #c9302c;
- border-color: #ac2925
-}
-
-.btn-danger.active,
-.btn-danger:active,
-.open>.dropdown-toggle.btn-danger {
- background-image: none
-}
-
-.btn-danger.disabled,
-.btn-danger.disabled.active,
-.btn-danger.disabled.focus,
-.btn-danger.disabled:active,
-.btn-danger.disabled:focus,
-.btn-danger.disabled:hover,
-.btn-danger[disabled],
-.btn-danger[disabled].active,
-.btn-danger[disabled].focus,
-.btn-danger[disabled]:active,
-.btn-danger[disabled]:focus,
-.btn-danger[disabled]:hover,
-fieldset[disabled] .btn-danger,
-fieldset[disabled] .btn-danger.active,
-fieldset[disabled] .btn-danger.focus,
-fieldset[disabled] .btn-danger:active,
-fieldset[disabled] .btn-danger:focus,
-fieldset[disabled] .btn-danger:hover {
- background-color: #d9534f;
- border-color: #d43f3a
-}
-
-.btn-danger .badge {
- color: #d9534f;
- background-color: #fff
-}
-
-.btn-link {
- font-weight: 400;
- color: #337ab7;
- border-radius: 0
-}
-
-.btn-link,
-.btn-link.active,
-.btn-link:active,
-.btn-link[disabled],
-fieldset[disabled] .btn-link {
- background-color: transparent;
-}
-
-.btn-link,
-.btn-link:active,
-.btn-link:focus,
-.btn-link:hover {
- border-color: transparent
-}
-
-.btn-link:focus,
-.btn-link:hover {
- color: #23527c;
- text-decoration: underline;
- background-color: transparent
-}
-
-.btn-link[disabled]:focus,
-.btn-link[disabled]:hover,
-fieldset[disabled] .btn-link:focus,
-fieldset[disabled] .btn-link:hover {
- color: #777;
- text-decoration: none
-}
-
-.btn-group-lg>.btn,
-.btn-lg {
- padding: 10px 16px;
- font-size: 18px;
- line-height: 1.3333333;
- border-radius: 6px
-}
-
-.btn-group-sm>.btn,
-.btn-sm {
- padding: 5px 10px;
- font-size: 12px;
- line-height: 1.5;
- border-radius: 3px
-}
-
-.btn-group-xs>.btn,
-.btn-xs {
- padding: 1px 5px;
- font-size: 12px;
- line-height: 1.5;
- border-radius: 3px
-}
-
-.btn-block {
- display: block;
- width: 100%
-}
-
-.btn-block+.btn-block {
- margin-top: 5px
-}
-
-input[type=button].btn-block,
-input[type=reset].btn-block,
-input[type=submit].btn-block {
- width: 100%
-}
-
-.fade {
- opacity: 0;
- -webkit-transition: opacity .15s linear;
- -o-transition: opacity .15s linear;
- transition: opacity .15s linear
-}
-
-.fade.in {
- opacity: 1
-}
-
-.collapse {
- display: none;
- visibility: hidden
-}
-
-.collapse.in {
- display: block;
- visibility: visible
-}
-
-tr.collapse.in {
- display: table-row
-}
-
-tbody.collapse.in {
- display: table-row-group
-}
-
-.collapsing {
- position: relative;
- height: 0;
- overflow: hidden;
- -webkit-transition-timing-function: ease;
- -o-transition-timing-function: ease;
- transition-timing-function: ease;
- -webkit-transition-duration: .35s;
- -o-transition-duration: .35s;
- transition-duration: .35s;
- -webkit-transition-property: height, visibility;
- -o-transition-property: height, visibility;
- transition-property: height, visibility
-}
-
-.caret {
- display: inline-block;
- width: 0;
- height: 0;
- margin-left: 2px;
- vertical-align: middle;
- border-top: 4px solid;
- border-right: 4px solid transparent;
- border-left: 4px solid transparent
-}
-
-.dropdown,
-.dropup {
- position: relative
-}
-
-.dropdown-toggle:focus {
- outline: 0
-}
-
-.dropdown-menu {
- position: absolute;
- top: 100%;
- left: 0;
- z-index: 1000;
- display: none;
- float: left;
- min-width: 160px;
- padding: 5px 0;
- margin: 2px 0 0;
- font-size: 14px;
- text-align: left;
- list-style: none;
- background-color: #fff;
- -webkit-background-clip: padding-box;
- background-clip: padding-box;
- border: 1px solid #ccc;
- border: 1px solid rgba(0, 0, 0, .15);
- border-radius: 4px;
-}
-
-.dropdown-menu.pull-right {
- right: 0;
- left: auto
-}
-
-.dropdown-menu .divider {
- height: 1px;
- margin: 9px 0;
- overflow: hidden;
- background-color: #e5e5e5
-}
-
-.dropdown-menu>li>a {
- display: block;
- padding: 3px 20px;
- clear: both;
- font-weight: 400;
- line-height: 1.42857143;
- color: #333;
- white-space: nowrap
-}
-
-.dropdown-menu>li>a:focus,
-.dropdown-menu>li>a:hover {
- color: #262626;
- text-decoration: none;
- background-color: #f5f5f5
-}
-
-.dropdown-menu>.active>a,
-.dropdown-menu>.active>a:focus,
-.dropdown-menu>.active>a:hover {
- color: #fff;
- text-decoration: none;
- background-color: #337ab7;
- outline: 0
-}
-
-.dropdown-menu>.disabled>a,
-.dropdown-menu>.disabled>a:focus,
-.dropdown-menu>.disabled>a:hover {
- color: #777
-}
-
-.dropdown-menu>.disabled>a:focus,
-.dropdown-menu>.disabled>a:hover {
- text-decoration: none;
- cursor: not-allowed;
- background-color: transparent;
- background-image: none;
- filter: progid: DXImageTransform.Microsoft.gradient(enabled=false)
-}
-
-.open>.dropdown-menu {
- display: block
-}
-
-.open>a {
- outline: 0
-}
-
-.dropdown-menu-right {
- right: 0;
- left: auto
-}
-
-.dropdown-menu-left {
- right: auto;
- left: 0
-}
-
-.dropdown-header {
- display: block;
- padding: 3px 20px;
- font-size: 12px;
- line-height: 1.42857143;
- color: #777;
- white-space: nowrap
-}
-
-.dropdown-backdrop {
- position: fixed;
- top: 0;
- right: 0;
- bottom: 0;
- left: 0;
- z-index: 990
-}
-
-.pull-right>.dropdown-menu {
- right: 0;
- left: auto
-}
-
-.dropup .caret,
-.navbar-fixed-bottom .dropdown .caret {
- content: "";
- border-top: 0;
- border-bottom: 4px solid
-}
-
-.dropup .dropdown-menu,
-.navbar-fixed-bottom .dropdown .dropdown-menu {
- top: auto;
- bottom: 100%;
- margin-bottom: 2px
-}
-
-@media (min-width:768px) {
- .navbar-right .dropdown-menu {
- right: 0;
- left: auto
- }
- .navbar-right .dropdown-menu-left {
- right: auto;
- left: 0
- }
-}
-
-.btn-group,
-.btn-group-vertical {
- position: relative;
- display: inline-block;
- vertical-align: middle
-}
-
-.btn-group-vertical>.btn,
-.btn-group>.btn {
- position: relative;
- float: left
-}
-
-.btn-group-vertical>.btn.active,
-.btn-group-vertical>.btn:active,
-.btn-group-vertical>.btn:focus,
-.btn-group-vertical>.btn:hover,
-.btn-group>.btn.active,
-.btn-group>.btn:active,
-.btn-group>.btn:focus,
-.btn-group>.btn:hover {
- z-index: 2
-}
-
-.btn-group .btn+.btn,
-.btn-group .btn+.btn-group,
-.btn-group .btn-group+.btn,
-.btn-group .btn-group+.btn-group {
- margin-left: -1px
-}
-
-.btn-toolbar {
- margin-left: -5px
-}
-
-.btn-toolbar .btn-group,
-.btn-toolbar .input-group {
- float: left
-}
-
-.btn-toolbar>.btn,
-.btn-toolbar>.btn-group,
-.btn-toolbar>.input-group {
- margin-left: 5px
-}
-
-.btn-group>.btn:not(:first-child):not(:last-child):not(.dropdown-toggle) {
- border-radius: 0
-}
-
-.btn-group>.btn:first-child {
- margin-left: 0
-}
-
-.btn-group>.btn:first-child:not(:last-child):not(.dropdown-toggle) {
- border-top-right-radius: 0;
- border-bottom-right-radius: 0
-}
-
-.btn-group>.btn:last-child:not(:first-child),
-.btn-group>.dropdown-toggle:not(:first-child) {
- border-top-left-radius: 0;
- border-bottom-left-radius: 0
-}
-
-.btn-group>.btn-group {
- float: left
-}
-
-.btn-group>.btn-group:not(:first-child):not(:last-child)>.btn {
- border-radius: 0
-}
-
-.btn-group>.btn-group:first-child:not(:last-child)>.btn:last-child,
-.btn-group>.btn-group:first-child:not(:last-child)>.dropdown-toggle {
- border-top-right-radius: 0;
- border-bottom-right-radius: 0
-}
-
-.btn-group>.btn-group:last-child:not(:first-child)>.btn:first-child {
- border-top-left-radius: 0;
- border-bottom-left-radius: 0
-}
-
-.btn-group .dropdown-toggle:active,
-.btn-group.open .dropdown-toggle {
- outline: 0
-}
-
-.btn-group>.btn+.dropdown-toggle {
- padding-right: 8px;
- padding-left: 8px
-}
-
-.btn-group>.btn-lg+.dropdown-toggle {
- padding-right: 12px;
- padding-left: 12px
-}
-
-.btn-group.open .dropdown-toggle {
-}
-
-.btn-group.open .dropdown-toggle.btn-link {
-}
-
-.btn .caret {
- margin-left: 0
-}
-
-.btn-lg .caret {
- border-width: 5px 5px 0;
- border-bottom-width: 0
-}
-
-.dropup .btn-lg .caret {
- border-width: 0 5px 5px
-}
-
-.btn-group-vertical>.btn,
-.btn-group-vertical>.btn-group,
-.btn-group-vertical>.btn-group>.btn {
- display: block;
- float: none;
- width: 100%;
- max-width: 100%
-}
-
-.btn-group-vertical>.btn-group>.btn {
- float: none
-}
-
-.btn-group-vertical>.btn+.btn,
-.btn-group-vertical>.btn+.btn-group,
-.btn-group-vertical>.btn-group+.btn,
-.btn-group-vertical>.btn-group+.btn-group {
- margin-top: -1px;
- margin-left: 0
-}
-
-.btn-group-vertical>.btn:not(:first-child):not(:last-child) {
- border-radius: 0
-}
-
-.btn-group-vertical>.btn:first-child:not(:last-child) {
- border-top-right-radius: 4px;
- border-bottom-right-radius: 0;
- border-bottom-left-radius: 0
-}
-
-.btn-group-vertical>.btn:last-child:not(:first-child) {
- border-top-left-radius: 0;
- border-top-right-radius: 0;
- border-bottom-left-radius: 4px
-}
-
-.btn-group-vertical>.btn-group:not(:first-child):not(:last-child)>.btn {
- border-radius: 0
-}
-
-.btn-group-vertical>.btn-group:first-child:not(:last-child)>.btn:last-child,
-.btn-group-vertical>.btn-group:first-child:not(:last-child)>.dropdown-toggle {
- border-bottom-right-radius: 0;
- border-bottom-left-radius: 0
-}
-
-.btn-group-vertical>.btn-group:last-child:not(:first-child)>.btn:first-child {
- border-top-left-radius: 0;
- border-top-right-radius: 0
-}
-
-.btn-group-justified {
- display: table;
- width: 100%;
- table-layout: fixed;
- border-collapse: separate
-}
-
-.btn-group-justified>.btn,
-.btn-group-justified>.btn-group {
- display: table-cell;
- float: none;
- width: 1%
-}
-
-.btn-group-justified>.btn-group .btn {
- width: 100%
-}
-
-.btn-group-justified>.btn-group .dropdown-menu {
- left: auto
-}
-
-[data-toggle=buttons]>.btn input[type=checkbox],
-[data-toggle=buttons]>.btn input[type=radio],
-[data-toggle=buttons]>.btn-group>.btn input[type=checkbox],
-[data-toggle=buttons]>.btn-group>.btn input[type=radio] {
- position: absolute;
- clip: rect(0, 0, 0, 0);
-}
-
-.input-group {
- position: relative;
- display: table;
- border-collapse: separate
-}
-
-.input-group[class*=col-] {
- float: none;
- padding-right: 0;
- padding-left: 0
-}
-
-.input-group .form-control {
- position: relative;
- z-index: 2;
- float: left;
- width: 100%;
- margin-bottom: 0
-}
-
-.input-group-lg>.form-control,
-.input-group-lg>.input-group-addon,
-.input-group-lg>.input-group-btn>.btn {
- height: 46px;
- padding: 10px 16px;
- font-size: 18px;
- line-height: 1.3333333;
- border-radius: 6px
-}
-
-select.input-group-lg>.form-control,
-select.input-group-lg>.input-group-addon,
-select.input-group-lg>.input-group-btn>.btn {
- height: 46px;
- line-height: 46px
-}
-
-select[multiple].input-group-lg>.form-control,
-select[multiple].input-group-lg>.input-group-addon,
-select[multiple].input-group-lg>.input-group-btn>.btn,
-textarea.input-group-lg>.form-control,
-textarea.input-group-lg>.input-group-addon,
-textarea.input-group-lg>.input-group-btn>.btn {
- height: auto
-}
-
-.input-group-sm>.form-control,
-.input-group-sm>.input-group-addon,
-.input-group-sm>.input-group-btn>.btn {
- height: 30px;
- padding: 5px 10px;
- font-size: 12px;
- line-height: 1.5;
- border-radius: 3px
-}
-
-select.input-group-sm>.form-control,
-select.input-group-sm>.input-group-addon,
-select.input-group-sm>.input-group-btn>.btn {
- height: 30px;
- line-height: 30px
-}
-
-select[multiple].input-group-sm>.form-control,
-select[multiple].input-group-sm>.input-group-addon,
-select[multiple].input-group-sm>.input-group-btn>.btn,
-textarea.input-group-sm>.form-control,
-textarea.input-group-sm>.input-group-addon,
-textarea.input-group-sm>.input-group-btn>.btn {
- height: auto
-}
-
-.input-group .form-control,
-.input-group-addon,
-.input-group-btn {
- display: table-cell
-}
-
-.input-group .form-control:not(:first-child):not(:last-child),
-.input-group-addon:not(:first-child):not(:last-child),
-.input-group-btn:not(:first-child):not(:last-child) {
- border-radius: 0
-}
-
-.input-group-addon,
-.input-group-btn {
- width: 1%;
- white-space: nowrap;
- vertical-align: middle
-}
-
-.input-group-addon {
- padding: 6px 12px;
- font-size: 14px;
- font-weight: 400;
- line-height: 1;
- color: #555;
- text-align: center;
- background-color: #eee;
- border: 1px solid #ccc;
- border-radius: 4px
-}
-
-.input-group-addon.input-sm {
- padding: 5px 10px;
- font-size: 12px;
- border-radius: 3px
-}
-
-.input-group-addon.input-lg {
- padding: 10px 16px;
- font-size: 18px;
- border-radius: 6px
-}
-
-.input-group-addon input[type=checkbox],
-.input-group-addon input[type=radio] {
- margin-top: 0
-}
-
-.input-group .form-control:first-child,
-.input-group-addon:first-child,
-.input-group-btn:first-child>.btn,
-.input-group-btn:first-child>.btn-group>.btn,
-.input-group-btn:first-child>.dropdown-toggle,
-.input-group-btn:last-child>.btn-group:not(:last-child)>.btn,
-.input-group-btn:last-child>.btn:not(:last-child):not(.dropdown-toggle) {
- border-top-right-radius: 0;
- border-bottom-right-radius: 0
-}
-
-.input-group-addon:first-child {
- border-right: 0
-}
-
-.input-group .form-control:last-child,
-.input-group-addon:last-child,
-.input-group-btn:first-child>.btn-group:not(:first-child)>.btn,
-.input-group-btn:first-child>.btn:not(:first-child),
-.input-group-btn:last-child>.btn,
-.input-group-btn:last-child>.btn-group>.btn,
-.input-group-btn:last-child>.dropdown-toggle {
- border-top-left-radius: 0;
- border-bottom-left-radius: 0
-}
-
-.input-group-addon:last-child {
- border-left: 0
-}
-
-.input-group-btn {
- position: relative;
- font-size: 0;
- white-space: nowrap
-}
-
-.input-group-btn>.btn {
- position: relative
-}
-
-.input-group-btn>.btn+.btn {
- margin-left: -1px
-}
-
-.input-group-btn>.btn:active,
-.input-group-btn>.btn:focus,
-.input-group-btn>.btn:hover {
- z-index: 2
-}
-
-.input-group-btn:first-child>.btn,
-.input-group-btn:first-child>.btn-group {
- margin-right: -1px
-}
-
-.input-group-btn:last-child>.btn,
-.input-group-btn:last-child>.btn-group {
- margin-left: -1px
-}
-
-.nav {
- padding-left: 0;
- margin-bottom: 0;
- list-style: none
-}
-
-.nav>li {
- position: relative;
- display: block
-}
-
-.nav>li>a {
- position: relative;
- display: block;
- padding: 10px 15px
-}
-
-.nav>li>a:focus,
-.nav>li>a:hover {
- text-decoration: none;
- background-color: #eee
-}
-
-.nav>li.disabled>a {
- color: #777
-}
-
-.nav>li.disabled>a:focus,
-.nav>li.disabled>a:hover {
- color: #777;
- text-decoration: none;
- cursor: not-allowed;
- background-color: transparent
-}
-
-.nav .open>a,
-.nav .open>a:focus,
-.nav .open>a:hover {
- background-color: #eee;
- border-color: #337ab7
-}
-
-.nav .nav-divider {
- height: 1px;
- margin: 9px 0;
- overflow: hidden;
- background-color: #e5e5e5
-}
-
-.nav>li>a>img {
- max-width: none
-}
-
-.nav-tabs {
- border-bottom: 1px solid #ddd
-}
-
-.nav-tabs>li {
- float: left;
- margin-bottom: -1px
-}
-
-.nav-tabs>li>a {
- margin-right: 2px;
- line-height: 1.42857143;
- border: 1px solid transparent;
- border-radius: 4px 4px 0 0
-}
-
-.nav-tabs>li>a:hover {
- border-color: #eee #eee #ddd
-}
-
-.nav-tabs>li.active>a,
-.nav-tabs>li.active>a:focus,
-.nav-tabs>li.active>a:hover {
- color: #555;
- cursor: default;
- background-color: #fff;
- border: 1px solid #ddd;
- border-bottom-color: transparent
-}
-
-.nav-tabs.nav-justified {
- width: 100%;
- border-bottom: 0
-}
-
-.nav-tabs.nav-justified>li {
- float: none
-}
-
-.nav-tabs.nav-justified>li>a {
- margin-bottom: 5px;
- text-align: center
-}
-
-.nav-tabs.nav-justified>.dropdown .dropdown-menu {
- top: auto;
- left: auto
-}
-
-@media (min-width:768px) {
- .nav-tabs.nav-justified>li {
- display: table-cell;
- width: 1%
- }
- .nav-tabs.nav-justified>li>a {
- margin-bottom: 0
- }
-}
-
-.nav-tabs.nav-justified>li>a {
- margin-right: 0;
- border-radius: 4px
-}
-
-.nav-tabs.nav-justified>.active>a,
-.nav-tabs.nav-justified>.active>a:focus,
-.nav-tabs.nav-justified>.active>a:hover {
- border: 1px solid #ddd
-}
-
-@media (min-width:768px) {
- .nav-tabs.nav-justified>li>a {
- border-bottom: 1px solid #ddd;
- border-radius: 4px 4px 0 0
- }
- .nav-tabs.nav-justified>.active>a,
- .nav-tabs.nav-justified>.active>a:focus,
- .nav-tabs.nav-justified>.active>a:hover {
- border-bottom-color: #fff
- }
-}
-
-.nav-pills>li {
- float: left
-}
-
-.nav-pills>li>a {
- border-radius: 4px
-}
-
-.nav-pills>li+li {
- margin-left: 2px
-}
-
-.nav-pills>li.active>a,
-.nav-pills>li.active>a:focus,
-.nav-pills>li.active>a:hover {
- color: #fff;
- background-color: #337ab7
-}
-
-.nav-stacked>li {
- float: none
-}
-
-.nav-stacked>li+li {
- margin-top: 2px;
- margin-left: 0
-}
-
-.nav-justified {
- width: 100%
-}
-
-.nav-justified>li {
- float: none
-}
-
-.nav-justified>li>a {
- margin-bottom: 5px;
- text-align: center
-}
-
-.nav-justified>.dropdown .dropdown-menu {
- top: auto;
- left: auto
-}
-
-@media (min-width:768px) {
- .nav-justified>li {
- display: table-cell;
- width: 1%
- }
- .nav-justified>li>a {
- margin-bottom: 0
- }
-}
-
-.nav-tabs-justified {
- border-bottom: 0
-}
-
-.nav-tabs-justified>li>a {
- margin-right: 0;
- border-radius: 4px
-}
-
-.nav-tabs-justified>.active>a,
-.nav-tabs-justified>.active>a:focus,
-.nav-tabs-justified>.active>a:hover {
- border: 1px solid #ddd
-}
-
-@media (min-width:768px) {
- .nav-tabs-justified>li>a {
- border-bottom: 1px solid #ddd;
- border-radius: 4px 4px 0 0
- }
- .nav-tabs-justified>.active>a,
- .nav-tabs-justified>.active>a:focus,
- .nav-tabs-justified>.active>a:hover {
- border-bottom-color: #fff
- }
-}
-
-.tab-content>.tab-pane {
- display: none;
- visibility: hidden
-}
-
-.tab-content>.active {
- display: block;
- visibility: visible
-}
-
-.nav-tabs .dropdown-menu {
- margin-top: -1px;
- border-top-left-radius: 0;
- border-top-right-radius: 0
-}
-
-.navbar {
- position: relative;
- min-height: 50px;
- margin-bottom: 20px;
- border: 1px solid transparent
-}
-
-@media (min-width:768px) {
- .navbar {
- border-radius: 4px
- }
-}
-
-@media (min-width:768px) {
- .navbar-header {
- float: left
- }
-}
-
-.navbar-collapse {
- padding-right: 15px;
- padding-left: 15px;
- overflow-x: visible;
- -webkit-overflow-scrolling: touch;
- border-top: 1px solid transparent;
-}
-
-.navbar-collapse.in {
- overflow-y: auto
-}
-
-@media (min-width:768px) {
- .navbar-collapse {
- width: auto;
- border-top: 0;
- }
- .navbar-collapse.collapse {
- display: block!important;
- height: auto!important;
- padding-bottom: 0;
- overflow: visible!important;
- visibility: visible!important
- }
- .navbar-collapse.in {
- overflow-y: visible
- }
- .navbar-fixed-bottom .navbar-collapse,
- .navbar-fixed-top .navbar-collapse,
- .navbar-static-top .navbar-collapse {
- padding-right: 0;
- padding-left: 0
- }
-}
-
-.navbar-fixed-bottom .navbar-collapse,
-.navbar-fixed-top .navbar-collapse {
- max-height: 340px
-}
-
-@media (max-device-width:480px) and (orientation:landscape) {
- .navbar-fixed-bottom .navbar-collapse,
- .navbar-fixed-top .navbar-collapse {
- max-height: 200px
- }
-}
-
-.container-fluid>.navbar-collapse,
-.container-fluid>.navbar-header,
-.container>.navbar-collapse,
-.container>.navbar-header {
- margin-right: -15px;
- margin-left: -15px
-}
-
-@media (min-width:768px) {
- .container-fluid>.navbar-collapse,
- .container-fluid>.navbar-header,
- .container>.navbar-collapse,
- .container>.navbar-header {
- margin-right: 0;
- margin-left: 0
- }
-}
-
-.navbar-static-top {
- z-index: 1000;
- border-width: 0 0 1px
-}
-
-@media (min-width:768px) {
- .navbar-static-top {
- border-radius: 0
- }
-}
-
-.navbar-fixed-bottom,
-.navbar-fixed-top {
- position: fixed;
- right: 0;
- left: 0;
- z-index: 1030
-}
-
-@media (min-width:768px) {
- .navbar-fixed-bottom,
- .navbar-fixed-top {
- border-radius: 0
- }
-}
-
-.navbar-fixed-top {
- top: 0;
- border-width: 0 0 1px
-}
-
-.navbar-fixed-bottom {
- bottom: 0;
- margin-bottom: 0;
- border-width: 1px 0 0
-}
-
-.navbar-brand {
- float: left;
- height: 50px;
- padding: 15px 15px;
- font-size: 18px;
- line-height: 20px
-}
-
-.navbar-brand:focus,
-.navbar-brand:hover {
- text-decoration: none
-}
-
-.navbar-brand>img {
- display: block
-}
-
-@media (min-width:768px) {
- .navbar>.container .navbar-brand,
- .navbar>.container-fluid .navbar-brand {
- margin-left: -15px
- }
-}
-
-.navbar-toggle {
- position: relative;
- float: right;
- padding: 9px 10px;
- margin-top: 8px;
- margin-right: 15px;
- margin-bottom: 8px;
- background-color: transparent;
- background-image: none;
- border: 1px solid transparent;
- border-radius: 4px
-}
-
-.navbar-toggle:focus {
- outline: 0
-}
-
-.navbar-toggle .icon-bar {
- display: block;
- width: 22px;
- height: 2px;
- border-radius: 1px
-}
-
-.navbar-toggle .icon-bar+.icon-bar {
- margin-top: 4px
-}
-
-@media (min-width:768px) {
- .navbar-toggle {
- display: none
- }
-}
-
-.navbar-nav {
- margin: 7.5px -15px
-}
-
-.navbar-nav>li>a {
- padding-top: 10px;
- padding-bottom: 10px;
- line-height: 20px
-}
-
-@media (max-width:767px) {
- .navbar-nav .open .dropdown-menu {
- position: static;
- float: none;
- width: auto;
- margin-top: 0;
- background-color: transparent;
- border: 0;
- }
- .navbar-nav .open .dropdown-menu .dropdown-header,
- .navbar-nav .open .dropdown-menu>li>a {
- padding: 5px 15px 5px 25px
- }
- .navbar-nav .open .dropdown-menu>li>a {
- line-height: 20px
- }
- .navbar-nav .open .dropdown-menu>li>a:focus,
- .navbar-nav .open .dropdown-menu>li>a:hover {
- background-image: none
- }
-}
-
-@media (min-width:768px) {
- .navbar-nav {
- float: left;
- margin: 0
- }
- .navbar-nav>li {
- float: left
- }
- .navbar-nav>li>a {
- padding-top: 15px;
- padding-bottom: 15px
- }
-}
-
-.navbar-form {
- padding: 10px 15px;
- margin-top: 8px;
- margin-right: -15px;
- margin-bottom: 8px;
- margin-left: -15px;
- border-top: 1px solid transparent;
- border-bottom: 1px solid transparent;
-}
-
-@media (min-width:768px) {
- .navbar-form .form-group {
- display: inline-block;
- margin-bottom: 0;
- vertical-align: middle
- }
- .navbar-form .form-control {
- display: inline-block;
- width: auto;
- vertical-align: middle
- }
- .navbar-form .form-control-static {
- display: inline-block
- }
- .navbar-form .input-group {
- display: inline-table;
- vertical-align: middle
- }
- .navbar-form .input-group .form-control,
- .navbar-form .input-group .input-group-addon,
- .navbar-form .input-group .input-group-btn {
- width: auto
- }
- .navbar-form .input-group>.form-control {
- width: 100%
- }
- .navbar-form .control-label {
- margin-bottom: 0;
- vertical-align: middle
- }
- .navbar-form .checkbox,
- .navbar-form .radio {
- display: inline-block;
- margin-top: 0;
- margin-bottom: 0;
- vertical-align: middle
- }
- .navbar-form .checkbox label,
- .navbar-form .radio label {
- padding-left: 0
- }
- .navbar-form .checkbox input[type=checkbox],
- .navbar-form .radio input[type=radio] {
- position: relative;
- margin-left: 0
- }
- .navbar-form .has-feedback .form-control-feedback {
- top: 0
- }
-}
-
-@media (max-width:767px) {
- .navbar-form .form-group {
- margin-bottom: 5px
- }
- .navbar-form .form-group:last-child {
- margin-bottom: 0
- }
-}
-
-@media (min-width:768px) {
- .navbar-form {
- width: auto;
- padding-top: 0;
- padding-bottom: 0;
- margin-right: 0;
- margin-left: 0;
- border: 0;
- }
-}
-
-.navbar-nav>li>.dropdown-menu {
- margin-top: 0;
- border-top-left-radius: 0;
- border-top-right-radius: 0
-}
-
-.navbar-fixed-bottom .navbar-nav>li>.dropdown-menu {
- margin-bottom: 0;
- border-top-left-radius: 4px;
- border-top-right-radius: 4px;
- border-bottom-right-radius: 0;
- border-bottom-left-radius: 0
-}
-
-.navbar-btn {
- margin-top: 8px;
- margin-bottom: 8px
-}
-
-.navbar-btn.btn-sm {
- margin-top: 10px;
- margin-bottom: 10px
-}
-
-.navbar-btn.btn-xs {
- margin-top: 14px;
- margin-bottom: 14px
-}
-
-.navbar-text {
- margin-top: 15px;
- margin-bottom: 15px
-}
-
-@media (min-width:768px) {
- .navbar-text {
- float: left;
- margin-right: 15px;
- margin-left: 15px
- }
-}
-
-@media (min-width:768px) {
- .navbar-left {
- float: left!important
- }
- .navbar-right {
- float: right!important;
- margin-right: -15px
- }
- .navbar-right~.navbar-right {
- margin-right: 0
- }
-}
-
-.navbar-default {
- background-color: #f8f8f8;
- border-color: #e7e7e7
-}
-
-.navbar-default .navbar-brand {
- color: #777
-}
-
-.navbar-default .navbar-brand:focus,
-.navbar-default .navbar-brand:hover {
- color: #5e5e5e;
- background-color: transparent
-}
-
-.navbar-default .navbar-text {
- color: #777
-}
-
-.navbar-default .navbar-nav>li>a {
- color: #777
-}
-
-.navbar-default .navbar-nav>li>a:focus,
-.navbar-default .navbar-nav>li>a:hover {
- color: #333;
- background-color: transparent
-}
-
-.navbar-default .navbar-nav>.active>a,
-.navbar-default .navbar-nav>.active>a:focus,
-.navbar-default .navbar-nav>.active>a:hover {
- color: #555;
- background-color: #e7e7e7
-}
-
-.navbar-default .navbar-nav>.disabled>a,
-.navbar-default .navbar-nav>.disabled>a:focus,
-.navbar-default .navbar-nav>.disabled>a:hover {
- color: #ccc;
- background-color: transparent
-}
-
-.navbar-default .navbar-toggle {
- border-color: #ddd
-}
-
-.navbar-default .navbar-toggle:focus,
-.navbar-default .navbar-toggle:hover {
- background-color: #ddd
-}
-
-.navbar-default .navbar-toggle .icon-bar {
- background-color: #888
-}
-
-.navbar-default .navbar-collapse,
-.navbar-default .navbar-form {
- border-color: #e7e7e7
-}
-
-.navbar-default .navbar-nav>.open>a,
-.navbar-default .navbar-nav>.open>a:focus,
-.navbar-default .navbar-nav>.open>a:hover {
- color: #555;
- background-color: #e7e7e7
-}
-
-@media (max-width:767px) {
- .navbar-default .navbar-nav .open .dropdown-menu>li>a {
- color: #777
- }
- .navbar-default .navbar-nav .open .dropdown-menu>li>a:focus,
- .navbar-default .navbar-nav .open .dropdown-menu>li>a:hover {
- color: #333;
- background-color: transparent
- }
- .navbar-default .navbar-nav .open .dropdown-menu>.active>a,
- .navbar-default .navbar-nav .open .dropdown-menu>.active>a:focus,
- .navbar-default .navbar-nav .open .dropdown-menu>.active>a:hover {
- color: #555;
- background-color: #e7e7e7
- }
- .navbar-default .navbar-nav .open .dropdown-menu>.disabled>a,
- .navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:focus,
- .navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:hover {
- color: #ccc;
- background-color: transparent
- }
-}
-
-.navbar-default .navbar-link {
- color: #777
-}
-
-.navbar-default .navbar-link:hover {
- color: #333
-}
-
-.navbar-default .btn-link {
- color: #777
-}
-
-.navbar-default .btn-link:focus,
-.navbar-default .btn-link:hover {
- color: #333
-}
-
-.navbar-default .btn-link[disabled]:focus,
-.navbar-default .btn-link[disabled]:hover,
-fieldset[disabled] .navbar-default .btn-link:focus,
-fieldset[disabled] .navbar-default .btn-link:hover {
- color: #ccc
-}
-
-.navbar-inverse {
- background-color: #222;
- border-color: #080808
-}
-
-.navbar-inverse .navbar-brand {
- color: #9d9d9d
-}
-
-.navbar-inverse .navbar-brand:focus,
-.navbar-inverse .navbar-brand:hover {
- color: #fff;
- background-color: transparent
-}
-
-.navbar-inverse .navbar-text {
- color: #9d9d9d
-}
-
-.navbar-inverse .navbar-nav>li>a {
- color: #9d9d9d
-}
-
-.navbar-inverse .navbar-nav>li>a:focus,
-.navbar-inverse .navbar-nav>li>a:hover {
- color: #fff;
- background-color: transparent
-}
-
-.navbar-inverse .navbar-nav>.active>a,
-.navbar-inverse .navbar-nav>.active>a:focus,
-.navbar-inverse .navbar-nav>.active>a:hover {
- color: #fff;
- background-color: #080808
-}
-
-.navbar-inverse .navbar-nav>.disabled>a,
-.navbar-inverse .navbar-nav>.disabled>a:focus,
-.navbar-inverse .navbar-nav>.disabled>a:hover {
- color: #444;
- background-color: transparent
-}
-
-.navbar-inverse .navbar-toggle {
- border-color: #333
-}
-
-.navbar-inverse .navbar-toggle:focus,
-.navbar-inverse .navbar-toggle:hover {
- background-color: #333
-}
-
-.navbar-inverse .navbar-toggle .icon-bar {
- background-color: #fff
-}
-
-.navbar-inverse .navbar-collapse,
-.navbar-inverse .navbar-form {
- border-color: #101010
-}
-
-.navbar-inverse .navbar-nav>.open>a,
-.navbar-inverse .navbar-nav>.open>a:focus,
-.navbar-inverse .navbar-nav>.open>a:hover {
- color: #fff;
- background-color: #080808
-}
-
-@media (max-width:767px) {
- .navbar-inverse .navbar-nav .open .dropdown-menu>.dropdown-header {
- border-color: #080808
- }
- .navbar-inverse .navbar-nav .open .dropdown-menu .divider {
- background-color: #080808
- }
- .navbar-inverse .navbar-nav .open .dropdown-menu>li>a {
- color: #9d9d9d
- }
- .navbar-inverse .navbar-nav .open .dropdown-menu>li>a:focus,
- .navbar-inverse .navbar-nav .open .dropdown-menu>li>a:hover {
- color: #fff;
- background-color: transparent
- }
- .navbar-inverse .navbar-nav .open .dropdown-menu>.active>a,
- .navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:focus,
- .navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:hover {
- color: #fff;
- background-color: #080808
- }
- .navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a,
- .navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:focus,
- .navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:hover {
- color: #444;
- background-color: transparent
- }
-}
-
-.navbar-inverse .navbar-link {
- color: #9d9d9d
-}
-
-.navbar-inverse .navbar-link:hover {
- color: #fff
-}
-
-.navbar-inverse .btn-link {
- color: #9d9d9d
-}
-
-.navbar-inverse .btn-link:focus,
-.navbar-inverse .btn-link:hover {
- color: #fff
-}
-
-.navbar-inverse .btn-link[disabled]:focus,
-.navbar-inverse .btn-link[disabled]:hover,
-fieldset[disabled] .navbar-inverse .btn-link:focus,
-fieldset[disabled] .navbar-inverse .btn-link:hover {
- color: #444
-}
-
-.breadcrumb {
- padding: 8px 15px;
- margin-bottom: 20px;
- list-style: none;
- background-color: #f5f5f5;
- border-radius: 4px
-}
-
-.breadcrumb>li {
- display: inline-block
-}
-
-.breadcrumb>li+li:before {
- padding: 0 5px;
- color: #ccc;
- content: "/\00a0"
-}
-
-.breadcrumb>.active {
- color: #777
-}
-
-.pagination {
- display: inline-block;
- padding-left: 0;
- margin: 20px 0;
- border-radius: 4px
-}
-
-.pagination>li {
- display: inline
-}
-
-.pagination>li>a,
-.pagination>li>span {
- position: relative;
- float: left;
- padding: 6px 12px;
- margin-left: -1px;
- line-height: 1.42857143;
- color: #337ab7;
- text-decoration: none;
- background-color: #fff;
- border: 1px solid #ddd
-}
-
-.pagination>li:first-child>a,
-.pagination>li:first-child>span {
- margin-left: 0;
- border-top-left-radius: 4px;
- border-bottom-left-radius: 4px
-}
-
-.pagination>li:last-child>a,
-.pagination>li:last-child>span {
- border-top-right-radius: 4px;
- border-bottom-right-radius: 4px
-}
-
-.pagination>li>a:focus,
-.pagination>li>a:hover,
-.pagination>li>span:focus,
-.pagination>li>span:hover {
- color: #23527c;
- background-color: #eee;
- border-color: #ddd
-}
-
-.pagination>.active>a,
-.pagination>.active>a:focus,
-.pagination>.active>a:hover,
-.pagination>.active>span,
-.pagination>.active>span:focus,
-.pagination>.active>span:hover {
- z-index: 2;
- color: #fff;
- cursor: default;
- background-color: #337ab7;
- border-color: #337ab7
-}
-
-.pagination>.disabled>a,
-.pagination>.disabled>a:focus,
-.pagination>.disabled>a:hover,
-.pagination>.disabled>span,
-.pagination>.disabled>span:focus,
-.pagination>.disabled>span:hover {
- color: #777;
- cursor: not-allowed;
- background-color: #fff;
- border-color: #ddd
-}
-
-.pagination-lg>li>a,
-.pagination-lg>li>span {
- padding: 10px 16px;
- font-size: 18px
-}
-
-.pagination-lg>li:first-child>a,
-.pagination-lg>li:first-child>span {
- border-top-left-radius: 6px;
- border-bottom-left-radius: 6px
-}
-
-.pagination-lg>li:last-child>a,
-.pagination-lg>li:last-child>span {
- border-top-right-radius: 6px;
- border-bottom-right-radius: 6px
-}
-
-.pagination-sm>li>a,
-.pagination-sm>li>span {
- padding: 5px 10px;
- font-size: 12px
-}
-
-.pagination-sm>li:first-child>a,
-.pagination-sm>li:first-child>span {
- border-top-left-radius: 3px;
- border-bottom-left-radius: 3px
-}
-
-.pagination-sm>li:last-child>a,
-.pagination-sm>li:last-child>span {
- border-top-right-radius: 3px;
- border-bottom-right-radius: 3px
-}
-
-.pager {
- padding-left: 0;
- margin: 20px 0;
- text-align: center;
- list-style: none
-}
-
-.pager li {
- display: inline
-}
-
-.pager li>a,
-.pager li>span {
- display: inline-block;
- padding: 5px 14px;
- background-color: #fff;
- border: 1px solid #ddd;
- border-radius: 15px
-}
-
-.pager li>a:focus,
-.pager li>a:hover {
- text-decoration: none;
- background-color: #eee
-}
-
-.pager .next>a,
-.pager .next>span {
- float: right
-}
-
-.pager .previous>a,
-.pager .previous>span {
- float: left
-}
-
-.pager .disabled>a,
-.pager .disabled>a:focus,
-.pager .disabled>a:hover,
-.pager .disabled>span {
- color: #777;
- cursor: not-allowed;
- background-color: #fff
-}
-
-.label {
- display: inline;
- padding: .2em .6em .3em;
- font-size: 75%;
- font-weight: 700;
- line-height: 1;
- color: #fff;
- text-align: center;
- white-space: nowrap;
- vertical-align: baseline;
- border-radius: .25em
-}
-
-a.label:focus,
-a.label:hover {
- color: #fff;
- text-decoration: none;
- cursor: pointer
-}
-
-.label:empty {
- display: none
-}
-
-.btn .label {
- position: relative;
- top: -1px
-}
-
-.label-default {
- background-color: #777
-}
-
-.label-default[href]:focus,
-.label-default[href]:hover {
- background-color: #5e5e5e
-}
-
-.label-primary {
- background-color: #337ab7
-}
-
-.label-primary[href]:focus,
-.label-primary[href]:hover {
- background-color: #286090
-}
-
-.label-success {
- background-color: #5cb85c
-}
-
-.label-success[href]:focus,
-.label-success[href]:hover {
- background-color: #449d44
-}
-
-.label-info {
- background-color: #5bc0de
-}
-
-.label-info[href]:focus,
-.label-info[href]:hover {
- background-color: #31b0d5
-}
-
-.label-warning {
- background-color: #f0ad4e
-}
-
-.label-warning[href]:focus,
-.label-warning[href]:hover {
- background-color: #ec971f
-}
-
-.label-danger {
- background-color: #d9534f
-}
-
-.label-danger[href]:focus,
-.label-danger[href]:hover {
- background-color: #c9302c
-}
-
-.badge {
- display: inline-block;
- min-width: 10px;
- padding: 3px 7px;
- font-size: 12px;
- font-weight: 700;
- line-height: 1;
- color: #fff;
- text-align: center;
- white-space: nowrap;
- vertical-align: baseline;
- background-color: #777;
- border-radius: 10px
-}
-
-.badge:empty {
- display: none
-}
-
-.btn .badge {
- position: relative;
- top: -1px
-}
-
-.btn-xs .badge {
- top: 0;
- padding: 1px 5px
-}
-
-a.badge:focus,
-a.badge:hover {
- color: #fff;
- text-decoration: none;
- cursor: pointer
-}
-
-.list-group-item.active>.badge,
-.nav-pills>.active>a>.badge {
- color: #337ab7;
- background-color: #fff
-}
-
-.list-group-item>.badge {
- float: right
-}
-
-.list-group-item>.badge+.badge {
- margin-right: 5px
-}
-
-.nav-pills>li>a>.badge {
- margin-left: 3px
-}
-
-.jumbotron {
- padding: 30px 15px;
- margin-bottom: 30px;
- color: inherit;
- background-color: #eee
-}
-
-.jumbotron .h1,
-.jumbotron h1 {
- color: inherit
-}
-
-.jumbotron p {
- margin-bottom: 15px;
- font-size: 21px;
- font-weight: 200
-}
-
-.jumbotron>hr {
- border-top-color: #d5d5d5
-}
-
-.container .jumbotron,
-.container-fluid .jumbotron {
- border-radius: 6px
-}
-
-.jumbotron .container {
- max-width: 100%
-}
-
-@media screen and (min-width:768px) {
- .jumbotron {
- padding: 48px 0
- }
- .container .jumbotron,
- .container-fluid .jumbotron {
- padding-right: 60px;
- padding-left: 60px
- }
- .jumbotron .h1,
- .jumbotron h1 {
- font-size: 63px
- }
-}
-
-.thumbnail {
- display: block;
- padding: 4px;
- margin-bottom: 20px;
- line-height: 1.42857143;
- background-color: #fff;
- border: 1px solid #ddd;
- border-radius: 4px;
- -webkit-transition: border .2s ease-in-out;
- -o-transition: border .2s ease-in-out;
- transition: border .2s ease-in-out
-}
-
-.thumbnail a>img,
-.thumbnail>img {
- margin-right: auto;
- margin-left: auto
-}
-
-a.thumbnail.active,
-a.thumbnail:focus,
-a.thumbnail:hover {
- border-color: #337ab7
-}
-
-.thumbnail .caption {
- padding: 9px;
- color: #333
-}
-
-.alert {
- padding: 15px;
- margin-bottom: 20px;
- border: 1px solid transparent;
- border-radius: 4px
-}
-
-.alert h4 {
- margin-top: 0;
- color: inherit
-}
-
-.alert .alert-link {
- font-weight: 700
-}
-
-.alert>p,
-.alert>ul {
- margin-bottom: 0
-}
-
-.alert>p+p {
- margin-top: 5px
-}
-
-.alert-dismissable,
-.alert-dismissible {
- padding-right: 35px
-}
-
-.alert-dismissable .close,
-.alert-dismissible .close {
- position: relative;
- top: -2px;
- right: -21px;
- color: inherit
-}
-
-.alert-success {
- color: #3c763d;
- background-color: #dff0d8;
- border-color: #d6e9c6
-}
-
-.alert-success hr {
- border-top-color: #c9e2b3
-}
-
-.alert-success .alert-link {
- color: #2b542c
-}
-
-.alert-info {
- color: #31708f;
- background-color: #d9edf7;
- border-color: #bce8f1
-}
-
-.alert-info hr {
- border-top-color: #a6e1ec
-}
-
-.alert-info .alert-link {
- color: #245269
-}
-
-.alert-warning {
- color: #8a6d3b;
- background-color: #fcf8e3;
- border-color: #faebcc
-}
-
-.alert-warning hr {
- border-top-color: #f7e1b5
-}
-
-.alert-warning .alert-link {
- color: #66512c
-}
-
-.alert-danger {
- color: #a94442;
- background-color: #f2dede;
- border-color: #ebccd1
-}
-
-.alert-danger hr {
- border-top-color: #e4b9c0
-}
-
-.alert-danger .alert-link {
- color: #843534
-}
-
-@-webkit-keyframes progress-bar-stripes {
- from {
- background-position: 40px 0
- }
- to {
- background-position: 0 0
- }
-}
-
-@-o-keyframes progress-bar-stripes {
- from {
- background-position: 40px 0
- }
- to {
- background-position: 0 0
- }
-}
-
-@keyframes progress-bar-stripes {
- from {
- background-position: 40px 0
- }
- to {
- background-position: 0 0
- }
-}
-
-.progress {
- height: 20px;
- margin-bottom: 20px;
- overflow: hidden;
- background-color: #f5f5f5;
- border-radius: 4px;
-}
-
-.progress-bar {
- float: left;
- width: 0;
- height: 100%;
- font-size: 12px;
- line-height: 20px;
- color: #fff;
- text-align: center;
- background-color: #337ab7;
- -webkit-transition: width .6s ease;
- -o-transition: width .6s ease;
- transition: width .6s ease
-}
-
-.progress-bar-striped,
-.progress-striped .progress-bar {
- background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- -webkit-background-size: 40px 40px;
- background-size: 40px 40px
-}
-
-.progress-bar.active,
-.progress.active .progress-bar {
- -webkit-animation: progress-bar-stripes 2s linear infinite;
- -o-animation: progress-bar-stripes 2s linear infinite;
- animation: progress-bar-stripes 2s linear infinite
-}
-
-.progress-bar-success {
- background-color: #5cb85c
-}
-
-.progress-striped .progress-bar-success {
- background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent)
-}
-
-.progress-bar-info {
- background-color: #5bc0de
-}
-
-.progress-striped .progress-bar-info {
- background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent)
-}
-
-.progress-bar-warning {
- background-color: #f0ad4e
-}
-
-.progress-striped .progress-bar-warning {
- background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent)
-}
-
-.progress-bar-danger {
- background-color: #d9534f
-}
-
-.progress-striped .progress-bar-danger {
- background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent);
- background-image: linear-gradient(45deg, rgba(255, 255, 255, .15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, .15) 50%, rgba(255, 255, 255, .15) 75%, transparent 75%, transparent)
-}
-
-.media {
- margin-top: 15px
-}
-
-.media:first-child {
- margin-top: 0
-}
-
-.media,
-.media-body {
- overflow: hidden;
- zoom: 1
-}
-
-.media-body {
- width: 10000px
-}
-
-.media-object {
- display: block
-}
-
-.media-right,
-.media>.pull-right {
- padding-left: 10px
-}
-
-.media-left,
-.media>.pull-left {
- padding-right: 10px
-}
-
-.media-body,
-.media-left,
-.media-right {
- display: table-cell;
- vertical-align: top
-}
-
-.media-middle {
- vertical-align: middle
-}
-
-.media-bottom {
- vertical-align: bottom
-}
-
-.media-heading {
- margin-top: 0;
- margin-bottom: 5px
-}
-
-.media-list {
- padding-left: 0;
- list-style: none
-}
-
-.list-group {
- padding-left: 0;
- margin-bottom: 20px
-}
-
-.list-group-item {
- position: relative;
- display: block;
- padding: 10px 15px;
- margin-bottom: -1px;
- background-color: #fff;
- border: 1px solid #ddd
-}
-
-.list-group-item:first-child {
- border-top-left-radius: 4px;
- border-top-right-radius: 4px
-}
-
-.list-group-item:last-child {
- margin-bottom: 0;
- border-bottom-right-radius: 4px;
- border-bottom-left-radius: 4px
-}
-
-a.list-group-item {
- color: #555
-}
-
-a.list-group-item .list-group-item-heading {
- color: #333
-}
-
-a.list-group-item:focus,
-a.list-group-item:hover {
- color: #555;
- text-decoration: none;
- background-color: #f5f5f5
-}
-
-.list-group-item.disabled,
-.list-group-item.disabled:focus,
-.list-group-item.disabled:hover {
- color: #777;
- cursor: not-allowed;
- background-color: #eee
-}
-
-.list-group-item.disabled .list-group-item-heading,
-.list-group-item.disabled:focus .list-group-item-heading,
-.list-group-item.disabled:hover .list-group-item-heading {
- color: inherit
-}
-
-.list-group-item.disabled .list-group-item-text,
-.list-group-item.disabled:focus .list-group-item-text,
-.list-group-item.disabled:hover .list-group-item-text {
- color: #777
-}
-
-.list-group-item.active,
-.list-group-item.active:focus,
-.list-group-item.active:hover {
- z-index: 2;
- color: #fff;
- background-color: #337ab7;
- border-color: #337ab7
-}
-
-.list-group-item.active .list-group-item-heading,
-.list-group-item.active .list-group-item-heading>.small,
-.list-group-item.active .list-group-item-heading>small,
-.list-group-item.active:focus .list-group-item-heading,
-.list-group-item.active:focus .list-group-item-heading>.small,
-.list-group-item.active:focus .list-group-item-heading>small,
-.list-group-item.active:hover .list-group-item-heading,
-.list-group-item.active:hover .list-group-item-heading>.small,
-.list-group-item.active:hover .list-group-item-heading>small {
- color: inherit
-}
-
-.list-group-item.active .list-group-item-text,
-.list-group-item.active:focus .list-group-item-text,
-.list-group-item.active:hover .list-group-item-text {
- color: #c7ddef
-}
-
-.list-group-item-success {
- color: #3c763d;
- background-color: #dff0d8
-}
-
-a.list-group-item-success {
- color: #3c763d
-}
-
-a.list-group-item-success .list-group-item-heading {
- color: inherit
-}
-
-a.list-group-item-success:focus,
-a.list-group-item-success:hover {
- color: #3c763d;
- background-color: #d0e9c6
-}
-
-a.list-group-item-success.active,
-a.list-group-item-success.active:focus,
-a.list-group-item-success.active:hover {
- color: #fff;
- background-color: #3c763d;
- border-color: #3c763d
-}
-
-.list-group-item-info {
- color: #31708f;
- background-color: #d9edf7
-}
-
-a.list-group-item-info {
- color: #31708f
-}
-
-a.list-group-item-info .list-group-item-heading {
- color: inherit
-}
-
-a.list-group-item-info:focus,
-a.list-group-item-info:hover {
- color: #31708f;
- background-color: #c4e3f3
-}
-
-a.list-group-item-info.active,
-a.list-group-item-info.active:focus,
-a.list-group-item-info.active:hover {
- color: #fff;
- background-color: #31708f;
- border-color: #31708f
-}
-
-.list-group-item-warning {
- color: #8a6d3b;
- background-color: #fcf8e3
-}
-
-a.list-group-item-warning {
- color: #8a6d3b
-}
-
-a.list-group-item-warning .list-group-item-heading {
- color: inherit
-}
-
-a.list-group-item-warning:focus,
-a.list-group-item-warning:hover {
- color: #8a6d3b;
- background-color: #faf2cc
-}
-
-a.list-group-item-warning.active,
-a.list-group-item-warning.active:focus,
-a.list-group-item-warning.active:hover {
- color: #fff;
- background-color: #8a6d3b;
- border-color: #8a6d3b
-}
-
-.list-group-item-danger {
- color: #a94442;
- background-color: #f2dede
-}
-
-a.list-group-item-danger {
- color: #a94442
-}
-
-a.list-group-item-danger .list-group-item-heading {
- color: inherit
-}
-
-a.list-group-item-danger:focus,
-a.list-group-item-danger:hover {
- color: #a94442;
- background-color: #ebcccc
-}
-
-a.list-group-item-danger.active,
-a.list-group-item-danger.active:focus,
-a.list-group-item-danger.active:hover {
- color: #fff;
- background-color: #a94442;
- border-color: #a94442
-}
-
-.list-group-item-heading {
- margin-top: 0;
- margin-bottom: 5px
-}
-
-.list-group-item-text {
- margin-bottom: 0;
- line-height: 1.3
-}
-
-.panel {
- margin-bottom: 20px;
- background-color: #fff;
- border: 1px solid transparent;
- border-radius: 4px;
-}
-
-.panel-body {
- padding: 15px
-}
-
-.panel-heading {
- padding: 10px 15px;
- border-bottom: 1px solid transparent;
- border-top-left-radius: 3px;
- border-top-right-radius: 3px
-}
-
-.panel-heading>.dropdown .dropdown-toggle {
- color: inherit
-}
-
-.panel-title {
- margin-top: 0;
- margin-bottom: 0;
- font-size: 16px;
- color: inherit
-}
-
-.panel-title>.small,
-.panel-title>.small>a,
-.panel-title>a,
-.panel-title>small,
-.panel-title>small>a {
- color: inherit
-}
-
-.panel-footer {
- padding: 10px 15px;
- background-color: #f5f5f5;
- border-top: 1px solid #ddd;
- border-bottom-right-radius: 3px;
- border-bottom-left-radius: 3px
-}
-
-.panel>.list-group,
-.panel>.panel-collapse>.list-group {
- margin-bottom: 0
-}
-
-.panel>.list-group .list-group-item,
-.panel>.panel-collapse>.list-group .list-group-item {
- border-width: 1px 0;
- border-radius: 0
-}
-
-.panel>.list-group:first-child .list-group-item:first-child,
-.panel>.panel-collapse>.list-group:first-child .list-group-item:first-child {
- border-top: 0;
- border-top-left-radius: 3px;
- border-top-right-radius: 3px
-}
-
-.panel>.list-group:last-child .list-group-item:last-child,
-.panel>.panel-collapse>.list-group:last-child .list-group-item:last-child {
- border-bottom: 0;
- border-bottom-right-radius: 3px;
- border-bottom-left-radius: 3px
-}
-
-.panel-heading+.list-group .list-group-item:first-child {
- border-top-width: 0
-}
-
-.list-group+.panel-footer {
- border-top-width: 0
-}
-
-.panel>.panel-collapse>.table,
-.panel>.table,
-.panel>.table-responsive>.table {
- margin-bottom: 0
-}
-
-.panel>.panel-collapse>.table caption,
-.panel>.table caption,
-.panel>.table-responsive>.table caption {
- padding-right: 15px;
- padding-left: 15px
-}
-
-.panel>.table-responsive:first-child>.table:first-child,
-.panel>.table:first-child {
- border-top-left-radius: 3px;
- border-top-right-radius: 3px
-}
-
-.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child,
-.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child,
-.panel>.table:first-child>tbody:first-child>tr:first-child,
-.panel>.table:first-child>thead:first-child>tr:first-child {
- border-top-left-radius: 3px;
- border-top-right-radius: 3px
-}
-
-.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:first-child,
-.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:first-child,
-.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:first-child,
-.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:first-child,
-.panel>.table:first-child>tbody:first-child>tr:first-child td:first-child,
-.panel>.table:first-child>tbody:first-child>tr:first-child th:first-child,
-.panel>.table:first-child>thead:first-child>tr:first-child td:first-child,
-.panel>.table:first-child>thead:first-child>tr:first-child th:first-child {
- border-top-left-radius: 3px
-}
-
-.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:last-child,
-.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:last-child,
-.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:last-child,
-.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:last-child,
-.panel>.table:first-child>tbody:first-child>tr:first-child td:last-child,
-.panel>.table:first-child>tbody:first-child>tr:first-child th:last-child,
-.panel>.table:first-child>thead:first-child>tr:first-child td:last-child,
-.panel>.table:first-child>thead:first-child>tr:first-child th:last-child {
- border-top-right-radius: 3px
-}
-
-.panel>.table-responsive:last-child>.table:last-child,
-.panel>.table:last-child {
- border-bottom-right-radius: 3px;
- border-bottom-left-radius: 3px
-}
-
-.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child,
-.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child,
-.panel>.table:last-child>tbody:last-child>tr:last-child,
-.panel>.table:last-child>tfoot:last-child>tr:last-child {
- border-bottom-right-radius: 3px;
- border-bottom-left-radius: 3px
-}
-
-.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:first-child,
-.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:first-child,
-.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:first-child,
-.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:first-child,
-.panel>.table:last-child>tbody:last-child>tr:last-child td:first-child,
-.panel>.table:last-child>tbody:last-child>tr:last-child th:first-child,
-.panel>.table:last-child>tfoot:last-child>tr:last-child td:first-child,
-.panel>.table:last-child>tfoot:last-child>tr:last-child th:first-child {
- border-bottom-left-radius: 3px
-}
-
-.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:last-child,
-.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:last-child,
-.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:last-child,
-.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:last-child,
-.panel>.table:last-child>tbody:last-child>tr:last-child td:last-child,
-.panel>.table:last-child>tbody:last-child>tr:last-child th:last-child,
-.panel>.table:last-child>tfoot:last-child>tr:last-child td:last-child,
-.panel>.table:last-child>tfoot:last-child>tr:last-child th:last-child {
- border-bottom-right-radius: 3px
-}
-
-.panel>.panel-body+.table,
-.panel>.panel-body+.table-responsive,
-.panel>.table+.panel-body,
-.panel>.table-responsive+.panel-body {
- border-top: 1px solid #ddd
-}
-
-.panel>.table>tbody:first-child>tr:first-child td,
-.panel>.table>tbody:first-child>tr:first-child th {
- border-top: 0
-}
-
-.panel>.table-bordered,
-.panel>.table-responsive>.table-bordered {
- border: 0
-}
-
-.panel>.table-bordered>tbody>tr>td:first-child,
-.panel>.table-bordered>tbody>tr>th:first-child,
-.panel>.table-bordered>tfoot>tr>td:first-child,
-.panel>.table-bordered>tfoot>tr>th:first-child,
-.panel>.table-bordered>thead>tr>td:first-child,
-.panel>.table-bordered>thead>tr>th:first-child,
-.panel>.table-responsive>.table-bordered>tbody>tr>td:first-child,
-.panel>.table-responsive>.table-bordered>tbody>tr>th:first-child,
-.panel>.table-responsive>.table-bordered>tfoot>tr>td:first-child,
-.panel>.table-responsive>.table-bordered>tfoot>tr>th:first-child,
-.panel>.table-responsive>.table-bordered>thead>tr>td:first-child,
-.panel>.table-responsive>.table-bordered>thead>tr>th:first-child {
- border-left: 0
-}
-
-.panel>.table-bordered>tbody>tr>td:last-child,
-.panel>.table-bordered>tbody>tr>th:last-child,
-.panel>.table-bordered>tfoot>tr>td:last-child,
-.panel>.table-bordered>tfoot>tr>th:last-child,
-.panel>.table-bordered>thead>tr>td:last-child,
-.panel>.table-bordered>thead>tr>th:last-child,
-.panel>.table-responsive>.table-bordered>tbody>tr>td:last-child,
-.panel>.table-responsive>.table-bordered>tbody>tr>th:last-child,
-.panel>.table-responsive>.table-bordered>tfoot>tr>td:last-child,
-.panel>.table-responsive>.table-bordered>tfoot>tr>th:last-child,
-.panel>.table-responsive>.table-bordered>thead>tr>td:last-child,
-.panel>.table-responsive>.table-bordered>thead>tr>th:last-child {
- border-right: 0
-}
-
-.panel>.table-bordered>tbody>tr:first-child>td,
-.panel>.table-bordered>tbody>tr:first-child>th,
-.panel>.table-bordered>thead>tr:first-child>td,
-.panel>.table-bordered>thead>tr:first-child>th,
-.panel>.table-responsive>.table-bordered>tbody>tr:first-child>td,
-.panel>.table-responsive>.table-bordered>tbody>tr:first-child>th,
-.panel>.table-responsive>.table-bordered>thead>tr:first-child>td,
-.panel>.table-responsive>.table-bordered>thead>tr:first-child>th {
- border-bottom: 0
-}
-
-.panel>.table-bordered>tbody>tr:last-child>td,
-.panel>.table-bordered>tbody>tr:last-child>th,
-.panel>.table-bordered>tfoot>tr:last-child>td,
-.panel>.table-bordered>tfoot>tr:last-child>th,
-.panel>.table-responsive>.table-bordered>tbody>tr:last-child>td,
-.panel>.table-responsive>.table-bordered>tbody>tr:last-child>th,
-.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>td,
-.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>th {
- border-bottom: 0
-}
-
-.panel>.table-responsive {
- margin-bottom: 0;
- border: 0
-}
-
-.panel-group {
- margin-bottom: 20px
-}
-
-.panel-group .panel {
- margin-bottom: 0;
- border-radius: 4px
-}
-
-.panel-group .panel+.panel {
- margin-top: 5px
-}
-
-.panel-group .panel-heading {
- border-bottom: 0
-}
-
-.panel-group .panel-heading+.panel-collapse>.list-group,
-.panel-group .panel-heading+.panel-collapse>.panel-body {
- border-top: 1px solid #ddd
-}
-
-.panel-group .panel-footer {
- border-top: 0
-}
-
-.panel-group .panel-footer+.panel-collapse .panel-body {
- border-bottom: 1px solid #ddd
-}
-
-.panel-default {
- border-color: #ddd
-}
-
-.panel-default>.panel-heading {
- color: #333;
- background-color: #f5f5f5;
- border-color: #ddd
-}
-
-.panel-default>.panel-heading+.panel-collapse>.panel-body {
- border-top-color: #ddd
-}
-
-.panel-default>.panel-heading .badge {
- color: #f5f5f5;
- background-color: #333
-}
-
-.panel-default>.panel-footer+.panel-collapse>.panel-body {
- border-bottom-color: #ddd
-}
-
-.panel-primary {
- border-color: #337ab7
-}
-
-.panel-primary>.panel-heading {
- color: #fff;
- background-color: #337ab7;
- border-color: #337ab7
-}
-
-.panel-primary>.panel-heading+.panel-collapse>.panel-body {
- border-top-color: #337ab7
-}
-
-.panel-primary>.panel-heading .badge {
- color: #337ab7;
- background-color: #fff
-}
-
-.panel-primary>.panel-footer+.panel-collapse>.panel-body {
- border-bottom-color: #337ab7
-}
-
-.panel-success {
- border-color: #d6e9c6
-}
-
-.panel-success>.panel-heading {
- color: #3c763d;
- background-color: #dff0d8;
- border-color: #d6e9c6
-}
-
-.panel-success>.panel-heading+.panel-collapse>.panel-body {
- border-top-color: #d6e9c6
-}
-
-.panel-success>.panel-heading .badge {
- color: #dff0d8;
- background-color: #3c763d
-}
-
-.panel-success>.panel-footer+.panel-collapse>.panel-body {
- border-bottom-color: #d6e9c6
-}
-
-.panel-info {
- border-color: #bce8f1
-}
-
-.panel-info>.panel-heading {
- color: #31708f;
- background-color: #d9edf7;
- border-color: #bce8f1
-}
-
-.panel-info>.panel-heading+.panel-collapse>.panel-body {
- border-top-color: #bce8f1
-}
-
-.panel-info>.panel-heading .badge {
- color: #d9edf7;
- background-color: #31708f
-}
-
-.panel-info>.panel-footer+.panel-collapse>.panel-body {
- border-bottom-color: #bce8f1
-}
-
-.panel-warning {
- border-color: #faebcc
-}
-
-.panel-warning>.panel-heading {
- color: #8a6d3b;
- background-color: #fcf8e3;
- border-color: #faebcc
-}
-
-.panel-warning>.panel-heading+.panel-collapse>.panel-body {
- border-top-color: #faebcc
-}
-
-.panel-warning>.panel-heading .badge {
- color: #fcf8e3;
- background-color: #8a6d3b
-}
-
-.panel-warning>.panel-footer+.panel-collapse>.panel-body {
- border-bottom-color: #faebcc
-}
-
-.panel-danger {
- border-color: #ebccd1
-}
-
-.panel-danger>.panel-heading {
- color: #a94442;
- background-color: #f2dede;
- border-color: #ebccd1
-}
-
-.panel-danger>.panel-heading+.panel-collapse>.panel-body {
- border-top-color: #ebccd1
-}
-
-.panel-danger>.panel-heading .badge {
- color: #f2dede;
- background-color: #a94442
-}
-
-.panel-danger>.panel-footer+.panel-collapse>.panel-body {
- border-bottom-color: #ebccd1
-}
-
-.embed-responsive {
- position: relative;
- display: block;
- height: 0;
- padding: 0;
- overflow: hidden
-}
-
-.embed-responsive .embed-responsive-item,
-.embed-responsive embed,
-.embed-responsive iframe,
-.embed-responsive object,
-.embed-responsive video {
- position: absolute;
- top: 0;
- bottom: 0;
- left: 0;
- width: 100%;
- height: 100%;
- border: 0
-}
-
-.embed-responsive.embed-responsive-16by9 {
- padding-bottom: 56.25%
-}
-
-.embed-responsive.embed-responsive-4by3 {
- padding-bottom: 75%
-}
-
-.well {
- min-height: 20px;
- padding: 19px;
- margin-bottom: 20px;
- background-color: #f5f5f5;
- border: 1px solid #e3e3e3;
- border-radius: 4px;
-}
-
-.well blockquote {
- border-color: #ddd;
- border-color: rgba(0, 0, 0, .15)
-}
-
-.well-lg {
- padding: 24px;
- border-radius: 6px
-}
-
-.well-sm {
- padding: 9px;
- border-radius: 3px
-}
-
-.close {
- float: right;
- font-size: 21px;
- font-weight: 700;
- line-height: 1;
- color: #000;
- filter: alpha(opacity=20);
- opacity: .2
-}
-
-.close:focus,
-.close:hover {
- color: #000;
- text-decoration: none;
- cursor: pointer;
- filter: alpha(opacity=50);
- opacity: .5
-}
-
-button.close {
- -webkit-appearance: none;
- padding: 0;
- cursor: pointer;
- background: 0 0;
- border: 0
-}
-
-.modal-open {
- overflow: hidden
-}
-
-.modal {
- position: fixed;
- top: 0;
- right: 0;
- bottom: 0;
- left: 0;
- z-index: 1040;
- display: none;
- overflow: hidden;
- -webkit-overflow-scrolling: touch;
- outline: 0
-}
-
-.modal.fade .modal-dialog {
- -webkit-transition: -webkit-transform .3s ease-out;
- -o-transition: -o-transform .3s ease-out;
- transition: transform .3s ease-out;
- -webkit-transform: translate(0, -25%);
- -ms-transform: translate(0, -25%);
- -o-transform: translate(0, -25%);
- transform: translate(0, -25%)
-}
-
-.modal.in .modal-dialog {
- -webkit-transform: translate(0, 0);
- -ms-transform: translate(0, 0);
- -o-transform: translate(0, 0);
- transform: translate(0, 0)
-}
-
-.modal-open .modal {
- overflow-x: hidden;
- overflow-y: auto
-}
-
-.modal-dialog {
- position: relative;
- width: auto;
- margin: 10px
-}
-
-.modal-content {
- position: relative;
- background-color: #fff;
- -webkit-background-clip: padding-box;
- background-clip: padding-box;
- border: 1px solid #999;
- border: 1px solid rgba(0, 0, 0, .2);
- border-radius: 6px;
- outline: 0;
-}
-
-.modal-backdrop {
- position: absolute;
- top: 0;
- right: 0;
- left: 0;
- background-color: #000
-}
-
-.modal-backdrop.fade {
- filter: alpha(opacity=0);
- opacity: 0
-}
-
-.modal-backdrop.in {
- filter: alpha(opacity=50);
- opacity: .5
-}
-
-.modal-header {
- min-height: 16.43px;
- padding: 15px;
- border-bottom: 1px solid #e5e5e5
-}
-
-.modal-header .close {
- margin-top: -2px
-}
-
-.modal-title {
- margin: 0;
- line-height: 1.42857143
-}
-
-.modal-body {
- position: relative;
- padding: 15px
-}
-
-.modal-footer {
- padding: 15px;
- text-align: right;
- border-top: 1px solid #e5e5e5
-}
-
-.modal-footer .btn+.btn {
- margin-bottom: 0;
- margin-left: 5px
-}
-
-.modal-footer .btn-group .btn+.btn {
- margin-left: -1px
-}
-
-.modal-footer .btn-block+.btn-block {
- margin-left: 0
-}
-
-.modal-scrollbar-measure {
- position: absolute;
- top: -9999px;
- width: 50px;
- height: 50px;
- overflow: scroll
-}
-
-@media (min-width:768px) {
- .modal-dialog {
- width: 600px;
- margin: 30px auto
- }
- .modal-content {
- }
- .modal-sm {
- width: 300px
- }
-}
-
-@media (min-width:992px) {
- .modal-lg {
- width: 900px
- }
-}
-
-.tooltip {
- position: absolute;
- z-index: 1070;
- display: block;
- font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
- font-size: 12px;
- font-weight: 400;
- line-height: 1.4;
- visibility: visible;
- filter: alpha(opacity=0);
- opacity: 0
-}
-
-.tooltip.in {
- filter: alpha(opacity=90);
- opacity: .9
-}
-
-.tooltip.top {
- padding: 5px 0;
- margin-top: -3px
-}
-
-.tooltip.right {
- padding: 0 5px;
- margin-left: 3px
-}
-
-.tooltip.bottom {
- padding: 5px 0;
- margin-top: 3px
-}
-
-.tooltip.left {
- padding: 0 5px;
- margin-left: -3px
-}
-
-.tooltip-inner {
- max-width: 200px;
- padding: 3px 8px;
- color: #fff;
- text-align: center;
- text-decoration: none;
- background-color: #000;
- border-radius: 4px
-}
-
-.tooltip-arrow {
- position: absolute;
- width: 0;
- height: 0;
- border-color: transparent;
- border-style: solid
-}
-
-.tooltip.top .tooltip-arrow {
- bottom: 0;
- left: 50%;
- margin-left: -5px;
- border-width: 5px 5px 0;
- border-top-color: #000
-}
-
-.tooltip.top-left .tooltip-arrow {
- right: 5px;
- bottom: 0;
- margin-bottom: -5px;
- border-width: 5px 5px 0;
- border-top-color: #000
-}
-
-.tooltip.top-right .tooltip-arrow {
- bottom: 0;
- left: 5px;
- margin-bottom: -5px;
- border-width: 5px 5px 0;
- border-top-color: #000
-}
-
-.tooltip.right .tooltip-arrow {
- top: 50%;
- left: 0;
- margin-top: -5px;
- border-width: 5px 5px 5px 0;
- border-right-color: #000
-}
-
-.tooltip.left .tooltip-arrow {
- top: 50%;
- right: 0;
- margin-top: -5px;
- border-width: 5px 0 5px 5px;
- border-left-color: #000
-}
-
-.tooltip.bottom .tooltip-arrow {
- top: 0;
- left: 50%;
- margin-left: -5px;
- border-width: 0 5px 5px;
- border-bottom-color: #000
-}
-
-.tooltip.bottom-left .tooltip-arrow {
- top: 0;
- right: 5px;
- margin-top: -5px;
- border-width: 0 5px 5px;
- border-bottom-color: #000
-}
-
-.tooltip.bottom-right .tooltip-arrow {
- top: 0;
- left: 5px;
- margin-top: -5px;
- border-width: 0 5px 5px;
- border-bottom-color: #000
-}
-
-.popover {
- position: absolute;
- top: 0;
- left: 0;
- z-index: 1060;
- display: none;
- max-width: 276px;
- padding: 1px;
- font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
- font-size: 14px;
- font-weight: 400;
- line-height: 1.42857143;
- text-align: left;
- white-space: normal;
- background-color: #fff;
- -webkit-background-clip: padding-box;
- background-clip: padding-box;
- border: 1px solid #ccc;
- border: 1px solid rgba(0, 0, 0, .2);
- border-radius: 6px;
-}
-
-.popover.top {
- margin-top: -10px
-}
-
-.popover.right {
- margin-left: 10px
-}
-
-.popover.bottom {
- margin-top: 10px
-}
-
-.popover.left {
- margin-left: -10px
-}
-
-.popover-title {
- padding: 8px 14px;
- margin: 0;
- font-size: 14px;
- background-color: #f7f7f7;
- border-bottom: 1px solid #ebebeb;
- border-radius: 5px 5px 0 0
-}
-
-.popover-content {
- padding: 9px 14px
-}
-
-.popover>.arrow,
-.popover>.arrow:after {
- position: absolute;
- display: block;
- width: 0;
- height: 0;
- border-color: transparent;
- border-style: solid
-}
-
-.popover>.arrow {
- border-width: 11px
-}
-
-.popover>.arrow:after {
- content: "";
- border-width: 10px
-}
-
-.popover.top>.arrow {
- bottom: -11px;
- left: 50%;
- margin-left: -11px;
- border-top-color: #999;
- border-top-color: rgba(0, 0, 0, .25);
- border-bottom-width: 0
-}
-
-.popover.top>.arrow:after {
- bottom: 1px;
- margin-left: -10px;
- content: " ";
- border-top-color: #fff;
- border-bottom-width: 0
-}
-
-.popover.right>.arrow {
- top: 50%;
- left: -11px;
- margin-top: -11px;
- border-right-color: #999;
- border-right-color: rgba(0, 0, 0, .25);
- border-left-width: 0
-}
-
-.popover.right>.arrow:after {
- bottom: -10px;
- left: 1px;
- content: " ";
- border-right-color: #fff;
- border-left-width: 0
-}
-
-.popover.bottom>.arrow {
- top: -11px;
- left: 50%;
- margin-left: -11px;
- border-top-width: 0;
- border-bottom-color: #999;
- border-bottom-color: rgba(0, 0, 0, .25)
-}
-
-.popover.bottom>.arrow:after {
- top: 1px;
- margin-left: -10px;
- content: " ";
- border-top-width: 0;
- border-bottom-color: #fff
-}
-
-.popover.left>.arrow {
- top: 50%;
- right: -11px;
- margin-top: -11px;
- border-right-width: 0;
- border-left-color: #999;
- border-left-color: rgba(0, 0, 0, .25)
-}
-
-.popover.left>.arrow:after {
- right: 1px;
- bottom: -10px;
- content: " ";
- border-right-width: 0;
- border-left-color: #fff
-}
-
-
-@media screen and (min-width:768px) {
- .carousel-control .glyphicon-chevron-left,
- .carousel-control .glyphicon-chevron-right,
- .carousel-control .icon-next,
- .carousel-control .icon-prev {
- width: 30px;
- height: 30px;
- margin-top: -15px;
- font-size: 30px
- }
- .carousel-control .glyphicon-chevron-left,
- .carousel-control .icon-prev {
- margin-left: -15px
- }
- .carousel-control .glyphicon-chevron-right,
- .carousel-control .icon-next {
- margin-right: -15px
- }
- .carousel-caption {
- right: 20%;
- left: 20%;
- padding-bottom: 30px
- }
- .carousel-indicators {
- bottom: 20px
- }
-}
-
-.btn-group-vertical>.btn-group:after,
-.btn-group-vertical>.btn-group:before,
-.btn-toolbar:after,
-.btn-toolbar:before,
-.clearfix:after,
-.clearfix:before,
-.container-fluid:after,
-.container-fluid:before,
-.container:after,
-.container:before,
-.dl-horizontal dd:after,
-.dl-horizontal dd:before,
-.form-horizontal .form-group:after,
-.form-horizontal .form-group:before,
-.modal-footer:after,
-.modal-footer:before,
-.nav:after,
-.nav:before,
-.navbar-collapse:after,
-.navbar-collapse:before,
-.navbar-header:after,
-.navbar-header:before,
-.navbar:after,
-.navbar:before,
-.pager:after,
-.pager:before,
-.panel-body:after,
-.panel-body:before,
-.row:after,
-.row:before {
- display: table;
- content: " "
-}
-
-.btn-group-vertical>.btn-group:after,
-.btn-toolbar:after,
-.clearfix:after,
-.container-fluid:after,
-.container:after,
-.dl-horizontal dd:after,
-.form-horizontal .form-group:after,
-.modal-footer:after,
-.nav:after,
-.navbar-collapse:after,
-.navbar-header:after,
-.navbar:after,
-.pager:after,
-.panel-body:after,
-.row:after {
- clear: both
-}
-
-.center-block {
- display: block;
- margin-right: auto;
- margin-left: auto
-}
-
-.pull-right {
- float: right!important
-}
-
-.pull-left {
- float: left!important
-}
-
-.hide {
- display: none!important
-}
-
-.show {
- display: block!important
-}
-
-.invisible {
- visibility: hidden
-}
-
-.text-hide {
- font: 0/0 a;
- color: transparent;
- background-color: transparent;
- border: 0
-}
-
-.hidden {
- display: none!important;
- visibility: hidden!important
-}
-
-.affix {
- position: fixed
-}
-
-@-ms-viewport {
- width: device-width
-}
-
-.visible-lg,
-.visible-md,
-.visible-sm,
-.visible-xs {
- display: none!important
-}
-
-.visible-lg-block,
-.visible-lg-inline,
-.visible-lg-inline-block,
-.visible-md-block,
-.visible-md-inline,
-.visible-md-inline-block,
-.visible-sm-block,
-.visible-sm-inline,
-.visible-sm-inline-block,
-.visible-xs-block,
-.visible-xs-inline,
-.visible-xs-inline-block {
- display: none!important
-}
-
-@media (max-width:767px) {
- .visible-xs {
- display: block!important
- }
- table.visible-xs {
- display: table
- }
- tr.visible-xs {
- display: table-row!important
- }
- td.visible-xs,
- th.visible-xs {
- display: table-cell!important
- }
-}
-
-@media (max-width:767px) {
- .visible-xs-block {
- display: block!important
- }
-}
-
-@media (max-width:767px) {
- .visible-xs-inline {
- display: inline!important
- }
-}
-
-@media (max-width:767px) {
- .visible-xs-inline-block {
- display: inline-block!important
- }
-}
-
-@media (min-width:768px) and (max-width:991px) {
- .visible-sm {
- display: block!important
- }
- table.visible-sm {
- display: table
- }
- tr.visible-sm {
- display: table-row!important
- }
- td.visible-sm,
- th.visible-sm {
- display: table-cell!important
- }
-}
-
-@media (min-width:768px) and (max-width:991px) {
- .visible-sm-block {
- display: block!important
- }
-}
-
-@media (min-width:768px) and (max-width:991px) {
- .visible-sm-inline {
- display: inline!important
- }
-}
-
-@media (min-width:768px) and (max-width:991px) {
- .visible-sm-inline-block {
- display: inline-block!important
- }
-}
-
-@media (min-width:992px) and (max-width:1199px) {
- .visible-md {
- display: block!important
- }
- table.visible-md {
- display: table
- }
- tr.visible-md {
- display: table-row!important
- }
- td.visible-md,
- th.visible-md {
- display: table-cell!important
- }
-}
-
-@media (min-width:992px) and (max-width:1199px) {
- .visible-md-block {
- display: block!important
- }
-}
-
-@media (min-width:992px) and (max-width:1199px) {
- .visible-md-inline {
- display: inline!important
- }
-}
-
-@media (min-width:992px) and (max-width:1199px) {
- .visible-md-inline-block {
- display: inline-block!important
- }
-}
-
-@media (min-width:1200px) {
- .visible-lg {
- display: block!important
- }
- table.visible-lg {
- display: table
- }
- tr.visible-lg {
- display: table-row!important
- }
- td.visible-lg,
- th.visible-lg {
- display: table-cell!important
- }
-}
-
-@media (min-width:1200px) {
- .visible-lg-block {
- display: block!important
- }
-}
-
-@media (min-width:1200px) {
- .visible-lg-inline {
- display: inline!important
- }
-}
-
-@media (min-width:1200px) {
- .visible-lg-inline-block {
- display: inline-block!important
- }
-}
-
-@media (max-width:767px) {
- .hidden-xs {
- display: none!important
- }
-}
-
-@media (min-width:768px) and (max-width:991px) {
- .hidden-sm {
- display: none!important
- }
-}
-
-@media (min-width:992px) and (max-width:1199px) {
- .hidden-md {
- display: none!important
- }
-}
-
-@media (min-width:1200px) {
- .hidden-lg {
- display: none!important
- }
-}
-
-.visible-print {
- display: none!important
-}
-
-@media print {
- .visible-print {
- display: block!important
- }
- table.visible-print {
- display: table
- }
- tr.visible-print {
- display: table-row!important
- }
- td.visible-print,
- th.visible-print {
- display: table-cell!important
- }
-}
-
-.visible-print-block {
- display: none!important
-}
-
-@media print {
- .visible-print-block {
- display: block!important
- }
-}
-
-.visible-print-inline {
- display: none!important
-}
-
-@media print {
- .visible-print-inline {
- display: inline!important
- }
-}
-
-.visible-print-inline-block {
- display: none!important
-}
-
-@media print {
- .visible-print-inline-block {
- display: inline-block!important
- }
-}
-
-@media print {
- .hidden-print {
- display: none!important
- }
-}
diff --git a/docs/old_source/css/boxshadowproperties.css b/docs/old_source/css/boxshadowproperties.css
deleted file mode 100644
index 0f2e1e6d..00000000
--- a/docs/old_source/css/boxshadowproperties.css
+++ /dev/null
@@ -1,24 +0,0 @@
-/* box-shadow fonts return errors with prince, so extracting here to put in web output only */
-
-#search-demo-container ul#results-container {
- box-shadow: 2px 3px 2px #dedede;
-}
-
-
-hr.shaded {
- box-shadow: inset 0 6px 6px -6px rgba(0,0,0,0.5);
-}
-
-.videoThumbs img {
- box-shadow: 2px 2px 1px #f0f0f0;
-}
-
-.box {
- box-shadow: 2px 2px 4px #dedede;
-}
-
-@media (max-width: 1200px) {
- .navbar-collapse {
- box-shadow: inset 0 1px 0 rgba(255,255,255,0.1);
- }
-}
diff --git a/docs/old_source/css/customstyles.css b/docs/old_source/css/customstyles.css
deleted file mode 100644
index e3f15320..00000000
--- a/docs/old_source/css/customstyles.css
+++ /dev/null
@@ -1,1306 +0,0 @@
-.anchor-link {
- display: none;
-}
-
-body {
- font-size:15px;
-}
-
-.bs-callout {
- padding: 20px;
- margin: 20px 0;
- border: 1px solid #eee;
- border-left-width: 5px;
- border-radius: 3px;
-}
-.bs-callout h4 {
- margin-top: 0;
- margin-bottom: 5px;
-}
-.bs-callout p:last-child {
- margin-bottom: 0;
-}
-.bs-callout code {
- border-radius: 3px;
-}
-.bs-callout+.bs-callout {
- margin-top: -5px;
-}
-.bs-callout-default {
- border-left-color: #777;
-}
-.bs-callout-default h4 {
- color: #777;
-}
-.bs-callout-primary {
- border-left-color: #428bca;
-}
-.bs-callout-primary h4 {
- color: #428bca;
-}
-.bs-callout-success {
- border-left-color: #5cb85c;
-}
-.bs-callout-success h4 {
- color: #5cb85c;
-}
-.bs-callout-danger {
- border-left-color: #d9534f;
-}
-.bs-callout-danger h4 {
- color: #d9534f;
-}
-.bs-callout-warning {
- border-left-color: #f0ad4e;
-}
-.bs-callout-warning h4 {
- color: #f0ad4e;
-}
-.bs-callout-info {
- border-left-color: #5bc0de;
-}
-.bs-callout-info h4 {
- color: #5bc0de;
-}
-
-
-.gi-2x{font-size: 2em;}
-.gi-3x{font-size: 3em;}
-.gi-4x{font-size: 4em;}
-.gi-5x{font-size: 5em;}
-
-
-.breadcrumb > .active {color: #777 !important;}
-
-/* make room for the nav bar */
-h1[id]
-/*,h2[id],
-h3[id],
-h4[id],
-h5[id],
-h6[id],
-dt[id]*/
-{
-padding-top: 60px;
-margin-top: -40px
-}
-
-.output_html a{
- font-family: Menlo, Monaco, Consolas, "Courier New", monospace;
- margin: 25px 0px;
- display: block;
- padding: 9.5px;
- font-size: 13px;
- line-height: 1.42857143;
- color: #333;
- word-break: break-all;
- word-wrap: break-word;
- background-color: #F5F5F5;
- border: 1px solid #FFA500;
- border-radius: 4px;
- white-space: pre-wrap;
- box-sizing: border-box;
- overflow: auto;
-}
-
-.col-md-1, .col-md-10, .col-md-11, .col-md-12, .col-md-2, .col-md-3, .col-md-4, .col-md-5, .col-md-6, .col-md-7, .col-md-8, .col-md-9 {
- float: left;
-}
-
-.col-md-9 {
- width: 75%;
-}
-
-/* From: https://www.w3schools.com/howto/tryit.asp?filename=tryhow_css_download_button' */
-.cstm_btn a{
- background-color: DodgerBlue;
- border: none;
- color: white;
- padding: 12px 30px;
- cursor: pointer;
- font-size: 20px;
- box-sizing: 15px;
- position: absolute;
-}
-
-/* Darker background on mouse-over */
-.cstm_btn a:hover {
- background-color: RoyalBlue;
-}
-
-.container #notebook-container{
- width: 100%;
- box-sizing: border-box;
- }
-
-.post-content img {
- margin: 12px 0px 3px 0px;
- width: auto;
- height: auto;
- max-width: 100%;
- max-height: 100%;
-}
-
-.post-content ol li, .post-content ul li {
- margin: 10px 0px;
-}
-
-.pageSummary {
- font-size:13px;
- display:block;
- margin-bottom:15px;
- padding-left:20px;
-}
-
-.post-summary {
- margin-bottom:12px;
-}
-
-.bs-example{
- margin: 20px;
-}
-
-.breadcrumb li {
- color: gray;
-}
-
-table {
- background-color: transparent;
-}
-caption {
- padding-top: 8px;
- padding-bottom: 8px;
- color: #777;
- text-align: left;
-}
-th {
- text-align: left;
-}
-table {
- max-width: 90%;
- margin-bottom: 20px;
- border: 1px solid #dedede;
-}
-
-table > thead > tr > th,
-table > tbody > tr > th,
-table > tfoot > tr > th,
-table > thead > tr > td,
-table > tbody > tr > td,
-table > tfoot > tr > td {
- padding: 8px;
- line-height: 1.42857143;
- vertical-align: top;
- border-top: 1px solid #ddd;
-}
-table > thead > tr > th {
- vertical-align: bottom;
- border-bottom: 2px solid #ddd;
- text-transform: none;
- background-color: #777;
- color: white;
- text-align: left;
-}
-table > caption + thead > tr:first-child > th,
-table > colgroup + thead > tr:first-child > th,
-table > thead:first-child > tr:first-child > th,
-table > caption + thead > tr:first-child > td,
-table > colgroup + thead > tr:first-child > td,
-table > thead:first-child > tr:first-child > td {
- border-top: 0;
-}
-
-table > tbody > tr:nth-of-type(odd) {
- background-color: #f9f9f9;
-}
-
-table col[class*="col-"] {
- position: static;
- display: table-column;
- float: none;
-}
-table td[class*="col-"],
-table th[class*="col-"] {
- position: static;
- display: table-cell;
- float: none;
-}
-
-table tr td {
- hyphens: auto;
-}
-
-
-p.external a {
- text-align:right;
- font-size:12px;
- color: #0088cc;
- display:inline;
-}
-
-#definition-box-container div a.active {
- font-weight: bold;
-}
-p.post-meta {font-size: 80%; color: #777;}
-
-.entry-date{font-size:14px;font-size:0.875rem;line-height:1.71429;margin-bottom:0;text-transform:uppercase;}
-
-/* search area */
-#search-demo-container ul#results-container {
- list-style: none;
- font-size: 12px;
- background-color: white;
- position: absolute;
- top: 40px; /* if you change anything about the nav, you'll prob. need to reset the top and left values here.*/
- left: 20px;
- z-index: -1;
- width:223px;
- border-left: 1px solid #dedede;
-}
-
-
-ul#results-container a {
- background-color: transparent;
-}
-
-ul#results-container a:hover {
- color: black;
-}
-
-
-#search-demo-container a:hover {
- color: black;
-}
-#search-input {
- padding: .5em;
- margin-left:20px;
- width:20em;
- font-size: 0.8em;
- -webkit-box-sizing: border-box;
- -moz-box-sizing: border-box;
- box-sizing: border-box;
- margin-top:10px;
-}
-/* end search */
-
-.filter-options {
- margin-bottom: 20px;
-}
-.filter-options button {
- margin: 3px;
-}
-
-a.source_link {
- float:right;
- font-size:15px;
- font-weight:normal;
-}
-
-div#toc ul {
- font-size: 90%;
- background-color: whitesmoke;
- padding: 5px;
- border-radius: 5px;
- max-width: 450px;
- color: gray;
- list-style-type: none;
-}
-
-/* when using relative fonts like 0.9em or 90%, remember to then set the nested items to 1em or 100%, otherwise each level will get smaller and smaller and less readable */
-div#toc ul li {
- margin: 8px 0px 8px 22px;
- font-size: 100%;
- list-style-type: none;
-}
-
-div#toc ul li ul {
- font-size: 100%;
- padding-left:30px;
- padding-top: 0px;
- padding-bottom: 0px;
- list-style-type: none;
-}
-
-div#toc ul li ul li.hide_content::before {
- content: none;
-}
-
-div#toc >ul::before {
- content: "Table of Contents";
- font-weight: 500;
- color: #555;
- text-align:center;
- margin-left:auto;
- margin-right:auto;
- width:70px;
- padding-top:150px;
- padding-bottom:40px;
- padding-left:10px;
-}
-
-li.dropdownActive a {
- font-weight: bold;
-}
-
-
-.post-content a.fa-rss {
- color: orange;
-}
-
-
-.navbar-inverse .navbar-nav > li > a {
- background-color: transparent;
- margin-top:10px;
-}
-
-.post-content .rssfeedLink {
- color: #248EC2;
-}
-
-footer {
- font-size: smaller;
-}
-
-/* FAQ page */
-#accordion .panel-heading {
- font-size: 12px;
-}
-
-a.accordion-toggle, a.accordion-collapsed {
- font-size: 14px;
- text-decoration: none;
-}
-
-/* navgoco sidebar styles (customized) */
-.nav, .nav ul, .nav li {
- list-style: none;
-}
-
-.nav ul {
- padding: 0;
- /*margin: 0 0 0 18px;*/
- margin:0px;
-}
-
-.nav {
- /* padding: 4px;*/
- padding:0px;
- margin: 0px;
-}
-
-.nav > li {
- margin: 1px 0;
-}
-
-.nav > li li {
- margin: 2px 0;
-}
-
-.nav a {
- color: #333;
- display: block;
- outline: none;
- /*-webkit-border-radius: 4px;
- -moz-border-radius: 4px;
- border-radius: 4px;*/
- text-decoration: none;
-}
-
-.nav li > a > span {
- float: right;
- font-size: 19px;
- font-weight: bolder;
-}
-
-
-.nav li > a > span:after {
- content: '\25be';
-}
-.nav li.active > a > span:after {
- content: '\25b4';
-}
-
-.nav a:hover, .nav li.active > a {
- background-color: #8D8D8D;
- color: #f5f5f5;
-}
-
-.nav > li.active > a {
-background-color: #347DBE;
-}
-
-.nav li a {
- font-size: 12px;
- line-height: 18px;
- padding: 2px 10px;
- background-color: #f1f1f1;
-}
-
-.nav > li > a {
- font-size: 14px;
- line-height: 20px;
- padding: 4px 10px;
-}
-
-ul#mysidebar {
- border-radius:0px;
-}
-
-.nav ul li ul li a {
- padding-left:40px;
-}
-
-.nav li.thirdlevel > a {
- color: #248EC2;
- font-weight:bold;
- padding-left:20px;
- background-color: whitesmoke !important;
-}
-
-
-.nav ul li a {
- background-color: #FAFAFA;
-}
-
-.nav li a {
- padding-right:10px;
-}
-
-.nav li a:hover {
- background-color: #8D8D8D;
-}
-
-.nav ul li a {
- border-top:1px solid whitesmoke;
- padding-left:10px;
-}
-/* end sidebar */
-
-.navbar-inverse .navbar-nav > .active > a, .navbar-inverse .navbar-nav > .active > a:hover, .navbar-inverse .navbar-nav > .active > a:focus {
- border-radius:5px;
-}
-
-.navbar-inverse .navbar-nav>.open>a, .navbar-inverse .navbar-nav>.open>a:focus, .navbar-inverse .navbar-nav>.open>a:hover {
- border-radius: 5px;
-}
-
-span.projectTitle {
- font-family: Helvetica;
- font-weight: bold;
-}
-
-.footer {
- text-align: right;
-}
-
-.footerMeta {
- background-color: whitesmoke;
- padding: 10px;
- max-width: 250px;
- border-radius: 5px;
- margin-top: 50px;
- font-style:italic;
- font-size:12px;
-}
-
-img.screenshotSmall {
- max-width: 300px;
-}
-
-
-dl dt p {
- margin-left:20px;
-}
-
-
-dl dd {
- margin-top:10px;
- margin-bottom:10px;
-}
-
-dl.dl-horizontal dd {
- padding-top: 20px;
-}
-
-figcaption {
-
- padding-bottom:12px;
- padding-top:6px;
- max-width: 90%;
- margin-bottom:20px;
- font-style: italic;
- color: gray;
-
-}
-
-.testing {
- color: orange;
-}
-
-.preference {
- color: red;
-}
-
-
-table.dataTable thead {
- background-color: #444;
-}
-table td {
- hyphens: auto;
-}
-
-section table tr.success {
- background-color: #dff0d8 !important;
-}
-
-table tr.info {
- background-color: #d9edf7 !important;
-}
-
-section table tr.warning, table tr.testing, table tr.testing > td.sorting_1 {
- background-color: #fcf8e3 !important;
-}
-section table tr.danger, table tr.preference, table tr.preference > td.sorting_1 {
- background-color: #f2dede !important;
-}
-
-.orange {
- color: orange;
-}
-
-table.profile thead tr th {
- background-color: #248ec2;
-}
-
-table.request thead tr th {
- background-color: #ED1951;
-}
-
-.audienceLabel {
- margin: 10px;
- float: right;
- border:1px solid #dedede;
- padding:7px;
-}
-
-.prefaceAudienceLabel {
- color: gray;
- text-align: center;
- margin:5px;
-}
-span.myLabel {
- padding-left:10px;
- padding-right:10px;
-}
-
-button.cursorNorm {
- cursor: default;
-}
-
-a.dropdown-toggle, .navbar-inverse .navbar-nav > li > a {
- margin-left: 10px;
-}
-
-hr.faded {
- border: 0;
- height: 1px;
- background-image: -webkit-linear-gradient(left, rgba(0,0,0,0), rgba(0,0,0,0.75), rgba(0,0,0,0));
- background-image: -moz-linear-gradient(left, rgba(0,0,0,0), rgba(0,0,0,0.75), rgba(0,0,0,0));
- background-image: -ms-linear-gradient(left, rgba(0,0,0,0), rgba(0,0,0,0.75), rgba(0,0,0,0));
- background-image: -o-linear-gradient(left, rgba(0,0,0,0), rgba(0,0,0,0.75), rgba(0,0,0,0));
-}
-
-hr.shaded {
- height: 12px;
- border: 0;
- margin-top: 70px;
- background: white;
- width: 100%;
- margin-bottom: 10px;
-}
-
-.fa-6x{font-size:900%;}
-.fa-7x{font-size:1100%;}
-.fa-8x{font-size:1300%;}
-.fa-9x{font-size:1500%;}
-.fa-10x{font-size:1700%;}
-
-i.border {
- padding: 10px 20px;
- background-color: whitesmoke;
-}
-
-a[data-toggle] {
- color: #248EC2;
-}
-
-.summary {
- font-size:120%;
- color: #808080;
- margin:20px 0px 20px 0px;
- border-left: 5px solid #ED1951;
- padding-left: 10px;
-
-}
-
-a.fa.fa-envelope-o.mailto {
- font-weight: 600;
-}
-
-h3 {color: #ED1951; font-weight:normal; font-size:130%;}
-h4 {color: #000000; font-weight:normal; font-size:120%; font-weight:bold;}
-
-.alert, .callout {
- overflow: hidden;
-}
-
-.nav-tabs > li.active > a, .nav-tabs > li.active > a:hover, .nav-tabs > li.active > a:focus {
- background-color: #248ec2;
- color: white;
-}
-
-ol li ol li {list-style-type: lower-alpha;}
-ol li ul li {list-style-type: disc;}
-
-li img {clear:both; }
-
-div#toc ul li ul li {
- list-style-type: none;
- margin: 5px 0px 0px 0px;
-}
-
-.tab-content {
- padding: 15px;
- background-color: #FAFAFA;
-}
-
-span.tagTitle {font-weight: 500;}
-
-li.activeSeries {
- font-weight: bold;
-}
-
-.seriesContext .dropdown-menu li.active {
- font-weight: bold;
- margin-left: 43px;
- font-size:18px;
-}
-
-.alert-warning {
- color: #444;
-}
-
-div.alert code, h2 code {
- background-color: transparent !important;
-}
-/* without this, the links in these notes aren't visible.*/
-.alert a {
- text-decoration: underline;
-}
-
-div.tags {padding: 10px 5px;}
-
-.tabLabel {
- font-weight: normal;
-}
-
-hr {
- background: #999;
- margin: 30px 0px;
- width: 90%;
- margin-left: auto;
- margin-right: auto;
-}
-
-button.cursorNorm {
- cursor: pointer;
-}
-
-h2 {
- font-size:24px;
- line-height:29px;
- border-top: 3px solid blue;
- padding-top: 5px;
-}
-
-span.otherProgrammingLanguages {
- font-style: normal;
-}
-
-a[data-toggle="tooltip"] {
- color: #649345;
- font-style: italic;
- cursor: default;
-}
-
-.seriesNext, .seriesContext {
- margin-top: 15px;
- margin-bottom: 15px;
-}
-
-.seriescontext ol li {
- list-style-type: upper-roman;
-}
-
-ol.series li {
- list-style-type: decimal;
- margin-left: 40px;
- padding-left: 0px;
-}
-
-.siteTagline {
- font-size: 200%;
- font-weight: bold;
- color: silver;
- font-family: monospace;
- text-align: center;
- line-height: 10px;
- margin: 20px 0px;
- display: block;
-}
-
-.versionTagline {
- text-align: center;
- margin-bottom: 20px;
- font-family: courier;
- color: silver;
- color: #444;
- display:block;
-}
-
-/* not sure if using this ...*/
-.navbar-inverse .navbar-collapse, .navbar-inverse .navbar-form {
- border-color: #248ec2 !important;
-}
-
-#mysidebar .nav ul {
- background-color: #FAFAFA;
-}
-.nav ul.series li {
- list-style: decimal;
- font-size:12px;
-}
-
-.nav ul.series li a:hover {
- background-color: gray;
-}
-.nav ul.series {
- padding-left: 30px;
-}
-
-.nav ul.series {
- background-color: #FAFAFA;
-}
-
-/*
-a.dropdown-toggle.otherProgLangs {
- color: #f7e68f !important;
-}
-*/
-
-span.muted {color: #666;}
-
-table code {background-color: transparent;}
-
-.highlight .err {
- color: #a61717;
- background-color: transparent !important;
-}
-
-table p {
- margin-top: 12px;
- margin-bottom: 12px;
-}
-
-pre, table code {
- white-space: pre-wrap; /* css-3 */
- white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
- white-space: -pre-wrap; /* Opera 4-6 */
- white-space: -o-pre-wrap; /* Opera 7 */
- word-wrap: break-word; /* Internet Explorer 5.5+ */
-}
-
-pre {
- margin: 25px 0px;
-}
-
-#json-box-container pre {
- margin: 0px;
-}
-
-.video-js {
- margin: 30px 0px;
-}
-
-video {
- display: block;
- margin: 30px 0px;
- border: 1px solid #c0c0c0;
-}
-
-
-p.required, p.dataType {display: block; color: #c0c0c0; font-size: 80%; margin-left:4px;}
-
-dd {margin-left:20px;}
-
-.post-content img.inline {
- margin:0px;
- margin-bottom:6px;
-}
-.panel-heading {
- font-weight: bold;
-}
-
-.note code, .alert code, .warning code, div#toc code, h2 code, h3 code, h4 code {
- color: inherit;
- padding: 0px;
-}
-
-.alert {
- margin-bottom:10px;
- margin-top:10px;
-}
-
-a.accordion-toggle {
- font-style: normal;
-}
-
-span.red {
- color: red;
- font-family: Monaco, Menlo, Consolas, "Courier New", monospace;
-}
-
-h3.codeExplanation {
- font-size:18px;
- font-style:normal;
- color: black;
- line-height: 24px;
-}
-
-span.soft {
- color: #c0c0c0;
-}
-
-.githubEditButton {
- margin-bottom:7px;
-}
-
-.endpoint {
- padding: 15px;
- background-color: #f0f0f0;
- font-family: courier;
- font-size: 110%;
- margin: 20px 0px;
- color: #444;
-}
-
-.parameter {
- font-family: courier;
- color: red !important;
-}
-
-.formBoundary {
- border: 1px solid gray;
- padding: 15px;
- margin: 15px 0px;
- background-color: whitesmoke;
-}
-
-@media (max-width: 767px) {
- .navbar-inverse .navbar-nav .open .dropdown-menu > li > a {
- color: #444;
- }
-}
-
-@media (max-width: 990px) {
- #mysidebar {
- position: relative;
- }
- .col-md-9 {
- width: 95%;
- }
-}
-
-
-@media (min-width: 1000px) {
-
- ul#mysidebar {
- width: 225px;
- }
-}
-
-@media (max-width: 900px) {
-
- ul#mysidebar {
- max-width: 100%;
- }
-}
-
-.col-md-9 img {
- max-width: 100%;
- max-height: 100%;
-}
-
-
-.post-content img {
- margin: 12px 0px 3px 0px;
- width: auto;
- height: auto;
- max-width: 100%;
- max-height: 100%;
-}
-.col-md-9 img {
- max-width: 100%;
- max-height: 100%;
-}
-
-
-.post-content img {
- margin: 12px 0px 3px 0px;
- width: auto;
- height: auto;
- max-width: 100%;
- max-height: 100%;
-}
-
-.videoThumbs img {
- float: left;
- margin:15px 15px 15px 0px;
- border: 1px solid #dedede;
-}
-
-
-@media only screen and (min-width: 900px), only screen and (min-device-width: 900px) {
- .col-md-9 img {
- max-width: 990px;
- max-height: 700px;
- }
-}
-
-*:hover > .anchorjs-link {
- transition: color .25s linear;
- text-decoration: none;
-}
-
-.kbCaption {
- color: white;
- background-color: #444;
- padding:10px;
-}
-
-/* Strip the outbound icon when this class is present */
-a[href].noCrossRef::after,
-a.no_icon:after
- {
- content:"" !important;
- padding-left: 0;
-}
-
-.btn-default {
- margin-bottom: 10px;
-}
-
-/* algolia search */
-
-.search {
- text-align: left;
-}
-.search input {
- font-size: 20px;
- width: 300px;
-}
-.results {
- margin: auto;
- text-align: left;
-}
-.results ul {
- list-style-type: none;
- padding: 0;
-}
-
-/* algolia */
-
-div.results {
- position: absolute;
- background-color: white;
- width: 100%;
-}
-
-.post-meta {
- font-size: 14px;
- color: #828282;
-}
-
-.post-link {
- font-size: 22px;
-}
-
-.post-list p {
- margin: 10px 0px;
-}
-
-time {
- margin-right: 10px;
-}
-
-p.post-meta time {
- margin-right: 0px;
-}
-
-span.label.label-default {
- background-color: gray;
-}
-
-span.label.label-primary {
- background-color: #f0ad4e;
-}
-.col-lg-12 .nav li a {background-color: white}
-
-
-.nav li.active > a.subfoldersTitle {
- background-color: whitesmoke;
- font-weight: bold;
- color: black;
- }
-
-code {
- color: #1d1f5b;
- background-color: #f3f3f3;
-}
-
-a code {
- color: #0082C2;
-}
-
-table th code {
- color: white;
-}
-
-ol li ul li ol li {
- list-style: decimal;
-}
-
-ol li ul li ol li ul li{
- list-style: disc;
-}
-
-.post-content table th {
- vertical-align: top;
-}
-
-table thead th code.highlighter-rouge {
- background-color: transparent;
-}
-
-
-.box {
- padding: 10px;
- border: 1px solid #888;
- width: 100px;
- height: 80px;
- background-color: #f5f5f5;
- font-family: Arial;
- font-size: 12px;
- hyphens: auto;
- float: left;
- font-size: 12px;
-}
-
-.box:hover {
- background-color: #f0f0f0;
-}
-
-#userMap {
- overflow-x: auto;
- overflow-y: auto;
- padding: 20px;
- min-width: 770px;
-}
-
-#userMap .active {
- background-color: #d6f5d6;
- border:1px solid #555;
- font-weight: bold;
-}
-
-h2.userMapTitle {
- font-family: Arial;
-}
-
-#userMap a:hover {
- text-decoration: none;
- }
-
-div.arrow {
- max-width: 50px;
- margin-left: 15px;
- margin-right: 15px;
- font-size: 20px;
-}
-
-div.content {
- max-width: 110px
-}
-
-#userMap div.arrow, #userMap div.content {
- float: left;
-}
-
-.clearfix {
- clear: both;
-}
-
-
-#userMap div.arrow {
- position: relative;
- top: 30px;
-}
-
-.box1 {
- margin-left:0px;
-}
-
-button.btn.btn-default.btn-lg.modalButton1 {
- margin-left: -20px;
-}
-
-div.box.box1 {
- margin-left: -20px;
-}
-
-#userMap .btn-lg {
- width: 100px;
- height: 80px;
-
-}
-
-#userMap .complexArrow {
- font-size: 22px;
- margin: 0px 10px;
-}
-
-
-#userMap .btn-lg .active {
- background-color: #d6f5d6;
-}
-
-#userMap .btn-lg {
- white-space: pre-wrap; /* css-3 */
- white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
- white-space: -pre-wrap; /* Opera 4-6 */
- white-space: -o-pre-wrap; /* Opera 7 */
- word-wrap: break-word; /* Internet Explorer 5.5+ */
- font-size: 14px;
- }
-
-/*
- * Let's target IE to respect aspect ratios and sizes for img tags containing SVG files
- *
- * [1] IE9
- * [2] IE10+
- */
-/* 1 */
-.ie9 img[src$=".svg"] {
- width: 100%;
-}
-/* 2 */
-@media screen and (-ms-high-contrast: active), (-ms-high-contrast: none) {
- img[src$=".svg"] {
- width: 100%;
- }
-}
-
-h4.panel-title {
- padding-top: 0px;
- margin-top: 0px;
-}
-
-/*set navbar breakpoint so that it converts to hamburger earlier */
-
-@media (max-width: 1200px) {
- .navbar-header {
- float: none;
- }
- .navbar-left,.navbar-right {
- float: none !important;
- }
- .navbar-toggle {
- display: block;
- }
- .navbar-collapse {
- border-top: 1px solid transparent;
- }
- .navbar-fixed-top {
- top: 0;
- border-width: 0 0 1px;
- }
- .navbar-collapse.collapse {
- display: none!important;
- }
- .navbar-nav {
- float: none!important;
- margin-top: 7.5px;
- }
- .navbar-nav>li {
- float: none;
- }
- .navbar-nav>li>a {
- padding-top: 10px;
- padding-bottom: 10px;
- }
- .collapse.in{
- display:block !important;
- }
-}
-
-.input_area pre {
- padding-bottom: 3;
- margin-top: 10px;
- background-color: #f5f1e0;
- border: 0px;
-}
-.output_area pre {
- padding-top: 3;
- margin-top: -25px;
- margin-bottom: 10px;
- border: 0px;
- padding-left: 2em;
-}
-.pytest_card {
- padding: 10px 1em 4px 1em;
- background-color: #eef2ff;
- border-radius: 5px;
- margin-bottom: 20px;
-}
-.pytest_card .close {
- color: #000
-}
-blockquote {
- font-family: Menlo,Monaco,Consolas,"Courier New",monospace;
-}
-blockquote code {
- background-color: white;
-}
-h4 code {
- background-color: white;
-}
-
-/* Google Custom Search styling */
-
-#gcs-search-container {
- width: 340px !important; /* ToDo: define width without using absolute px value */
- display: inline-block !important;
-}
-
-.gsc-search-box.gsc-search-box-tools table {
- margin-bottom: 0px !important;
-}
-.gsc-input, .gsc-search-button {
- padding: 0;
-}
-.gsc-control-cse {
- padding: 6px !important;
-}
-input.gsc-input {
- font-size: 12px !important;
-}
diff --git a/docs/old_source/css/font-awesome.min.css b/docs/old_source/css/font-awesome.min.css
deleted file mode 100644
index 38359a5e..00000000
--- a/docs/old_source/css/font-awesome.min.css
+++ /dev/null
@@ -1,4 +0,0 @@
-/*!
- * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
- * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
- */@font-face{font-family:'FontAwesome';src:url('fonts/fontawesome-webfont.eot?v=4.7.0');src:url('fonts/fontawesome-webfont.eot?#iefix&v=4.7.0') format('embedded-opentype'),url('fonts/fontawesome-webfont.woff2?v=4.7.0') format('woff2'),url('fonts/fontawesome-webfont.woff?v=4.7.0') format('woff'),url('fonts/fontawesome-webfont.ttf?v=4.7.0') format('truetype'),url('fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular') format('svg');font-weight:normal;font-style:normal}.fa{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale} .fa-lg{font-size:1.33333333em;line-height:.75em;vertical-align:-15%} .fa-2x{font-size:2em} .fa-3x{font-size:3em} .fa-4x{font-size:4em} .fa-5x{font-size:5em} .fa-fw{width:1.28571429em;text-align:center} .fa-ul{padding-left:0;margin-left:2.14285714em;list-style-type:none} .fa-ul>li{position:relative} .fa-li{position:absolute;left:-2.14285714em;width:2.14285714em;top:.14285714em;text-align:center} .fa-li.fa-lg{left:-1.85714286em} .fa-border{padding:.2em .25em .15em;border:solid .08em #eee;border-radius:.1em} .fa-pull-left{float:left} .fa-pull-right{float:right} .fa.fa-pull-left{margin-right:.3em} .fa.fa-pull-right{margin-left:.3em} .pull-right{float:right} .pull-left{float:left} .fa.pull-left{margin-right:.3em} .fa.pull-right{margin-left:.3em} .fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear} .fa-pulse{-webkit-animation:fa-spin 1s infinite steps(8);animation:fa-spin 1s infinite steps(8)} @-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)} 100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}} @keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)} 100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}} .fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)} .fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)} .fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)} .fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scale(-1, 1);-ms-transform:scale(-1, 1);transform:scale(-1, 1)} .fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scale(1, -1);-ms-transform:scale(1, -1);transform:scale(1, -1)} :root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none} .fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle} .fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center} .fa-stack-1x{line-height:inherit} .fa-stack-2x{font-size:2em} .fa-inverse{color:#fff} .fa-glass:before{content:"\f000"} .fa-music:before{content:"\f001"} .fa-search:before{content:"\f002"} .fa-envelope-o:before{content:"\f003"} .fa-heart:before{content:"\f004"} .fa-star:before{content:"\f005"} .fa-star-o:before{content:"\f006"} .fa-user:before{content:"\f007"} .fa-film:before{content:"\f008"} .fa-th-large:before{content:"\f009"} .fa-th:before{content:"\f00a"} .fa-th-list:before{content:"\f00b"} .fa-check:before{content:"\f00c"} .fa-remove:before,.fa-close:before,.fa-times:before{content:"\f00d"} .fa-search-plus:before{content:"\f00e"} .fa-search-minus:before{content:"\f010"} .fa-power-off:before{content:"\f011"} .fa-signal:before{content:"\f012"} .fa-gear:before,.fa-cog:before{content:"\f013"} .fa-trash-o:before{content:"\f014"} .fa-home:before{content:"\f015"} .fa-file-o:before{content:"\f016"} .fa-clock-o:before{content:"\f017"} .fa-road:before{content:"\f018"} .fa-download:before{content:"\f019"} .fa-arrow-circle-o-down:before{content:"\f01a"} .fa-arrow-circle-o-up:before{content:"\f01b"} .fa-inbox:before{content:"\f01c"} .fa-play-circle-o:before{content:"\f01d"} .fa-rotate-right:before,.fa-repeat:before{content:"\f01e"} .fa-refresh:before{content:"\f021"} .fa-list-alt:before{content:"\f022"} .fa-lock:before{content:"\f023"} .fa-flag:before{content:"\f024"} .fa-headphones:before{content:"\f025"} .fa-volume-off:before{content:"\f026"} .fa-volume-down:before{content:"\f027"} .fa-volume-up:before{content:"\f028"} .fa-qrcode:before{content:"\f029"} .fa-barcode:before{content:"\f02a"} .fa-tag:before{content:"\f02b"} .fa-tags:before{content:"\f02c"} .fa-book:before{content:"\f02d"} .fa-bookmark:before{content:"\f02e"} .fa-print:before{content:"\f02f"} .fa-camera:before{content:"\f030"} .fa-font:before{content:"\f031"} .fa-bold:before{content:"\f032"} .fa-italic:before{content:"\f033"} .fa-text-height:before{content:"\f034"} .fa-text-width:before{content:"\f035"} .fa-align-left:before{content:"\f036"} .fa-align-center:before{content:"\f037"} .fa-align-right:before{content:"\f038"} .fa-align-justify:before{content:"\f039"} .fa-list:before{content:"\f03a"} .fa-dedent:before,.fa-outdent:before{content:"\f03b"} .fa-indent:before{content:"\f03c"} .fa-video-camera:before{content:"\f03d"} .fa-photo:before,.fa-image:before,.fa-picture-o:before{content:"\f03e"} .fa-pencil:before{content:"\f040"} .fa-map-marker:before{content:"\f041"} .fa-adjust:before{content:"\f042"} .fa-tint:before{content:"\f043"} .fa-edit:before,.fa-pencil-square-o:before{content:"\f044"} .fa-share-square-o:before{content:"\f045"} .fa-check-square-o:before{content:"\f046"} .fa-arrows:before{content:"\f047"} .fa-step-backward:before{content:"\f048"} .fa-fast-backward:before{content:"\f049"} .fa-backward:before{content:"\f04a"} .fa-play:before{content:"\f04b"} .fa-pause:before{content:"\f04c"} .fa-stop:before{content:"\f04d"} .fa-forward:before{content:"\f04e"} .fa-fast-forward:before{content:"\f050"} .fa-step-forward:before{content:"\f051"} .fa-eject:before{content:"\f052"} .fa-chevron-left:before{content:"\f053"} .fa-chevron-right:before{content:"\f054"} .fa-plus-circle:before{content:"\f055"} .fa-minus-circle:before{content:"\f056"} .fa-times-circle:before{content:"\f057"} .fa-check-circle:before{content:"\f058"} .fa-question-circle:before{content:"\f059"} .fa-info-circle:before{content:"\f05a"} .fa-crosshairs:before{content:"\f05b"} .fa-times-circle-o:before{content:"\f05c"} .fa-check-circle-o:before{content:"\f05d"} .fa-ban:before{content:"\f05e"} .fa-arrow-left:before{content:"\f060"} .fa-arrow-right:before{content:"\f061"} .fa-arrow-up:before{content:"\f062"} .fa-arrow-down:before{content:"\f063"} .fa-mail-forward:before,.fa-share:before{content:"\f064"} .fa-expand:before{content:"\f065"} .fa-compress:before{content:"\f066"} .fa-plus:before{content:"\f067"} .fa-minus:before{content:"\f068"} .fa-asterisk:before{content:"\f069"} .fa-exclamation-circle:before{content:"\f06a"} .fa-gift:before{content:"\f06b"} .fa-leaf:before{content:"\f06c"} .fa-fire:before{content:"\f06d"} .fa-eye:before{content:"\f06e"} .fa-eye-slash:before{content:"\f070"} .fa-warning:before,.fa-exclamation-triangle:before{content:"\f071"} .fa-plane:before{content:"\f072"} .fa-calendar:before{content:"\f073"} .fa-random:before{content:"\f074"} .fa-comment:before{content:"\f075"} .fa-magnet:before{content:"\f076"} .fa-chevron-up:before{content:"\f077"} .fa-chevron-down:before{content:"\f078"} .fa-retweet:before{content:"\f079"} .fa-shopping-cart:before{content:"\f07a"} .fa-folder:before{content:"\f07b"} .fa-folder-open:before{content:"\f07c"} .fa-arrows-v:before{content:"\f07d"} .fa-arrows-h:before{content:"\f07e"} .fa-bar-chart-o:before,.fa-bar-chart:before{content:"\f080"} .fa-twitter-square:before{content:"\f081"} .fa-facebook-square:before{content:"\f082"} .fa-camera-retro:before{content:"\f083"} .fa-key:before{content:"\f084"} .fa-gears:before,.fa-cogs:before{content:"\f085"} .fa-comments:before{content:"\f086"} .fa-thumbs-o-up:before{content:"\f087"} .fa-thumbs-o-down:before{content:"\f088"} .fa-star-half:before{content:"\f089"} .fa-heart-o:before{content:"\f08a"} .fa-sign-out:before{content:"\f08b"} .fa-linkedin-square:before{content:"\f08c"} .fa-thumb-tack:before{content:"\f08d"} .fa-external-link:before{content:"\f08e"} .fa-sign-in:before{content:"\f090"} .fa-trophy:before{content:"\f091"} .fa-github-square:before{content:"\f092"} .fa-upload:before{content:"\f093"} .fa-lemon-o:before{content:"\f094"} .fa-phone:before{content:"\f095"} .fa-square-o:before{content:"\f096"} .fa-bookmark-o:before{content:"\f097"} .fa-phone-square:before{content:"\f098"} .fa-twitter:before{content:"\f099"} .fa-facebook-f:before,.fa-facebook:before{content:"\f09a"} .fa-github:before{content:"\f09b"} .fa-unlock:before{content:"\f09c"} .fa-credit-card:before{content:"\f09d"} .fa-feed:before,.fa-rss:before{content:"\f09e"} .fa-hdd-o:before{content:"\f0a0"} .fa-bullhorn:before{content:"\f0a1"} .fa-bell:before{content:"\f0f3"} .fa-certificate:before{content:"\f0a3"} .fa-hand-o-right:before{content:"\f0a4"} .fa-hand-o-left:before{content:"\f0a5"} .fa-hand-o-up:before{content:"\f0a6"} .fa-hand-o-down:before{content:"\f0a7"} .fa-arrow-circle-left:before{content:"\f0a8"} .fa-arrow-circle-right:before{content:"\f0a9"} .fa-arrow-circle-up:before{content:"\f0aa"} .fa-arrow-circle-down:before{content:"\f0ab"} .fa-globe:before{content:"\f0ac"} .fa-wrench:before{content:"\f0ad"} .fa-tasks:before{content:"\f0ae"} .fa-filter:before{content:"\f0b0"} .fa-briefcase:before{content:"\f0b1"} .fa-arrows-alt:before{content:"\f0b2"} .fa-group:before,.fa-users:before{content:"\f0c0"} .fa-chain:before,.fa-link:before{content:"\f0c1"} .fa-cloud:before{content:"\f0c2"} .fa-flask:before{content:"\f0c3"} .fa-cut:before,.fa-scissors:before{content:"\f0c4"} .fa-copy:before,.fa-files-o:before{content:"\f0c5"} .fa-paperclip:before{content:"\f0c6"} .fa-save:before,.fa-floppy-o:before{content:"\f0c7"} .fa-square:before{content:"\f0c8"} .fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:"\f0c9"} .fa-list-ul:before{content:"\f0ca"} .fa-list-ol:before{content:"\f0cb"} .fa-strikethrough:before{content:"\f0cc"} .fa-underline:before{content:"\f0cd"} .fa-table:before{content:"\f0ce"} .fa-magic:before{content:"\f0d0"} .fa-truck:before{content:"\f0d1"} .fa-pinterest:before{content:"\f0d2"} .fa-pinterest-square:before{content:"\f0d3"} .fa-google-plus-square:before{content:"\f0d4"} .fa-google-plus:before{content:"\f0d5"} .fa-money:before{content:"\f0d6"} .fa-caret-down:before{content:"\f0d7"} .fa-caret-up:before{content:"\f0d8"} .fa-caret-left:before{content:"\f0d9"} .fa-caret-right:before{content:"\f0da"} .fa-columns:before{content:"\f0db"} .fa-unsorted:before,.fa-sort:before{content:"\f0dc"} .fa-sort-down:before,.fa-sort-desc:before{content:"\f0dd"} .fa-sort-up:before,.fa-sort-asc:before{content:"\f0de"} .fa-envelope:before{content:"\f0e0"} .fa-linkedin:before{content:"\f0e1"} .fa-rotate-left:before,.fa-undo:before{content:"\f0e2"} .fa-legal:before,.fa-gavel:before{content:"\f0e3"} .fa-dashboard:before,.fa-tachometer:before{content:"\f0e4"} .fa-comment-o:before{content:"\f0e5"} .fa-comments-o:before{content:"\f0e6"} .fa-flash:before,.fa-bolt:before{content:"\f0e7"} .fa-sitemap:before{content:"\f0e8"} .fa-umbrella:before{content:"\f0e9"} .fa-paste:before,.fa-clipboard:before{content:"\f0ea"} .fa-lightbulb-o:before{content:"\f0eb"} .fa-exchange:before{content:"\f0ec"} .fa-cloud-download:before{content:"\f0ed"} .fa-cloud-upload:before{content:"\f0ee"} .fa-user-md:before{content:"\f0f0"} .fa-stethoscope:before{content:"\f0f1"} .fa-suitcase:before{content:"\f0f2"} .fa-bell-o:before{content:"\f0a2"} .fa-coffee:before{content:"\f0f4"} .fa-cutlery:before{content:"\f0f5"} .fa-file-text-o:before{content:"\f0f6"} .fa-building-o:before{content:"\f0f7"} .fa-hospital-o:before{content:"\f0f8"} .fa-ambulance:before{content:"\f0f9"} .fa-medkit:before{content:"\f0fa"} .fa-fighter-jet:before{content:"\f0fb"} .fa-beer:before{content:"\f0fc"} .fa-h-square:before{content:"\f0fd"} .fa-plus-square:before{content:"\f0fe"} .fa-angle-double-left:before{content:"\f100"} .fa-angle-double-right:before{content:"\f101"} .fa-angle-double-up:before{content:"\f102"} .fa-angle-double-down:before{content:"\f103"} .fa-angle-left:before{content:"\f104"} .fa-angle-right:before{content:"\f105"} .fa-angle-up:before{content:"\f106"} .fa-angle-down:before{content:"\f107"} .fa-desktop:before{content:"\f108"} .fa-laptop:before{content:"\f109"} .fa-tablet:before{content:"\f10a"} .fa-mobile-phone:before,.fa-mobile:before{content:"\f10b"} .fa-circle-o:before{content:"\f10c"} .fa-quote-left:before{content:"\f10d"} .fa-quote-right:before{content:"\f10e"} .fa-spinner:before{content:"\f110"} .fa-circle:before{content:"\f111"} .fa-mail-reply:before,.fa-reply:before{content:"\f112"} .fa-github-alt:before{content:"\f113"} .fa-folder-o:before{content:"\f114"} .fa-folder-open-o:before{content:"\f115"} .fa-smile-o:before{content:"\f118"} .fa-frown-o:before{content:"\f119"} .fa-meh-o:before{content:"\f11a"} .fa-gamepad:before{content:"\f11b"} .fa-keyboard-o:before{content:"\f11c"} .fa-flag-o:before{content:"\f11d"} .fa-flag-checkered:before{content:"\f11e"} .fa-terminal:before{content:"\f120"} .fa-code:before{content:"\f121"} .fa-mail-reply-all:before,.fa-reply-all:before{content:"\f122"} .fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:"\f123"} .fa-location-arrow:before{content:"\f124"} .fa-crop:before{content:"\f125"} .fa-code-fork:before{content:"\f126"} .fa-unlink:before,.fa-chain-broken:before{content:"\f127"} .fa-question:before{content:"\f128"} .fa-info:before{content:"\f129"} .fa-exclamation:before{content:"\f12a"} .fa-superscript:before{content:"\f12b"} .fa-subscript:before{content:"\f12c"} .fa-eraser:before{content:"\f12d"} .fa-puzzle-piece:before{content:"\f12e"} .fa-microphone:before{content:"\f130"} .fa-microphone-slash:before{content:"\f131"} .fa-shield:before{content:"\f132"} .fa-calendar-o:before{content:"\f133"} .fa-fire-extinguisher:before{content:"\f134"} .fa-rocket:before{content:"\f135"} .fa-maxcdn:before{content:"\f136"} .fa-chevron-circle-left:before{content:"\f137"} .fa-chevron-circle-right:before{content:"\f138"} .fa-chevron-circle-up:before{content:"\f139"} .fa-chevron-circle-down:before{content:"\f13a"} .fa-html5:before{content:"\f13b"} .fa-css3:before{content:"\f13c"} .fa-anchor:before{content:"\f13d"} .fa-unlock-alt:before{content:"\f13e"} .fa-bullseye:before{content:"\f140"} .fa-ellipsis-h:before{content:"\f141"} .fa-ellipsis-v:before{content:"\f142"} .fa-rss-square:before{content:"\f143"} .fa-play-circle:before{content:"\f144"} .fa-ticket:before{content:"\f145"} .fa-minus-square:before{content:"\f146"} .fa-minus-square-o:before{content:"\f147"} .fa-level-up:before{content:"\f148"} .fa-level-down:before{content:"\f149"} .fa-check-square:before{content:"\f14a"} .fa-pencil-square:before{content:"\f14b"} .fa-external-link-square:before{content:"\f14c"} .fa-share-square:before{content:"\f14d"} .fa-compass:before{content:"\f14e"} .fa-toggle-down:before,.fa-caret-square-o-down:before{content:"\f150"} .fa-toggle-up:before,.fa-caret-square-o-up:before{content:"\f151"} .fa-toggle-right:before,.fa-caret-square-o-right:before{content:"\f152"} .fa-euro:before,.fa-eur:before{content:"\f153"} .fa-gbp:before{content:"\f154"} .fa-dollar:before,.fa-usd:before{content:"\f155"} .fa-rupee:before,.fa-inr:before{content:"\f156"} .fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:"\f157"} .fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:"\f158"} .fa-won:before,.fa-krw:before{content:"\f159"} .fa-bitcoin:before,.fa-btc:before{content:"\f15a"} .fa-file:before{content:"\f15b"} .fa-file-text:before{content:"\f15c"} .fa-sort-alpha-asc:before{content:"\f15d"} .fa-sort-alpha-desc:before{content:"\f15e"} .fa-sort-amount-asc:before{content:"\f160"} .fa-sort-amount-desc:before{content:"\f161"} .fa-sort-numeric-asc:before{content:"\f162"} .fa-sort-numeric-desc:before{content:"\f163"} .fa-thumbs-up:before{content:"\f164"} .fa-thumbs-down:before{content:"\f165"} .fa-youtube-square:before{content:"\f166"} .fa-youtube:before{content:"\f167"} .fa-xing:before{content:"\f168"} .fa-xing-square:before{content:"\f169"} .fa-youtube-play:before{content:"\f16a"} .fa-dropbox:before{content:"\f16b"} .fa-stack-overflow:before{content:"\f16c"} .fa-instagram:before{content:"\f16d"} .fa-flickr:before{content:"\f16e"} .fa-adn:before{content:"\f170"} .fa-bitbucket:before{content:"\f171"} .fa-bitbucket-square:before{content:"\f172"} .fa-tumblr:before{content:"\f173"} .fa-tumblr-square:before{content:"\f174"} .fa-long-arrow-down:before{content:"\f175"} .fa-long-arrow-up:before{content:"\f176"} .fa-long-arrow-left:before{content:"\f177"} .fa-long-arrow-right:before{content:"\f178"} .fa-apple:before{content:"\f179"} .fa-windows:before{content:"\f17a"} .fa-android:before{content:"\f17b"} .fa-linux:before{content:"\f17c"} .fa-dribbble:before{content:"\f17d"} .fa-skype:before{content:"\f17e"} .fa-foursquare:before{content:"\f180"} .fa-trello:before{content:"\f181"} .fa-female:before{content:"\f182"} .fa-male:before{content:"\f183"} .fa-gittip:before,.fa-gratipay:before{content:"\f184"} .fa-sun-o:before{content:"\f185"} .fa-moon-o:before{content:"\f186"} .fa-archive:before{content:"\f187"} .fa-bug:before{content:"\f188"} .fa-vk:before{content:"\f189"} .fa-weibo:before{content:"\f18a"} .fa-renren:before{content:"\f18b"} .fa-pagelines:before{content:"\f18c"} .fa-stack-exchange:before{content:"\f18d"} .fa-arrow-circle-o-right:before{content:"\f18e"} .fa-arrow-circle-o-left:before{content:"\f190"} .fa-toggle-left:before,.fa-caret-square-o-left:before{content:"\f191"} .fa-dot-circle-o:before{content:"\f192"} .fa-wheelchair:before{content:"\f193"} .fa-vimeo-square:before{content:"\f194"} .fa-turkish-lira:before,.fa-try:before{content:"\f195"} .fa-plus-square-o:before{content:"\f196"} .fa-space-shuttle:before{content:"\f197"} .fa-slack:before{content:"\f198"} .fa-envelope-square:before{content:"\f199"} .fa-wordpress:before{content:"\f19a"} .fa-openid:before{content:"\f19b"} .fa-institution:before,.fa-bank:before,.fa-university:before{content:"\f19c"} .fa-mortar-board:before,.fa-graduation-cap:before{content:"\f19d"} .fa-yahoo:before{content:"\f19e"} .fa-google:before{content:"\f1a0"} .fa-reddit:before{content:"\f1a1"} .fa-reddit-square:before{content:"\f1a2"} .fa-stumbleupon-circle:before{content:"\f1a3"} .fa-stumbleupon:before{content:"\f1a4"} .fa-delicious:before{content:"\f1a5"} .fa-digg:before{content:"\f1a6"} .fa-pied-piper-pp:before{content:"\f1a7"} .fa-pied-piper-alt:before{content:"\f1a8"} .fa-drupal:before{content:"\f1a9"} .fa-joomla:before{content:"\f1aa"} .fa-language:before{content:"\f1ab"} .fa-fax:before{content:"\f1ac"} .fa-building:before{content:"\f1ad"} .fa-child:before{content:"\f1ae"} .fa-paw:before{content:"\f1b0"} .fa-spoon:before{content:"\f1b1"} .fa-cube:before{content:"\f1b2"} .fa-cubes:before{content:"\f1b3"} .fa-behance:before{content:"\f1b4"} .fa-behance-square:before{content:"\f1b5"} .fa-steam:before{content:"\f1b6"} .fa-steam-square:before{content:"\f1b7"} .fa-recycle:before{content:"\f1b8"} .fa-automobile:before,.fa-car:before{content:"\f1b9"} .fa-cab:before,.fa-taxi:before{content:"\f1ba"} .fa-tree:before{content:"\f1bb"} .fa-spotify:before{content:"\f1bc"} .fa-deviantart:before{content:"\f1bd"} .fa-soundcloud:before{content:"\f1be"} .fa-database:before{content:"\f1c0"} .fa-file-pdf-o:before{content:"\f1c1"} .fa-file-word-o:before{content:"\f1c2"} .fa-file-excel-o:before{content:"\f1c3"} .fa-file-powerpoint-o:before{content:"\f1c4"} .fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:"\f1c5"} .fa-file-zip-o:before,.fa-file-archive-o:before{content:"\f1c6"} .fa-file-sound-o:before,.fa-file-audio-o:before{content:"\f1c7"} .fa-file-movie-o:before,.fa-file-video-o:before{content:"\f1c8"} .fa-file-code-o:before{content:"\f1c9"} .fa-vine:before{content:"\f1ca"} .fa-codepen:before{content:"\f1cb"} .fa-jsfiddle:before{content:"\f1cc"} .fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:"\f1cd"} .fa-circle-o-notch:before{content:"\f1ce"} .fa-ra:before,.fa-resistance:before,.fa-rebel:before{content:"\f1d0"} .fa-ge:before,.fa-empire:before{content:"\f1d1"} .fa-git-square:before{content:"\f1d2"} .fa-git:before{content:"\f1d3"} .fa-y-combinator-square:before,.fa-yc-square:before,.fa-hacker-news:before{content:"\f1d4"} .fa-tencent-weibo:before{content:"\f1d5"} .fa-qq:before{content:"\f1d6"} .fa-wechat:before,.fa-weixin:before{content:"\f1d7"} .fa-send:before,.fa-paper-plane:before{content:"\f1d8"} .fa-send-o:before,.fa-paper-plane-o:before{content:"\f1d9"} .fa-history:before{content:"\f1da"} .fa-circle-thin:before{content:"\f1db"} .fa-header:before{content:"\f1dc"} .fa-paragraph:before{content:"\f1dd"} .fa-sliders:before{content:"\f1de"} .fa-share-alt:before{content:"\f1e0"} .fa-share-alt-square:before{content:"\f1e1"} .fa-bomb:before{content:"\f1e2"} .fa-soccer-ball-o:before,.fa-futbol-o:before{content:"\f1e3"} .fa-tty:before{content:"\f1e4"} .fa-binoculars:before{content:"\f1e5"} .fa-plug:before{content:"\f1e6"} .fa-slideshare:before{content:"\f1e7"} .fa-twitch:before{content:"\f1e8"} .fa-yelp:before{content:"\f1e9"} .fa-newspaper-o:before{content:"\f1ea"} .fa-wifi:before{content:"\f1eb"} .fa-calculator:before{content:"\f1ec"} .fa-paypal:before{content:"\f1ed"} .fa-google-wallet:before{content:"\f1ee"} .fa-cc-visa:before{content:"\f1f0"} .fa-cc-mastercard:before{content:"\f1f1"} .fa-cc-discover:before{content:"\f1f2"} .fa-cc-amex:before{content:"\f1f3"} .fa-cc-paypal:before{content:"\f1f4"} .fa-cc-stripe:before{content:"\f1f5"} .fa-bell-slash:before{content:"\f1f6"} .fa-bell-slash-o:before{content:"\f1f7"} .fa-trash:before{content:"\f1f8"} .fa-copyright:before{content:"\f1f9"} .fa-at:before{content:"\f1fa"} .fa-eyedropper:before{content:"\f1fb"} .fa-paint-brush:before{content:"\f1fc"} .fa-birthday-cake:before{content:"\f1fd"} .fa-area-chart:before{content:"\f1fe"} .fa-pie-chart:before{content:"\f200"} .fa-line-chart:before{content:"\f201"} .fa-lastfm:before{content:"\f202"} .fa-lastfm-square:before{content:"\f203"} .fa-toggle-off:before{content:"\f204"} .fa-toggle-on:before{content:"\f205"} .fa-bicycle:before{content:"\f206"} .fa-bus:before{content:"\f207"} .fa-ioxhost:before{content:"\f208"} .fa-angellist:before{content:"\f209"} .fa-cc:before{content:"\f20a"} .fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:"\f20b"} .fa-meanpath:before{content:"\f20c"} .fa-buysellads:before{content:"\f20d"} .fa-connectdevelop:before{content:"\f20e"} .fa-dashcube:before{content:"\f210"} .fa-forumbee:before{content:"\f211"} .fa-leanpub:before{content:"\f212"} .fa-sellsy:before{content:"\f213"} .fa-shirtsinbulk:before{content:"\f214"} .fa-simplybuilt:before{content:"\f215"} .fa-skyatlas:before{content:"\f216"} .fa-cart-plus:before{content:"\f217"} .fa-cart-arrow-down:before{content:"\f218"} .fa-diamond:before{content:"\f219"} .fa-ship:before{content:"\f21a"} .fa-user-secret:before{content:"\f21b"} .fa-motorcycle:before{content:"\f21c"} .fa-street-view:before{content:"\f21d"} .fa-heartbeat:before{content:"\f21e"} .fa-venus:before{content:"\f221"} .fa-mars:before{content:"\f222"} .fa-mercury:before{content:"\f223"} .fa-intersex:before,.fa-transgender:before{content:"\f224"} .fa-transgender-alt:before{content:"\f225"} .fa-venus-double:before{content:"\f226"} .fa-mars-double:before{content:"\f227"} .fa-venus-mars:before{content:"\f228"} .fa-mars-stroke:before{content:"\f229"} .fa-mars-stroke-v:before{content:"\f22a"} .fa-mars-stroke-h:before{content:"\f22b"} .fa-neuter:before{content:"\f22c"} .fa-genderless:before{content:"\f22d"} .fa-facebook-official:before{content:"\f230"} .fa-pinterest-p:before{content:"\f231"} .fa-whatsapp:before{content:"\f232"} .fa-server:before{content:"\f233"} .fa-user-plus:before{content:"\f234"} .fa-user-times:before{content:"\f235"} .fa-hotel:before,.fa-bed:before{content:"\f236"} .fa-viacoin:before{content:"\f237"} .fa-train:before{content:"\f238"} .fa-subway:before{content:"\f239"} .fa-medium:before{content:"\f23a"} .fa-yc:before,.fa-y-combinator:before{content:"\f23b"} .fa-optin-monster:before{content:"\f23c"} .fa-opencart:before{content:"\f23d"} .fa-expeditedssl:before{content:"\f23e"} .fa-battery-4:before,.fa-battery:before,.fa-battery-full:before{content:"\f240"} .fa-battery-3:before,.fa-battery-three-quarters:before{content:"\f241"} .fa-battery-2:before,.fa-battery-half:before{content:"\f242"} .fa-battery-1:before,.fa-battery-quarter:before{content:"\f243"} .fa-battery-0:before,.fa-battery-empty:before{content:"\f244"} .fa-mouse-pointer:before{content:"\f245"} .fa-i-cursor:before{content:"\f246"} .fa-object-group:before{content:"\f247"} .fa-object-ungroup:before{content:"\f248"} .fa-sticky-note:before{content:"\f249"} .fa-sticky-note-o:before{content:"\f24a"} .fa-cc-jcb:before{content:"\f24b"} .fa-cc-diners-club:before{content:"\f24c"} .fa-clone:before{content:"\f24d"} .fa-balance-scale:before{content:"\f24e"} .fa-hourglass-o:before{content:"\f250"} .fa-hourglass-1:before,.fa-hourglass-start:before{content:"\f251"} .fa-hourglass-2:before,.fa-hourglass-half:before{content:"\f252"} .fa-hourglass-3:before,.fa-hourglass-end:before{content:"\f253"} .fa-hourglass:before{content:"\f254"} .fa-hand-grab-o:before,.fa-hand-rock-o:before{content:"\f255"} .fa-hand-stop-o:before,.fa-hand-paper-o:before{content:"\f256"} .fa-hand-scissors-o:before{content:"\f257"} .fa-hand-lizard-o:before{content:"\f258"} .fa-hand-spock-o:before{content:"\f259"} .fa-hand-pointer-o:before{content:"\f25a"} .fa-hand-peace-o:before{content:"\f25b"} .fa-trademark:before{content:"\f25c"} .fa-registered:before{content:"\f25d"} .fa-creative-commons:before{content:"\f25e"} .fa-gg:before{content:"\f260"} .fa-gg-circle:before{content:"\f261"} .fa-tripadvisor:before{content:"\f262"} .fa-odnoklassniki:before{content:"\f263"} .fa-odnoklassniki-square:before{content:"\f264"} .fa-get-pocket:before{content:"\f265"} .fa-wikipedia-w:before{content:"\f266"} .fa-safari:before{content:"\f267"} .fa-chrome:before{content:"\f268"} .fa-firefox:before{content:"\f269"} .fa-opera:before{content:"\f26a"} .fa-internet-explorer:before{content:"\f26b"} .fa-tv:before,.fa-television:before{content:"\f26c"} .fa-contao:before{content:"\f26d"} .fa-500px:before{content:"\f26e"} .fa-amazon:before{content:"\f270"} .fa-calendar-plus-o:before{content:"\f271"} .fa-calendar-minus-o:before{content:"\f272"} .fa-calendar-times-o:before{content:"\f273"} .fa-calendar-check-o:before{content:"\f274"} .fa-industry:before{content:"\f275"} .fa-map-pin:before{content:"\f276"} .fa-map-signs:before{content:"\f277"} .fa-map-o:before{content:"\f278"} .fa-map:before{content:"\f279"} .fa-commenting:before{content:"\f27a"} .fa-commenting-o:before{content:"\f27b"} .fa-houzz:before{content:"\f27c"} .fa-vimeo:before{content:"\f27d"} .fa-black-tie:before{content:"\f27e"} .fa-fonticons:before{content:"\f280"} .fa-reddit-alien:before{content:"\f281"} .fa-edge:before{content:"\f282"} .fa-credit-card-alt:before{content:"\f283"} .fa-codiepie:before{content:"\f284"} .fa-modx:before{content:"\f285"} .fa-fort-awesome:before{content:"\f286"} .fa-usb:before{content:"\f287"} .fa-product-hunt:before{content:"\f288"} .fa-mixcloud:before{content:"\f289"} .fa-scribd:before{content:"\f28a"} .fa-pause-circle:before{content:"\f28b"} .fa-pause-circle-o:before{content:"\f28c"} .fa-stop-circle:before{content:"\f28d"} .fa-stop-circle-o:before{content:"\f28e"} .fa-shopping-bag:before{content:"\f290"} .fa-shopping-basket:before{content:"\f291"} .fa-hashtag:before{content:"\f292"} .fa-bluetooth:before{content:"\f293"} .fa-bluetooth-b:before{content:"\f294"} .fa-percent:before{content:"\f295"} .fa-gitlab:before{content:"\f296"} .fa-wpbeginner:before{content:"\f297"} .fa-wpforms:before{content:"\f298"} .fa-envira:before{content:"\f299"} .fa-universal-access:before{content:"\f29a"} .fa-wheelchair-alt:before{content:"\f29b"} .fa-question-circle-o:before{content:"\f29c"} .fa-blind:before{content:"\f29d"} .fa-audio-description:before{content:"\f29e"} .fa-volume-control-phone:before{content:"\f2a0"} .fa-braille:before{content:"\f2a1"} .fa-assistive-listening-systems:before{content:"\f2a2"} .fa-asl-interpreting:before,.fa-american-sign-language-interpreting:before{content:"\f2a3"} .fa-deafness:before,.fa-hard-of-hearing:before,.fa-deaf:before{content:"\f2a4"} .fa-glide:before{content:"\f2a5"} .fa-glide-g:before{content:"\f2a6"} .fa-signing:before,.fa-sign-language:before{content:"\f2a7"} .fa-low-vision:before{content:"\f2a8"} .fa-viadeo:before{content:"\f2a9"} .fa-viadeo-square:before{content:"\f2aa"} .fa-snapchat:before{content:"\f2ab"} .fa-snapchat-ghost:before{content:"\f2ac"} .fa-snapchat-square:before{content:"\f2ad"} .fa-pied-piper:before{content:"\f2ae"} .fa-first-order:before{content:"\f2b0"} .fa-yoast:before{content:"\f2b1"} .fa-themeisle:before{content:"\f2b2"} .fa-google-plus-circle:before,.fa-google-plus-official:before{content:"\f2b3"} .fa-fa:before,.fa-font-awesome:before{content:"\f2b4"} .fa-handshake-o:before{content:"\f2b5"} .fa-envelope-open:before{content:"\f2b6"} .fa-envelope-open-o:before{content:"\f2b7"} .fa-linode:before{content:"\f2b8"} .fa-address-book:before{content:"\f2b9"} .fa-address-book-o:before{content:"\f2ba"} .fa-vcard:before,.fa-address-card:before{content:"\f2bb"} .fa-vcard-o:before,.fa-address-card-o:before{content:"\f2bc"} .fa-user-circle:before{content:"\f2bd"} .fa-user-circle-o:before{content:"\f2be"} .fa-user-o:before{content:"\f2c0"} .fa-id-badge:before{content:"\f2c1"} .fa-drivers-license:before,.fa-id-card:before{content:"\f2c2"} .fa-drivers-license-o:before,.fa-id-card-o:before{content:"\f2c3"} .fa-quora:before{content:"\f2c4"} .fa-free-code-camp:before{content:"\f2c5"} .fa-telegram:before{content:"\f2c6"} .fa-thermometer-4:before,.fa-thermometer:before,.fa-thermometer-full:before{content:"\f2c7"} .fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:"\f2c8"} .fa-thermometer-2:before,.fa-thermometer-half:before{content:"\f2c9"} .fa-thermometer-1:before,.fa-thermometer-quarter:before{content:"\f2ca"} .fa-thermometer-0:before,.fa-thermometer-empty:before{content:"\f2cb"} .fa-shower:before{content:"\f2cc"} .fa-bathtub:before,.fa-s15:before,.fa-bath:before{content:"\f2cd"} .fa-podcast:before{content:"\f2ce"} .fa-window-maximize:before{content:"\f2d0"} .fa-window-minimize:before{content:"\f2d1"} .fa-window-restore:before{content:"\f2d2"} .fa-times-rectangle:before,.fa-window-close:before{content:"\f2d3"} .fa-times-rectangle-o:before,.fa-window-close-o:before{content:"\f2d4"} .fa-bandcamp:before{content:"\f2d5"} .fa-grav:before{content:"\f2d6"} .fa-etsy:before{content:"\f2d7"} .fa-imdb:before{content:"\f2d8"} .fa-ravelry:before{content:"\f2d9"} .fa-eercast:before{content:"\f2da"} .fa-microchip:before{content:"\f2db"} .fa-snowflake-o:before{content:"\f2dc"} .fa-superpowers:before{content:"\f2dd"} .fa-wpexplorer:before{content:"\f2de"} .fa-meetup:before{content:"\f2e0"} .sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0, 0, 0, 0);border:0} .sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}
diff --git a/docs/old_source/css/fonts/FontAwesome.otf b/docs/old_source/css/fonts/FontAwesome.otf
deleted file mode 100644
index 401ec0f3..00000000
Binary files a/docs/old_source/css/fonts/FontAwesome.otf and /dev/null differ
diff --git a/docs/old_source/css/fonts/fontawesome-webfont.eot b/docs/old_source/css/fonts/fontawesome-webfont.eot
deleted file mode 100644
index e9f60ca9..00000000
Binary files a/docs/old_source/css/fonts/fontawesome-webfont.eot and /dev/null differ
diff --git a/docs/old_source/css/fonts/fontawesome-webfont.svg b/docs/old_source/css/fonts/fontawesome-webfont.svg
deleted file mode 100644
index 5abb1eda..00000000
--- a/docs/old_source/css/fonts/fontawesome-webfont.svg
+++ /dev/null
@@ -1 +0,0 @@
-
Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 By ,,, Copyright Dave Gandy 2016. All rights reserved.
\ No newline at end of file
diff --git a/docs/old_source/css/fonts/fontawesome-webfont.ttf b/docs/old_source/css/fonts/fontawesome-webfont.ttf
deleted file mode 100644
index 35acda2f..00000000
Binary files a/docs/old_source/css/fonts/fontawesome-webfont.ttf and /dev/null differ
diff --git a/docs/old_source/css/fonts/fontawesome-webfont.woff b/docs/old_source/css/fonts/fontawesome-webfont.woff
deleted file mode 100644
index 400014a4..00000000
Binary files a/docs/old_source/css/fonts/fontawesome-webfont.woff and /dev/null differ
diff --git a/docs/old_source/css/fonts/fontawesome-webfont.woff2 b/docs/old_source/css/fonts/fontawesome-webfont.woff2
deleted file mode 100644
index 4d13fc60..00000000
Binary files a/docs/old_source/css/fonts/fontawesome-webfont.woff2 and /dev/null differ
diff --git a/docs/old_source/css/modern-business.css b/docs/old_source/css/modern-business.css
deleted file mode 100755
index b0323c5c..00000000
--- a/docs/old_source/css/modern-business.css
+++ /dev/null
@@ -1,89 +0,0 @@
-/*!
- * Start Bootstrap - Modern Business HTML Template (http://startbootstrap.com)
- * Code licensed under the Apache License v2.0.
- * For details, see http://www.apache.org/licenses/LICENSE-2.0.
- */
-
-/* Global Styles */
-
-html,
-body {
- height: 100%;
-}
-
-.img-portfolio {
- margin-bottom: 30px;
-}
-
-.img-hover:hover {
- opacity: 0.8;
-}
-
-/* Home Page Carousel */
-
-header.carousel {
- height: 50%;
-}
-
-header.carousel .item,
-header.carousel .item.active,
-header.carousel .carousel-inner {
- height: 100%;
-}
-
-header.carousel .fill {
- width: 100%;
- height: 100%;
- background-position: center;
- background-size: cover;
-}
-
-/* 404 Page Styles */
-
-.error-404 {
- font-size: 100px;
-}
-
-/* Pricing Page Styles */
-
-.price {
- display: block;
- font-size: 50px;
- line-height: 50px;
-}
-
-.price sup {
- top: -20px;
- left: 2px;
- font-size: 20px;
-}
-
-.period {
- display: block;
- font-style: italic;
-}
-
-/* Footer Styles */
-
-footer {
- margin: 50px 0;
-}
-
-/* Responsive Styles */
-
-@media(max-width:991px) {
- .client-img,
- .img-related {
- margin-bottom: 30px;
- }
-}
-
-@media(max-width:767px) {
- .img-portfolio {
- margin-bottom: 15px;
- }
-
- header.carousel .carousel {
- height: 70%;
- }
-}
diff --git a/docs/old_source/css/printstyles.css b/docs/old_source/css/printstyles.css
deleted file mode 100644
index 64d0f631..00000000
--- a/docs/old_source/css/printstyles.css
+++ /dev/null
@@ -1,159 +0,0 @@
-
-/*body.print .container {max-width: 650px;}*/
-
-body {
- font-size:14px;
-}
-.nav ul li a {border-top:0px; background-color:transparent; color: #808080; }
-#navig a[href] {color: #595959 !important;}
-table .table {max-width:650px;}
-
-#navig li.sectionHead {font-weight: bold; font-size: 18px; color: #595959 !important; }
-#navig li {font-weight: normal; }
-
-#navig a[href]::after { content: leader(".") target-counter(attr(href), page); }
-
-a[href]::after {
- content: " (page " target-counter(attr(href), page) ")"
-}
-
-a[href^="http:"]::after, a[href^="https:"]::after {
- content: "";
-}
-
-a[href] {
- color: blue !important;
-}
-a[href*="mailto"]::after, a[data-toggle="tooltip"]::after, a[href].noCrossRef::after {
- content: "";
-}
-
-
-@page {
- margin: 60pt 90pt 60pt 90pt;
- font-family: sans-serif;
- font-style:none;
- color: gray;
-
-}
-
-.printTitle {
- line-height:30pt;
- font-size:27pt;
- font-weight: bold;
- letter-spacing: -.5px;
- margin-bottom:25px;
-}
-
-.printSubtitle {
- font-size: 19pt;
- color: #cccccc !important;
- font-family: "Grotesque MT Light";
- line-height: 22pt;
- letter-spacing: -.5px;
- margin-bottom:20px;
-}
-.printTitleArea hr {
- color: #999999 !important;
- height: 2px;
- width: 100%;
-}
-
-.printTitleImage {
- max-width:300px;
- margin-bottom:200px;
-}
-
-
-.printTitleImage {
- max-width: 250px;
-}
-
-#navig {
- /*page-break-before: always;*/
-}
-
-.copyrightBoilerplate {
- page-break-before:always;
- font-size:14px;
-}
-
-.lastGeneratedDate {
- font-style: italic;
- font-size:14px;
- color: gray;
-}
-
-.alert a {
- text-decoration: none !important;
-}
-
-
-body.title { page: title }
-
-@page title {
- @top-left {
- content: " ";
- }
- @top-right {
- content: " "
- }
- @bottom-right {
- content: " ";
- }
- @bottom-left {
- content: " ";
- }
-}
-
-body.frontmatter { page: frontmatter }
-body.frontmatter {counter-reset: page 1}
-
-
-@page frontmatter {
- @top-left {
- content: prince-script(guideName);
- }
- @top-right {
- content: prince-script(datestamp);
- }
- @bottom-right {
- content: counter(page, lower-roman);
- }
- @bottom-left {
- content: "youremail@domain.com"; }
-}
-
-body.first_page {counter-reset: page 1}
-
-h1 { string-set: doctitle content() }
-
-@page {
- @top-left {
- content: string(doctitle);
- font-size: 11px;
- font-style: italic;
- }
- @top-right {
- content: prince-script(datestamp);
- font-size: 11px;
- }
-
- @bottom-right {
- content: "Page " counter(page);
- font-size: 11px;
- }
- @bottom-left {
- content: prince-script(guideName);
- font-size: 11px;
- }
-}
-.alert {
- background-color: #fafafa !important;
- border-color: #dedede !important;
- color: black;
-}
-
-pre {
- background-color: #fafafa;
-}
diff --git a/docs/old_source/css/syntax.css b/docs/old_source/css/syntax.css
deleted file mode 100644
index 1e651cf7..00000000
--- a/docs/old_source/css/syntax.css
+++ /dev/null
@@ -1,60 +0,0 @@
-.highlight { background: #ffffff; }
-.highlight .c { color: #999988; font-style: italic } /* Comment */
-.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
-.highlight .k { font-weight: bold } /* Keyword */
-.highlight .o { font-weight: bold } /* Operator */
-.highlight .cm { color: #999988; font-style: italic } /* Comment.Multiline */
-.highlight .cp { color: #999999; font-weight: bold } /* Comment.Preproc */
-.highlight .c1 { color: #999988; font-style: italic } /* Comment.Single */
-.highlight .cs { color: #999999; font-weight: bold; font-style: italic } /* Comment.Special */
-.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
-.highlight .gd .x { color: #000000; background-color: #ffaaaa } /* Generic.Deleted.Specific */
-.highlight .ge { font-style: italic } /* Generic.Emph */
-.highlight .gr { color: #aa0000 } /* Generic.Error */
-.highlight .gh { color: #999999 } /* Generic.Heading */
-.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
-.highlight .gi .x { color: #000000; background-color: #aaffaa } /* Generic.Inserted.Specific */
-.highlight .go { color: #888888 } /* Generic.Output */
-.highlight .gp { color: #555555 } /* Generic.Prompt */
-.highlight .gs { font-weight: bold } /* Generic.Strong */
-.highlight .gu { color: #aaaaaa } /* Generic.Subheading */
-.highlight .gt { color: #aa0000 } /* Generic.Traceback */
-.highlight .kc { font-weight: bold } /* Keyword.Constant */
-.highlight .kd { font-weight: bold } /* Keyword.Declaration */
-.highlight .kp { font-weight: bold } /* Keyword.Pseudo */
-.highlight .kr { font-weight: bold } /* Keyword.Reserved */
-.highlight .kt { color: #445588; font-weight: bold } /* Keyword.Type */
-.highlight .m { color: #009999 } /* Literal.Number */
-.highlight .s { color: #d14 } /* Literal.String */
-.highlight .na { color: #008080 } /* Name.Attribute */
-.highlight .nb { color: #0086B3 } /* Name.Builtin */
-.highlight .nc { color: #445588; font-weight: bold } /* Name.Class */
-.highlight .no { color: #008080 } /* Name.Constant */
-.highlight .ni { color: #800080 } /* Name.Entity */
-.highlight .ne { color: #990000; font-weight: bold } /* Name.Exception */
-.highlight .nf { color: #990000; font-weight: bold } /* Name.Function */
-.highlight .nn { color: #555555 } /* Name.Namespace */
-.highlight .nt { color: #000080 } /* Name.Tag */
-.highlight .nv { color: #008080 } /* Name.Variable */
-.highlight .ow { font-weight: bold } /* Operator.Word */
-.highlight .w { color: #bbbbbb } /* Text.Whitespace */
-.highlight .mf { color: #009999 } /* Literal.Number.Float */
-.highlight .mh { color: #009999 } /* Literal.Number.Hex */
-.highlight .mi { color: #009999 } /* Literal.Number.Integer */
-.highlight .mo { color: #009999 } /* Literal.Number.Oct */
-.highlight .sb { color: #d14 } /* Literal.String.Backtick */
-.highlight .sc { color: #d14 } /* Literal.String.Char */
-.highlight .sd { color: #d14 } /* Literal.String.Doc */
-.highlight .s2 { color: #d14 } /* Literal.String.Double */
-.highlight .se { color: #d14 } /* Literal.String.Escape */
-.highlight .sh { color: #d14 } /* Literal.String.Heredoc */
-.highlight .si { color: #d14 } /* Literal.String.Interpol */
-.highlight .sx { color: #d14 } /* Literal.String.Other */
-.highlight .sr { color: #009926 } /* Literal.String.Regex */
-.highlight .s1 { color: #d14 } /* Literal.String.Single */
-.highlight .ss { color: #990073 } /* Literal.String.Symbol */
-.highlight .bp { color: #999999 } /* Name.Builtin.Pseudo */
-.highlight .vc { color: #008080 } /* Name.Variable.Class */
-.highlight .vg { color: #008080 } /* Name.Variable.Global */
-.highlight .vi { color: #008080 } /* Name.Variable.Instance */
-.highlight .il { color: #009999 } /* Literal.Number.Integer.Long */
\ No newline at end of file
diff --git a/docs/old_source/css/theme-blue.css b/docs/old_source/css/theme-blue.css
deleted file mode 100644
index 8027c827..00000000
--- a/docs/old_source/css/theme-blue.css
+++ /dev/null
@@ -1,121 +0,0 @@
-.summary {
- color: #808080;
- border-left: 5px solid #ED1951;
- font-size:16px;
-}
-
-
-h3 {color: #000000; }
-h4 {color: #000000; }
-
-.nav-tabs > li.active > a, .nav-tabs > li.active > a:hover, .nav-tabs > li.active > a:focus {
- background-color: #248ec2;
- color: white;
-}
-
-.nav > li.active > a {
- background-color: #347DBE;
-}
-
-.nav > li > a:hover {
- background-color: #248ec2;
-}
-
-div.navbar-collapse .dropdown-menu > li > a:hover {
- background-color: #347DBE;
-}
-
-.nav li.thirdlevel > a {
- background-color: #FAFAFA !important;
- color: #248EC2;
- font-weight: bold;
-}
-
-a[data-toggle="tooltip"] {
- color: #649345;
- font-style: italic;
- cursor: default;
-}
-
-.navbar-inverse {
- background-color: #347DBE;
- border-color: #015CAE;
-}
-.navbar-inverse .navbar-nav>li>a, .navbar-inverse .navbar-brand {
- color: white;
-}
-
-.navbar-inverse .navbar-nav>li>a:hover, a.fa.fa-home.fa-lg.navbar-brand:hover {
- color: #f0f0f0;
-}
-
-a.navbar-brand:hover {
- color: #f0f0f0;
-}
-
-.navbar-inverse .navbar-nav > .open > a, .navbar-inverse .navbar-nav > .open > a:hover, .navbar-inverse .navbar-nav > .open > a:focus {
- color: #015CAE;
-}
-
-.navbar-inverse .navbar-nav > .open > a, .navbar-inverse .navbar-nav > .open > a:hover, .navbar-inverse .navbar-nav > .open > a:focus {
- background-color: #015CAE;
- color: #ffffff;
-}
-
-.navbar-inverse .navbar-collapse, .navbar-inverse .navbar-form {
- border-color: #248ec2 !important;
-}
-
-.btn-primary {
- color: #ffffff;
- background-color: #347DBE;
- border-color: #347DBE;
-}
-
-.navbar-inverse .navbar-nav > .active > a, .navbar-inverse .navbar-nav > .active > a:hover, .navbar-inverse .navbar-nav > .active > a:focus {
- background-color: #347DBE;
-}
-
-.btn-primary:hover,
-.btn-primary:focus,
-.btn-primary:active,
-.btn-primary.active,
-.open .dropdown-toggle.btn-primary {
- background-color: #248ec2;
- border-color: #347DBE;
-}
-
-.printTitle {
- color: #015CAE !important;
-}
-
-body.print h1 {color: #015CAE !important; font-size:28px !important;}
-body.print h2 {color: #595959 !important; font-size:20px !important;}
-body.print h3 {color: #E50E51 !important; font-size:14px !important;}
-body.print h4 {color: #679DCE !important; font-size:14px; font-style: italic !important;}
-
-.anchorjs-link:hover {
- color: #216f9b;
-}
-
-div.sidebarTitle {
- color: #015CAE;
-}
-
-li.sidebarTitle {
- margin-top:20px;
- font-weight:normal;
- font-size:130%;
- color: #ED1951;
- margin-bottom:10px;
- margin-left: 5px;
-
-}
-
-.navbar-inverse .navbar-toggle:focus, .navbar-inverse .navbar-toggle:hover {
- background-color: #015CAE;
-}
-
-.navbar-inverse .navbar-toggle {
- border-color: #015CAE;
-}
diff --git a/docs/old_source/css/theme-green.css b/docs/old_source/css/theme-green.css
deleted file mode 100644
index 4991586b..00000000
--- a/docs/old_source/css/theme-green.css
+++ /dev/null
@@ -1,110 +0,0 @@
-.summary {
- color: #808080;
- border-left: 5px solid #E50E51;
- font-size:16px;
-}
-
-
-h3 {color: #E50E51; }
-h4 {color: #808080; }
-
-.nav-tabs > li.active > a, .nav-tabs > li.active > a:hover, .nav-tabs > li.active > a:focus {
- background-color: #248ec2;
- color: white;
-}
-
-.nav > li.active > a {
- background-color: #72ac4a;
-}
-
-.nav > li > a:hover {
- background-color: #72ac4a;
-}
-
-div.navbar-collapse .dropdown-menu > li > a:hover {
- background-color: #72ac4a;
-}
-
-.navbar-inverse .navbar-nav>li>a, .navbar-inverse .navbar-brand {
- color: white;
-}
-
-.navbar-inverse .navbar-nav>li>a:hover, a.fa.fa-home.fa-lg.navbar-brand:hover {
- color: #f0f0f0;
-}
-
-.nav li.thirdlevel > a {
- background-color: #FAFAFA !important;
- color: #72ac4a;
- font-weight: bold;
-}
-
-a[data-toggle="tooltip"] {
- color: #649345;
- font-style: italic;
- cursor: default;
-}
-
-.navbar-inverse {
- background-color: #72ac4a;
- border-color: #5b893c;
-}
-
-.navbar-inverse .navbar-nav > .open > a, .navbar-inverse .navbar-nav > .open > a:hover, .navbar-inverse .navbar-nav > .open > a:focus {
- color: #5b893c;
-}
-
-.navbar-inverse .navbar-nav > .open > a, .navbar-inverse .navbar-nav > .open > a:hover, .navbar-inverse .navbar-nav > .open > a:focus {
- background-color: #5b893c;
- color: #ffffff;
-}
-
-/* not sure if using this ...*/
-.navbar-inverse .navbar-collapse, .navbar-inverse .navbar-form {
- border-color: #72ac4a !important;
-}
-
-.btn-primary {
- color: #ffffff;
- background-color: #5b893c;
- border-color: #5b893c;
-}
-
-.btn-primary:hover,
-.btn-primary:focus,
-.btn-primary:active,
-.btn-primary.active,
-.open .dropdown-toggle.btn-primary {
- background-color: #72ac4a;
- border-color: #5b893c;
-}
-
-.printTitle {
- color: #5b893c !important;
-}
-
-body.print h1 {color: #5b893c !important; font-size:28px;}
-body.print h2 {color: #595959 !important; font-size:24px;}
-body.print h3 {color: #E50E51 !important; font-size:14px;}
-body.print h4 {color: #679DCE !important; font-size:14px; font-style: italic;}
-
-.anchorjs-link:hover {
- color: #4f7233;
-}
-
-div.sidebarTitle {
- color: #E50E51;
-}
-
-li.sidebarTitle {
- margin-top:20px;
- font-weight:normal;
- font-size:130%;
- color: #ED1951;
- margin-bottom:10px;
- margin-left: 5px;
-}
-
-.navbar-inverse .navbar-toggle:focus, .navbar-inverse .navbar-toggle:hover {
- background-color: #E50E51;
-}
diff --git a/docs/old_source/datagenerator.html b/docs/old_source/datagenerator.html
deleted file mode 100644
index 32d77c83..00000000
--- a/docs/old_source/datagenerator.html
+++ /dev/null
@@ -1,460 +0,0 @@
----
-
-title: datagenerator
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/02_datagenerator.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
-
-
Data generator components components are methods that can be easily overridden
-
-image path gen
-image label gen
-image resizer
-
-the generator object will also support callbacks that can update the components
-
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
benchmark
(dataset
, num_epochs
=2
, fake_infer_time
=0.001
)
-
-
Use this function to benchmark your Dataset loading time
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
get_filenames
(root_dir
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
get_label
(filename
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
ImageSizeList
(img_sz_list
=None
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No item present in the image size list
-Returning the last set size which is: None
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Pipeline
(funcs
:Union
[Callable
, list
, tuple
]=[]
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Dataset
(train_dir
:Union
[str
, Path
], image_size
=[]
, transforms
=None
, default_encode
=True
, **kwargs
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
<dtype: 'float32'> 0
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Converted 03_datagenerator.ipynb.
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/dataloader.html b/docs/old_source/dataloader.html
deleted file mode 100644
index c6c8b0f0..00000000
--- a/docs/old_source/dataloader.html
+++ /dev/null
@@ -1,214 +0,0 @@
----
-
-title: dataloader
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "Now deprecated, please use datagenerator instead."
-description: "Now deprecated, please use datagenerator instead."
-nb_path: "nbs/04_dataloader.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
get_basename
(path
:<dtype: 'string'>
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
-
-
CLF DLoader DataLoader class for loading dataset for image classification tasks.
-
clf.load_from_folder (TODOs)
-__len__
method impl
-image augmentation
impl
-
-
folder structure /root
- /class1_folder
- /img0.jpg img1.jpg img2.jpg ....
- /class2_folder
- /img0.jpg...
-
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
-
-
Detect from_xml Steps:
-
. list annotations
-. read and parse annotations
-. read images
-. return images and annotations
-
-
folder structure /root
- /image_folder
- /annotation_folder
-
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/example_01.html b/docs/old_source/example_01.html
deleted file mode 100644
index e3694e20..00000000
--- a/docs/old_source/example_01.html
+++ /dev/null
@@ -1,921 +0,0 @@
----
-
-title: Example - Image classification w Chitra
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "Training Image classification model for Cats vs Dogs Kaggle dataset."
-description: "Training Image classification model for Cats vs Dogs Kaggle dataset."
-nb_path: "nbs/example_01.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
-
-
-
-
-
-
-
-
-
install chitra pip install --upgrade chitra==0.0.20
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
|████████████████████████████████| 1.1MB 18.1MB/s eta 0:00:01
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
import functions and classes Dataset Class Dataset class has API for loading tf.data
, image augmentation and progressive resizing.
-
Trainer The Trainer class inherits from tf.keras.Model, it contains everything that is required for training. It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 /root/.kaggle/kaggle.json'
-Downloading dogs-cats-images.zip to /content
- 98% 427M/435M [00:02<00:00, 161MB/s]
-100% 435M/435M [00:02<00:00, 153MB/s]
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Create Trainer Train imagenet pretrained MobileNetV2 model with cyclic learning rate and SGD optimizer.
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Model: "functional_1"
-__________________________________________________________________________________________________
-Layer (type) Output Shape Param # Connected to
-==================================================================================================
-input_1 (InputLayer) [(None, None, None, 0
-__________________________________________________________________________________________________
-Conv1_pad (ZeroPadding2D) (None, None, None, 3 0 input_1[0][0]
-__________________________________________________________________________________________________
-Conv1 (Conv2D) (None, None, None, 3 864 Conv1_pad[0][0]
-__________________________________________________________________________________________________
-bn_Conv1 (BatchNormalization) (None, None, None, 3 128 Conv1[0][0]
-__________________________________________________________________________________________________
-Conv1_relu (ReLU) (None, None, None, 3 0 bn_Conv1[0][0]
-__________________________________________________________________________________________________
-expanded_conv_depthwise (Depthw (None, None, None, 3 288 Conv1_relu[0][0]
-__________________________________________________________________________________________________
-expanded_conv_depthwise_BN (Bat (None, None, None, 3 128 expanded_conv_depthwise[0][0]
-__________________________________________________________________________________________________
-expanded_conv_depthwise_relu (R (None, None, None, 3 0 expanded_conv_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-expanded_conv_project (Conv2D) (None, None, None, 1 512 expanded_conv_depthwise_relu[0][0
-__________________________________________________________________________________________________
-expanded_conv_project_BN (Batch (None, None, None, 1 64 expanded_conv_project[0][0]
-__________________________________________________________________________________________________
-block_1_expand (Conv2D) (None, None, None, 9 1536 expanded_conv_project_BN[0][0]
-__________________________________________________________________________________________________
-block_1_expand_BN (BatchNormali (None, None, None, 9 384 block_1_expand[0][0]
-__________________________________________________________________________________________________
-block_1_expand_relu (ReLU) (None, None, None, 9 0 block_1_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_1_pad (ZeroPadding2D) (None, None, None, 9 0 block_1_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_1_depthwise (DepthwiseCon (None, None, None, 9 864 block_1_pad[0][0]
-__________________________________________________________________________________________________
-block_1_depthwise_BN (BatchNorm (None, None, None, 9 384 block_1_depthwise[0][0]
-__________________________________________________________________________________________________
-block_1_depthwise_relu (ReLU) (None, None, None, 9 0 block_1_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_1_project (Conv2D) (None, None, None, 2 2304 block_1_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_1_project_BN (BatchNormal (None, None, None, 2 96 block_1_project[0][0]
-__________________________________________________________________________________________________
-block_2_expand (Conv2D) (None, None, None, 1 3456 block_1_project_BN[0][0]
-__________________________________________________________________________________________________
-block_2_expand_BN (BatchNormali (None, None, None, 1 576 block_2_expand[0][0]
-__________________________________________________________________________________________________
-block_2_expand_relu (ReLU) (None, None, None, 1 0 block_2_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_2_depthwise (DepthwiseCon (None, None, None, 1 1296 block_2_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_2_depthwise_BN (BatchNorm (None, None, None, 1 576 block_2_depthwise[0][0]
-__________________________________________________________________________________________________
-block_2_depthwise_relu (ReLU) (None, None, None, 1 0 block_2_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_2_project (Conv2D) (None, None, None, 2 3456 block_2_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_2_project_BN (BatchNormal (None, None, None, 2 96 block_2_project[0][0]
-__________________________________________________________________________________________________
-block_2_add (Add) (None, None, None, 2 0 block_1_project_BN[0][0]
- block_2_project_BN[0][0]
-__________________________________________________________________________________________________
-block_3_expand (Conv2D) (None, None, None, 1 3456 block_2_add[0][0]
-__________________________________________________________________________________________________
-block_3_expand_BN (BatchNormali (None, None, None, 1 576 block_3_expand[0][0]
-__________________________________________________________________________________________________
-block_3_expand_relu (ReLU) (None, None, None, 1 0 block_3_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_3_pad (ZeroPadding2D) (None, None, None, 1 0 block_3_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_3_depthwise (DepthwiseCon (None, None, None, 1 1296 block_3_pad[0][0]
-__________________________________________________________________________________________________
-block_3_depthwise_BN (BatchNorm (None, None, None, 1 576 block_3_depthwise[0][0]
-__________________________________________________________________________________________________
-block_3_depthwise_relu (ReLU) (None, None, None, 1 0 block_3_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_3_project (Conv2D) (None, None, None, 3 4608 block_3_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_3_project_BN (BatchNormal (None, None, None, 3 128 block_3_project[0][0]
-__________________________________________________________________________________________________
-block_4_expand (Conv2D) (None, None, None, 1 6144 block_3_project_BN[0][0]
-__________________________________________________________________________________________________
-block_4_expand_BN (BatchNormali (None, None, None, 1 768 block_4_expand[0][0]
-__________________________________________________________________________________________________
-block_4_expand_relu (ReLU) (None, None, None, 1 0 block_4_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_4_depthwise (DepthwiseCon (None, None, None, 1 1728 block_4_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_4_depthwise_BN (BatchNorm (None, None, None, 1 768 block_4_depthwise[0][0]
-__________________________________________________________________________________________________
-block_4_depthwise_relu (ReLU) (None, None, None, 1 0 block_4_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_4_project (Conv2D) (None, None, None, 3 6144 block_4_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_4_project_BN (BatchNormal (None, None, None, 3 128 block_4_project[0][0]
-__________________________________________________________________________________________________
-block_4_add (Add) (None, None, None, 3 0 block_3_project_BN[0][0]
- block_4_project_BN[0][0]
-__________________________________________________________________________________________________
-block_5_expand (Conv2D) (None, None, None, 1 6144 block_4_add[0][0]
-__________________________________________________________________________________________________
-block_5_expand_BN (BatchNormali (None, None, None, 1 768 block_5_expand[0][0]
-__________________________________________________________________________________________________
-block_5_expand_relu (ReLU) (None, None, None, 1 0 block_5_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_5_depthwise (DepthwiseCon (None, None, None, 1 1728 block_5_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_5_depthwise_BN (BatchNorm (None, None, None, 1 768 block_5_depthwise[0][0]
-__________________________________________________________________________________________________
-block_5_depthwise_relu (ReLU) (None, None, None, 1 0 block_5_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_5_project (Conv2D) (None, None, None, 3 6144 block_5_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_5_project_BN (BatchNormal (None, None, None, 3 128 block_5_project[0][0]
-__________________________________________________________________________________________________
-block_5_add (Add) (None, None, None, 3 0 block_4_add[0][0]
- block_5_project_BN[0][0]
-__________________________________________________________________________________________________
-block_6_expand (Conv2D) (None, None, None, 1 6144 block_5_add[0][0]
-__________________________________________________________________________________________________
-block_6_expand_BN (BatchNormali (None, None, None, 1 768 block_6_expand[0][0]
-__________________________________________________________________________________________________
-block_6_expand_relu (ReLU) (None, None, None, 1 0 block_6_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_6_pad (ZeroPadding2D) (None, None, None, 1 0 block_6_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_6_depthwise (DepthwiseCon (None, None, None, 1 1728 block_6_pad[0][0]
-__________________________________________________________________________________________________
-block_6_depthwise_BN (BatchNorm (None, None, None, 1 768 block_6_depthwise[0][0]
-__________________________________________________________________________________________________
-block_6_depthwise_relu (ReLU) (None, None, None, 1 0 block_6_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_6_project (Conv2D) (None, None, None, 6 12288 block_6_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_6_project_BN (BatchNormal (None, None, None, 6 256 block_6_project[0][0]
-__________________________________________________________________________________________________
-block_7_expand (Conv2D) (None, None, None, 3 24576 block_6_project_BN[0][0]
-__________________________________________________________________________________________________
-block_7_expand_BN (BatchNormali (None, None, None, 3 1536 block_7_expand[0][0]
-__________________________________________________________________________________________________
-block_7_expand_relu (ReLU) (None, None, None, 3 0 block_7_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_7_depthwise (DepthwiseCon (None, None, None, 3 3456 block_7_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_7_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_7_depthwise[0][0]
-__________________________________________________________________________________________________
-block_7_depthwise_relu (ReLU) (None, None, None, 3 0 block_7_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_7_project (Conv2D) (None, None, None, 6 24576 block_7_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_7_project_BN (BatchNormal (None, None, None, 6 256 block_7_project[0][0]
-__________________________________________________________________________________________________
-block_7_add (Add) (None, None, None, 6 0 block_6_project_BN[0][0]
- block_7_project_BN[0][0]
-__________________________________________________________________________________________________
-block_8_expand (Conv2D) (None, None, None, 3 24576 block_7_add[0][0]
-__________________________________________________________________________________________________
-block_8_expand_BN (BatchNormali (None, None, None, 3 1536 block_8_expand[0][0]
-__________________________________________________________________________________________________
-block_8_expand_relu (ReLU) (None, None, None, 3 0 block_8_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_8_depthwise (DepthwiseCon (None, None, None, 3 3456 block_8_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_8_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_8_depthwise[0][0]
-__________________________________________________________________________________________________
-block_8_depthwise_relu (ReLU) (None, None, None, 3 0 block_8_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_8_project (Conv2D) (None, None, None, 6 24576 block_8_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_8_project_BN (BatchNormal (None, None, None, 6 256 block_8_project[0][0]
-__________________________________________________________________________________________________
-block_8_add (Add) (None, None, None, 6 0 block_7_add[0][0]
- block_8_project_BN[0][0]
-__________________________________________________________________________________________________
-block_9_expand (Conv2D) (None, None, None, 3 24576 block_8_add[0][0]
-__________________________________________________________________________________________________
-block_9_expand_BN (BatchNormali (None, None, None, 3 1536 block_9_expand[0][0]
-__________________________________________________________________________________________________
-block_9_expand_relu (ReLU) (None, None, None, 3 0 block_9_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_9_depthwise (DepthwiseCon (None, None, None, 3 3456 block_9_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_9_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_9_depthwise[0][0]
-__________________________________________________________________________________________________
-block_9_depthwise_relu (ReLU) (None, None, None, 3 0 block_9_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_9_project (Conv2D) (None, None, None, 6 24576 block_9_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_9_project_BN (BatchNormal (None, None, None, 6 256 block_9_project[0][0]
-__________________________________________________________________________________________________
-block_9_add (Add) (None, None, None, 6 0 block_8_add[0][0]
- block_9_project_BN[0][0]
-__________________________________________________________________________________________________
-block_10_expand (Conv2D) (None, None, None, 3 24576 block_9_add[0][0]
-__________________________________________________________________________________________________
-block_10_expand_BN (BatchNormal (None, None, None, 3 1536 block_10_expand[0][0]
-__________________________________________________________________________________________________
-block_10_expand_relu (ReLU) (None, None, None, 3 0 block_10_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_10_depthwise (DepthwiseCo (None, None, None, 3 3456 block_10_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_10_depthwise_BN (BatchNor (None, None, None, 3 1536 block_10_depthwise[0][0]
-__________________________________________________________________________________________________
-block_10_depthwise_relu (ReLU) (None, None, None, 3 0 block_10_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_10_project (Conv2D) (None, None, None, 9 36864 block_10_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_10_project_BN (BatchNorma (None, None, None, 9 384 block_10_project[0][0]
-__________________________________________________________________________________________________
-block_11_expand (Conv2D) (None, None, None, 5 55296 block_10_project_BN[0][0]
-__________________________________________________________________________________________________
-block_11_expand_BN (BatchNormal (None, None, None, 5 2304 block_11_expand[0][0]
-__________________________________________________________________________________________________
-block_11_expand_relu (ReLU) (None, None, None, 5 0 block_11_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_11_depthwise (DepthwiseCo (None, None, None, 5 5184 block_11_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_11_depthwise_BN (BatchNor (None, None, None, 5 2304 block_11_depthwise[0][0]
-__________________________________________________________________________________________________
-block_11_depthwise_relu (ReLU) (None, None, None, 5 0 block_11_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_11_project (Conv2D) (None, None, None, 9 55296 block_11_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_11_project_BN (BatchNorma (None, None, None, 9 384 block_11_project[0][0]
-__________________________________________________________________________________________________
-block_11_add (Add) (None, None, None, 9 0 block_10_project_BN[0][0]
- block_11_project_BN[0][0]
-__________________________________________________________________________________________________
-block_12_expand (Conv2D) (None, None, None, 5 55296 block_11_add[0][0]
-__________________________________________________________________________________________________
-block_12_expand_BN (BatchNormal (None, None, None, 5 2304 block_12_expand[0][0]
-__________________________________________________________________________________________________
-block_12_expand_relu (ReLU) (None, None, None, 5 0 block_12_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_12_depthwise (DepthwiseCo (None, None, None, 5 5184 block_12_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_12_depthwise_BN (BatchNor (None, None, None, 5 2304 block_12_depthwise[0][0]
-__________________________________________________________________________________________________
-block_12_depthwise_relu (ReLU) (None, None, None, 5 0 block_12_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_12_project (Conv2D) (None, None, None, 9 55296 block_12_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_12_project_BN (BatchNorma (None, None, None, 9 384 block_12_project[0][0]
-__________________________________________________________________________________________________
-block_12_add (Add) (None, None, None, 9 0 block_11_add[0][0]
- block_12_project_BN[0][0]
-__________________________________________________________________________________________________
-block_13_expand (Conv2D) (None, None, None, 5 55296 block_12_add[0][0]
-__________________________________________________________________________________________________
-block_13_expand_BN (BatchNormal (None, None, None, 5 2304 block_13_expand[0][0]
-__________________________________________________________________________________________________
-block_13_expand_relu (ReLU) (None, None, None, 5 0 block_13_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_13_pad (ZeroPadding2D) (None, None, None, 5 0 block_13_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_13_depthwise (DepthwiseCo (None, None, None, 5 5184 block_13_pad[0][0]
-__________________________________________________________________________________________________
-block_13_depthwise_BN (BatchNor (None, None, None, 5 2304 block_13_depthwise[0][0]
-__________________________________________________________________________________________________
-block_13_depthwise_relu (ReLU) (None, None, None, 5 0 block_13_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_13_project (Conv2D) (None, None, None, 1 92160 block_13_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_13_project_BN (BatchNorma (None, None, None, 1 640 block_13_project[0][0]
-__________________________________________________________________________________________________
-block_14_expand (Conv2D) (None, None, None, 9 153600 block_13_project_BN[0][0]
-__________________________________________________________________________________________________
-block_14_expand_BN (BatchNormal (None, None, None, 9 3840 block_14_expand[0][0]
-__________________________________________________________________________________________________
-block_14_expand_relu (ReLU) (None, None, None, 9 0 block_14_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_14_depthwise (DepthwiseCo (None, None, None, 9 8640 block_14_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_14_depthwise_BN (BatchNor (None, None, None, 9 3840 block_14_depthwise[0][0]
-__________________________________________________________________________________________________
-block_14_depthwise_relu (ReLU) (None, None, None, 9 0 block_14_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_14_project (Conv2D) (None, None, None, 1 153600 block_14_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_14_project_BN (BatchNorma (None, None, None, 1 640 block_14_project[0][0]
-__________________________________________________________________________________________________
-block_14_add (Add) (None, None, None, 1 0 block_13_project_BN[0][0]
- block_14_project_BN[0][0]
-__________________________________________________________________________________________________
-block_15_expand (Conv2D) (None, None, None, 9 153600 block_14_add[0][0]
-__________________________________________________________________________________________________
-block_15_expand_BN (BatchNormal (None, None, None, 9 3840 block_15_expand[0][0]
-__________________________________________________________________________________________________
-block_15_expand_relu (ReLU) (None, None, None, 9 0 block_15_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_15_depthwise (DepthwiseCo (None, None, None, 9 8640 block_15_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_15_depthwise_BN (BatchNor (None, None, None, 9 3840 block_15_depthwise[0][0]
-__________________________________________________________________________________________________
-block_15_depthwise_relu (ReLU) (None, None, None, 9 0 block_15_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_15_project (Conv2D) (None, None, None, 1 153600 block_15_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_15_project_BN (BatchNorma (None, None, None, 1 640 block_15_project[0][0]
-__________________________________________________________________________________________________
-block_15_add (Add) (None, None, None, 1 0 block_14_add[0][0]
- block_15_project_BN[0][0]
-__________________________________________________________________________________________________
-block_16_expand (Conv2D) (None, None, None, 9 153600 block_15_add[0][0]
-__________________________________________________________________________________________________
-block_16_expand_BN (BatchNormal (None, None, None, 9 3840 block_16_expand[0][0]
-__________________________________________________________________________________________________
-block_16_expand_relu (ReLU) (None, None, None, 9 0 block_16_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_16_depthwise (DepthwiseCo (None, None, None, 9 8640 block_16_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_16_depthwise_BN (BatchNor (None, None, None, 9 3840 block_16_depthwise[0][0]
-__________________________________________________________________________________________________
-block_16_depthwise_relu (ReLU) (None, None, None, 9 0 block_16_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_16_project (Conv2D) (None, None, None, 3 307200 block_16_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_16_project_BN (BatchNorma (None, None, None, 3 1280 block_16_project[0][0]
-__________________________________________________________________________________________________
-Conv_1 (Conv2D) (None, None, None, 1 409600 block_16_project_BN[0][0]
-__________________________________________________________________________________________________
-Conv_1_bn (BatchNormalization) (None, None, None, 1 5120 Conv_1[0][0]
-__________________________________________________________________________________________________
-out_relu (ReLU) (None, None, None, 1 0 Conv_1_bn[0][0]
-__________________________________________________________________________________________________
-global_average_pooling2d (Globa (None, 1280) 0 out_relu[0][0]
-__________________________________________________________________________________________________
-dropout (Dropout) (None, 1280) 0 global_average_pooling2d[0][0]
-__________________________________________________________________________________________________
-output (Dense) (None, 1) 1281 dropout[0][0]
-==================================================================================================
-Total params: 2,259,265
-Trainable params: 2,225,153
-Non-trainable params: 34,112
-__________________________________________________________________________________________________
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
cyclic learning rate already set!
-Epoch 1/10
-500/500 [==============================] - 40s 80ms/step - loss: 0.4258 - binary_accuracy: 0.7878
-Epoch 2/10
-500/500 [==============================] - 50s 101ms/step - loss: 0.1384 - binary_accuracy: 0.9438
-Epoch 3/10
-500/500 [==============================] - 79s 159ms/step - loss: 0.0587 - binary_accuracy: 0.9771
-Epoch 4/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0385 - binary_accuracy: 0.9841
-Epoch 5/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0257 - binary_accuracy: 0.9911
-Epoch 6/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0302 - binary_accuracy: 0.9901
-Epoch 7/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0212 - binary_accuracy: 0.9931
-Epoch 8/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 157ms/step - loss: 0.0207 - binary_accuracy: 0.9935
-Epoch 9/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0177 - binary_accuracy: 0.9951
-Epoch 10/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 159ms/step - loss: 0.0172 - binary_accuracy: 0.9940
-
-
-
-
-
-
-
-
-
-
<tensorflow.python.keras.callbacks.History at 0x7f67581730b8>
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Trainer also supports the regular keras model.fit
api using trainer.fit
-
Train the same model without cyclic learning rate :
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Epoch 1/10
-500/500 [==============================] - 38s 77ms/step - loss: 0.4070 - binary_accuracy: 0.8026
-Epoch 2/10
-500/500 [==============================] - 50s 99ms/step - loss: 0.1800 - binary_accuracy: 0.9239
-Epoch 3/10
-500/500 [==============================] - 78s 155ms/step - loss: 0.1197 - binary_accuracy: 0.9553
-Epoch 4/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0952 - binary_accuracy: 0.9626
-Epoch 5/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 157ms/step - loss: 0.0809 - binary_accuracy: 0.9664
-Epoch 6/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 77s 154ms/step - loss: 0.0693 - binary_accuracy: 0.9735
-Epoch 7/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 156ms/step - loss: 0.0610 - binary_accuracy: 0.9759
-Epoch 8/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 157ms/step - loss: 0.0530 - binary_accuracy: 0.9797
-Epoch 9/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0505 - binary_accuracy: 0.9821
-Epoch 10/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 156ms/step - loss: 0.0452 - binary_accuracy: 0.9829
-
-
-
-
-
-
-
-
-
-
<tensorflow.python.keras.callbacks.History at 0x7f662f0af1d0>
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
What does model focus on while making a prediction? chitra.trainer.InterpretModel
class creates GradCAM and GradCAM++ visualization in no additional code!
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/feed.xml b/docs/old_source/feed.xml
deleted file mode 100644
index d8d6ac99..00000000
--- a/docs/old_source/feed.xml
+++ /dev/null
@@ -1,32 +0,0 @@
----
-search: exclude
-layout: none
----
-
-
-
-
- {{ site.title | xml_escape }}
- {{ site.description | xml_escape }}
- {{ site.url }}/
-
- {{ site.time | date_to_rfc822 }}
- {{ site.time | date_to_rfc822 }}
- Jekyll v{{ jekyll.version }}
- {% for post in site.posts limit:10 %}
- -
-
{{ post.title | xml_escape }}
- {{ post.content | xml_escape }}
- {{ post.date | date_to_rfc822 }}
- {{ post.url | prepend: site.url }}
- {{ post.url | prepend: site.url }}
- {% for tag in post.tags %}
- {{ tag | xml_escape }}
- {% endfor %}
- {% for tag in page.tags %}
- {{ cat | xml_escape }}
- {% endfor %}
-
- {% endfor %}
-
-
diff --git a/docs/old_source/fonts/FontAwesome.otf b/docs/old_source/fonts/FontAwesome.otf
deleted file mode 100644
index 81c9ad94..00000000
Binary files a/docs/old_source/fonts/FontAwesome.otf and /dev/null differ
diff --git a/docs/old_source/fonts/fontawesome-webfont.eot b/docs/old_source/fonts/fontawesome-webfont.eot
deleted file mode 100644
index 84677bc0..00000000
Binary files a/docs/old_source/fonts/fontawesome-webfont.eot and /dev/null differ
diff --git a/docs/old_source/fonts/fontawesome-webfont.svg b/docs/old_source/fonts/fontawesome-webfont.svg
deleted file mode 100644
index 98664d54..00000000
--- a/docs/old_source/fonts/fontawesome-webfont.svg
+++ /dev/null
@@ -1 +0,0 @@
-
\ No newline at end of file
diff --git a/docs/old_source/fonts/fontawesome-webfont.ttf b/docs/old_source/fonts/fontawesome-webfont.ttf
deleted file mode 100644
index 96a3639c..00000000
Binary files a/docs/old_source/fonts/fontawesome-webfont.ttf and /dev/null differ
diff --git a/docs/old_source/fonts/fontawesome-webfont.woff b/docs/old_source/fonts/fontawesome-webfont.woff
deleted file mode 100644
index 628b6a52..00000000
Binary files a/docs/old_source/fonts/fontawesome-webfont.woff and /dev/null differ
diff --git a/docs/old_source/fonts/glyphicons-halflings-regular.eot b/docs/old_source/fonts/glyphicons-halflings-regular.eot
deleted file mode 100644
index b93a4953..00000000
Binary files a/docs/old_source/fonts/glyphicons-halflings-regular.eot and /dev/null differ
diff --git a/docs/old_source/fonts/glyphicons-halflings-regular.svg b/docs/old_source/fonts/glyphicons-halflings-regular.svg
deleted file mode 100644
index b17ff266..00000000
--- a/docs/old_source/fonts/glyphicons-halflings-regular.svg
+++ /dev/null
@@ -1 +0,0 @@
-
\ No newline at end of file
diff --git a/docs/old_source/fonts/glyphicons-halflings-regular.ttf b/docs/old_source/fonts/glyphicons-halflings-regular.ttf
deleted file mode 100644
index 1413fc60..00000000
Binary files a/docs/old_source/fonts/glyphicons-halflings-regular.ttf and /dev/null differ
diff --git a/docs/old_source/fonts/glyphicons-halflings-regular.woff b/docs/old_source/fonts/glyphicons-halflings-regular.woff
deleted file mode 100644
index 9e612858..00000000
Binary files a/docs/old_source/fonts/glyphicons-halflings-regular.woff and /dev/null differ
diff --git a/docs/old_source/fonts/glyphicons-halflings-regular.woff2 b/docs/old_source/fonts/glyphicons-halflings-regular.woff2
deleted file mode 100644
index 64539b54..00000000
Binary files a/docs/old_source/fonts/glyphicons-halflings-regular.woff2 and /dev/null differ
diff --git a/docs/old_source/image-classification-example.html b/docs/old_source/image-classification-example.html
deleted file mode 100644
index 10ca3929..00000000
--- a/docs/old_source/image-classification-example.html
+++ /dev/null
@@ -1,922 +0,0 @@
----
-
-title: Image classification with Chitra - Example 01
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-
-
-nb_path: "nbs/image-classification-example.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
-
-
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
|████████████████████████████████| 1.1MB 18.1MB/s
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
import functions and classes Dataset Class Dataset class has API for loading tf.data
, image augmentation and progressive resizing.
-
Trainer The Trainer class inherits from tf.keras.Model, it contains everything that is required for training. It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
-
-
-
copy your kaggle key to /root/.kaggle/kaggle.json
for downloading the dataset.
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 /root/.kaggle/kaggle.json'
-Downloading dogs-cats-images.zip to /content
- 98% 427M/435M [00:02<00:00, 161MB/s]
-100% 435M/435M [00:02<00:00, 153MB/s]
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Create Trainer Train imagenet pretrained MobileNetV2 model with cyclic learning rate and SGD optimizer.
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Model: "functional_1"
-__________________________________________________________________________________________________
-Layer (type) Output Shape Param # Connected to
-==================================================================================================
-input_1 (InputLayer) [(None, None, None, 0
-__________________________________________________________________________________________________
-Conv1_pad (ZeroPadding2D) (None, None, None, 3 0 input_1[0][0]
-__________________________________________________________________________________________________
-Conv1 (Conv2D) (None, None, None, 3 864 Conv1_pad[0][0]
-__________________________________________________________________________________________________
-bn_Conv1 (BatchNormalization) (None, None, None, 3 128 Conv1[0][0]
-__________________________________________________________________________________________________
-Conv1_relu (ReLU) (None, None, None, 3 0 bn_Conv1[0][0]
-__________________________________________________________________________________________________
-expanded_conv_depthwise (Depthw (None, None, None, 3 288 Conv1_relu[0][0]
-__________________________________________________________________________________________________
-expanded_conv_depthwise_BN (Bat (None, None, None, 3 128 expanded_conv_depthwise[0][0]
-__________________________________________________________________________________________________
-expanded_conv_depthwise_relu (R (None, None, None, 3 0 expanded_conv_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-expanded_conv_project (Conv2D) (None, None, None, 1 512 expanded_conv_depthwise_relu[0][0
-__________________________________________________________________________________________________
-expanded_conv_project_BN (Batch (None, None, None, 1 64 expanded_conv_project[0][0]
-__________________________________________________________________________________________________
-block_1_expand (Conv2D) (None, None, None, 9 1536 expanded_conv_project_BN[0][0]
-__________________________________________________________________________________________________
-block_1_expand_BN (BatchNormali (None, None, None, 9 384 block_1_expand[0][0]
-__________________________________________________________________________________________________
-block_1_expand_relu (ReLU) (None, None, None, 9 0 block_1_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_1_pad (ZeroPadding2D) (None, None, None, 9 0 block_1_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_1_depthwise (DepthwiseCon (None, None, None, 9 864 block_1_pad[0][0]
-__________________________________________________________________________________________________
-block_1_depthwise_BN (BatchNorm (None, None, None, 9 384 block_1_depthwise[0][0]
-__________________________________________________________________________________________________
-block_1_depthwise_relu (ReLU) (None, None, None, 9 0 block_1_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_1_project (Conv2D) (None, None, None, 2 2304 block_1_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_1_project_BN (BatchNormal (None, None, None, 2 96 block_1_project[0][0]
-__________________________________________________________________________________________________
-block_2_expand (Conv2D) (None, None, None, 1 3456 block_1_project_BN[0][0]
-__________________________________________________________________________________________________
-block_2_expand_BN (BatchNormali (None, None, None, 1 576 block_2_expand[0][0]
-__________________________________________________________________________________________________
-block_2_expand_relu (ReLU) (None, None, None, 1 0 block_2_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_2_depthwise (DepthwiseCon (None, None, None, 1 1296 block_2_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_2_depthwise_BN (BatchNorm (None, None, None, 1 576 block_2_depthwise[0][0]
-__________________________________________________________________________________________________
-block_2_depthwise_relu (ReLU) (None, None, None, 1 0 block_2_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_2_project (Conv2D) (None, None, None, 2 3456 block_2_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_2_project_BN (BatchNormal (None, None, None, 2 96 block_2_project[0][0]
-__________________________________________________________________________________________________
-block_2_add (Add) (None, None, None, 2 0 block_1_project_BN[0][0]
- block_2_project_BN[0][0]
-__________________________________________________________________________________________________
-block_3_expand (Conv2D) (None, None, None, 1 3456 block_2_add[0][0]
-__________________________________________________________________________________________________
-block_3_expand_BN (BatchNormali (None, None, None, 1 576 block_3_expand[0][0]
-__________________________________________________________________________________________________
-block_3_expand_relu (ReLU) (None, None, None, 1 0 block_3_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_3_pad (ZeroPadding2D) (None, None, None, 1 0 block_3_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_3_depthwise (DepthwiseCon (None, None, None, 1 1296 block_3_pad[0][0]
-__________________________________________________________________________________________________
-block_3_depthwise_BN (BatchNorm (None, None, None, 1 576 block_3_depthwise[0][0]
-__________________________________________________________________________________________________
-block_3_depthwise_relu (ReLU) (None, None, None, 1 0 block_3_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_3_project (Conv2D) (None, None, None, 3 4608 block_3_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_3_project_BN (BatchNormal (None, None, None, 3 128 block_3_project[0][0]
-__________________________________________________________________________________________________
-block_4_expand (Conv2D) (None, None, None, 1 6144 block_3_project_BN[0][0]
-__________________________________________________________________________________________________
-block_4_expand_BN (BatchNormali (None, None, None, 1 768 block_4_expand[0][0]
-__________________________________________________________________________________________________
-block_4_expand_relu (ReLU) (None, None, None, 1 0 block_4_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_4_depthwise (DepthwiseCon (None, None, None, 1 1728 block_4_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_4_depthwise_BN (BatchNorm (None, None, None, 1 768 block_4_depthwise[0][0]
-__________________________________________________________________________________________________
-block_4_depthwise_relu (ReLU) (None, None, None, 1 0 block_4_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_4_project (Conv2D) (None, None, None, 3 6144 block_4_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_4_project_BN (BatchNormal (None, None, None, 3 128 block_4_project[0][0]
-__________________________________________________________________________________________________
-block_4_add (Add) (None, None, None, 3 0 block_3_project_BN[0][0]
- block_4_project_BN[0][0]
-__________________________________________________________________________________________________
-block_5_expand (Conv2D) (None, None, None, 1 6144 block_4_add[0][0]
-__________________________________________________________________________________________________
-block_5_expand_BN (BatchNormali (None, None, None, 1 768 block_5_expand[0][0]
-__________________________________________________________________________________________________
-block_5_expand_relu (ReLU) (None, None, None, 1 0 block_5_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_5_depthwise (DepthwiseCon (None, None, None, 1 1728 block_5_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_5_depthwise_BN (BatchNorm (None, None, None, 1 768 block_5_depthwise[0][0]
-__________________________________________________________________________________________________
-block_5_depthwise_relu (ReLU) (None, None, None, 1 0 block_5_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_5_project (Conv2D) (None, None, None, 3 6144 block_5_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_5_project_BN (BatchNormal (None, None, None, 3 128 block_5_project[0][0]
-__________________________________________________________________________________________________
-block_5_add (Add) (None, None, None, 3 0 block_4_add[0][0]
- block_5_project_BN[0][0]
-__________________________________________________________________________________________________
-block_6_expand (Conv2D) (None, None, None, 1 6144 block_5_add[0][0]
-__________________________________________________________________________________________________
-block_6_expand_BN (BatchNormali (None, None, None, 1 768 block_6_expand[0][0]
-__________________________________________________________________________________________________
-block_6_expand_relu (ReLU) (None, None, None, 1 0 block_6_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_6_pad (ZeroPadding2D) (None, None, None, 1 0 block_6_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_6_depthwise (DepthwiseCon (None, None, None, 1 1728 block_6_pad[0][0]
-__________________________________________________________________________________________________
-block_6_depthwise_BN (BatchNorm (None, None, None, 1 768 block_6_depthwise[0][0]
-__________________________________________________________________________________________________
-block_6_depthwise_relu (ReLU) (None, None, None, 1 0 block_6_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_6_project (Conv2D) (None, None, None, 6 12288 block_6_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_6_project_BN (BatchNormal (None, None, None, 6 256 block_6_project[0][0]
-__________________________________________________________________________________________________
-block_7_expand (Conv2D) (None, None, None, 3 24576 block_6_project_BN[0][0]
-__________________________________________________________________________________________________
-block_7_expand_BN (BatchNormali (None, None, None, 3 1536 block_7_expand[0][0]
-__________________________________________________________________________________________________
-block_7_expand_relu (ReLU) (None, None, None, 3 0 block_7_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_7_depthwise (DepthwiseCon (None, None, None, 3 3456 block_7_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_7_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_7_depthwise[0][0]
-__________________________________________________________________________________________________
-block_7_depthwise_relu (ReLU) (None, None, None, 3 0 block_7_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_7_project (Conv2D) (None, None, None, 6 24576 block_7_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_7_project_BN (BatchNormal (None, None, None, 6 256 block_7_project[0][0]
-__________________________________________________________________________________________________
-block_7_add (Add) (None, None, None, 6 0 block_6_project_BN[0][0]
- block_7_project_BN[0][0]
-__________________________________________________________________________________________________
-block_8_expand (Conv2D) (None, None, None, 3 24576 block_7_add[0][0]
-__________________________________________________________________________________________________
-block_8_expand_BN (BatchNormali (None, None, None, 3 1536 block_8_expand[0][0]
-__________________________________________________________________________________________________
-block_8_expand_relu (ReLU) (None, None, None, 3 0 block_8_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_8_depthwise (DepthwiseCon (None, None, None, 3 3456 block_8_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_8_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_8_depthwise[0][0]
-__________________________________________________________________________________________________
-block_8_depthwise_relu (ReLU) (None, None, None, 3 0 block_8_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_8_project (Conv2D) (None, None, None, 6 24576 block_8_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_8_project_BN (BatchNormal (None, None, None, 6 256 block_8_project[0][0]
-__________________________________________________________________________________________________
-block_8_add (Add) (None, None, None, 6 0 block_7_add[0][0]
- block_8_project_BN[0][0]
-__________________________________________________________________________________________________
-block_9_expand (Conv2D) (None, None, None, 3 24576 block_8_add[0][0]
-__________________________________________________________________________________________________
-block_9_expand_BN (BatchNormali (None, None, None, 3 1536 block_9_expand[0][0]
-__________________________________________________________________________________________________
-block_9_expand_relu (ReLU) (None, None, None, 3 0 block_9_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_9_depthwise (DepthwiseCon (None, None, None, 3 3456 block_9_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_9_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_9_depthwise[0][0]
-__________________________________________________________________________________________________
-block_9_depthwise_relu (ReLU) (None, None, None, 3 0 block_9_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_9_project (Conv2D) (None, None, None, 6 24576 block_9_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_9_project_BN (BatchNormal (None, None, None, 6 256 block_9_project[0][0]
-__________________________________________________________________________________________________
-block_9_add (Add) (None, None, None, 6 0 block_8_add[0][0]
- block_9_project_BN[0][0]
-__________________________________________________________________________________________________
-block_10_expand (Conv2D) (None, None, None, 3 24576 block_9_add[0][0]
-__________________________________________________________________________________________________
-block_10_expand_BN (BatchNormal (None, None, None, 3 1536 block_10_expand[0][0]
-__________________________________________________________________________________________________
-block_10_expand_relu (ReLU) (None, None, None, 3 0 block_10_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_10_depthwise (DepthwiseCo (None, None, None, 3 3456 block_10_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_10_depthwise_BN (BatchNor (None, None, None, 3 1536 block_10_depthwise[0][0]
-__________________________________________________________________________________________________
-block_10_depthwise_relu (ReLU) (None, None, None, 3 0 block_10_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_10_project (Conv2D) (None, None, None, 9 36864 block_10_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_10_project_BN (BatchNorma (None, None, None, 9 384 block_10_project[0][0]
-__________________________________________________________________________________________________
-block_11_expand (Conv2D) (None, None, None, 5 55296 block_10_project_BN[0][0]
-__________________________________________________________________________________________________
-block_11_expand_BN (BatchNormal (None, None, None, 5 2304 block_11_expand[0][0]
-__________________________________________________________________________________________________
-block_11_expand_relu (ReLU) (None, None, None, 5 0 block_11_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_11_depthwise (DepthwiseCo (None, None, None, 5 5184 block_11_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_11_depthwise_BN (BatchNor (None, None, None, 5 2304 block_11_depthwise[0][0]
-__________________________________________________________________________________________________
-block_11_depthwise_relu (ReLU) (None, None, None, 5 0 block_11_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_11_project (Conv2D) (None, None, None, 9 55296 block_11_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_11_project_BN (BatchNorma (None, None, None, 9 384 block_11_project[0][0]
-__________________________________________________________________________________________________
-block_11_add (Add) (None, None, None, 9 0 block_10_project_BN[0][0]
- block_11_project_BN[0][0]
-__________________________________________________________________________________________________
-block_12_expand (Conv2D) (None, None, None, 5 55296 block_11_add[0][0]
-__________________________________________________________________________________________________
-block_12_expand_BN (BatchNormal (None, None, None, 5 2304 block_12_expand[0][0]
-__________________________________________________________________________________________________
-block_12_expand_relu (ReLU) (None, None, None, 5 0 block_12_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_12_depthwise (DepthwiseCo (None, None, None, 5 5184 block_12_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_12_depthwise_BN (BatchNor (None, None, None, 5 2304 block_12_depthwise[0][0]
-__________________________________________________________________________________________________
-block_12_depthwise_relu (ReLU) (None, None, None, 5 0 block_12_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_12_project (Conv2D) (None, None, None, 9 55296 block_12_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_12_project_BN (BatchNorma (None, None, None, 9 384 block_12_project[0][0]
-__________________________________________________________________________________________________
-block_12_add (Add) (None, None, None, 9 0 block_11_add[0][0]
- block_12_project_BN[0][0]
-__________________________________________________________________________________________________
-block_13_expand (Conv2D) (None, None, None, 5 55296 block_12_add[0][0]
-__________________________________________________________________________________________________
-block_13_expand_BN (BatchNormal (None, None, None, 5 2304 block_13_expand[0][0]
-__________________________________________________________________________________________________
-block_13_expand_relu (ReLU) (None, None, None, 5 0 block_13_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_13_pad (ZeroPadding2D) (None, None, None, 5 0 block_13_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_13_depthwise (DepthwiseCo (None, None, None, 5 5184 block_13_pad[0][0]
-__________________________________________________________________________________________________
-block_13_depthwise_BN (BatchNor (None, None, None, 5 2304 block_13_depthwise[0][0]
-__________________________________________________________________________________________________
-block_13_depthwise_relu (ReLU) (None, None, None, 5 0 block_13_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_13_project (Conv2D) (None, None, None, 1 92160 block_13_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_13_project_BN (BatchNorma (None, None, None, 1 640 block_13_project[0][0]
-__________________________________________________________________________________________________
-block_14_expand (Conv2D) (None, None, None, 9 153600 block_13_project_BN[0][0]
-__________________________________________________________________________________________________
-block_14_expand_BN (BatchNormal (None, None, None, 9 3840 block_14_expand[0][0]
-__________________________________________________________________________________________________
-block_14_expand_relu (ReLU) (None, None, None, 9 0 block_14_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_14_depthwise (DepthwiseCo (None, None, None, 9 8640 block_14_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_14_depthwise_BN (BatchNor (None, None, None, 9 3840 block_14_depthwise[0][0]
-__________________________________________________________________________________________________
-block_14_depthwise_relu (ReLU) (None, None, None, 9 0 block_14_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_14_project (Conv2D) (None, None, None, 1 153600 block_14_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_14_project_BN (BatchNorma (None, None, None, 1 640 block_14_project[0][0]
-__________________________________________________________________________________________________
-block_14_add (Add) (None, None, None, 1 0 block_13_project_BN[0][0]
- block_14_project_BN[0][0]
-__________________________________________________________________________________________________
-block_15_expand (Conv2D) (None, None, None, 9 153600 block_14_add[0][0]
-__________________________________________________________________________________________________
-block_15_expand_BN (BatchNormal (None, None, None, 9 3840 block_15_expand[0][0]
-__________________________________________________________________________________________________
-block_15_expand_relu (ReLU) (None, None, None, 9 0 block_15_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_15_depthwise (DepthwiseCo (None, None, None, 9 8640 block_15_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_15_depthwise_BN (BatchNor (None, None, None, 9 3840 block_15_depthwise[0][0]
-__________________________________________________________________________________________________
-block_15_depthwise_relu (ReLU) (None, None, None, 9 0 block_15_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_15_project (Conv2D) (None, None, None, 1 153600 block_15_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_15_project_BN (BatchNorma (None, None, None, 1 640 block_15_project[0][0]
-__________________________________________________________________________________________________
-block_15_add (Add) (None, None, None, 1 0 block_14_add[0][0]
- block_15_project_BN[0][0]
-__________________________________________________________________________________________________
-block_16_expand (Conv2D) (None, None, None, 9 153600 block_15_add[0][0]
-__________________________________________________________________________________________________
-block_16_expand_BN (BatchNormal (None, None, None, 9 3840 block_16_expand[0][0]
-__________________________________________________________________________________________________
-block_16_expand_relu (ReLU) (None, None, None, 9 0 block_16_expand_BN[0][0]
-__________________________________________________________________________________________________
-block_16_depthwise (DepthwiseCo (None, None, None, 9 8640 block_16_expand_relu[0][0]
-__________________________________________________________________________________________________
-block_16_depthwise_BN (BatchNor (None, None, None, 9 3840 block_16_depthwise[0][0]
-__________________________________________________________________________________________________
-block_16_depthwise_relu (ReLU) (None, None, None, 9 0 block_16_depthwise_BN[0][0]
-__________________________________________________________________________________________________
-block_16_project (Conv2D) (None, None, None, 3 307200 block_16_depthwise_relu[0][0]
-__________________________________________________________________________________________________
-block_16_project_BN (BatchNorma (None, None, None, 3 1280 block_16_project[0][0]
-__________________________________________________________________________________________________
-Conv_1 (Conv2D) (None, None, None, 1 409600 block_16_project_BN[0][0]
-__________________________________________________________________________________________________
-Conv_1_bn (BatchNormalization) (None, None, None, 1 5120 Conv_1[0][0]
-__________________________________________________________________________________________________
-out_relu (ReLU) (None, None, None, 1 0 Conv_1_bn[0][0]
-__________________________________________________________________________________________________
-global_average_pooling2d (Globa (None, 1280) 0 out_relu[0][0]
-__________________________________________________________________________________________________
-dropout (Dropout) (None, 1280) 0 global_average_pooling2d[0][0]
-__________________________________________________________________________________________________
-output (Dense) (None, 1) 1281 dropout[0][0]
-==================================================================================================
-Total params: 2,259,265
-Trainable params: 2,225,153
-Non-trainable params: 34,112
-__________________________________________________________________________________________________
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
cyclic learning rate already set!
-Epoch 1/10
-500/500 [==============================] - 40s 80ms/step - loss: 0.4258 - binary_accuracy: 0.7878
-Epoch 2/10
-500/500 [==============================] - 50s 101ms/step - loss: 0.1384 - binary_accuracy: 0.9438
-Epoch 3/10
-500/500 [==============================] - 79s 159ms/step - loss: 0.0587 - binary_accuracy: 0.9771
-Epoch 4/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0385 - binary_accuracy: 0.9841
-Epoch 5/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0257 - binary_accuracy: 0.9911
-Epoch 6/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0302 - binary_accuracy: 0.9901
-Epoch 7/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0212 - binary_accuracy: 0.9931
-Epoch 8/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 157ms/step - loss: 0.0207 - binary_accuracy: 0.9935
-Epoch 9/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0177 - binary_accuracy: 0.9951
-Epoch 10/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 159ms/step - loss: 0.0172 - binary_accuracy: 0.9940
-
-
-
-
-
-
-
-
-
-
<tensorflow.python.keras.callbacks.History at 0x7f67581730b8>
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Trainer also supports the regular keras model.fit
api using trainer.fit
-
Train the same model without cyclic learning rate :
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Epoch 1/10
-500/500 [==============================] - 38s 77ms/step - loss: 0.4070 - binary_accuracy: 0.8026
-Epoch 2/10
-500/500 [==============================] - 50s 99ms/step - loss: 0.1800 - binary_accuracy: 0.9239
-Epoch 3/10
-500/500 [==============================] - 78s 155ms/step - loss: 0.1197 - binary_accuracy: 0.9553
-Epoch 4/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0952 - binary_accuracy: 0.9626
-Epoch 5/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 157ms/step - loss: 0.0809 - binary_accuracy: 0.9664
-Epoch 6/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 77s 154ms/step - loss: 0.0693 - binary_accuracy: 0.9735
-Epoch 7/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 156ms/step - loss: 0.0610 - binary_accuracy: 0.9759
-Epoch 8/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 157ms/step - loss: 0.0530 - binary_accuracy: 0.9797
-Epoch 9/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 79s 158ms/step - loss: 0.0505 - binary_accuracy: 0.9821
-Epoch 10/10
-Returning the last set size which is: (224, 224)
-500/500 [==============================] - 78s 156ms/step - loss: 0.0452 - binary_accuracy: 0.9829
-
-
-
-
-
-
-
-
-
-
<tensorflow.python.keras.callbacks.History at 0x7f662f0af1d0>
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
What does model focus on while making a prediction? chitra.trainer.InterpretModel
class creates GradCAM and GradCAM++ visualization in no additional code!
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/image.html b/docs/old_source/image.html
deleted file mode 100644
index a14a956a..00000000
--- a/docs/old_source/image.html
+++ /dev/null
@@ -1,215 +0,0 @@
----
-
-title: image
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/01_image.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
read_image
(path
:str
, channels
:int
=3
)
-
-
Reads an image file from the path and return the rgb image in tf.Tensor format.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
resize_image
(image
:Tensor
, size
:Union
[Tensor
, tuple
], **kwargs
)
-
-
Resize image to the target size
: Union[tf.Tensor, tuple]
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Chitra
(data
, *args
, **kwargs
)
-
-
An ultimate class for Image
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
-
diff --git a/docs/old_source/images/output_21_1.png b/docs/old_source/images/output_21_1.png
deleted file mode 100644
index f50d2345..00000000
Binary files a/docs/old_source/images/output_21_1.png and /dev/null differ
diff --git a/docs/old_source/images/output_22_1.png b/docs/old_source/images/output_22_1.png
deleted file mode 100644
index f50d2345..00000000
Binary files a/docs/old_source/images/output_22_1.png and /dev/null differ
diff --git a/docs/old_source/images/output_23_0.png b/docs/old_source/images/output_23_0.png
deleted file mode 100644
index d2f82ada..00000000
Binary files a/docs/old_source/images/output_23_0.png and /dev/null differ
diff --git a/docs/old_source/images/output_24_0.png b/docs/old_source/images/output_24_0.png
deleted file mode 100644
index d2f82ada..00000000
Binary files a/docs/old_source/images/output_24_0.png and /dev/null differ
diff --git a/docs/old_source/images/output_5_0.png b/docs/old_source/images/output_5_0.png
deleted file mode 100644
index e98e6ea4..00000000
Binary files a/docs/old_source/images/output_5_0.png and /dev/null differ
diff --git a/docs/old_source/images/output_6_0.png b/docs/old_source/images/output_6_0.png
deleted file mode 100644
index e98e6ea4..00000000
Binary files a/docs/old_source/images/output_6_0.png and /dev/null differ
diff --git a/docs/old_source/import_utils.html b/docs/old_source/import_utils.html
deleted file mode 100644
index f2143bf8..00000000
--- a/docs/old_source/import_utils.html
+++ /dev/null
@@ -1,243 +0,0 @@
----
-
-title: import_utils
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/07_import_utils.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
is_installed
(module_name
:str
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/index.html b/docs/old_source/index.html
deleted file mode 100644
index 943d9009..00000000
--- a/docs/old_source/index.html
+++ /dev/null
@@ -1,778 +0,0 @@
----
-
-title: chitra
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "
"
-description: "
"
-nb_path: "nbs/index.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
-
-
-
-
-
-
-
-
-
-
What is chitra? chitra (चित्र ) is a Deep Learning Computer Vision library for easy data loading, model building and model interpretation with GradCAM/GradCAM++.
-
Highlights:
-
-Faster data loading without any boilerplate.
-Progressive resizing of images.
-Rapid experiments with different models using chitra.trainer
module.
-Train models with cyclic learning rate.
-Model interpretation using GradCAM/GradCAM++ with no extra code.
-
-
If you have more use cases please raise an issue with the feature you want.
-
-
-
-
-
-
-
Installation Using pip (recommended) pip install -U chitra
-
From source
-
git clone https://github.com/aniketmaurya/chitra.git
-cd chitra
-pip install -e .
-
From GitHub
-
pip install git+https://github.com/aniketmaurya/chitra@master
-
-
-
-
-
-
-
Usage Loading data for image classification Chitra dataloader
and datagenerator
modules for loading data. dataloader
is a minimal dataloader that returns tf.data.Dataset
object. datagenerator
provides flexibility to users on how they want to load and manipulate the data.
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Image datagenerator Dataset class provides the flexibility to load image dataset by updating components of the class.
-
Components of Dataset class are:
-
-image file generator
-resizer
-label generator
-image loader
-
-
These components can be updated with custom function by the user according to their dataset structure. For example the Tiny Imagenet dataset is organized as-
-
-
train_folder/
-.....folder1/
- .....file.txt
- .....folder2/
- .....image1.jpg
- .....image2.jpg
- .
- .
- .
- ......imageN.jpg
-
The inbuilt file generator search for images on the folder1
, now we can just update the image file generator
and rest of the functionality will remain same.
-
Dataset also support progressive resizing of images.
-
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No item present in the image size list
-
-
-
-
-
-
-
-
-
-
['/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/n02795169_boxes.txt',
- '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images',
- '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02769748/images']
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
get_filenames updated with <function load_files at 0x7fad6916d0e0>
-No item present in the image size list
-
-
-
-
-
-
-
-
-
-
['/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_369.JPEG',
- '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_386.JPEG',
- '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_105.JPEG']
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Progressive resizing It is the technique to sequentially resize all the images while training the CNNs on smaller to bigger image sizes. Progressive Resizing is described briefly in his terrific fastai course, “Practical Deep Learning for Coders”. A great way to use this technique is to train a model with smaller image size say 64x64, then use the weights of this model to train another model on images of size 128x128 and so on. Each larger-scale model incorporates the previous smaller-scale model layers and weights in its architecture.
-~KDnuggets
-
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
get_filenames updated with <function load_files at 0x7fad6916d0e0>
-get_label updated with <function get_label at 0x7fad6916d8c0>
-
-first call to generator: (28, 28, 3)
-seconds call to generator: (32, 32, 3)
-third call to generator: (64, 64, 3)
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
tf.data support Creating a tf.data
dataloader was never as easy as this one liner. It converts the Python generator into tf.data.Dataset
for a faster data loading, prefetching, caching and everything provided by tf.data.
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
get_filenames updated with <function load_files at 0x7fad6916d0e0>
-get_label updated with <function get_label at 0x7fad6916d8c0>
-(28, 28, 3)
-(32, 32, 3)
-(64, 64, 3)
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Trainer The Trainer class inherits from tf.keras.Model
, it contains everything that is required for training.
-It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith .
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
cyclic learning rate already set!
-Epoch 1/5
-1/1 [==============================] - 0s 14ms/step - loss: 6.4702 - binary_accuracy: 0.2500
-Epoch 2/5
-Returning the last set size which is: (224, 224)
-1/1 [==============================] - 0s 965us/step - loss: 5.9033 - binary_accuracy: 0.5000
-Epoch 3/5
-Returning the last set size which is: (224, 224)
-1/1 [==============================] - 0s 977us/step - loss: 5.9233 - binary_accuracy: 0.5000
-Epoch 4/5
-Returning the last set size which is: (224, 224)
-1/1 [==============================] - 0s 979us/step - loss: 2.1408 - binary_accuracy: 0.7500
-Epoch 5/5
-Returning the last set size which is: (224, 224)
-1/1 [==============================] - 0s 982us/step - loss: 1.9062 - binary_accuracy: 0.8750
-
-
-
-
-
-
-
-
-
-
<tensorflow.python.keras.callbacks.History at 0x7f8b1c3f2410>
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Model Visualization It is important to understand what is going inside the model. Techniques like GradCam and Saliency Maps can visualize what the Network is learning. trainer
module has InterpretModel class which creates GradCam and GradCam++ visualization with almost no additional code.
-
-
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Returning the last set size which is: (224, 224)
-index: 282
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Data Visualization Image annotation Thanks to fizyr keras-retinanet.
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Utils Limit GPU memory or enable dynamic GPU memory growth for Tensorflow
-
-
-
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No GPU:0 found in your system!
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No GPU found on the machine!
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
Contributing Contributions of any kind are welcome. Please check the Contributing Guidelines before contributing.
-
-
-
-
-
-
-
diff --git a/docs/old_source/js/customscripts.js b/docs/old_source/js/customscripts.js
deleted file mode 100644
index 27701a35..00000000
--- a/docs/old_source/js/customscripts.js
+++ /dev/null
@@ -1,54 +0,0 @@
-$('#mysidebar').height($(".nav").height());
-
-
-$( document ).ready(function() {
-
- //this script says, if the height of the viewport is greater than 800px, then insert affix class, which makes the nav bar float in a fixed
- // position as your scroll. if you have a lot of nav items, this height may not work for you.
- var h = $(window).height();
- //console.log (h);
- if (h > 800) {
- $( "#mysidebar" ).attr("class", "nav affix");
- }
- // activate tooltips. although this is a bootstrap js function, it must be activated this way in your theme.
- $('[data-toggle="tooltip"]').tooltip({
- placement : 'top'
- });
-
- /**
- * AnchorJS
- */
- anchors.add('h2,h3,h4,h5');
-
-});
-
-// needed for nav tabs on pages. See Formatting > Nav tabs for more details.
-// script from http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload
-$(function() {
- var json, tabsState;
- $('a[data-toggle="pill"], a[data-toggle="tab"]').on('shown.bs.tab', function(e) {
- var href, json, parentId, tabsState;
-
- tabsState = localStorage.getItem("tabs-state");
- json = JSON.parse(tabsState || "{}");
- parentId = $(e.target).parents("ul.nav.nav-pills, ul.nav.nav-tabs").attr("id");
- href = $(e.target).attr('href');
- json[parentId] = href;
-
- return localStorage.setItem("tabs-state", JSON.stringify(json));
- });
-
- tabsState = localStorage.getItem("tabs-state");
- json = JSON.parse(tabsState || "{}");
-
- $.each(json, function(containerId, href) {
- return $("#" + containerId + " a[href=" + href + "]").tab('show');
- });
-
- $("ul.nav.nav-pills, ul.nav.nav-tabs").each(function() {
- var $this = $(this);
- if (!json[$this.attr("id")]) {
- return $this.find("a[data-toggle=tab]:first, a[data-toggle=pill]:first").tab("show");
- }
- });
-});
diff --git a/docs/old_source/js/jekyll-search.js b/docs/old_source/js/jekyll-search.js
deleted file mode 100644
index d884a244..00000000
--- a/docs/old_source/js/jekyll-search.js
+++ /dev/null
@@ -1 +0,0 @@
-!function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a="function"==typeof require&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}for(var i="function"==typeof require&&require,o=0;o
=0}var self=this;self.matches=function(string,crit){return"string"!=typeof string?!1:(string=string.trim(),doMatch(string,crit))}}module.exports=new LiteralSearchStrategy},{}],4:[function(require,module){module.exports=function(){function findMatches(store,crit,strategy){for(var data=store.get(),i=0;i{title} ',noResultsText:"No results found",limit:10,fuzzy:!1};self.init=function(_opt){validateOptions(_opt),assignOptions(_opt),isJSON(opt.dataSource)?initWithJSON(opt.dataSource):initWithURL(opt.dataSource)}}var Searcher=require("./Searcher"),Templater=require("./Templater"),Store=require("./Store"),JSONLoader=require("./JSONLoader"),searcher=new Searcher,templater=new Templater,store=new Store,jsonLoader=new JSONLoader;window.SimpleJekyllSearch=new SimpleJekyllSearch}(window,document)},{"./JSONLoader":1,"./Searcher":4,"./Store":5,"./Templater":6}]},{},[7]);
diff --git a/docs/old_source/js/jquery.ba-throttle-debounce.min.js b/docs/old_source/js/jquery.ba-throttle-debounce.min.js
deleted file mode 100644
index 07205508..00000000
--- a/docs/old_source/js/jquery.ba-throttle-debounce.min.js
+++ /dev/null
@@ -1,9 +0,0 @@
-/*
- * jQuery throttle / debounce - v1.1 - 3/7/2010
- * http://benalman.com/projects/jquery-throttle-debounce-plugin/
- *
- * Copyright (c) 2010 "Cowboy" Ben Alman
- * Dual licensed under the MIT and GPL licenses.
- * http://benalman.com/about/license/
- */
-(function(b,c){var $=b.jQuery||b.Cowboy||(b.Cowboy={}),a;$.throttle=a=function(e,f,j,i){var h,d=0;if(typeof f!=="boolean"){i=j;j=f;f=c}function g(){var o=this,m=+new Date()-d,n=arguments;function l(){d=+new Date();j.apply(o,n)}function k(){h=c}if(i&&!h){l()}h&&clearTimeout(h);if(i===c&&m>e){l()}else{if(f!==true){h=setTimeout(i?k:l,i===c?e-m:e)}}}if($.guid){g.guid=j.guid=j.guid||$.guid++}return g};$.debounce=function(d,e,f){return f===c?a(d,e,false):a(d,f,e!==false)}})(this);
\ No newline at end of file
diff --git a/docs/old_source/js/jquery.navgoco.min.js b/docs/old_source/js/jquery.navgoco.min.js
deleted file mode 100755
index 4ba44753..00000000
--- a/docs/old_source/js/jquery.navgoco.min.js
+++ /dev/null
@@ -1,8 +0,0 @@
-/*
- * jQuery Navgoco Menus Plugin v0.2.1 (2014-04-11)
- * https://github.com/tefra/navgoco
- *
- * Copyright (c) 2014 Chris T (@tefra)
- * BSD - https://github.com/tefra/navgoco/blob/master/LICENSE-BSD
- */
-!function(a){"use strict";var b=function(b,c,d){return this.el=b,this.$el=a(b),this.options=c,this.uuid=this.$el.attr("id")?this.$el.attr("id"):d,this.state={},this.init(),this};b.prototype={init:function(){var b=this;b._load(),b.$el.find("ul").each(function(c){var d=a(this);d.attr("data-index",c),b.options.save&&b.state.hasOwnProperty(c)?(d.parent().addClass(b.options.openClass),d.show()):d.parent().hasClass(b.options.openClass)?(d.show(),b.state[c]=1):d.hide()});var c=a(" ").prepend(b.options.caretHtml),d=b.$el.find("li > a");b._trigger(c,!1),b._trigger(d,!0),b.$el.find("li:has(ul) > a").prepend(c)},_trigger:function(b,c){var d=this;b.on("click",function(b){b.stopPropagation();var e=c?a(this).next():a(this).parent().next(),f=!1;if(c){var g=a(this).attr("href");f=void 0===g||""===g||"#"===g}if(e=e.length>0?e:!1,d.options.onClickBefore.call(this,b,e),!c||e&&f)b.preventDefault(),d._toggle(e,e.is(":hidden")),d._save();else if(d.options.accordion){var h=d.state=d._parents(a(this));d.$el.find("ul").filter(":visible").each(function(){var b=a(this),c=b.attr("data-index");h.hasOwnProperty(c)||d._toggle(b,!1)}),d._save()}d.options.onClickAfter.call(this,b,e)})},_toggle:function(b,c){var d=this,e=b.attr("data-index"),f=b.parent();if(d.options.onToggleBefore.call(this,b,c),c){if(f.addClass(d.options.openClass),b.slideDown(d.options.slide),d.state[e]=1,d.options.accordion){var g=d.state=d._parents(b);g[e]=d.state[e]=1,d.$el.find("ul").filter(":visible").each(function(){var b=a(this),c=b.attr("data-index");g.hasOwnProperty(c)||d._toggle(b,!1)})}}else f.removeClass(d.options.openClass),b.slideUp(d.options.slide),d.state[e]=0;d.options.onToggleAfter.call(this,b,c)},_parents:function(b,c){var d={},e=b.parent(),f=e.parents("ul");return f.each(function(){var b=a(this),e=b.attr("data-index");return e?void(d[e]=c?b:1):!1}),d},_save:function(){if(this.options.save){var b={};for(var d in this.state)1===this.state[d]&&(b[d]=1);c[this.uuid]=this.state=b,a.cookie(this.options.cookie.name,JSON.stringify(c),this.options.cookie)}},_load:function(){if(this.options.save){if(null===c){var b=a.cookie(this.options.cookie.name);c=b?JSON.parse(b):{}}this.state=c.hasOwnProperty(this.uuid)?c[this.uuid]:{}}},toggle:function(b){var c=this,d=arguments.length;if(1>=d)c.$el.find("ul").each(function(){var d=a(this);c._toggle(d,b)});else{var e,f={},g=Array.prototype.slice.call(arguments,1);d--;for(var h=0;d>h;h++){e=g[h];var i=c.$el.find('ul[data-index="'+e+'"]').first();if(i&&(f[e]=i,b)){var j=c._parents(i,!0);for(var k in j)f.hasOwnProperty(k)||(f[k]=j[k])}}for(e in f)c._toggle(f[e],b)}c._save()},destroy:function(){a.removeData(this.$el),this.$el.find("li:has(ul) > a").unbind("click"),this.$el.find("li:has(ul) > a > span").unbind("click")}},a.fn.navgoco=function(c){if("string"==typeof c&&"_"!==c.charAt(0)&&"init"!==c)var d=!0,e=Array.prototype.slice.call(arguments,1);else c=a.extend({},a.fn.navgoco.defaults,c||{}),a.cookie||(c.save=!1);return this.each(function(f){var g=a(this),h=g.data("navgoco");h||(h=new b(this,d?a.fn.navgoco.defaults:c,f),g.data("navgoco",h)),d&&h[c].apply(h,e)})};var c=null;a.fn.navgoco.defaults={caretHtml:"",accordion:!1,openClass:"open",save:!0,cookie:{name:"navgoco",expires:!1,path:"/"},slide:{duration:400,easing:"swing"},onClickBefore:a.noop,onClickAfter:a.noop,onToggleBefore:a.noop,onToggleAfter:a.noop}}(jQuery);
\ No newline at end of file
diff --git a/docs/old_source/js/jquery.shuffle.min.js b/docs/old_source/js/jquery.shuffle.min.js
deleted file mode 100644
index d1031271..00000000
--- a/docs/old_source/js/jquery.shuffle.min.js
+++ /dev/null
@@ -1,1588 +0,0 @@
-/*!
- * Shuffle.js by @Vestride
- * Categorize, sort, and filter a responsive grid of items.
- * Dependencies: jQuery 1.9+, Modernizr 2.6.2+
- * @license MIT license
- * @version 3.0.0
- */
-
-/* Modernizr 2.6.2 (Custom Build) | MIT & BSD
- * Build: http://modernizr.com/download/#-csstransforms-csstransforms3d-csstransitions-cssclasses-prefixed-teststyles-testprop-testallprops-prefixes-domprefixes
- */
-window.Modernizr=function(a,b,c){function z(a){j.cssText=a}function A(a,b){return z(m.join(a+";")+(b||""))}function B(a,b){return typeof a===b}function C(a,b){return!!~(""+a).indexOf(b)}function D(a,b){for(var d in a){var e=a[d];if(!C(e,"-")&&j[e]!==c)return b=="pfx"?e:!0}return!1}function E(a,b,d){for(var e in a){var f=b[a[e]];if(f!==c)return d===!1?a[e]:B(f,"function")?f.bind(d||b):f}return!1}function F(a,b,c){var d=a.charAt(0).toUpperCase()+a.slice(1),e=(a+" "+o.join(d+" ")+d).split(" ");return B(b,"string")||B(b,"undefined")?D(e,b):(e=(a+" "+p.join(d+" ")+d).split(" "),E(e,b,c))}var d="2.6.2",e={},f=!0,g=b.documentElement,h="modernizr",i=b.createElement(h),j=i.style,k,l={}.toString,m=" -webkit- -moz- -o- -ms- ".split(" "),n="Webkit Moz O ms",o=n.split(" "),p=n.toLowerCase().split(" "),q={},r={},s={},t=[],u=t.slice,v,w=function(a,c,d,e){var f,i,j,k,l=b.createElement("div"),m=b.body,n=m||b.createElement("body");if(parseInt(d,10))while(d--)j=b.createElement("div"),j.id=e?e[d]:h+(d+1),l.appendChild(j);return f=["",'"].join(""),l.id=h,(m?l:n).innerHTML+=f,n.appendChild(l),m||(n.style.background="",n.style.overflow="hidden",k=g.style.overflow,g.style.overflow="hidden",g.appendChild(n)),i=c(l,a),m?l.parentNode.removeChild(l):(n.parentNode.removeChild(n),g.style.overflow=k),!!i},x={}.hasOwnProperty,y;!B(x,"undefined")&&!B(x.call,"undefined")?y=function(a,b){return x.call(a,b)}:y=function(a,b){return b in a&&B(a.constructor.prototype[b],"undefined")},Function.prototype.bind||(Function.prototype.bind=function(b){var c=this;if(typeof c!="function")throw new TypeError;var d=u.call(arguments,1),e=function(){if(this instanceof e){var a=function(){};a.prototype=c.prototype;var f=new a,g=c.apply(f,d.concat(u.call(arguments)));return Object(g)===g?g:f}return c.apply(b,d.concat(u.call(arguments)))};return e}),q.csstransforms=function(){return!!F("transform")},q.csstransforms3d=function(){var a=!!F("perspective");return a&&"webkitPerspective"in g.style&&w("@media (transform-3d),(-webkit-transform-3d){#modernizr{left:9px;position:absolute;height:3px;}}",function(b,c){a=b.offsetLeft===9&&b.offsetHeight===3}),a},q.csstransitions=function(){return F("transition")};for(var G in q)y(q,G)&&(v=G.toLowerCase(),e[v]=q[G](),t.push((e[v]?"":"no-")+v));return e.addTest=function(a,b){if(typeof a=="object")for(var d in a)y(a,d)&&e.addTest(d,a[d]);else{a=a.toLowerCase();if(e[a]!==c)return e;b=typeof b=="function"?b():b,typeof f!="undefined"&&f&&(g.className+=" "+(b?"":"no-")+a),e[a]=b}return e},z(""),i=k=null,e._version=d,e._prefixes=m,e._domPrefixes=p,e._cssomPrefixes=o,e.testProp=function(a){return D([a])},e.testAllProps=F,e.testStyles=w,e.prefixed=function(a,b,c){return b?F(a,b,c):F(a,"pfx")},g.className=g.className.replace(/(^|\s)no-js(\s|$)/,"$1$2")+(f?" js "+t.join(" "):""),e}(this,this.document);
-
-(function (factory) {
- if (typeof define === 'function' && define.amd) {
- define(['jquery', 'modernizr'], factory);
- } else {
- window.Shuffle = factory(window.jQuery, window.Modernizr);
- }
-})(function($, Modernizr, undefined) {
-
-'use strict';
-
-
-// Validate Modernizr exists.
-// Shuffle requires `csstransitions`, `csstransforms`, `csstransforms3d`,
-// and `prefixed` to exist on the Modernizr object.
-if (typeof Modernizr !== 'object') {
- throw new Error('Shuffle.js requires Modernizr.\n' +
- 'http://vestride.github.io/Shuffle/#dependencies');
-}
-
-
-/**
- * Returns css prefixed properties like `-webkit-transition` or `box-sizing`
- * from `transition` or `boxSizing`, respectively.
- * @param {(string|boolean)} prop Property to be prefixed.
- * @return {string} The prefixed css property.
- */
-function dashify( prop ) {
- if (!prop) {
- return '';
- }
-
- // Replace upper case with dash-lowercase,
- // then fix ms- prefixes because they're not capitalized.
- return prop.replace(/([A-Z])/g, function( str, m1 ) {
- return '-' + m1.toLowerCase();
- }).replace(/^ms-/,'-ms-');
-}
-
-// Constant, prefixed variables.
-var TRANSITION = Modernizr.prefixed('transition');
-var TRANSITION_DELAY = Modernizr.prefixed('transitionDelay');
-var TRANSITION_DURATION = Modernizr.prefixed('transitionDuration');
-
-// Note(glen): Stock Android 4.1.x browser will fail here because it wrongly
-// says it supports non-prefixed transitions.
-// https://github.com/Modernizr/Modernizr/issues/897
-var TRANSITIONEND = {
- 'WebkitTransition' : 'webkitTransitionEnd',
- 'transition' : 'transitionend'
-}[ TRANSITION ];
-
-var TRANSFORM = Modernizr.prefixed('transform');
-var CSS_TRANSFORM = dashify(TRANSFORM);
-
-// Constants
-var CAN_TRANSITION_TRANSFORMS = Modernizr.csstransforms && Modernizr.csstransitions;
-var HAS_TRANSFORMS_3D = Modernizr.csstransforms3d;
-var SHUFFLE = 'shuffle';
-var COLUMN_THRESHOLD = 0.3;
-
-// Configurable. You can change these constants to fit your application.
-// The default scale and concealed scale, however, have to be different values.
-var ALL_ITEMS = 'all';
-var FILTER_ATTRIBUTE_KEY = 'groups';
-var DEFAULT_SCALE = 1;
-var CONCEALED_SCALE = 0.001;
-
-
-// Underscore's throttle function.
-function throttle(func, wait, options) {
- var context, args, result;
- var timeout = null;
- var previous = 0;
- options = options || {};
- var later = function() {
- previous = options.leading === false ? 0 : $.now();
- timeout = null;
- result = func.apply(context, args);
- context = args = null;
- };
- return function() {
- var now = $.now();
- if (!previous && options.leading === false) {
- previous = now;
- }
- var remaining = wait - (now - previous);
- context = this;
- args = arguments;
- if (remaining <= 0 || remaining > wait) {
- clearTimeout(timeout);
- timeout = null;
- previous = now;
- result = func.apply(context, args);
- context = args = null;
- } else if (!timeout && options.trailing !== false) {
- timeout = setTimeout(later, remaining);
- }
- return result;
- };
-}
-
-function each(obj, iterator, context) {
- for (var i = 0, length = obj.length; i < length; i++) {
- if (iterator.call(context, obj[i], i, obj) === {}) {
- return;
- }
- }
-}
-
-function defer(fn, context, wait) {
- return setTimeout( $.proxy( fn, context ), wait );
-}
-
-function arrayMax( array ) {
- return Math.max.apply( Math, array );
-}
-
-function arrayMin( array ) {
- return Math.min.apply( Math, array );
-}
-
-
-/**
- * Always returns a numeric value, given a value.
- * @param {*} value Possibly numeric value.
- * @return {number} `value` or zero if `value` isn't numeric.
- * @private
- */
-function getNumber(value) {
- return $.isNumeric(value) ? value : 0;
-}
-
-
-/**
- * Represents a coordinate pair.
- * @param {number} [x=0] X.
- * @param {number} [y=0] Y.
- */
-var Point = function(x, y) {
- this.x = getNumber( x );
- this.y = getNumber( y );
-};
-
-
-/**
- * Whether two points are equal.
- * @param {Point} a Point A.
- * @param {Point} b Point B.
- * @return {boolean}
- */
-Point.equals = function(a, b) {
- return a.x === b.x && a.y === b.y;
-};
-
-
-// Used for unique instance variables
-var id = 0;
-var $window = $( window );
-
-
-/**
- * Categorize, sort, and filter a responsive grid of items.
- *
- * @param {Element} element An element which is the parent container for the grid items.
- * @param {Object} [options=Shuffle.options] Options object.
- * @constructor
- */
-var Shuffle = function( element, options ) {
- options = options || {};
- $.extend( this, Shuffle.options, options, Shuffle.settings );
-
- this.$el = $(element);
- this.element = element;
- this.unique = 'shuffle_' + id++;
-
- this._fire( Shuffle.EventType.LOADING );
- this._init();
-
- // Dispatch the done event asynchronously so that people can bind to it after
- // Shuffle has been initialized.
- defer(function() {
- this.initialized = true;
- this._fire( Shuffle.EventType.DONE );
- }, this, 16);
-};
-
-
-/**
- * Events the container element emits with the .shuffle namespace.
- * For example, "done.shuffle".
- * @enum {string}
- */
-Shuffle.EventType = {
- LOADING: 'loading',
- DONE: 'done',
- LAYOUT: 'layout',
- REMOVED: 'removed'
-};
-
-
-/** @enum {string} */
-Shuffle.ClassName = {
- BASE: SHUFFLE,
- SHUFFLE_ITEM: 'shuffle-item',
- FILTERED: 'filtered',
- CONCEALED: 'concealed'
-};
-
-
-// Overrideable options
-Shuffle.options = {
- group: ALL_ITEMS, // Initial filter group.
- speed: 250, // Transition/animation speed (milliseconds).
- easing: 'ease-out', // CSS easing function to use.
- itemSelector: '', // e.g. '.picture-item'.
- sizer: null, // Sizer element. Use an element to determine the size of columns and gutters.
- gutterWidth: 0, // A static number or function that tells the plugin how wide the gutters between columns are (in pixels).
- columnWidth: 0, // A static number or function that returns a number which tells the plugin how wide the columns are (in pixels).
- delimeter: null, // If your group is not json, and is comma delimeted, you could set delimeter to ','.
- buffer: 0, // Useful for percentage based heights when they might not always be exactly the same (in pixels).
- initialSort: null, // Shuffle can be initialized with a sort object. It is the same object given to the sort method.
- throttle: throttle, // By default, shuffle will throttle resize events. This can be changed or removed.
- throttleTime: 300, // How often shuffle can be called on resize (in milliseconds).
- sequentialFadeDelay: 150, // Delay between each item that fades in when adding items.
- supported: CAN_TRANSITION_TRANSFORMS // Whether to use transforms or absolute positioning.
-};
-
-
-// Not overrideable
-Shuffle.settings = {
- useSizer: false,
- itemCss : { // default CSS for each item
- position: 'absolute',
- top: 0,
- left: 0,
- visibility: 'visible'
- },
- revealAppendedDelay: 300,
- lastSort: {},
- lastFilter: ALL_ITEMS,
- enabled: true,
- destroyed: false,
- initialized: false,
- _animations: [],
- styleQueue: []
-};
-
-
-// Expose for testing.
-Shuffle.Point = Point;
-
-
-/**
- * Static methods.
- */
-
-/**
- * If the browser has 3d transforms available, build a string with those,
- * otherwise use 2d transforms.
- * @param {Point} point X and Y positions.
- * @param {number} scale Scale amount.
- * @return {string} A normalized string which can be used with the transform style.
- * @private
- */
-Shuffle._getItemTransformString = function(point, scale) {
- if ( HAS_TRANSFORMS_3D ) {
- return 'translate3d(' + point.x + 'px, ' + point.y + 'px, 0) scale3d(' + scale + ', ' + scale + ', 1)';
- } else {
- return 'translate(' + point.x + 'px, ' + point.y + 'px) scale(' + scale + ')';
- }
-};
-
-
-/**
- * Retrieve the computed style for an element, parsed as a float. This should
- * not be used for width or height values because jQuery mangles them and they
- * are not precise enough.
- * @param {Element} element Element to get style for.
- * @param {string} style Style property.
- * @return {number} The parsed computed value or zero if that fails because IE
- * will return 'auto' when the element doesn't have margins instead of
- * the computed style.
- * @private
- */
-Shuffle._getNumberStyle = function( element, style ) {
- return Shuffle._getFloat( $( element ).css( style ) );
-};
-
-
-/**
- * Parse a string as an integer.
- * @param {string} value String integer.
- * @return {number} The string as an integer or zero.
- * @private
- */
-Shuffle._getInt = function(value) {
- return getNumber( parseInt( value, 10 ) );
-};
-
-/**
- * Parse a string as an float.
- * @param {string} value String float.
- * @return {number} The string as an float or zero.
- * @private
- */
-Shuffle._getFloat = function(value) {
- return getNumber( parseFloat( value ) );
-};
-
-
-/**
- * Returns the outer width of an element, optionally including its margins.
- * The `offsetWidth` property must be used because having a scale transform
- * on the element affects the bounding box. Sadly, Firefox doesn't return an
- * integer value for offsetWidth (yet).
- * @param {Element} element The element.
- * @param {boolean} [includeMargins] Whether to include margins. Default is false.
- * @return {number} The width.
- */
-Shuffle._getOuterWidth = function( element, includeMargins ) {
- var width = element.offsetWidth;
-
- // Use jQuery here because it uses getComputedStyle internally and is
- // cross-browser. Using the style property of the element will only work
- // if there are inline styles.
- if ( includeMargins ) {
- var marginLeft = Shuffle._getNumberStyle( element, 'marginLeft');
- var marginRight = Shuffle._getNumberStyle( element, 'marginRight');
- width += marginLeft + marginRight;
- }
-
- return width;
-};
-
-
-/**
- * Returns the outer height of an element, optionally including its margins.
- * @param {Element} element The element.
- * @param {boolean} [includeMargins] Whether to include margins. Default is false.
- * @return {number} The height.
- */
-Shuffle._getOuterHeight = function( element, includeMargins ) {
- var height = element.offsetHeight;
-
- if ( includeMargins ) {
- var marginTop = Shuffle._getNumberStyle( element, 'marginTop');
- var marginBottom = Shuffle._getNumberStyle( element, 'marginBottom');
- height += marginTop + marginBottom;
- }
-
- return height;
-};
-
-
-/**
- * Change a property or execute a function which will not have a transition
- * @param {Element} element DOM element that won't be transitioned
- * @param {Function} callback A function which will be called while transition
- * is set to 0ms.
- * @param {Object} [context] Optional context for the callback function.
- * @private
- */
-Shuffle._skipTransition = function( element, callback, context ) {
- var duration = element.style[ TRANSITION_DURATION ];
-
- // Set the duration to zero so it happens immediately
- element.style[ TRANSITION_DURATION ] = '0ms'; // ms needed for firefox!
-
- callback.call( context );
-
- // Force reflow
- var reflow = element.offsetWidth;
- // Avoid jshint warnings: unused variables and expressions.
- reflow = null;
-
- // Put the duration back
- element.style[ TRANSITION_DURATION ] = duration;
-};
-
-
-/**
- * Instance methods.
- */
-
-Shuffle.prototype._init = function() {
- this.$items = this._getItems();
-
- this.sizer = this._getElementOption( this.sizer );
-
- if ( this.sizer ) {
- this.useSizer = true;
- }
-
- // Add class and invalidate styles
- this.$el.addClass( Shuffle.ClassName.BASE );
-
- // Set initial css for each item
- this._initItems();
-
- // Bind resize events
- // http://stackoverflow.com/questions/1852751/window-resize-event-firing-in-internet-explorer
- $window.on('resize.' + SHUFFLE + '.' + this.unique, this._getResizeFunction());
-
- // Get container css all in one request. Causes reflow
- var containerCSS = this.$el.css(['position', 'overflow']);
- var containerWidth = Shuffle._getOuterWidth( this.element );
-
- // Add styles to the container if it doesn't have them.
- this._validateStyles( containerCSS );
-
- // We already got the container's width above, no need to cause another reflow getting it again...
- // Calculate the number of columns there will be
- this._setColumns( containerWidth );
-
- // Kick off!
- this.shuffle( this.group, this.initialSort );
-
- // The shuffle items haven't had transitions set on them yet
- // so the user doesn't see the first layout. Set them now that the first layout is done.
- if ( this.supported ) {
- defer(function() {
- this._setTransitions();
- this.element.style[ TRANSITION ] = 'height ' + this.speed + 'ms ' + this.easing;
- }, this);
- }
-};
-
-
-/**
- * Returns a throttled and proxied function for the resize handler.
- * @return {Function}
- * @private
- */
-Shuffle.prototype._getResizeFunction = function() {
- var resizeFunction = $.proxy( this._onResize, this );
- return this.throttle ?
- this.throttle( resizeFunction, this.throttleTime ) :
- resizeFunction;
-};
-
-
-/**
- * Retrieve an element from an option.
- * @param {string|jQuery|Element} option The option to check.
- * @return {?Element} The plain element or null.
- * @private
- */
-Shuffle.prototype._getElementOption = function( option ) {
- // If column width is a string, treat is as a selector and search for the
- // sizer element within the outermost container
- if ( typeof option === 'string' ) {
- return this.$el.find( option )[0] || null;
-
- // Check for an element
- } else if ( option && option.nodeType && option.nodeType === 1 ) {
- return option;
-
- // Check for jQuery object
- } else if ( option && option.jquery ) {
- return option[0];
- }
-
- return null;
-};
-
-
-/**
- * Ensures the shuffle container has the css styles it needs applied to it.
- * @param {Object} styles Key value pairs for position and overflow.
- * @private
- */
-Shuffle.prototype._validateStyles = function(styles) {
- // Position cannot be static.
- if ( styles.position === 'static' ) {
- this.element.style.position = 'relative';
- }
-
- // Overflow has to be hidden
- if ( styles.overflow !== 'hidden' ) {
- this.element.style.overflow = 'hidden';
- }
-};
-
-
-/**
- * Filter the elements by a category.
- * @param {string} [category] Category to filter by. If it's given, the last
- * category will be used to filter the items.
- * @param {ArrayLike} [$collection] Optionally filter a collection. Defaults to
- * all the items.
- * @return {jQuery} Filtered items.
- * @private
- */
-Shuffle.prototype._filter = function( category, $collection ) {
- category = category || this.lastFilter;
- $collection = $collection || this.$items;
-
- var set = this._getFilteredSets( category, $collection );
-
- // Individually add/remove concealed/filtered classes
- this._toggleFilterClasses( set.filtered, set.concealed );
-
- // Save the last filter in case elements are appended.
- this.lastFilter = category;
-
- // This is saved mainly because providing a filter function (like searching)
- // will overwrite the `lastFilter` property every time its called.
- if ( typeof category === 'string' ) {
- this.group = category;
- }
-
- return set.filtered;
-};
-
-
-/**
- * Returns an object containing the filtered and concealed elements.
- * @param {string|Function} category Category or function to filter by.
- * @param {ArrayLike.} $items A collection of items to filter.
- * @return {!{filtered: jQuery, concealed: jQuery}}
- * @private
- */
-Shuffle.prototype._getFilteredSets = function( category, $items ) {
- var $filtered = $();
- var $concealed = $();
-
- // category === 'all', add filtered class to everything
- if ( category === ALL_ITEMS ) {
- $filtered = $items;
-
- // Loop through each item and use provided function to determine
- // whether to hide it or not.
- } else {
- each($items, function( el ) {
- var $item = $(el);
- if ( this._doesPassFilter( category, $item ) ) {
- $filtered = $filtered.add( $item );
- } else {
- $concealed = $concealed.add( $item );
- }
- }, this);
- }
-
- return {
- filtered: $filtered,
- concealed: $concealed
- };
-};
-
-
-/**
- * Test an item to see if it passes a category.
- * @param {string|Function} category Category or function to filter by.
- * @param {jQuery} $item A single item, wrapped with jQuery.
- * @return {boolean} Whether it passes the category/filter.
- * @private
- */
-Shuffle.prototype._doesPassFilter = function( category, $item ) {
- if ( $.isFunction( category ) ) {
- return category.call( $item[0], $item, this );
-
- // Check each element's data-groups attribute against the given category.
- } else {
- var groups = $item.data( FILTER_ATTRIBUTE_KEY );
- var keys = this.delimeter && !$.isArray( groups ) ?
- groups.split( this.delimeter ) :
- groups;
- return $.inArray(category, keys) > -1;
- }
-};
-
-
-/**
- * Toggles the filtered and concealed class names.
- * @param {jQuery} $filtered Filtered set.
- * @param {jQuery} $concealed Concealed set.
- * @private
- */
-Shuffle.prototype._toggleFilterClasses = function( $filtered, $concealed ) {
- $filtered
- .removeClass( Shuffle.ClassName.CONCEALED )
- .addClass( Shuffle.ClassName.FILTERED );
- $concealed
- .removeClass( Shuffle.ClassName.FILTERED )
- .addClass( Shuffle.ClassName.CONCEALED );
-};
-
-
-/**
- * Set the initial css for each item
- * @param {jQuery} [$items] Optionally specifiy at set to initialize
- */
-Shuffle.prototype._initItems = function( $items ) {
- $items = $items || this.$items;
- $items.addClass([
- Shuffle.ClassName.SHUFFLE_ITEM,
- Shuffle.ClassName.FILTERED
- ].join(' '));
- $items.css( this.itemCss ).data('point', new Point()).data('scale', DEFAULT_SCALE);
-};
-
-
-/**
- * Updates the filtered item count.
- * @private
- */
-Shuffle.prototype._updateItemCount = function() {
- this.visibleItems = this._getFilteredItems().length;
-};
-
-
-/**
- * Sets css transform transition on a an element.
- * @param {Element} element Element to set transition on.
- * @private
- */
-Shuffle.prototype._setTransition = function( element ) {
- element.style[ TRANSITION ] = CSS_TRANSFORM + ' ' + this.speed + 'ms ' +
- this.easing + ', opacity ' + this.speed + 'ms ' + this.easing;
-};
-
-
-/**
- * Sets css transform transition on a group of elements.
- * @param {ArrayLike.} $items Elements to set transitions on.
- * @private
- */
-Shuffle.prototype._setTransitions = function( $items ) {
- $items = $items || this.$items;
- each($items, function( el ) {
- this._setTransition( el );
- }, this);
-};
-
-
-/**
- * Sets a transition delay on a collection of elements, making each delay
- * greater than the last.
- * @param {ArrayLike.} $collection Array to iterate over.
- */
-Shuffle.prototype._setSequentialDelay = function( $collection ) {
- if ( !this.supported ) {
- return;
- }
-
- // $collection can be an array of dom elements or jquery object
- each($collection, function( el, i ) {
- // This works because the transition-property: transform, opacity;
- el.style[ TRANSITION_DELAY ] = '0ms,' + ((i + 1) * this.sequentialFadeDelay) + 'ms';
- }, this);
-};
-
-
-Shuffle.prototype._getItems = function() {
- return this.$el.children( this.itemSelector );
-};
-
-
-Shuffle.prototype._getFilteredItems = function() {
- return this.$items.filter('.' + Shuffle.ClassName.FILTERED);
-};
-
-
-Shuffle.prototype._getConcealedItems = function() {
- return this.$items.filter('.' + Shuffle.ClassName.CONCEALED);
-};
-
-
-/**
- * Returns the column size, based on column width and sizer options.
- * @param {number} containerWidth Size of the parent container.
- * @param {number} gutterSize Size of the gutters.
- * @return {number}
- * @private
- */
-Shuffle.prototype._getColumnSize = function( containerWidth, gutterSize ) {
- var size;
-
- // If the columnWidth property is a function, then the grid is fluid
- if ( $.isFunction( this.columnWidth ) ) {
- size = this.columnWidth(containerWidth);
-
- // columnWidth option isn't a function, are they using a sizing element?
- } else if ( this.useSizer ) {
- size = Shuffle._getOuterWidth(this.sizer);
-
- // if not, how about the explicitly set option?
- } else if ( this.columnWidth ) {
- size = this.columnWidth;
-
- // or use the size of the first item
- } else if ( this.$items.length > 0 ) {
- size = Shuffle._getOuterWidth(this.$items[0], true);
-
- // if there's no items, use size of container
- } else {
- size = containerWidth;
- }
-
- // Don't let them set a column width of zero.
- if ( size === 0 ) {
- size = containerWidth;
- }
-
- return size + gutterSize;
-};
-
-
-/**
- * Returns the gutter size, based on gutter width and sizer options.
- * @param {number} containerWidth Size of the parent container.
- * @return {number}
- * @private
- */
-Shuffle.prototype._getGutterSize = function( containerWidth ) {
- var size;
- if ( $.isFunction( this.gutterWidth ) ) {
- size = this.gutterWidth(containerWidth);
- } else if ( this.useSizer ) {
- size = Shuffle._getNumberStyle(this.sizer, 'marginLeft');
- } else {
- size = this.gutterWidth;
- }
-
- return size;
-};
-
-
-/**
- * Calculate the number of columns to be used. Gets css if using sizer element.
- * @param {number} [theContainerWidth] Optionally specify a container width if it's already available.
- */
-Shuffle.prototype._setColumns = function( theContainerWidth ) {
- var containerWidth = theContainerWidth || Shuffle._getOuterWidth( this.element );
- var gutter = this._getGutterSize( containerWidth );
- var columnWidth = this._getColumnSize( containerWidth, gutter );
- var calculatedColumns = (containerWidth + gutter) / columnWidth;
-
- // Widths given from getComputedStyle are not precise enough...
- if ( Math.abs(Math.round(calculatedColumns) - calculatedColumns) < COLUMN_THRESHOLD ) {
- // e.g. calculatedColumns = 11.998876
- calculatedColumns = Math.round( calculatedColumns );
- }
-
- this.cols = Math.max( Math.floor(calculatedColumns), 1 );
- this.containerWidth = containerWidth;
- this.colWidth = columnWidth;
-};
-
-/**
- * Adjust the height of the grid
- */
-Shuffle.prototype._setContainerSize = function() {
- this.$el.css( 'height', this._getContainerSize() );
-};
-
-
-/**
- * Based on the column heights, it returns the biggest one.
- * @return {number}
- * @private
- */
-Shuffle.prototype._getContainerSize = function() {
- return arrayMax( this.positions );
-};
-
-
-/**
- * Fire events with .shuffle namespace
- */
-Shuffle.prototype._fire = function( name, args ) {
- this.$el.trigger( name + '.' + SHUFFLE, args && args.length ? args : [ this ] );
-};
-
-
-/**
- * Zeros out the y columns array, which is used to determine item placement.
- * @private
- */
-Shuffle.prototype._resetCols = function() {
- var i = this.cols;
- this.positions = [];
- while (i--) {
- this.positions.push( 0 );
- }
-};
-
-
-/**
- * Loops through each item that should be shown and calculates the x, y position.
- * @param {Array.} items Array of items that will be shown/layed out in order in their array.
- * Because jQuery collection are always ordered in DOM order, we can't pass a jq collection.
- * @param {boolean} [isOnlyPosition=false] If true this will position the items with zero opacity.
- */
-Shuffle.prototype._layout = function( items, isOnlyPosition ) {
- each(items, function( item ) {
- this._layoutItem( item, !!isOnlyPosition );
- }, this);
-
- // `_layout` always happens after `_shrink`, so it's safe to process the style
- // queue here with styles from the shrink method.
- this._processStyleQueue();
-
- // Adjust the height of the container.
- this._setContainerSize();
-};
-
-
-/**
- * Calculates the position of the item and pushes it onto the style queue.
- * @param {Element} item Element which is being positioned.
- * @param {boolean} isOnlyPosition Whether to position the item, but with zero
- * opacity so that it can fade in later.
- * @private
- */
-Shuffle.prototype._layoutItem = function( item, isOnlyPosition ) {
- var $item = $(item);
- var itemData = $item.data();
- var currPos = itemData.point;
- var currScale = itemData.scale;
- var itemSize = {
- width: Shuffle._getOuterWidth( item, true ),
- height: Shuffle._getOuterHeight( item, true )
- };
- var pos = this._getItemPosition( itemSize );
-
- // If the item will not change its position, do not add it to the render
- // queue. Transitions don't fire when setting a property to the same value.
- if ( Point.equals(currPos, pos) && currScale === DEFAULT_SCALE ) {
- return;
- }
-
- // Save data for shrink
- itemData.point = pos;
- itemData.scale = DEFAULT_SCALE;
-
- this.styleQueue.push({
- $item: $item,
- point: pos,
- scale: DEFAULT_SCALE,
- opacity: isOnlyPosition ? 0 : 1,
- skipTransition: isOnlyPosition,
- callfront: function() {
- if ( !isOnlyPosition ) {
- $item.css( 'visibility', 'visible' );
- }
- },
- callback: function() {
- if ( isOnlyPosition ) {
- $item.css( 'visibility', 'hidden' );
- }
- }
- });
-};
-
-
-/**
- * Determine the location of the next item, based on its size.
- * @param {{width: number, height: number}} itemSize Object with width and height.
- * @return {Point}
- * @private
- */
-Shuffle.prototype._getItemPosition = function( itemSize ) {
- var columnSpan = this._getColumnSpan( itemSize.width, this.colWidth, this.cols );
-
- var setY = this._getColumnSet( columnSpan, this.cols );
-
- // Finds the index of the smallest number in the set.
- var shortColumnIndex = this._getShortColumn( setY, this.buffer );
-
- // Position the item
- var point = new Point(
- Math.round( this.colWidth * shortColumnIndex ),
- Math.round( setY[shortColumnIndex] ));
-
- // Update the columns array with the new values for each column.
- // e.g. before the update the columns could be [250, 0, 0, 0] for an item
- // which spans 2 columns. After it would be [250, itemHeight, itemHeight, 0].
- var setHeight = setY[shortColumnIndex] + itemSize.height;
- var setSpan = this.cols + 1 - setY.length;
- for ( var i = 0; i < setSpan; i++ ) {
- this.positions[ shortColumnIndex + i ] = setHeight;
- }
-
- return point;
-};
-
-
-/**
- * Determine the number of columns an items spans.
- * @param {number} itemWidth Width of the item.
- * @param {number} columnWidth Width of the column (includes gutter).
- * @param {number} columns Total number of columns
- * @return {number}
- * @private
- */
-Shuffle.prototype._getColumnSpan = function( itemWidth, columnWidth, columns ) {
- var columnSpan = itemWidth / columnWidth;
-
- // If the difference between the rounded column span number and the
- // calculated column span number is really small, round the number to
- // make it fit.
- if ( Math.abs(Math.round( columnSpan ) - columnSpan ) < COLUMN_THRESHOLD ) {
- // e.g. columnSpan = 4.0089945390298745
- columnSpan = Math.round( columnSpan );
- }
-
- // Ensure the column span is not more than the amount of columns in the whole layout.
- return Math.min( Math.ceil( columnSpan ), columns );
-};
-
-
-/**
- * Retrieves the column set to use for placement.
- * @param {number} columnSpan The number of columns this current item spans.
- * @param {number} columns The total columns in the grid.
- * @return {Array.} An array of numbers represeting the column set.
- * @private
- */
-Shuffle.prototype._getColumnSet = function( columnSpan, columns ) {
- // The item spans only one column.
- if ( columnSpan === 1 ) {
- return this.positions;
-
- // The item spans more than one column, figure out how many different
- // places it could fit horizontally.
- // The group count is the number of places within the positions this block
- // could fit, ignoring the current positions of items.
- // Imagine a 2 column brick as the second item in a 4 column grid with
- // 10px height each. Find the places it would fit:
- // [10, 0, 0, 0]
- // | | |
- // * * *
- //
- // Then take the places which fit and get the bigger of the two:
- // max([10, 0]), max([0, 0]), max([0, 0]) = [10, 0, 0]
- //
- // Next, find the first smallest number (the short column).
- // [10, 0, 0]
- // |
- // *
- //
- // And that's where it should be placed!
- } else {
- var groupCount = columns + 1 - columnSpan;
- var groupY = [];
-
- // For how many possible positions for this item there are.
- for ( var i = 0; i < groupCount; i++ ) {
- // Find the bigger value for each place it could fit.
- groupY[i] = arrayMax( this.positions.slice( i, i + columnSpan ) );
- }
-
- return groupY;
- }
-};
-
-
-/**
- * Find index of short column, the first from the left where this item will go.
- *
- * @param {Array.} positions The array to search for the smallest number.
- * @param {number} buffer Optional buffer which is very useful when the height
- * is a percentage of the width.
- * @return {number} Index of the short column.
- * @private
- */
-Shuffle.prototype._getShortColumn = function( positions, buffer ) {
- var minPosition = arrayMin( positions );
- for (var i = 0, len = positions.length; i < len; i++) {
- if ( positions[i] >= minPosition - buffer && positions[i] <= minPosition + buffer ) {
- return i;
- }
- }
- return 0;
-};
-
-
-/**
- * Hides the elements that don't match our filter.
- * @param {jQuery} $collection jQuery collection to shrink.
- * @private
- */
-Shuffle.prototype._shrink = function( $collection ) {
- var $concealed = $collection || this._getConcealedItems();
-
- each($concealed, function( item ) {
- var $item = $(item);
- var itemData = $item.data();
-
- // Continuing would add a transitionend event listener to the element, but
- // that listener would not execute because the transform and opacity would
- // stay the same.
- if ( itemData.scale === CONCEALED_SCALE ) {
- return;
- }
-
- itemData.scale = CONCEALED_SCALE;
-
- this.styleQueue.push({
- $item: $item,
- point: itemData.point,
- scale : CONCEALED_SCALE,
- opacity: 0,
- callback: function() {
- $item.css( 'visibility', 'hidden' );
- }
- });
- }, this);
-};
-
-
-/**
- * Resize handler.
- * @private
- */
-Shuffle.prototype._onResize = function() {
- // If shuffle is disabled, destroyed, don't do anything
- if ( !this.enabled || this.destroyed || this.isTransitioning ) {
- return;
- }
-
- // Will need to check height in the future if it's layed out horizontaly
- var containerWidth = Shuffle._getOuterWidth( this.element );
-
- // containerWidth hasn't changed, don't do anything
- if ( containerWidth === this.containerWidth ) {
- return;
- }
-
- this.update();
-};
-
-
-/**
- * Returns styles for either jQuery animate or transition.
- * @param {Object} opts Transition options.
- * @return {!Object} Transforms for transitions, left/top for animate.
- * @private
- */
-Shuffle.prototype._getStylesForTransition = function( opts ) {
- var styles = {
- opacity: opts.opacity
- };
-
- if ( this.supported ) {
- styles[ TRANSFORM ] = Shuffle._getItemTransformString( opts.point, opts.scale );
- } else {
- styles.left = opts.point.x;
- styles.top = opts.point.y;
- }
-
- return styles;
-};
-
-
-/**
- * Transitions an item in the grid
- *
- * @param {Object} opts options.
- * @param {jQuery} opts.$item jQuery object representing the current item.
- * @param {Point} opts.point A point object with the x and y coordinates.
- * @param {number} opts.scale Amount to scale the item.
- * @param {number} opts.opacity Opacity of the item.
- * @param {Function} opts.callback Complete function for the animation.
- * @param {Function} opts.callfront Function to call before transitioning.
- * @private
- */
-Shuffle.prototype._transition = function( opts ) {
- var styles = this._getStylesForTransition( opts );
- this._startItemAnimation( opts.$item, styles, opts.callfront || $.noop, opts.callback || $.noop );
-};
-
-
-Shuffle.prototype._startItemAnimation = function( $item, styles, callfront, callback ) {
- // Transition end handler removes its listener.
- function handleTransitionEnd( evt ) {
- // Make sure this event handler has not bubbled up from a child.
- if ( evt.target === evt.currentTarget ) {
- $( evt.target ).off( TRANSITIONEND, handleTransitionEnd );
- callback();
- }
- }
-
- callfront();
-
- // Transitions are not set until shuffle has loaded to avoid the initial transition.
- if ( !this.initialized ) {
- $item.css( styles );
- callback();
- return;
- }
-
- // Use CSS Transforms if we have them
- if ( this.supported ) {
- $item.css( styles );
- $item.on( TRANSITIONEND, handleTransitionEnd );
-
- // Use jQuery to animate left/top
- } else {
- // Save the deferred object which jQuery returns.
- var anim = $item.stop( true ).animate( styles, this.speed, 'swing', callback );
- // Push the animation to the list of pending animations.
- this._animations.push( anim.promise() );
- }
-};
-
-
-/**
- * Execute the styles gathered in the style queue. This applies styles to elements,
- * triggering transitions.
- * @param {boolean} noLayout Whether to trigger a layout event.
- * @private
- */
-Shuffle.prototype._processStyleQueue = function( noLayout ) {
- var $transitions = $();
-
- // Iterate over the queue and keep track of ones that use transitions.
- each(this.styleQueue, function( transitionObj ) {
- if ( transitionObj.skipTransition ) {
- this._styleImmediately( transitionObj );
- } else {
- $transitions = $transitions.add( transitionObj.$item );
- this._transition( transitionObj );
- }
- }, this);
-
-
- if ( $transitions.length > 0 && this.initialized ) {
- // Set flag that shuffle is currently in motion.
- this.isTransitioning = true;
-
- if ( this.supported ) {
- this._whenCollectionDone( $transitions, TRANSITIONEND, this._movementFinished );
-
- // The _transition function appends a promise to the animations array.
- // When they're all complete, do things.
- } else {
- this._whenAnimationsDone( this._movementFinished );
- }
-
- // A call to layout happened, but none of the newly filtered items will
- // change position. Asynchronously fire the callback here.
- } else if ( !noLayout ) {
- defer( this._layoutEnd, this );
- }
-
- // Remove everything in the style queue
- this.styleQueue.length = 0;
-};
-
-
-/**
- * Apply styles without a transition.
- * @param {Object} opts Transitions options object.
- * @private
- */
-Shuffle.prototype._styleImmediately = function( opts ) {
- Shuffle._skipTransition(opts.$item[0], function() {
- opts.$item.css( this._getStylesForTransition( opts ) );
- }, this);
-};
-
-Shuffle.prototype._movementFinished = function() {
- this.isTransitioning = false;
- this._layoutEnd();
-};
-
-Shuffle.prototype._layoutEnd = function() {
- this._fire( Shuffle.EventType.LAYOUT );
-};
-
-Shuffle.prototype._addItems = function( $newItems, addToEnd, isSequential ) {
- // Add classes and set initial positions.
- this._initItems( $newItems );
-
- // Add transition to each item.
- this._setTransitions( $newItems );
-
- // Update the list of
- this.$items = this._getItems();
-
- // Shrink all items (without transitions).
- this._shrink( $newItems );
- each(this.styleQueue, function( transitionObj ) {
- transitionObj.skipTransition = true;
- });
-
- // Apply shrink positions, but do not cause a layout event.
- this._processStyleQueue( true );
-
- if ( addToEnd ) {
- this._addItemsToEnd( $newItems, isSequential );
- } else {
- this.shuffle( this.lastFilter );
- }
-};
-
-
-Shuffle.prototype._addItemsToEnd = function( $newItems, isSequential ) {
- // Get ones that passed the current filter
- var $passed = this._filter( null, $newItems );
- var passed = $passed.get();
-
- // How many filtered elements?
- this._updateItemCount();
-
- this._layout( passed, true );
-
- if ( isSequential && this.supported ) {
- this._setSequentialDelay( passed );
- }
-
- this._revealAppended( passed );
-};
-
-
-/**
- * Triggers appended elements to fade in.
- * @param {ArrayLike.} $newFilteredItems Collection of elements.
- * @private
- */
-Shuffle.prototype._revealAppended = function( newFilteredItems ) {
- defer(function() {
- each(newFilteredItems, function( el ) {
- var $item = $( el );
- this._transition({
- $item: $item,
- opacity: 1,
- point: $item.data('point'),
- scale: DEFAULT_SCALE
- });
- }, this);
-
- this._whenCollectionDone($(newFilteredItems), TRANSITIONEND, function() {
- $(newFilteredItems).css( TRANSITION_DELAY, '0ms' );
- this._movementFinished();
- });
- }, this, this.revealAppendedDelay);
-};
-
-
-/**
- * Execute a function when an event has been triggered for every item in a collection.
- * @param {jQuery} $collection Collection of elements.
- * @param {string} eventName Event to listen for.
- * @param {Function} callback Callback to execute when they're done.
- * @private
- */
-Shuffle.prototype._whenCollectionDone = function( $collection, eventName, callback ) {
- var done = 0;
- var items = $collection.length;
- var self = this;
-
- function handleEventName( evt ) {
- if ( evt.target === evt.currentTarget ) {
- $( evt.target ).off( eventName, handleEventName );
- done++;
-
- // Execute callback if all items have emitted the correct event.
- if ( done === items ) {
- callback.call( self );
- }
- }
- }
-
- // Bind the event to all items.
- $collection.on( eventName, handleEventName );
-};
-
-
-/**
- * Execute a callback after jQuery `animate` for a collection has finished.
- * @param {Function} callback Callback to execute when they're done.
- * @private
- */
-Shuffle.prototype._whenAnimationsDone = function( callback ) {
- $.when.apply( null, this._animations ).always( $.proxy( function() {
- this._animations.length = 0;
- callback.call( this );
- }, this ));
-};
-
-
-/**
- * Public Methods
- */
-
-/**
- * The magic. This is what makes the plugin 'shuffle'
- * @param {string|Function} [category] Category to filter by. Can be a function
- * @param {Object} [sortObj] A sort object which can sort the filtered set
- */
-Shuffle.prototype.shuffle = function( category, sortObj ) {
- if ( !this.enabled || this.isTransitioning ) {
- return;
- }
-
- if ( !category ) {
- category = ALL_ITEMS;
- }
-
- this._filter( category );
-
- // How many filtered elements?
- this._updateItemCount();
-
- // Shrink each concealed item
- this._shrink();
-
- // Update transforms on .filtered elements so they will animate to their new positions
- this.sort( sortObj );
-};
-
-
-/**
- * Gets the .filtered elements, sorts them, and passes them to layout.
- * @param {Object} opts the options object for the sorted plugin
- */
-Shuffle.prototype.sort = function( opts ) {
- if ( this.enabled && !this.isTransitioning ) {
- this._resetCols();
-
- var sortOptions = opts || this.lastSort;
- var items = this._getFilteredItems().sorted( sortOptions );
-
- this._layout( items );
-
- this.lastSort = sortOptions;
- }
-};
-
-
-/**
- * Reposition everything.
- * @param {boolean} isOnlyLayout If true, column and gutter widths won't be
- * recalculated.
- */
-Shuffle.prototype.update = function( isOnlyLayout ) {
- if ( this.enabled && !this.isTransitioning ) {
-
- if ( !isOnlyLayout ) {
- // Get updated colCount
- this._setColumns();
- }
-
- // Layout items
- this.sort();
- }
-};
-
-
-/**
- * Use this instead of `update()` if you don't need the columns and gutters updated
- * Maybe an image inside `shuffle` loaded (and now has a height), which means calculations
- * could be off.
- */
-Shuffle.prototype.layout = function() {
- this.update( true );
-};
-
-
-/**
- * New items have been appended to shuffle. Fade them in sequentially
- * @param {jQuery} $newItems jQuery collection of new items
- * @param {boolean} [addToEnd=false] If true, new items will be added to the end / bottom
- * of the items. If not true, items will be mixed in with the current sort order.
- * @param {boolean} [isSequential=true] If false, new items won't sequentially fade in
- */
-Shuffle.prototype.appended = function( $newItems, addToEnd, isSequential ) {
- this._addItems( $newItems, addToEnd === true, isSequential !== false );
-};
-
-
-/**
- * Disables shuffle from updating dimensions and layout on resize
- */
-Shuffle.prototype.disable = function() {
- this.enabled = false;
-};
-
-
-/**
- * Enables shuffle again
- * @param {boolean} [isUpdateLayout=true] if undefined, shuffle will update columns and gutters
- */
-Shuffle.prototype.enable = function( isUpdateLayout ) {
- this.enabled = true;
- if ( isUpdateLayout !== false ) {
- this.update();
- }
-};
-
-
-/**
- * Remove 1 or more shuffle items
- * @param {jQuery} $collection A jQuery object containing one or more element in shuffle
- * @return {Shuffle} The shuffle object
- */
-Shuffle.prototype.remove = function( $collection ) {
-
- // If this isn't a jquery object, exit
- if ( !$collection.length || !$collection.jquery ) {
- return;
- }
-
- function handleRemoved() {
- // Remove the collection in the callback
- $collection.remove();
-
- // Update things now that elements have been removed.
- this.$items = this._getItems();
- this._updateItemCount();
-
- this._fire( Shuffle.EventType.REMOVED, [ $collection, this ] );
-
- // Let it get garbage collected
- $collection = null;
- }
-
- // Hide collection first.
- this._toggleFilterClasses( $(), $collection );
- this._shrink( $collection );
-
- this.sort();
-
- this.$el.one( Shuffle.EventType.LAYOUT + '.' + SHUFFLE, $.proxy( handleRemoved, this ) );
-};
-
-
-/**
- * Destroys shuffle, removes events, styles, and classes
- */
-Shuffle.prototype.destroy = function() {
- // If there is more than one shuffle instance on the page,
- // removing the resize handler from the window would remove them
- // all. This is why a unique value is needed.
- $window.off('.' + this.unique);
-
- // Reset container styles
- this.$el
- .removeClass( SHUFFLE )
- .removeAttr('style')
- .removeData( SHUFFLE );
-
- // Reset individual item styles
- this.$items
- .removeAttr('style')
- .removeData('point')
- .removeData('scale')
- .removeClass([
- Shuffle.ClassName.CONCEALED,
- Shuffle.ClassName.FILTERED,
- Shuffle.ClassName.SHUFFLE_ITEM
- ].join(' '));
-
- // Null DOM references
- this.$items = null;
- this.$el = null;
- this.sizer = null;
- this.element = null;
-
- // Set a flag so if a debounced resize has been triggered,
- // it can first check if it is actually destroyed and not doing anything
- this.destroyed = true;
-};
-
-
-// Plugin definition
-$.fn.shuffle = function( opts ) {
- var args = Array.prototype.slice.call( arguments, 1 );
- return this.each(function() {
- var $this = $( this );
- var shuffle = $this.data( SHUFFLE );
-
- // If we don't have a stored shuffle, make a new one and save it
- if ( !shuffle ) {
- shuffle = new Shuffle( this, opts );
- $this.data( SHUFFLE, shuffle );
- } else if ( typeof opts === 'string' && shuffle[ opts ] ) {
- shuffle[ opts ].apply( shuffle, args );
- }
- });
-};
-
-
-// http://stackoverflow.com/a/962890/373422
-function randomize( array ) {
- var tmp, current;
- var top = array.length;
-
- if ( !top ) {
- return array;
- }
-
- while ( --top ) {
- current = Math.floor( Math.random() * (top + 1) );
- tmp = array[ current ];
- array[ current ] = array[ top ];
- array[ top ] = tmp;
- }
-
- return array;
-}
-
-
-// You can return `undefined` from the `by` function to revert to DOM order
-// This plugin does NOT return a jQuery object. It returns a plain array because
-// jQuery sorts everything in DOM order.
-$.fn.sorted = function(options) {
- var opts = $.extend({}, $.fn.sorted.defaults, options);
- var arr = this.get();
- var revert = false;
-
- if ( !arr.length ) {
- return [];
- }
-
- if ( opts.randomize ) {
- return randomize( arr );
- }
-
- // Sort the elements by the opts.by function.
- // If we don't have opts.by, default to DOM order
- if ( $.isFunction( opts.by ) ) {
- arr.sort(function(a, b) {
-
- // Exit early if we already know we want to revert
- if ( revert ) {
- return 0;
- }
-
- var valA = opts.by($(a));
- var valB = opts.by($(b));
-
- // If both values are undefined, use the DOM order
- if ( valA === undefined && valB === undefined ) {
- revert = true;
- return 0;
- }
-
- if ( valA < valB || valA === 'sortFirst' || valB === 'sortLast' ) {
- return -1;
- }
-
- if ( valA > valB || valA === 'sortLast' || valB === 'sortFirst' ) {
- return 1;
- }
-
- return 0;
- });
- }
-
- // Revert to the original array if necessary
- if ( revert ) {
- return this.get();
- }
-
- if ( opts.reverse ) {
- arr.reverse();
- }
-
- return arr;
-};
-
-
-$.fn.sorted.defaults = {
- reverse: false, // Use array.reverse() to reverse the results
- by: null, // Sorting function
- randomize: false // If true, this will skip the sorting and return a randomized order in the array
-};
-
-return Shuffle;
-
-});
\ No newline at end of file
diff --git a/docs/old_source/js/toc.js b/docs/old_source/js/toc.js
deleted file mode 100644
index b5244bb0..00000000
--- a/docs/old_source/js/toc.js
+++ /dev/null
@@ -1,90 +0,0 @@
-// https://github.com/ghiculescu/jekyll-table-of-contents
-// this library modified by fastai to:
-// - update the location.href with the correct anchor when a toc item is clicked on
-(function($){
- $.fn.toc = function(options) {
- var defaults = {
- noBackToTopLinks: false,
- title: '',
- minimumHeaders: 3,
- headers: 'h1, h2, h3, h4',
- listType: 'ol', // values: [ol|ul]
- showEffect: 'show', // values: [show|slideDown|fadeIn|none]
- showSpeed: 'slow' // set to 0 to deactivate effect
- },
- settings = $.extend(defaults, options);
-
- var headers = $(settings.headers).filter(function() {
- // get all headers with an ID
- var previousSiblingName = $(this).prev().attr( "name" );
- if (!this.id && previousSiblingName) {
- this.id = $(this).attr( "id", previousSiblingName.replace(/\./g, "-") );
- }
- return this.id;
- }), output = $(this);
- if (!headers.length || headers.length < settings.minimumHeaders || !output.length) {
- return;
- }
-
- if (0 === settings.showSpeed) {
- settings.showEffect = 'none';
- }
-
- var render = {
- show: function() { output.hide().html(html).show(settings.showSpeed); },
- slideDown: function() { output.hide().html(html).slideDown(settings.showSpeed); },
- fadeIn: function() { output.hide().html(html).fadeIn(settings.showSpeed); },
- none: function() { output.html(html); }
- };
-
- var get_level = function(ele) { return parseInt(ele.nodeName.replace("H", ""), 10); }
- var highest_level = headers.map(function(_, ele) { return get_level(ele); }).get().sort()[0];
- //var return_to_top = ' ';
- // other nice icons that can be used instead: glyphicon-upload glyphicon-hand-up glyphicon-chevron-up glyphicon-menu-up glyphicon-triangle-top
- var level = get_level(headers[0]),
- this_level,
- html = settings.title + " <"+settings.listType+">";
- headers.on('click', function() {
- if (!settings.noBackToTopLinks) {
- var pos = $(window).scrollTop();
- window.location.hash = this.id;
- $(window).scrollTop(pos);
- }
- })
- .addClass('clickable-header')
- .each(function(_, header) {
- base_url = window.location.href;
- base_url = base_url.replace(/#.*$/, "");
- this_level = get_level(header);
- //if (!settings.noBackToTopLinks && this_level > 1) {
- // $(header).addClass('top-level-header').before(return_to_top);
- //}
- txt = header.textContent.split('¶')[0].split(/\[(test|source)\]/)[0];
- if (!txt) {return;}
- if (this_level === level) // same level as before; same indenting
- html += "" + txt + " ";
- else if (this_level <= level){ // higher level than before; end parent ol
- for(i = this_level; i < level; i++) {
- html += " "+settings.listType+">"
- }
- html += "" + txt + " ";
- }
- else if (this_level > level) { // lower level than before; expand the previous to contain a ol
- for(i = this_level; i > level; i--) {
- html += "<"+settings.listType+">"+((i-level == 2) ? "" : " ")
- }
- html += "" + txt + " ";
- }
- level = this_level; // update for the next one
- });
- html += ""+settings.listType+">";
- if (!settings.noBackToTopLinks) {
- $(document).on('click', '.back-to-top', function() {
- $(window).scrollTop(0);
- window.location.hash = '';
- });
- }
-
- render[settings.showEffect]();
- };
-})(jQuery);
diff --git a/docs/old_source/licenses/LICENSE b/docs/old_source/licenses/LICENSE
deleted file mode 100644
index 21e88dc0..00000000
--- a/docs/old_source/licenses/LICENSE
+++ /dev/null
@@ -1,24 +0,0 @@
-/* This license pertains to the docs template, except for the Navgoco jQuery component. */
-
-The MIT License (MIT)
-
-Original theme: Copyright (c) 2016 Tom Johnson
-Modifications: Copyright (c) 2017 onwards fast.ai, Inc
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
diff --git a/docs/old_source/licenses/LICENSE-BSD-NAVGOCO.txt b/docs/old_source/licenses/LICENSE-BSD-NAVGOCO.txt
deleted file mode 100644
index 7fdefc39..00000000
--- a/docs/old_source/licenses/LICENSE-BSD-NAVGOCO.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-/* This license pertains to the Navgoco jQuery component used for the sidebar. */
-
-Copyright (c) 2013, Christodoulos Tsoulloftas, http://www.komposta.net
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of the nor the names of its
- contributors may be used to endorse or promote products derived from this
- software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
-IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
-INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
-OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
-OF THE POSSIBILITY OF SUCH DAMAGE.
\ No newline at end of file
diff --git a/docs/old_source/model_converter.html b/docs/old_source/model_converter.html
deleted file mode 100644
index 9e7187e6..00000000
--- a/docs/old_source/model_converter.html
+++ /dev/null
@@ -1,838 +0,0 @@
----
-
-title: Model Interconversion
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/08_model_converter.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
pytorch_to_onnx
(model
, tensor
, export_path
='temp.onnx'
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
onnx_to_pytorch
(onnx_model
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
tf2_to_onnx
(model
, opset
=None
, output_path
=None
, **kwargs
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
tf2_to_pytorch
(model
, opset
=None
, **kwargs
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
torch.Size([1, 3, 224, 224])
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
----------------------------------------------------------------------------
-RuntimeError Traceback (most recent call last)
-<ipython-input-252-d9aab2a98c5d> in <module>
-----> 1 res2 = my_model( x2)
- 2 # IMAGENET_LABELS[torch.argmax(res2).item()]
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl (self, *input, **kwargs)
- 887 result = self. _slow_forward( * input, ** kwargs)
- 888 else :
---> 889 result = self. forward( * input, ** kwargs)
- 890 for hook in itertools.chain(
- 891 _global_forward_hooks. values( ) ,
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/container.py in forward (self, input)
- 117 def forward( self, input) :
- 118 for module in self:
---> 119 input = module( input)
- 120 return input
- 121
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl (self, *input, **kwargs)
- 887 result = self. _slow_forward( * input, ** kwargs)
- 888 else :
---> 889 result = self. forward( * input, ** kwargs)
- 890 for hook in itertools.chain(
- 891 _global_forward_hooks. values( ) ,
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/onnx2pytorch/convert/model.py in forward (self, *input)
- 132 activations[ out_op_id] = op( in_activations[ 0 ] )
- 133 else :
---> 134 activations[ out_op_id] = op( * in_activations)
- 135
- 136 if self. debug:
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl (self, *input, **kwargs)
- 887 result = self. _slow_forward( * input, ** kwargs)
- 888 else :
---> 889 result = self. forward( * input, ** kwargs)
- 890 for hook in itertools.chain(
- 891 _global_forward_hooks. values( ) ,
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/container.py in forward (self, input)
- 117 def forward( self, input) :
- 118 for module in self:
---> 119 input = module( input)
- 120 return input
- 121
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl (self, *input, **kwargs)
- 887 result = self. _slow_forward( * input, ** kwargs)
- 888 else :
---> 889 result = self. forward( * input, ** kwargs)
- 890 for hook in itertools.chain(
- 891 _global_forward_hooks. values( ) ,
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/conv.py in forward (self, input)
- 397
- 398 def forward( self, input: Tensor) -> Tensor:
---> 399 return self. _conv_forward( input, self. weight, self. bias)
- 400
- 401 class Conv3d( _ConvNd) :
-
-~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/conv.py in _conv_forward (self, input, weight, bias)
- 393 weight, bias, self. stride,
- 394 _pair(0), self.dilation, self.groups)
---> 395 return F.conv2d(input, weight, bias, self.stride,
- 396 self.padding, self.dilation, self.groups)
- 397
-
-RuntimeError : Given groups=1, weight of size [32, 3, 3, 3], expected input[1, 224, 4, 225] to have 3 channels, but got 224 channels instead
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
Sequential(
- (0): ConvertModel(
- (Conv_mobilenetv2_1.00_224/bn_Conv1/FusedBatchNormV3:0): Sequential(
- (0): ConstantPad2d(padding=[0, 1, 0, 1], value=0)
- (1): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2))
- )
- (Clip_mobilenetv2_1.00_224/Conv1_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/expanded_conv_depthwise_BN/FusedBatchNormV3:0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
- (Clip_mobilenetv2_1.00_224/expanded_conv_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/expanded_conv_project_BN/FusedBatchNormV3:0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
- (Conv_mobilenetv2_1.00_224/block_1_expand/Conv2D:0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (BatchNormalization_mobilenetv2_1.00_224/block_1_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(96, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (Clip_mobilenetv2_1.00_224/block_1_expand_relu/Relu6:0): clamp()
- (Split_Split__8143:0): Split()
- (Pad_mobilenetv2_1.00_224/block_1_pad/Pad:0): Pad()
- (Conv_mobilenetv2_1.00_224/block_1_depthwise_BN/FusedBatchNormV3:0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), groups=96)
- (Clip_mobilenetv2_1.00_224/block_1_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_1_project_BN/FusedBatchNormV3:0): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1))
- (Conv_mobilenetv2_1.00_224/block_2_expand/Conv2D:0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (BatchNormalization_mobilenetv2_1.00_224/block_2_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(144, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (Clip_mobilenetv2_1.00_224/block_2_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_2_depthwise_BN/FusedBatchNormV3:0): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144)
- (Clip_mobilenetv2_1.00_224/block_2_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_2_project_BN/FusedBatchNormV3:0): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_2_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_3_expand_BN/FusedBatchNormV3:0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_3_expand_relu/Relu6:0): clamp()
- (Pad_mobilenetv2_1.00_224/block_3_pad/Pad:0): Pad()
- (Conv_mobilenetv2_1.00_224/block_3_depthwise_BN/FusedBatchNormV3:0): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), groups=144)
- (Clip_mobilenetv2_1.00_224/block_3_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_3_project_BN/FusedBatchNormV3:0): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1))
- (Conv_mobilenetv2_1.00_224/block_4_expand/Conv2D:0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (BatchNormalization_mobilenetv2_1.00_224/block_4_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(192, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (Clip_mobilenetv2_1.00_224/block_4_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_4_depthwise_BN/FusedBatchNormV3:0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
- (Clip_mobilenetv2_1.00_224/block_4_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_4_project_BN/FusedBatchNormV3:0): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_4_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_5_expand_BN/FusedBatchNormV3:0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_5_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_5_depthwise_BN/FusedBatchNormV3:0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
- (Clip_mobilenetv2_1.00_224/block_5_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_5_project_BN/FusedBatchNormV3:0): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_5_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_6_expand_BN/FusedBatchNormV3:0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_6_expand_relu/Relu6:0): clamp()
- (Pad_mobilenetv2_1.00_224/block_6_pad/Pad:0): Pad()
- (Conv_mobilenetv2_1.00_224/block_6_depthwise_BN/FusedBatchNormV3:0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), groups=192)
- (Clip_mobilenetv2_1.00_224/block_6_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_6_project_BN/FusedBatchNormV3:0): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
- (Conv_mobilenetv2_1.00_224/block_7_expand/Conv2D:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (BatchNormalization_mobilenetv2_1.00_224/block_7_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(384, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (Clip_mobilenetv2_1.00_224/block_7_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_7_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (Clip_mobilenetv2_1.00_224/block_7_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_7_project_BN/FusedBatchNormV3:0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_7_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_8_expand_BN/FusedBatchNormV3:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_8_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_8_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (Clip_mobilenetv2_1.00_224/block_8_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_8_project_BN/FusedBatchNormV3:0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_8_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_9_expand_BN/FusedBatchNormV3:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_9_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_9_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (Clip_mobilenetv2_1.00_224/block_9_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_9_project_BN/FusedBatchNormV3:0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_9_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_10_expand_BN/FusedBatchNormV3:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_10_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_10_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (Clip_mobilenetv2_1.00_224/block_10_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_10_project_BN/FusedBatchNormV3:0): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))
- (Conv_mobilenetv2_1.00_224/block_11_expand/Conv2D:0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (BatchNormalization_mobilenetv2_1.00_224/block_11_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(576, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (Clip_mobilenetv2_1.00_224/block_11_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_11_depthwise_BN/FusedBatchNormV3:0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)
- (Clip_mobilenetv2_1.00_224/block_11_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_11_project_BN/FusedBatchNormV3:0): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_11_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_12_expand_BN/FusedBatchNormV3:0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_12_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_12_depthwise_BN/FusedBatchNormV3:0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)
- (Clip_mobilenetv2_1.00_224/block_12_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_12_project_BN/FusedBatchNormV3:0): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_12_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_13_expand_BN/FusedBatchNormV3:0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_13_expand_relu/Relu6:0): clamp()
- (Pad_mobilenetv2_1.00_224/block_13_pad/Pad:0): Pad()
- (Conv_mobilenetv2_1.00_224/block_13_depthwise_BN/FusedBatchNormV3:0): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), groups=576)
- (Clip_mobilenetv2_1.00_224/block_13_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_13_project_BN/FusedBatchNormV3:0): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1))
- (Conv_mobilenetv2_1.00_224/block_14_expand/Conv2D:0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (BatchNormalization_mobilenetv2_1.00_224/block_14_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(960, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (Clip_mobilenetv2_1.00_224/block_14_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_14_depthwise_BN/FusedBatchNormV3:0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)
- (Clip_mobilenetv2_1.00_224/block_14_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_14_project_BN/FusedBatchNormV3:0): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_14_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_15_expand_BN/FusedBatchNormV3:0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_15_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_15_depthwise_BN/FusedBatchNormV3:0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)
- (Clip_mobilenetv2_1.00_224/block_15_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_15_project_BN/FusedBatchNormV3:0): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))
- (Add_mobilenetv2_1.00_224/block_15_add/add:0): Add()
- (Conv_mobilenetv2_1.00_224/block_16_expand_BN/FusedBatchNormV3:0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))
- (Clip_mobilenetv2_1.00_224/block_16_expand_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_16_depthwise_BN/FusedBatchNormV3:0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)
- (Clip_mobilenetv2_1.00_224/block_16_depthwise_relu/Relu6:0): clamp()
- (Conv_mobilenetv2_1.00_224/block_16_project_BN/FusedBatchNormV3:0): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))
- (Conv_mobilenetv2_1.00_224/Conv_1/Conv2D:0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (BatchNormalization_mobilenetv2_1.00_224/Conv_1_bn/FusedBatchNormV3:0): BatchNormUnsafe(1280, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (Clip_mobilenetv2_1.00_224/out_relu/Relu6:0): clamp()
- (GlobalAveragePool_mobilenetv2_1.00_224/global_average_pooling2d_9/Mean:0): GlobalAveragePool()
- (Squeeze_mobilenetv2_1.00_224/global_average_pooling2d_9/Mean_Squeeze__8183:0): Squeeze()
- (MatMul_mobilenetv2_1.00_224/predictions/BiasAdd:0): Linear(in_features=1280, out_features=1000, bias=True)
- (Softmax_predictions): Softmax(dim=None)
- )
- (1): Sequential(
- (0): ConstantPad2d(padding=[0, 1, 0, 1], value=0)
- (1): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2))
- )
- (2): ConstantPad2d(padding=[0, 1, 0, 1], value=0)
- (3): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2))
- (4): clamp()
- (5): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
- (6): clamp()
- (7): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
- (8): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (9): BatchNormUnsafe(96, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (10): clamp()
- (11): Split()
- (12): Pad()
- (13): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), groups=96)
- (14): clamp()
- (15): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1))
- (16): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (17): BatchNormUnsafe(144, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (18): clamp()
- (19): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144)
- (20): clamp()
- (21): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1))
- (22): Add()
- (23): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1))
- (24): clamp()
- (25): Pad()
- (26): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), groups=144)
- (27): clamp()
- (28): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1))
- (29): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (30): BatchNormUnsafe(192, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (31): clamp()
- (32): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
- (33): clamp()
- (34): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
- (35): Add()
- (36): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))
- (37): clamp()
- (38): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)
- (39): clamp()
- (40): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
- (41): Add()
- (42): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))
- (43): clamp()
- (44): Pad()
- (45): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), groups=192)
- (46): clamp()
- (47): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
- (48): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (49): BatchNormUnsafe(384, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (50): clamp()
- (51): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (52): clamp()
- (53): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
- (54): Add()
- (55): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))
- (56): clamp()
- (57): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (58): clamp()
- (59): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
- (60): Add()
- (61): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))
- (62): clamp()
- (63): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (64): clamp()
- (65): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
- (66): Add()
- (67): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))
- (68): clamp()
- (69): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)
- (70): clamp()
- (71): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))
- (72): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (73): BatchNormUnsafe(576, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (74): clamp()
- (75): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)
- (76): clamp()
- (77): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
- (78): Add()
- (79): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))
- (80): clamp()
- (81): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)
- (82): clamp()
- (83): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
- (84): Add()
- (85): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))
- (86): clamp()
- (87): Pad()
- (88): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), groups=576)
- (89): clamp()
- (90): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1))
- (91): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (92): BatchNormUnsafe(960, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (93): clamp()
- (94): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)
- (95): clamp()
- (96): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))
- (97): Add()
- (98): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))
- (99): clamp()
- (100): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)
- (101): clamp()
- (102): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))
- (103): Add()
- (104): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))
- (105): clamp()
- (106): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)
- (107): clamp()
- (108): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))
- (109): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)
- (110): BatchNormUnsafe(1280, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)
- (111): clamp()
- (112): GlobalAveragePool()
- (113): Squeeze()
- (114): Linear(in_features=1280, out_features=1000, bias=True)
-)
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
-
(torch.Size([1, 224, 224, 3]), torch.Size([9, 1000]))
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/sidebar.json b/docs/old_source/sidebar.json
deleted file mode 100644
index 8ebece47..00000000
--- a/docs/old_source/sidebar.json
+++ /dev/null
@@ -1,15 +0,0 @@
-{
- "chitra": {
- "Overview": "/",
- "core": "core",
- "image": "image",
- "dataloader": "dataloader",
- "datagenerator": "datagenerator",
- "trainer": "trainer",
- "visualization": "visualization",
- "utils": "utils"
- },
- "Examples": {
- "Image classification w Chitra": "image-classification-example"
- }
-}
\ No newline at end of file
diff --git a/docs/old_source/tf_utils.html b/docs/old_source/tf_utils.html
deleted file mode 100644
index 4d345d0b..00000000
--- a/docs/old_source/tf_utils.html
+++ /dev/null
@@ -1,223 +0,0 @@
----
-
-title: tf_utils
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/06_tf_utils.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
disable_gpu
()
-
-
disable gpu for tensorflow
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
limit_gpu
(gpu_id
:str
, memory_limit
:int
)
-
-
limit the selected gpu [gpu_id] by [memory_limit] MB
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No GPU:1 found in your system!
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No GPU found on the machine!
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Converted 05_utils.ipynb.
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/tooltips.json b/docs/old_source/tooltips.json
deleted file mode 100644
index cee21d3f..00000000
--- a/docs/old_source/tooltips.json
+++ /dev/null
@@ -1,19 +0,0 @@
----
-layout: null
-search: exclude
----
-
-{
-"entries":
-[
-{% for page in site.tooltips %}
-{
-"doc_id": "{{ page.doc_id }}",
-"body": "{{ page.content | strip_newlines | replace: '\', '\\\\' | replace: '"', '\\"' }}"
-} {% unless forloop.last %},{% endunless %}
-{% endfor %}
-]
-}
-
-
-
diff --git a/docs/old_source/trainer.html b/docs/old_source/trainer.html
deleted file mode 100644
index 2b988818..00000000
--- a/docs/old_source/trainer.html
+++ /dev/null
@@ -1,391 +0,0 @@
----
-
-title: Trainer
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "The Trainer class inherits `tf.keras.Model` and contains everything a model needs for training. It exposes `learner.cyclic_fit` method which trains the model using **Cyclic Learning rate** discovered by Leslie Smith."
-description: "The Trainer class inherits `tf.keras.Model` and contains everything a model needs for training. It exposes `learner.cyclic_fit` method which trains the model using **Cyclic Learning rate** discovered by Leslie Smith."
-nb_path: "nbs/03_trainer.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
create_classifier
(base_model_fn
:callable
, num_classes
:int
, weights
='imagenet'
, dropout
=0
, include_top
=False
, name
=None
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
create_cnn
(base_model
:Union
[str
, Model
], num_classes
:int
, drop_out
=0.5
, keras_applications
:bool
=True
, pooling
:str
='avg'
, weights
:Optional
[str
]='imagenet'
, name
=None
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Trainer
(*args
, **kwargs
) :: Model
-
-
The Trainer class inherits tf.keras.Model and contains everything a model needs for training.
-It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.
-
Arguments:
-ds: Dataset object
-model: object of type tf.keras.Model
-num_classes (int, None): number of classes in the dataset. If None then will auto infer from Dataset
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
InterpretModel
(gradcam_pp
:bool
, learner
:Trainer
, clone
:bool
=False
)
-
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No item present in the image size list
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
num_classes is ignored. returning the passed model as it is.
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/utils.html b/docs/old_source/utils.html
deleted file mode 100644
index 8af274e1..00000000
--- a/docs/old_source/utils.html
+++ /dev/null
@@ -1,223 +0,0 @@
----
-
-title: utils
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/06_utils.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
disable_gpu
()
-
-
disable gpu for tensorflow
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
limit_gpu
(gpu_id
:str
, memory_limit
:int
)
-
-
limit the selected gpu [gpu_id] by [memory_limit] MB
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No GPU:1 found in your system!
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
No GPU found on the machine!
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
Converted 05_utils.ipynb.
-
-
-
-
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/old_source/visualization.html b/docs/old_source/visualization.html
deleted file mode 100644
index cb8c4641..00000000
--- a/docs/old_source/visualization.html
+++ /dev/null
@@ -1,261 +0,0 @@
----
-
-title: visualization
-
-
-keywords: fastai
-sidebar: home_sidebar
-
-summary: "API details."
-description: "API details."
-nb_path: "nbs/05_visualization.ipynb"
----
-
-
-
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
-
'\nCopyright 2017-2018 Fizyr (https://fizyr.com)\n\nLicensed under the Apache License, Version 2.0 (the "License");\nyou may not use this file except in compliance with the License.\nYou may obtain a copy of the License at\n\n http://www.apache.org/licenses/LICENSE-2.0\n\nUnless required by applicable law or agreed to in writing, software\ndistributed under the License is distributed on an "AS IS" BASIS,\nWITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\nSee the License for the specific language governing permissions and\nlimitations under the License.\n'
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
label_color
(label
)
-
-
Return a color from a set of predefined colors. Contains 80 colors in total.
-
Args
- label: The label to get the color for.
-
Returns
- A list of three values representing a RGB color.
-
-
If no color is defined for a certain label, the color green is returned and a warning is printed.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
draw_box
(image
, box
, color
, thickness
=2
)
-
-
Draws a box on an image with a given color.
-
Arguments
-
image : The image to draw on.
-box : A list of 4 elements (x1, y1, x2, y2).
-color : The color of the box.
-thickness : The thickness of the lines to draw a box with.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
draw_caption
(image
, box
, caption
)
-
-
Draws a caption above the box in an image.
-
Arguments
-
image : The image to draw on.
-box : A list of 4 elements (x1, y1, x2, y2).
-caption : String containing the text to draw.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
draw_boxes
(image
, boxes
, color
, thickness
=2
)
-
-
Draws boxes on an image with a given color.
-
Arguments
-
image : The image to draw on.
-boxes : A [N, 4] matrix (x1, y1, x2, y2).
-color : The color of the boxes.
-thickness : The thickness of the lines to draw boxes with.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
draw_detections
(image
, boxes
, scores
, labels
, color
=None
, label_to_name
=None
, score_threshold
=0.5
)
-
-
Draws detections in an image.
-
Arguments
-
image : The image to draw on.
-boxes : A [N, 4] matrix (x1, y1, x2, y2).
-scores : A list of N classification scores.
-labels : A list of N labels.
-color : The color of the boxes. By default the color from keras_retinanet.utils.colors.label_color will be used.
-label_to_name : (optional) Functor for mapping a label to a name.
-score_threshold : Threshold used for determining what detections to draw.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
-
-
-
-
-
-
-
draw_annotations
(image
, annotations
, color
=(0, 255, 0)
, label_to_name
=None
)
-
-
Draws annotations in an image.
-
Arguments
-
image : The image to draw on.
-annotations : A [N, 5] matrix (x1, y1, x2, y2, label) or dictionary containing bboxes (shaped [N, 4]) and labels (shaped [N]).
-color : The color of the boxes. By default the color from keras_retinanet.utils.colors.label_color will be used.
-label_to_name : (optional) Functor for mapping a label to a name.
-
-
-
-
-
-
-
-
-
- {% endraw %}
-
- {% raw %}
-
-
-
-
- {% endraw %}
-
-
-
-
diff --git a/docs/overrides/main.html b/docs/overrides/main.html
new file mode 100644
index 00000000..cf4d2c68
--- /dev/null
+++ b/docs/overrides/main.html
@@ -0,0 +1,34 @@
+{% extends "base.html" %}
+
+{% block extrahead %}
+ {% set title = config.site_name %}
+ {% if page and page.meta and page.meta.title %}
+ {% set title = title ~ " - " ~ page.meta.title %}
+ {% elif page and page.title and not page.is_homepage %}
+ {% set title = title ~ " - " ~ page.title | striptags %}
+ {% endif %}
+
+
+ {{ config.site_title }}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+{% endblock %}
+
+{% set extracopyright %}
+ Copyright 2020-2021 Aniket Maurya, Apache License 2.0
+{% endset %}
diff --git a/docs/requirements.txt b/docs/requirements.txt
index 85356066..da14ada2 100644
--- a/docs/requirements.txt
+++ b/docs/requirements.txt
@@ -1,3 +1,4 @@
-mkdocs-material
-mkdocs-git-revision-date-localized-plugin
-mkdocs-macros-plugin
\ No newline at end of file
+mkdocs>=1.1.2
+mkdocs-material>=7.1.6
+mkdocs-git-revision-date-localized-plugin==0.9.2
+mkdocs-macros-plugin==0.5.5
diff --git a/docs/source/api/image/chitra-class.md b/docs/source/api/image/chitra-class.md
new file mode 100644
index 00000000..26a9fbf0
--- /dev/null
+++ b/docs/source/api/image/chitra-class.md
@@ -0,0 +1,72 @@
+---
+title: Play with Images
+description: "Load image from Internet url, filepath or numpy array and plot bounding boxes on the images easily"
+---
+
+# Play with Images and Bounding Boxes
+
+> `Chitra` is an image utility class that can load image from filelike object, web url or numpy image. It offers drawing bounding box over the image.
+
+
+```python
+# pip install -U chitra
+
+from chitra.image import Chitra
+import matplotlib.pyplot as plt
+```
+
+## What can it do?
+- Load image from file, [filelike object](https://docs.python.org/3/glossary.html#term-file-like-object), web url, or numpy array
+- Plot image
+- Plot bounding boxes along with labels in no extra code.
+- Specify bounding box format:
+ - **Center(xywh):** center x,y and height width of bbox
+ - **Corner(xyxy):** xmin ymin and xmax ymax
+- Plot bounding box on image
+- Resize Bounding Boxes with image resize
+
+
+### Load image from web url and show
+
+```python
+url = "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Image_created_with_a_mobile_phone.png/1200px-Image_created_with_a_mobile_phone.png"
+image = Chitra(url)
+image.imshow()
+```
+
+
+
+You can cache the image downloaded from internet URL by passing `cache=True` in argument.
+Second call to the same URL will not download from internet, instead image will be loaded from the local cache dir.
+```python
+# first call - image will be downloaded from internet and saved to local cache dir
+image = Chitra(url, cache=True)
+
+# second call - image will be loaded from local cached dir
+image = Chitra(url, cache=True)
+```
+
+
+### Plot bounding box and label for the handphone
+
+```python
+box = [[600, 250, 900, 600.1]]
+label = ['handphone']
+image = Chitra(url, box, label)
+image.image = image.image.convert('RGB')
+plt.imshow(image.draw_boxes())
+```
+
+
+
+### Resize Image and Bounding at the same time
+Chitra can rescale your bounding box automatically based on the new image size.
+
+```python
+box = [[600, 250, 900, 600.1]]
+label = ['handphone']
+image = Chitra(url, box, label)
+image.resize_image_with_bbox((224, 224))
+print(image.bounding_boxes)
+plt.imshow(image.draw_boxes())
+```
diff --git a/docs/source/api/image/output_6_0.png b/docs/source/api/image/output_6_0.png
new file mode 100644
index 00000000..88f68633
Binary files /dev/null and b/docs/source/api/image/output_6_0.png differ
diff --git a/docs/source/api/image/output_8_1.png b/docs/source/api/image/output_8_1.png
new file mode 100644
index 00000000..ef56b3cb
Binary files /dev/null and b/docs/source/api/image/output_8_1.png differ
diff --git a/docs/source/api/serve/model_server.md b/docs/source/api/serve/model_server.md
new file mode 100644
index 00000000..549a059c
--- /dev/null
+++ b/docs/source/api/serve/model_server.md
@@ -0,0 +1,121 @@
+---
+title: "Model Serving API & UI app"
+description: "Build API or Create Interactive UI for Any Machine Learning & Deep Learning Model with Tensorflow, PyTorch or SkLearn."
+---
+
+# Serving ML Models with API or UI app
+
+Create Rest API or Interactive UI app for Any Learning Model - ML, DL, Image Classification, NLP, Tensorflow, PyTorch or
+SKLearn.
+
+### What can it do?
+
+- Create Rest API endpoint for Model Serving
+- Create Interactive UI for Model Prototype Demo
+- Share UI Demo with everyone by generating public url
+- Predefined processing functions for image classification (NLP processing functions coming soon)
+- Override custom preprocessing and Postprocessing function with your own.
+- Request Response Schema (JSON body) will be changed based on the `api_type`.
+
+> install: `pip install -U "chitra[serve]"`
+
+Default available API types are:
+
+1. Image Classification
+1. Object Detection
+1. Text Classification
+1. Question Answering
+
+To get a full list of available API types you can call `chitra.serve.API.get_available_api_types()`.
+
+## Create Rest API
+
+### Text Classification API
+
+You can easily create Sentiment Analysis API. In this example, I will use HuggingFace to load the Sentiment Analysis
+Model but feel free to use other models as well.
+
+```python
+from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
+
+from chitra.serve import create_api
+
+tokenizer = AutoTokenizer.from_pretrained("finiteautomata/beto-sentiment-analysis")
+model = AutoModelForSequenceClassification.from_pretrained(
+ "finiteautomata/beto-sentiment-analysis"
+)
+classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
+
+create_api(classifier, run=True, api_type="text-classification")
+```
+
+You can open `http://127.0.0.1:8000/docs` Swagger UI in your browser to test the API 🔥
+
+### Image Classification API
+
+```python
+from chitra.serve import create_api
+from chitra.trainer import create_cnn
+
+
+model = create_cnn('mobilenetv2', num_classes=2)
+
+create_api(model, run=True, api_type='image-classification')
+```
+
+Open in your browser and try out the API. You can upload any image to try.
+
+#### Preview
+
+
+
+## Create Interactive UI with Gradio
+
+To get a full list of available `api_types` for `GradioApp` you can call `chitra.serve.GradioApp.get_available_api_types()`.
+
+### Image Classification Demo
+
+Instantiate ImageNet pretrained Model with Tensorflow
+
+```python
+import tensorflow as tf
+
+from chitra.core import load_imagenet_labels
+
+image_shape = (224, 224)
+model = tf.keras.applications.MobileNetV2(weights="imagenet")
+IMAGENET_LABELS = load_imagenet_labels()
+```
+
+Chitra will automatically create a preprocessing function based on `api_type`.
+But if you want to override and define
+your own then you can just pass any callable function.
+
+```python
+def postprocess(preds):
+ preds = tf.argmax(preds, 1).numpy()
+ label = IMAGENET_LABELS[preds[0]]
+ return label
+```
+
+Create GradioApp with `Chitra`
+
+```python
+from chitra.serve.app import GradioApp
+
+app = GradioApp(
+ "image-classification",
+ model=model,
+ image_shape=image_shape,
+ postprocess_fn=postprocess,
+)
+```
+
+If you want to share the live internet url then set `share=True`, it will create a public url that you can share with
+anyone over the internet.
+
+```python
+app.run(share=True)
+```
+#### Preview
+
diff --git a/docs/source/api/serve/preview-app-image-clf.png b/docs/source/api/serve/preview-app-image-clf.png
new file mode 100644
index 00000000..6b06e4fc
Binary files /dev/null and b/docs/source/api/serve/preview-app-image-clf.png differ
diff --git a/docs/source/api/serve/preview-qna.png b/docs/source/api/serve/preview-qna.png
new file mode 100644
index 00000000..bc0a3f43
Binary files /dev/null and b/docs/source/api/serve/preview-qna.png differ
diff --git a/docs/source/api/visualization/metrics.md b/docs/source/api/visualization/metrics.md
new file mode 100644
index 00000000..ab41f3b2
--- /dev/null
+++ b/docs/source/api/visualization/metrics.md
@@ -0,0 +1,20 @@
+---
+title: Visualizing Metrics
+description: Plot confusion matrix
+---
+
+# Visualizing Metrics
+
+## Plot Confusion Matrix
+
+```python
+from chitra.visualization.metrics import plot_confusion_matrix
+
+y_pred = [1, 1, 0, 1]
+y_true = [0, 1, 0, 1]
+display_labels = ('class A', 'class B')
+
+plot_confusion_matrix(y_pred, y_true, display_labels=display_labels)
+```
+
+
diff --git a/docs/source/api/visualization/preview.png b/docs/source/api/visualization/preview.png
new file mode 100644
index 00000000..bc89e086
Binary files /dev/null and b/docs/source/api/visualization/preview.png differ
diff --git a/docs/source/cli/builder/builder-create.md b/docs/source/cli/builder/builder-create.md
new file mode 100644
index 00000000..120420dd
--- /dev/null
+++ b/docs/source/cli/builder/builder-create.md
@@ -0,0 +1,61 @@
+---
+title: Automatic Docker Image Creation for Machine Learning Model APIs
+description: "Chitra automatically creates API and Generate Docker image for deployment."
+---
+
+# Automatic Docker Image Creation for Any ML/DL Model 🐳
+
+`chitra` CLI can build docker image for any kind of Machine Learning or Deep Learning Model.
+
+You need to create a `main.py` file which will contain an object of type `chitra.serve.ModelServer` and
+its name should be `app`.
+If you have any external Python dependency then create a `requirements.txt` file and keep in the same directory.
+
+If the above conditions are satisfied then just run `chitra builder run --path MAIN_FILEPATH`
+
+
+## Usage
+
+```
+chitra builder create [OPTIONS]
+
+Options:
+ --path TEXT [default: ./]
+ --port TEXT
+ --tag TEXT
+ --help Show this message and exit.
+```
+
+`path` is the file location where `main.py` and `requirements.txt` is present.
+You can specify which port to run your app on. By default, it is 8080.
+To set the tag of the docker image use `tag` argument.
+
+
+## Example: Auto Build Docker Image for HuggingFace Text Classification Model API
+
+### Create ModelServer
+First create Text Classification model from HuggingFace. `chitra` provides `create_api` method
+to create API for any kind of ML/DL model. We specify the `api_type="text-classification"` and
+get an `app` object.
+
+
+```python
+from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
+
+from chitra.serve import create_api
+
+tokenizer = AutoTokenizer.from_pretrained("microsoft/xtremedistil-l6-h256-uncased")
+model = AutoModelForSequenceClassification.from_pretrained(
+ "microsoft/xtremedistil-l6-h256-uncased"
+)
+classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
+
+app = create_api(classifier, run=False, api_type="text-classification").app
+```
+
+### Use Chitra CLI to auto-build Docker Image
+Go to terminal and change the directory to the path where `main.py` is present.
+Run `chitra builder create --path ./FILEPATH --tag chitra-server`.
+
+That's all you need to do! You can run the docker image using `docker run -p 8080:8080 chitra-server`
+from terminal.
diff --git a/nbs/assets/chitra_banner.png b/examples/assets/chitra_banner.png
similarity index 100%
rename from nbs/assets/chitra_banner.png
rename to examples/assets/chitra_banner.png
diff --git a/nbs/assets/images/logo.png b/examples/assets/images/logo.png
similarity index 100%
rename from nbs/assets/images/logo.png
rename to examples/assets/images/logo.png
diff --git a/nbs/00_core.ipynb b/examples/nbs/00_core.ipynb
similarity index 99%
rename from nbs/00_core.ipynb
rename to examples/nbs/00_core.ipynb
index 2ddfe623..8d409b6b 100644
--- a/nbs/00_core.ipynb
+++ b/examples/nbs/00_core.ipynb
@@ -1088,15 +1088,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Converted 00_core.ipynb.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from nbdev.export import notebook2script;notebook2script('00_core.ipynb')"
]
diff --git a/nbs/01_image.ipynb b/examples/nbs/01_image.ipynb
similarity index 75%
rename from nbs/01_image.ipynb
rename to examples/nbs/01_image.ipynb
index 2223a8e2..471cfeb0 100644
--- a/nbs/01_image.ipynb
+++ b/examples/nbs/01_image.ipynb
@@ -293,19 +293,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[BoundingBox(x1=1.0000, y1=2.0000, x2=3.0000, y2=4.0000, label=aniket),\n",
- " BoundingBox(x1=5.0000, y1=8.0000, x2=7.0000, y2=56.0000, label=None)]"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"bboxes.bboxes"
]
@@ -321,20 +309,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "ename": "NameError",
- "evalue": "name 'BoundingBoxes' is not defined",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# export\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mclass\u001b[0m \u001b[0mChitra\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \"\"\"Ultimate image utility class.\n\u001b[1;32m 4\u001b[0m \u001b[0;36m1.\u001b[0m \u001b[0mLoad\u001b[0m \u001b[0mimage\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweb\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mbytes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;36m2.\u001b[0m \u001b[0mPlot\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m\u001b[0m in \u001b[0;36mChitra\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \"\"\"\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mBoundingBoxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCORNER\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \"\"\"Args:\n\u001b[1;32m 11\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilelike\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mNameError\u001b[0m: name 'BoundingBoxes' is not defined"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# export\n",
"class Chitra:\n",
@@ -422,27 +397,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "\u001b[0;31mInit signature:\u001b[0m \u001b[0mChitra\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mDocstring:\u001b[0m \n",
- "Ultimate image utility class.\n",
- "1. Load image from file, web url, numpy or bytes\n",
- "2. Plot image\n",
- "3. Draw bounding boxes\n",
- "\u001b[0;31mInit docstring:\u001b[0m\n",
- "Args:\n",
- "data: numpy, url, filelike\n",
- "\u001b[0;31mType:\u001b[0m type\n",
- "\u001b[0;31mSubclasses:\u001b[0m \n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"?Chitra"
]
@@ -553,18 +508,6 @@
"display_name": "Python 3",
"language": "python",
"name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.10"
}
},
"nbformat": 4,
diff --git a/nbs/02_datagenerator.ipynb b/examples/nbs/02_datagenerator.ipynb
similarity index 94%
rename from nbs/02_datagenerator.ipynb
rename to examples/nbs/02_datagenerator.ipynb
index e45c39b8..e0415ebb 100644
--- a/nbs/02_datagenerator.ipynb
+++ b/examples/nbs/02_datagenerator.ipynb
@@ -22,15 +22,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No GPU found on the machine!\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# hide\n",
"from chitra.utils import gpu_dynamic_mem_growth\n",
@@ -154,16 +146,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No item present in the image size list\n",
- "Returning the last set size which is: None\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"img_sz_list = ImageSizeList(None)\n",
"img_sz_list.get_size()"
@@ -416,15 +399,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " 0\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"for e in ds.generator(True):\n",
" print(e[0].dtype, e[1])\n",
@@ -444,15 +419,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(28, 28, 3)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"for e in dl.take(1):\n",
" print(e[0].shape)"
@@ -469,15 +436,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Converted 03_datagenerator.ipynb.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# from nbdev.export import notebook2script;notebook2script('03_datagenerator.ipynb')"
]
diff --git a/nbs/03_trainer.ipynb b/examples/nbs/03_trainer.ipynb
similarity index 97%
rename from nbs/03_trainer.ipynb
rename to examples/nbs/03_trainer.ipynb
index 4523f11c..f9d9593f 100644
--- a/nbs/03_trainer.ipynb
+++ b/examples/nbs/03_trainer.ipynb
@@ -497,15 +497,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No item present in the image size list\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from glob import glob\n",
"\n",
@@ -527,15 +519,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "num_classes is ignored. returning the passed model as it is.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"model = create_cnn(\n",
" tf.keras.applications.MobileNetV2(include_top=True), 1000, keras_applications=False\n",
@@ -555,15 +539,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model compiled!\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"trainer.compile2(2, \"sgd\")"
]
@@ -743,15 +719,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Converted 06_trainer.ipynb.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# hide\n",
"from nbdev.export import notebook2script\n",
diff --git a/examples/nbs/04_dataloader.ipynb b/examples/nbs/04_dataloader.ipynb
new file mode 100644
index 00000000..5d9bff7f
--- /dev/null
+++ b/examples/nbs/04_dataloader.ipynb
@@ -0,0 +1,449 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# default_exp dataloader"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# dataloader\n",
+ "\n",
+ "> Now deprecated, please use datagenerator instead.\n",
+ "\n",
+ "> **All private functions use primitive datatypes**\n",
+ "\n",
+ "\n",
+ "1. read_image(path: str, channels: int=3)\n",
+ "2. clf.load_from_folder\n",
+ "3. clf.load_from_csv\n",
+ "4. detect.load_from_xml\n",
+ "5. detect.load_from_csv\n",
+ "6. detect.load_from_json\n",
+ "7. detect.load_from_tfrecord"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "from nbdev.showdoc import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "import sys\n",
+ "sys.path.append('../')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#export\n",
+ "import tensorflow as tf\n",
+ "import pathlib\n",
+ "import os\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "from typing import Union\n",
+ "\n",
+ "from chitra.core import remove_dsstore\n",
+ "from chitra.image import read_image, resize_image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#export\n",
+ "AUTOTUNE = tf.data.experimental.AUTOTUNE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#export\n",
+ "def get_basename(path: tf.string):\n",
+ " assert isinstance(path, tf.Tensor)\n",
+ " return tf.strings.split(path, os.path.sep)[-1]\n",
+ "\n",
+ "\n",
+ "def show_batch(clf, limit: int, figsize: tuple = (10, 10)):\n",
+ " \"\"\"Visualize image and labels\n",
+ " \n",
+ " https://www.tensorflow.org/tutorials/load_data/images#load_using_keraspreprocessing\n",
+ " \n",
+ " Args:\n",
+ " data: tf.data.Dataset containing image, label\n",
+ " limit: number of images to display\n",
+ " figsize: size of visualization\n",
+ " Returns:\n",
+ " Displays images and labels\n",
+ " \"\"\"\n",
+ " assert isinstance(limit, int)\n",
+ " assert isinstance(figsize, tuple)\n",
+ "\n",
+ " data = clf.data\n",
+ " idx_to_class = clf.idx_to_class\n",
+ "\n",
+ " plt.figure(figsize=figsize)\n",
+ " sub_plot_size = math.ceil(limit / 2)\n",
+ "\n",
+ " for i, e in enumerate(data.take(limit)):\n",
+ " image, label = e\n",
+ " image = image.numpy().astype('uint8')\n",
+ " label = idx_to_class[label.numpy()] if idx_to_class else label.numpy()\n",
+ "\n",
+ " ax = plt.subplot(sub_plot_size, sub_plot_size, i + 1)\n",
+ "\n",
+ " plt.imshow(image)\n",
+ " plt.title(label)\n",
+ " plt.axis('off')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CLF DLoader\n",
+ "\n",
+ "``DataLoader class for loading dataset for image classification tasks.``\n",
+ "\n",
+ "## clf.load_from_folder (TODOs)\n",
+ "\n",
+ "1. `__len__` method impl\n",
+ "2. `image augmentation` impl\n",
+ "\n",
+ "## folder structure\n",
+ "\n",
+ ">/root\n",
+ " /class1_folder\n",
+ " /img0.jpg img1.jpg img2.jpg ....\n",
+ " /class2_folder\n",
+ " /img0.jpg... "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#export\n",
+ "class Clf(object):\n",
+ "\n",
+ " def __init__(self):\n",
+ " self.CLASS_NAMES = None\n",
+ " self.data = None\n",
+ " self.shape = None\n",
+ " self.class_to_idx = {}\n",
+ " self.idx_to_class = {}\n",
+ "\n",
+ " self._lookup_class_to_idx = None\n",
+ "\n",
+ " def show_batch(self, limit: int, figsize: tuple = (10, 10)):\n",
+ " \"\"\"Visualize image and labels\n",
+ "\n",
+ " https://www.tensorflow.org/tutorials/load_data/images#load_using_keraspreprocessing\n",
+ "\n",
+ " Args:\n",
+ " data: tf.data.Dataset containing image, label\n",
+ " limit: number of images to display\n",
+ " figsize: size of visualization\n",
+ " Returns:\n",
+ " Displays images and labels\n",
+ " \"\"\"\n",
+ " assert isinstance(limit, int)\n",
+ " assert isinstance(figsize, tuple)\n",
+ "\n",
+ " data = self.data\n",
+ " if data is None: raise Exception('TF.data not created yet!')\n",
+ " idx_to_class = self.idx_to_class\n",
+ "\n",
+ " plt.figure(figsize=figsize)\n",
+ " sub_plot_size = math.ceil(limit / 2)\n",
+ "\n",
+ " for i, e in enumerate(data.take(limit)):\n",
+ " image, label = e\n",
+ " image = image.numpy().astype('uint8')\n",
+ " label = idx_to_class[\n",
+ " label.numpy()] if idx_to_class else label.numpy()\n",
+ "\n",
+ " ax = plt.subplot(sub_plot_size, sub_plot_size, i + 1)\n",
+ "\n",
+ " plt.imshow(image)\n",
+ " plt.title(label)\n",
+ " plt.axis('off')\n",
+ "\n",
+ " def _get_image_list(self, path: str):\n",
+ " \"\"\"`path`: pathlib.Path\n",
+ " Returns: list of images\n",
+ " \"\"\"\n",
+ " assert isinstance(path, str)\n",
+ " list_images = tf.data.Dataset.list_files(f'{path}/*/*')\n",
+ " return list_images\n",
+ "\n",
+ " @tf.function\n",
+ " def _process_path(self, path: str):\n",
+ " \"\"\"\n",
+ " Args:\n",
+ " `path` :str\n",
+ " `size`: None or tuple\n",
+ " Returns:\n",
+ " image, label\n",
+ " \"\"\"\n",
+ " assert isinstance(\n",
+ " path,\n",
+ " (str,\n",
+ " tf.Tensor)), f'type of path is {type(path)}, expected type str'\n",
+ " img = read_image(path)\n",
+ "\n",
+ " # TODO: resizing should be done separately\n",
+ " # py_function will degrade performance\n",
+ " if self.shape:\n",
+ " [\n",
+ " img,\n",
+ " ] = tf.py_function(resize_image, [img, self.shape], [tf.float32])\n",
+ " # if self.shape:\n",
+ " # img = tf.image.resize(img, self.shape)\n",
+ "\n",
+ " label = tf.strings.split(path, os.path.sep)[-2]\n",
+ " label = self._lookup_class_to_idx.lookup(\n",
+ " label) if self._lookup_class_to_idx else label\n",
+ " return img, label\n",
+ "\n",
+ " @tf.function\n",
+ " def _ensure_shape(self, img, labels):\n",
+ " \"\"\"Ensures the output shape of images (InputSpecs)\n",
+ " \"\"\"\n",
+ " img = tf.ensure_shape(img, (*self.shape, 3), name='image')\n",
+ " return img, labels\n",
+ "\n",
+ " def create_lookup_table(self):\n",
+ " \"\"\"Creates tf.lookup.StaticHashTable for encoding labels\"\"\"\n",
+ "\n",
+ " keys = list(self.class_to_idx.keys())\n",
+ " vals = list(self.class_to_idx.values())\n",
+ "\n",
+ " keys_tensor = keys #tf.constant(keys)\n",
+ " vals_tensor = vals #tf.constant(vals)\n",
+ "\n",
+ " table_init = tf.lookup.KeyValueTensorInitializer(\n",
+ " keys_tensor, vals_tensor)\n",
+ "\n",
+ " self._lookup_class_to_idx = tf.lookup.StaticHashTable(table_init, -1)\n",
+ "\n",
+ " def _get_classnames(self, list_folders, encode_classes: bool = True):\n",
+ " \"\"\"\"\"\"\n",
+ " self.CLASS_NAMES = tuple(\n",
+ " get_basename(e).numpy().decode() for e in list_folders)\n",
+ " if encode_classes:\n",
+ " self._encode_classes()\n",
+ "\n",
+ " def _encode_classes(self):\n",
+ "\n",
+ " class_names = sorted(self.CLASS_NAMES)\n",
+ "\n",
+ " for i, e in enumerate(class_names):\n",
+ " self.class_to_idx[e] = i\n",
+ " self.idx_to_class[i] = e\n",
+ "\n",
+ " self.create_lookup_table()\n",
+ "\n",
+ " def from_folder(self,\n",
+ " path: Union[str, pathlib.Path],\n",
+ " target_shape: Union[None, tuple] = (224, 224),\n",
+ " shuffle: Union[bool, int] = True,\n",
+ " encode_classes: bool = True):\n",
+ " \"\"\"Load dataset from given path.\n",
+ " Args:\n",
+ " path: string, path of folder containing dataset\n",
+ " target_shape: shape of output image\n",
+ " rescale: images will be multiplied by the given value\n",
+ " shuffle: Shuffles the dataset randomly. Expects bool or int.\n",
+ " encode_classes: Will sparse encode classes if True\n",
+ " Returns: image, label -> tf.data.Dataset prefetched with tf.data.AUTOTUNE\n",
+ " \n",
+ " By default the loaded image size is 224x224, pass None to load original size.\n",
+ " You will get error on `batch()` method if all image size are not same.\n",
+ " \"\"\"\n",
+ " assert isinstance(path, (str, pathlib.Path))\n",
+ " assert isinstance(shuffle, (bool, int)), print(f'Arg: shuffle is either bool or int but got {shuffle} : {type(shuffle)}')\n",
+ " \n",
+ " path = pathlib.Path(path)\n",
+ " remove_dsstore(path)\n",
+ "\n",
+ " # TODO comments\n",
+ " self.shape = target_shape\n",
+ "\n",
+ " list_folders = tf.data.Dataset.list_files(str(path / '*'))\n",
+ " \n",
+ " list_images = self._get_image_list(str(path))\n",
+ " if shuffle: list_images.shuffle(shuffle).cache()\n",
+ " else: list_images.cache()\n",
+ " \n",
+ "\n",
+ " self._get_classnames(list_folders, encode_classes)\n",
+ "\n",
+ " if encode_classes: print(f'CLASSES ENCODED: {self.class_to_idx}')\n",
+ " else: print(f'CLASSES FOUND: {self.CLASS_NAMES}') \n",
+ "\n",
+ " data = list_images.map(self._process_path, num_parallel_calls=AUTOTUNE)\n",
+ "\n",
+ " data = data.map(self._ensure_shape, num_parallel_calls=AUTOTUNE)\n",
+ "\n",
+ " self.data = data\n",
+ "\n",
+ " return data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "path = pathlib.Path('/Users/aniketmaurya/Pictures/cats')\n",
+ "\n",
+ "clf = Clf()\n",
+ "data = clf.from_folder(path, encode_classes=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "clf.show_batch(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Detect\n",
+ "\n",
+ "## from_xml\n",
+ "### Steps:\n",
+ " . list annotations\n",
+ " . read and parse annotations\n",
+ " . read images\n",
+ " . return images and annotations\n",
+ "### folder structure\n",
+ "\n",
+ ">/root\n",
+ " /image_folder\n",
+ " /annotation_folder "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Detect(object):\n",
+ "\n",
+ " def __init__(self):\n",
+ " self.CLASS_NAMES = None\n",
+ "\n",
+ " def from_xml(self, path: Union[str, pathlib.Path]):\n",
+ " \"\"\"Load dataset from given path.\n",
+ " Args:\n",
+ " path: string, path of folder containing dataset.\n",
+ " Returns: image, label -> tf.data.Dataset prefetched with tf.data.AUTOTUNE\n",
+ " \"\"\"\n",
+ " assert isinstance(path, (str, pathlib.Path))\n",
+ " path = pathlib.Path(path)\n",
+ " remove_dsstore(path)\n",
+ "\n",
+ " list_folders = tf.data.Dataset.list_files(str(path / '*'))\n",
+ " list_images = self._get_image_list(str(path))\n",
+ "\n",
+ " self.CLASS_NAMES = tuple(get_basename(e).numpy() for e in list_folders)\n",
+ "\n",
+ " data = list_images.map(self._process_path, num_parallel_calls=AUTOTUNE)\n",
+ " data = data.prefetch(AUTOTUNE)\n",
+ " return data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/nbs/05_visualization.ipynb b/examples/nbs/05_visualization.ipynb
similarity index 92%
rename from nbs/05_visualization.ipynb
rename to examples/nbs/05_visualization.ipynb
index 422b951b..ec33c465 100644
--- a/nbs/05_visualization.ipynb
+++ b/examples/nbs/05_visualization.ipynb
@@ -34,18 +34,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'\\nCopyright 2017-2018 Fizyr (https://fizyr.com)\\n\\nLicensed under the Apache License, Version 2.0 (the \"License\");\\nyou may not use this file except in compliance with the License.\\nYou may obtain a copy of the License at\\n\\n http://www.apache.org/licenses/LICENSE-2.0\\n\\nUnless required by applicable law or agreed to in writing, software\\ndistributed under the License is distributed on an \"AS IS\" BASIS,\\nWITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\\nSee the License for the specific language governing permissions and\\nlimitations under the License.\\n'"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"#export\n",
"\"\"\"\n",
diff --git a/nbs/06_tf_utils.ipynb b/examples/nbs/06_tf_utils.ipynb
similarity index 91%
rename from nbs/06_tf_utils.ipynb
rename to examples/nbs/06_tf_utils.ipynb
index 84dc0be3..3ee6753e 100644
--- a/nbs/06_tf_utils.ipynb
+++ b/examples/nbs/06_tf_utils.ipynb
@@ -85,15 +85,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No GPU:1 found in your system!\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"limit_gpu(1, 1024*8)"
]
@@ -126,15 +118,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No GPU found on the machine!\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"gpu_dynamic_mem_growth()"
]
@@ -143,15 +127,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Converted 05_utils.ipynb.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from nbdev.export import notebook2script;notebook2script('05_utils.ipynb')"
]
diff --git a/nbs/07_import_utils.ipynb b/examples/nbs/07_import_utils.ipynb
similarity index 94%
rename from nbs/07_import_utils.ipynb
rename to examples/nbs/07_import_utils.ipynb
index 209f873a..11f56744 100644
--- a/nbs/07_import_utils.ipynb
+++ b/examples/nbs/07_import_utils.ipynb
@@ -104,15 +104,7 @@
"execution_count": null,
"id": "decreased-document",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"torch_model = timm.create_model(\"resnet18\")\n",
"torch_model.eval()\n",
@@ -163,18 +155,7 @@
"execution_count": null,
"id": "artificial-stanley",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "True"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"import numpy as np\n",
"np.allclose(pytorch_model(x).detach().numpy(), torch_out.detach().numpy(), 1e-4)"
diff --git a/examples/nbs/08_model_converter.ipynb b/examples/nbs/08_model_converter.ipynb
new file mode 100644
index 00000000..83562414
--- /dev/null
+++ b/examples/nbs/08_model_converter.ipynb
@@ -0,0 +1,338 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "known-machine",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# default_exp converter.core"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "latin-cartoon",
+ "metadata": {},
+ "source": [
+ "# Model Interconversion\n",
+ "\n",
+ "> API details."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "happy-retrieval",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# hide\n",
+ "from nbdev.showdoc import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "frozen-device",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# export\n",
+ "from chitra.utility.import_utils import INSTALLED_MODULES, is_installed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "departmental-queensland",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# export\n",
+ "import torch.onnx\n",
+ "\n",
+ "\n",
+ "def pytorch_to_onnx(model, tensor, export_path=\"temp.onnx\"):\n",
+ " # Input to the model\n",
+ " torch_out = model(tensor)\n",
+ "\n",
+ " # Export the model\n",
+ " torch.onnx.export(\n",
+ " model, # model being run\n",
+ " tensor, # model input (or a tuple for multiple inputs)\n",
+ " export_path, # where to save the model (can be a file or file-like object)\n",
+ " export_params=True, # store the trained parameter weights inside the model file\n",
+ " opset_version=10, # the ONNX version to export the model to\n",
+ " do_constant_folding=True, # whether to execute constant folding for optimization\n",
+ " input_names=[\"input\"], # the model's input names\n",
+ " output_names=[\"output\"], # the model's output names\n",
+ " dynamic_axes={\n",
+ " \"input\": {0: \"batch_size\"}, # variable length axes\n",
+ " \"output\": {0: \"batch_size\"},\n",
+ " },\n",
+ " )\n",
+ " return export_path"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "utility-procurement",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# export\n",
+ "import onnx\n",
+ "import tf2onnx\n",
+ "from onnx2pytorch import ConvertModel\n",
+ "\n",
+ "\n",
+ "def onnx_to_pytorch(onnx_model):\n",
+ " if isinstance(onnx_model, str):\n",
+ " onnx_model = onnx.load(onnx_model)\n",
+ " onnx.checker.check_model(onnx_model)\n",
+ " pytorch_model = ConvertModel(onnx_model)\n",
+ " return pytorch_model\n",
+ "\n",
+ "\n",
+ "def tf2_to_onnx(model, opset=None, output_path=None, **kwargs):\n",
+ " inputs_as_nchw = kwargs.get(\"inputs_as_nchw\", \"input0:0\")\n",
+ " onnx_model = tf2onnx.convert.from_keras(\n",
+ " model, opset=opset, output_path=output_path, inputs_as_nchw=inputs_as_nchw\n",
+ " )\n",
+ " return onnx_model\n",
+ "\n",
+ "\n",
+ "def tf2_to_pytorch(model, opset=None, **kwargs):\n",
+ " with tempfile.NamedTemporaryFile(mode='w') as fw:\n",
+ " filename = fw.name\n",
+ " onnx_model = tf2_to_onnx(tf_model, opset, output_path=filename, **kwargs)\n",
+ " fw.seek(0)\n",
+ " torch_model = onnx_to_pytorch(filename)\n",
+ " return torch_model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "guided-plenty",
+ "metadata": {},
+ "source": [
+ "## example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "modern-terrorist",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "import numpy as np\n",
+ "import timm\n",
+ "\n",
+ "model1 = timm.create_model(\"resnet18\")\n",
+ "model1.eval()\n",
+ "\n",
+ "model_inter_path = pytorch_to_onnx(model1, torch.randn(1, 3, 224, 224))\n",
+ "model2 = onnx_to_pytorch(model_inter_path)\n",
+ "\n",
+ "x = torch.randn(1, 3, 224, 224)\n",
+ "np.allclose(model1(x).detach().numpy(), model2(x).detach().numpy(), 1e-4)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "southern-linux",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "imported-bathroom",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "import torch"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "monthly-endorsement",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tf.__version__"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "permanent-windsor",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# tf_model = tf.keras.applications.MobileNetV2()\n",
+ "# model_test = tf2_to_pytorch(tf_model, inputs_as_nchw=None, opset=13).eval()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "innovative-senior",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "tamil-class",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "parental-vatican",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "above-traffic",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "from chitra.image import Chitra\n",
+ "\n",
+ "image = Chitra(\"https://c.files.bbci.co.uk/957C/production/_111686283_pic1.png\")\n",
+ "image.image = image.image.resize((224, 224)).convert(\"RGB\")\n",
+ "image.imshow()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "controlling-wrestling",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x1 = tf.cast(image.to_tensor(\"tf\"), tf.float32) / 127.5 - 1.0\n",
+ "x1 = tf.expand_dims(x1, 0)\n",
+ "\n",
+ "x2 = image.numpy()[:].astype(np.float32) / 255\n",
+ "x2 = np.expand_dims(x2, 0)\n",
+ "x2 = torch.from_numpy(x2)\n",
+ "x2 = x2.permute(0, 3, 1, 2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "impressed-spank",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x2.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "choice-rapid",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Chitra(((x1[0] + 1) * 127.5).numpy().astype(\"uint8\")).imshow()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "figured-professional",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.core import IMAGENET_LABELS\n",
+ "\n",
+ "res1 = tf.math.softmax(tf_model.predict(x1), 1)\n",
+ "IMAGENET_LABELS[tf.argmax(res1, 1).numpy()[0]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "wanted-damage",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "res2 = my_model(x2)\n",
+ "# IMAGENET_LABELS[torch.argmax(res2).item()]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "atlantic-system",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "my_model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fossil-watch",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "loaded-meditation",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x2.shape, res2.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "empty-literature",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "touched-education",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/examples/nbs/09_chalice.ipynb b/examples/nbs/09_chalice.ipynb
new file mode 100644
index 00000000..9117571f
--- /dev/null
+++ b/examples/nbs/09_chalice.ipynb
@@ -0,0 +1,239 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "30596049-1933-41e9-b189-9ab00f918116",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import io\n",
+ "\n",
+ "import numpy as np\n",
+ "import torch\n",
+ "from chitra.core import load_imagenet_labels\n",
+ "from chitra.serve.cloud.aws_serverless import ChaliceServer\n",
+ "from smart_open import open as smart_open\n",
+ "from timm import create_model, list_models"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "25ce4031-9696-4f9e-bf81-7d1e8624e562",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import boto3\n",
+ "\n",
+ "s3 = boto3.client('s3')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "67b705a4-6221-44b4-8638-c45a6c6281db",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def model_loader(buffer: io.BytesIO)-> torch.nn.Module:\n",
+ " model: torch.nn.Module = create_model('efficientnet_b0', pretrained=False)\n",
+ " model.load_state_dict(torch.load(buffer))\n",
+ " return model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4e088dc0-49a2-4081-91a2-6d41b45ed7b2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BUCKET = 'gflow-models'\n",
+ "FILE_OBJ = 'efficientnet_b0.pth'\n",
+ "MODEL_PATH = \"s3://gflow-models/efficientnet_b0.pth\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5756afb5-963e-4f99-997b-263dd7795c8f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "server = ChaliceServer('image-classification',\n",
+ " MODEL_PATH,\n",
+ " model_loader=model_loader)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8b3a86e5-1d2f-46c7-8e68-d7da76652ccc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "server.run('route')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f2a4956d-ce59-4f25-a5a4-929dc7da2d6c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c760e259-82e9-4bfc-a2d8-7e4b14684bc1",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0cd48a18-b989-4699-a080-efd64f38b363",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.image import Chitra"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f5a448e6-5ce4-45ad-a0bc-a87878900cb5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "LABELS = load_imagenet_labels()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c6feb93c-be27-403f-a1d4-4370ef0c7b58",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = create_model(\n",
+ " 'efficientnet_b0',\n",
+ " pretrained=True,\n",
+ " checkpoint_path='./efficientnet_b0_ra-3dd342df.pth').eval()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3ea121da-f2df-47c0-a09a-3d474752d321",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1910c175-8fe1-4b97-868b-38bb927b58bc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image = Chitra(\n",
+ " \"https://ichef.bbci.co.uk/news/976/cpsprodpb/67CF/production/_108857562_mediaitem108857561.jpg\"\n",
+ ")\n",
+ "image.resize((256, 256))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "77eba50d-bb2a-47a1-96a9-4cbefd998b45",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x = image.numpy().astype(np.float32)\n",
+ "x = x / 255.\n",
+ "x = torch.from_numpy(x)\n",
+ "\n",
+ "LABELS[model(x.permute(2, 0, 1).unsqueeze(0)).argmax(1)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "dcbb7d46-0c4f-4ada-9a80-65e3939950a8",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e792f044-66d1-47c4-b28b-552800fe45fe",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5e939c1e-53b5-416f-910f-b00e3726244b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ls /Users/aniket/.cache/torch/hub/checkpoints/efficient*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a8c3ada9-5e5a-4936-9407-5b7a88947ff8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "create_model('efficientnet_b1', pretrained=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6eee0989-da5a-448f-a6bd-5a325adde7fc",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d044465c-f308-49b1-b827-33337b111182",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/examples/nbs/example_01.ipynb b/examples/nbs/example_01.ipynb
new file mode 100644
index 00000000..65a45143
--- /dev/null
+++ b/examples/nbs/example_01.ipynb
@@ -0,0 +1,260 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#default_exp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "from nbdev.showdoc import show_doc"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example - Image classification w Chitra\n",
+ "> Training Image classification model for Cats vs Dogs Kaggle dataset."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## install chitra\n",
+ "\n",
+ "`pip install --upgrade chitra==0.0.20`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install chitra -q"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## import functions and classes\n",
+ "### Dataset Class\n",
+ "Dataset class has API for loading `tf.data`, image augmentation and progressive resizing.\n",
+ "\n",
+ "### Trainer\n",
+ "The Trainer class inherits from tf.keras.Model, it contains everything that is required for training. It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "from chitra.datagenerator import Dataset\n",
+ "from chitra.trainer import Trainer, create_cnn\n",
+ "\n",
+ "from PIL import Image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BS = 16\n",
+ "IMG_SIZE_LST = [(128,128), (160, 160), (224,224)]\n",
+ "AUTOTUNE = tf.data.experimental.AUTOTUNE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def tensor_to_image(tensor):\n",
+ " return Image.fromarray(tensor.numpy().astype('uint8'))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# !kaggle datasets download -d chetankv/dogs-cats-images\n",
+ "# !unzip -q dogs-cats-images.zip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ds = Dataset('dog vs cat/dataset/training_set', image_size=IMG_SIZE_LST)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image, label = ds[0]\n",
+ "print(label)\n",
+ "tensor_to_image(image).resize((224,224))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Create Trainer\n",
+ "\n",
+ "Train imagenet pretrained MobileNetV2 model with cyclic learning rate and SGD optimizer."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.compile2(batch_size=BS,\n",
+ " optimizer='sgd',\n",
+ " lr_range=(1e-4, 1e-2),\n",
+ " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
+ " metrics=['binary_accuracy'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.cyclic_fit(10, batch_size=BS)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Trainer also supports the regular keras `model.fit` api using `trainer.fit`\n",
+ "\n",
+ "Train the same model **without cyclic learning rate**:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))\n",
+ "trainer.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),\n",
+ " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
+ " metrics=['binary_accuracy'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = ds.get_tf_dataset().map((lambda x,y: (x/127.5-1.0, y)), AUTOTUNE).batch(BS).prefetch(AUTOTUNE)\n",
+ "\n",
+ "trainer.fit(data,\n",
+ " epochs=10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# What does model focus on while making a prediction?\n",
+ "`chitra.trainer.InterpretModel` class creates GradCAM and GradCAM++ visualization in no additional code!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.trainer import InterpretModel\n",
+ "import random\n",
+ "model_interpret = InterpretModel(True, trainer)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_tensor = random.choice(ds)[0]\n",
+ "image = tensor_to_image(image_tensor)\n",
+ "model_interpret(image, auto_resize=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/nbs/image-classification-example.ipynb b/examples/nbs/image-classification-example.ipynb
new file mode 100644
index 00000000..ed048dfc
--- /dev/null
+++ b/examples/nbs/image-classification-example.ipynb
@@ -0,0 +1,242 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Image classification with Chitra - Example 01\n",
+ "Training Image classification model for Cats vs Dogs Kaggle dataset.\n",
+ "\n",
+ "To install chitra\n",
+ "`pip install --upgrade chitra==0.0.20`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install chitra -q"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## import functions and classes\n",
+ "### Dataset Class\n",
+ "Dataset class has API for loading `tf.data`, image augmentation and progressive resizing.\n",
+ "\n",
+ "### Trainer\n",
+ "The Trainer class inherits from tf.keras.Model, it contains everything that is required for training. It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "from chitra.datagenerator import Dataset\n",
+ "from chitra.trainer import Trainer, create_cnn\n",
+ "\n",
+ "from PIL import Image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BS = 16\n",
+ "IMG_SIZE_LST = [(128,128), (160, 160), (224,224)]\n",
+ "AUTOTUNE = tf.data.experimental.AUTOTUNE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def tensor_to_image(tensor):\n",
+ " return Image.fromarray(tensor.numpy().astype('uint8'))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "copy your kaggle key to `/root/.kaggle/kaggle.json` for downloading the dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!kaggle datasets download -d chetankv/dogs-cats-images\n",
+ "!unzip -q dogs-cats-images.zip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ds = Dataset('dog vs cat/dataset/training_set', image_size=IMG_SIZE_LST)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image, label = ds[0]\n",
+ "print(label)\n",
+ "tensor_to_image(image).resize((224,224))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Create Trainer\n",
+ "\n",
+ "Train imagenet pretrained MobileNetV2 model with cyclic learning rate and SGD optimizer."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.compile2(batch_size=BS,\n",
+ " optimizer='sgd',\n",
+ " lr_range=(1e-4, 1e-2),\n",
+ " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
+ " metrics=['binary_accuracy'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.cyclic_fit(10, batch_size=BS)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Trainer also supports the regular keras `model.fit` api using `trainer.fit`\n",
+ "\n",
+ "Train the same model **without cyclic learning rate**:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))\n",
+ "trainer.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),\n",
+ " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
+ " metrics=['binary_accuracy'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = ds.get_tf_dataset().map((lambda x,y: (x/127.5-1.0, y)), AUTOTUNE).batch(BS).prefetch(AUTOTUNE)\n",
+ "\n",
+ "trainer.fit(data,\n",
+ " epochs=10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# What does model focus on while making a prediction?\n",
+ "`chitra.trainer.InterpretModel` class creates GradCAM and GradCAM++ visualization in no additional code!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.trainer import InterpretModel\n",
+ "import random\n",
+ "model_interpret = InterpretModel(True, trainer)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_tensor = random.choice(ds)[0]\n",
+ "image = tensor_to_image(image_tensor)\n",
+ "model_interpret(image, auto_resize=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/nbs/index.ipynb b/examples/nbs/index.ipynb
new file mode 100644
index 00000000..2a77e444
--- /dev/null
+++ b/examples/nbs/index.ipynb
@@ -0,0 +1,573 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "%reload_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "from chitra.core import *\n",
+ "from chitra.utils import disable_gpu\n",
+ "disable_gpu()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# chitra\n",
+ "> \n",
+ " \n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## What is chitra?\n",
+ "\n",
+ "**chitra** (**चित्र**) is a Deep Learning Computer Vision library for easy data loading, model building and model visualization with GradCAM/GradCAM++ and Framework agnostic Model Serving.\n",
+ "\n",
+ "Highlights:\n",
+ "- Faster data loading without any boilerplate.\n",
+ "- Framework Agnostic Model Serving.\n",
+ "- Progressive resizing of images.\n",
+ "- Rapid experiments with different models using `chitra.trainer` module.\n",
+ "- Train models with cyclic learning rate.\n",
+ "- Model interpretation using GradCAM/GradCAM++ with no extra code.\n",
+ "\n",
+ "\n",
+ "If you have more use cases please [**raise an issue**](https://github.com/aniketmaurya/chitra/issues/new/choose) with the feature you want."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Installation\n",
+ "\n",
+ "### Using pip (recommended)\n",
+ "\n",
+ "`pip install -U chitra`\n",
+ "\n",
+ "### From source\n",
+ "\n",
+ "```\n",
+ "git clone https://github.com/aniketmaurya/chitra.git\n",
+ "cd chitra\n",
+ "pip install -e .\n",
+ "```\n",
+ "\n",
+ "### From GitHub\n",
+ "```\n",
+ "pip install git+https://github.com/aniketmaurya/chitra@master\n",
+ "\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Usage\n",
+ "\n",
+ "### Loading data for image classification\n",
+ "\n",
+ "Chitra `dataloader` and `datagenerator` modules for loading data. `dataloader` is a minimal dataloader that returns `tf.data.Dataset` object. `datagenerator` provides flexibility to users on how they want to load and manipulate the data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import tensorflow as tf\n",
+ "import chitra\n",
+ "from chitra.dataloader import Clf, show_batch\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "# cat_dog_path = '/data/aniket/catdog/train/'\n",
+ "cat_dog_path = '/Users/aniket/Pictures/data/train'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "clf_dl = Clf()\n",
+ "data = clf_dl.from_folder(cat_dog_path, target_shape=(224, 224))\n",
+ "\n",
+ "clf_dl.show_batch(8, figsize=(8,8))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for e in data.take(1):\n",
+ " image = e[0].numpy().astype('uint8')\n",
+ " label = e[1].numpy()\n",
+ "plt.imshow(image)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Image datagenerator\n",
+ "Dataset class provides the flexibility to load image dataset by updating components of the class.\n",
+ "\n",
+ "Components of Dataset class are:\n",
+ "- image file generator\n",
+ "- resizer\n",
+ "- label generator\n",
+ "- image loader\n",
+ "\n",
+ "These components can be updated with custom function by the user according to their dataset structure. For example the Tiny Imagenet dataset is organized as-\n",
+ "\n",
+ "```\n",
+ "train_folder/\n",
+ ".....folder1/\n",
+ " .....file.txt\n",
+ " .....folder2/\n",
+ " .....image1.jpg\n",
+ " .....image2.jpg\n",
+ " .\n",
+ " .\n",
+ " .\n",
+ " ......imageN.jpg\n",
+ " \n",
+ " \n",
+ "```\n",
+ "\n",
+ "The inbuilt file generator search for images on the `folder1`, now we can just update the `image file generator` and rest of the functionality will remain same.\n",
+ "\n",
+ "**Dataset also support progressive resizing of images.**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Updating component"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "# data_path = '/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train'\n",
+ "# data_path = '/Users/aniket/Pictures/data/train'\n",
+ "data_path = '/Users/aniket/Pictures/data/tiny-imagenet-200/train'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.datagenerator import Dataset\n",
+ "from glob import glob\n",
+ "\n",
+ "ds = Dataset(data_path)\n",
+ "# it will load the folders and NOT images\n",
+ "ds.filenames[:3]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def load_files(path):\n",
+ " return glob(f'{path}/*/images/*')\n",
+ "\n",
+ "def get_label(path):\n",
+ " return path.split('/')[-3]\n",
+ " \n",
+ "ds.update_component('get_filenames', load_files)\n",
+ "ds.filenames[:3]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Progressive resizing\n",
+ "\n",
+ "> It is the technique to sequentially resize all the images while training the CNNs on smaller to bigger image sizes. Progressive Resizing is described briefly in his terrific fastai course, “Practical Deep Learning for Coders”. A great way to use this technique is to train a model with smaller image size say 64x64, then use the weights of this model to train another model on images of size 128x128 and so on. Each larger-scale model incorporates the previous smaller-scale model layers and weights in its architecture.\n",
+ "~[KDnuggets](https://www.kdnuggets.com/2019/05/boost-your-image-classification-model.html)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_sz_list = [(28, 28), (32, 32), (64, 64)]\n",
+ "\n",
+ "ds = Dataset(data_path, image_size=image_sz_list)\n",
+ "ds.update_component('get_filenames', load_files)\n",
+ "ds.update_component('get_label', get_label)\n",
+ "\n",
+ "\n",
+ "print()\n",
+ "# first call to generator\n",
+ "for img, label in ds.generator():\n",
+ " print('first call to generator:', img.shape)\n",
+ " break\n",
+ "\n",
+ "# seconds call to generator\n",
+ "for img, label in ds.generator():\n",
+ " print('seconds call to generator:', img.shape)\n",
+ " break\n",
+ "\n",
+ "# third call to generator\n",
+ "for img, label in ds.generator():\n",
+ " print('third call to generator:', img.shape)\n",
+ " break\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### tf.data support\n",
+ "Creating a `tf.data` dataloader was never as easy as this one liner. It converts the Python generator into `tf.data.Dataset` for a faster data loading, prefetching, caching and everything provided by tf.data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_sz_list = [(28, 28), (32, 32), (64, 64)]\n",
+ "\n",
+ "ds = Dataset(data_path, image_size=image_sz_list)\n",
+ "ds.update_component('get_filenames', load_files)\n",
+ "ds.update_component('get_label', get_label)\n",
+ "\n",
+ "dl = ds.get_tf_dataset()\n",
+ "\n",
+ "for e in dl.take(1):\n",
+ " print(e[0].shape)\n",
+ "\n",
+ "for e in dl.take(1):\n",
+ " print(e[0].shape)\n",
+ "\n",
+ "for e in dl.take(1):\n",
+ " print(e[0].shape)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Trainer\n",
+ "The Trainer class inherits from `tf.keras.Model`, it contains everything that is required for training.\n",
+ "It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by [Leslie Smith](https://arxiv.org/abs/1506.01186)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.trainer import Trainer, create_cnn\n",
+ "from chitra.datagenerator import Dataset\n",
+ "from PIL import Image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ds = Dataset(cat_dog_path, image_size=(224,224))\n",
+ "model = create_cnn('mobilenetv2', num_classes=2, name='Cat_Dog_Model')\n",
+ "trainer = Trainer(ds, model)\n",
+ "# trainer.summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "import tensorflow as tf"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.compile2(batch_size=8,\n",
+ " optimizer=tf.keras.optimizers.SGD(1e-3, momentum=0.9, nesterov=True),\n",
+ " lr_range=(1e-6, 1e-3),\n",
+ " loss='binary_crossentropy', \n",
+ " metrics=['binary_accuracy'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.cyclic_fit(epochs=5,\n",
+ " batch_size=8,\n",
+ " lr_range=(0.00001, 0.0001), \n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Model Visualization\n",
+ "It is important to understand what is going inside the model. Techniques like GradCam and Saliency Maps can visualize what the Network is learning. `trainer` module has InterpretModel class which creates GradCam and GradCam++ visualization with almost no additional code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.trainer import InterpretModel\n",
+ "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=1000, keras_applications=False))\n",
+ "model_interpret = InterpretModel(True, trainer)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "trainer.NUM_CLASSES=1000"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image = ds[1][0].numpy().astype('uint8')\n",
+ "image = Image.fromarray(image)\n",
+ "model_interpret(image)\n",
+ "print(IMAGENET_LABELS[285])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "image = ds[3][0].numpy().astype('uint8')\n",
+ "image = Image.fromarray(image)\n",
+ "print(IMAGENET_LABELS[208])\n",
+ "model_interpret(image)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Data Visualization\n",
+ "\n",
+ "### Image annotation\n",
+ "\n",
+ "Thanks to [**fizyr**](https://github.com/fizyr/keras-retinanet) keras-retinanet."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.visualization import draw_annotations\n",
+ "\n",
+ "labels = np.array([label])\n",
+ "bbox = np.array([[30, 50, 170, 190]])\n",
+ "label_to_name = lambda x: 'Cat' if x==0 else 'Dog'\n",
+ "\n",
+ "draw_annotations(image, ({'bboxes': bbox, 'labels':labels,}), label_to_name=label_to_name)\n",
+ "plt.imshow(image)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_path = '/Users/aniket/Pictures/data/train/dog/download.jpeg'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.image import Chitra\n",
+ "\n",
+ "label = 'Cat' if label==0 else 'Dog'\n",
+ "\n",
+ "bbox = [ 70, 25, 190, 210]\n",
+ "image = Chitra(image_path, bboxes=bbox, labels=label)\n",
+ "image.image = image.image.resize((224, 224))\n",
+ "plt.imshow(image.draw_boxes())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Utils\n",
+ "\n",
+ "Limit GPU memory or enable dynamic GPU memory growth for Tensorflow"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from chitra.utils import limit_gpu, gpu_dynamic_mem_growth\n",
+ "\n",
+ "# limit the amount of GPU required for your training\n",
+ "limit_gpu(gpu_id=0, memory_limit=1024*2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "gpu_dynamic_mem_growth()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Contributing\n",
+ "\n",
+ "Contributions of any kind are welcome. Please check the [**Contributing Guidelines**](https://github.com/aniketmaurya/chitra/blob/master/CONTRIBUTING.md) before contributing."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#hide\n",
+ "from nbdev.export import notebook2script;notebook2script('index.ipynb')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/nbs/playground.ipynb b/examples/nbs/playground.ipynb
new file mode 100644
index 00000000..06691b23
--- /dev/null
+++ b/examples/nbs/playground.ipynb
@@ -0,0 +1,63 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "98c7343d-dc6a-4f75-95bd-722f1e415cd1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import optuna"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a8c3ada9-5e5a-4936-9407-5b7a88947ff8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "study = optuna.create_study(pruner=optuna.pruners.MedianPruner())\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6eee0989-da5a-448f-a6bd-5a325adde7fc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "study.create()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d044465c-f308-49b1-b827-33337b111182",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/examples/src/autodockerization/main.py b/examples/src/autodockerization/main.py
new file mode 100644
index 00000000..b55c1454
--- /dev/null
+++ b/examples/src/autodockerization/main.py
@@ -0,0 +1,13 @@
+from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
+
+from chitra.serve import create_api
+
+tokenizer = AutoTokenizer.from_pretrained("microsoft/xtremedistil-l6-h256-uncased")
+model = AutoModelForSequenceClassification.from_pretrained(
+ "microsoft/xtremedistil-l6-h256-uncased"
+)
+classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
+
+api = create_api(classifier, run=False, api_type="text-classification")
+
+app = api.app
diff --git a/examples/src/autodockerization/requirements.txt b/examples/src/autodockerization/requirements.txt
new file mode 100644
index 00000000..da5b1ff3
--- /dev/null
+++ b/examples/src/autodockerization/requirements.txt
@@ -0,0 +1,6 @@
+transformers
+fastapi
+uvicorn
+pillow
+gradio
+imgaug
diff --git a/examples/src/deployment/aws-lambda/.chalice/config.json b/examples/src/deployment/aws-lambda/.chalice/config.json
new file mode 100644
index 00000000..e8c9a94c
--- /dev/null
+++ b/examples/src/deployment/aws-lambda/.chalice/config.json
@@ -0,0 +1,9 @@
+{
+ "version": "2.0",
+ "app_name": "hello",
+ "stages": {
+ "dev": {
+ "api_gateway_stage": "api"
+ }
+ }
+}
diff --git a/examples/src/deployment/aws-lambda/.gitignore b/examples/src/deployment/aws-lambda/.gitignore
new file mode 100644
index 00000000..db225aa0
--- /dev/null
+++ b/examples/src/deployment/aws-lambda/.gitignore
@@ -0,0 +1,2 @@
+../.chalice/deployments/
+../.chalice/venv/
diff --git a/examples/src/deployment/aws-lambda/app.py b/examples/src/deployment/aws-lambda/app.py
new file mode 100644
index 00000000..b436b627
--- /dev/null
+++ b/examples/src/deployment/aws-lambda/app.py
@@ -0,0 +1,53 @@
+import io
+
+import numpy as np
+import torch
+from loguru import logger
+from timm import create_model
+
+from chitra.core import load_imagenet_labels
+from chitra.image import Chitra
+from chitra.serve.cloud.aws_serverless import ChaliceServer
+
+
+# This path can be anything from filesystem to cloud storage
+MODEL_PATH = "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth"
+
+LABELS = load_imagenet_labels()
+logger.debug(f"labels={LABELS[:5]}...")
+
+
+# Preprocess the image
+def preprocess(content_raw_body) -> torch.Tensor:
+ image = Chitra(content_raw_body)
+ image.resize((256, 256))
+ x = image.numpy().astype(np.float32)
+ x = x / 255.0
+ x = torch.from_numpy(x)
+ x = x.permute(2, 0, 1).unsqueeze(0)
+ return x
+
+
+# Convert Imagenet Index to string label name
+def postprocess(data: torch.Tensor) -> str:
+ logger.debug(f"predictions = {data}")
+ result = LABELS[data.argmax(1)]
+ return result
+
+
+# Loads model from io.BytesIO
+def model_loader(buffer: io.BytesIO) -> torch.nn.Module:
+ model = create_model("efficientnet_b0", pretrained=False).eval()
+ model.load_state_dict(torch.load(buffer))
+ return model
+
+
+server = ChaliceServer(
+ api_type="image-classification",
+ model_path=MODEL_PATH,
+ model_loader=model_loader,
+ preprocess_fn=preprocess,
+ postprocess_fn=postprocess,
+)
+app = server.app
+server.run("route", content_types=["image/jpeg"])
diff --git a/examples/src/deployment/aws-lambda/requirements.txt b/examples/src/deployment/aws-lambda/requirements.txt
new file mode 100644
index 00000000..11d3335b
--- /dev/null
+++ b/examples/src/deployment/aws-lambda/requirements.txt
@@ -0,0 +1 @@
+chitra==0.2.0a0
diff --git a/examples/src/image/coordinates.py b/examples/src/image/coordinates.py
new file mode 100644
index 00000000..74479a12
--- /dev/null
+++ b/examples/src/image/coordinates.py
@@ -0,0 +1,12 @@
+import numpy as np
+import rich
+
+from chitra.coordinates import BoundingBoxes
+
+box = [1, 2, 3, 4]
+label = ["Dog"]
+bounding_box = BoundingBoxes(box, label)
+rich.print(bounding_box)
+bboxes = bounding_box.resize_with_image((10, 10, 3), np.random.randn(100, 100, 3))
+
+rich.print(bboxes)
diff --git a/examples/src/image/play_with_images.py b/examples/src/image/play_with_images.py
new file mode 100644
index 00000000..26f85b51
--- /dev/null
+++ b/examples/src/image/play_with_images.py
@@ -0,0 +1,16 @@
+import matplotlib.pyplot as plt
+import rich
+
+from chitra import Chitra
+
+url = "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Image_created_with_a_mobile_phone.png/1200px-Image_created_with_a_mobile_phone.png"
+box = [[600, 250, 900, 600.1]]
+label = ["handphone"]
+
+image = Chitra(url, box, label)
+rich.print("before resize:", image.bboxes)
+
+image.resize_image_with_bbox((224, 224))
+rich.print("after resize:", image.bboxes)
+
+plt.imshow(image.draw_boxes())
diff --git a/examples/src/model_server.py b/examples/src/model_server.py
new file mode 100644
index 00000000..032b709f
--- /dev/null
+++ b/examples/src/model_server.py
@@ -0,0 +1,8 @@
+from chitra.serve import create_api
+
+
+def model(x):
+ return x
+
+
+app = create_api(model, run=True, api_type="question-ans")
diff --git a/examples/src/serve/gradio_app.py b/examples/src/serve/gradio_app.py
new file mode 100644
index 00000000..d2da0507
--- /dev/null
+++ b/examples/src/serve/gradio_app.py
@@ -0,0 +1,24 @@
+import tensorflow as tf
+
+from chitra.core import load_imagenet_labels
+from chitra.serve.app import GradioApp
+
+image_shape = (224, 224)
+model = tf.keras.applications.MobileNetV2(weights="imagenet")
+IMAGENET_LABELS = load_imagenet_labels()
+
+
+def postprocess(preds):
+ preds = tf.argmax(preds, 1).numpy()
+ label = IMAGENET_LABELS[preds[0]]
+ return label
+
+
+app = GradioApp(
+ "image-classification",
+ model=model,
+ image_shape=image_shape,
+ postprocess_fn=postprocess,
+)
+
+app.run(share=True)
diff --git a/examples/src/serve/text_classification_api.py b/examples/src/serve/text_classification_api.py
new file mode 100644
index 00000000..e908a61d
--- /dev/null
+++ b/examples/src/serve/text_classification_api.py
@@ -0,0 +1,11 @@
+from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
+
+from chitra.serve import create_api
+
+tokenizer = AutoTokenizer.from_pretrained("finiteautomata/beto-sentiment-analysis")
+model = AutoModelForSequenceClassification.from_pretrained(
+ "finiteautomata/beto-sentiment-analysis"
+)
+classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
+
+create_api(classifier, run=True, api_type="text-classification")
diff --git a/examples/src/visualization/confusion_matrix.py b/examples/src/visualization/confusion_matrix.py
new file mode 100644
index 00000000..547473f6
--- /dev/null
+++ b/examples/src/visualization/confusion_matrix.py
@@ -0,0 +1,7 @@
+from chitra.visualization.metrics import plot_confusion_matrix
+
+y_pred = [1, 1, 0, 1]
+y_true = [0, 1, 0, 1]
+display_labels = ("class A", "class B")
+
+plot_confusion_matrix(y_pred, y_true, display_labels=display_labels)
diff --git a/mkdocs.yml b/mkdocs.yml
index 028bc80b..4e72d82f 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -1,12 +1,29 @@
site_name: chitra
-site_description: Computer Vision Utility library
+site_title: "A multi-functional full-stack Deep Learning Library"
+site_description: "A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment."
+banner_url: https://ik.imagekit.io/aniket/chitra/chitra_banner_0.1.0_tIzHC3b-y.png
repo_url: https://github.com/aniketmaurya/chitra/
repo_name: aniketmaurya/chitra
theme:
name: material
- logo: https://ik.imagekit.io/aniket/chitra/logo_ddSLdaURS.png
- favicon: https://ik.imagekit.io/aniket/chitra/favicon-32x32_zIf2gUdAN.png
+ custom_dir: docs/overrides
+ palette:
+ - scheme: default
+ primary: deep purple
+ accent: purple
+ toggle:
+ icon: material/weather-sunny
+ name: Switch to dark mode
+ - scheme: slate
+ primary: deep purple
+ accent: purple
+ toggle:
+ icon: material/weather-night
+ name: Switch to light mode
+
+ logo: https://ik.imagekit.io/aniket/chitra/logo_0.1.0_qhktxqokb.png
+ favicon: https://ik.imagekit.io/aniket/chitra/favicon/favicon_9A8ixLDnJ.ico
features:
- search.suggest
- search.highlight
@@ -16,6 +33,9 @@ theme:
search_index_only: true
markdown_extensions:
+ - meta
+ - pymdownx.highlight
+ - pymdownx.superfences
- pymdownx.emoji:
emoji_index: !!python/name:materialx.emoji.twemoji
emoji_generator: !!python/name:materialx.emoji.to_svg
@@ -25,13 +45,16 @@ plugins:
- search
extra:
- homepage: http://chitra.aniketmaurya.com
+ homepage: https://chitra.readthedocs.io/en/latest
nbs_image:
- base_url: https://raw.githubusercontent.com/aniketmaurya/chitra/master/docs/old_source/images
+ base_url: https://raw.githubusercontent.com/aniketmaurya/chitra/master/docs/assets/images
nav:
- - Introduction: 'index.md'
- - Examples:
- - Play with Images: 'examples/chitra-class/chitra-class.md'
- - Image Classification: 'examples/image-classification/image-classification.md'
- - License: 'license.md'
\ No newline at end of file
+ - Introduction: 'index.md'
+ - Image & Bounding Boxes: 'source/api/image/chitra-class.md'
+ - Serve: 'source/api/serve/model_server.md'
+ - Visualization: 'source/api/visualization/metrics.md'
+ - Auto Docker Building: 'source/cli/builder/builder-create.md'
+ - Examples:
+ - Image Classification: 'examples/image-classification/image-classification.md'
+ - Model Server: 'examples/model-server/model-server.md'
diff --git a/nbs/04_dataloader.ipynb b/nbs/04_dataloader.ipynb
deleted file mode 100644
index ed2ba101..00000000
--- a/nbs/04_dataloader.ipynb
+++ /dev/null
@@ -1,470 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# default_exp dataloader"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# dataloader\n",
- "\n",
- "> Now deprecated, please use datagenerator instead.\n",
- "\n",
- "> **All private functions use primitive datatypes**\n",
- "\n",
- "\n",
- "1. read_image(path: str, channels: int=3)\n",
- "2. clf.load_from_folder\n",
- "3. clf.load_from_csv\n",
- "4. detect.load_from_xml\n",
- "5. detect.load_from_csv\n",
- "6. detect.load_from_json\n",
- "7. detect.load_from_tfrecord"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "from nbdev.showdoc import *"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "import sys\n",
- "sys.path.append('../')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#export\n",
- "import tensorflow as tf\n",
- "import pathlib\n",
- "import os\n",
- "\n",
- "import math\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "from typing import Union\n",
- "\n",
- "from chitra.core import remove_dsstore\n",
- "from chitra.image import read_image, resize_image"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#export\n",
- "AUTOTUNE = tf.data.experimental.AUTOTUNE"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#export\n",
- "def get_basename(path: tf.string):\n",
- " assert isinstance(path, tf.Tensor)\n",
- " return tf.strings.split(path, os.path.sep)[-1]\n",
- "\n",
- "\n",
- "def show_batch(clf, limit: int, figsize: tuple = (10, 10)):\n",
- " \"\"\"Visualize image and labels\n",
- " \n",
- " https://www.tensorflow.org/tutorials/load_data/images#load_using_keraspreprocessing\n",
- " \n",
- " Args:\n",
- " data: tf.data.Dataset containing image, label\n",
- " limit: number of images to display\n",
- " figsize: size of visualization\n",
- " Returns:\n",
- " Displays images and labels\n",
- " \"\"\"\n",
- " assert isinstance(limit, int)\n",
- " assert isinstance(figsize, tuple)\n",
- "\n",
- " data = clf.data\n",
- " idx_to_class = clf.idx_to_class\n",
- "\n",
- " plt.figure(figsize=figsize)\n",
- " sub_plot_size = math.ceil(limit / 2)\n",
- "\n",
- " for i, e in enumerate(data.take(limit)):\n",
- " image, label = e\n",
- " image = image.numpy().astype('uint8')\n",
- " label = idx_to_class[label.numpy()] if idx_to_class else label.numpy()\n",
- "\n",
- " ax = plt.subplot(sub_plot_size, sub_plot_size, i + 1)\n",
- "\n",
- " plt.imshow(image)\n",
- " plt.title(label)\n",
- " plt.axis('off')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# CLF DLoader\n",
- "\n",
- "``DataLoader class for loading dataset for image classification tasks.``\n",
- "\n",
- "## clf.load_from_folder (TODOs)\n",
- "\n",
- "1. `__len__` method impl\n",
- "2. `image augmentation` impl\n",
- "\n",
- "## folder structure\n",
- "\n",
- ">/root\n",
- " /class1_folder\n",
- " /img0.jpg img1.jpg img2.jpg ....\n",
- " /class2_folder\n",
- " /img0.jpg... "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#export\n",
- "class Clf(object):\n",
- "\n",
- " def __init__(self):\n",
- " self.CLASS_NAMES = None\n",
- " self.data = None\n",
- " self.shape = None\n",
- " self.class_to_idx = {}\n",
- " self.idx_to_class = {}\n",
- "\n",
- " self._lookup_class_to_idx = None\n",
- "\n",
- " def show_batch(self, limit: int, figsize: tuple = (10, 10)):\n",
- " \"\"\"Visualize image and labels\n",
- "\n",
- " https://www.tensorflow.org/tutorials/load_data/images#load_using_keraspreprocessing\n",
- "\n",
- " Args:\n",
- " data: tf.data.Dataset containing image, label\n",
- " limit: number of images to display\n",
- " figsize: size of visualization\n",
- " Returns:\n",
- " Displays images and labels\n",
- " \"\"\"\n",
- " assert isinstance(limit, int)\n",
- " assert isinstance(figsize, tuple)\n",
- "\n",
- " data = self.data\n",
- " if data is None: raise Exception('TF.data not created yet!')\n",
- " idx_to_class = self.idx_to_class\n",
- "\n",
- " plt.figure(figsize=figsize)\n",
- " sub_plot_size = math.ceil(limit / 2)\n",
- "\n",
- " for i, e in enumerate(data.take(limit)):\n",
- " image, label = e\n",
- " image = image.numpy().astype('uint8')\n",
- " label = idx_to_class[\n",
- " label.numpy()] if idx_to_class else label.numpy()\n",
- "\n",
- " ax = plt.subplot(sub_plot_size, sub_plot_size, i + 1)\n",
- "\n",
- " plt.imshow(image)\n",
- " plt.title(label)\n",
- " plt.axis('off')\n",
- "\n",
- " def _get_image_list(self, path: str):\n",
- " \"\"\"`path`: pathlib.Path\n",
- " Returns: list of images\n",
- " \"\"\"\n",
- " assert isinstance(path, str)\n",
- " list_images = tf.data.Dataset.list_files(f'{path}/*/*')\n",
- " return list_images\n",
- "\n",
- " @tf.function\n",
- " def _process_path(self, path: str):\n",
- " \"\"\"\n",
- " Args:\n",
- " `path` :str\n",
- " `size`: None or tuple\n",
- " Returns:\n",
- " image, label\n",
- " \"\"\"\n",
- " assert isinstance(\n",
- " path,\n",
- " (str,\n",
- " tf.Tensor)), f'type of path is {type(path)}, expected type str'\n",
- " img = read_image(path)\n",
- "\n",
- " # TODO: resizing should be done separately\n",
- " # py_function will degrade performance\n",
- " if self.shape:\n",
- " [\n",
- " img,\n",
- " ] = tf.py_function(resize_image, [img, self.shape], [tf.float32])\n",
- " # if self.shape:\n",
- " # img = tf.image.resize(img, self.shape)\n",
- "\n",
- " label = tf.strings.split(path, os.path.sep)[-2]\n",
- " label = self._lookup_class_to_idx.lookup(\n",
- " label) if self._lookup_class_to_idx else label\n",
- " return img, label\n",
- "\n",
- " @tf.function\n",
- " def _ensure_shape(self, img, labels):\n",
- " \"\"\"Ensures the output shape of images (InputSpecs)\n",
- " \"\"\"\n",
- " img = tf.ensure_shape(img, (*self.shape, 3), name='image')\n",
- " return img, labels\n",
- "\n",
- " def create_lookup_table(self):\n",
- " \"\"\"Creates tf.lookup.StaticHashTable for encoding labels\"\"\"\n",
- "\n",
- " keys = list(self.class_to_idx.keys())\n",
- " vals = list(self.class_to_idx.values())\n",
- "\n",
- " keys_tensor = keys #tf.constant(keys)\n",
- " vals_tensor = vals #tf.constant(vals)\n",
- "\n",
- " table_init = tf.lookup.KeyValueTensorInitializer(\n",
- " keys_tensor, vals_tensor)\n",
- "\n",
- " self._lookup_class_to_idx = tf.lookup.StaticHashTable(table_init, -1)\n",
- "\n",
- " def _get_classnames(self, list_folders, encode_classes: bool = True):\n",
- " \"\"\"\"\"\"\n",
- " self.CLASS_NAMES = tuple(\n",
- " get_basename(e).numpy().decode() for e in list_folders)\n",
- " if encode_classes:\n",
- " self._encode_classes()\n",
- "\n",
- " def _encode_classes(self):\n",
- "\n",
- " class_names = sorted(self.CLASS_NAMES)\n",
- "\n",
- " for i, e in enumerate(class_names):\n",
- " self.class_to_idx[e] = i\n",
- " self.idx_to_class[i] = e\n",
- "\n",
- " self.create_lookup_table()\n",
- "\n",
- " def from_folder(self,\n",
- " path: Union[str, pathlib.Path],\n",
- " target_shape: Union[None, tuple] = (224, 224),\n",
- " shuffle: Union[bool, int] = True,\n",
- " encode_classes: bool = True):\n",
- " \"\"\"Load dataset from given path.\n",
- " Args:\n",
- " path: string, path of folder containing dataset\n",
- " target_shape: shape of output image\n",
- " rescale: images will be multiplied by the given value\n",
- " shuffle: Shuffles the dataset randomly. Expects bool or int.\n",
- " encode_classes: Will sparse encode classes if True\n",
- " Returns: image, label -> tf.data.Dataset prefetched with tf.data.AUTOTUNE\n",
- " \n",
- " By default the loaded image size is 224x224, pass None to load original size.\n",
- " You will get error on `batch()` method if all image size are not same.\n",
- " \"\"\"\n",
- " assert isinstance(path, (str, pathlib.Path))\n",
- " assert isinstance(shuffle, (bool, int)), print(f'Arg: shuffle is either bool or int but got {shuffle} : {type(shuffle)}')\n",
- " \n",
- " path = pathlib.Path(path)\n",
- " remove_dsstore(path)\n",
- "\n",
- " # TODO comments\n",
- " self.shape = target_shape\n",
- "\n",
- " list_folders = tf.data.Dataset.list_files(str(path / '*'))\n",
- " \n",
- " list_images = self._get_image_list(str(path))\n",
- " if shuffle: list_images.shuffle(shuffle).cache()\n",
- " else: list_images.cache()\n",
- " \n",
- "\n",
- " self._get_classnames(list_folders, encode_classes)\n",
- "\n",
- " if encode_classes: print(f'CLASSES ENCODED: {self.class_to_idx}')\n",
- " else: print(f'CLASSES FOUND: {self.CLASS_NAMES}') \n",
- "\n",
- " data = list_images.map(self._process_path, num_parallel_calls=AUTOTUNE)\n",
- "\n",
- " data = data.map(self._ensure_shape, num_parallel_calls=AUTOTUNE)\n",
- "\n",
- " self.data = data\n",
- "\n",
- " return data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "CLASSES FOUND: ('blackcat', 'whitecat')\n"
- ]
- }
- ],
- "source": [
- "#hide\n",
- "path = pathlib.Path('/Users/aniketmaurya/Pictures/cats')\n",
- "\n",
- "clf = Clf()\n",
- "data = clf.from_folder(path, encode_classes=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAADsCAYAAACWh7fYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eawl23Xe91t7qKpzzh379vBmvkc+knokJUrWYDHOZDuBYkGBDQN2nAGGEgux5QAyAcuwLAeBDDsGFCcOPADWaCeAElj+I0IMKZIVGJZki04kSrJE6lGcHt/cc9/pDFW1h5U/dp1zT9/X3XwiX5NO+3xAdZ9TtU8Ne9fee+1vfWtdUVU22GCDDTbYYIMNHjWYr/YNbLDBBhtssMEGGzwMbIycDTbYYIMNNtjgkcTGyNlggw022GCDDR5JbIycDTbYYIMNNtjgkcTGyNlggw022GCDDR5JbIycDTbYYIMNNtjgkcRDNXJE5GUR+Q/eRjkVkefvc+w7ReRfvAP3ct9rbPDFsWnLRwdvty3f5rmeHdrD3ef494vIj70T19rg3tj0zUcHm775zuOrwuSIyL8vIr/w1bj2O4nzHfpRea7fDR6VZ9605cN5ZlX966r6XcP5HzjovpPYtOej88ybttz0zS8HG3fVBhtssMEGG2zwSOIrYeR8s4i8KCKHIvIPRKS5T7lvF5GXROSWiPwNEbnnvYnI3xKR10TkRER+TUT+nbVjdqDgPi8ip8Pxp+9xjn97OMfvH75/UET+bxG5IyLXReT7h/3fIiL/UkSOROSqiPxdEamGY780nO43RWQqIv/Jl1NJ/z/Bpi0fHTywLUXkr4jI3xk+exGZicj/MHwfiUgrIvtrP/nPReTVoc3/8tp5fkBEfmL4uqzno6GePzKU+a9E5FPDvfwTEXnX2u837fn2sOmbjw42ffOdhKo+tA14Gfgk8DRwAfhl4K/do5wC/2wo8wzwGeC7hmPfCfyLtbL/BXAAOODPA9eAZjj2F4BPAO8HBPgwcLB2jeeBbwNeA75l2L8NXB3O1Qzff+9w7BuBbx2u9SzwKeCj5+77+YdZh/+6bJu2fHS2t9OWwB8APjF8/reAzwP/79qx3xw+PzvU3Y8Co6GdOuCF4fgPAD9xrqxbu84fAT4HvDC0zX8LfGzTnpu+uWnLTd98R+r0K9Bgf2bt+7cDn79HOQX+o7Xvfxb4p8PnuzrfPX57CHx4+Pxp4A/fp5wCfwl4Bfjatf3/KfAbb/N5Pgr81Fersb6a26YtH53t7bTlMCi2lInu+4DvB14HtoC/AvztodxycHxq7be/AvyJ4fMP8OCB9GeBP7X23QBz4F2b9nzn2nOtTjZ981/jbdM33/ntK+Guem3t8yvAE19OORH58wN9diwiR8AucHE4/DTFqr0fPgr8I1X9xNq++/5GRN4nIj8tItdE5AT462vX+jcRm7Z8dPDANlLVBfBx4N8D/l3gF4GPAb9v2PeL5853be3znDLgvh28C/hbA7V9BNyhsANPsmnP3w02ffPRwaZvvoP4Shg5677aZ4A3v9Ryg1/4LwJ/HNhX1T3gmFLxUF6O9zzgXv4Y8EdE5KNr+x70m78H/A7wXlXdoVjMcp+y/yZg05aPDt5OW/4ihf7+BuBXh+/fBnwLZz783w30HvteA/60qu6tbSNV/Rib9vzdYNM3Hx1s+uY7iK+EkfPfiMhTInKB8rA/eZ9yf0FE9gcB25+7T7ltIAI3ASci/x2ws3b8x4C/KiLvlYKvE5GDteNvAn8Q+B4R+bPDvp8GHhORj4pILSLbIvJ71653AkxF5GuA7z53P9eBd7+NOnhUsGnLRwdvpy1/EfiTwIuq2gO/AHwX8AVVvfklXPMmkLm7nn8I+Esi8kEAEdkVkT82HNu059vHpm8+Otj0zXcQXwkj538Hfh54adj+2n3K/Z/ArwH/CvgZ4MfvUeafUPyEn6HQeC13U3t/E/hHw/VOhnOM1k+gqq9SOuBfFJHvUtVT4D8E/mMKrfdZ4PcPxb8X+M+AU4p46/zL9gPA/zrQeX/8fhXwCGHTlo8O3k5bfoxS58uV4YuUdvpSVoqo6hz474FfHur5W1X1p4AfBP7hQG1/EvhDQ/lNe759bPrmo4NN33wHIYMQaIMNNthggw022OCRwiYZ4AYbbLDBBhts8EhiY+RssMEGG2ywwQaPJDZGzgYbbLDBBhts8EhiY+RssMEGG2ywwQaPJDZGzgYbbLDBBhts8EjigX9W/Qsf+8fatx3d8R1ee+UzvPTyF/iZf/mbnCwCxjjGox0Odvd47pl3cXBwQFNPAEMXE7PZjDsnh6i0VLuRgwPP3l7DY0/ssru7y2S8jbe2XMg4RISYE20MdKFl1recLHpO2o4bt6e0HXStkHuDzYb9nQk7W2O2xhN2tmu8tzgLmUTIice2d6mMRcSiKZNjT9ct6LqO+XzOb3zmFV67NaNPEc0ZZ4T9ScPWpGE83uLpp7+BixffzcVLTzKZbFOPxnjvMcZgh/tWVVJWcs4khjTSWRApmzEGK4qIrMoDpCHv0lqa67U01Jn3XN55KImTRGQTSvdVgKq+4+35I9/3DZpSYjZdcPXGCTfutLxyc0rsM8YYFEvjoa49WTM5CUeLzPWjntArfQBjyhpHREr687Xv5f/yuiz3L4+JKe/q8j0fnrGU5ez9X5ZZj+C867ueXW/9GjlnIK/Shy2vcR6r/qOgKixreXn+vOpnZ9dcP1dOZ/0v51zuzQj7OyPeddny4fc/w6UnnuHg8eew1QRTj/mTf+ovP5S++bl/9ZN6ctSTckDFYozBOI+1FnE1vh5hXAVuG2crrK1xzmFtqTsRQUnkPtDnQEoLcjiC0LGYLmjblq7r6EMiRogxErKgCjGXOss5gxHQMi04V8Zla11pH+NwvsbaCldvY5uGuh7hKo+I0AVlNj1hfjplPjsm9y0pJTB2OI/FOYdzDuMdftgP5Z219RhvHb6uEGNBMyFE6rrm+NZtrn7+RVRANQFgsITU84nf/C2efOFb2J3U/PN/+KNYC4/tN+WcBiqjgDJqHDHm8mxDvX3vD/3cO96e+4+LmgAffH4PK3PUBN58U6kq4cLBhDfenPKhD13m8NZNnnxsnxc/d8zje46ve8+7+NVf+wzTABdGju5OpJlU3EpCu+X52vcYPvkrcyQnnnkKtieOG/OA9CAtLCrDzdPMUwcTvvVxxdJw62bk2s0O3elopGYaOo5ODSezzEd+34TXX5nzxh1lz8HX/56n+fhnX+P4yPLu5xr2RzWHV0/ILaScGO2Mef1Ox2waubJnGVfK+95zhTs3jnj9TseTfsRtM+drLk1wV2o+/hu3OXiyppl7xj5TX9rn9vFtPv16y1RqqtjzwQN492jM59+ckR7f4/ErW5zcuMnNO3Cr7Um94aiFmyeJb3pqh/ntE648BW0QnnjqgMcuHPDJX/8cOqn4qf9nfs+2fKCRY62lMpbW6KojmcEuiZpXg0wZlADy8D0CpePEmBmJQcRjvUEoJzBkGD6XHETlZXcGOskYFGtANIMaQlzQtkpYlIF0PPL0vSPWnpQcxmSsMWTNkDI5Z9RaGO5PVUkprQbQPgb6vqdPSs4JO6rLneSMaCTFKTktSLlHNaEpos6gKqXjLu8862DsJDQLcPfgjzHYYbDNwl31dd7IKfeZ2WCDtwNjTDFoVjaEofSlAQKIclZAVwdk3SCQs6Pro8Ty+/n9y2sLa6cGjMi986aex3BCBewwrpw3hlaPcB8D5/zp1n95ZjBpuVQejt/nGve8jqwZe8t/9eER35oNSBjuXTGiKBnVUs8CFCtOQTIiy0URdxucumxyAQzI2YLMIJAzkgWzqoZSezIYVlkNOWesNWvtriyb9qz+zsZAMGvjliHlsHpfjDEkVYxIuf49YBCM6FuOq1DeUzUrY1Zg9UxZtdTN0K7lXc5Y1fJ8WQkx4yplPPI0taejo6oqrOT7vgtfNlrYnkC3mPO+53dI9hRNPa+9puxsz7HAydFNrCg5KG2bmC0MV2/eoN72GEl0pxHjoG8jmpTx1ojRlsH6iB0appsHjBPiQhlHwFkqnzk6nnFzB0bW0ibPjcNTLl4UDucdtobprUzVCCmVPjuaKNsTuHxpi8t3hG6h7O7t0J2eMOsj27t7aM4c9z3xNCIZJk64uD/mtatXuTGHRQX7jRCtcO10ytNPNJzcgHrSMT/tmFkI046tS9tsjZXjGx1ZYf+Ffbzx1EeR223PzZtH1HjaxZxKFWOEKQ5fJxb2hOc+2DCbt5xOFTMa8erVO9w8TYjt7tscDzRyjKtQn/C+wVcO78zK2Fla5mrKpC/5bNW3NAIMFhByzMSQSaHCuWowCiIiijEOby1JwRkh5IAdXm6bwSGk2NIueto2s5h2aILtxjPyhkWnTEYGYx19NOQciZpJmtGUSTkOTE5EVQkxsugDp9OOlGHeRoxmKqdoAoPiDIi2aDxBQ4fGjmwt2VrUDqtTymCQFZLmYkAN/b5MPhXWpmK8LAdx0l1GztL4KlBiDNw1SW2wwX1wL6NAGCY2ygRlxABxYEoELwaHEIwOLM3yvQQxMhhFpfOdGeplghNltU/MMKnew/oRs2SBzhie8waEGFsmXWdwxg+G2tmz5BxXfWX522WZ8+yQZiFrXk3AS1ZITB7qQkgxD4zC3dcxw7lzzqu+KEYQUayYs/sWwYhHHqJ3/0ET7uqZOavuLzpBDwsq4YylSgJiDZIG9gxD0rRikEHIOQyMtStGxFrbnWfcVCl1r8q5Jl5b+C6NTln73dnCzhgD9/ijinKPc5U6OGPk1ssv5yCnYKxBclm8VpUwGXnGtUFTwJGpDOSQcUtPwjuMZx8fs5gt2N2p+Oxnb/H8+zwXL2xz+aCmGdXs79yi7Vr6CNdeP8IKnMwyXQ4cdRHrlWYkXN4ecfvWnIMxNNsRzZYLF+FD73ueVz7/ErVV7vRQOc9OXTEjsV0njo8y1b7B6Q6vf+4GN0+Ur3/uST75maukmAmAJkXVUVcNPsxpA3Rdx544DuvMa6/d4MJOw9U7cHtxjNuqOZ61XMnwbe97kk9Or/Nae8qehcMIycNRN2frsvDshX1yH/mWr7uM38tMry64uL/Hp68f8unPH/He5x/n8M2rNDVMQ8/FiyOiE46P5thk2L94mbafcbANBMNrJx3jHagP4APf/H5++Zd+i94qL9+8Ts0202zZt/fvmw/stWJdoSidx7uKZjSBnMjm7CUVY1b043IgqrzlzDNiSFnos8E4S4gK6oaBLIMkQLGiWFkbonMuA11KLNpIt2iZns7pFpHY9bShp+0WxBhoQ0efAjH2qwEr50wXelJKd1HSSTNtFwg50fY9MWT6CPNFIIa86vBiMll70Jace1QjOZctpUTKgZQSMafyf4yFHYqBpAzlzlik89vyvpafU0pkDcR0f4t0gw2WOD/5lA/3L382OcmKAVrfrLVYa+/aJ2vGzl0u2HPl1s/xoOP3ut7SfbHclvvOl19e++1szjmqytE4S2PN6rzrz2SMwXuP976s7M8dP78NFf1wGpO723Od4UXPFkdCGtizM2NvHUtWTlf2qkBeM+oAkpBNRgkohXEvz10Y7sLGDQuxNUOqXDOtsdBgFUSXxoZgRUBTYVqyojK4IzWvDBlRUHP3sy4XjZa7jaj1ulFdMjvlmZZG95LCExGETFAlJWj7SBah9hZDog+REGKZF7rArI8czhdfWmN9EXzkI89R18qd21O6DjR5Xnn5hJh6fudTr1NVNZNJxTPP7HB6ooQA2xODc0KMSjPaJmfL/sWLTCZwsG944vKIG7eO6QNcuXwBomFrNMYCRi1buxNCTly6sMeFHTieFQnFbBGIw+K7DUqbSz0W+044OW3xtszNNlc0acz8KHHzZuLC5SuoQMhK20dSgoNt4fLWhNoq27sV2UAN7DaeLW8xXeZgvMXicEHqMrHtSYvI/mTM0489Bgrd/BTJsLPlCRlev36V03mLd3Bhd4ccM6jDWhhVhkkFW2Nb7lkyzajBjyxdiFy9fQjWEafhvu3xQCbH2QpcIliLtR4rhnHTcGt+CoMVLoAxEGKkac6sppwjGjOaQbNDsyH0SopCHxLWKcYs/f7FVaQkhAw5oTmiKdK3LdNpy+lxx2La07eJynratmXReEa9Z7FYEGLHqKpXPuqu68A6nPHkWIyILiihV2bzltsnC05nPUJZVfZAlzNJB81MXJDznBhOiX2DtZ4sINmC2MGQKv7slBIhRfqYEBGqpFTDoJ2xmFSelYEijTmjORc6OkUyiuZIzoGs8cvpXw/EkvY+I5bXeKNhtc65Muu/1eE3K/fA8Jsli/5glKsJa+XXfidrd3PX+R5wbnvu0HLtvsTyEnc9y5LxX3sGpxDXDq///mzpfO4c6/ve8qO7r/MwcNdEOOjBzHLg52w+NsZAFlTTGQszlNMlI2sMztqB+SlIKa3YHmPMSmtjLLi1Rc65uzq30l8rp2er5mwYrusZN25lXEBZiPS9krMv7IukYriokAysHCg6MKGUCTJpRrPBW0NVG5wpz5rVYFKm7zwxZbJxqCreWZqqLgyHZvrO0PY9msEPE2apR3mLMfEwkXN+y0R/nsVZ3//FOt559gXO3p0yhgnrvImIEEJAjOK9X+2Tcwzfve4xD1T2ygDLdz/T8jlYc68VAyavXInr515nA1dskRYZxbrGqmjQoEvKImT6nGicMDbKrBNCTPQ5Y4d3OIQZXRupquqBdfelYjJuefxJz/UbgXosVP4K+wdv8PKrx8ymkF8/pm7KHDkZQ105Lh1UvP89TzKdfprjrqcPwitXr7O7M6bt55ycHnH1KlzchZs3rhPbjMsOWcBo4rjWHnFE4LF0ykc+9Cxv3nqZGA55/IpBcubo+iGnJ8pz793mMLSkNpBQ3ryWefbd27x565TpUQfHmTgVTpyibhvvDNoXT0gV4cIzO7wZjvmm557hU9fe4IYx7ORMYyxfc/ky105eQ457rr3acfN2x7Mv1NgUqFLi2qdfxUcwzNg5ADva4sbNIz7y4ceI80N01tOfTIlRcJrYujhCpxaNLTsVPHPxgF/6+U+RYkQRpq2isWi0tvP9+ZoHGjlqli+0L6sh73DDC7hciUGhQK0dRGQC5FR8sMZAhhyV1CcWXSakiGqF4klkHHd3AlgTDmphSFKI9H0iBYhB8UYJIRBCpG176spCNkQjRDU4MeQMagZR8KDFiTHShZ4Ylb6LaBZiyishWx8CITmSZmKOpDynC8dUaQTR4K1ALs+ZshK1MEYhZrrY0fURY2oUV7Q7qoNf0SBaNEYAmjNZE5r7wvhohhzJGsn68JicH/47P8hosscrb15n0lhCF+lipGjxDMSWlIohEhQUczYYxsSohnFVcTg9QbyjqivGky2Mt1TGYwezw1o3uAssfT8lY2j8RdpwTN8dMVt0dG3AIMxnkRQz4/EWBwf7XHnsImJhPp+hktGgbNVjRpUQpCoDsCRyCsTZjO3tbcQWTUFMPSozUhpWbDMhqyWbimu3jmnblrr2VKKMRzVV7RlvbzO7c5uj6YIUHd4XHVcIgdPZlJASSTOikBDq0Tb1eAQpU9cNbdtx4dIBn//srxP7iFGl8WMmky1C6FmEh7NafAvLAHetvI2YpaBhxbDKms7EGENGBtajKqyGdcVgD2GYfNKqrAyTi3WClTMDoFz2raLes1vStxg5IgyMi1DVDmctsnRHDQxuDEvX2DDeqLyFd865GDZJh+WpMVRWqR14axGjpCRF/2cg65l+qXaGSVMm8ZAiopaYHTkNE+1yPDtX3w8LK+H22jPK0kjOOjAtBtXActgu2pm1e8RSLIvE0iQqjryi4REMahMmgeIRSatnU1WsZFKKIOaejEppx1SMGVXSwMDLoH+BfCbgVkWGq6ss1VFLbVFx9RvvBgZGQOxK76kM7tRcridkoibEQEpFr5Q1F7ZIhZQUS3l3jDGoCThbLqxa2B1PmaNSigiWpnEY+3CkAa+98iZ13VCPiqfj+q3b7Ozvcf3WDfoEIRZDus9Q1WBrhyWyOL7N/gQ+8Hs+wK9//LfpZz1tGjHr4PBaJEfLwYWGxWzBpBmT+kwDOGe4Nu9JE3AuUeceJwZDx9NPbmHSHGlhe+zYGTXc6U6JHYgVXA3OGxY9HB/dYc83kE/pIhwet/jKoF3GKTz11D6fe/WQ6xxzMIE7wNEYLnlhe+TZGVXcOAKrFu8E5wRjKva2PduVZyKWXZ/Y2x3x0htzgrR0XfHa7Gw19DHjYoCoxB7uLBaMsmc8htpkujuB1z8befbdlkhisi9MT5TDw0h4ADfwQCMHcWAdWDDO4oxlVNcsFfFKwtrBGs9xGEiLsZJVCy2pFsmFftKYAENWQXFFL7O2qlBl5bpJKRH6CHlw5/RDNEQUpDKQLTmW3/Z9IGe7upcoQmhabG7Alc6eUiLETB8yQaHrE10XSKm8JCJCr4l5hJ1cPi/aGZOtOV1/AsaRRTDWr54h5MFNFQKLfkEbI0hdmB4Ur46MrpT8ywG2uKQyMXWF8coRyKTck/LDM3JOj28xGo8JsSPFYrBGKUOiAn3Xoyg5JSIGMY4QwlB/ymRsqSuDsZmUO0JSpq1Q47E+AWVV3oeItWagRBU0DgawYkx5byCi6miamhgTTdOsJmNrKqx19LFDAec9XiJqhCxKJhNjR4wdi6kw2qpQDWjqSDInayKlDMlhjEfsmMoapPJYY5mMPJojohEz6L9UwNgSoWMAGYSazhga48kobRqYSRUEg3MVYhOCJYVIDgHrLDEnutiDamFDHwLudoMajHEro0YGl8P5RX4eJjrvHWodOhg5dVMxHlU4Byl55qfFmZHzGjNkFecMhkQlbqXxWIogz7CumREyATFmZTwARAzWWCpXMakavPdYV8aIEALETJ970iCIBXDOrp57uchQEdQmYlaSKqoR6xyNNZjKoiZCAhs9bYp4yUgqLIDznqourI5JihVPji1t7oseB7AIbl2b85BRXEFFFL6KGkNX2qFVDd/HXfUgnDF8Z1or5MzYNcasdIu6jBQ9r/lansOsi5LvPr4ycJasDQObuGQZ72Jwzt6Vu5/xrc+1HD/XGaNiiMVizOaEMWfBI9ZakmYqGdyiUt4hpwablBAS5x7vHcPxYUKqBjU109mM0Aa2Qkcz8vQh4nyNr4QQOowBzZG+jdy61jEZwXPPXeJTn4KTmbIIgKk5Pe5oscSUuXV4yFZzgdu3b4AWmcf2lYap6cjzjPQ9JsPl/QlhAf1Bw63DlpHzmJxJESpXvCjjbXBWsRWcnp7w+OgyzhVj+9U3rlHZmtks8vy79zA54xv4g1/7fl65/Qav35kyboSJOna2xrTtjP0Le1x54in4wk26EDk+mfOug4tc3t/jwsTRGdieVFx6quP2DRg1ltPjE0bNNjsTZddOOLxxhDPKIkPtYDKGve0tuqPAe5+yTEbbVK5ncmCpTU84Deji/gbrg4XH1oPpMNZijaWpqkIH28ENY0wRshmzcuEsrfnizhLEOPoQGCVhf+8yk8llRuMa6yI5n7DoI0YSBkMUJfRlJdl2ga4L9J2ymCkpQrvIiCp5EAhbhNBFgivq/lZ0pYXZH23hsGihdIh9JiXICUIqlGzfB5wrVVCocUvU4s/tuqLCny3ugCgpRWq9UIwdZGXkdP2MeXvCvJ+y6BRxW2S1jPIWlfOMtMZbhzGQncWQiWmBEsgxENOiMDg5oHRoenjuqmvXb7K7d4V2Pkd78MaiYglJiUmZzU4HN4Ij44i5hJ6qDtR1brDWYHxp0xgzWRf0OSAuFENCLM7W9NFjTEAMoJFFd4ckxeGVopKixUiiqbeoK0td12dtEYVRPaabTZFqTOUbKq/kkAllacsiRUQci6x0XSjOrrI8QVWIMRFzxGLxzpAkUtUWmw3Gj2kXpxiE48WCLiopWYIoGjqcdWASgYAax1bT0Pc9pIyqEPpI7T0xRpwxTKdTSBWaFc2WlkjqWqqqQtLDmSCNMXcJMs/0MssJhEFEC8KwUreWqnIIFsHjKsv29jZNU7G9PaGpK9p2znF9ynw+p+/OBLklokeonB1CcqG6J7uxHGxkaAc3rOrPynkneG+pKstkqx40McURmpItWhGJxJgxpiyczHLiH86U1JBSJmdbgm1Suc+qFqraUldgvSel4ibvYmKRDYYyAe5OarbHxQDtsiEFW5jjIbLI3EOU+lCNnWGiVwTRTLaCUBYOhYkeXN7LmVkezEKsXMpwtogkQlr7vWYEwZnCaHWxLGiMnom+140RobD2haUf3KPL0H0BclkYLF2bMSuf++1P8PyHvh43vJcYgUG4ntDBSF6rV1PExUIpK0lQX8oVOcPASA3GWBHBF3eXHc5TNxX1pEIkM3IV3gaM84iC92WB04VE295fx/Hl4LPXEiEt2L3U0wdIJ0oiozmy5ZVRDGzJAcd9T1MZ5oeJUeNhlGiPM9d+7Ve40NW8fLtn9/EFk7GSb8K86zm8scWdqwu+4YWG4xPlJMJri1O237OLM5bOzJh75fBW5s5jLcc3Awe15SR7Fn3H8W3LZOAusA67BV2cccVBO1Nub1u6AOots+vHfONjI576lkt88nO3uLkwfOBrD/jGDz3N1X9+E0sxQkZOeIYRt/tjDrY820x4+dXM6UzpP5341u9w/MJv/QYvHSrv/shl3pid0CbHqOrRPjE7VUwMTF8/ZnJxi4v7F3ntzZuMnHBpPMK3gcefnfCL/+waVy5WvP/rdziOR9y+tqCeWj58sMcbr9+5b3t80RByNXYQsZWg7yIKzKie+dKXq6v1yKr1yCERYf/CRfYuPMHe3mXG4zFIR9c1pHCbLmQqRzFCEPoY6LqelJT5rCP0SoyQsxRWCINRg5XimjKa0QQxQt/3A+WeCCageVB7DO6qnCHFco51yr88qyKaSYbijsqJlCJ9mJaVRG8QW4F4kmZCDiy6Q9owpY8tbR/QfkHlt8rA0jSUUE9fKHlJWJSUF6CpMDc6LW6B3JK1J2u6T2t8+Vh0kZPT08HlmBEpUW0qhbLvQhiE44LzDSG0xGF1Z63Q9hEohmvUTEhFFxM0kTHEnLAGYg5ky1u45UwAACAASURBVLAi7hG1JV9StUOfjoc8K5kM1M245P0wQj2whNZlFqcn/G//y4/z5773+6it4ETPRJFisBQXYTSOetAO5BQH0WQorN9g9MZ2jrGKtw6iYmIqIscUIVuMRgQl9BlnDTllTEpoiBgjGGeRWCI2xAEyiNOHVC6h60AyzhusMRgxSBasGhIPx2hdZ3KWMMZizFl6gnWUd9zhLKg4rHgm2yMODvYZTxqapqGpa7quwYjBesPsZEFKkRjToNsoUVp28LsaBFm5S4ZVPmWho1AMEIprQbOciaSswRtHU3mauqKqK5zzQCREoW49KVZYY1BiqU8pE18e3G4muzKvluAcRDIpK84JzgujkcU56GPJVdV0npAjOSS8M1TOMWp8YREyRGNpO4d1YdAKfuV0OEssjdPl53UsI4703L511qN8vzc9sTyfc3ZlHFtjSPnsXVoyPKqFzV1qcpaLj6ULKxeK7y33d/5/L8rP/cxP89EPfgDRemCnBpfkfVii81hnrM5LkO6KxhIhiyFm8CGjSehigrqnyhnpEtYY+i6gztG1ifSQhtqcYTHvuSCGHDKTkSGnhNFirDmB9rTltEs8/v5dTm6f0LWJnC05K/PjFvoaY+D59z5G6A6Z3oichsjspEW0LF5c42hSZNYr0+MZ9cjgG+GknbG/LfQtXNg3bLPDb908xGzByeGMynvUBEJMqMD2ZJtRt6DSjhc+/ByfvXqTN18P7O44/ss/8R3803/8f6FZuXCwxeXHLnPr+JDZ8SkuQSUGcR6wmLoGp9w8ukNSpakEk5VFH/jMKz1uNOJ4fkw0wo0bHc/tVohJ1FXFjauH3DyEp9+9xWh3m87dRGdKGnm2dwVjO3YvAA5UFHFC20bm1wMXLzc49yVqcpyrSEu/+KDPaZoSBp5j0ZyUiCQZIo5yoTLlzO1krWX/ygHPvvv9XL58hb29y4xGFdZZ+nDK9PQ6fXuNtpuRNNH1iTZCDIZ2roToSNEQegi9FveBrdgZTxhXNXXlEc14Wyab0PfMFnMWiwUej9o09EdDVktIlAnICmINrnJUzuOrsnJLhqLV0URSLf760JE5wukCsbuIqUiayTkS4qLofmIRD/fhlNPprcIo5R3QgPqG2nuMgtpIDHNUWsgLcpqDxiG6KpLSw1ldAHhf0y7mbE1qcuxQDYg05D6ToxKikFKmrkdY66jrESGyMmQXfQcCo6qhDQaTE32/IOBQ7whRUZMRG7HWkXIoqz0bcKZGnUOrMY4OEcUjNM2EuqoxzjBqLJV3vPT5z/LDP/RjtKHjT/+Z7+YnfvRHCFI0Uzk7xHSgwmnX4uttHDXClF4jaXAp5ax4cWCErk8478BEYhSi6cFluhzxwRLIxaCNEetGILBISh8z0DPJArZCc8A6Q46ZLJk2BzRGDIpIVdKSmEAe3rVFHzGpfyhtmc9NFGdRS8tol4xRwSw9EyJ476krwZmK0ajhwqVLXL58mUuXL6CaqSpP7AOjUcP4ZMxhfcxisSii/bYYvMXIGaKozNnEtxQ2G87ysmSEFJcC1zNZuLWOqvKM65rJZERVVTjv0ZwJIRDHCc2JrlNEB+Hz6rmWej2w1pBiMXxMLhPh2MNW49geVXgPXVTaSjntMlUqoeF1bbFWmWzV5JwZS0PbC11ITBc9zjEEVJgzd8o9NCrvaHtqIusgvjdSUnIUv2kx6kQRIsioNKg6lsLwFSQXpuOcnSPeISEMuqhcXCRGkWRZ5tvJ+SwKdSlHEDlzJxWBtmLVrNyPjkQ2GZvvDvUvovbMj/7wj3D1zTf42z/4V3n/h7+Rb//DfxSj61qn4p4rrqiA0JzpkEqlkAeGKBstkWGasGYt948IdmB2Ys50faA3Sr51jABjaxAzpPcwFPmEGrwH5x6OIes10QjIooYYOXjMMZ33eCOMRMlTYXY8o66Fy5cuc+3lKaHLTNtIP4PT45Y3r7fsPbbD1TfuMB5HnDNcagTTlTw5X3jpNS5eGJGOEnVUnBjaWYfZdvQh8dh4G1tVVCrMb2dmPdQLcKOGlojfgdlsRp2hPy06LQFmx6/y1GNw4wQeH8HxtTcZjysuXVauLyK/+vFPceGFpxlVFZeMZTFruT2b42a3YFvYu7jNy0c3eOopj4+e0CW+8OoJPSC+4/ZJpq0MT1xwTJJhfzRmu6qYb3kmlzIvnx7RLu6QnmiwTcXrh3Pe88w2xgaefKLh8GbkCy/eJm31HOxdojM3WCxalrmT7oUvKjwumS7tiqlh0CroGuOwDM1e0qp9SEWToyXvxJXHn2S8s08z3mU83qJpqiJWdr4IRPtTeu3RpKRcEXohZimaIO2pbIUxPcZYnDE4a6h9g3MObx1WMgPJTYxFjJxDprcRW1erNaYuBbZ++TyCMxbjCoW61OZE8iA+TvSxvGA5W7rQUbEg5wBGCMs6yMu4I4NoIsQZbVd0C86WlaQ1CWcEzUrSOZJboENzuKse1/NLvNM42Nun8p56NGY2j3hXMQsG1W4V0r5cTRpjaeoxdTNmOp0SY1nVt12HtZ66qogpMV/MMCbRhcDIW6qq4mQW2W6Ki0+tYIeBxYhh3FxgZg6paoNNhRWwzlDVFVVlqbzlb/5P/zPe16SccdbxX3/39/D3fvh/ZNEnQhKWMhdFibEwJUkzfR/RWAxryUKSzDIgp6qaUteGFduYUsK64f9hvFMtWg87ROg5X4HxxNARNdJgCKHHGUOgp/GunFdyiRYa15xM5yCGlMJDM1rPi2KhtJms6xVkueA+m4CcsxjrmWyN2NvbY3d3l729PaAwUSlEQizpERZdQA2EUBiyMqmcGVTGrCUkHNxARSxqByMnI1IYWqMCWvpXVfnBdVatQriruibFot2q65quW5AHmsYYWWlzdHUfhU0o7LEiWYBE7Q2jytBUFmtzYR0JOG+GDL4J5wVjC+tjbYWYCpWM99NhkmaV7+es9h4uzhI7njEhy+ueZ0k4t//t7FuO333fr3R29yq3/vtCvKxFQp2LnFu/x/PXj33kxV//OM89vo0JJ/zCz/0Mf+g7/uhbxOOqpQ8bJyu3mrlLpD68u/nMAFs3xspmBrYwr1y0MUYMJY9bjloifI2SkuJdwhkHD4k1v7gHtwPoQqmBUWM4PgIrCh40FfbwiUu7zBYt9aRGbGDaRmaninYQE4Q2kk56YlAQZau2eOfofeB4mnjiaY8eKY2F09OOegw5wGRnwp3PHrFT73L95gn9CYQMFyrHIhnaHAvJ0EdchunxKU00jLcN19+4xk5Vs+cCT13Y5tWXPs/OzoR47YSUYN7C51+7zuWtXT546RIf/8SL9Ek5amfsuIbFYs4b124zGdXUvdK5EbeO7rC1D7OQoSuyVQ0J+kRjRqTTGe968jGqpuN33rhB10Aa22LQGaFVw46teP3VaTECTyL1Y2D7jr6HuXSEB6wlH2zkDP8vQ07XO+JyZRM106dY0oSnuBIeA4QQcN5ycHDA1miL0XirpAV3dVkleGE82md2uksMmUV/mxAsITq6rif0Qkiu6DxcRYpz6knFZDIp0V7iqGyFmFho8jSEdYciPNWlfsdASXZVfO3L53Gu0PJ141e5NJadKGel6zqaqqZPphh8eLLNJWor5VUiLMXgjaUVAcnk3BJijQ1lAI9JiSmQnQdJpDxH8mxVT2VVXiaB9LA4VGBUV+zv7GKqmtPpEU1Vs0jFjVdChstkshw8RqMGV1lC6OjTHGOF6WLOZLzFqG7oQywuhDQMegBYXnrpNV740LNlcqLk1+hiT5M7NI9x3oOGYlQO2bR9Vdqh8RV1XaPiMShKjfVCHzNtDKhWGD3TnZTouWLMdH1P7gOVb1DAekfOgh95nPe0bcAYyzJgfDWompKLxK8iBDNG0iCeFJZC8+LyPDMiksaSfn7QodXecrB/gYRlPu/JWUkPkv1/mSiD/Vl7Fa2EGyagOAhY82oiKhEmgq892zs77F/YYXdvi62trRULFPq26HH6togmo8c4R8wJ6TrEWLIYRMxKFyIiWCoMBnEUxlKVqEVfIlqiYEqfKyyOcw7nDXVdrzatqpIaYjGjqWo0lXQSUFznJbcWIJZEYZdjiUnGGota8DVYZ/C1xYglxYwTi5OEI5W0Es6CsVjvi4s0e/q2xYjDWLCu1OVqgh/GuvMC4HcSy7E1DobePdubBxtc53+3FP+uL57Ws60vR/i3u7A6LxA+U0i99U5TCFzY3uJ9T19i0S/I2FVGd71HuO/9nnkllB4YHjEGzUWntZ5CgaW2R5UQAyPvMeJKgIAv801lI9mbIdWIuWuh/k7i0kGDS7A4FYwpkUFhBqMJtDPwWYmdUlnDpz/zBtoLF7Zqckx0UckdOAeh62kamNQjZmZB40xhpDWxuwvYxMGFHcLtGXmR2L1YMz3u8HuWG7eguhQ5vKN0p/Cu5w/YtRWv35xijWdU14TutCTetYbYw3xqudHFIkhv4eL2mNTNufL4Yxz/6us0OzVXbyfujBPPPb7F5f1dakPR+KlwMNmhPbxNCPDU3hbxJHD99VOaS9uYpiXOA82Oozm4wI2TYy5Pdtg3hsXiNn6s6DyyP3ZMfSQ2DcxnTA5qgmROj1pOD0EzuAhVLsEwWzsep9Cffol5cparN8RiBiMgq2IsxCH3TA6R+XzOuC7MiuayAg6pDBJ+3LC3t8d4Z3slLl3qAyQLvhrRjK7QhojmFqGIFeeznkUvtMEChtp5JqOacVOxtzVhZzTBV0Jdeaw4DEqILTa3xaLHYtSvGV0G5xSXIk3T4BtPUKhqgzgp9K0tA2fSkjgJE2n7DpVcXHEuk+hKWJ1YNAua7SDuNHhbkWygjx3ItEwaQehNwBlHL2BswnBCyhGwGKkQMaRUBNMpvXUl9k7hiUv7dG2P4NmqHBe2t7l1eruIaoGqqkix+JRHowlbW2PElvYOsWNrd4e27Xjfs89yYxY4Oj3m4sFFdncu0c2nGBK4Eb/ym5/ilTfe5A/8vm9mZ8+QTMk8fXx4E42OptnBMKMyUrJoW0NVWZyzfOxjH0Ocp29TEXnnWJI3hkSIAgLaxdX7CSVTZ+rnHB7PSH2iaUoYuwnKqPKEWcd47Eg5Fz2KdfShJcQItuSDGVUOa5RkKbmKHEwmE4I6prN50ebYGvEVzkMgUTfFADQyRBOS2NtpaGMmhhkpZdqHZ7MCZVxfJsAzJmH0LAJppS0ZXiljDFXlaba22N/f59KlS+zs7DCZTKjrquhvvGU6ndJ1XXl+IGhG+5ZsDThLJJONouJxqSsiaM1DIj979icDhnxXpalkxd4sN19XJbqrLuLjpQtuNBqRwuDCjWFNWF0m2pR05U6qHcPMrzhr2RtbRt4wqZaZdKFdJgn0JSfSuLI03lAbpZIMlWKtrsLpjUkDI/BWtuxhNuQq0nRgkorTSEtihqUmRxPguZf2JqsU4b2c5asBkJQHOUHxSShg1Az6P3uXrgWKfsrb4vItfxlnuNYgQIeSsd76ujB3520Wyfz8z/4sLzwz5gPvvswnPncNiUd8z3d/Jz/yD36CNMgZjLGrCK9VG5MHw7zIHki5KLxEVmHjxXhLgzZuyOeUS2qRSeOo8FzerkAilVMmTYUVJWZXZAlaUox4+3DatK49u1tzRnmL1C14/spFrr78Jt/6zR/md178BCe3wTrl6M4dZhkcBlN5Ij29yezvNMymLT4r6RjuzBbs7TvaecTkKX2Arf2iq6m3J+zLCE6nPL67x0svXkeeUC48BkfTjmpctKButOD27dvcuAE7VxqqDPMF7O1OOLoxI/YlB1ZFzfGtyAfe/yRbdcUzlw947wtfy+Mf/zRHwdBUHdfnma/7pm/gJ3/i/8BvV9x5o2f3ouPSZIdpN0VzRzhqWcwCh8eBK0/s4KrEngYmzRYvvXIH6SxtihzmwIXdCS/99uvUk8ts5xpSZrK/g6lajk3guec/xPQz19keWW7eWfCuZ7fwlxLO1PT1gulJYDK6f3s80NFsB6lbeQGHP05ZHLoAxZ2TInHIQxNCLD71mIcMwJGtnQn1qKFpRlRVjTG2GDjDqtMaj/MVzkwQcYQkLOaRtjXMF7H4kYe/w+K9Z293jHcltr+pahpf4a3HWs+oaqiraiWUWxpUxpyxNJV1q7BZU5VHMc7gKkPIaZX/J5llpsdAG2LZuo4+ZJLaQqXjMMZhtEyczjmsAScdOXVobtG0KKLitADtkLxAcyrRAsuVhJqyihSP8HBCjgFivyBrT115xrWHWCK8lsxc0VoU402weO9X9HZTefZ2drDWsj1quPrma0Qik2bEZLJNU++wtXOF3f3L9Dnz+ht3ePGTn2Wn2QJ1xCCkoGSdMp5cYHt7l7px+KoITK0zeG/5+3//x0ENVdUMk/UwqMWycnPOkUIaBskyOIa+p+8DMSl9Uk5mC46nC06nC05PFhjjqOsxqsqibfFDZNRSN7Yc6lxJbIChCJbrumZ7e4d6VNPHCOJQY8vfRLOWlAIhBFIs71hOCSOZRdthrcMaix0iVx4W1lejRs4yA99rVY/zOOcZjUbs7Oys2tzb0g+NGsgZMQnxjlHTUI2GxYs1eDGoFOYuRYWc6LW4o5JClsK0rGcoXjHAzmJdhbEe6y2+9jhf42xVNl9T+aZ8HowN60ouFR3+1IIaWW1LIXLjDU1tqBtbciBVQlUJta2pvaUyruTssAxRU+DI1LVbXa8yBusF76GxrnzmzMh5mC7k8220yje23m7cJS9+u2dbfTpjcWJJjXCPU9wrJH2lx9EzNn/JCt2P1Voe/50Xf4ucI69cvcXp6TEAB9sT/sYP/iCsZU6+m82+fz1nzRjLwM6cu7aAdRaniqREMqkI8AXEOpIqsxBokzAPmaNZx9Gs485p++Aq/BLRhoRKYrsRGuDrv+YF7lyHi5ce5+adzKLLuFqoG6GdQ0yWkAOni4j5/3h78xjLsvu+73O2u76tll6nZ58hOaRCUqKoJXYcW4oTwE4CI4hj2HEQCUiCAI4SSHAi2YhswIYBxYrhAJEBywIUwcjqGJAoS7KsSHFAUqIlkRQ55AzJ4XB6Znpmuqtrr/fe3c6WP859VdXDmZEgqXUGhenuqrfUu/ee+/t9f9/FpNG6RGBiRFpBKTL6tSObQtQSjCASECLQ+Y4gPHmmWB+fMStSIZ/XGplrFjtTbj22YIgN5XZGENCddRy8usRIGGxIRbXSyNzwyGNXuXmr5uj4gHo25fDohLKsWC07Mp2a4D4KPvv88zRD8lMbDKzEwL37e1y9dp2TNTRLz9mppbNgKoO1A3JQ3H3lBO3BucjpquPe0RpVTzhtRvW01cR1pNk7RaygX0beeP0+9986BCLlTFNv5ags4qVDZIrpdsHjtybvejzes8jZnIhSiHMn4TTr3wRxcm4e1tkB59wDNw+Auq7QWUY2JtWev7Dc2LWrsQjJkWqCHcA7ybq1DE7i/Ah1o6jrCqVz5osFVVFSl4m0uEGIiqykyMuE1Jj8vPAwMhElM20QWo2FjCDPN91kKqCqqjrf+JP8NXURQ2/p+p5u6M8NAAXyvABTY6SFRiNF4mgIGlxoiLHB+RXBN/iwTMoqxvHfeLHGEc73MZybZj2MdbbqkVGghKfMSuzQ0PlUQ8YRthQm+Yv4kBRDZ6uWbgjgFY9e3+X6lSmvvPVasgYPgvv7e7x2+2ssmz18P6BVju0GvAh89fYdfvtzLzExGUKVCMzoaSSYzq9gjKYoBCZXZNoQfcrTSbJQT25yQhBYkmFYpjVRCAY30Nl+3McdMaYQO53YYrgATWdZLhvOmobBReo6xw5JJhykxwZHbwOddQxe4YUCowkhnc9E0JmhLNONXghBkGYk1iqMMgSbOshhGFBCYeSoLQoOITXIDGkebpHz9vV7QRzUJXl0Qi6SRFsEi7dp4zfGYMoCPRa6eryWZLhQtDgRGXzA+jCOZOM5uvZO7+s8XkEYtMoxJicKSRQSHwVC6bTZiiRu0Dp7x4INIPikosoLSZEJCi0oTCQzMln5KyjKDJNpCqPJs2QlUOSaTAumVUmuoTACo5MhYaYkRidCtZB/xBlyl3g3iotEdbgYO42DU86rjndYD3xe4zjxwgxSJQm3ujhPNkiIlBf7/WU+EkDAj+d1uBgfXXrf58IOYnr+EHnzrTtYHzk7W1NvXQFd4gbLl7/4BYbGpXMuJqTq/L2NI2KBuHBfH19LjZuUkBFJQMbEw2TjkRQiQ4Bu8HT9wFk70Hae9Wrg7LTFduB7x7B2+MHjB88wPBy+3LLpiAK0dKgA9167Q6Hh4OCY1Qqmi5wPfuhJqsqwWkLfeQZvabvkR9cPDi0jmZAopyhkTaYU090JUYEPI9InA51tWTY9Inr6taVSKfMxm5bIXBFlYLLIufGI5qN/7APUE3jy5oxnH6kJA6zWA84LvJB0fkCXPfV8YN32VHVNOZmyv3/E0EX6pksWLMLwhS+/zGwLrIjMHzH0hWDv9JhlP9AF8D6na8fmRwbs4Hjq0cfYqQvoAs5GztY9x21E1DX1FU07BPou0K0jq/0GewR2JXj11Xv4wSG1IyslTXdK4xre3D/mtO0QueTGte13PR7vXeQI0rhn7MQ2BcHmovHe0tuBtu1YNy3rtqdtW5puoO8HggehFWVZjvLWy7k2CdFJm55GSIUmBw9tL+idxltNP0SqquLa1V1uXL/KVz73de7va65df4TZYsF0OqeupkyqCdPJFovZjFlZUWQ5eZ5RZiV5nlNmOc45MqUptKEsc7SRZIUhL7ORmLgpcOKYRxVYN46u96wbS9PZMZqCVACdK0ZSsaZ0KgRdiATvcN0Sb08J7gwXzvCuI4aLMFMhFILEOUp07iTFe1jrraNT3to7oG8dIWr6wSIi5EaTaUWZZ2RGnW9mRE/bd4QQqOs5Z2cdO1dmdEaTVwVVliXX0eBomhX3Dm7z2utf5T/5j/88MjjOlg2f+q3n+Zl//Gu8/vohIipsFzjYu0eZGbRRTCeS7R1NWeb8wA/8AFLlxCAosgwhL7gYxhgyrUbXaUvfd4TRZdX7AYSjKDRZboBA1/c0bcdyuWS9WnN0dEiWZZRliXPD6DPDOB5M0s2h7Wjbjr4bUoczpjjXdc25z0xR0jdrCIG27TB5Qt6k1kSlCFImQ8BRdm10/XAO5gOkzwf5FWm8kFCwhMQCJGdYH8E7CwiUVAjvcXZg6Fv65gzbnY2PlUSt6IYe7yNFUaK1ojDJUNGHQO+S38i6H1jbwOCSyZobOVhuHJH44DE6Q2iNKQpMVmGyCqUKoswYvMAGweAFvYOIRsoMrYuxIQGpUoaeUolz5KMkzwVZFshMoNBQF4K6SCilFDZl3xSKXAkKncZUmQhUJqM0Io21ypxcGSZ5xqTMyFVEC3/+2W2Q7D+K9QCSETfNz4NWHJd+ePzfuzdF5z9/Puq6GEtdyLLf5oVzaWy2Wef7waXXey8ODaQpQNNGTjpBt17zwfc/y2KxYGs24X/6e//DeaH9TtLzze++ee3z13zb3zfvOamt0p+NMdTSUEpJqSXaCLJMkmWSohTkBVSFYFpLpuV7zDj+AGtwgkEKjmLHW0fwwlfuQi35pV/5HItFhtQD//af/R72Tz3awFkfiE4SGsi0J8aWopAMVtA7xd2jEx553w2UGnAi0g6RdhlQS8mWFcQQWGq4slUhltA2GfNbj9I3a3Z3Mg4P9lkeaPaOO+ZXBbduzrFthzSC+2eexhT0sufq1CD9iuyZimsfyKlMQvj/j3/xK+x1cNREhh60C0y2KlotsCKy88Scqi45Q7DfrjAZ3G87Oi3pNWgDzSms7p3S94Griyml8jQ2cP8M+t6xM1nQhYy96LkzQOMVDRlyLamdRJSGveOeZu2583qP7TXLFpYBrOkQ79FL/q66yFToCCT6fJSzuUn7cf7fW88wJG5ONwQGZ89RD2v7BDNemrsqaUZDMjUWP2ncZExBlm9RFROqvDpHZ6blnLKs2V5s8eILv8NP/6OfoJrMmM52KKoJdT2nqqeUxYw8q6nqBLFnOtn0J76C4m/8nf81GVYphckUJsvYCAa0MaMsPKQCxgu8S0x45yK2Tx47MUi8T/lbPqQ5ePCMPiCbGISEZsXgidGnoM/R2XijfhFCoIUG5EgWlQihkaL4A19k77YGoB0C1kai0mRZTlmMXKswZgTJFEERgj+HhUOEre2Kw8MzmjaQZYLdRc7ONOfqbpIfO+dxfqBpVuzubqMkeG9Zd477Jyt+53Mvcuf1E2bTm7TtKSEcU5aKPCvIswqtBG3bgpDkeQlRjmPHiFaaPC+Sv0N0iBjOFSKR5IcjRMRoQZHlydGXC9lr1zV47yjGc+ryKMW7pO6w1mKdww7DaELpkyQ+gFZpVJvnOYMdIHpOz05YNx3G5KPEWYHQrNoks/bjGFc8JJmqvNTtXi5yYLP5b5RVm65fnJPk40h0jyGCtzjbYYc2ffU9LjjC+Nl6F8jyggxNLgRmTDNXUo7XhqP3Hus9I2UC65JnTQgJVdugNFIbpElfKAXK4EJSUvogsSHFsgQhiEIhlEZpQ240OsvI8wJjsiQekDHxuUY1jVTjn2U4J7xLJCEkfxSjINORPFcYoyiKHKNUGpUbTaZSmKM2AiU3hnY88Lk+3JXk4xsyvBrHQ2K0sojRX6BklwqQB4uNANGPh/vSqGn8L4lFNirTzfNfep7z5it5UUmRIhSkTNehuvRalz1qxvLjfJwlRDr/hXCszo4heoyB/f1jorV85YUvg08+XeJtiNTG5I+N35IUKCHxeMSI3lwu0KIgmSdGjxLh3G4gGEEQgkxlaJkaqk0zmoKnBZ6HQ5jTQoI0NM4TMrh3PBBkoB08SlYMQ/LbWq48dS7INCgrqCLs1iXgcT7S20gfBG2MBJNMc4c+MlgYukBoI9MomOSSDkG3btAeDo5aVr1nVikmhWA2m3B2GDjeX5MpaFYnVCZDYqgqjfOemQdluQAAIABJREFU7YXhT37XRxjWLY3rmO/UEAZWzZrjrqW+WnBw2mNUyWNXnoSoWXaRfKLxdPSrFick66Eny2Dle5rgyUqI1jIpYP/uEaftQF54rt8QfPhjC2a7gldfvU1dG9brM9owMLspWTrPW6ctudZUKsfUdeKTeUVhkk+WC2Bl4nzeuX/8rsfjvVPIzxVVGplptM7IjSY3qXvdBFO64GnblsF6uqE/R3FCCLTdOpGVpUiEQ1OcF0tKJRKYMYYin4wjowmL6S7Xth5hXu+yvdhla7HLld3rbG3tMs0kVS75wR/6MbZ2bnDlyuPMt6+xu/s4W1eus7V9k+2ta5TFaBevFNE7vv+v/G3evPM1fuETn6HKNbk2aJPce1Hy/GLayFwZeUZD7wjOj2aAo3prHKElNIeLsV0IKXnc+fQVAsFbZIz4YBEhjqOuMSk9ZcgSUSiZk5gA780F/4Oss9MlWVmxWnXMpwtyo7mxmED0eGeRIjLLFHWhGdpTunZFWZZUVU2Z5zz9/mfZvfI0W5Xm5nbOo9cm9G2DGyyDdUiZURQVzXrJv/O9f5yhW+LsQO9PWS1P+cIXv8anPv0i1288yjBYHnl0QVlJjBb8zf/+b42cmRZrPSGAHey5uiY3GQiFsz3B2xFFU2O8gyPGMJJUU7hgWZaYIkOqSD+siXiyrEj+SOP3y7ImRpmKWGs5WzecNRbnNf2QnHJbm1AsrQqkVCybFW5oWZ0cURQLIhlVPaMqapTUY35ZBOGTOeHDtVcB3s5r+OYO/5zQOvIlvPejiqmladYM6zO65Ql2vaRdrmiblqZpWK/XSK0olaGWsF1mXJlUbE8rJmMkQu8FTe/OfbK89wyDxw6RoY/0XtI5QZQZUuYQDVFmoHJQGX2AxnqGcdzgkESZEXVOVDlKFhT5lOl0+kBquMkEUm6UbhGlPUqHpLSUaRwiSGM3baAoNZNSMKtyCgVlWaZGKM8pioKyLJnkhlwJMhXIxAV6Id72OT+MdZkTszlW74XSXH7cO/7bpX/3kjHclPNMwXNLkEvr8q93uZB4+3O//dzarMujsmu3HmW5hsEDSJ7/4gvMFxVBKCaFIfhkM/JOn8Hlc1jKDcr04NhyU1DJ8/cZscHTDD3rwdEOjt6RFJlK0A6Bdedph0AzOJaNY/UeUQB/kLXIMmqtmVY5RQX3DnqyErZ3cqZbNSjJr//Gbycu5yqym0vmRrObQzkIwiBYrSPt4JnM5ngP9+4cUJmCnZ0KpaC3yZl/Vi6oQoZsIkrmdA5663n55VeYzKfcOzxlurPDvfsD7uiYeBppDzt8ozi+Y3ly5zm+5fpN7KlFSsu1xYKjr6z5rm/9Tr76+pt88rOvcNJ4ZospeRb5B3/vR/kz3/OdHO43rJZghx6/XCNtYHt2hTf3lmQzEDNAws1Zhr235KnrUyZXC4prkF3R3PrQdRq95P0f36K6lZPtSKZVR+Eczz0159GnBSKD06ZDCE2/7hlW4NqWxTSZDIYIyoB1gt/58vJdj8fvugUrACXPSXHJuOvC6XhzQW5chv3I5N9cDG1jsa4fScvmnItzHu4pEt9GqcRrKUxOUVRMp1N2trbZms2ZT6ZM6xnTuiAvcwot2L//Gq++cUxWlEzqLcrpgiKvqeo5s+kOeixwtFT8R9//IwTf8fj1BT//q78yjswYO45IlhVsFFiQUJkQBN6G883COT8SqxNnYzO/3oR/gjyXYW8+D+/t+UayIe5BKpISZ0meI1qpq1Fj1/Rw1u5869x4raxKMiXJJCgB3g4QPJkS1LlBBsfQ96kYqCecnAwsdqYoJZhOtxBSIAtDkZtktz4qHqxtOTq+x6OP3uDbP/ZtfOtHPki/7liuDjk6vsPe/T1+8Rc/xW98+mX+xl/7Gf7Vp27zSz/3ae7d3Uufv4A8K84/t42TpdhEbtiBwaXPNeVIxeQPQ+q+N06tOtejNDmDEFguV7RtixCpu9daURRF8s+JjCn1AeegGwIhSnprmc+36FpLjOP5K5K3knOWPKtQKscOySG2bVqU0jjfj0hK5GGNH9NoI6YzdpTQx+gSchjc6PIdUeHiRmS9w9uU1mytpWka+n6ga1q6ZkUzpKiTofcJle07hHNIESilYpoVzIuKWVUyqys0Cm9D4qGJlPjdeUYlXBIeuMESXMDFhOggNaaoUFmBzA0pRVyMeXYCIRVCZwhp0FFiMoUuMoq8TIaBMKq4Evqb1EQpJ60wGi2SRYTUEkRMXb1UaJWiSWqVRrOZlkmwgB7RjkCIQzI4RCBUCmWVQvyRYTlwMT46VzoJUGK0S4g+8WxEGJVFbxshMWJ64uK5kOJtGVzvnB0VY0xkDhgbvYQAJofpDRIYEHFEWMbQ2vStUc3lL4qG7/74dzCtUzM59I7pbELfDPgQsSHSN+vEx9mgR5ELJGm8K6V/syNROil7PZe4S8rw8//sl/n5X/gVfvUXPsE3br+CF8n5WGLGz0ExOM7jLIRI13FuDFXxkPbazmJXHfO6JgSoJknZN5kVDG5g5+our9x+g67xREtSdQYHEbp1i1ZFuh6UJKR+m6FxDG3PIzdu8sQTNxKPUka2tnfpTnq0BaMzMAIfBMszi0Nwurbc29sny8A2LU8+tk1RTlm3ELym1CU//N/8l+xuz3j+pZfJJtvMc83RYc/nXtxjfwVZXXPv3jFdp6A7QnpHmdVoBcZI2qOIdJK7bx6zbqGcTbj2aMXWbsHEaLZ0JIuBtetoApx2LX0MHK09Tei433ScujVbE8P7Hp1wY3uLoor0HkxesFq21EXJlS3FjWsV1UQxmY75clIRnHhPX/nftciJ52OmtFnnRqMvE9NGdMIFzknHwXN+w+/7gb7vLxmIXSTcXu4olNQYXVJUEyb1jKKoWCy2qMuK2WzBrJ6wqOcs6im3rl6DEPjB/+oHURjyekZVTiirGdV0RlnPKYukBJJaUZYFs3lNaTIKAlqAGKXxkJx0L3NrnAs4m1AafEjFm4sM/YWnjLWWwTts8OdfIVzMrzdxCCGkMU6MkWFMx94URhE5upwm1UravB+euorgqMoCkWfITIPWxJhGEz5GXBxARnKj6J3F9i21Kal0RhSe48MjsB1FPkVlhsIoJpmhrCqefObDaDNNVuokEurHP/4xnv/C59lZTPF9y+nRPvfuvcz9vXt86cXXEcVN/tUXvs7Lr77J4GLaXCNE1zOZTNFZQTnZJnhJGwI2SpyN+CDRQifOTrI3JmIS+dWmDVlLQV5oskyniIKmIQoBgcR9ioLMlFRFlsanMY1nQhzBfZHGOk3bsGw78mpC1EmFJEwKae3DQFlPaHsHwuCiTUoxWaRCXwTCuxiv/WGvjbfTO61Nce19cnXu+/4SktNwenpK07SsVh2t9TjvR1m+Q0YolCFTo4eR0uRaU5iMOjcI6YnY8+cPIdC7SO9SF2+jwEboRsfkyzdXKfX5mJcoR0uGsTPfyL5HLs5GXJByrpLy7zLyIYRAGkNA4VEkQ8KLfC9IE7KyzCgKgxmDG2OMhMHiuwHpR1KrcAgRHyBoP+z1bqjNBY+GBwqS9/p54AEF0oN8mgfDPS+TiWNQDz7vO7zGBcLz9pHVg6//+NPPIKVgOi25c/+M1/fPsD4QRlHKX/vh/5a7t18hBPnA82xQqLfnsm3GhukzEHzmM7/Jj/zIX+erX/4Crltx+8XnmeeGeVGwqDK2Zzk7s4z5LGcxNSwWBbs7FfOZYVor5lPD1uLhUAP61cDqJKCiIASoa03wSTZ+tl4z39rGWs/ZScQUKeh2PTj6CF5IRMwJInWfTdfgPVRlge8ir91+jfX6LBWCOtlBNKuI9tB0PbKQrNfd2ABqpFLs7a8oC7A+0gVLJyQt0DlACqpixvd933/KnYNIn+9wtja8/NqS+6eCwxX0rqbpJH/xz/+77N99ndduf4PdnWsYBbtbC0qRM8kXHBwMHBxC00BRV0zmFZkUXJ1PmFYFxcQgNByfDHztpbsEAWfrls5DHyJGCpTXlGrK1nzCtesVQ9/RNil2Z1JJdnYLprOc+WyKALQIiKDIi3dHWd87oFNKotAEqZFKkxdJzVQVBUqtUx8pL5AL5zzERCwOIvFZNoZ83j8oGdyctunGnvgh9XSO7gsiaTRmvaPMcpDpxr+7NWW6uMnJ4Vs8tj1j6T1/7j/4fj71qV8CEcjKDFPkKG0Q/TG+G/j3/8J/jfeOa1s1hdLcevRZMqUpswzWPSofFTwuIIUkBg9h7JpCSNlG4/wYYLVuidJgTE4mZeqiR8dXH0JKOncp4fb8Qh2NsKxNnh+KxI0QPqKkJJBcVqXUEB/eTbEuDPNZzf7RCh8iQuvU1bseJQR+8Jhp+t3uHx/RNmsmW44y16y8xCiNUYL5bAub9VQC3KOPYMpTXC35lg9/iBdffJFCSoTwzOZTJpOS1aplGAb6vsOtz5DCUBRTfIA33zzhIx98NkmxN8WfLhD5hI8+9yFe+NxvMplMWLeOw5M1bTMQPWihUJkheIWQEr8JXnUu8bukIsbkdOt7j9E1k3pO350yDB06U+RVlc5fH3GdpCorQkz+HXmeLP/Pjg/Y2rlOWVTcPTpi6FtmVcH2zhW8DTTrhqZruXp1l96e4q1lOp0y9BHVR9btw0uVTyuluscxVHFjzx9Ht+EgVFLxCQ9CYL3F9ANtsySXkjMdyGTyELE2pb53tsWFLg1SZWRaGKRwFLGgyAyy9whd0NucoyaNrYoxdV7JgMokdhBIJcClG2qV55S5RAmBMRohNFmUWKFQo2JNRFBSIwWJLaEzdCaoap18fOiRKmAykQIP+4iPK7RMvk7aFHTtOiW/C4XUEuMgFxFMjlCRukokchkixpQEYVAGEBopJFJ4cpMIyCG686LrYS8hPRuU5WJcc8mUMIrR/+v38dziIsBVSIkcfW4EKoVlhsTDA48Yid1SJnsMMb6PZOUwqrQYSw45qqnY+NYEBMmr6df+z5/m3sExdVmyPZ/RWMv9wzOkKnDe0XU9f/fHf5wf+qEf5Jn3feDi9w4eERIvSyiFT2d3Qt6lQgnJX/mrf5UPXN3huUe3mU0MKsCbRyt+6Rd/jn/tkWto6SkLiQS0EhiVPGBiFAQpsEOKtlAPaZQcB+hbsI1jeQrSDpTXoGlWrNpA7z13907IDCx2a9ZZA1VyQRZCc7paY33AZhHDQD/Aldmcozf3iDLF0egcjpeW33npq9QzSd8F1n2LMgpspFaCg71Ttne3WJ8esqgk8ysle0dr9u4v6TvB4TryPd/zXQgqPvItf4wf/pvPku1e50/+JcF0tstf+M8GBheYX53x2K2bfPWT/x9f+eTP8sEPfQvP/9wnUvj2ynJ8V2DpQUlOjj1vvbFmL6woGqgGwb/58Y/wrR//AD/7a59i7+QAFTV3XluTl/D+DzzBKy/dRk4zfLTcuX3CmyvHv/69z3HrVsGn/+VnuLYoEx/JWfq44sPvf4pf/8JXubqrKPqCj956ms8fPv+ux+N3LXK8TBfaRulSZePICXF+E3fOEbOx+lYXjw1RYKQizzI2iqXkMCsv3JQ3SI5SFEWZUB4pKYoC33d0ZUNrI8JkzOczjo4OmFU1eZlhhsC9w1P+6T/5Wf7iX/4PgcCkDLhgaW3HX/rPf5TJZILtTnF2QJsJ2/PthPAQR6TGo7VJicYypObFRYJ1mEwxWD/ajDsCgqIfULnHRYsXcTQxG/k3MTK4HjcWdFGYNObSHulTHIUPEHAQJU45MOPnK5IE82HO/bMsxRNM6ophcAiVMQRSdlSUzKclZZkTx0I1GT46pBqdhZ1D5QaCYFJMoFshlGF3a4vPvvxV3jIVMpPsTqacNi19v+aP/xvfzS/8s1/mypUr7O3tEZxlMq1xbqAoKl69/VVO9t+g73tCGNUkInBv7w1uv/4SYrBkZYZ1HjvYpIby4JVkZ77NyUGLEJEYRrUUgujcOP4DYkRrxVNPPcPh0QnzWUHfp25QyoQMuDzQa00lNIMbkFInpICAC5GiyOl6hw9hTPmGqqqo6h3u3duj7XuilOR5gYgDJ8c92kgmOtkY/FGs342/kUjlASUdxAFv1wyDZOg8QiuElxA8XiYyaqYkKIshUmlQUVHIJM8OKsNbx6zOmdeKGCGXCmMSsVWgsDLdnKISCCmoK0NVarJMUmcCrQRSRIpsDPodIzeIIflgRRAZKBOpysTDkT5HEwnB4GWk8Wu01+SFpiiKC56G3EQ4JDg9jx4hNdF5yipPknizGSd6EryXfEfUGJ50ma/yR1PmXHBxLh+zzf9TcfH7eycPeBZtSLwPqKt8ImxHycaZ+vJjH0DMLt7sAyjO5eIMwLfHPPHME+zfPeDeyQkEiVQa59y5/1bpB37qJ/8h/92P/ji7W9ml100j6M3zbtbR8ZK//Xf+FjemJV2/ZvfKDvPS0NuB2czw0kuv8/7dBVELVqseZeSoFhUIH4jBMARPsJ48F9iHlCsXQ6IADH0aF8sIZWFozjwuJlJ3UUlsHoi9Ja8kxgSmE4NbCpz1ICNRgsOCgLt3Dpjnkh5JdJ4s1/g+8tbJikmdEZoBmUniAFWVkQvH6nSgb4/RUlAaRV1N6PZWrDqoCsnN3cCtqyWlMRRBMa8WrKsp73//BygmO+CSs7lXHapd8cUvfJEin7EaOlbdKZOpJjrFemVZ3KjI+ga7gqGNKAsmwBAiZ13Lb3/ud3jjlbvkWyW+B+PhxnxGETVXpxVbVY3akuy/3NA3Kz5y0uDznklp2NqeoVTH+z54lbtn9xnw1JOSTEvivue7PvIRTm6/8q7H4z13YDGSjqOUSJWhZOLLFKO3hhLjlqbUSKS9vCRRRKrpJEH8lzg8bzee2kDP0RiKoqByLjkA256mWYHM0KP8dzKZ8PRj1ynqbRoLL7z0CX7s7/59fvkXP8Wf/ff+HDIG/p//91f5xX/xf/PEE48RQ8EjV7bAW6bzK7zy5h5lWZPpxKGJA+ekNjskkz43WKRPnJxN7EAEpEluzmHdUdRp9mt9n7g90RF8SiJ3gRQREBP/xo2p1/04xhJjCyFU2lyE0Cipx2H0w9tSTaY4Wy6p59dZrtbMpzVrf8D2/ApaCRbTNC5bnnVJam0DdVkTXE8mAkVesH//kMXuFU6PLTIKXn3zAJXnPH31Krf3DyimCyZ1hnUDznm+7aMf4jO/8VvcvXuPGAVFNme1bLh7d5/p4gqrs2OOncXoC+l6szxha2sb2x0ToqBv16y7FZlKaqXVaqCY77BuBuZb2zTLY7rWgshwrkELiZYCHyJVUSKjYn9/j8FCVRRolaeL1/sUL6BTUaO1pAzJI6ksS6Lr8H3D+viAxsLB4T126gwlBEJnNF3DujlLzYBtETKiS0Hla2IMKGmZzR6ShFwkifhlmH9kt8CoTokkhYyQyTdmkkkEAm0CKrSoqDHCJANEoVN+EIHaaLQTKO+opCQLHVWpqDFIGRFWIkWGzDNcLIneo0Ti1REUXiTSth+RB6kU13dr8rxCac2kHkdNQlLa5HitJQyxJ4aAySQEgVMKqQSLukBqjdcVfSEJY4BuEdb0fUQbjdGGECOZyTF5QZ5pjEnjcqk9lcnxg0WbxOrQShJFAN/hvUUJlwjpRRqZGT3ycUYPmN8LCfgPtOIYlYFjg+ggAiJuRkjpmIqYoi6ienC3FSNvR4rETXPvQiL2YhN6qZLpY0hFe64SV4soR62ew/sLsm9qYOUDGW9vt+tJKlxJkIGGHHdwQJEZ9s46ep+QKkdAhEBRZgg8V65d49e/8DxHB8c8+dgNnn32KZ58/BbKuyTt9RIXBn7jk/+S/+Un/wE7k5L5rMCImBBZYcgKjXNpmtBaz+A987IgDhHv2uQXgyHGnmFwGKVHJeDDgXIiGVoPrFeWK/Mp/XLJrJxx9/AU7wK//bmv8cTNnFj3FDads6Wy2BNLbgVDGxBTQENeSK5uGZ58Yk42wNn+Pqt1UvBe3yk4WnqMjlx/ZAK542jZMROCaTVheTZQFnBtZ5vu4AQ5RIZVJFewM9F8x7de586XPsXHnnwfbv+IK9s7qMWClYw0/ZLMa4a+Z4hLhqO7bO9WvPaCg9KRTRJK5tvIEDyDOGN2NXIzTwR/Iy2PbO+yXvf8+pde5oNPb/Ho1V3uh47jkyXP3Zzjgmf/lW8wzw21cLyyvI81yXbm5S+9RLGbUWl447U3ufX0hN1HbvB6c5/X9/dASoahpTsM3H7hBa7k724H8Lu3mUKASs6tQguUzsi0RiFG+ebmakonjCdtqoSARFCOLscJ9pXnaiQjJWGU/CmlRjWKRpBuOt57nDYgNUJI8rIgMwVn+69w6zv/FC+/+hWuXr2Bzgxb0wmCgSvzjJ/6qZ/mt57/LRaLBX1vqYxkvrjO4tpN1m+9BmJARo3AEOJIaA1QGJN+hSG5HgebFBrBRcKotOh9IOsclfYgLTGAUPL8BhOipes7tNAjWTCOyekJ0BXCpzTdEcfKXCAaMW5wCoUgiIfHyWn7HpDovk9yXJ0jpaYupuQ5lPmA83Ek5ZaIQnPz5i3uvXWHTCa4XBcVp8cnrNcdMkROVy2LesJunnHn8IAYI+u2ITNJZlxmGc899xxvvvkWMcKN64+yf3jIdDqhnk3p14Z+g4SFgNaawcPpssV5QfQBYQRSBa5dm/PG7WOES9CzyQq2t3P65cnY5QqcdSitWcznHB2fUuYlMkpuPXqT+/dPsDYwnU5Zr1cYLZLEeORmaLGRrUu2trbZv/cakkizPOO0S2OMoe8oqnLMrILpbELwA0OzQquYUDqSfYGzHTp/eOOqy8aRcTNueOAnBFqkm1hmUlCs0Cl6YVIpChPQMpJnMYVZiiRjDtEicCgdqKUkVw4lwGQZyEChM4RMERnOJmt/iUx+JUHgSDYLGx8jqQTzWlKWCdlSJkm8wRGlSXlRSlKQrnupPEIaosgB0FKQGYVXibfnQ0jo6VqhZYEai9RARHlDptNx1ArIEvJorUPL9BmgUoyDGsm9ciTTZkqQGUGMGq09+jzt+qEdwkuH6m1HbkN4fge13ObvF/Lt90by3u17Yjw3QpS4jaeSjMRz/68HvXUuo++bP7+9ad38vQuCs7MBJxxBauyQApazTJ+PVatqzhtvvAlbX+PDH/wQQ6x48euv86WvfI1ve//TvPrKy3z3n/hufuYn/hH//Jc+wSTTIzXCMakLZpOKIBLvrnUtH/vYx4guoTODtTih0Ui6kM5pKQXDEAnK4UN8xwytP4zVdh5TKJSOOBlYOyhNhnKOLAp2rihqXdLbHp1ndKcDpdA0K5vcuQ3jnVmwNZni21NWy4ZppfBKQQzkAqaVwkwyZmXJyZ0VWcxYrUDmll1admpD9I5cDry+b5nudojkMkBuPEf79/jA47egLGHt8VKxPZkThaK3A2fNCThLb8/QwfGhj34rzXHLl7/+Rc5WDiYSGzrOHIRjx/Z1eOyJmkmeUbiOxx+5xZt377P31hInInkukWvwNrJYaL74xVN2tgQ2C+yfHmOMpCw8XkHsJd3pgA9JzHBw2DCIAwol8U3P6sThTMBZ+NILX+Na/u6lzO+Bk3PBxhej62mR5eRZNgYmbvKtklLJmJFIRhpvmSIb4yEehD7D2CGlGmok/bIJp9MoHclyMFkBIpzbvRdXnuHzX/5Nbu5e42T/Lk898gjz2ZzCaF5/9XWWq31mVclid87hwQE3rz3Njd1dDg+PeOqp51i54+R+vEGPRqLb4B2llKASVG5FxA+pKIgycXai0TibiMioxJ1JIZCpw/LBEbxBZAEQWAd2lLPGONqpq4gMPim4sssBh29zEn0I63TVUE8qotYp5V1rrLVkU0WuFUpZXPBIqZkUFYpAtANVVRH6GZrApDSsViuC8yz7HmUMMkjW0WKDJYuBk1XLLM9ROsMFy9bWFkHllNMJJp+Q5WdM53OKKudE52hriSQujI8OFRR91yCFxmuH0J7ZRGOEYFIVDKsCbYpUnMmSKDUxNPggEDJHuJS4fnR6QkQxn08xOk9FpIwsVwORiM4UbT+Mxa7G5DnStggtOT07IgQ/Hv+Atw41dMwXFV3XoUeDOtd35Gbj5utZrwTBO6Qx+OBZnT48jtU3yXdlgLBRo10MN4wGowV5FiliQimKLJJngVL1aGnGHJ+A8B1Carz2eBMpoieTEaM1eQ6I5HMlnYWo0JSpgx8JpEGkyAelipF875FSUGeRKgsYw6gMSteI0A6lJEZrglA4F0G49F4KRRABpSxaCrRKN+MN8X82yRj8qNY0iigEUZXnxGSpLAooo8KIQIgCRUBrgVQOLQJSRrwIqDhglKM0mwDieD7iuWyG97DWhqkoxKioIXFlorzQ50WxiYu9kIiL88eO3D9ich6+dG6IMeMpRj8WdIkqHkbHYCHTCJDx+YmJiykueZsRUxBtenWPFNk3E49jyptSCN46atiZVHS2pxsceV7gvaXMM6y1RCG5cfMay2ZgGta89NUXuH7rcZ549HFODk75xz/9D/jKC1/nJ/7+j42fP0ihkEKybByP3VxglKftBt7aP+B03fGXf+D7+Of/20/iYzJstSHQC5fUVQgCqcDS3kL/8OI62tZj8oxIz9kQoIb+9ITHtqEfFNNJiV0l7s5Se7pDy9akIsoOkcHiKjRB0XWe0DqiDaybju1rFd1hpMwVug3ouOaRa7ucHbeYAGKZYiJ2rpR40bJVTvDOkaueu8fweOzJchBLyDJFFJG7eye0g2A/wLOPP8Oy8cjcJuQzDISwxjjL0MF6UJwNS5770If5tU9+kjMXyKsU65BlElzExjO2Z7u4M6gXnl0bqfIZSkuKvMAdrjCZYLFT0XeHCK+JVc5rpyt2yLix41l6oDdYBlSVsRp69KAo2p7dUlFiOLQ9JtOcOM+AZtm9u4T8vVPIN/JnEjnY5BVFUVJVFUVRsB4u5rHWWlQ22g4KgZISoWQy77ocwPa413gyAAAgAElEQVQ2hdWF2iIS40YxcVFhb8zbNo8tspx1O3Dn3hs8+/gH+Pi3P85nfvvX2Ts84sVXX8FEx3Mf/nb+xHd9J1/88vPkYxrzwZvf4POf/wz/5H//n4GQJOZaMhDQISXSOuJImgUtwUuJd5F+cGnziIK2s3jVUFLiA9Bbgkhz1yxTeCfpoiBXqchre0dve3KjaLVFq5EvICVlHijzSNQJao4yGVg9rJXnNXWVbvhNazk+a5BS01uH9JGqzDExkM2S6R4EuqFhOp0yrxUnJ/fY3t5BCMF61bPuW7yz3HnzDXZ3S3y0mFKyPhmYywUIxfXrNzk6/DTz+YKiKDk8eDONFoaeNw8OknuuUgS/oTPK5Cl03hl2PP3M02gZ0VJTVRVt2TNfTKmqHBcFV6/cwHWeVdNilKEYPVy0zsnLioDl9PA+6/WaPmiu7U5SztUYTKqUoqpq5tUU65L02NqB6aSmrhd0IXC9XPDGm2uqqub09BRVaUSMLGY1RufozCBFzunqYLRESDeMtm8f2vG8WCHdwEREikCIY6r9aNdvlGaSC4zJQGoyYyjK5DmT5wKtI1Il35J0LnYIIxLyEwNaSDLjqScZUWts36CVJZeRaVad5y3FOJr/neeK5efH0WiN1Ha0dQBIxNLk8g1SJrk0JsnRJRHnNCI6EkcjcWeMjvjoKXJB0BOETAoqqRQhQvCpUdLSJONDneGDRarN6CmMvL8AsUUKgZEtuU5oVVXp0d5BjUj1g94tD2u9E1KzUVTBKA1/h/fwTo97+7osS7/w4NnkUMXk3DB+fxPHc/m5QhySrPlte9M3qapGKbm1Fp0bKEtCN4znA3zkox/mrTtvUJZlUmEGwU5lOLj7Dba3r3P82ppvfPZXOLx/wL2DA4iKIs9ZrVbEGGiHnojikSvb5FKhpOL2wRscHA9keU7vLY3tEVKiuiROyFVECUmuUxOQEFtNjPahFa5dAOMGpqUGH9iqp7RHK24+XvLi11u8XBFtSb4NrQsMfYRc0rjIVEFWGE6WjlUP/cEZdQb3Dy2zecfy2HNtoShzSSkL7t05QXjP1e2r3H3rEN/B1a0rLPdex1Q5tu+Zh5pcdTRtTr9ueWR3ihgc9/db9u68xH/xPz6FPTvjwK3Jpgay5H13ujxGysje3gG2F5wcHtNh0CIjZoaiyoi0TGuJKgzUGis73ve+5/jsz3+S0+wOf/pP/Wn+6f/1CTrjefZD7+fzR3s0QdJ3kg+8b0Gla/b6Q047mBKpZzUyaN74+im7NwVVXWMG6AdLb6GQChE0k0pzFgVZFjlbnpK9Byj33kiOSN0RAqJUSJUhjKGqCvSYAeWcS67FKuWiXIYvtda4IdnbC6G+yeDq8qxYjonTUuoHiW7iQioqpeT1e2/x5O4WvS95/o073Lt7h8l0QhSC1WpJtGtc8LzyyC2+/aPfwdH9fb5x+3k+/tFv5+jTn0rd3Oi2KqQiOE9USVLuXcDKiIie6BzEEXIfJfKD9+jeJhRHGHqXUo6lkuSZJvaRwUbAInKNtB6p0sXvbESq5NJqsqRimPpkaBTjpnP7vRmA/b5XlGiVOCV9jDS9I88K1uuWrKqQshzh+kiWafzoyyFEpKprGGqCtQQX6a1HCEVVCc66FUGa1BFGRxQgTYrrkGOKcQwROwxY1zCZ3aRdnqBlwHmPNjkqVzhvcc4SvUBpSZK7Zvz1H/5Rum5JZtIGWs+myOhxtqO1AQ1MpwuOzixGl2wvZkgEW/MtnnnmGb76pc9S5jMWiwV3D1PFr5VBKUmzXFNVW+TzBbNqQhsFt2+/ggaeeeox7u4dYeqS49NjptOark3eQUqkEVrX90zqbVSeRnPr5hjvvpl39od+KDc3oEvd6CZzaMPPuLgOwWSSMpOoTKR8pzwFouZ5upnLUY1ldEbXj9lCeBj5alr1BL8koNEqcX+iVAhxmTCaeFAXTc1F2KRApRGfSMwMrUaN4cZ0T3jEmKm0GXNlSuKtGN2rh3NSrFSJOJ5UiZvMq+SbJIw5Hx/7UVKvRJJrBQWEmFQ1IgD9uRJNG5FGcUEmM0p4oBl72CsSQSTUT0YSqjkiJxtU7u3E4xTOqi89x0iiHn/2YqQ04j/ngcACGX0i66s4RlwlpCtGEhYUXPIaAvAqoTyCxCGMJrney83zj2hOCrgiDo66mrJarti5usuzTz/N3uEhp6dLdJ4hjWaW59y6eY179+6iZCQrPH17xtC2vHX/Hn1viUHQNJLSSIYQiMbQDS4ZrgaHUIL9457BBWzoECqNiSWeWZajVSDXgkmRHI+V2EjmFUYkF+eHsUwlQIEyhtw4whApS8n2ZI4ObfJ3KStOThqMiVgJUUfmV5MhrV0PWBepasV67akrGAKslwGjIrNSYqKnymZ87ZW73Lwh0dJge8eiArvuWLcC2ywZesuVW+kc2rt7QtfAkze2UGJFVRjWLfiywvcdSiuU8ni3Jlc5y+N7LLa3OTjYp6oXyTqjnNB5GFzkdLUiN6CFwBOxSpBNSm6/8iqLwvDo1hXeeOk266OBXlmm1TbB54TQ8sbr+7SrwNXHb3L77j6mgH4dOV2tMfWEdYDKRmYqodDWRY5OLdvzwLSoiUHjvCXPYZbliPdQsb43J0dKghiVUFKAJNnrZxl5btC6RwiDjxFNKmrk2NWF8QTyIWD9RZTB5ZHV5SWESOZeD7z8BeFvs3FOp1PawTG9umB1fJYISK7j9KzB2+QBIuIZX33hefCWf+t7/wxffv43iHXOcdMxmUwYhi69Ty1RLnk3EAQqCOy4D4gg0VEQoyf4NPv2zjEMDpVHQtujsmRI5pwlUe6SCZqS0ESfggJDgoqtdOPvKCkjCUUaHZNTESDgIXeMeV6gZcqA8iiEMORa0zYWDwiRkxlNiJY8L+mDHf1zHIPl/+ftzWNuW++7vs8zrWlP77vf8Ux3vvb1tbGvsePEBNEoTeoQ05RCIqEGaBFpFYmhKhRStU4Doi1IrVCE1AYVBJ1Ci1BDIShqBWlpgu0kZLCTa/v6jmc+5532u8c1PkP/ePY7nHOH0uDT5+jV3mfttddae42/4TuQKEPXNljnkMqgVULTrWLFqqqj/HrbopShcTWp7tO5Dm0SjE5Zzic4HEV/zPz0kLYpcQiyok9qMhI8tutoqhLnI6Xc1Y6uiTLeSjjatmF7Z5+2bhhkKSdtSV70uHfnDkmSsLW5RS81NLZiZ7zF6ekpOzu79HoF949KZtMJ+9u9tfljFDTTSjPeGscApj+gGPbp5guccxiT0DQ19+484EMffobVsqZrW9IiB2txrsEkSVRXFnatsO1wNurkPKlA53EmDgQIIGUUD4tjnRwoMCoqhZts7dKdxCDPmNimCj5iVLSGzMcWh7iEu5MyoGWHx6KEiZUqqVHqUePdwEWlNgJhz7AdAr8GBAhBtA0RFkIE2sZkQa+xa+26RXLW/hZY2SLWT1WNwAeiQ/m6Ne7wCK2igWoIBNch1powUgBKYlHIdVUBISI4QQpIoqWKcAKNoQ6eFp7YsfsXHY/o4lwSwbv8+dmIlZR3T398eY+Px3E9j84T16/UBQThvb9/gdN5cPsd/qu//J9HxluxTVU7poua5XKJcpZFXSJlyeZwwNdf+zqnkwXGaCYHE17+6MvcrRqMSWOQEwLed5BEHOjOaEBZlRyczrC+4ep4RGMlmYKThmgBkCVoLMNBhlEghSMxUdxQy7WUR+iwwpz/7m/1yPtrTKqAPMlZndYscLRlgwZOTgIb+1ABJhV4AZ239AY9mlm91oSq8SKCw3WWIHyHdwnXrwiUtWRSspyW5AkkQlFVJc7CeJgym8yo2kBtW8oKKuuwNraStYQiBdfWuOB5/qWPU3aeoj8kzwzVfEpTLpCJ5v7bX0f7Z2kXE7Y3RqTDhNXOHm1dsXftOnfvvMno6oDFYoH1ARkMGsXkZMqnn73ObDrlrbdu88qnfgdf+eo3+Ke//KvMFy2mr6iawOm8wcuoX7VysGyjiGldlQx3oewiE1lpRVVZWg9SOrZGiq7z5P0+1WKGyQ3z8rcZ5Igz+qsUhHW7KMkK8l6foihIyoa29edaEs4GhFkHLFpFd/K6ZrXWSSmK4nzZ75fpnl3YZ0HNOW1xPe8Xv/QLfO57f4Cjh7eYn96k6VJkOqBpO5SIhme713Z4cPiAxnaxVdVqXvvFLyFkVMmUxqOSKDAWfAQX48+EqGKLDCHobEfXddgQLelbD6LpELpDZxrpHcasgdNB09gWbyN/0NlYmdFaRi8fZ+NJJiSthyQRtF10cU5t1CMBnqguh04T+v0+OlEEaUiMYTwYMplWFEUfrdbO7VJBaHjq6ad56+YDmraiWZbs9vq0dcnR0QGj3asEPHub+5ii5frVHb7+9RXOezZHO2ihGfb30bLH8fGUJEmomwXb+1fIihFVsyLYGmEKnIttEpAYk+E6h/Sarpvxh3/4h+jlCcEHqvKUNJVsbW8wfXiEEXDj2nXu33mLa9euUVsYpCneWoQKDHsZs8qy0RshTMp8cUiR6HULVFJVK5QW9HsDlssKrEdYRyYUm3s7CCHoD0esjg8iEPnwhLwYxHabt4QukBrD5PQEN0nYGHUUecq0XrFarVDKxpv0ExgicO5iLwLx3JeAiwDCYD3OshbaFBTG0OtF+4LYpioQlwIUsdYe3tn/EMcPXz2/Bs+Mdc90oiINGYTIAImQ+vzzRyuzEVvCmsEStXziNdZVFUYlay+49f0iMWsQbLt+OK1ZRQpC8CSXKxbSAGcJ0Vqu4Qyg66MIJxKE01HvikgwSHQMAGNFuY3IlBDlMbSJtGUniVXeNooBXgbbPukR988lMK9Wa/kKfx4sPjIvsa12hiHyYZ0Y2vfTf5XrilA4r/pFX6iz/beW0CCsHcI9ao3BERgu74ILzFdU3RZravQv/+I/5tOfeYXXXrtD2Vief+YG3/jmbyJCw8awTygFVd2wWlZsbW7S6w2ZTCYMh0O++eYbSJNgtIYgkRKyLEPJQFNbjk7n9LKEzV6Gdx3T2ZKBESyc5E/8mR/D+iZWBpXG+Y6AiCxaH3AS6s4iRcA7TWM7nH0yx3Q4yjl8sMKYlOlsim8VJVDkfbBTTBaYLkpkDj54VAqLuiJDsVx0DIcJ/UJx92FLrx+T0KwnUcmQxfIBbQnDXkpQGb10hhKSBwcTpJbY1iJTxfZVxdGhY7wpKN2S4SbkfegqeO7pIfPZApIBn/qu301uchLhoVrxP/y1v0a7mnPj6R10Yvjq3ZvcunfMX/1Lf4GPffIVPv+DP0Lb1XzXd/+r/I///ZtIndKKBb7zuGlFOfcMjKJM+9x7eMRoaxtfpMxU4M7BQ05XnkEOi5MKLPQ2hqTzFLGCNrQ8u7/Lg6NjyqHEOE8+6FEeLih6GZ12HE879nZLKhs4uD+jF0CkCW60877H41+oFnt2gTsCOolU2zQz6DRSu6UEZPQEcuvsUq6BtHVdsyxXtG37SBvq3ZnoB27A+dtBPmJ39wq///t+gP/6p/4yP/O//W26roqwMh0BtMvym2BvsVzMee2N15lM7jOtarK0H20NdAQxD7OMPEvI04TMGLIk+tika4+ciJ1Ra1qliJRbFdVuI/Uy3viNSRFIijSP4n4ehA845wkuOl3XXYe1jrprqSrHclWtVZIfdRnWT7A8XuR9tJL00iICDn1AagfeobSJ8vxAIj1JkjCdHJMJR2gblEwwBoxRHB8d4pqWqmpZLio2+gXtfEovyVDSx4ApSdCJwWQ5/Y0Bp9UKayuSrA+JIkQ7bFxTUxQCpKBuLVprvDagEwSaz/++H2AwGFKvFiyXC5LUMJ2ccnJygvM1VbUiSVJOJ8dUyzl1XSOlpJ/n1KuS5XxCVVUUeZ/R5hCI9gIBS3CeIslIlKVazKEryY1jPEjoZdAfbmB9iwiend0RO7tb2ODJ8j62gy4EtM7onAeZIlUgoFDa4Nd4H+H+Bc/xb8E4k8g///8lUgCAVP68yvI4Rk6sq6bT0xUBG/EV4qL9ARe6LY9qrIh3Tbs8n5AR2Hp5SBno7Apwa8xLZPYEHFJ5wIKwEUh9vh0f8LsfqX46hHhUePTxEaf7tTvCmZZJWLdmxdlC47X5pFvIl7f8sYr35eHDB59HFwKC704eH8HjiIATF/OdvcZgWL7nvflx7M1lsPFZUAbgXcfmeMBqBSorGO9eo7YNdTnDdh3LZYm1FmstSZLw4OCQo5PJuV1QCIH5fE5RZBS9aO3SNA1FUXBGqV+WJatViVKKVdNCqvnkJz65tuox0Y7HRc9B24WYbIrYkk2MJtOSPNX0ejm9/gdYV/9LjOV0xXLhabuOsobWxXC0qluaNlYWrQtRad460gS8hcW8oWugbRoSoZACqpWlawLWwmQe/aKaEibHVcSoGol3gaqOqvVN42ibFrRiXkI+3KBsHVvjAqUlWsGV/TE7e2P6O7tc//BHYlAc1VR5/WtfQzrPwcNjtnb20abgi7/wa3znd3wbvUTRVDOC79jYHLG9f43WR8VmGcB0oGs4euiizIc22K7jl379q1TBMdwvGO5m+AT6mylWCypaEFDXHUJqNvsDtocDskHKzpUBi1W1foYKJqcdQcPG7iaTRcfJEhYVOAH3jn6bBp3OdTjXYW1L51osDqssIRPkGxlZkZAMEkKmIRNY351Tgc/+ptM5VdmxWjZrP6eLB/sjyHweNXg7G4//P0i4e+8dTpcVcvINsjAh04pPfeazvPLhl9BqyH/zV77A3/3pv864n3I8OcK3K6TO+Ll/8LeQSYY2hkHRY2fcZ39rxLWdTa5d2eSp62NuXBmztz1ivNFnazxkY3PEYNgjSyOAOtOGYdpnkOQMTUauc4ZpzmZa0DMJuU7ItabQilxotJAobwgtuEbgXcQxCTQEgSJmwEoINOI8O38SI08MRZKsXeFjgNbPo+N709kYlGhJ27aYRDGbnGB8g1ueoHzDarXCm4ydq9cxeUHV+uiW29SkCvq5oZcZsiQCxoaDgq5pcY0i6yY46+gVQ5q6BgGlNLz00jP8we/713nm+j6K6H8UQmTwjMfbNHVDWZbMlyuMVOgAy9mca9f2ydIh5WrF7du31pRhxWq1JEkSnHNkWS96k+U5q/kMFTrK1YLTyYyqqhkM+izmS+7fu8fh4UO66hRDy8agQDjP7du3GY/HmCSL1QSt0WnKdLGk7hxaGbRO0UJSpAmZEeSJot/LsW2L8IHVB5RR/2WG92c+VZcefuLiQRdCtAzx4eJ8klIj1drr61LrWCHQ6zZTf6Sifoh3CAvi3B8pemLFdV941p0/4EQEzkfwfHx/eTxyHYvYAnGuxa7/+dAipY8XeNB4J/FOEnyskl78rsf/BGceTmcecnFaeIQV9fj3ImtO4YXEyTO258X+80hsCODF+fKe5BA26tBc3q8hBLxcVwJDDMgkZ62pdwc9MoAL/pH2FnDu4H2mY6PXSvZORPag9zYaKq8DHiHicRTrAEae4VcCeETUFxJh/RoB49Y7FpNT5vMld+7cpCtPuPval5nf+UXa+gjbdbRtS7e2OVkuV+f6aq21TCdTJvMFvSwHHzA6YhgHecZqWSKNpm09eZ6T5Ak3H844XtQcTSte+tiLEXzuIsg+0YJ+L6Xfkwx7hiQV5BIy5dFKQOgIwaPNkzmmz17b4rkbJtriDDT5cMSqA50XbGwOMCpWXKyDrvHIAKu5BSdQIqGZWzKlSMXaTsxBUzsOFzOmc2hrSV1JHp4c0XpP1XWkfYFINDZE887791vSfMDhScet246qDASr2NtJmE7mOK+59vJneOqV30PtGxrf0GD50T/9pxnv7/Gh3/lZPvLtn0P2n+KVb/9dHM8bvvf7Po8rJ9hqRl1V/Jt/8A/QOUFrwEgYdIotodkaCTKj2OtvMkhyEtWxv18QZMPoeg+fQX+vz7SBf/7qb9C0Le0qsJxbVicTVNsgdGBe1hyfzpnPoGsVVQNb+xnbT20jCkEDZBsJ08pRzt/fveoDgxzvLda2WNtF8fjgcAKsCshMo3vJRUnRSEyRopO1rQPhPBKvqvrC1+r8Bml5PGO4PMQHnH/OOY4mDzhePs3B/SXj3SvcvXkHpOSVT3yK7a2nWJ54Kh+Dpo3xLm1XUhRFpPoaTa/XY7yxyfZ4yPb2gCt7W2yNh4y3+mxuFGyOhwyHPcZbfXa3R+ztbzLe6rO1ucnmuMfmKGM4SBkVmmEvvt/oFQzyhFGRUOQp/UFKniqyJJoCGqNIjcJoTbL2AIsKuhfA6ifpl2N0NCaFiLmoqhVaKXp5iggeqRXO+XULQpAmGW0ZgwMlHEma0AXFxs4+aZ6jkiifXxQ5ikCaKEaDnK4tSZVGrm+ar7/zNt/x0V1+8r/4MZwDISStg810yE/8+z9Cee//4sH9uxilz4OvqFxryPMUI8A7x7Do4VvL1uaY2XyGbSxd25LlUap/tViwub3FolwilUFKjVYJi1WJIFCvFlTlirbpKPKCarXA+0Cv12Nra0zwHfVyius68jy62C8WKxarJScnJ1RlyWw6paqj0aDUCUZnJElkKRV5jyzTJCqqWNvWIp+g7tEHZe/eiRgo+LUdwKXqwHs9sN1aKfhkckBbG8K6cvA4q+eD1vleTJ/HA6LLlYL4fYsQ7hH83dl3L897eTmPfw7vD/S+XCV9/O9s+nt956yq4n14z/31rR7hMoB8vX3+sWmPb8bjrK/3q+JcTibfXSXya4zSo+s60456HPdzcQ7xruW9/tpXqKsWbQTLkwd8dDvwJ/+dz2AMOLc690vr9Xrn+/fMzLlxlr2tbZIkoT8csLt/g42NTVpnscHTti1Sa+q24+R0RZHGarxrm0ipFwLrHVXX0DaOtumoK09dtzR1h+2grixN7ei6gG1abPNkFI9lgCt7Y4ajTWyQLJuaVQuHkzmrukUIE5X2u1ik9DbuT5NkjDf7tO0ZXR5MKpEaug6cBRx01pMWfY6nFmuhagOLNiCSjLBmynkHNkgm84q8b6jKltWqY7y1x5d+9bf41Vff5sr152lbh6PBhQ5Ly9Wnb/D7fvCH+PhnvpOkGDPYvMInv/07+SP/9h+n7RxNNUMLqKuaXm/I/pXrbO1oelm0RpdeorVhOp2RSsVmmkZJltYzPe5YllOuP7uJMxXf/fmX0FnUqcszwELVWeq6ZXZSM192KBXvn+WyJHRgnUUaxZX9TYoUer0hB0dztkfvfzw+EJPT1g2dbXCupW1rWhujvU44nBaoRKDzhBBcrDALgfMuqiCvWVHORUdjay1d1517AkkZH2SXL6ZHSqTi3bCws/nKcsmvfeVVpEg4vP82zkq0yfjaq9/kpQ/DX/zCf8ubBycczmf08oyHyxOUEUhl8DbaOAz7Ayo68i663CoU0kWNCWstTdXSti1ta6kbS1Y39PuSwWCETgpkABsgUZqi6KFTTbAdmfF0rowquOtsKk/rNfU1gBKYVJDlCYMiJzEKpWOw86SZHMLZNXPMkfUS2mmF7yybo4zaBkySMD894dnnblBXbaRcu46yXCG0iToHTmBRDDLFYJhFt2il8K0jtB6TKOoueo4ZLRn0BgQDf/7P/1mWq4ar1+/z4HDGcHMXJTt+9D/4Av/g7/0U/+iP/kUQhl6/x3RxCij6vT7SOzKTsLGxgW1WfP3rX+OjHy+o6oZRr0EESIucdlnhvOXw6ITNjRFIxWy2wNqoKL1YLQjeMRj0aZua+WxOU83Y29ljuVzSti3Lcsb2sI+WKV3X8tbb7zDY3KXfG7JYHnD79k02dq5hVfQsMyaNlRy/QirPoLfNdPYwejgR0EJhn1DM+kgAgcB6iDnL+uFBbDS5yGGiCQERojzCOebjbFlS0XYdidLIrmP7+g1WB6/h5JkHmI1ZRxBAcl4l8N4jxaNBT5ymQMYqwePX9SNBiojbHMI6wDmrwAi3/gUS6SJAtF0Dnp0vUaaH6KLeixfRHgLnEDImY4GwBilHhecznElYM2tiABcVeCEG3TGcE/jQ4X2I7aEQsHJ9TyA8IT/5i3EWOFy0GYnO3Oc3wseDSN59k3zXMi8FQZeO28WyIhYnAr0vB7H+Ep7KIy7Ues6/GoObiCPquo47t97AOU9dl4x7Of/Jf/lD/J1/eIuk9wynJ3fZGCgyMpbLZWT0SXnueRiEo6laikFBmmUsSouSiqvXr3Hz5k2U1FHALwTq1jEQ0DSW/b2ddbszDussgnXrWwqkF3gDXkYcnfdh3ZJXtN0HeVf/9sfh0YSyc+SDDZYdBBoSLTicWE7bhhAUmRCIap3M54rKe6xQ3D+cMC+hT3TWLoNnOMwwTc14pBClgxZO6iWlFXQHgcFewkHlqV1NLqNytRTQpTWNcqw6iegcfQ96VPDwrqNbCt58501e/vh9lE7xbkVbLbBWI82AurP0m4bENox3RnTVDFctkASquiLLRgwGO+zsPE1ovsYzu7scvj7lpG44PWnZvZZQdXM2kx5lI/GjIUq1FMWYfGQY7nY89eyQd97UWJcgm4Z+BrerFde3thksjnGZoFoG2g5M6nluvw+h4/bbt8nqJWYONo9Juf8AfNUHBjnz5RG2XuKDpbFzGlexqJfMg8MZRSg0MjhkkLgagrMEvb6RsqYUusB8ccrpbMJ2tUmappxpTyh1EeycgRcfuVle9o+5lDG8+uqv8JGPfIrXb75J0R8xGGW41uNzgxOG24sapwwbwwGnp1Pm8xl/7j/+kXWVxIPV5HnOBgOato2aPkEi3UXm2KQNXded/5VtgfWKPBsgZXJ+AwDIc01qcqRIqRsPPsOd9bxFdGDOc7NWTjbkRbRxGOQJWaLIjIrUx/BkAY7lasH2qEdlLTJTKA2z0xOuXtvh7sMpq/kKKQzvvHOPLE1pakvdNhwcT9gOmp3dK9imQ6YJWQKbwxQpi8hcqRfY1rNVbJJ0MfCRItA1LYNkk8/90F/i+osvsHNtD4fmuSBeqQsAACAASURBVA+/wjtvfAPV13zuh75Ab3OHNDPM5qesyjmZyajqlOVsQqEGbAwHpBQMBkMOjg4psh7L5UOKwTXKtqFtGkQInM6WTE4WvPj808wWC9K8oGxahkUE3WaFZzY/ZbSR0dQticlY+iW9Xo9QGHAtXdtR1os1cL5lvlww3tqiuLKHQ1JX0VVe64zEpFTNkrpZMD3tsaxLlIOtzTHz5QrxhKTjL4+IV4jvH3+onVdCzisiAaUv2jvxeoMkH3D96jXefO2r5FbQih46eKyVaGUiYwnOg6TLVSHvPUI+mvmfVWouV37OW1vrQCdm8/L8fhCp4QEbAlIYhAhYInMRmUIyQrODLEbUp7cQUqJNTggO4Tuaeoki6upEEO1Fped8n1zanvPX97rk1tUc4f1jocWTGTYIomSFO99vSq7NVUPEKwWpudAiZh10XjCkzoT47NmBWg+FoCViQM4IFtL7dSvTEUIMYOSlCpLAIxB4b1FKxKXIyEgLXuJ8lNkIWNIs8NZr3+Te229xeHxKuazY2d1ACM9P/y8/x9Zgm1HPkGoHRIr/WYAD8TwQQjFblayamv39fXKtsFmfECzD4ZByVdM0NUWe4YWlDYJ+f8Cf/Q//DG+//TbeOZSEXBuUbxDO45G0NmLVSlfHFpyIJr7C2/Mk9Fs9ZgvH0QzGfoUUMBikuEWFEGA92MaRZirKGnhBIjOq6Yqh6UgEFBpc2ZAbqB0slhEOEGygl8b7dtN4MiG4spfzcFmBirgfYyQ6MTSuIbiGroajsuOFF/vMyyXzumTlIEkTHty9j3SO1tWsVqcc3LvFiy9+lEVTsdUf8vf+5t/g1d/6Gp/+nt/NbPqQanKMV4ogC4rRAGc9n/n2z/I3fv3vs7KHPHynIRQwHAmy7Su8/tYtdkaWg6Vn4Sa4zuNvHSFHG4w3Rtx5Z8ly6TmdznlxpDl+xyISz9J1lJ0nzSRV3VK3MEpgOi2ZHXu2dwKro5ZPPLfHO+8ckQnP3feH5HxwkDOdHSK9xeHpbMWqXjCpK7oQcEqhsgQVoO3q2LvvBHiHFYpERm0UIRTOV9R2SdmUDFwPaaOPkgsBFc4yCI1Y2zycZ3bAmcrmZbyO1kOOJ0fsbF9lcnjI2zffpFzO2d3a4vWbr/P0U88xmR5x9eo+na0peoo//kf+GEFKgpAgIEk1ORnKqHMPFrFep7VRZVd1AW0lxhu0tXRdVEqOjJOIoAkhkBhJYkSsYJkkfv8syxFgEofpUjoX0FqTZgqtUtJMkxhQOqClj8t8gnfUIDqscPTSnDkRUG2ylMxocuVYrWqCs6zqimK3T+c9d+88IM9TnJZ4Fw0qtdYIHGnPsJxXZA6M6SPUiqEeUQuBFglSZmArtvZ2OJguqKuAJ0HKFToxLBanjDd3GF3ZJdiAVIpA1G+JWZdHSsvx6QFXrj7N8dGUG9eus7QO4+HktCQLJT44ElPgZcfR4Rylo6O2EILVdMpgNERnGapc0ZU1u9s7iAC94Yi37t7lhWtPYbLoZXR48y1k0DS+IMFxMpmAF9y4dpXhcMSqqqjKJgKkfUNjPdY7tEhZNhWuUVTVhCzt00yPUGtrgic7Hn2Qv9e0i2rKmcp3bEf3ij5dF1itam7fusONG8/w8LRE6j7DHjSNQytB3daRRaPOli7Pz9UQQrx2zgKfdXaPj0ovhOiJFXE9rP/OcCPR0NP7MydruRZTjErinUvI8hybDJDSgOjhdEY2uI73gaI/oq4rgq1RQeDqWdwMZy92Q7wU/z880uSaufT/54hEgP+XWd5zwvsmRuHR6dFfMLqJi+AREkSIpsHnX7kEcA7+goUVK19rJh3iPCBSSiHw3Hr7mzx94zrT+QprLTrZINDw0Re3GRU7/PAf/S5+4gs/i5QC7yPEYbUqz+/rTddgmwRnu1hpLvqcnB4zm83oui5u8zoaHQ6HzOcLanURJKVrjTYXoAuK1ClkcHQi0AlPEIKmdkhF/L1ePL57vmXDerAO2rUHYm4MxQbI0CFC1KwSKBYrR54JbOvwDYzzgjzNuXN7yktP7/HLv3kH4aFzoAaCpgoM+7HV5drA/kaORtPVgWFPsDvU2LljVTt0Lkk6TxKgSECnhq6EVVXSdpDliqZsmRxNyLfG53CSXi+j7Sqa6Slv/dZvMExTbD0n1YKQKE7LhmIwRGtF3TTsXbmCDZrGJ1jV4ICyDYikh08zjsoWlWmyosdsMSNJoSob5sc93jq4xey0Jc0FTgj6Q5BbfVbVCt2DPE85DRW1A5GmVHPLxtYmdanpVgIdWrQLbI1y7s7eX3T1A9PM4/kB0+qURX3KabXktCyZti1zb7Ey6lR0wkGmEGlAZRrWD+2gBUGBFx6PxbqKqllFjI/v6KzF+QucjvMd1tp1thlBlRH4fNYb9+f92xACRW9E8B0nJyeMewXb25t4qfBty2QyYTqd8NprrzGfL/ibf+unYlVIXGATjDEYo8iSFGMMypyZNEYGkTEKnWqyTJPlmixX5ENN0VfkhSbJJWkmKfqKJNMkabiYr6/IC0ne1+RFnGcwzNgY5wxGCb1+co7XUSp6CUkTKZNPsmNVNi1l48gyEzE4IXJ457MZwnu6tqMJDpEYplWJTAakgy1aFIeHx5RljVEFVbVgvjyhrUu6tmE+LUmS2AKUZ1RibzEmIXjP7/29nyNoxcc++Qqz2RF1uWB6MmF3/yo6SXG2QwhPuZxTVyuyLJqttW2LDQHX1RwdHVGVSwCCFwgdy80hWMqyIst7jDY22N7eRqcJi9WSq9eusVotkCJw984dtDJM54vopUYgywqkEDw4PKBz0XHdhei9VjUl+/s7TCfHVPWcPNW0TUnb1iSpRilo25qqKgkhtl2lEKAUjY2ihkWaM3pSBp2XRsz+4bztEKfGfXXWmjoLQHysFnQ+oESgqdo1cLejriseHE5RLPnEp34Pi9kiesfUDSZoksHzyP4LjK9/Gm2GXH4mB+fBRdq6c5YQwLtAnm7EFpCLFR9nA945vJAgM4LpoYttUBlBJASdI/QAZ0aIbBtVjDDDFzDFHsnmMwyvv0Qx2iLZeY7B9ZfQW09T7L+ATwcko+fQaYpONhAyAWUusCYCgpAEL8599OBRVtjZjEJI1taigFzjZZ6wm7yIAouXAxZ56b0IEtbA48vfeeS/ImrVBAGsbTMuf6aFjB8GcEJgzoMkxYVEQJw/VuceBYuDx7szNpxAEQjOM1uWnBzex3rPwcFDUpNwMjvl3/tj/xM/9uOfx6cPeOXFgqAzjNFRVqOpztclQkDjqLoZZV1x/+iINCv48EsfI0sSsiSh188A6DrHyekC6wU/8eP/aYQ1KIlfP1M652m9p3EdtYUmBFoCnRMkKiEzCf0soZ8btorst3+8PmBonZJlEBwEF0iw7O70UCHqwHRdPDYeCEHRlA06QCY1/dQgLVzZGDJIiA4nFlKTUFUB7yVdB7aBG3ub2KojOBj0JJsbCVmeoLQmKTSZFgw0XN3StDZKoVRrwLMXgi9/6Zf46ld+EwFoaej1+0jhWS1OePvrX6WcHDBMBLPJQ1IVMFKSZTlKq/OkZT6f09mEtom/JysUTQ3BesY7e1TB09aO3ECSw9YVCHQc3J/x4O6Sulrr5Kw6sp7Buo7WWxof7ykBKEbQBk/tBcuV41d+6QHSSw7vnqKtJLSWZPj+zeQPvHJvHt0jX1s1LJuKVec5WC2pu8DKWzoNyahPwxKTaWgkicgJnUUKog5BF7BqReXmnMzvMxoWeDkgDQblBd63a5XjqG7sQjRIPBtCCJRzj4BzAb7+1S/x6U/+K2vPpYREFVGptOtwtqXpWjZGAza2rvB3fvof8eM//qMxoRMeZBQ5UzrSEsUZuNCHtZiZizL0Xkb/HWdJDOig0TrqTEi5Nj/EoI1Er5WaE5/gg1m7i6/FBAP4ta5HzH40yITURP/AMwsAKcMTreRUbcd80bEzbHCtw8go3ncwn5IYhU48SVZQ24627rCd4yMf+zi3b71O25R0XYtJLKtqRRBz+iagyTk6rehnS4bDAUFIlPAUadRJqlY1/Vzz4osvMtre5KOjz5Kojn/4M/8zw9EWSgpWiymta2maMl76QiPXrLPZaoUsjyhEynJ6RNEf0y5qtra3WazmPHz4EJXlJMMedb2kbmuquqU36DFbLlAmGqMOMsP0dMJgYwNlFEmqCQT2xtscHB+hs4TQ1UzLklQF6rbG4ChSePG569TLU44mM3b2r1K3FVmeU3YtSmk612DCAGMUTWsRmaJelTz91HWCfTIU8ndTed/9wBPqgip+1gKx1q7ptpphf5fZ4gHeWvZ2nuFkcgsnDFeuXuGNb36Nl77jD/Dqr/08V1/4HCHtc+1Dn2U43iHB8sZvfZmHX//HuPbw3FD3bJ1nrWYvNKtyRggSuzZVFSI2lEyyhexvIsyAxPRZnb6DSVOQKcIMEXlOYgp2t55GZRKBYXNjFxIJzuBdG1l0weN84Hg4pl7M0MMdnHXY09v4donsSmw9jfvCLwh0sVXiL+jahAsa9fn+e6yH9TjI94kdU3/h+xf34yUszKWX9+6wPQqSjtikR6dHD9ZYzYnB6Jpptm7rRaA1l/BV8tK55s8VzM+WK4XAWsvDh/fpygWDXkBpxa0HExKzwRf+1P+KURP+9l//Jr6xiPXzJATWOEQQreQ/+1Mf4y/8d6/RLVv+3X/rd/FPvnzEYDBgvLXFarVEG8V0uqB1ls45jImV/9hS81ECQUefwcRLBlmC0pJES0zstkWrHR0VtT3h3FH9Wz2asonVEyVxwuO7jiRJWZSW7W3D4cwigkcF6FxEHecKhPd4Adub4NsaYaP7yMYgxdYdRRqxd857tIHNUcHdO0f4GkLt6GnFzFXU3oOAvhYMeoIXrl3j9sk90hzKVRnbZi5Q9IZUXWB75xpHIqDKBW+88Tob/SHz00Oq1QknJ5Jnnt1kMT/F1x35YExQ0QrGe0fXOV54+iMs7x/TLBs2xhlP7w2Z3L/Dtau76EKzg+fK3gYTDQ0zCJbZ/SVFBlv7CpNrrssBO9kmv/zmG4wSQbE5ZHFaUuQKNUppbUMVPPfvzykM9PMxxw+PGO8PmJVT5Mb7H48PDHJuT44pjMFLT2UDVZDUnaXzHoTCiw4pISmizLcQEfAkshTfOZLc4DuLVx0NDY1bsmhOETrgQ4ryCh0iPiWOqJZ7hnfxsSiOlBKjYtVD+njRWwy/8Y0v8/wzH0dKz5XdTQ6rJcbkHJ9OUEIyHA7oFxlXboxBWDxyXSL3IKOvT/Aevy5NCxll5llfyHItAe87h/cCFWK7Rim9DlYkWkQhLiV91MgJMcK9yIwkYb2bz7r7seQbzi0fLpRK9fou9GSGc4H5aknT5djOrwXlImU8SwtcCCRSE2RA5wm4U1JTYIREJpLgKpxbkSQ5JvU468iUIcscdV3T7+U0naUosugM3ASUMaxmR/zOV15mONzizbeOOXxwE51AUy3RUpMnhqapSdYMG6EltgskuaaqSk4PjtkNKfVqxdb4Crs7Pe7cu8d4OObB8U3GvT5VXbE1HvPam7cYDLdJ04Kmrrhx7SqDfp+ubsjSPpPlAbZtCInEeYvUhl4/R1gflV2FoTfaZNnWdJ1jvLVBqhXj8QbWn8nrxwz2LGDoum79APeU9Yok1dzYuYI2gjfevPlEjuWjLJlYcZDRbCGKAyKQwaMwSBFIAuvzPAEE0necLk9wLkPJltPJTTbGT3NyeMTVvZdZTL/GN9+4RX/3kwyvf4zRztPk/R7NbAL9Ps+8/O08vPsO9uFD8l5BCIq2LcmLK1T1BJUatvojTo4fMN66zvHRAVakpPk+XX3KYP9jzBZTRtvP4tsS2W5j8k2s7di+/hxWGHrFBuPt/RiAaL1uEXpEIjizkzhjXu1deY7F4BThHNPpEVl/g3J+SDc/QPeG0DbYlccGQ4JHaIFsp7GNJy72Zwx0og+YEOEcUxW93J4sU+4MfI24wCl6ouVGCP48aIm9t3cHzyJEKvxFouTOl302pJR4ucZLItZtxjVDjbUgoouVQcFF5Siea+u+HxdUd1wXYY5dQ13XbG3uM53OGRQ9TNKna6Zsboz59TeP6Q80VetpbDTolHjwgVx03Dmp6RfXmIaGn/n7P0vnx9y9U1D0DE3bsViUpElGqCuEhjw3JKleVyEUCIkJglxLjFT0egZlFCqscUXCg1R0Nqw12+Rl2NK3dCgHeV+QpAXlZIXSkrKO2jWJyEjUiiwxkFuWXRReNCa2tzrfUQwSJqcTej1Jb42FSyVkBpAClSqSVHIym7AqW4yAUdGnnDdIJZAGdAZhHtgbFoS2Jck1g1FG1XjqkWT3ynXKlePhyQky6zPY2KaxDYvD28zmEz768Zd56zOvxLNCOKqyhcqT9MCk0VJB+igv8Of+ox/n8K1bfPmL/4z//f/8WZrFHV7sJehMYoaSIRJf1ey9uEUpato6yhVMTluu3BgREJQ3lyzKeJ+6ujHiw9/2Ml/9rdt85bW76KGidSAyAWXAZGB9AC2YtzVJT5EWv03g8asPHqCkjlmFFCQmwwcLGpx3aC1xIWIppAddGLAiHjSpCR6UN9SyoRMrnCxYNidI4/GihwoKtVb0DGFtnCZ0LKcGT2ejxkiqE/J0gJHpOcV6VZV40ec3X/sVXnz6I3zjjQk+KLw7ZLRR0BsUZP1tXnjxE2TjDL8WCQshajw4OoS+YBgEbwnESFqIgHeWoNbeTXhMAO/rNUAysrGECtFkUEYXcpQE16yZA2cBDcS7qF8LJcp1udcjZEeQDd5rhBI44ZFPEKg6KIZUtuJ4OiMf7DKfzAltg5cyqiAHSHspy1mF94CC2w+PWHWwmQ0p8oKsV/Dw/gSteni1oJd5dveH0ISobl232LbG9gOt0AQraOuSYar54s//HK9+9Tc4OXrA7/jYJ+k6iwOs9yRKE5TDdjYGzMEzHo945+03eerZZ/nKb/xzXvnoK9y7e48bH/owy9sdW6MEZBKplkry8P49sqzP8y9+hLadcnR4yPM3dnDliiLTLFYr0kTTzw27W5uRlhpgezyiXkxBKaxQLKqWJO/jpaLXA5XAdDphtLWD7zydTvE2tresVdFQVAm6rqFqa4T0FFnGGzdfR+WDJ3Y8zx6MZy3fsxHP0Yg/kOoMS3FxE0jTFKELQtOhZY1QBZvjXU4O7vPiy5/mF776OpsbV9nYfYaPfdu/hsfjXEdzNCV4z9HRHbLtDT79vX+IX/8/LKenb5NJR7r1YWqv6O3d4P7t17HBsrQZzbQl3fk4XgqKredQqxmjqy/A8T02rz5DOT0h27xGVgxJ04TReA8hAonuoeVlxhXnbEy5NuY8e5+mKWlyBecFo619rPVUyynWezprWU4e4psFbVcR2pp2eUJ78DW6boYIHdFx/kJEUKno2xcFDd+t3/UkjmVc+bs+uFh3OGNIvXf17mzae9WbLrfjCI8GdY5LVapwaT2XtsX7GAyd8dDKcsViXrEqK+7cuslyOmW1WnLwYEmvGNLLFSqDxaLlwx/6FLOu4mC+ZKPX42T2DlJohIzheccCPdCYZMa1/oBc7SHqmrvvPKD37HOkSUGRJzx8eBeTGLSSDHvZenMjcF6uj1NYW340nUesBUeNEiAVzq4NRNsQq+dP6Jhu9w1CB5ZlyWhU0PmKkGRkmeHB4QQjAoNEkvcNzbIlVYJhL6dqLXXXMTCB8uCUrd1t1G6P116/RZbDoJ9QWcuqtagQMNMJ/QFYpVgcOrJNQ+caNncy9MiTLTquboyZLE4x44TcKOpVxaDf5+R0RkvK0nm8SBD5Bv2xI7Qr5od3uDeb8/TLLzI5PuCojUK6uclotEYqgVAC8Fjr6F35EJ985hN82/f+G/SffYb53ZtMfvOXmAVPUxS8/doU7h4yPQx8+jt67O9t05R32ZaQ5p6DhyuKxlLOW8IMvvf7P8PPf+mfsugyFguQgwUhhZBAvqnABabLBUsbqMqazUKzvb3/vsfjA4OcB/M5BokxKUmiMcZHrMq6/2+9i0GHOKtYACq6C3vfRlCaA6sa2rDChQGNW1K1EqUdWmhwAWtbPIFEJgilcMHRtjWd7wg4eqaP9RWp6iNlNCMT2lHWpwil+Sdf/Dn+0O//Yap6hk4K7Fo51xDpjPObcXtZ0yDdGnQXE53Y9PSyw1kfVWuDB+kI3kVOgujOgyPE+kKSMtLkZbSA8DICj1F2LcG+brGtM4YgLvfYPbGuU0fhNaERIdatZHgyKpwAQWdI19E1FcMRiNDhXIvJDGk+QDQrjNiOhmvWIV0k71ZtRagV+1e3aTtHblIMkpScQa6pqpaQGB7cvUMx3GBeatJhilGKyXzKP/viL/A93/N9bI/6aL/i+7//+3lw/wgbHNsbG8xmMwbjDebzOcvlkqYtESbjez77cepqydHpnLQYcTSZsKxbdp9+gdVigrvxFL1+n6515JsJk7mnl3mODm9HgLhv6eoGbaKORLta0JYNy0Jx/OrXuH7jasxKSkE/TWhDYGO8w9HRKdujAXeOj+kXGboYIIQgL3qcniwQRNXk2FMPaCnpsyJJNCI03Bg/z4PpMdlwg3t3D5/MwRQxYLYhShM4BMiAVyB8PAfXiJL4ACBK+AtRk+g9qq5GZhs0TUA1B5weLBDJ80yXLVf2P8T1D73Czo1nETiEc2gvWdqSJAjy4Zi6qhG6ZvPGS6yqJRu7V5Hj66RZgQiBaxv7GARJWSKVJC82CemQLO/R375BURRIk9Hv9XEWjDEM+htr3x69rtK0eLG2lfAgZFTFFdKeP6Ae1f6JyYOSEpVIzMaYMxmLfm9ACIG2rSjLkvL0LgtXI1cPqcsJoZ5DiL5XUrZIYfFCYEQUa3vCnSpgXWUJPLqy4GISFNYVaPFoMHTRirqMn1m/PNbiP6OJX1Dno7Fi7I8JhJfxePM4xlkCIraQA7S14/69Q+7dfJ3F5IRlVaETQ9ZpFgtHuVrwoY++zPH0iBeev87rb73OfFlSDJ9BIJHyACkc1lm2NwccP6h55qkNNvsJnav4E3/yu/nJv/J/g1xydHTMM888w/R0xc7OHlW9oKm7SGhxjjRNov9YiID2tnO0wZGIWKk3OtqaOBetdWIFZ31lPKFjKkPch85Gheb9vT5l15KmhqrxaAcieLT0pAlkiUInitlsSecCvUyjgKppaIIkzwVGQWoEpY3sQyR0BIwRBO8oVy11mlCMExahQ0rFlb0tbFmTpSn3FlM28xHLuSXf0jw8OCIZbXIymyF1jsARlKY/GiHaFV7OSPoFQ8ZMTybQCYKUaB3b/EmS4IWka1u+8c59rm/vkCaG7//BP0x3fMzf/cmHNPKAYIZYOQUE2UgyGm4hhMY7x+ZGQV1VnE46BkqTG81Tu54UT6EkQ1Og5RydCQY7PW5Pl5hEYlcdi6YBAzJTOK1YfgDw+AODHNfFC92LKBkdhAblCSHS2KQAR4dSsWIhRCwDCxXQKAw6yqJrqF1F5RbkoaALFZWNygveW7ytcTgiCiLgcZGOfhYM+CWVW5CqgtT0kCJq8wQcSqbU9ZJrV5/iZHaPrqs5XVUMx1s4F7h/9xb3b97k2ksjPv+5TxOEw0W+GCF0/w9vbx5s23LX9326e817PPNw53vfKOk9PY0ICWSMBQkF2CBIsBwbquKkKrYrSfFHBmeowqnKZJJUmQzlBAeMAYMTYqIKg4QYhJDQ8JD05vG+O98znz3vNXd3/ui1zznvifcSEq676ta9Z9fd++y1e+3uX39/34Ha1lQ2d2RnXCyF678btK3RpnKHH1k3j4Gr6lyqrVNrSsfYExopnJJENpJO9/hiRXI29y4mQjenjsIVUMq4rJ3/Bwv7/z9D+gF1aqmNRRhNHCrmJShr8KQmaYXMihSrC9LZlMgPyNMUITwm8ymrq+fZOzwiSUIwJWEckmc543HK2sY2h4MBG0FEp9/H9zyyumKeZQyODtm9d4fVpR5W13zta19heXkdhCRLUwLf5WhNp5PGFbvGEwGHu/fpLS/hKQ9jLMfDCevb55hMp/R6PYwxJHHE4fGItmdZ6nR4Y3cXodrkImc5aTEajcCU9NbOI6THYHSECgMunt8km6cMhgVLS8vUtaUyCmEF2TzjsKxc1IXynTlgFFLkGcJowsCjTjN8KVGShlOmSVox0iqUH5OOB/hhwP7+AypyFsMqjJFNiOzpWJzSHZpjnZswgPWYTkeEyTK6mtOO+2yc+wuUVcneaIwIl7n05Mfor21jTcV4MibwA0TgI5RgfHOP5OIG7f4yKMnapcdRSYt20qO1vIkQEt/30bqmKnPqqkIqF4DZipM3uRDHUYuqqkjiNu12mzCM3rQxL67hBHFY5FKdMa5bIDpSNvy5t/CUFqTrRTSA1hHtdpdZu40XhmSDHfyD64z2n262d9702v+ixoLzI8SbCdFOMPGtfKCzP78dInHWC+nMow2Kc/JkpJAnGV/v9P7AmboNR1MmR/uMh3vEQcJoOKbd6ZDPplhrWd/qkaYzVpa2qOqctc119r/2Ik9824e4/vILdHt9ZpNjhBBsbGwwyXISb4XKfpEf+cs/wMc+cJn/LPscS0tLaCO5ceMGly9fZT7XWCrqyhBF0Wn7silkK2upasfBq42Hx6kRorELd+ymNWcfHJIznRjOL3coiim6bZFxRdxWzLMZKoB04viRsdB4QKtl6bR9JjNLmYOsDP1el/u7E0yQ0fUsMgCra46PNGkJF7bbtIKM0iryqqLVlcx0xsXNNpPjGYW0pLbi9r0x5y6ucTg1XL6yTl1mRHXA1ZVVjiz80A//MKXJMdYQxS3ysg3tNVaTHlSadN5j53iEjBQ1ljCJ3MEcH9VkhE32dpgHHiZJUJ5i/fxVxPmLzEc5e/eHeBuKw0PNo+t9+ms+t6/vk1ew3u1wdGMfa2A/tXz8yUdZ6VoOBjcYo+kpy7k+3BtaHNbocwAAIABJREFUnvz293PjhS8wm1X4AtLYIezr6y2GswkiffuK9R2LHKlqpPSwzammqA1+HLlQMRRWOEjcuJIBTyj8UKAaKThCY42htJqp1jDPMP6c3LaJtasetS3PuJk69EMJhWmgY5er0/jq4BP5bRdHr3Mn87SSIu0xngxpJ2sMB/usrmyy1Nukm7S4d+sms2nOP/uHn+bao1tcvtihshWFnWNkSWlmlLam1jnG6kbhJFlY5rs84lP41pJiRYkUIUbUCOGDdQuFFg46VwjMySIksLYhgDZMN9FIVGtbI6w7lRjtNVykB7ewTsYT8rQgXO8gTInvCfrdBKRiMBrRT0JEp006O+bixjq7RwO6SYe79w7ptRX7h1M0irqcEccRVVni+ZbtzS2u37oFQlIUOV1TO1K2rilqi6gqBgf7bJ8/z/uffIJbewcoz6mndO0coO/cuYHAEEc+08kAT5Z0WwmgGB6NEEIynhW898IljDasrqxQ1xZPQFlldDsr7O3c5YnHH+Lu4QgjfcqyotdOKEuJxkOFLdKsRs9S2GijywprLJ4Hs3QGXhdPwPrKKsPhgCTp0koiqHMi36fM5qwvLzMcHHFpe53BZEKpDVlmmKczlkXM+uom12/cotXx2dvbZ3Nr5YHMpTYGrS1GWxc6qT2safKyFsiNcrC8EhohG9dg46NNQVENCb2QKj/m7hsFFx57gnc9/r1sXnmSKAzRlVM5KM9HeR6jwSGvfP6P+MiHP8a9vbv4/SV8Ab7yOX/pMfywhScEQeBTVBXK6zrkCCgrtzBpTNNWc5uN54W02w4lOCt5X2zgCxdka93hwxhnbbjg8C2KmrOeKyc+L+LUhHBRCC1+FkLRSVokV5+kWL3MYW8NFbUZ7r6MrnZZdGrsSUHwrVlSD2II4Tgy5swGfLZQcUGYTfzCme6SsfbkULVgM579LDWWRe6vAEyjjhJCIK10z2uQyUUBaYXEStsIMzRYg1Uwmxfs37/Lzr0beF6ICVs89PgaLz7/DNILeOp9H+S1l17g6mPnmU3HtNttVB2xdOFdTPZu0W0vcWhLKl3T73a5fW+PfrvF//rP7iLTFT7zG8/wm5++QW+5w9HxgDBuY03JjZuvEMctPOUhMFy+eo1ZWtFOJNI0B03bZI2Bg3Wk3yBTzoJECmcAaTFg6z+Lp8CfaVy9ukRWFgQBrLZ8cp0jvC4CSytpoeoSaQ2tdkARFCwv9ZmnBVIplLJUqSETaZMYYLA+9DdXyYZjauvcfWbjlPVVgbaSeWXp9QRBDy4+sordNQy1xSoIN312sxH9pYjL2xd49Y9eZX90FxW36W1vcWH70inzykr8oEW7p/B0QdGfMB6N2No8x2CS4cctfD/G4qFF4A7N2uDZmvlkRKAkxgTsHw750b/xb/Bbv/lPefGV17l0ZYO94Y7jTNVddq+/Qa+9THYA2SGkR5AVmm63y/nzCS/ceYVBYRnPjwhbApVZiqzAU/CRbzuPFAX1bEZdliQ96K50yCZvX6S/Y5HjhTQENycnVJ7FUiJ8D6E0Si1OVRYhpUMhhOekh1K6nrZ0r1EJS1Zrhvkx83pCVPp4skGIrLPkFtYg0WeydVyLx5eO04ICWTQLma0wgCc8XvhSRBh0SKKYeRAzn07xJBwcHNDvrZLme1Rlxv/0X3ya7/vUR3nqw120TanqjNKkFGVGbStoiHALublbYM+kSC8UCk4Uj0SDqZwGzn2VnMGWdK2Ck4WlWbA8XLinlo2Hh2k4QihnevaAM3Km0ymdJEQJRZrO0Vo7t+cgohaStKjxo4wsnREGWyhlWe51mU3HbPRXqaoMP47dLWEtQhiqqmA6ndKKWpzb8klaEXGo8KWhFXpcvHQJq2vu37tFt99icHREnk6pzRRtBJ1OTJbNSNM5aZpiraWqKuJeB+EHDimzIJTPd//F7yTptJnPxmS5RkhBHIUYnSOVpdXtsXd4gESBUJRFRRD2CVsJpQY8jwuXLrPV89k9OCSbzilrQ7/XJisMQld02zE79/cIw5D5PCUKPSbDMdl8wvrqGul8irE1Kyt9aqOZlxVFkTLPSsrcEoch2JK60NR5zoVLlx7IXBp3q6KNpjbGZX69STVsHU8OUIutzzR+wFYgDNR1hVKWqNMht30ee+R9J3lFfhg6p189paorjg6HvOep9zKYT3n9uZfpbp4nlYqk0yXPc4T0iDsdrHH5QXWVIxoOnScV2roCTDYcGykXPivyTPGxIPm+ORfLXY1FCndYsJz6/pwaiZ5tW3GiHBJCUNdVU+icWlC4gsIQtdosn3sca2A6uY9ID5GUCKmQQp8YyD3o8ae1nRYF3NnrWoxvlb6//VAOKD6xSXzr76VByt4ulHOBlICgzHMmwwOEUKytbxMnIa+9ep3t7XN88/nnuX1vh34nYTydIZv3v3P/DpcuXmL/cI5QHYq0xvd9qqpiaWmJwWhI0pbc39Xk8wrlzTg6zgFDnufuMKQ1YRA4NWPp02q1CMJWo3R164QnwFcCT/mEgUApiyekyw9UouFqu96jFQ+OZ9Xtd5nu7lBVcG51lXt7e1SZRRpFNp/TimI2egmmHON5HqPRlChuEycWKyyJrAkDD5NmLK20SE2GlhK/3SZqz7Hzmro0BCohlQrp52S2JGlJNi+tIFqa929f4CufeRq10uLmayPWYstSErAUgqkdpfwvfe/3kUQdnNJGAS4GRwYKndbODsJIqlrQ7y9TLsDgM55YQgq0rinynDzPSYKAui4JvIiPfuR72L1/gzgYcOHoAGU95nsw3YFwWTDfHaNT6PmQFbC7v8fG9mV2RxO8Xpf5aEZhDUvLAa+88BymhqUlxXQ8JAw166sdzl25wPr2FlGZvO18vGORk7TEycIgfYmnFMor8ZRBeaKRYwoqY/CkcrwcqambDd8TLhxOAnkKM6WYVXM8D8IwptY5UnhUjVJFCIMU7rUCTxAGHp60SGVQQuIpS2VrpASvuUk9Ifmn//CrrPVWGKZzptM5QsL65nnq8i7HhwfEoc/uwR38oMWv/eMv8Ju/6vO3/uuHqeuaeTGmqJt2VXOKkQ3xcEGIBkdGlk14ZKBKhCioyAhkgBEKoRTgspwsEiMXp1PRrFuu/+1OmO71LAZj05N+soNTH1y76sLWBrdv3KRaDsgR+FKx1O+jpGZ6PGS1t0ptCqLA4+hogBDQSgI21lfo93rUZsL4aI4QHul8ThIZ4pZy8Q+FwPOti44wGdl0jB91uHt7hyiJePHF53nmhW/wvkfeRavfY5rnzOdzbt54rTmRL0S7Fulb2r0e7/7QR/iln/t5rl19mE984uMkUY9SFyz3O2RFxSid45U5VzbPUZUBjz35cfLpgOs3rpNmBf3VZaxyc+OpkHlRsrt/QNtvs3MwphtJur0Og6MBF688zq379/FExaMPXeUrT3+D/nIPBVy69iiH926AlaR5hrEOFSiKknleIP0Av25j6y55ep9eSzAcHNNLEpJo+YHMpdaaqjaUBkqjKN5k6Nac1OWbN8yzbsROQWPRdZf29vt59Lt+FFEWGOVTFI63UuuCqtRMxhNiP+DW8S6xFCxd3GZ/fx88n5WmMNEGgiBACYXv+4RhCPa0nbAgu8Jpa0Yp9aaWlBCiUaqdEovf6pr8VoRmIbU+m23lnvfm33cW6VlI6RevESuP1c2H0NPvopiMyPMCqBpE7MEXOGdHI84+Lebc0clFZViaQ+WZWIYG6WkEUqcWhtYibEPGXXACpUPWhBBood1rK+Pa5gv0y1qn4LEeGI1FYYTB8xQawdHBDpPZkK2ti0zTKVlWcuv6XUajEZ6JyPSc3soK83mNKQvCMMJHsHfzRaLWMvPZhDyb0ut3KPKKezs7rK2t8urre1RVxOHxDERGXpS02i2qMkMphfICRqNxo4YzRK0V7g1yzq16ICuEtCgErZbCt4p2EDgtraxRSiOlj8VlLXrKOOPRB3SgvHf3LnEnJu6EzKcjFBZfBhwcDahTS9SvoM6wVhOFbebplEoVjI/nVAaWL65z6dwmwxdfYH1zmd3REbsHx6yvriJVShRIWgKU8FAS1reWqOKCa+9ZZm27wyQ95PLmMj93q8bzRrz3o1tMd46ZDO/zw5/8GJHX5svPvM6PfOpfo7227ToIViGswhjlvOwqQ1kLNjfOMZ3lLK9tMZlnlGWJsYpJWiFxhr7a5HQ6HWbzKTUG34/w4x4rS1f4gb/8Y/zCz/0Ue3s11fCQ175xSDaD2XiEFJpWAnEgePI9m7xxf4fe+R53xymDMqTIhcuKFJb1jXV6+g3WQsvDT1whHc8xGl596RXanTbvf+ypt52Pd0ZyfAF4WFsjlEBKd3o2onIkWYnrkeoSKaOmL65RygWEOSdN5+Rb2RpbKsqq6TWrrEki1hgrEdIJvJVwRU0QKIIaQs8jDCS+Eg1fxsG5pkF7tIyoSkFWpFy4ehGx55FOhrz8/HOsLK3SSxKOxzNarQ43bl/n/BWFkn2e/sI+j37YY65nTa/f5eUIIfCFwsq6sVTXzUnYoUlKOLdPJQ1S1QipmoXH8W2kNA79WVjDAvZMBoyyznHZWNuINhszRF01iFbFgxrdVoSxBUfDGVEAydoGpYXzSz2GwxEqtNy48xpJsszxYIcL588hJMxmQ8RqB6+WxGHMKJ1hKPALS+nHlGVBVWUor8XdoyOeuHINZQxhKBkMc6QKCdsJCsvrO3dQQUSWl5RFcbJxSekQBq0tD129Rqe7wt7dfT71V/8at27dxFchuiqpshKvLWmFIbvDIe0wpqhr3vWuDzAvSgoRs3H5XYSeRzYfsrq2TlWW7O7dpdXeIIn3mOSW+XzM1tJFxsNjep0e86pAeQpVp8wnNel0wtb2Mr1OwsHOHpVWzGZz5umcKAiYTCZklaYoajxV4ytLpST5fI4nHHIgsdTVg1lIhW1QUONM96x588nb/a05K492JpveKU+hlKw/9h088qHvRVpJJQS6yJjOBozHY4rZzGW6eRFe5IEwDCYp6WxKe2MTYzRvvP4yFy86ArjAY5bO6LY7KKXwfWfedjrHp6jEW5GDs8XL2Tw7K6BuTEARjWigQWfODmvNSYG0eP2zYbdnkaGzqrTF/xFBQGfjItGdVYr0CK1LtAB15jkPcry1GDy5/rdwjM6Os0jEWa7T2fEmNGxxAn+Ha3HzAlWdk44tQmYEQUAURVjpMqHOX3iU/ft3ENZjMDhgODqiKHJWt5e5ePEpglDy1ae/gS8srXbA88+9wnsfv8bx3i2yQtCJI7TWBKECEgI/ZjSaOj6eFQR+QGAFWerUrL7vY5sWZxzHeL5kNp9zOJjSjZYxIsATAhtEqO5lhKmQyy0C5eF7itiXzihWlFgjGw+uhU7sz3/4oaSuS3zPR2LpJE6RpKyl35Ysd2P2dsbEsSLZUKRzy/B4zmwC65sew+NDttd7KGGJIkEr9jkapqStjDwtECWsnV9he3OVw9dv0W73uTcf8vzzKVcejum1OsTK49KlkKsPnaMjOzz72i61KFm7sMJob4TXahP1O3hxgm3c4Zu7zK0lUuH5PkJorAUlPfzAKdq0kYShxywr8PwAP1BOedeEgyIMw8EY3xd0u+skrVXWl46QGaydExzsGYaHFd0OpDUsdX221tfZLwyH04xxWXH3oMAbQ2Jrzi8vsakC9gpDzwtRRvKlP9yh04aoFzIeFnzx89/k4z/8p8/HOxY5QegcQo2VGGqkaOTiQmBxMJVUTm1ldQU4e2as6+mqhuzoLKMtdVW6RJTmy7hI4K6NRgkLQrt4hEo7R1nr2jlKOnWBVM63Rhhx+jrGEgYBnU6PN27c4L3v/QAvPf8MrThBVwW37t+lNrC6tE6762PKnKP9u3z2H+9z9QOPYUyFsSUWjWyIwk7aqNzva+zrxZnNwpMCXxmUVA0k6uFadiUI1UDyp4vwiajTSrQ49ZhwC62D1UtTnDz+wIa1JEmC8gOgZDQcsLS8xmA0Ji9L7h9k7O8P8Lw562srVGVNIAz9bp+yrFGexJOCdD7DKk3biyiKCmvB8wIXcjmZYbUhrQt847N/uE8UJw6pwjKdz6jtzCWdc2bja2ifUgqOjwZsbl6i0+lw6cqjHB+N2Ns/pNftMZ5MSIzHdDKnLA3L57epteb//I3P8LWnv861a1e4cP4cRZoxnk3YPzgg8EM+9a/+IM8+8zJGCqbTnHObW1gzY3V1DZ2XpKORm/dak5kcFVj8QDpumLKk84zZeA8hfEyScDQYklceVW0wuiDwW+RpgS5dfluloZ34zEd7D2gqTwmUi/tG2NOohMU4awT41k0z6qwSn3uEKFlCA7PZmDpPybIR6WREOhtyeDDk0pVHqa1PnudURYlRkuO9AzbOb7OxsXFiCe/ULuGJMeCizeCKkvqk8DhpF53ZlM9+JxbvTylFUZUnBdBbN/kTL5m3uKGfEJXPmIgu0Jyzn8Gi0Fl8ll4Y43c2UcM7UMxPnvegC5zF9S9+3wlShfte0KhZz27K7vOqnbEofMtnSYPenBidLh5/i7+ONk4ksfBYshqKuuDoeMrXvvocZZqxsb2KUgG9fgcrAybTI7S2DPf3yHVGFCt6/WV29g559dXXuXptm/Ven7LKmI2P2VrtU5qS4+GUO3sjWt0+gZGgwYtCDo/2qcuqcZz3KEunzA3DEF07QmxZlmhjKPIUtCQvC0aDIXcCyXoQoZTiyqOPsbl9AS/wWem18IVz9ZDKhY0K4Z/O/QObSVCebOgdkqosHBigc+IEHrt8nguraxzvfZ2lvsSImuVegO8VRAFsby9zdP2A4eiQxx45h0oUO7tTtped8WUgIUkEVTphnobcv13w5IcUMxmR1Tl/8sXXefJdlzjwj7i63ePb3v1+nv3asxzuwMFwn7sHETaruXhpmVk2AV0QYDBWNzxU3ZDQDbYR3oVRhB+FeMYgRUhRGrQu3tTl0EajmrQCIQI8X1BrjbQRV648RVAaEp3SO99i527OnRvH9LqK2XTAtYvbzKcpr9w44qXdY4INS6cfcG2ry1a7y0aY8OTD7+Lc+hpVF5698QK2gM5qi/X1C4yPS77whS/xH/2DP30+3hnJUYCylFVDXrQGKV0xIITj4VhbNQZ5zi3Tga0SXWtsA0M7giTUi5OnceS/ojZI4U6WUuEMm6xFKQdbC985PBbNBimxqCb/CRoSXl0SeYqjwYBPfM+/xMsvP0+32+X2zdfpdrusr69z8+YbzEOPTn8T6QmKNOfc9nl+5aeO+d5/u4MXZScwcKA8POVSwT27yGlyi4gvnf154PkIoVDSx1MhLlvr9KO01lW/CwUYWGqtqWvX5pNWYRAYW1NbtxEUdY7WLiX3QY3XXn8VjeW5l17kOz7wBAiBqTLu70xZ3tjk2ZeeR6gWtbWkaUWtFdl4TFkUFGHMLJ+TFxM6UUw+H4Fw7tTWNhuXJ0mnGVpbumtrjLOA6zffIIy7CDyUNUjho4RzHF1cq9vwnEIoDCPiuENZauIoIfIso+E+F849iu8LVlb73L53D2sjLlx5mJ2jOV99+iucu3CNuLvGvf0x33zuFYosRUUBnufTaXe5dzgm6i7zfd/1nTz7ld+nSI8JbUBVa5LAoxtF3Dne52K/g+9FfPSj30lVZczHM6wMUDJmNh+QlVPyfI4XxyTdC5Rao2yJlMadbqoMQ8LR0ZS6qIiD2QOZy5NNX5ySbBVnUBxcJtS3PqcCYhSKqHeNq+/5KGWdU9U5R3t3mE/GLK+u0/FCRJwwsimz8ZikFZFNU+bzKV4cMC4y1NEh2xcvEkddjNYUeU4Y+2RFRiQilwEunDJukToNp0jKorW0aDm9iYOCoqwc2fitKeaL4sb3/ZOixrk4y5M2lDEO2YFT92BXbJUniM9iLAodoQTtlSsMbj/t0qvPxkJgH3ix4zhTpwXp4rM6HW9fcJ19jlOicfLvt77OW9t/2MWcVMxmc964tcON129zdHhIURTc393n2kOX6HXaHN6/hdSW+7sH7O3tMZqmrJ/b4HDoWklPPfUk+/s7EGZMJyX9XovaCg4HE+aFpt3u4Pk+rThiNp5RFAUIV6Q6om2OlJKqcpE+URhT1zV1XdNqtcnTKXHU5vhogtEKXwXQhupowOaVh2hFMRaodYmR0hm6YvHxQDiZcWk0vnzzd+PPc0jP3etKGJSw9Ps9Oit9QlWxvZlw65UX+O6PP87e0TFB4jGcFKz2I6K4zfLSKrf1jFZbsbWesH90yHbHp7Yhh7OCd19eZX1plSKdYm3Fk48Irqy3uffKDu973zlsNeHGM7t8/nduc217hd//lc/y6ksTrl4MaHe7vPTC81xbP8f61hZmMibYXMQr5RhdYE3urBuosVRYW+MHCqHMSdehrmuKoqCqDF4QIKWkLHIAsqoiyHJaUeAiXPKY7/joJxlduMrLX/s/8FVOPjrm1ksD/uJ3X2a0e8jkeMzxrGBaaS4+usTEzEDXrGz0YF5zZWubpVaH9csXuDW+g31Z89DFFqvr5/jSV1+hFoJZ8faCnXdWV1GirUJJ1x0WyhB4HpYCJRVQuxODtdAQDt33TCOkxlqDXXBNACksVgiMcF40xlq0db1vT3lYU7nCyArq2jjTIeNRV06W7juLXoTWDnK1HraW7B7tsLq0zP7+XXRZII11hlGdDmubF3ntjev0esssL69gpU+/u8TS0gq3bt3i//rpmk/8uz5JOwN8amnwTBOxIBx0K2jUYsYlJQNI0YTVNbkvbz5JuSLQGIs2NeN8zO//8RvoIuaxR7o8dmUTa8FYQ20ratPkeZnaZQA9oDHPZhgrqCpNXmlacYgxhizPKStNUTWFLZYo6jAYzVAeeJ5HUdUcHB0h8PB8i+87n4SyqkAIsjxnbWPDQZxBQJD0+Nyn/xAjBKURSC9o8mqaecaAPTUkW4T2WWtJkh5pXqOR7O/vk7RaTuWjQvKqZHX9EmsbV/nai6+BjEh6K3zj2eeYpXPyPEe6N43CIkzNfDpGG1BBgLWC3lKPkck52tknSAx/6Xs+wW/99u+xcm6TeVWR1YqHr13h5Wf+xKWuE9FOlkm9IWWZoTyFrmGezrFWEyrlsmGqnNoYojBGqICiqImT9gObz5NxwtP4fz+izjrB8nlMVWJ0xTxNEULQW1/nP/3Jv8vdOzt8x8c/ykc//EEmowlJp4P0QmpmrPRX8PyQ6WTEaDhALXvoWhGFLbSWZwowQVm6Tcvz1IlaCr619fKtRFe3sdXaFSSLg82iOFpshABFUZy8tud5VFXVZMJ5b+IhVVV1wjE8DdE9/f1aa4w0aPXgkZu3DmNqjBZnu9zU1uChXIvOWLSt8a1reyMWvB3Ho1Fv45TuPlenUAUHCqkGuzFU1MacEr615NVX3uDu3R10VZPmOUEQ0O9GJGFCVc1RwnkzjUYj2t0Wpak5Ohpw/tx5jo4G7O7cY5pqYi8miQRaSMpiRiADet02h8MpZZaSYYk7XZRSpPmUdpJwfHyMtZy0Il27UjCdTt3PsnDolPAxtmA6GSGTDsIGzOdjfua//S959NIGG6srVMIitMWLJFJJPDxqY9y/F61TIfjQBz7y5z6XWteApKosSRSysrLM0eSAybhgcLTL1SvnuHr1KmEcUTNndSVkns8RysNUM85f2KIVB+h6Rifx0YUkyzTrvQ5bKxuEvs/O6ACtNOe3u5hihi3h5qt7PPHINoPhLr12zIff80F+7Zc+S1zDtcsb2FrTjWO+/an3MksDdq+/weqlxzGefROSo03tlGqNqKioCrI8ZZ6lVGlJVdPkTLq9TgpBVTvLDTxBURR4okIpn6KMyFLDaJgS+YrE9whNzUoMt1+5TzdW2NIyS3OkD+N5Sms9gVjy2u0bPLKywYsvvcDNW7f4V/7232QSzFnqtrl64SGWVi/w2c+/hggtXvz2OWTvqFeWUiCpQFRI5eB7qWo8T6FUQ8aV7m+lBELWINwfy+mHVtclWrsb16JdZoiwjSGSwFcSmkJCNM9xTsOnJ1atNdpwAo2X1Wmgp+/7ZGVGp72EEIJOt8uHP/xtdJIWR3v3iZOEqqqYzKbM51PSbMbLrzyLtobpaMzn/scKraOGs2Cb96upjW4eaxZteXq6ctdnG9TmlCzs0rPde7RoKl3ya7/9DD/7HzzNP/l7T/NLf/+V5n1rKlNTVRVVcy11XZPXD46TczwZkc3nrK+v4/khZW1Is4x+Z4lbt25TacFgNG44RAHztMRYi+d7DEZjWp0uCsVoNHB8EARpmp62GWp38pqkc4oSnv7mNygrgR8leGHkLOrPnCwXLQRrLb4fusJW+hjhg/CptCAj4tzVJ0hNC+13WT33MLf2Un72l3+dnYNjvv7sM4wmY6SnCMPgpCURhj6+74wVtdak6ZyvfunLfP3pb9DtbOPHPQ6GA7xQMS8KvKRNlhVMdEleOQO4LJsgKQilYHm5S9wJkULiSYWUiqOjA9LZBLTBE5Ii14ighfQ9ZtMpSdJGygcTBXBaFAhAI9WbSblv2sD/FHC+sC36l96NalSEZVFgjOGlb7zAD/3EX+e/+8Vf5sbBbW7dusvm5nmidpeV9Q36S6tMxhm7t26ArSjmE+bjIWWVkWaOV7FoOZRlCUJjbHVSnGitqev6Ta0sV3yYk+JDa01RZk5B2SA3VVU50qMxBEFwcu8sojUWSM7i+hdrw2LtWDz3rOzc87yT5y7QJd9fppWs/QtpUZ0df1qb2miBxMeUIXVp0VpxkrVXO48VbdwJ+mzx+E4qqbNo0AIBW7TkBoMjbt54nVYcMpnMSFMXbdLv9uh1uty9uUNd1xwfH1MUBYPBiCytnF+NNUSRoCxq5vMpd/YOSDPN5HhOFIaMJgNEUaEshJ5PURRMpgNqnbPSX2I8HrO6unrCkwqCoPFb0idzWJXufpCBwpQFVZFBlTIZT/Glz+3rr2OLGd1IsOTDSsujFyh6vqIfCpYjwUzDAAAgAElEQVQTn37o0fWh41l6D8h3dSmJ6MchvtZ0g5B+ELLai9neVKysLnPu4nneuPkaWT5hPD+msiXGVoShZKmfsLXWI5uNkVKwutqn04tYWouIE0MUVyiVYZnz+MMXWV3vsnW+z3rHJzGa6cGEJx59nL/zd/4m73nsMTb7PhfWJbbSHN8/5qnHP4T0Vvitz30ev5Uggwhha7ROMXXhDoOeQDQeBXmRoauC+WxMnc/JpiOy+Yi6niOF4+poI1xMkJD40kcJgdE1RldUdYaf+PTXN9g/Trn+7E1Mbrl0oUO/JXni4Yt86pOfZKkTs9L2+PDjjzC7O+aJc+f52KPv5a/+lR+hu75GodwhdXNti82lTR7ZfoTsMMWUsLzSxai3P+S9c7SuqPF8gdBuM1eiIfM1J0fPd11jXzSuEmcIhVJAZWsQppH0WqTQeJ4AXBqx9QRQ40sHCytX/TSnDoPWroAqKoOShso6jkwhLEoIPOGR3YrpJDGXL18GKUiLkqQVMx0MmUzG7B4ek6VTvLULHB7tcfnSw85+v6q5t/My2xsXmR9P+MxPL3H1L5znkffPMC23WNfN6TFQzstFWkAFp1C7MhjpJleKJp/KmKYAMtSmoqxy9neHeJ2a2Z0jXv5KxdeffYz3PbGMbqD4Shuq2lBVmvIBIjnGSM5fOo8vDHESEYaCyXBKkERsym2Ixrz20nVmfoHGknQDqDS6yOn2Y6aTCcPhmCjsUFWa0XRK7CvGo2OU9BiNRxwPBxT6Gl/5xjOkaU4rdpYCnhJ4voe2Fl84mwqBafhMzh8oiCRB0KYsc+bZjO7aZQ6OBwxnJZ//gy+STo5ZXllmY32L3YNdXr15m1Y3ppwXKCmpq4orly4xHQ+pq4zjwYQkVlirGe4f8Nhjj3I4HPHMM8/S7bToLa2j/BiEorYeo8Mh7cgn7ITM5ndZWlthPjqmlxiqYkCr3aXfadPtdJgUNe1eTkBAXdYIX+J5EiG7hKKFLyEKIx6U+lgq8DUoYVFS4tuaWoCwnjvpo91JzMYnCiFrLcIqhGqx8uj3cO7iw2hjXLyFEoyGUz77md/mj198HYHHT/zYx9lee5Tuap+l9S3uFRmdXgcxHXN4e4KUEHkwyFNa1RpIZ5544losQXBazC7iJ84a39XGocG6KYAAdF6hTU1VOW6G1hrVoDJVVTcHj8bssClWqqp6Ew/nrIrqLGqzKK7DcNFmXnDkoK5L4uVVli58hMlgFwcYLw4yC7XkgxlaW4ytEMbDWoMuPf7RL/8ez77wPHleOs8aYGlpiXw2Yz6fO66JEPzPP/szXLp0mSjoNWHhliaKvLlu41qXIsfgjE4XJq9Yxzk0aO7c2WF1/TLPPPMMWkiiJCYOIkZHhxzv7/HQQw8xOtylKOcoTzAdzfCjkPFoQpbm1FV5YgWSZpqqGLO01OJ4PHdokVK0wpB5nmNqjR9G5GnG4OgY3/cYjUZESUxVlnQ6HbIso2zk/1KAFAopPJQK0XXNfDZDBZJuZwlT+6gwAhmQJG3wgsbzTJx4ramGGiHEtxLf/zzHpcvrdLs99vf3mEymWFuy0muztbbC8f6QOzv3CUKF9CXIhDzN8EOf5aU+aZpydDxCKMtoMqWSbVqrLW7d3iFpdcEv2Frf5LFHP4YyUNVtZlnKB57YYjbNefGFA7LpqxxU+5T3Z3iqph0H/ND3fz+/+Cs/R1kI/sF//0+oQp94qeXABgyerMl1hbQetZkjrcGTsglxzpjXNUVRUecZtTFgQoI4wROKWhuMda7SgYvGg9ohj1YUFLUl7vZ45N3fznlxja999Tr1Ws2PffK7+MPf+X3eePGb9LqKTj/h6PYNnry8yfd9+MMMb+4ji5KNS5tYJZnNh+zu3aNKC77yR1/m9z5/nfUViS9KgjR/2/l4xyLH95wpnlQCYwSeD4LakaqkOrlhvCbUTXogrcH67oJBUVcSK2qkpzCmwvN9jAY80yxSCqw7DQS+i3Q4IU4ajftRUBmwlUEKfbLwhVLx6//D1/A9j7WNc8zGRzz5xFOMBgcc7u4xmrqsmtX+MsurawjfJ89TjNF4KqTT6tDr9ajrmizXDF/u8cevJDz2PT02zh9Ql071RWixtkYFCmE0HgYrPGxdYpVuDBMdUUs3p08AbRwc/KkfeoIf/L6H+Luf+iPSYcrnfvU+7358qfk/jsNkDNRGoM0D2hWBdqfL8WjI+c11smxEXkjCoIdFunR1bVhaXWVjbZXpZEy0ukJVO0fm5eVlZpMho9GIjbWIwfCQlZUlpJXkeYlSmqwo2d3dIy8qvvilP2E+z/CaotD3/dPWVN20/+yiMIY4jrEI/CDAWIFSPrfv3uHwcMiNu/fodLrOCEwprt+6gxdGBJVhMh7Sb/cZHA/wPI+9/fus9PsUGD740ad47pvPgpAsLy/xv//zT/Ndn/gER5M5pVb0L6wwm8/48leepjYenV6HbpKwNxpy43bN0dGE2PPoJJa8yBmPR1y8eIkobjOrpyz1+8yGU1fwVhYPQZ5N8KUlbsUICSvLD8YMcDGEMPjCEkio9LeSjuEUybHWYigRRuH1V08eW2zyRkt6/TZlmmK1QKF5zwffRxAFeMojiiLqSjMcDPj0Z/6Q+/f2eejhNX7y3/nb5PMxrU6fMnC8B601MoxQb5Gxn/2dWmsnb7aWutYY08jHhWJhDLo42S9k5kEQNO0pF9gppXQ+PU1Rs2hlLa7/LBJwVuF1lrS84H+4dQWipS2i9hrFaLB44yf36oMaJ4RrazEE/MZnv8I3n3mJ0XxEWdYnCFmWFaAdelVkrp3043/9b7G81OK/+Zn/nIeuPUSVpShPIq3C2vot5OnGPNHYE2THYClqhR/0ePb5P2A8TSlrV2jMKicG6Xa7pJMpo1nKcDxh/+CYOImZznPSoiArixPfr7OS/XYYIYxGVz7TaUZeV/hRSOQpsrLAaMOjjz7C7du3SdMU0aBqo9EIAC84hVuEFCRJC62LExXrbDKi2+pSlpYoipwEXkm8KHQcwAUXTLhCT8iTPB88/53P+P9fR2ZyVOVRSY31wfoQBDFxGCHEhCDwCEMPP4D5fE4QBIS+z3Q6RUpJmARuL/E0SSemNjXtbkSgAsdVFTCZOEf646MjyqpiNpni+yGrq4reUouNjVW06pKPM97zxBOsn1tjfaPP66+9wsOPXmL74av8ws//L/z7f+9d+FHgvnO6JAljjK2xZYquK8oiQ0mJNZq6qqhr508nOF1pREPwrsqCOApZGOlipbMfCDyqWpC0lrj3yp9wYXuFbzz7J9y/+watSFHUOZ21NlEcM5lN2Tq/xRe//Idst1bgsKbdi7i7e5/P/u5vsL+/w7mtLZ6/8QY6hGsX2yjf8q6Vt4fl3nGWlbRoa5BCIIV1p/FGFucuTjpVlHISb2t1Y3Mv0dJifEvleWi9UFK4jc569kS66cIu/aagslR184WXAmFcT1ZYixNACIwEWzv0JC9KOl2fupQEvk8UdthaW0cazZe++kUeunQNX1hWNs8zngyQ0klc15a3yMbDpthRTGdjkliRZSPaSYcXPq35Zr1C4Pkk7Q6DwQG9DY8f+jdL8Bsli3ZydlGfLsD6zELo3JItZV2QJAmtTpu/8VNP8fP/3jd59cu3ODi6yPJyTKVrSl2TlgVF9afD1n9e4/LVh7l/+w1qXdPtbpDOR1hRMxjmdJIWJs+xVjKfzei1G9O/JrJib3eXOPQo0oxOy+fW7QOOjva4duUqrThhOByxvrZBUVqKWvLazTukRUVY55RFSRRFFFHENHcGWGV9mpCslIdUCiF9klaP2Tyj0jVFUbK5tU1/bYPf/dwfME3nTGdDJpMhvp8AmuXlPlJYlHIn8VqnHNYF7Vaftc42Ur+ILgYcHe03G2JBlVeMihHPzaacWwvZ6Bq8pMP6xho3bt5hms9pJwo/aLG0vIKvDPl4wvr2GkHUxXoxQWSRoqQoCtpRjPU9JqMJ1y5uczgYYnRNnER43oPBxBetYgkOIVUWWUnMCXTUuGeLGnHma26MZHnjKlcuPowxhvl8TpbOUEqxurXBxrmr/PhfC0jnlkAu0Vnusby0RFmkBFFMbCWBijmcHfOjP/59xIniv/r7P81/+B//J5T5nMwL8P3AqfEkJDJw97Q0SN9zPf+GZGq1chLxuqYsstN2mxD4fuAkwL5/0mZacHDiuHVSFCzaUkKIE97OglhcloVbgJV/UtSEYdx8DuZNLS1rbeOPAyrpEfa3kMNFW/bBS8hPyM/C8Kv/2x/wpa8/x9FkcKJKKytNWWn82l2rqC3WKndi1obBIOXf+omfbIjaFWEIn/7n/wglfceDI8UaBaLC2MbAVUhKbXn1+g5f/fKzfOPZb558zlpblFCM65RrDz1Mt91hPhtz/94u4/kUL0g4Hk4JAh9hLKZBR+pKU1Ulxgpqq7m1d8iljRVSKkRdEEmPrKhodwJ8T1IUBXdu3UAKxcbaGu1uj1u3bp18JnVan7TUknaLIPQarlaBRFJXGYeHd2glPXqtGKNdARdhGwfhRcF7uk4jPf6sHLY/y/A8S11nxJHCUzFx4iO0JZ+VbG9uo3VJXaXM85Qir1hZXiafp2AsnU7CID3GC3wunL/APJ0xn87Z2tok8fvcvP4GOzs7UBuW+n0QHqsrK2xtbpNmM65c2WJ1bY2szpl7GauPPcruwT5f++of8dDDV/DLmCTqcXP/Ho9few+hSdG1R1WUSG3pJB3GozHDwyOy2ZTZZIwwNfk8YzqeIq2H8DxQTpEorUGbGikEpi4pMle0SaHQ2nnBTeYTeq0AGfQJl7okccy/fOU72D+4S9hT3L59D9Fpc5wdk3QSDsf77sA6vo+Na1baq4QtQRLF1HXCy9ef5d0fvcCHu13KwwOK8ZDYvv18viMnx6E0TmkURh6B56OEI6IqT+D5DVzctLHCICDwFL6S+L6HEoIohCiQBKFHHCpCX5BEklYkaQeCdiAJPYsnLb5ysnLfk/gCAl/hSfeYar5ETma8eNuWy+9dcSnQ1Ny+eZuXb7zMdDbmg+/9ANvb5wijhHt37mKwrK6uEAUhg9ExSdxmY2OTIpsSBjFVVWC1RtgaU1dEoY9Sijjy8D2P2ZHi6c9dZrTzCPdvJeSFpayd429apKR5Tlbk5GVBUZWUdXXCSyjriro2PPXkOkkSIaXH7v25+z/a8RPq2qmvqvLBLab9/gqBH1JXNWUlMJWmrKcIKcmrHKl8FnWvsJrZdHjCR/KEBG1IYucovbK8jEAwHIzAusUtDGNarS5B0EEbQ13k1EWFNpqiKKjr+kQR41qaHkEQs4i9SJI2Qnp4nuNcRHHMxvo6S0tL+IGH5wv6/S5BEPDQtYcJA0Wezjg6Pmq4Gj6+cvOWFzmf/4MvIa1iY7XLCy8+37gzz+i0E6p8znw64vXr90A5tZwjqiq00RwfjSmLjOV+n7J24allUZJmGdo6N+6yyEBKjo6OUb7CArPxkNAThL6H73tUD9ISAIdWSOWCZeHNKpvFWJgXWmuR+NSyBVKe3J+uIHCF6A/8lR+lnAmefPx9fM/3f5JWkjTtoPKEJ+ElMRfPr1EUJb/wi7/O+vY6Ozs7TCYTyrI84ZkZY8iy7KSNDZwWOM09UBRFc//XJ3wZNw/u/5yEthbFCVdjgRJUVUWWZSxSyBfFShiG+L5/wrVxp19x8py3cnLOclMWn2EYrZz8e0GifqBIjvCwwsNoj529CbN5esLVWxRoi2tZ/L0gX8tmLrOyJs0rsgImmeIHfvBf57d/6/cxZYYpTos5xy8MKUvBwWHK7/7OF3juueeZTqdkWUZVVRTl/03bmwVblqV3fb+11p7PdKe8N/PmVFlDV0+lUjctZCEkIXAYhy1AYhDYDmyHgTfsBwIPEQ4UfnEQQYDxE2CwzRAoDIEcmCAMLYHUtNDQSGq1urumrqqsnO987pn2vNfgh7XPyczG1URA54o4VZF3ODfzrr33+r7/9x9ayqomiQcE1sf3nE/nXCxXWCuoaz8esNYyTOKeS2mfGxXSo7ynsxVt1wCGQDiyOMQahbYgVMhkMtnsddM0JEmy2bMwDDd7JXoOYF3XfTHWbDhc1lrSNPW2JjJASl/UJElClmUkSUKSJAwGg80ryz7eJfffZW0nGdtpxtWtba5ubZECpu1YLRfotmU2m6JCQVlXDAYD/OXl1YJaa9LhkM52/XXfUuYloYo4fnLEzs6O51RGIUjJ7t4BURwhlLc+abqS6eyEuswJI0VrG0QIZ+cn6LahqkouZ+dYU/PS1SuItsBpTVNXhIFCOMt8dklZLAmUPwfauqQqcoSz0HNmnfXnpDGaQPqgImEtum0QPSNZCOFpJSqgbTRRtk0VhVw0c3IKjpZTzDAk3R8gE8nW3oTZ6pIoVYwmGTKGVbXgycUTjs4ecfP2VfYPr3Dn1VsMtlKOTu9z7doWr75ynfHhxyPm3xHJEVjP9hfeUt1ZTZKEuN4/XgnvhumTwRUSn/KKEJ6EGgU+AyXwNtJruyElhCcse3gGK3q7d0E/M+6rRAGBEjgnsFZhnGd0W2dQCAgV+7dT3v5lzQf33md/58A/2LRlsLVHMTvn9PyEMM7QdU2eF/6gjWOEs+RlQVnk7O36dG3bVSyXlvn8gmsHN4njgKbMEV1OZxVv/UrOva8N2dmKeOM/GnBwc0lrPTnX51o9L5FFCJrWd2KBE2TJiNHeAIqAt752yUuvZjRtS9dqms7SdRajvzs32v/fevToEXESY4ymKBeYuqJxAtPWpElE2WiMsWTZACEMcSSRSlDUNTeuHdJWOcPhkO3JFsu8ZjAYEaUprdFUVU3XdezsXOHkbErTVgg01jmautmMFJRSmLo3YXMSYxxp4pnxUvpAVyEE4/EWzkFR5FggDBV723tcXJxx4+odfuInfoK/+lf/Ek1dMx4PsNbStjV1VRFaR5QoalPhrMNdLkAtKSrHarXifH6JwFAufaJ4FKUbk7Qgivjtn/4+3vq13+D2jesspueUZYsTMJ3OiKJR3xE6TNsRhAGrntOSpjHl5SmD8ZjtyYgojLAvMItsvaQUODTwcbLYp0WPsY7h7iG2v0eVUjS1J/BGkQEJf/xP/DdsbU8wVhKFUU8yvfRGbEFAMshwuuYr/+rXsTYlzhIuzs+5fuc2ArzCrR8FxVG4IRwL8TRHyjlvOta27XNFmTEG17YIYTbFi5SS1Wr1XKHjEUBfmDrnNsUUeLWVP/jWpOTwOWl505tQPju6cs4nK6+LhijbfqFeKt++hJJeyt1opqsL6qbeoDjPolXrRuFZR2iPcDm61kdnaG0IscxbwZ//y3+L0SQBY0gGCXv7NxDSK47u3j/m53/+V3jnvQ9o2watDcb49wzjkCxLSdOEg4MbfPTRR5yeX1Lplp1sSNm0REGAUt4FXCLo+t+xEhIrHdaBkIr5qiJQgvEww2hN3axAKUQf8WGNR+QmkwnHx8dsbXkBSdM0dPppgSo2wg9DmoyIIsVy5RWVSdSgtaUxxj+HhSSMg801C08dsmWgvNL3BRWtgbZsDTLPBTMttqhJswFVWdI2NYPBAOss48kEGQ5ZLZckUUTXtlSrnGx7gAoCqrJmNl/4UbiIGKRpH0zsOLx+nSLPWeZzBlnG7u4EQ0tdN2iryZcLrh68RJDETOQWNTVlXjIKEm8dojuOH91jcXZCcmOC0Q1WSapiSdMUaN1g2ob7H32IcD4rzXYdYaj8Pvd1QVNXpNnAj3QtdI1GBwEyDBF4tXUg/BnuVAKDMVJYThaP0XHEeZVTi44r+1d4/OARUay4nF14YGUQo51jMZtSdy33Hz6gzAu0s8wvp4RK8eTkCbcPDniynH/8fnynzYoCgRMaJwWBABUocJYw6PNnhETJCCEcoRK9jbhGKoiU6G9ciXOy551oXzDxFInxnB/veYN0COE9PpwNkAqcFSD84deYAG07FGJDItt93T8op5eXDKKM4uwxL915jVVZcDlfcPPWHcqypKkrojBAjSe0rSZNM6oq5+b12wRRSJmvqPM5RigOdvcIQkdXL2naFqNbpHUUdQO6JV86Hv81y/U3M77/DzTeMNFahPKxD9p5dY7BQf/QiBAERhMECU4pjr9VUrYNVduiO2gaLyH1BMcXs4I0QSjHMASs5nQ6xyUpumnYDrap2oLKJURhSCYU2jQ4Os+W70qcDBiOxuzvbBMENSoMyAZDtO4IghCnQkIF/+IXf5G2LNC6Rdohti1JkoyL85NNd9bWpe+eQ4UTkiDMvCXZOiuu9RDo9PKci9klXWcomxWBEsRJzIP7R9hKM4hT5rNLgiRCaEuW+YdLW66YjFL2b9ziG7/6FUSgcVayuLigLlYMshFl3jAZDDhbzNme7JCGETvjCWePjvm+7/ksR4tTQmtpG6jynP3dbYQyONFiTUMYKVReEo1iqqZla/sK51OJaRsUIelgi6p9MX4cFtdnwzmkE37uC3jfoj7WYPPVgvX4Khzus3fj05g2p6l83kye54zHE69qaiom4zHvf+tdbGu58/prWGPodMVADlFKcePmbf7HP/fn+Qf/1/+BebMFnbB/5Sqms2A1TV36B7k1NK0vNJxUiO4pufhZLszaRNABURw/N1pYf816HLVGMcJQ9QVJsCmigA0Z2b/iTae/5vWsi6r1x9cjsqecnQClQE12cVJCb4EhjMO9IDUOAKo/jEM4ffAhWj/1/1k7omsNk8lkg7rVdU0YeJRDa806iD4IlUfFTIexIf/DT/11YhUyzCL2diJ+4Id+B3UT8uVf+nXOzs5YlcVzY3ZP4PYIc7wz4f79ezx4cB+EI5OKtkf1pKMvGP01tnbddtb6ptjZvmhSdNpyMVv6zzsH6M0+dW2FkuCWK5RSnJ2dIWXvfdT/+4fDAQKPxCkhcdbRlBWhMHRVSREohmlCZ7ypYzyYEAaSZDDYWAmIfgoRBaHnZb+gMnY03uK9b33Azu4On/7Up3n46CEqtCSRoG5W7I6vYUVH1ZWsFiucsag44LLnPL6yMyGUMeWqJFMDRuMh0yczbt6+hrOOvCopq5Kd3V1efuU23/rWuxzPKo6OHjMcZ8wvFjipGDt/P5fLHN1qkiDFWcVoMkaLhvtvv83Vvd/gzcNbCFtT5hXF5SWmK4iE4+vvvUMgHHVdYpyPdRKAsZrAGnTTMhgFNKWfBigpadqWUDpClyBU1PtYSqyTaKdoGXJ5fpeYljAcsqxqZBSwWCzYPzigygsPfmjLyXyBlJJhNmDvYI/FqqYoSz56+JD93QPyyxWj/S3uTRdsHVz72P34jm2mHxP5VO1nc5zAw2traFKInoSspC9Y1uZcwo8e1g8YpUIkXonk7LPOx+uHmtrkRoVRDx9LQaDkphpXQqJEP0ILQoLIUZQlTdMwmYzY2T1gOl/SVjlRFHH33l2apuH27TtYDBcX51jnSIcpaTpgOj9ltZg/fVg2Fas6pyhWtF1HmqabTi+NQvJiTlkt0brjvX91zmIW0bSaptNUbUfTj6mqpqOpe4TGQN1qlquGtg760D9Lqy1t42fg1vSy1xcXXUWkYJilpEnEW+++Q9F0rPKcJ4+PmE6nREFIEoLVFda1FGVN02qcgNWyIEm8MVcQR0jp+nBMjcIRRQGL+ZwoUJR5QdM8PUyKsh8pRHHfPQtf/fOUgyRwBOsuAW+a2DQt0+m0twnwZPN1F/vLv/JlsizbHObD4dAX4fS+Pk1DU7e88dk3EFJhupYwhEaXdLpjtVqwc2UXjebDuw8wtiFQ3izuyZMnXM6n1GUOzlsnRHHIaDwgtuCamiwMSJOYJIkYDybgPESulJe+B2HG/XtPkOGLkZA/u566+j7981Obdr/W4yHRLbHFjKbI/ViiR0fW/Ja2rbk4PaEuclarFWWZ0zSVV/P0hxLWMZjscXGx4MbODb721XfIxkPiobdqWBOCn/JMxEYKvnZCbnvU4VnJ+fr911/zrGw8DMOnmViwQWO8KVm3MQdcox7ra+vZn79Ge9afX4/pnv3z+ncZRIPnfsceeXpxo8fOGI/qGs2ta1skKmI8HmM77YmfDpyzLJaXtG2J7AtZT/LUGG2Jk4woTnv5r0RbiXGODkPRVFwWJY9OSv7xP/4SX/rSz9M1Za9odYShYmdrArBBy/b29hiNJhjdUbUdsfLjByUDdNVQNfUmZmMjw8f7myl83f3UkdpiHVi3buR6sYXuzeVaS1m1PnNue3tz1kgEaZz0kQ99Mr2Aum1I44ThIEVKgXCeA+Y0XjEmQ4SKkCpCqgCpIv8xGYJUCKkQ8sUQj2dliQkVs7Jg2dYQRxTlEiktUeh5ZlXVEgQxWZbhHNR1QxiGHnmSimsH17i2f8je1hWG8ZjJYIIUkqqqEECSph7hrFbM8hmrOqcTlmVRUHcdy7ri8dkZy7LkwePHrBYr6rIhTQfUdYPRhpdu3GR5OSUMIAgEpmvQ2qd9G9NRlwXL+QJrDFuTEWGgMFoTBQF1XROEAXXtz17dj6dZT2eswdqmd0b2sUkWCOWQwAUETnJ5OkO0kkEy4OL8gjiKqIqSQTbg6sFV4mTI3pVD7t0/ZrEoeOftD1gWFdkgQ+cdf/TH/xjL0lE4RblYfux+/Bt8ciCMFIFyvorreTHrWkf0zlVr6NhajcCnDisVopSHrJQMUSIgVAFIP8ISSm7GU1rr3uTpqfrBxyes38tHJUSBIAjF5s+qdyb+8T/1Bbqu4+7je0RZyt72hPHODmfnx0gcs/mcr3z1V8Eqrl69RhjGnJ4eM708ZbFYUNYlTVejjffuWFepRndo0xGEvlCrqgqrO5zRzBeXRELys3/F8dEHGW2naGpNVbYYDbpztI3FaEHbWNrGcPeBBqNwKG59Zouq6mgaQ9f18lqn/k1b8u+0ynxJVVfMZnPqznvyVE3L4+MT5rMF4Dh7fJdydYk2lmVec3RywY1rh9SdZpUXnIt4JfEAACAASURBVJydsyhKqqYkikOqquBgfx+Fo1oVKBxN2206UB/0qL3EXgZEcQYIfvrv/QNUEHieRxBijPZ5UGWJ6fO7yqLkyePHfPqTr1PXJUFvVbDIl4yHGU3b0NQNgzRlOZsTxTG6bX1YrIMyL/jZ//eL/Pbf+UP8Bz/6u0jjkPn8gqap6HRL1ZS0pqIsDNtbW7R1idYtg8GQ2WrFIE0R2nA+PUG7lqrMvQLQtCzLGV3bceXKHmkyJApTnhydEGWZjymJJdPFnGJVvJC9fDauYI3SPIe+O4UgxFnvfuupppKubcnzBbPTEy6fHBEH0oeqCkuWJYzHW1jnyIucOI2oVivm0ylVnnN5PuX09JRHH93l4uKYn/qf/yK/5w/8Mf7Xv/ZXuHL9NrgQi1c7VVWFMZrOODpjKYrVhpflnMGYjq5rnvJKlEdm8jxnuZjRdQ1d1/R+R2rDwShL7yCtVLhRWCnlP++Vk099cta8jk2BFQZoHKZXdK0LpbXfztpPxxjjjR2dpLP+c9b5sfqLWtOTM86PTjh7csSf+hN/nL0RhKZCSt9JKxUgrGYYJ4wHGUnQgmmIA0UoBUksQDdI2xshhhFOeIPNtvX3U9dpiqbGILmcV5xdnCPR7I2HHGxtEQjD933h83z2U6/z2suvMIwTTo8e8+jJI+LA2xWIQNK2HTXG0xJgg7B53ow3GgwCRSQUsXrKe8JP9Tfj/GeDWQGMsSRJwvTi4jmF1hr97fTTbLKu6yir3Bfcw5BRFtN2mqKtexdlniGMPxXK4MPceF4f9N1dVioObt0k2hrw9pMPuLAzTquCRddBqLg4PyYUEDpJ1AmGYYrRFiUU43REJCRtUdGUFTduXCeKI6zRULS4OMJ1FjGvqMqa89MF56cLFouSOB6xnGt2x9d5+fCQ7TSmXS3Ym4wJVUzTFNw7vc90NSMOAromp7Ul6XCbSI2RzqFNTjrc8VMF7c0zozAkz3OqsiJIU1SUMBiMWcznZGlI0+a0rX9uO2domhpnDU5bnPHEZOv8azi5SWAn7A92ubq/T1NpJsMrXD04ZHkxI0LSVCWPTh6j4oDHJ0+IBwl5vuT6/j6hDZAmpNWGn/lH/5C6bjh5skCbjy9Y/40n6pp/Y6zFODDrTAun+srNX0LWGh846SxPG57efKrn6Rhne/+GdWfZ58wo5R8im67+6cX/bNFjWc9mHVjtQz0DuPMDwx4lgunlKe/ff5euKtjfv0YcJxhruHl4DXrjrLyu2NveYWdrh7Is2d2+Qp7PWSwuabuK84szqrqkrkuE85yHMAwJlCJQIUY3NE3BxfQY0Tre+WJLW8dexeI818QjXU9NxqxzPPraHCX9Q+DKnawPV+xHcviR3YskN+ZF7h/UQiGQhHFM03SMhhMeP3nC9mSLWzcOkTisDKgai1CxH3YoRV5VZMMxx+dnFMWKxWKG1pa7d+9iEeRlyWRr1Kto7IaA2ukOpECKANE/2L51997Gv0QbDbaf+xrdK2IEi8Wyj7qwWNMi+g4hikJWy0sG4xHOWXSPAnRdR9d2OGu9d0youDg747VPvs4v/9KvcnDlAOEctvXz5rIsCENFXqxIsxFNWZEv5gwGI5IkocrLDb8kG6QopZgXK2pbM1suMJ3j+OgYgUMpyXCY4ByMRgPiWKKkQHcvxtxxjTo8a+wmpXiu+PHX1boR8d/TEXNw57PITjNOM6pVQZ7nBEG4QWFUFLK7v8/+/j7WacoeFa3rigDDfHqG0zVn58cbrss6s2rNIfEdvKPtKpq2ek6uvVZJrQuLdcHxrNqpLEu01pRlSVmWG3Ly+vBrmoY8z5+S2OXTsU3TNFSVR598seUPyzVXZ/1z13+nNZqzJvo+a1z47bL3F7b6t7bOESURf/w//Q+5ujtkmESMkwhMRxSGpFFAHCmcMkzGMXEUoqQgDkPAIDAEQuKcJktSlsscaxx11/lxlhDUjUYb50fAVU2rNUY3hFLy+N5ddocZu4MRWRqD0WjnvOS7MzijkUoQC4XWPr6m7Vqs8wiOExJUQGssBotxhjCQGzUgPJ8ev0HwN8R0hwpChql3Ck+S2BdJvU9Q13XeKd05EAoZBITSKwyrztC1DQ4FPqz8uUmDR5I8+oUziBeksJrPlxRFxWRrm9PpGY9OTyCKqTpDkmZgDHEYUBcli4sZutUEKiRLh6RxSii92mm1WvH48RM6o+m0QdcdeVnymU99BmpNvsx5+OCIYt5Qlx1tpRmlE6QLiYxAGc1yOmVrNCYMEpqmIRsNSIcDAqGIgoCyqzEWIpURBzFhKAijIYGKUBJGgxQQhEFMMsigD8qezefsbW9xcXrslZHSoruGjWrNWs+H7GOcPFnZ0FnFclkjhGK+nKGt4fT4nNPTU5qqZmuyRRwnRFnGbH5JXq6oqpzRcEBd5GyNJt4YU0qIQpy1DKOIOB1/7H58xyJnnS+kjYW1cNyC7Uxf2Kxl5Arjebb4KAPQppd49l2Udfa5BzL4RGHoLdX7dCqB6r1z5KbICZTYVP2B8Kqvte+K/66AH/nDn+BiOmc03mFrvM8HH33Ak5OHrPKS27duY40nHJZlQZpE3L37LrPZlDRNEUKRZSPatmM4HKGUn917KLzxttVWE67TeJ0liWPiKKIsc7q54+FvTQhDn5Xk/65ygzQFgZ9nvv+VY6xusLYhCsNvG/mtC7oX1y5WVYUMAhbLFW3dkiYDDw+OxqTpgOFowO72DqtVwXxZYR0gFdPplNFojJSK4XCMxtJ1rQ9s1BoVxTRNQ1GXBKEkStPnZvztM4faOuLjz/yZP4s2zxjAmY66LjeqmLW8GeDk5Ii69gWHtZYf+uEfxhg/8ojjmEE6IEtSun68uFaglGVOHAdYKTDWcfPGLcqFH0HptsN0HUVeIAO4nC9pu5a8WNG2LZ/4xCcZDoY4B8vlkqL2/i95UWL9Bc7p6ZR79+7Rtg2hNNTVCpygqhqcgThKqPvv+26vZ4sZ4wRWyJ74bjyh2/lDxvZNyrqDHoyvMrlyg3I5xwiHcAHD7W2ECKnrlsViwSDbYm/3GjKUdD3RNQgirGtZrZaUVYGyDmc6bNeSL+aUyxmRclTFConF6tYfJsahm64fPzU0TUXT1VRNhVShH08KQZIkm/sgCEOSJIMeFfL3YuWvt85fJ+uCrG1rtF5ze1yffh4io5A4SwnTZFNEBULitMa0Xa/MKmiaalP4+EKnoW1ruqbBWOvRVeuvT/ECZ8lJPCAOM+Iow4YRt26/yR/9yd9HpDxCkqUpURKhhaPravJVR1WaTRG4zFeEQdAndlvCUNLppideByAkurMYbfz1XBT+XhQSY57yo4qm5e5HHzGbHXN6+oiyLJF4a4JOG4STfkwmfZyE7QUWold/iZ73BP3kokfNnm1Wn/UtWhc6a/VYVVVobVgW+abIXHvv+B8lsMZuGmKlFKEKSOKYJ0+OMMbihEIFMSII/UhKBAgZoJR/IZVXkooXw5fzpOmO9975EOUiIpUiTIASAW3d4YygqTTzywVKKqqyJo4SZtNLcBCHAy4u5lxeLHj8+IjZ5YKqrFkuFmyPxlxOL9na3eNrX32P+WzBq6++QigUSRSjO194dq2lqQ0gqaqWNB0yHI4ZZhPSZEhR1GgjuHH9NrrTREnsz7c0JY4CsiwjihKiKPaoXOKLnDAMfFEdBWjTkmUJbVsTBgG665DC00vW6Km1BqP7SYXR6K4lCiOqqqHpDGXdsipyP6LWhs5Ako35+tc+4vIyZ3uyTRxGKKEoy4r3P7xLWdVYB1EUYy3s7u5yfnr+sfvxHYeS3mbf9wfaaLQRdMpiaUh7ohHWoKQnna0dfHv6DIHsvF7eKQIRoB3IZ7g9zrGR2EolEN/WiT5loUqkMITKk5jDvmtz1htZIRryi5KuM/zCz3+JP/yH/iCPHj3gpTuv8ZvTr/L48WM66+isYu/KIcUq5+jkEVev3GS5nHN+cYQMvIR5sZiRZcOeUwR1U6KCBGktcTzg6PgBwoGxhqIssc4z9e/+ywuSvYw7r5m+ee7QtkMoS1kqfus3aubnfWcoNEI6/9p048K3Hu7FjaviwYgkGTOLCmQ8otaQxUMuppfsTzJmsxVRnFE7xUgpNAKTF1zdzri8fMSsThgOGkRpEcYxHkRczi6JVYhSKYGSFFVFHMYeYdGaLAsQztJqB9IbTkkpiQS8+Tt+lPd+7Zc4n0+5ee065WrJ1s4Egy+ST89PMbomCBVXruwzPT2jqit+5md+Gmkc2/t7nD+a0wYdg71tRFOTJonvzI1BipTf8aO/m9iGCODf+8Ef4Bf+2T9DxinbO1ssVhVd01BWBffuPyS8NaFuO67GA77+m18jr0q2xilNY8hnK2IZ0LkQXZUU8wXpYMjO3g5RLFnMp+zt7rJaaTqrMa4gzEY05sXFdHw72gAgiPxYQAhwyh9kVmFMgLWC7cM75Is5Il/xzXe+zM3PfY7rey8RJwlNUxPHGaApK1+QrB2LpZQsl0uUlAy3JqyqEldXDAfj53xugsg3H2ulEr2pn3yGUK8NhGG0KUbr2o8Yosh76qwVUev3WUuEgWdQmKAnEbveeNTfR+kzBbZUyo8utC9i6FGaNYckSQY9L6neFDqy9/nSlS/+VbJFvDUiHexsvL1exBoN2k0h4LBUqxmBMvzpP/VHmM8LTk6PODu75MMHD9FdSDhOmc5KOiFQQUisJG3XoGS0ye6KQ0kQiQ3fT0qFEwKDZXf/CtPplLLRXNkeIlyHE9A2hpVscMzBWYL+GVV3HWGc0hQNrdOoQBGFIXVd+aw4rFdn4REbYzpc7yi9lnWvi5pnR4jABtlbryiKkRKyPn18NBp5L56+Ue6MJo0TlPQ5V0Hv6NyUnttjnUJFGUHgUNGg/71q75gcCIIw6vlrLwaZu5yt0NZR1ZpiZmnamk99YohtHen2COsMTa5xWjFbLCjbBiekD7yUIXc/eOQLgLzD6IDF5WM++dqrnD/8gN0s4fH0Pjf2D/n8977Je3ff573Ft3j15VucnZwhVcJivkLHkqMnT5AyYLV4zNZkj8XsnGEZkcYDttOMouo4uHoTawxJlGGQRGGMEoJs4L3dFtMLgsjzCo32OYdl2RInY3TbECcpYaB6axmBwBEFAZ3RiF4cYa3umzBQzrCcXRKZgvc/nPL667cIqIjShEE0ZJ5XfPWth2zvXSGMBA8+OOa1l64jtGCV19QGksmA+WLpjR2tYzVbMT/7t+TkmD4522jnE0V7GPfB8SlGe6JiZw2dXsOfHa0VtJ3b8ADWGU6N7mi73nKdPj+mJ9M9F4vwzIVnLT5lVvoOLY7DzQw+kH3UgnAEgeLRNxu2JrtMhkOUCtDaUpY52TDF4SPgjW1ou4prV68yHk7Y2tkmz3PqtqIqStYZVIvFJWns4T2Bom1rvHmWYXtrh/lyhgoigsBLFPN8Rb6a8fhL8LN//5KmTJife6vLt38z5It/p+Ib/+jIQ35hwO3PTtg/FM/9e5VSXoH2AtVVR09OaNsG03UcHh7SVDW666grz5tZLJdUdbmB5rMs814TacJ4NGFvd9ur1IYpIg7QwispvC9Ng5SCPC82iMtGzSLFc1Jhf0jBj//+34+Qkr/8l/4ibduRZcOesOzh5aBX0CRxysnJGQjFa6++RiADhsMhwlhGoxFxHNMWFUkQ0XYdxvrfal3XOAd/46//VbCag70dUBLdNdw69Gz83St7BEpx995HPDk9p+08+XY8yLBdx9bWDovZnFdffQUVeEi5LGrvsSElH967z8NHj4mCkPOzM7QxuEDS5hUOePLk+IXs5bebRopn/utvawUE/j60/qCzBtLRHlJKTh7cR6Uhv/alL/Po3gOqqtygZ0W5om6KntjtOXMXFxeAPyyvHF5lsDVmOBw+LSieGf340VPneQSweY/11wZBjLXPj4SelUqvScvr91yTzddFQBQ9K2ZQm/twPBlT1/VT9KeuaZuGoioxvckgwo+EtNa+SerBmfWIbY1oyDjl4M4b7N58nd29lxht75IMRy9kLwFuXtvyr/0xN/fHTAaSu/fu8s1vvcP79z7go+Mpea25cvUm+1cPGU92eenmIbcO9hhGgkg6IiXAakIl+7Gv6McGmjCQKCU3HjPr/0dRxHS+YFVUVE23GSdWTUfVGFDeE8eYvjiMlfdPEU9jI/yI8Sk3c4Om9fu4/v0+Sz94lo/zrIWA33OzIcWvSelr5H69/88SyJM0pW70c6o5HwXRF6W9aq73Q+k/xlOm/nd5be/sY41gMW85eaTBCLZGeyynKz5470PasqMpWqbHl+TLklAG5HlBU9Y0VUORVzSV9x07P5uTJClVVZEOBpw+fIxuNNPlig8/+IgojCnzDttpurJhPl2QxCkPHxxhrcA5yXy+4vz8AqthdrnAWsGtWy+RpSPPkXRrH6ie4G4NdV2jVETQ76O20GlNmqRkaUJVrZDSUpZL4jBECkGolG+K8PYQayTHB3X7cVVbF0gHF2czblzdYjsbI7UgCzOybMTpxRwpFcvLnKZoyJIIOrCtwznJZ9/4LHu7V0nTDIwD7SjmBVe2tj52P74jkuNt4h3WSaRcH8rw5JHj9oEh6HObDJ63Yp0njxkpUc4ggEBKOi3Q9ul7SgxC0nt79Bd67zWjhPQHv/M5uRMpWTh/kArr57XS2yDgrA9GFMJxMZvhTMvWaMKv/eZXieOYum65dnBIsfSOrssiZ7WasbO1zbXD2xw9ecTezhUkgjAKaZoaFQjatsOYzmdzCYtuO29+3lmqumSQZcwuL9jZ3iONEy4vz2i6Dq33mb1b8sX5EVGQsvd6wrtfPmV1WSJMAMLLH3/XH7mFUoKmMVic57w4ASLEvEBIPBsOkQLKIgcT0NUNg2wAzpKmCfPlEim94mSxXHLl4Bon1ZKibum0lxE7azGdf6BUdU0YhhRFgbYGhKJpDXlePEcu1FrT6YIokDi7zhxy/MW/8BcI4oRf/MV/gVJBD31LtPGxG13bolTABx/cJQxDylXOFz73vbzz3rv+4Wkcu7u7nDw5QihJOhhQFMUzY4+Y+SKnqwv+45/4vVycn9G1LWEQ8uabb/KtDx/ykz/5k/yN/+2vU8Yl77x/j+///Bs0TUU09AZieVkzHg8ZDQc0naVtFHXbsrO3y+VsxnQ2ZzAck8UpjWkRgUYlihtb2zwpJSp8QRJyQ+9gC9IZMAZJgLQKnMJogRMGLR2tqKiRDIe3uXH7c+i6JBxMSJMEeyOiWS7J53PSYYbpDDhHW9WkUYJuNUW+JIoDAhWyKhbsRfs4bSmagihM0Fqzmi/Y3t72PIyeR7Waz0myzBciUYJ1Aim8ZHh9yK0Ln7XKas25CcOwby4kTeMl41IGGwUYPW+vaXQ/5qhxShL1cTNOaxpjPLF9OPLk5l4VIqXEKUXb1GijNwcxsCG1BiogHF/3h3YQ4VT4PLH7u7ziwXDT3gks21f2STPFohXUuWS6WNKUDWXb0bXr6AqBRKLShL1hQpKlnJ1eUpSNHxNYSxQEOOXvw6L241yt9SbZ25j1fdsie3furuswVvRu09XmHjbGQCAIrfQob79PTdttOFEGtykY4zjeFK7rIunZOI31/q9f6yLIObcpktYfexbN8x/3vyulAuIo4nzux8JPPZIsVj7z85ynOaw5X7xA/uP0Ysn52ZKbN28Sx1N/PzQddd5w6/ZV8sXSk3hlQBQprJBIvOdcXTY8uHdGksUEgSWNEwZZSp7n7I0GBC6gRXE+XzBIx8zyS64dXMG2hkGUMBwPefLkCKVCojClKEoC5Q1Yrx9eY5o74jChrjVBlPDOu++y/9kv0NASZUOqYkFoDLr190sUxyAkxgg861WQJBF5UdPUBSJQxEnibQs6jbXOI8AiQK9diGWIcD4BoClzBI4syogGY5pZQX6x4PDgkNPzOUmYMdxLGWZjkoFidnbBKzdfpq5rvra8T1EUPLz/iO1RxuHePm3d4LRH2j9ufedxVecvgqrtvNJJgVMOREvbdYjIE+KMdV7thKA1Bin7CIh+JFO3AtundksCIgmCp653fpYLgfROytKBQ6FNyT98+xv8ns98nz+0ggjQqF6JZXAoq8Ep7nz6kCfvnlB3LZf3zrnz8i2SJOGjjz6iLmv2d/d8EdFZ4jil1TPSZMDJ6WPSQUY2HGCrGmd8eN+3PvgthklK9vKncBi0dhhrESrg9PSIJB1ijGGxnBLEEbppaZqWYZZx9MEZKh7y+ENLYBukbjDOkYaSRuRcvZ3QNBVVLz0PpERYqI1+oQGdkbAcHT3g4nKKFIa9rW2cNhzs7bKzs8N01RCFktl8SRxnOGPojOZyuSSLY8p8jkAwiTJOj4+I+xyhSIU4KXo1g6RuvT3+ulNvmopsMCGOQ+rS9oqPFtOuCMOMV155la/86m8ilKQzmiCIkFJSlQVSCp48eewfXs7wz3/un9JWJUEYUq5WvPnGG9y/d49Bmm0exlmW+WInkDy4/4Ask/z0P/gZ/vtbt73nC5qf/bl/ghCC6eySUCqOj48pRxmTyQ5dWXFyMWNZ1tR6yhc+/9sIAsnZ6YxwMEYoQVk1hErx0iuvIq1kvlywf+0aEJJXS4ZX9+mWK/Z2Pr7D+HdZ1njbdGMsLRaVRBxcvU46OmCQjQmTjFCFhFFKErRkKiHe2oJgD11MGR9c49Fbb2OyIVc+d42qLDdWDU3jjRuXyyXj4YiqWpHPL9jeurrZu8ViwdHREbduvrRR1kynU1KpCZMU5FWW84cE0SEAbVl6wvu3iQk8Qhs/53i8RojWPjhALzsvnzEClBv/m/V7tb0Sat3xr921u8ajiWVZPhfkaduuP1w9kromNxtjCGNJmA79ASmV970yL64BQQUeXOgP39F4mz/0+343bVFyMV3wi1/+Vd5675jjhWXWGequI4oU2+NtXrpzG2sizhc5wShkd2QoVjMWq3xz4AdBQBqpviDxoYoOja5Nj44HtNpCoGiNJRAdTlsaJwgDRTbMELYjG25RLme0ZYvtc7BEoHru5boAUQRCYX3CqQ/P1W0PGMgN4vMsR/MpTcERRSHW+ZEk0svWV1Wz+VrrNGEYE8chWSqwUvKtDx9iLbStV/ZVXUuKR/QRLUqsjVolVutN0/4iVtsKlIr54P0L3vyem+SrFeViQSDg/PiYa7tXGMYJSMWyzGmbFhVJru1f4+Hd+3z2U6+gnaGuKz73uTf4yle+wqc+9SqfefVV3vrlr/HO0RGPVxXXdw7YmewyGIQEXYspGnavXGe+rNjdnvTWKbe8gWcS061mpK3j9PSUYnHGzq2XCK1mtViwszemavy5HssGFSiGoxG2azw304I0kM9nyDBE6xprNZ3RbA+u0NY11joCFdG1DQifQek90PoIJ+do65KuaTl+eMbWMGciYt648xoPPjhj++Z1lBzy0d37VHGFiiU396/y9tfeodOWre2M1bLizU++zjDJeHTvPtvDsSfAf3w+53cucoxxmwC9tjM4EyJCx6dfzbDG0HYdYU8+MwbWZBzPZPcXle6sJxgLAc5HsgehZ7cDoDxx+TkVlbUILNPlOVcmu89U/X7MEYZeuaGE58dba7m8v+JytUDJkDgJmc1mm+4iEJL5aoETgiiWvPf+u4gwAGVIohghHAKF1m0f8ibQ2mLBxz1YQRAFtFWHdh7pmEwigiBivpwyGk1YXJ6S50uc7WiqnFiEHiaOE4g80a41Bb/zP7u1IVGWjUYbsCogQGDtvz6f/m4uiWaxLGg7w+72gCovKPKcWzeuotsaFYa+i9zeJi/zjbpl/8oWxcpLGgejMW3TMByPKPOC0Wjkw92aFvBE86osnyMer/evriuEUNRN3hPKDdbBu2+/432KcDjrnU5D6bvKpmnYv7rPjrbMZpf8zh/8fp78zP9D23VkQcStW7cYTSaUqxwRh3TWUNTVRuE1vZih64p0uMUXf+6fE4aSdJDw8OEDDm99kh/7sR/j7/+dn2Y8HnN1fwccVHVDEiU40bGzs8t8cYlxFXGSIUJHEmUcH59ysLPN3u4+y9mClz/xCl//5td5/c7rjKKUug9G3L9y9YXs5XD3FslwTBDt8JKJIUwIkj2idOzRhzDYjHjCwN9fQRgRDBSP339CUzbceeNNBjcOOL+YceXaAUZAW1aotSdRIDk/P8UYi240Bkcg/UE8zAbcuf0SBArpJEpHDALFow/e48ZLrxBFjiQeo3VDGMTeGFJ6npZUYe+l44331kTVNR+nLMvnuBtrdEcIR9vWvVrjaURDFEVeVdWPx7ykGdwzRVBXdwjTgXZYDFbwXJG0IR9rH8bbuQjlHNYYbNfhhHqhSI6zfdPX/wxnNKM0pRSWUVGRJpIwNMSRZZRKrm/tMxkecnxxzgf3L1guZp6Po2tUKGka50fune5J9hqLIwglbasJI4E1CQZP4DbGIPo0d+Xo/XP8Wkv010jIel/CONqYOfrRoXyqonMWq58mwj8tZOS/JkBZL3+9+usgCIMNuvPtX79GZ5SSxDIjHuxy884nePzRXYzR1HVLXbfYRhMGgtAIhJNAj+pEwQstcpbLAilDXr4zYXp+ynCYMru85DOffJ0H73+IAm5cv05rDZwrbu/v8e6HH6BkyCdee53f+uY3Obx5yBtvfJpVvmB7Z8zB1QOPZi8Kbhze5K3feJ+dpGG0nXFycsrQdAyyAW9+z/fSmN/i9vVDjo+P+dznv5evfOUrVHWOLVZcTGua1jJMtrn/8D47Qey5V0HEaLzFojvDaD/qXQtttHUIDUK5DUqquxZLS1XWbB1atO76URdI6f3unFC9io0+JNjRNJ7KMIoV1I47t67zI5//QX76i1/ko/fu8eh0yt7emEGScPfhKYfbV+iqlvfvrviJ//Lf570P3+XuBx9yuLdPiOT1l1/h7W+8xfbw33JcRecQofccMRq0cL0ofBdjBboGIotQnjhrdmZTDAAAIABJREFU1qZPFsLQUfbjCq+ikjS1JYl6/1XlQAqEgUAYsAIZesdEz77v+ObjS374k6+hjXsaKmc9tycMY4y2m9GWdhE4f4NlaUKeFxRlzu7OHhLJ9es3SdOU2cWUomnZOjhgPjsjzbxB3cX0hJ2tbabTKddv3OH87IhsOEJrzWi8R13XzJdLQLC1tU0YxCzzGQJYlZ6Hcvfu24zHPjByfvmY8WiX+WLRFws1v/fPfIbXPjlgns+oOs2qNCiZYiOou4bOedPAF7VWsyVGCMajCdjGq8gMBNJRVhWFhUt9jjaeOd/WOVYk7O8e8tHiPtbC7duvcfLkMW3b0VnLdjoAAhbVOXXVsDWJMW0JzqCkxJoOa/ysXOIIhMVZS9cZWlPxU3/uf+Jv/63/nSCQtLoD4UP70jhmnGTc/tRrPHpySld2/OgP/wiL5ZIoHpDVM6oGTFORJgnFakYkfIaK7pGkrm556dXrvPe1b/Ff/cn/mv/77/1dhuMJumnoWm+AtpwuCKIQhSOTAVm6Tb5ccD4r2N3dZbas2ZlknMwrlrlh7AIakXD75ZcIhGDR9EWwSHjp8CVaowlDRZHX1FVNoaYvZC9f+4H/HBlnGAyBGkIQ43ConttGT+IPw5BAegKvbg1P3vmAUCoGL79MNhpzdn7GtWvXvBKybpFKMpvNCHtvjCTJcE1LmmZMp1Mm/ehnPaooV17G/fDDj/j6r/86UVOzf+WQy5NTkIrOtDS1JUziDVdLG5/ZE8eSpvHX+5p0HIbhJgLkWVO/9ec8ohtuiMrrcYjWeiNc8M1NuJGEr7kaUTwmSQVFUeJs8xwnSPWKkKZpCEIf/zHVT5GbOEz+tUP5u7mWJydo7ZGkKp9S1zXL5YLlPOfkbMGvv3XEdKkRLuYTr7zMN+7e5533vwZSbNApz6N46l3mGwlHEoVeFdXLegMpcJ1DCu35FZ3fg7XiyeD8dRxHdHWDGgy8i20cU+a++dnb2eJsOiOKI6Io7BEj7zP0NCneuwwb63BOEMXKj1kdfbHkVZRR5MeQXo3aj2Cl9B4rxmKF2+xTGIYe7ZKGKJC8/NpNXvvU53n9ouBffvmfksQp2SCgbWosmmL19LpRqpeud5a159uLWHuTAdP53E80goDlbMnLd65xdPKYOA25dv0qWTrkK7/0K1zZ2yKQgqbtuJzPOD+55NbLL/Hk+ITPCnjvrXcIY8Wjh49ZPjkj2xoxM5rv/20vIxrHyckxTmteub7PZDji6N5HmLrm7t0PGQwyHty/Txgo0jThl3/jQ978wvfw9W98g0WVsn2wz9G9u1TLGfpQ0wlJFCSYekndVown20RhyGw6JYwVVDWT8ZiyanDG8++qfAn1ClyCkiGt6Qij2DeZznMjpTVY4c2Bb9/5NA8//AaT4YjPXL3Bvd94j6/KlHZWMSuWdLXj7HjJ8mzJzpUhb3/zQ77wmU+i9Ye8/dVvUDcVn3r5k0RhQrIXcef6S5w9fEKbNx+7H985hVwFCAedkxhtCWPvfRwGAlRO140wVhJIT/YMZIg1HgHyB5qCdRqpM55QChiTYFWBsmIDb3qyqcA55aE6q6kNBCLzpEmHhz2NBucIgLrR3J4cclQuCJ9JNs+LCofj9/4Xb/Lzf/ddlLAcHT1mejnn8PCQtaeIE5Yk88F+WrcUVcnBtaucXxwxHGVEYUIYpDR1zmKxwHQVBkGer7w9eJRwsZiys32NVeHD16qq6KV6A4p8Qd0Tea+8NuLmnYhKN+St8xweo3wOlwGcoNN+dv2iljGGeV5w7foukQDdm7Zp7bxc0CZcLpfs7F/n4mxJ19u0P3z4iKKu6RwoJcmiEGs1edFS1p6EW9eOxbJgZ28PrZ9a90spsX20hdEGpXqTLyeIo5iHjx9QNm0v8/Tjph/7sR/jS7/wS3SmY2d7i29+8x12D27y8PERO5OYURzyB3/8P+Gv/c2/ycnJMaESDGLB//Lnf4o/+af/u83c3TnHcDDGGMvP/9N/wvT8nP/2z/5Zzs7O+Fv/59/mh37oB7Gm4cb1azx+7MeWRV0jVEAQSJIsZTgesbo45vqta4RBA7ZkWdYsl5oIWM1nqFjx7vtvcfvwkIcPH7Kzs4XVXrZr6vyF7GWy/SpSCITsjTEDhe0VSf4wtkQq8CqYyI8jussV5d4O7fwSZzrCLGNn/4Cjx49J44DRaOIdTnVH3XZIAU1ZehsJC1E/Imo7f39p7RjtbPGr/+Jfks8uef3VV7j31tc5/P9oe9Mgya7zTO8559wt96Wy9qreN6C70dghkQRAkOAOEtpIjeSxLGuk8fzw7nBoJmRZ44mQFWPJHjmkkTThsSO0xIQkaqGoETeQBDcQ+9qNBtAbeqmuvXLPvPs5/nGyCuB4yB8W+/yp6u7orMp78977ne973+edX6Adj8hlTrHovwPSzO2D2C8XCZOENE4IymUrTnQUJLFF/HsOnl+yn00NWSqQShAo39J2hYvyfbRQOIG09xYTIrVBOZaInKZmYnSwYZBBUMIvVUjTBClixpHATPRDxhh0ZhDGkBsL7ByMInpjS0guFnzSXNzSIqczNtYanWvGY5c4NuwMCoSpICsVueu++YkNWvHsqzcwWZEo20Zn+YSgG+595nf1LHEck+51wWxo7F6m2CSAOI7seK5WqzEcDPZGeb7vk+U5QRAwGAw4cfQQlVqNV198Ac+33TbX93B9HzMBKL5bPwOWnfSO4eAd7RUwwUS8I0rfEyKD1bBIO757t4bn3d1+KSW+6/Hw+9+D5zRZnsk4uvRTeJ5HqVjBK1aQjrVV77nWJjmLVnNseWW3YnmMufP0Ea6vb1OrNbi5PWBnu0etWiEZDIjShBubV8mlw8JCi/Wtm8RpiBMExCblwpW3ueeeM1y9dIHbjx1hY3ubYrHGbLVCr1hGjoYs1xoUKmWq1Qd56mtPUnIVJdfh8lsXOH333WwMemxvb7O5sYnWmo3eNtNL02QGDh0+SrVWY3t7m7JUjHa2GCVDHL/KYJyhkz5hMsIvNzAqQjkORd8liUakRtPvDxFaQaZxjCHp7eDXG0i/CEaSZBIZBBMmnrQOaqlAKobjgMrcYVjZwElGuFJy/cY6TmoIhwnHbttvZR/SZenYIs8/+yxf+OorzLYcTi0t0+/1UIngwqWrLC0u8tR3n0bHIftnmt/3fPzAIkdqO/+2imlLBy17JbTQ5M4a4biAUj6OMxEMa9uxsW3BSWSDjekiM1ZlrXOHkJCy4yGlRk0ImRqDyXKMccgzST/Z4OCMhRJNl+9gffAaeZ5Y6iU5RVEmTFLO9a5TjqsWMT6p9mvVEuNkzAMfXeLs01fYuDgkjqwXf9Bpc+DQCeJ0TKlSZmvUp+a6tJrT9Ab9vXHRVHOacdinUC1gEkkYjSzkKhyhTUYYjun0ulQrTcJwxOEz87z1ylUGgyHGCHq9DkJCqe4ze2qKB398mVxk6EyT5hq0YwNOM0kmNEq4mFzvObxuxdolzA4GA6brBZTn4vseaZqjRYbnV3BrU5hJEniSZYRhiJMn6FzguHbMszzbYu3CBqNxQqNu6PU65JkiShPGo4hkgvh+t6h0t/W8l0KtASPwXMVDH3yEJ5/4GgaD43j80j/+Rb7x5DP4geL0qZNsbm7THSWUm01mp4pcyM+ycu0a/+gX/hM+/3dfIwwTomjM9tbNvfZ2lmXMz8/RaDb59Kc/w8LCIi+/UGN7u83Zs69z//33E0Vjet0tZlpTXL3y9qSDqOkPB4zHI5Ib12k2pxj0eiyaeTzPZzDs4nkBQucIDFubGyjfp1ktoVTOwnSDLM8wIsBxFGTfXxD391lusbH38HBdDykFiTYTzYMloQnHuiN24y663RsUsDtLp1ZjPB7jOA7zi4v4SqC1YaezTX/QtSPL4QilbFyF7YxYNpEUljszHETMzy3QbDSoVaucfe5FlpaXUKUCxTBiJ4uR0hCjSY1EuiXGKfiqjl8sUK5VmG/OkKYJoySm6HnkE1eQ47j4fohxFDeurzHdbBAmKcJImvWW/Vw6Dmk2RqAoFZqQa1B68hkTBIaJWDllPI4YDiMgs8W245MkI4S02hEbpmi70MZoshxMboNjlSgihH/Ldv4AtVrLWmLRMGMLlNkEMgzCKFBiAkn1+cu/+3XCZGRDkQN3r3BwXTvitanxtjOiNUSJTY3+1X/637LTafP7f/DvMHgTirN1p45HI5RjNSyu6xPFOUXfjpZqzQa9wYD19VUKlQKkOcp3iMLQgiSFwpUOQtpsrX6/j18tgXTo93PSzNrKd6GnuxwsmBjepJlshM3k/mdlDUKaXTrb5DkkQBs7isXh5/6zx9m/MIcULtoIFhcLOE5g8xR923lzJ0UvWBQKMMkV1Ch1a87n7PQs8Sjk3jtO8eRXn6JRrdHd7lJ0GwRegc2dbfxSheZMk5XVDk4hYN/yEUaDmFPH7uCrX3uRO46f4OqFDNdxMMD2ziZTBY9yuUhzZorrK2t0Oju8OThHGA4xfo1Wa4a3N3cQuJRKFaanZ4njmEajwerqKienptnY2GZj9SbC5ESjAc0pey1VKrbAEUwCXt1JjJJycFzPmvSVazPLJqPEXT1dv99HuC6eBiZxKFJIEGoCApZk2pDEMbVGg/37DjFTj3DXt6jVa1xcWWH58D5m3Romzzi4vIQeR9xcuUngFzl1qkglKHLp4kWmp1vMTE9z4cr1icHBUK1WGcX/Pzs5WWpIdYDrOmih8ISmXiyTpHB1kJEkEGSaknQmxYEgjy0RU+SG3fKo4PpocvrjEIm0rAYjITc4QuKrAkLmZNrDEZJEpLy1ssn7jp5Ga1jtX8WgcE0AOiLNcnaSiM5Y0FCG7Y1oz5lhjCGMY/6r33+EMIn4mX92N3/xO+e59twW73nvPYzDIZsrq1RnFig2q7T7G2yvbqA837IXlGsTaoWkWCzj1TxiZfBGHp3egDgc4ToBjuNSkBZpXau2uO3BeT72XxxjPIBuT5KbEOloZpd8XEfhuxarro3CxUWoADyH0dhm9OiJK0HJW9fJ8XyHURwipWKr3aFeLtpQVEehMPQHPYSEcRRTLdbodDsUi0Vcz2WuVGeURPQ72wzqmrnFZaKrN0B5tNtt4sxHa01Q8HAdiDONMZo0zfD9orWBKrGHmJdSIh2FEjlf+LsvISSksc1v+Ve/9b+TJyNOHDmE6we8/PyLfOInfoynn32ZpO3QKAfcf99dpI7l5+jtNnfe+1HeXlkjicckE1z/zZsrPPqxj3HjwiuYLOUzn/5JnvjGU9y4ucaZ06fY3FznT//0NRYWlhBSMzMzhRCSG9evsm95H0maIRAI12dju0u5MsNOe0jggvFzesMh2mh67R3mphtE4YharUKeadqJxHMljrg1qY6DWEwEo5DlLtJIwIbmCikw5ISZPQ8iskA1z/MYRRHl2RmkV8T3fSrVKkmaYNKEnZ0Oo/GQnfYGaRYSjlPK5fLkwZ9SqVRs0vugQ+AXmG5UuXLuPGcvvsV7HnqEhz7wQVbffI24PyTzFXqk2dnZYTjOkUGV47cdZflgk1q9anUgac52t0+hUOD6yjrzC7N2xIIgqBRYufY2XlCgOT2NlgaTxQgJNzdXcd2AjfVNSqUaSknieEyp4JNkck+0HIYRaZJSrpSolksM+wNu3LzAgYUFpF+iXHpnjm8zuWwQplIKPyggJhlcnquAd7gut2IVGjP2G6HBKDytKU/0K0K4k4e/JM9jNrZuMBrHZOk7cL1dYvNubtuuYFtrzQN3HeQ3fu2/p9hokaeCn/yJj7O5MeLXf/1/5cLbm5i9OAuFNwF72vFhSqkYWKdqOCLPc6qlIiMi8kzTqJYJQ0vMBQgcRZ7HCJEzGEQo17d5Ynm619X5jzma8syOtd7NzhET27eW2V6HSk/KFCMMv/Rzn+bYodO4xQApPEyaWHyDAeUYpAJX2Yfs7jESkxBboY3lSd2i1dtoI5SDno745Ac/wJVLV3jzjR1MJGgtzbPevsnCwjQbg8s0W/Oce+NN5hcWaJTq9LeHfOzBE7z2zHcpVz1ubG1z/OQJVjd3qE3VuH5tBX/kU/Q9SDMe+wef4ezLL7F68TJf+da3qU8vsrnVp75Qo16v0+10eeKJJ3jowYd4+8rbFEtlDiwvsdPeod9p2+nD2IqGQaAcj0F/gOfscqp80lxTqtZw/IBeeNOOHLFwxkwbxr02ruehURS8IsJoTJ6RT8Ck2mi0EeQ4hBksLR3lyl89SXTtMrWZGY7ccxvaGOqBxg0Czr74EvefvoOb7ZDlpWU6m1uA4b777qW9s0Oaxrz5Rps8CylIOHX8CPf8yL3f93z8wCInSjS5yHGkRTy7StkMjCxhY1MzZynP+MrBZAahDZ5UCGHR/IEqYoTCdxRxLvCEbaP6ShF4AakeEWMItEEJjScdjAkweYwUPsYEJKlByDauDPClYpQ5qNzuDpIoxqvXCDt2vguWx5DlCULY7zGSH/mxRTZeG9ANt5mdmbVJ1VFAJKDeqjGINGsra+hKDW/oMNVo4fkuN25cY2dnixOPnmb17IB+Z53AL+MHdocnpEFpRaVZplD0KFc8WlNFZjKHNB+QZhGptlA2oXeDSXMcYdX3Bh9fGsaptXFiHJxbKIiLoohSqUS322Vxvkk4HlKtVhiOhni+RCqPcb+LXyxTm56hc73NgaMH6PWHlH2XS1evkaUxc7mi0+nRqDdJs5zROGeUdqjWykjAVZKY740e0FrDu/QCeZ7hOQqdJnjKJUXyk5/+Cf795/+Kp779HfI05qMf/ijFRotDhw5y5cIbHD90gH2LNU7ffjvnXn4RUWjy9HPPYbKYTm+baxemyJMInVonR3N2miSJyPOMoFTkldde5a477+Dgkdv4/d/5beaX5li5tkK1WufYsWOUywV0mrK9tUmz0aBaqSOFINeC6dlFVm7u0JpewFcBO1tXiNKM5QMHuXr1bbI4QVTKtHc6eIGPpkISDSnJWyMk381Yst2FdC8faJdTIoTFOey29tM0pe4rnMSl1Jq1TielkEIx7PYoeB7ReMjm6ipRGpOnXVzXZTDo2VGH5zEaDomSMVP1BhgXIRTV+SnOlO9m+ehBvvTvPsuB+Xl0njI1N8/q5gZhnLC5PeDu+87gKIXnOvZG7XuU6yXiXHL5rcskScLVb79Ju90mHI84dfqOySh1RJ5vECcjvKBImtpRZ7UiWd63DyNgHIaUSzWyLMSb7M49pagUSrieIE1iqlWX61dXeOR9D1IqlTATwe3u53H3638oeN7tSO6OTG7VMrukIy33YnDY+712mUMKJeHBB07y1e+8RJoDJrdxCsaC2DD5ZAyXo5ShVnX5g9//LZAFq630NZkxLC3V+N1/9S8ZRUP+z9/+N5w9f4Ubm21SneH4LmEaUSu6IMBTjg2MyCylXihrAhmNNZVyDSMydK7Js5Q8tQ7NYqFKr9fHL5QZ6wgpXXv5a0OWWyet1pMCBrBx7xkIS4fXxvLVdJIhHAclpH2uGBvpc/XtyxiZMDM9S1CuIfIcT7loYygWipTrCldl+BUfKSRSCCBFCAeUPdqOSG7JuSwXyhSLRZ791ot88rEPs722jtSC0SBiOBxRa06xtbPN+tYOC9MLVGoFypUAkyRsbFzj0fd+nLcunGOqWQPH4dr1G6TacPHyZZI4JUszwlGIEg7NRoOzZ1+HOMJxXZAe7W6fdthma3N74lKNyXNDv9vFcxx6nQ5Caxbn50AoTp0+M9HZCcv/EnLSVbTdmihJCQoljG83Ssq1IdOZ3s1/s7EN74iMsYJ9DQZJkmVI5eF6LqnO6HYGNGpzDGt9rq+tUfZtJ3Cq1WLfvmWWpmcoSofx22O28i0cY2hUawwHPbIsob2zzR13tDh58gSXXz9HlhkuX7/B7d/nfPzAIseQk8ch41BSrtgHcI7A8x1M7rA8XSEVOZ4MSHFxHUOkU/yCizOxEzqOAiXxHRejS2TZiMDzKJZn6fVuIkxInKU4OsMvQJJIpBNzeG6RcShwZU7gx3jONNIdshNKFp0CsTH4SuK5ZW6+fdU6NISmUPQxuSZOrC0vTgXlRpVSuYAsKkYixK0pgtwD3yArLRzpsHZ9jZnFFrXqFAoLoMp1SjLOePvbl1g+vUz6fEK328Z1PWZnFhmMhsRxj37c4+JTMYdOzYIQpDoh1zbg1EQglADlokyAYzKUtMA7360gc0GSSaZKNTa7Ozji1nVy0sRg4jFSBPQHIzxlCKQkzTR+0cGRDkmaMlNyGSc9VNUjT2NSATcndmgpHPqjEU5QJe71cAsO88vLbK2vszQ/x+bGOrcfP8ozL7wC7O40NSLPyEVOf9jB8xRKCpLY8KUnvkyehvzTX/l1fuPX/znSK9DuXMMl4uKbrzG3fJj/4Vd/mT/8vd/jxz76PlZWb/Lai89zaHGJ166uUHQ9Pv5jH+dzX/4GOxvn7bhjknR89PAxtm5eI9EJOonZXN/iR8/cxTe/8Zf89E8+xukzZ3jupTdRQvDWm5e57+Qi33j+EktLS4z7HbJUMzXVoFapsra2RRKFuMqjH3fxnIz1/oC0PbCsI+VY7L3j0w8z4mzEqLeJX7s1Scf9fn8PircrMFaTkEt73IFJ+O2ulqRREjSmFwh8H6QiS20+VKlUYjSKubbR4bb7P8aVc1+z7KMso+T7e2BFgCwac70/4PbbztBqzUFQ4vbTy2x3Nnj0ox9hY22dfmfE1JE6a2vrXFnZJMl9EnmWmZltXMfhzL1nqDSaoDU66TNVq1Aul0j3pZRKp8nSlOlWg431ddqT95nEmmajxHAwpFSuMQ4TSqUSeZoRuIJwPCTVdgQxHocIFFobev02+5Zn6fa2OXL0INVaAORo/Y525N3dhXdnVO0W6bvH71aOq4xxrG1aOVZjJAUS7x09CTb3L9chv/4vfoV/NjaIvE+xXKfd3qZctaDCNE0p+AqR5qyt36DVbJGPeuhknWq9Tmd7k8Bz8Ys+29s32bd4iP/yZx+l2qxTKZdpNK35QucKXXBx3Roba2vMTVXxyz6vvfQCi0sH2dnqMDXlMdWcpt3vEyc2QXz/4kHW19dxXc1o0GH//sOsb63T74+Zm5siCRN6nTWGoSaNLceo2pymWKxQb5TodgZsrN6k29mmXm9w5fJlhJB4LuxbOkGctklz2H/oGHme8/rrZzkwd5LOVhs/CCw2IBnhGZc8EYixjYkoVOqkaYoXWAEsjo+4RdKAeJyysfI2RDF//sd/Q7NVJEtyojjFKRVwSgovKHDvnXcw7O3wgQ/+CK3pKV567nkefPgOdnbWGfT6FJsV9h04xCjKuHjhbdyghOcJrt9YoVyscMep00jlMd2aZnNjnebiIpn2WN/aoli1jsrXX7/AkSP7WV1dZTgOqeewcmONhaVF4jCiMdUgCiOqXjDh3Tl21KQNmcnwfZ+gWKZSbTIajYiTzEYquBNYrnKQeY7nOthgGYNyFVrnSARpnuMojyxPAQ+dp6QaLtzYxB1pDp25l1evvIlOEurjMeurG+gk4+j+gyzOLfHII4/w7z/3VxzYt8xsq8m1a9fp9vtUK4ped4OpRhOhHd546xKf/D7n4wfegcu+gMBnay3BL0gc7aBFhoOwkKnGYZLtCzZvShi0EfjS4JBjBCiMTR4XNtY+ThKCQgXXMWQolCxSKihbnU66LoWCojPcoeJO4+GS5jE5gsTMUKHHbAVE16A8SalUAmMzSjx/TKkUkKYp933qFHEW4bslG8gmPAaDPgeqMxQqNhk961jUvO/7uFMNCkVFEHiTOWOB9vYKGInrOgyHfZZK87iuS7VcY2pqmiSNEGiCqQJCQThKyDNFmubEaY4jJxZVx7aaLWXVzsgR1k5nqZwuRkMnHOCpMtp0f8iX3Dsr1xopFIWCz8rKCr5jOHnsBGvraxTLVhuhc+uEMDhI18HxA443l7h46S3C4ZhmvcE4HCOEIY8j/EIN3w9sRpfn4jgutx07xtPPv7wnFtx9WGSTHCTb+jfYhOUYjGFjaxshHO69516e/mabDz/yIV594SkaC0t856lvMTXV4ItPfIXW/DyXrl/j+voK65vbxIMtnnn6GeIwJE8zkMLyOaRDEARUSiX6vQ2E6+IWilxfXWG6OU2ehdY1IA1JmvFrv/arXD77NVrT07R3NggKJctFEoJy2aVUqfHMxTe588wdeIWAzRsbuEEBpaFRLBMEAYVCke3tLlEaoZwq7U4bR906Su5uZ8EYs8eawUzGFCbZ6z7sCjxd18UJHIQrrQouM4TxmM5gwCgR3Hb3wxgylg7fy80bbxKOBpYrlGVIx56/TFjb9XZ7k0qlQalkid9T07OE3QHxpfPMHT9DHo65eXOVQnmO9z/wXvYtH8QrWIdVHo3YWR9jcnjjjTd49dVX+dBHPoKUkmvXriGkwx2nTrOyssJUq0E8ThiMQl5+8VXyLOfoiSNUKmUuX77MbSdOcvnyClGUEATexK3j0WjWCcMBrdYUo2FKboY4FCwa4l1jkXcXNPAOwsL+3fcWQbeykyN1ZFFrwkWj0CbB6BhjJoWOyMkRCFUiyxOqtQp56mNIabamEVKikGg1sJBEPWa6tQQ6wXMVheo0Js+YnW6RA4PODvX5I4zDCOEXGMcxTlDGHUckokKlWafTXkMFkpnpKRLpI3PJ7acfYHNzg5nlRdJxRCwKxHlIvd6kNR2A9GnO+uQmpTZzmFxKphZalKYTXN/DJAlz00fob60STTRhc0vz9NojekNBsTHHcn2G28tVsjhh/5HbKZYchFMnza0rqtfvI4VHpRhwT3ORYqFAay7H9X20lhgtkSqfbHZSdG41SUVPkiUpg+EWeWoF25z44Z/L0TgkHMV0tgzzSx6zcw3O3HcXTuAy1iHX12+wvLCPZrVJIDXbW5soRxAUfbTS9Lp9phfmOX/hEvc2Wzz93RcoBzWMcdjpdFlZ3yIohOBdRBu8wjnAAAAgAElEQVTo9YYYIegO+7S7IWkiWD54kHa7zfHjh7l27TpHjhwlTeHq9ZvsO3SUdnsHKSWbO10uXrxE7bYzjEYZdemQ54Zo1KcQlHEmGV9BuUKc52TakGW5HcdpwyiMaVWLKGmNQTbQW5MmEZm2lnLHs4WTyXOUTInzlPLSfkY3Mq6sbuB6BZQK+Kkf+zSXL17m7NlzSD9g5c01vva1r3P08GGOHT/GgeUFLrz1FnmWcPToIQa9AcVCmTzWjMPvD8r5gUWOcAVrW2MCt4IxmUWpZzGOX8QTOYYEnUNicuIcir5voYEixCgPIRIczyU3DkZIFBqlBDNll808wXV88iwlTKHouOQ5DJIhuQ6JowKViqUtGq3I8j7jNKSY5OzEKV4QEHgB2lQ5cOcMN54f4Poenu9w/dUdTn5giSjWFuSlfIQviBKrBveVw/r2Km5YoD7dIBWS/+UPf5p/+xvPU1SG8bBHkkZUKjXCMKS2BKoocaSDLBT2HEJRNKI+X6NWa9Be6fDsZ9t4DQdZhf23udx36g7Ov30OYwSjJELiIsjQOiUXBo8ER1qScxxZ67G8hQ4Ox3WJwgiSmDiOUShGoxGu55FlFpJYLpbI8hylNcoVrG2uMbNQYWd7h2qlTq/XQxUDRqMhBeEwHowxAoajHqmeJ9OamWbze3bEu7wWKRzyXNqdwgQJb8dJgt/9nf8DpQRf+fLfUjAJD7/nRyh6hvp0g053i3Y05ktf/CKn7rqL18+f5dD+A0w1G/xvv/kv+eVf/edo7WIwmMyCKBtTLcrlImfPvkKhoAgHfXY2bmIOz/HlLz/Bf/ff/Dxf+tLXuPOee4kSw+/963/NvSfn6IwVjXqNPMsQyrfalHBEtTbFTGuG8bDH3MIcve0AY1IKBY+FuWkKSjAa9NHaUG82ePvKGsPBkJnW1C05l7vwvF2EfhzHE13GaEKq1XuF5W7bWQibyWbt5DFpnqOx+IXS1DQ60+Q6I1NlyvVDOMEqUW8Hg2Mz1Qw4yqdQKDDojye/iaBSqZDFKWQ55eI0hUIBrTWbO30O1Od54ZmnGI2GeIUClWqFl14+x/Hjxyj4JVyvwP0PvIdnnn6ep549y+OPP875sy9y8sQZvvB3X2F2do4Pf/jDbK5v8N73v59Op8va2haShCQyfPMb3+Hee+/B8fTehGe3sAsjjesKlC/Z2AxxkHS21veOzbuZVLtCyneYPIJcZ3vj1t3srntO33VLzqfZ5fVkmXWbssuF0WDM5O8n15PQZFmH3Y2S1holJXE4xEUxGPTwAx/XDxCqijAZoyjFCAdH+AzSGCdoYXSA8H2mD02hRECWp6Qix6n4xDqlWN1HksRIVQYhGScZjqxQnQ5AgR/AOEqotxbJkoQ0E0hHY5Qk1Q7aOOhU47geyvMmCesO5JrG1CxZ0bq5xu0dEBIpPZTJcZQgj/qgBeViiX5/B+XFCGy+U9ErIUTOuL9FZWrKbphMjtYJAgckOGYSFm1iEBAoz27ypKRYqoHObxncMUkzEB733jvH0oE5RknEwr55nn3pebYHXRqtBvOzi5hQs7J2iYtXr/ORTz1KriXFepXuIEM4LgdPnOCFV16nNTXDlTe3GYQXmZqdotOPOTi9wHdfeoOL56+yf2mK2fklbqytkGqYX5qm1+sxOzvLxsYWy8tLXLlyhUZzjkKpwmgcoZFsbe7gByU2NzcxRjA11UL1rJsqynLrPAS8IKBYrNAbDFFqMqrKMtI8JYpinHoFs+tonWwgsjS17Dyp0HmGdH2r09FDQp1w6N67uZzGFGVOt7PKj9x1F2mUsXpzncAv0h+FuK7HxTeuoqOQ9YNrPP2tr2O0YGZmhliHVGsV5qtLnD/7Jmn8/dErP7DIabWabHV7iIKD8SBR0M0MBRNSLpVZufk2s4UqeT7CC0oUyy3iwYAkSm0su5YkQuAYF2OGTNUbpGgub+8wzAfsbx6iM+iQ5wrXLzOKJbGMubmTcKhRIks1nuMxTkCaNeJhAoOcYZSh1JDpuody6rila8Q6wqtUUNmIQXtAhiLPQoT0QbmUK2X6Oz2LNXditjvb+OMCs/dOk2cxQSlmPB7Tak4x7tjsGyVd231oJYxWexx/uM7qS4ZSqUSatplZWuDA3Yt0VnaYbtVZf/sm4dmILFW88QWJ/z86uL61444TFz+QQA9hXASexV9PwiPjOEUajV/6oV5v37OMsNk9zXqdtfV1KuUKvW6foFLAGEUaJ9ZuuLHD4v4yGQmjfp9+Y5PZxVmGo5TRMKRWriAdn/Eo5OSRZd68ehWjLcgvynPCdEy1WmU4HO4VOLtpwsZANsmuAk0YhiALOIR84hOPs3XzKnccWGTY7bA1btMbpGRRRCBz/uFnfhq/XGLc3ub4wWP4pTJf/c6z3HXv/Tz9zPMopbjzzHFcV/HM8+fY3thEipy56Vn2L7QIh4v87ec+x2OPPcbLL59jdm4WJQ0LCzNcecPBMy7Xr15itlUhM4L3vPc9SELa213C0OaXua7DeDSmXm8ynXgMeh3SwQjjQa/XY2ZumSTP8V1hiy5xa0YcRivSLMGYmGqlTBSOCaPIJkZ7OWme2qgMrZGTjDGhJK5rk3uTLEfonNevbyFVAT/dQWs7R3ccSaFeo5IGdP0a4XAbqUGO+2iciVNKcvXmdebn9hFFIUmSEY8j6rOzKMe6MXbaIxKzihCCoyfvYm56ka2tLT7yoY8SBD7KZKwVHUqlEnPzUzz+2KNorbnnzmWyrM/P/8LPYBBonTC/WEUnffK4y77FOnEcUyxLVlY7fPmrT1KuNCl6DjiW2wKaoldg2N9hFCUoR1Ovu2xsrtqHmzZ7NOB3U5O/5xi/a1wlFWxtff+k47/3mgiFhRCI/N00+NR2aYSZGJ5jq3lQCmGTgO0OWgicQgltDCU/wNJmBWgQWuNIHy0djIRysQjSnbw/q6UEUA6I1KBMhkaipYXEmUmEhnRdtACRW0F2jsYte7bI8OzGBSEQIsBHYKRAGWXptxqk1BhpMMKaRHydIz2fUqlA9q5HkT0POTgeWkB5ahGZJ+g0pFCqkikHpTO8Ym2yWUwRrkAnEcLxEBjyPEEAvgpA5EgToaQgMzZSRhpvQuX94a9Dtx9ncaZJoCRe4HD+mVd5+vW/IKj4eMWA8Tji9dfe4tknzzEz46Cly+c//xQnTy6zuX6N555aoTWd8dAH38NwMGKcJjxw/x289tYrTLfm+cVfeh9PPf8crfkU0x2QpBnHTp3k0sp1brv9GHGUcX1thas3VnjooYd4443XcaSi3U+QjsewP2I8HmGEw9K+ZZaX92O0IdMphWKBSqVGnkR29CShUKoSlMpkmRWoh+OY0TgiSVJMnoIwJHGEVD5uyd5XjB1ZIJUky1KbkJ7npOGIzFc88vin+YlPPc7GpYu89PSTbKze5E/+6LMc3D9HnCZkImO+2WK23qRS8bh27QbVWpN+v4fnuQhtKBeLLC8s8vm//gIPPPqe73s+fuAdOIzGOEowPTVDrZCTJFYoNkgT+qOU+Vod/AJCGg60fAYjC4oKM6tpGWWG0TjCxWF1MCDVCcO0z5sr62SUiDSYTCKVJksS4lwTpQnkLkkmaCeGqVqDolug5DWIxD5EXiBKJV4eU/LKyCzGLbo4aMqlImc+sZ9MO+hYoYzm9NETdLaGbG1vE7g1TJpRCCo4rkCgqU8rpppFatW7yQG/UkKT4/ouo/HA3gSNSxJFnH44IE0jch3iOIrqcoH+sEe/vcMHf36WynSJQr2OEoI0jLl6bjAR2Vq0OSKxYjut9vDtSWp3xK7rUFSSilP4YV5v37MOHDhgacKui+/7tFpTKGXHiGliZ6hMiM5xnKJEAYXHpZvXCZOEcr1OkmZcOPsKIo2pBC6j8ZBiwafZsMDEcZQQZgkLCwuTLoJdu9j8XXv3bvbQcDhECsH7H3yQc6+dp7fT5pH33U8cR2xs7FhsQB4TiwwtDPfddw+f/qkfJ2h4tNvbfPWLT/Dccy9Mko4llZLPP/zZnyFwfNrtNtPTLZaXFrj49lWeePI7bHYjvvP0UyinRLvbp9WaZnNzg4IjaFaqNKoFonCMTjNuO3YcZQzN6QZC5oRRn3pjij/788+SpTlROObAvgV8x+7yhRDUG1PkuaRarrJ//37SH2Bt/PusXbBeEAR73ZxSqUSxWNyj0OrJbjWOY5IkwfECjMnJ85RUx1y60cNVlb2QS8t+8hiNRoRhyFhAZjw8r4UKSuAGGOlitETnNvahXq/jOA7laoVao05QKtq8KNel0Whw5o7b+dQnP4ZSgu98/Uu4JmYcdljfuMG11VWCoMjW1g7f/e4zvHXxJp/7/BOsrnT5v/7NH/Ps069y9coaf/PXX+Lsaxf4xtde5Jtff4krl1Y5f+4a3/rGS+xbvJ0PffBh3v/QXZy56zC3n1jkxLEF7rzjEMdOzFGr1zi4b5a5VguTJvS6W4TjHlHUJ01HpOmIOB4QxwOiaPCu7/tE0YDxuMto1GHQbyO4dTTy3SWERYogNEpkeKS4JkGaFEwKJkNLg5ACpMA4oJUB3uHUCGlAaksPdgxGSYyyrCFhyxekTlEmQ+rcOrqERuWC3HHJJ7v1vSzL/0h3+Xv0SlJg5xUuSActnT3uze7a3ehgJEI4aBWAX7QUZemhpYuWLkZ55NJBqyKZ8t75GcpBegW0tNlsAoWWytrqsR044boI5SIkSHJMGoJILRNHvAOKlMJFSA3cmiJn+Y5lxIxkVAl5c+MtZvaXmd3f4NipIyTJGGlgHIWIgqAzEMzta/Heh8/QbE6hRIEPvP8o01NVwt6I/fNL1Kolzl84R6fT54UXn+P1s6/wgQffRzQY0u71OHJyP07gI90i33nqHOubQyKlaMeam51tDt12jMZsk6XleYQWrK1s0N4KmWlWKHj2MBRdlyhPiR2BV64ilMu4v0N/Z51StUGaabIopL25hSNdwjAiiWJ8V5KlOUJAnESQp4SDLkYneL5iOOwRxrEN6zYG6XqYMGX12gpZsUT5xAmOfODDBIeOcPyOIzz+2Ac5uFjmgbsOcWz/MicPHyaLMirlBtdWtzn35mW2dno0KtPMNRb4w//njwg8n0uXLn7f8/GD3VXjHCEdOsM1ShXBXFAmzQxDEqbqRcZ5TLHQQMeG129sooJpqq7CIyXULr5jQEsQDkmqyXLFysYqg37IwUNFBuGQciXEpU6YG/o9Te4OWfAW8YQizvtsdcpM1xWdfoISGUG9jp8OyIVPqA2e6pPpGOVUmFsqs3Da41P123lra40TMy2e/PIL7KQZdz56gq3zXRrT+zBSUK9XSdOc+x9o8Rd/dJ43b5yjUa+wfGCB4do2SZ6RpjFpHON7VUqyiVv0iU2Xxf0B3XMJs8ebaJOy+VbC6ytXKVYESpapqDKuo7j63S0O39XCcTyqQYNeeJ1MSyqqiBSCUaoRxRFu7FH0PIThe7gOP+x17tXXGQ/HbLfbFEsVXL9I5IZkSUYmLKMjjkIrGRIugVKEIkUr6PXG7PQjeuEY5TiUS0Va1So72yukQuGogCSx9Nn1zR2kAN9zrZ15wv+xye4hibb28l2b66DX4ytf+RJRFPFPfvEf8cb5V/CUjwqK9MIhR46d5Lf/7sucPn0nf/pnf0K1UqM6Vad0oMU4HaO8Cp607VEhXHZWV7jzzAncoEA27pKMR7x56RpZmjIYJ+hhwoHDB6nUaly8dIVer0+5XiPNcw4dPs6FC2cpBGUKxYADB/ezenMdU9Ds37fETrvN/ffeRa/dR2jIEk2rVuXKjbdZnFskKHjkSY5fLLPd3cFXt0Z47Lr2Zm6ZMhPIW5JgJrty3/cRQqJ1ssez2O70KBdt/tP5t1aItRUC6tS6ihqNGsOh/XfHcXCUwlUOaThiY2ts9SLGmgFsKGa49/tIz8UXFguQJAleqWAZGp1tupUikfHpDCLeunKNr3/zKR599ENcu7FCNA555JFH+OhHHuONt95g38F9nL7jdu65907On38d5Tp88vGPUiwWqJTKZFnGTqfD7dWD3HP/CZIkpj/Yxgt9Cys1Ap1ljIY2RVmqnPn5Os8/+ypRb4UwvEmhUMCddLnercn5D4XF79bnCMGEun5rlp7sNyWW7C6lsCGSKAwGrSyKQAuJkC56kg0kxcTBOPnfkzeDBekblNGIvdezolFLibGByAaJmLyvzHGRIrd/1vkkykLudSOFtsJSs/vzJtevkUzAepPukZRkWtuRm7IdTW1ASA+NtOLWHLRKUUaTCTEZNZo9l1mmFEaD2rN9a7R0EUIijcEoYZ1lsAcNFNIjJ0ehMMZFuJJM5yjp2tcVljVkUW4CcYvwDuVakWvX1/jxT36Mv/nLv2E8iHns8U/S6XY5cuQIRbeKkj77lpeIRmM+8OGHSUXCN5/8BvML0/T6HQ6fPG6FvQUHXxRY6+zwnvfezYUrV+j2ttnYuMndd59kvtFAKZvBd31tlbvvO8aNqzdwpc/Rpf1cf2uduDUmTWKur1zioQffg8lSVldvMBy26V/sc/qRAdGoD8UymRYY4ZHmhkG/x3iUoKZiskzjKEmaZbYGGEeEwzEzzTJC2tGgcrCxDUaijcBM4lqyPKPb6xAUyqSJLXgcv8AgTomjnFj4LBw8htvbZqPT5ujxY3TabUzisrxvH17hCDvdDqVSEUe5eNLBQfLlL32VUiWgVq2x3t78vufjB96BR+MBeeqTmgwpS4zSPkYY7jhc51peJygkbHduMF8sMggz1DinNS9YH41A1qkEknGk2cx6xHHMM9dfYL7ZYqFRQGeK0XCLYsVHFQLSvEc3EZhsxOHWEivdHVA5xcBlFEr8cg7rMQN3TDA9z3y9gslGZGkXrcfc/Q/uIk9GlIohi/fN8cJ3VqhXmiyeEbx6LeXSF19gZmaGuz64n+vnepSny9z2wG1kSc79j84xHLdRSrD/1AKNuSZf++yXyTIP6SYEpSnWL23wrS97PP6rp3jqjy9z9MH9zC15bG30qS7Y90kZdBITRYbFD5VQzzQRjk+91CKliAw7iDwlIiWOU4QQrFzZ5tSRfQxHIUJWUMGt4zeMxyFCOURxTLFY5PLb15huVHCUoN3tUJ5uEBQCKl6BUqnMYNTDcTzW19aZnt1Pf2uNO26/nV63Ta/bZdzZYTTaIXUCytUWSinq1Sp5Zti/PM/KynWiNMd1FEkc4nm+DXhM48noyrIZytUiw0GP//sPfpf/+Vf+J375v/7PGQ6HVEsBuc554bnnKHgBDz70fr70hb/m6JE58jxhOE45dPAI167ewEiFyGNKlQIvvvYaP/uzP8G5l8+zOHeGc69f4NKVm2xsd/HKZU6dOsmff/ZPOXH4CKdO3E44HDAzv8woDSmXqoyzlEd+9H5eO3eW7fUbeL6Lch2arRZvvnkJk6VkAu688y66nU22Oh3qzQZ+ocS1G9cYjsd4jkSPx2TurbmRJunYkm2FT5paDkmlXN779zi2wXrGWJtnnKRsbI+5EtpOHqJA4DmAD8JM8ovsV9+1WUaj4YBwbLlDWztdPNdDaJ9iQaBMQq4zvvLVJ3jssceIQhsp4BWK6CDnb7/4dRy/TCI8cFzmW/Ocvv02nnvuOX7u5z6DpMBUvYTOctobN5COYv9yk5urIedfP0+73SVNUw4ePMh4ENHpdOj3O8zPz7OxuYbRNqqiuzNmerpFFPUwkwf+wuIMl956m1NnbqcQCL7wxW8xN+XzJ3/8ZyhiqtUi5WKRqZkmjUaT3CRMzy4TBC6rV6+wublJmmbAOzqfXZfgrVqKbNLt0Hv5VVqqvW6IkXLCGLP5cpYDKcgn6AxnL4DSgJQYCzOZvPguUm/CixH2tYQQ5EZYWzZY6zCT61K6IBz7fyZjMSHzvSIE7PhbSIEycsKxeVfYppPboGVjLG7Atqf2NIdCCLT0yE2K/B5HqQ0OQrgoZYsteyxcm1MoHasRE9nk9TMMBkmAFhojAjKswUIYgzI5MEkv17lFQggHLVz+v/2pH86aajVpTdc5e/4NPvyJj3PprcvUmy3m5xe5fv06rnI4fHAfy8stup0+w7iN9CQPf/C9pOMMFRRQgUI5gs3NDdI04f6H7yIfpOw7tky312XfoVmO3LaMZ4pkqcavB/z2v32EF7/5FR5+/ylG10fcuLHC6Q8/wvrmFkeOn+Cr3/w6jbrLmpfx+OMf5sChBdbWV5D5NiofoHIP6ZcolFt43grdbp8k7qCm2jjHXYyxfcAcQ705RZ6FFKtVZJ6SmgylJGEcTvQ3Dnmc4XkBg2HIzk6Hej0lRCOEQ5QLVtc6hHFKnrmYyizVpUPsXHmNTGtwffI05Or1C0jHdprnFmZ445WLuAaG/QF33nWG3qDPeDzm7pna9z0fPzjWwUkoeiUGmYUsxWmCcQRrg5hmaZp2tI7AQckyQvQoCMMgDhGmQBrnlEplVEkSD0JWrrfxnYxStcK4n5KlI25fPsj2+G1L3VRl8rjNTGuKl7e3mPJyPFfiOQ6uWyAhJPBTNvsJh5dLuJ5DqznFUGeEmwmVwz5//i++ydG7jzGMRhyqVIhSW12mUchn/tOP85XPPcOLT14gaNR54BP3UWhout0uygFPlfAaLlGWMsxG9KM+aZRSKheZnZ/i4tmXWflKxkc/dQrtepTnJdWaS7+f41TtzzjyQJOn/nqFre0d5oPDJOOYsZY4yZgcl9lWk62doRVpSkmexKx1Mk6anGqlgPS6jPJb564SQjA7u8AwjAh8OHjwIL2utfV6ToH+cIDQoOOY3KQ4rketWqXfHzI1M4XIQsq+YnU0ouhKdjbW0TpGFl2k4xBFIcVikf5wSLPZpFAokeUjpJSWlLvn9tl9WNhd3W/95m/yT/7xL/C7v/vbPPzgj+IFZcpGMrdQ49svvUqaWCHbm29cYPXmKvfefR/9bo9Br8fW+gY6T5BukcW5MmfPvcaNlU38Qpm5VgNtYs6+9jKVYgl3cZ6jtx2nPj3Ps99+AidNed89d3IlicEIKv8vb28eZNl13/d9zt3vfWu/3nu6p6d7VgwwgyE2EgBJESBFkTIpSoqWUpSSYyVRlSsly3KqXHYqFf3jSqryX1wuVfKP5MiJbMWOrV2mJRICQJAgdgyAmcEs3dP7+vrtd7/n5I/zXs+AIpAqm5NT1dXdr9/ru737zvf8ft9lYpJskPPFL32Zd6++zSMPX0YYFmMTU9y4cYtma4XpqSnu3L7NRH2MtTu3KJXsoSmWpB8lpFlCpx8y5ntUA59u+GBiHUql0rEvjpTyODNoxIHK85wsSY9bUAC9JCPLhHbcVokOo5UShA65bLfb2vLf88myjDhOUZiYbsDc3EksUzvpDvodTNOkIKfXO6LX6+F5wfEEl2e5bt8Zklq1wt7eHs3DNncdl1KlzNV3r5HEkkq9zNqdVaq1GnfurlAKJjhx4gTz81AqBUxPz1CpVMmyjNurN5mbOc9R84gP3t1mamqGUklQCINbq3exbZ+yrxPSoyhienqawaDD2t07dDsDfKsPSOJMIPsJWW5QruU4tocSgiSOabeb3FpdY2ujSVFkQwdukzTNtA/IAxyCTNvgK92vGi0AlBxWeISu8RhorxghJGpY1QCTQiiEFLoNI5XOqhq6BKthW0YJQ7sGD4dSujIjh95cAoFUlo4/UKYGSUJgDsEjjEwJ0WGtQujKoRiCG4xjcvTo/9+T5w+3MXJBH7WylAkiHwlOtTpSaldixD1QWSil22EjcCIEUgmEYVNYpgZ+Q+m9wkIaBqZSGLnSqh6hIwb0NiUYzshn4Uc+0jTGcWwmp2e1sWpjjDsrdxlvjNMLIxpVk/WtuziWAYYgCHzciodlmKzu3aHqjhP3cwqZU+QxtVoZocALqtTG6sPqZZcsT7BMg1qjjnJtbl59D9N2aYzXufrCiziez/7hHYJqhfZgm089dpYoTDh3YZlLlx+i1d2nXAkwzYxecxvXqeCaDXKvhheUEQjSrCCKElzXJcu0Wti0IMslwjAoCqW/y+G1Q2CZFlGSEWXaTFQVEpkmhP0+qeMgyekPQmxLEcUpuVQYUqEsl+rUHB4xeeTRUztEUURjbAxlGCiVc+HCNHIYG7R7sM/0/BzRXkZahB97PT4R5HTCMp/91DQvvHsXv5QThRLHzOh0BeZYCZn4uI7Dbq+NykOqDZd+lNDtpVTKZbZbESXfY2Vrh4mJcWYDizxRWJ5Pt9nkvV4Hy+hTn6qQpBHTEzlJkuJ0QpIxj3JpgjgTROQcdfbwyzm0TY4GOVMG9JMAZUQ41jjf+dfv0h/EHAwgObxFltpcX3mfxy8+wumTBd/6ne/glBRutYLjCwbhAZMnlmh1WhgOZHnE137lS0RhQZh2caccgiDA9WzMmsApJzz3/Gf48EaXTz23xCDrUYg+bllSW3CwXMHW4Q6Fivi7/+jrvLz1Btd2VvmM9xXisEOY2kShpDoGqzvbpNEkjZLH6aUyQipyBjy68Dwv3vhXP9Ib7v6R5zmuXyEoV/F8D1MYJHGGMgTdZhOpYs4tneHOyod8sLrCM8/+GCCQSvHma69wcfEUk2M1elOTbG6u49fGaB8dQZzTC3u4rqtLkYbB9NQ49UqNvJCEgz5JmqCQQ4m6wjR1KJ9l2jSbh8RpwZNPPUERxvzpN/+Si+dOc/fVV3n0qWf53vdf53PPfYlmq0l9rMabb3yfIo8p1SYplS36IVDkSMNhc2OTLzz/NTa226zdvUWjYvFTX/8y129tcWdjgycffYQ7uz3+y1/5O8howLs3bjLod+i0W2xsr2EZHnNiktmJSQaDAcJyOGr3sZ2AudkKzaNdbt26xSM/858xXTIIBx06qSSVilqpQXt3E9f3CMMBE7UyvXDwQK5l66iHaRpYtjgORiyVSniue88vR2gvmCAIyLKMJBpJ+MHzfO3m6+joFsu2sO1sGOpoE3g+tWqFXqdLEkW4tsXW1sXVekMAACAASURBVBbdXkgU6w+UWiWg1zf47f/99/jlX/4Gc1MnkAJ6ccQLL32fUsmj2Y544vEneejiBWq1CuPj48ccIakEZ86cwXVdPv/c5wj7Eevr61QrAc7EGGma0jrao9VqU6lUQHUolwq+9rVnGYQJcRwTlCcpBRX6/RBFRhBox15ZFLSbR6yv7tGYrLG6soppWSATKCRRNCAMe3ola5m89uoL2vx0mEw+MgaUUqLEPWfhBzWMQs/yAgMldKtH3mcMqgp5T3FlDPdFwHG5RllDgDECYyOAoZAjUrPUVRJdmRq6CBs2xrDCo9TI7sE8BiEavJgfBUtKYSqQQn70vIxwy3C7qPsBz4ifZw7zo8RHQMZHpfwCRfYRQKZbcvcBI3T+VCEkGCBUhsUIFAkQJoVSCNPR4G14Po4Va2T8f1BS/6PH9197k0Zjgvn5eZrNJqtrd6kEZW7fuUu1HFAtu4zXarz//lXOn3uYG3dus3z2DLZpM3Nyjs5hm3q9TrPZxEiBWLG5vcPM/BJFt4/vO/TDAePjDRAD7mxtUqotUKiA+fl5om6bi099jvc+uMF7a4eU6ykf/vUHzI4rnvn0kzz6qUfoDLoo06Q2XsdyXQ62N5ipzGCMTSGEBsquG9A86hEEJZQSTExMMj23yNrGHkkuGaQFgzjBMgSWbeAqE4lW1SV5CspgfW0DE/15lMYp1KoEpQqbq6vYtouS0O72CfsdaqJN1NzAkTEXlhfwPYud7W1aYQRK4ns+yjBpDXpcW7vL4089zkGnheE7xPnHGzt+Isixc8Gbt1Z09lRq4vkm0yeW2FzbwLH7BIFFLwIpBa6ZE+UJYagIBwmYbQzLwR4mzc5MlfAdk93DAtfxcLwBddujh6IbJ1hFRiYUmbSpNKrgCGThst9qUR8P8B2Pw8M2U5UlMiXJ45StbhO3XKIxLqiOO3iWhVlIPtw8YMY5ycz8PL10C0dUGQwynv6Zs5ye87n6dopZcpB2RqnqgmXSGrToxDtUvGkWFwNUfob1Gy2uvXOdp8qXME3Bsz/2EO/dvI0pxilVUgb5Dn4twO4ZGF6CKKBU7fNPfvN3+PxvPMKTzz/EfqfNmfFx+lttgso0hwcdbFmlMtZga2cby4QsBT+wefOdF7iwfOVHfc/dG0qbyFWqJRzLZnt7G2FqZcbUzCwHh7vUGg3Emonv+ygkR60jgiCg0ymIB31s26bdatGYnKbdaZMpExuDQa+HVLrdIQvJYNBneXmZo3fexjC0MWKep8OVm26nCGHSj/r8i3/xeySZdvBdW9/g1PJJbty8xcTUFG+/dZWFxZN0+n32DvbxfZc4Dnnp29+h2R9gOZoQ66qCziDi9LlFdrdWWL27xy/+/M+wfuttvSo1BT/59W/QPDzANmz+4F/9Ab/ws98gx6VcKrGzuc7s/Ak6SU7YH1AbGovlsuDa9bcRWARBhbGxOqfPniHNMrZGxGizhGm7SKVjOlzPwvMtKrUK5v7hA7mUo+vj+w5hONDSftMkGZr2GYaB5wf6sSQhyzJM0zmewJMkwbIswjAcVmAgSXV1Jx96iEhVMIgjClkQuC5zc3NU+hGDsK95QCg8y8X2Xb717df5pV9o4Dp1Xn/9XS5duoRTKlGv1Dl9dh7XE9y+fRuAzc1NqtUqm9sb7O4ecunSJSbGJ+n3I7Jcsba+xeLJJW7eXKHRmCBOQjJVEPUt4jjmqNU5NiNrtQaY1iGOY2PbJkdHTU26zgs2NjbpDyJM3+ehRx7ne698h04vPJaL92/pY89yhf6MLD4yaY8mRam0AutBSY5Bc3EKLA0eKHRb5iNtHM0lUTCsnOhMI4l9TKzVSjQdQSH0PA/HjsImSggMpb1mimHbQKihu7Iuo6DB0XB7w9chNDBS3KvM6H0zhi0MfZ5MhsYoSvN2RkOfR20uK0aASpeJNEdHFhhKt9RGAEkoG4Q65ioNtzLcNtrhWQhGKThKWLraMwI6o8cR6Dw37ZSskaLSFbAHZAZYr4/zyMNX2NjaY3p2kVgqqn6AkBpcB+UaaSaZmppFCZMT84vsH3YRSmILRTaIGPQGhIOYc+fOs7m5zeLCeY6iBNezOWz2cL0KjuWxvrHKzPwCpjPGm2/d5Pdf+bc0amOUXJ84dTHNMt9+8V3m5heZm58gqJR54613mF9cwim79HsDTtYalGs10sGAPOoSdZs4tn6/9/t9FhcXUQrNLa3V8Jo90kJSSEUvjCi5Hq7vYloBgzBGmYp2uw8YdLt9Kn5AmiQIUpQwmJ2Yond0gCoyVKFYX9+i3+uxu/Y2jbJBEXapBg5lzyI3bWanp9nf20NYHtWJCYKgxOIjF2h3O6xurGNaJp9//rMfez0+EeREpJQLE9OStLoFlmnT7ezimzZpnlA1ayRxCFLiD83C0jRlemyco7RNmgoyxyLwK9jKQioTRUShCgKnTz+VSL9AiIxKSbLVDDHsMrHMCJRJlhaMlSzKXpmt7h5ZliOshKmxCdY2bjA1eRHD3GVtVTC9bPC3/vEl4k5E+02PJ38xILA94iJmc73F+ALcfHmTFcvmJ37qYdYPMmpVh17Po9trIkjphQmemWI7JsvnJ7B8G6sekwvtISO8ErYVU2mEbOxLXvjT63zjVx7DdiVhkvCpc1U2PzQoZJNyo0RgT/Han92g9pM+E9MedmYSWD5mR2F6CZONKjdWtjlVnmPn8JD97j5T0w/OJ8e2DKKwj2Ub7EQh2xtbLJ89w87GGjPzAWmuJaOFAMsMqJYnOEoOmJwap0g6XLh0kUGvR32sxsFBkzzLMSwbp1zFMwUHnTZj1QpmUOGoNWCsGmAYFmmekRcFCDCFusc5KCSff+55XnjhBX7rf/jHvPP6q8ydnMXzPLZ2D5k+cxE/73J4eMjBUcjc3Cx7OysYSvC5L/wY3/zWi2RSILMMJSSygLHaBI3pE1x+7NPst1tIJdk92CVNUva2d5icmOaNF17kxOJZTNulHw2oOyaDsM/d2yt87Rf/C26//ypxprAShyuPP0bzaI+ZyUlWb68QdxJOzk3p5GQscply0D5garwxlJlDs9nkzPJpUsPC8h6MJ4BWTcWYpiYhT09PE8cxcRQdT9S24x6TZ6VUSKV9X1zXJRvGQgRBMPSEKXR1bxj1oJS23/dMG8OwSYuMMAxptdogFHEcY6KJvkoYdAcxr732ITNzDVZXNvADh87hNuGgieOaXDh/iX4/5I//+E8ISgG+H/D5z32RcPAKN258yJnTilqjwTOf+xxZnvMXf/IXPP7Y41i+zdqqQaUUkMkC0wlwXI+kn2AKh1a7ie95DHoFhcyHMnjJ+FidK48+RbPdYu7kFGVXZ5Alqea+5EVOlumJUpIicDSh9Xi1f1+7ZRgR8yBTyAsM5IhXIxRSo4LjoUGD5sDA/X/SXJcRb0h/pMtjCKEEuqKiTBSFDsZFgDAA8wfAi/yhMvrjnz9SDRl93XueHErSR7//jbOlGcrHIOc+7dX9h6qrWMevPy4PHb9OoTAMvXgWQ9k6mEiGv993hqTQPrwCNXSTHh7Dg6NXMTuzAMLFMFxcv8ri0lluXH0Hz7EQStE66mCbJkdHbW6tbHHh4mUGgwEvv/RtvvDZp6mUPTY2tjh7+iLNfkKlcYJXvv8Wq1vrPPP0U7zx+rtcOLfEww8tMj9/jpe/+xr/62//LrNzcOXSWTqDDpX6LBPjAUrmnFhY5Bs/9VPIZJP9ZocwUxy0unzm0jN0ekcoYbK7s8vy+CK95g691i63b95gcnKaG9fvMDMzRxKnfPDBB1RrdWZPKF56+VXC3oBqqYYQLp1ugjL6YHkcHHZodfqkSUoU9kkGIUJJkjihMmkyODxkb+UO1YpLv9flg6vXqJYrXDh3kgvnF+i3mwjTZn3/kMWFk4xNz7F/2KVUHcev5piuiVQKIpPLj10hSzPa/f/ISk7FD5DkhP0I37OJ+5CVoNFwEKLEUatFVhgIGWGXDHpRD6UcUpVRdn0sQ5AlKRge3STHTCOE1dKOq6ZPnscI5ZKnGQNsHHsa18jpZzGhlHjFAe3Ix6/4+KaiKwSFG1K1c+I4xBa3yYsAaUeUZgSrmzkrH2wz+8Q4vfwQ150gjWNcu6DVyvnJXzlB3auTmikLp8ZJ8xZ3t+/SjySlmiLsF7TEDo3AIWFApZHy9NJpVlYznvjpS+zu3WRixsW0EqYncr74s09iUdBoCOrU2Ngf8MzTE1z/U4v1u21KGwdc+coT+EHEa++v8MXzJaQv6LdNxuwKfaPL7pt73AhqXFx+FMu5yR/+9VX++5/7kd93gK6mVCpVJiem2dpaIS9Sjo4OMU2HVqtFnia8e+0qeWFy5twi23vblHyf3b1D0tjAMlwO97dwbJM7Nz+kXKtiBwESRbvTx7RsLMtia3OfUrmMb+oVcBxGGKYuUedDqbdpmihD8J2XXwQh+Z//p/8FzzX5R//wH7C7vYXtOKRxwsbOBmmeYLl1PSEJi82tHdpHh0ilyIoc1/HJZMF4ZYyJxiRJr0V9bp7f++e/wy/9zE+wvrnBiTMXmZydIc8V3W6Hlbur/OLPfZ0/+KO/4Ge/+uNUGzFT9RK3bl/noH3AhQvnCTsDXnzxJRqNBr1+n0HUoex4oCS1Sp21jR3iwYDF82c52NzCDsoYhiAoB2RZyt29fXz3wajlHMehVA4QQg5Vawkyl5iBLuV7noc3BDlpLnGtoczWkhQyQSqTIs31PSgK1NADaCT7H03qeZ5jWRa2ZVOr1fCCElmqn9PpthEKSmoMx825sbbLG9dv4VoehweH1CZmmB0fY2Jqhtu3b3L58mU+deUx6o0xjo6a/Jt/+4d89SvP8+677zI+VufwcI91lVOuuXzjp7/C3t4OSTRg6VRjWHny8H2fo6M2vmNSrU1zMq+BMnBtn0EU4rpaNWUKk06nQ6PuMeYHJFmP5VOLNHc3AY4rM7oa4OjKx5DPdBz3oPtDx22XBxrrYJoglQY6hkBiYQqBHM7Galh50eUciTTAkBZgDisVI1HV0K9mWOdRSiGFBiiWMpFkQ6sIR1d+KHQ1ZwgmRlUZMeQCaZMlfT4EQ1K0UsPgy+FTRtUTOQIcaBAy2ndlIOS9NpoQQ7KzQvtzCUNH4CiFLXXDTVJAYQwrTwKpDJSUGIbmHw0NL4bHWKAwMAwbqYb7M6zAGZhIw8ZUOYUCRIGQ5kdA1Y963Lq1ygfX7qKw+PDOGrZvUPddfM+h1x3QHRLpbcOkXpvkpRdfRdke01MLgE03TSlPTfL2zZt8eGMVQ7lMTcxy8ZHH2dpucvHhCwx6be7e3ULgUS0t8/d+fRlJzvlzk3S6B3hBjcWFOTZX73Du3BVcZ5fd5hEzM6dwWxlrW4es/T9/TmO8yoXlRW6tHfLQ45/ne698mw+uvkYvTChbhg7vLXJW7qzw6ne/xyNPPMWNa9f5zsvvc+qEQ2ArSnNjFEnG0VGfnIiVtQ1qtQpJFHJ4cMiVRx4iixMspdhbW0NFfSqBQ6uX0KiX+czlsww6fRwyrr71BmO1MlGni+H6vHPtJq+/9R6tZsTcdB2/6jI1P4nKcoRhsrV3iGPbVIyPt1755OwqsyBLJUUBSkmCkksvDHGFALNFnEhAe+dkhcA2AhLTJc/ADUwsUxKmIZgecaL5PJYlSdOCQrg4haRIC0wzJ1YmNhZRHJIph7ptUjZtclFApol/eaL9XFrhEcoosdnuM1bVHwj7Bx08P+Di+UW8coRl+/TzBD8oEbVrlOoJRZIg6wM2txTTcwVGrEgNcF2TvChIZEKUFUinQtoraHbaOCVwSw6TDZ8iL3ClpNfp4nhj7O30mRx/CBV/l6zQpdu9Tp+py1XOPTTH3WQNL7A4bPYYq5Q5yAaIgcXK5gG1kk/Zs/jpX/sJPrixSidcpRMnqOzBqasWl07R7mXEUYbnac8UWRTU6g0OWkdUayV6/Yhnn/0iO7ur9KMOJ2ZnOTxoMzYxyVi9yo1332Cv02FiskGuJGO1KjuHHTzH4eBgn9nJBuPjE1iujUtOkeVUq1WiKDqePEZxD67naOdlKbh0+QofvH+Vv37pFUq2xd7ODlIZPHL5Er1Bl8LwSZKEW7dWWLu7Tp6nOK6vV5VCV8mPjo5otVrMNSo0D3ZZmpulWiozUa/y77/9V/zET/40G1t7REnMxPgYf/TH/45zS4ugMnzHpEC3bKpTk7z62mucObnEqVPn6EUR4xM1Sp7P9todnKBMHCe4vk+tWqXf1/lVpbJHv2VQDqp0jpqkcUq9VH0g11IIQRRFCCERw1V8uVz+SJZVlmXDIM97kQVC6NgDJaHkazAmDKkz5gTD1PF74ZRhqCXlMs+Gyd4Raayl40mSYJuWlmTbCWnao+zYYMDiqTkMHHzf59r1azz37DNQpPTafQZhlzzPefiR82RpRL1WZn31Nl65wq1btxifmOL/+r0/oVwOUEqxsLDAYXOPSqWKQOB4BrMzc/T7ffr9kFLg43kOGIL2UXoM1IpCZyNFUYRhwdT05L2V/LDaNQI6ozbJ6HfgmJcz+v2BBnTKUatIgRrJrtUx70WI4ZtcacCj1MjERmppu7oPgIlhy2ikbpIKQwidND2q3By3dRRS3beNIZFYjjg0xb3322j/jqs9I+Ai7u33vQNSMJLf6wMc7RxSDrlHSmrgpENGAMjvYcrjocnx966JbsFpjpKSmtujUDq+xBj29MTQEkCODsMYVn00OHuAEYHMLZ4gDlP+8lsvcvGhR5GpQVREHOxsMz45QSYzgkrAzOws33vhJSrj4zROTLK5scbN2+8Thgn1xjgzczMsf/lZSq7HVG2cw/0eqzsRiYgpHJhZnOfFb72C67g8fOVTvH31HeStJq1Oh0cfe5okhVIwRhL1ee+997m72SXONrj86BVurdzED3y2t9r8+Z+8xMz0DI8+/Brf/tf/Dt828MfH2Nzf5v0bK2zffp3W2jqPnJrgD3//dzGFxZlxk6SVExn7LF55Btv3eOOtd5CGhSsU/c1tzi7UKPmK/GCPNMn58R//Cr/9f/4fzE03eOnb71IuWfyD/+7X+B9/659Srwo+95lzXLl0hTsfvse5y6d5f/0uZy+e4fU336VbdKiYVY4Ou0xMLrK6epe9gyPG5uYQZk5y421+/mOuxyeCnCSVJGkG6p5jbVEUxCn4gamVB0mMkAZFbhFFSgdTWpb2IyiiYVKyoshy0qzACzxsBWkqyVSBTYE1XGWGSReVK1zTJgg8HGw6UQcn7pAOXUCjNOH2Rkg/C3GVRZz1CUMP06qQR4JWdMDZhRKGsIiiEkmvg1/t8+xPTZL1BO2DmNlpl24UYoqCeimg228TRgnKjFHAIO7iuILdvT5+tUxRZLTaXYrQJqkURJGAfECt7rNzeAfTUsPjLBNGORefXqbbs6kvniSNj5j0KnTDmMNuk3G3zvT4LDvdfVynTNpRBI7DtVvvUhglrjz20I/4lrs3BnFKrT5GpVyjkH3m5ubJ8gKEged5OI7Dw5c/zebGNhNTk+RyD5Tmf/jlEndWbpLKhEqtRjgYUMic5sEBWZRiBlWmpqZRysCyLLr9AZNlVxuSDT/sRqvk0fckSTGFgVQpZ88sc/fuXbb29qnaFjOzs3ieS6nsY1mQCo8P3ruGknBqeZm1lTvDvr4iS1NAUatNEYUDksBhdqrMeDVgdXWVC+fO8NUf+zwlx6bqB6zfvcvzz32WWzevsXRqAkOlTEyO4ZQqxLnFIIyZnZplYX4Bw7SIU0G3fcSJuUmUuU6cFNiuIk0LPNuj0z6k7AfESYxhmERhxNR4jY31bV1WfQAjSRJtemYIsjxlFFPgOBpYCAMs29RqFFOTaU1DZx3Ztk1RxGR5hELpYFHTOFa+xHF8HBkBOvRRSkmUpMRJTrebIISg1+8jlHYCtq1Cu4Ob2gi02+1QrZZpt+vs7u7y550mp5aX8DyfE4tL3L61xsnFJf7q268wPz/PE088gePA1tYWr7z8Gv/1r/0qcRzjuQFJktKLY/IwwXU81jbW+f5bHxB4Y3S6TcolH0vcq7Tkec7U9CR5WjA1bdOPupimyfT09A8QXO8RikfKP8P4KMn4uOo4BDwPboxASsGo1XJ/OKh2JS4A7V9zb4xIv/f2TcpiOImLe22jIaFX/6gYkVkMNdziEPzphxVKaEBlAMqwh8d+XzK7YCjPBpBamj2cJ4Y7dPx+UkiEGoKSY5CkUEINeTq6XWWYBoWUo5LU8fHoCu5wv6TUOUhqVDUy9PMFCGHe9zL5kf8hh5J5RK4rdkret68/2tFsNWm3epw9d5qNzXWWl84wP3eC/T3FxPg42zs7iKEq8gtf+ALtQZduFrIwP0P/6IjLj3yKMIqpjJUIe10Ojvbp7m4yNb7I1FSdThoTlDwM0+Tppx/nnXeucvfOdeZmGpRrVT799DOkucnM1DRb/T5rt7cplys8+7nL7B30ODjYYWFhmsFgwPnz5/nKl3+MNElYufU+y/MTJP0BpbKP7c9y4dxpXn3xLzkxMYln5JyaO0HZtzg7N0HnqM3kxDira9dYXdlncz/hySeWObE8w0On56i5Br1+iOtWuH7zDnMTPv/wN/42vXbCYL9NOTApiYSvf+U85UqDTnOH9bsrnFo4CUDaE+yudTm78AgzjZgoz0m7+xzs7pP0Ckx0ttb3Xn+Dz1xc+tjr8YkgJ8sVWaoBie1E5AZgKsI8ZtBRONbI18EgjCziLMU0nOOVhm+4KNckkjGGVFiGgyhMkDZJ2MVxDArDQ2Y5qSywSXEMG8M0yWRGK4mQSEKZkMoCJWx6cUqiTCxPs/RRJlmWYODimLvMTlp0Q5MsG+AVOXYgacc94qLEhFcgnYCN5hHT4w2STLC7v4XrWdi2hYpjTFwKldOJB/g1RTTwKNQeYQf8ss0gg0haiFQT8sy8RxD4KKkjCsplm/0DBxWnIDsc7O5y9qELKEsQDkpsNGNsL0NIj1YrYaI+RxT3KFuzhEXEe1fXf6Q33P1jZXWD2ROCcrmGaTiYhk0/SekP9picmWF9bQ2vNA5yQL16gl6nQxrFmEriV2dp792kUCadfkSeFWALLM2nx3Vd4izHcVxkAb1un+mqr1dzhf4aqUNGK2gUuKbJV7/0Zc4vL/Avj5okMueJh88yXhtj6dQ8zQNNUBtIG4OCw4MDoiRhYnqaZrOJCTz2xJO8//57WLbNqcWTnD1zkavvvslzzz3NnZU14l6b9999j4cf/wx5IZibmWVxdo487IETEGGz22zjZSGeKFP1PMYbda5fe5/G9ClK9Rrvv3uH9bW7eL7J0tICu3uH1Cpj9Fs9Ts4tsLW7iyM0gXIwGGBEfebn5ynyB+N4DJClGYZnEUVauj/i16RpeqwMyvMchEG/38dzyyDyYzm/Gl4P19V5VLLI8TxPq+SkxLIser3eMXm5Wq3iuw62oYHEWG0aDMH4RBXLsMnzFMPSYXxxEuv73RAsn3+IUqnE5OQ0nU6H5mGHT3/mcVzb5fTSzxGGIVk6wLJ8Xn/9dX7uF77BW2++ykMXLnCw16Td1nk/QdnBcQrm5mssn/4cBj4KDZaNYUUpz3VysqLgcP+QPM/IM4lpaIXHCAiNgAvcAzwa1MmPKKvuB+YPlJMzBFCm0jUKQ+XDWoUeI4WXNHWpwygMpMiPFUhKqSGw0aRaoeQQGEnk/RWWEZfmvuiIEWT6COH6mLgLxv1BpcOqkFLFcfVIqWK4r/cUU0LlxyUZMawASaVgCHZ0rouAQqFsEMIDJRCGoeX6AoQskENPnHu7L8nJ9euOfYT0EWgFldAtPzWq3Mhh22p4NMpCISlGrcgHMKYnJlBpQRBUOH1ymd3dA25ev8aZ06ewpKDX7vD0M8+wdvcuMkpZWF7ku996haef/jT1SZv2wT5epUKe59TrdVLLYrxSI09COkd7mJ5PrTbG6s1b9I5aXDh9iqBS1urTwGP77i2uXb/D6niDyUaNsmvQ6YV0mqucnD/BmeUlrl37gM8+fYXp6Sna3SP22tuUPYee2ef0wyeolCfZ2j9EWYJe2GNvcx3LMJgICsYbVU4vXcJ3HO7cucPCpMV/+ys/yc0btzAwEcJibMzXasflBu1Oj+nJJcJklTIGlx85z3L9izi2iVAtvvjUeXabfUpLj/D4p66wv7/LoN/nqcvnqNbqRHHCrZUm2+srPProI+RZgjVm8EvPfYnvvvkmv/G3f57O0cdHrnwiyMnzgiTWvApZQJr2cH2bXIJrSu0taRmo1ERKdGZNLhGGwjb1il4UGTbWEKkriswmSXJUZqAMhaQgERlCOgi0pblUGfmwZKuUIM0yXVLFvIfIlW4P5bnQ+SrSxHVccuHQiSLt9xHYZEWB59lASjs1CYyUzbtNamWTLPeYmCrT7fQQ0qLIxZCQqEvdE/UGVuGT4KIKSVZAIQra7S5j9WkwTIQsMKVNUeQIbJJ0QNn0kHmfREjqtTI3t9cJyj7IKhuHbSr1iEapTLlSox8fYJowPjbOdCA47DwYyTHA5UtXGIThUF2TkUlFY7zB3fXbWN4ihmFiqoJuv0eW5SRxzF66z+r2EX6tge04ZErgONqkT+YZcRpjmDYT43UOmm0ODw+pN8ZBQqU+xlSjQfNwT8c6yPxYXaGlqYpCFvzZN7/JV776PKZQnFqY57DZ5Lvf+S5ffu4ZppbOctTs0jlY4+y5h9hYX2d1fYMvPvc8v//7/xIhTHr9PpcvXea7r7zAoxcvEkc5e1sHnF2eI5MF12/d5vJnnsS2XILKNOOTN6lWq1z94DqPPPkcR60+5ZrLy997iQlzknol4Mknr5ClKWEco3oCKUPKpTksT7B90CFOU0wzo1wvUxQ2USYpj3mY1TKt7i69OGPO8elnDyYKoDsIcV2HOC3wHIdCKlSW49jWcYtFoOXghdItKr2SFUP+ToEcVtlM26bT72lAepy8XsYwDHq9HmmaEng+e3v7Wo1lrL0wDgAAIABJREFUCrq9Hkk0oByUiKMYw9Bta8dxqJTHKOIYw0rJC0HZG2eyXkVlEcuLM7QOD+gf7XN9c4/lpSW6vR5hGJKqgoWFE3zw3i0mpxp8/7U3mJk9weFBk8P2EaVSgJSSanWMJLZot3bwXZvGeJ00ismSECkliWVpDlUYkRU5J+amSNOUmx98cDyR3+/XZAwnVnGfVPz+wM77gc6DGuZ9RQWjMMDIj9s/mhxtHFdj7oEtiTgGMMVxLUhRgJKYQzLxKPVKJ9QXw4LOULU0AjOjNtAPEK8N454jMkphkOucOqEwGRJ5pUIYikLZxzJz3RorjuMc5HBhY4hhC9DUgb16T0amg5rEriXyxTEB/uPGR1pnw6HP1ZAXpOGiPgap7muZgfrkqe8/ady8dp2F+QWyLOP69Vs0xsdZPnWKsh+wd7DP5Ng433/le4xPThAO+nQ7bc6cWsIzbYRhsHTqLK1elwzJ5sYaZAUV1ydOepR8h2a7xf7OPhMT03SKFNuQrK/eolavk8d90jhmcbZB1XbI+h2EzDm9tKBzJD2BaRZcuXQOw4Cjwy1u37nD97/zNl/7yueJwj5h2McqLHwkpUqNPO5jWxaDXpeT02MEvk9z5y6VcoV62aEyO0PYP2BmsoRKJapQFEmfvYNdzpw7R5F28X2X6akJOq2QsLdPxTeo11zeeP11puYXOHNyikqtzv7+NoZhoQyDnb1NcpXT74cIlWMaBTPTY1x96w0mylV212+xPFnHUTH73Y/3l/vEK53GFrZpkacJuWViCpM8lbiOoQldKkcWEJRdzd3JFELECOWjjJxYiuFKykTkAYO4jxCSJCuwDQtRCGQGjiGx3QLb0objYRYjCwep9O4lqbYFVyLDtQzKDgwigVQlklhS5ALTFCSmdny1TInrmQgKXMMFkZJjkKkAYVhMz3lEaULVK9GNJEFQZdBNtSW8NBDYSCmQ0qGQGUoqDDMgLmJymVKqlIn6Byz4JXxX0ctyZKpNoAwyPN8mGyTUJieICLEcizjL8VwDywS7EHiOTxKldHtdiiJjbqpOu+VjPsBYh+3tLYJSic2tdfI0xXVdqrUaExML1OrTNKb6yMLg0ctP4Xt1Ar/G3Y11vvb1n+Wlb/8xSycmEbZD4HgM4gG5UiR5gWlYNMbGaDXb2LZJkaUsLy7S6XQQQiFVgTIEUg09SKTUhMdCadmngO995xU+86nHePjyo6xtrXPt+k2coMK3vvlX/Ppv/n3efPU7+OUGh0c9hOEOV90K33e5dvUdfvk//2VuvF9jenqSbvuQ3/z7f4/X3/g27U6X0+fPk3Y7+CVJrVpj+eQ0cdQnzTJaRz36nS1OLc2yvLjE2y++y5OPP8r5hx9hfXOd/iAkKdr4gcJxFUFpDDdoIIucg707yEJQKtdYmDsNwma7s08Ux3i2y/rOFovzJx7ItQyCYPiTNgIETTZW1j2XXKkkRV5QDCXQI5DjeR6u7RxP2oZlatLxEJB5nodhGCRJgu9rQl+n1WZ2ZpYwjshyA9fpI4Aoj5FWhO/rimyeZnQGMWtrG4T9AadOnWJn74CdvQM2dzaplsc589BD3Llzh6987Wu4rkuPPbY3r3Fu6QxT5yaxbYM33niHiw9dwivZ+IFDrTbGYDAgy3KiQYFT8Wm1doj9Eq3OIYcHHQoZUy6XiaKIUqlEs9lkZmYCJQW7O/vcvrl23AK6v3qjJ3PzI8qgHxwPvl0FiEIDG0NHNihjKN/mHt3FUKAMLQMXMDQD1JxJ4HgyN0e8FakwjAKG8Q25Marl3OPICFUMDfZGmqdRC2yk0NIbN5HHXSBTCZQohm0jY8gRKu5bxAyPQWr5uEAHiY4Y0kIKEFJ72UgbRI4cgh5hGNqUVOiqmqk+Cnbub+yNhm7LDf9ynyR+pCjEEFCM5Oj368J+9CPp9+g2D1lePkM2CEEIKoGPaRhkScre/h5jjQaWZTG/dAqZpyzMnaDkerz1xuvcun6LhcWTmGWfcqmKbVpc//AmUzN14jAj6vZYWjrD+NQMi/OTHB3s4VmCwDY42t9l6dQSnW6HimODA1lu0GsfEYxNcufGbZaWlhAC9g4O2Ns/YPHkMl/6XIlHzz/GwVabiYmT1GyHN974PnPuIhP1KiW/zKESiLjPzNwkt2/fxpQxlUqF/aM+KP329U2XzlEX0zBJInj1O68zdWKaVrPLYJDSmDvJzs4eG2sbPHblMgtnzhFFA9LeEYfNA7JCcPrcedygRG2uQlT08Mdtzl15FLsmyfI2n37iEmVhk/QGZHmK55a5fP7Ux16PTwQ5UkqyRL9JjFwhjALXcrCwhuStHNvRHw5CGLiuNqQyhEGeJ6QmxEmKVDqQ0hQGcRiR5RlO4CJTwABToD0MUBimwjcdiqJAKYFS5rCXKzAMsB2BY0vyXJClOYYydDZJkeM4Drks8GwHwwRLWLiWQmFhiZxektKLMpTQnLk8zwlslywVdGWGECZSasVOmghUYVIUMSa2Xs2pAil1FlPdNjgVCJRlcBil9EMt7xTkOHaBCDyUITAMoTOVsEmFxFU5pukQR4IsvdcX7ocRsRRQfLwU7j912I7J3t4eE5MTDMIe9bEqW9sblKrjSJkzOdkgcHx2dnaYnoYw7DI/f4KX//o/4LoOg0GIadiUy2VarSaFzOiGERP1Cp2OTof1Sy55rvB8m+mpadbX1jAtk+wHCJ33rxw/++xn+dbLL2PbHpPNQ5546kn+w19+E69c5YnHHtcVJAlKKJ797LP82V/8GSurtzEMwa/+6t/hn/32b/Phh9epVMqooqBWq/HKd1+m328jhGC32WKy5JMpRZz0OX92iTxV2K6DF8Dq7R3SosdjT10mKAekec7B4ZF2TbVMpqam6B21KFdrGIaJZYLlaeVSHCd0u132mk3m5k8yNlajeWRiOg5HnTZTk+MP5FoWRUEURXieQ+DZWgZeFMNwVc2ZGfndaBdZiSwysjzS/jj9AY6pQzkN0yRUCse2dJDj0DE5jmMsS6/WB4MQYZgMwpAwiYjDiMB3cSjIVYIjTYRr0lMFpVKVucWTTNSnqFaDIbeqwqfMx3GdMSwKnnnqSe6s3iLPcur1Gmfmp/ACSZp3OGw1GRsv8cH1txCizOLJRZRSxFFyzEUybY+l03OkEgLfY3ZhCtuxkYUcAgPJw+ZZpEwJ+wPq9TEqlRrN9u5xpev+yox+TB0/PgI091d7HqQZ4Ggct6T0VocdIHEMckYtxr/xOkMiC/E3Jm8h7gMtP3SDBeKHEYc/Zjs/bH/v0XA07DAMzccRIy6nVDoBHIWhCt2pGoIiQLez76MZacAl0H2s7BN3/wePRY/7E83v1bf+/xpFltDc32VqfBzHgjt3btM62EFYJkEQMLcwT6vVxpY5m3s7lByHm9euMz87w/7hARNjDfZ2d7AqZbrdPuWgzMLiEmtba5yaX6AxNsXK3VW6YUgadbEskyiKaDabLJ9aYntzg/mTs2yvrjFWqdKLBpRqVaQUnDv7EFmW0x8MiKOCOMzZWNvl1Ow8r77yFs1myPjUIt/8wz/g8ccvcdhpc+f6GrVyjbFyBUcUrNy6g4FgrNbg6OiIo2iAZdmYykB6Ds3+gJJX4tTSWcIophCKw6NDMCps7LaZnjnJ+vYhvSQnzQBhc/Hhh1jd2CKMU77/2hvs7B+R5D6e53Pt/Wt0u4IvPX+Jv/zz7/L8Z04wU6kyNdbA92267SbufWHQPzjEJ924z/z6YyoaxBRFge2BHzhYhsLzHWzbAiNCmIbm4QgXWShc20JnlaQomZPLjDSRmMIegqaUeuDR6vVB2fhll1LVxlIFjjskAJqCTBbIwjwGNwidceK4As8VRIkiS00M4YCysKwCx7HIM3QbSUk818ZQIYVMkcpgkBiYhkEcN/G9MoFj43guKitx0A7pD2IcV2I7inBQkCUOloDAzPBci4iQbqSR2dlSmYdLVbajJu90QyRVMtUHc0BZWRjWOMrwsVxJOCjwhUW/kAwGEYkMqZbGUblEkZNnCkcoYmVjWBl/8VvffSALDSGMoSuX4Fh2gD5fupQr76kwhh6nwrS0iGIIan/4u8VA11WGyg+dssPog2WUafPD3mvHMQRFrlcDo179kGRoATqzHKQAw7CQx3wCcfw/lBKYxpAfIJW2cVe6eG7ZJnLIARodgC7kCxAmhjFUqAhAGhhCIrVGFzBB6VaGkjbaKdXCMAVKjiSyw6MUAttyyfLoeEVrGYKskD/y6/m7f/BnqigKhGmSpzFpmuJ5AWpYLRspjMIwPA7wdJ0SSTrQrVzXPT73qpDYjk2pFOjyvnnP86rZ1OZ6g1hbtGdJQrvb1Unlva6uxPR6WLauFHXafcYn6hwdHeG6LrPTM0gpmZqZptfrUa/X8QOdfN7rdbFNmziOqIzVuPbObaamp4jTPl/64lf5p//0n3F6+TwrKyucPXuWk4vTvPvuVeYXZgkCb6ie8nFdEyVS0hgqFZ2QXKnqlXKe55RLOr7ij//N/81f/vs/OX7P6GunjsENGEiZHz8++u44DlJKbNtmdXX1gdybK9e/dY8JrHRLXhrmR58k1EdoJMZ9t5PmyNyTjqPAlAIl7lNiqY/eg/qeFEikttW/r411/H9HZRjAUPKjLR/BMTjS//f+1/5wYu9ogaNt/oZVH9vVMQuWo8nDaINSccwFusfv+Ug77SOtO73vx39Xw2MZEbJloXlCAEIet+DOXPzSj/x6/m//zRVlmAaTk5OUy2U21teZPjHPyt11er0uuZD0egVnLizgVcrs3l2jbFpUy2Vsz8K3dEBuWBSYjke1UqO5f0ikJNPVOs2DffySB56JLSDwPNbvrjE9PkGe5WRxjOUoSo5L1A/JipzyeAPsEqbj4boepmkQRzG1ep33rt6iubnLH/7Re5w567DXc/jpv/UY0xMuscxZvbPO8vwSZddFpD0wBIZtYzomwjDopSkT4xNEYYRSJgcHh5xaPMXiyUW2d/fY2dvHC0psbm3zzZdf4/Ll08zPzWJZBvs7O8zNzjE3e4Jub8AHN24ileLPv3mVzkBwfnmcJOpx1BL83f/q66zfvcNELWWqXqXi+eRkOL5L1Bnw1X/y4g+9lp8sIadAmIIkyvF8T/NobEWWgWUJDDyU1P4DtjOSW2q1jFL5UPWhUGSYrsLBpeyX8C2L/iBG5iYYYEtwDAejSMnTglwJCtMCQ5AfV5BsTEsboAlsTFxMW6fN5pnAFjaWsDAsiTBs0iIhzzOQCY6lJ23fNLRHglEC5RElBcIyUVLhu1WSREKRUsQFMgaryLWhuZJUfJN+v8DPJYYJnUHCzfiIq0dtIv5f9t483q7rqvP8rr33Ge59981P89NkS7I824mn2E5CEjJU6DQJISQhQAKVD0WAqg4NNEPxCaQqQBfw6a4wVKACDfWBpjtQIQwJZHImsHHieIos27Ika5Y1vem+O5xhD/3HOe/pSZYdk0gpUN+fPkfvnrP3GdfZ66z9W2uvrUlUD+cc1kWQgI4CNuSsHhklKRTaCGU+h9YK3wv0fK9im+KS1lATm6U0VIG5dCPIqQLvwrLSWjY8/FkreCmNGEtjl/wFLOQVr5LUQ1q9ruexqT/4fqkDudwDDc/al3BubES1LdSpQOqZket96sm1lw0cVZ+vIoSqudVsreNFC9adVbBlWdPohKVbq6n4QKhdrqIU+Er5ek+lHANUOUKWxpzWGVPrfZafgSw92kBZZmfvV8D6Zyv6iwERT1lmaKeIE0MUpxR5gTERRVENo261WkRRtDxKytkqyHgp9421FmstaZxg6lFRkYlZaFfGSwiBoaEh4jimlWXVKCs8iREa4yMwNlobVymlLZiYmGDjRjCqwabpK6v0AJFheHiYdesmURJjS8fcQpvVa9czOjJOY6TF3NwcI42IyZePsf/p/WzduIGTZw7w9ne8gTiOecnd19BqVanld16zlbLw+FBSFCVl4VBKszDfJjYOC0SNJnOzi9gSStuj2dSsX7+eftZZHh0EKz+YYZmRWCpfmhMMOKf+pUJYcqMpjailIF3FOZ2R50FlFNVGf9BVUkQFQQzqHGM81O+2ru9/KY3yC8OFOisquDqc4LxZ3NXZSXgrQ+js88XZ5VihQI5OFN4JQatll6Kwchb4s4rj7JD+Z8fkPBculJzwUsmz1WyydesWvvLA/XVsm/C1x77G5Jq1WOV5yZ138uBDD+EEHnlyN2uGx1i1ag2R0QQVcN1qGoNTp84QN4d4bNdu1q7ewEc/9Y+87X/+dlxpibynKHImx8bp9Pps3rKFE8eOE6xjzZrVzJw6ysGn9nPN1ddSdLsok9K3GcOthIXFMyx2qgEFT+zbDSHl2uuuIlGKM72MVTrQmEh5YPcu7rzrpdw0uoZUEtaMj3P68D4OHztKlKY8dWAv05s3cf2OK5kan+Cxk3swaYOx0WEy32emP8uXv/YAjeYYqxstVk9v4V3fv4kHH7if3Y8+WOmXRpNO1/I7H/4Ut7x4Cz4E7rrrbn5k83buuv1qHnnoq+zZvYudO64Ed5RX3rWDEyfnGGulnDr5DI3RlH7Wp6WfWx5f112llNBsaqwLGBXQQSofLJqitGgDRiu8syi11IMMmAgqVe/QpqLX8RYdp5UVqGNUELz1+NJSikfpKthP+SpWwyvQKkapaoisCgqcYAshMhoV4mXloNDLDIR3ZZ2TxSEESle5p7TSGBVjC4t3Qu4Dw8RAVLEEoogkIet1CTYQiSH4ivovg8crjSsKdDPQ7jlm8px+IehIUN4jLsJlmjIYnIU8K8hxlLlQKI9ES0pFCK5SZFESETw0YkNQDqUvXXDjMlYGG16wLDyrLmHF1gsVu/OOFZ5d94Lr5xeHAC/gWH5FneXbWIqPPH9/VhhZF7ofzhpVF77OUHdgwwWvP5xX98LHuLhYYhjSOEWUpdPp4MuSOIlpJlWCRqXj5eHf1lokKLRJSJpDFesVubPxCkCz2UBJRDWKN5AVFQuUZRmzs7PVsP+ipN1uE0KgvTBPHMf0elXAb7PZZGZmhsnJycqQUppm3ECphMXFBaAK4J2bn8VEnrHREXSw5N02jz51jGeOnWZsbAzvHXPJAnHURMQSAqRJgyStNNlCe5E1q1fjncM6S6/bo9Uaw5gUkWrSUjXZotfro2SK2dkz9BfmWZw7cw5Dszxtw3myX7ltpZvKPg8l/s2iIllNTTaqOnfN2RxIEiomsnJInZ3g1svSR1+jzplE9KyLa5lpWU4Oo5Z/B2w1CklLRUbWDMdyDBBy9j2WuhWJVPHLdacioCumc6VBJkvMTsUsVfuBd2Xdz3BQx9wob6rRlwYIniCuMsJQ9fQRBpZZmLNzWCmlWRmZI9SMK5pANYnpcpnomtUK6HpU2KUaLHd6bob5dp+bXnQTX31oNxOr1rGYL9LoO2whHD96gpGRUfYfPkhvrktojjHX6bPniT10+z0mWg22XrGFXnBMrZlibO1qHnrgcV7z7bcSIs/+A4eZNhtZLLo8/uR+br3pZo6dmWd4YjXBBxZLz6ITxjZu5/BCj6efPszNI8N89eFdTA632Lx1CyqOWVicY2SkSZ5rfBSY2rKWqThB4ogzM8eYml7H7v1PsmXDFp7c/wRbN2zis5/5e156900kaWC8M8HOq2/E+px7/v5e5ttdtm7fzN79+7ju+hs5evgoN91wPdbDiRNnaLVG2bd3Lxs2rGXf009z0/Xb2Lx+I83WOM1mhA6VLXDg8QfJcovuHWP16lW87I5bOPD0PhpxxMKZk8RKExvNVTt2cGZuBqU1ebf9nPJ4fiPH1Xki0qpXFwRKUUQhUBQFgUoBaV1irYDyOFfPm6KqGXG1VuAFg5BoQ5EXeB2h8NgAIoGsHzAETCpAVM2gq6rmrCVCq4AKHu09qa4UsfgUoM6z4nEExHmsL1EilFmGxIpYpcRKIyrClgHrSnCeUFZZNQtnMd4goRqVUjqHxiDWQeSrYYkS451irm2rYzkFGnQSk9oS5x1KUnrdgIRRyl6gLHpQBmZ6GRIHoiEhp8TZgO8HrC5ImwmxGUG8Jyv7NEaEkeS5MzcOMMASnHPnMAxxHCM4rMtI0iFacYJH4eoWLpISRJEXtnbpWQRTjbQiMDI8XOfHabOU6RjU8qis9evXs7CwQK+fEccVnb5xesPyMOulebDGxsYIIXDq1CmUjmkNjXLyxGmOHTvG8EirylwcVYZRf+16bp3exh/94Z/yfe98G3fe3URpVaWBN55et8B5YWJsgk6vz8J8ZWwF2+KpvTPcf//9DI9U7WViYgKlPHleMDk5ycR4E+8dw8MtRseHeObgvrOxYKxwm1xghA6cZW++NTlyzsXSNRkEX49aWwqqXUpauJw/5wIMx4VYi2puq9qVBax0LS2xMyJVVuEQAlJ3tpbk+/WutzrQc5cvTdApopZjolaOdFPiqCbljM67rqXfZkWnbKUs9Ir6S8zRUq6hs5+36pnoukdyaWeUn9p0BQefOs7Du3dz3wP7ed0btrF+egtpnLJu1Sqe3PMYphkzNztPyApWT61GKcUdL7ubL33pS0yt3UBrYpIH7r+PjiuJo4iRSUOrYbli20biVszXHnucW++4m87kaWbmF3j0kd1ceeU2Ts/MIaLYsH6cXXsOMD29idVbtqLSlBtf/CKifmBibBwZTdhx7U727dpFo5GykC1w80tuoTnc4rHHduNZzeZt24gbKWI9mzddwfzJWb7z+7+PJx7/Mjdt3c7kui2IGqLb7VOIYuvObQTx3PKS23nisSd5fPdTNJspd9xxG92FeZ45cpB7vvQEV+0c5ZXffic266N14PChJ1k11qBYXOC6668haQzz6K4nWTs5RdbpoZII17ds2nIlc3Pz5FmPmaLP3FyEs544TTk58w2OroLady1+OU/E0ovmXFkFrRldJeoLilgvpcsWnA1oDVpXE6SJ9WigoXTVoxSFGHChwJW+mli2VBBcFbUvBurZc1WoYjEiXc3Q66kYoyiKCK6mmq0DUw8HdSXgiU2loI1O0BKTZz28r45XlBavPa4oq56rj7HW4r3FWEAJpbOoEFB4urknJsEWBTaCZlIFRyc2ARUIVpMmDTqLOc5qijwnNppeVhDpQNCC1ooysxAibM8iqSGShKBLlDLEUgVPDzDA14OiSlLngkdRdTpU7S7o9/sUeY4yGqjSOyRxTJIaoHq/lEoQUbSkibeBtNGoQxhKnLcUeU5mS2yZ4UpXDSTIOywu9ijLKvtxu90migVjIhrNIZppSlFAmjaZnJwk0jFxpLnu2qvZduVWcleQRDETE1M8vf8gqyfHOT17kh/4/rdiiwynod8tiOOUsnCMjY5w6tQJZmeryURHWop1azdQlFVH5tZbt2HLKuC/2+2QW4v3iizLGEo1e/ccIOu1UQjHTy1y7MQMsPLDfW7cyPkMjtRDmJ2r3HuXWqLU01EufcIdoHzlYg5UCf5qIp0Q1DlMRKCap8l7jz5vLqgQPKJ8FdR2obFFQeoYMjk7lUU9RcM5BuCKwOSwzAQt/ccyW/Qsl2BYynAcEByKpZic2nBTAXxAlKrYoCBV0LJSiESArdx3shSvd/Y6VM3KePEEdO2GPpelWTba6pFe1cAuxTn5dy4iSj2MNS1aE6NMb26jtGFqYjVfe+gRnnriCdJEc+Lp07zo9pt4/NHHOXnyJCLC+Pg4N998My0Tc/zYM1y9fQdXbL+SMs/YvGEDB/ftoz03z+LsAuPDY8ydnsH2Ohw5fITHdp0himLOzC6wbt1aDhw+wmKnR7/bxseG++97kjVrN7JhdDWf//znWbdjI81WytTQMNpEHDl2hi984bN4Bc3mENZGPPiVh8mdY3JsjPbpWSZGRjk6+xi+9Oze8wwLcwuMjYwyMRazYeM0BM/a9evZ//R+hppN7rrrdk6cOMnIyCidTpf5+TledNNWtu+cZsPGDZw6fox77/0HduzYycT4JGf6PY4dO8bYxGpuu+0WZk+eYGxsjGeOH2XLlq01c0fliRHHxOQI8wtt5k+dRkfP7a/6OkxOFcyWJFWCPHAQEpyzRFE1zb21Fm0qP7JzjipXlcJ7wRiNVlUgayKaxMSIBAobiE1CUWYkukk/qyYVLEtfMTi6DogUjZKKlgzOIzoiUNY9g6o3a1SMJmB9Wb24KmCXaNtg0EowqkpQpxDwitJTDQ3H41xApMSGSkEE58lC1Rhc6WkqQQIUtiRVhrLO6uDF4MSRNhOKwhKMxhhDqhULWQ9vHaUImKJyrakIdDUri5QGH6phnWhDZFJU6FQ9ZHUpBzcOcDnBWosnkMTVsPB+r7McTFyUJUYCWimsdWRZRpJH9YisFKUMzWazSgSYRCglpGmMtZrS5kBAG000XE0PEUKg0UyZmmQ52eCSm6rb7XLqzAxP793H0NAQk5OryLKMxU6XZrPB9PQ0edFnYmqKIss5efIUcdRgcbFdGWYmQpyl0z2D956tW6+serRTU4yNjXHkyBFCCKxetYY8zytGuciZmJjAB0WkDENDCUM0AIevOyzX33gNUVR98nu9Hnmenx02r5ZcFucyISuTBVajLau5kb4Vo6uq4/tzAopZds7IOfWeS0ucDbo9b9t560tsUfArY5Oee4DAc+EsQ3T29/lJFlcef2XOoaWEyc97ziAgZpmlOWc0Fy/Mtb/yfqvrWQoUfJ5Ajm8Cf/zn97Bh9Vq27LiCsYkpDh8+wvpNq3liz1OU/ZhXvvxaNm6ZZn5+njRNGR8fZ3Jyks2bN3Pw4EGO7tnP9MZpZnttRtIhGqPjtGdmmTs9y5RO6be7NJKU3Y/uYnrNGEOp5sd/7E2cnpmjcewkSZoSJY4yK/E2pzXWYmjjRkbH11IuZuzcvoPT2TxGC08cOErhS4aGhxkbG8FrcD5jatUazswscvLwIfLOIjuuvBKjFMOqyaljPR7bc5Kbb7iWoj/Hxk2bKG0B865SAAAgAElEQVT1nfPO4UqL1oojR44gonl89xOYyNBoJExPr2Pzpk0cO/kMq1atYt2GdRgTsWrVGmIckVLoSFPagpMnT7Jq1VSVRb7fp9tZJE1SRkfHmJxaxSc/81lWrVlLUZZVXqnnkv+3YljkAAMMMMAAAwwwwLca34Io1wEGGGCAAQYYYIBvPQZGzgADDDDAAAMMcFliYOQMMMAAAwwwwACXJS6ZkSMiB0Xk2y/SsbaISBCRCwZKi8jPi8jvX4xzDXBhvFB51nLa9hxl7xKRf7gI1/Kc5xjg62PQNi8vDNrm5YNB27z4+JYzOSLybSLyhYt5zBDCr4QQ3l0f/3kFezFxfoO+FPf2zx2Xyz0PZDlom5cbLpd7Hshy0Da/GQzcVQMMMMAAAwwwwGWJS23k3Coij4vInIj8oYikKwtF5P0i8lv170hEuiLya/V6Q0QyERlfscs7ROSwiJwRkX+/4ji/JCJ/Uq9+qf47LyIdEXlJXeeHROSJ+lo+JSKbV+x/rYh8RkRmReSkiPx8vf02EflHEZkXkWdE5LdFJK7Lls7zaH2et168x/bPFs8rzxV4vYg8Xcvp10Xkgu+ZiHxQRI6ISFtEHhSRl64o0zWdul9EFuvyjRc4xt31MV5Rrw9k+cIwaJuXFwZt8/LBoG1eTKxMb34xF+Ag8BiwEZgA7gU+cF6dVwK76t93AvuBL68oe7T+vYUqxdWHgQZwI5ADV9flvwT8yXl1zYrzvBHYB1xNlQDxF4D76rJh4BngJ4G0Xr+9LnsxcEe9zxbgCeC9K44bgG2X6hn+c1peiDxXPJPP13U2AU8B767L3gX8w4q63wdM1s/3J4ETQFqX/TSwC7iKKhPajcDkyucOvBY4Atw2kOWgbQ7kOWib/9KXQdu8BM/0EgvrR1asvx7Yf16dBpDVjelngZ8HjgIt4P3Ab54ngOkV+34FeNsLFNbfAf96xboCesBm4O3Awy/wnt4LfOx/lLD+Ry4vRJ4rnsnrVqz/KHBP/ftdrFCkF9h3Drix/r0H+M7nqBeAnwMOAdev2D6Q5UWS5aBt/stZBm3z8lkGbfPiL5faXXVkxe9DwPqVhSGEPvBV4OXAy4AvAvcBd9Xbvnje8U6s+N2jEuoLwWbggzV9Ng/MUvVANlBZzPsvtJOI7BCRj4vICRFpA78CTL3Ac16OeF55/lPrichP1lToQi2XUc4+3+eUS433An8WQti1YttAli8cg7Z5eWHQNi8fDNrmRcSlNnJW+mk3AccvUOeLVBTbzcAD9fprgds46yf8pyBcYNsR4N+EEMZWLI0Qwn112ZXPcawPAU8C20MII1QW8/+fJ5d6IfJ8QfVqH//PAN8DjIcQxoAFzj7f55MLwFuAN4rIe1dsG8jyhWPQNi8vDNrm5YNB27yIuNRGzo+JyLSITFDd6EcuUOeLwA8Aj4cQCuALwLuBAyGE09/AOU9TTeR7xYptvwv8nIhcCyAioyLylrrs48BaEXmviCQiMiwit9dlw0Ab6IjITuA9553r5HnnudzxQuQJ8NMiMl4HI/4vz1FvGLBU8jIi8j5gZEX57wP/UUS2S4UbRGRyRflx4FXAvxORH623DWT5wjFom5cXBm3z8sGgbV5EXGoj50+BTwNP18sHLlDnPiof45L1+TiVv/EbsUYJIfSAXwburWm2O0IIHwP+E/D/1vTZY8C/qusvAq8G3kBF6+0FXlEf7qeA7wUWqYK3zn/Zfgn4b/V5vucbud5/YXgh8gT4K+BB4BHgE8AfXKDOp6h8vk9RUbIZ59K0/wfwZ/X52vUxGisPEEI4TKVMf0ZE3j2Q5T8Jg7Z5eWHQNi8fDNrmRcRgFvIBBhhggAEGGOCyxCAZ4AADDDDAAAMMcFliYOQMMMAAAwwwwACXJQZGzgADDDDAAAMMcFliYOQMMMAAAwwwwACXJZ53xtGrt68PoHA2EHAopRABrRXeewiG4HJEBOsVPliiqIFyGaIdru9pxoE8z+kXjmuvWEt7sY1zlm4n0M08RVnwsptWs3HzBo4dPsruffOsXTvO9HQLEYuWiERFdLKCkdEhyrJPFGtEhDQZoZ+10V4TxSml7aO1JgSHLQuiRoOhZIwkVYTgOHH8GZLUQGEwQVOEPiqFodjgvUcig7UWpT1KYtJGE7THlZ6yb7G+RERzfP8JJtYNsXbjRsZHU/K8YGb2NIf3niSUmnUbxhkZHyNuakQpbMhpJi16/Q6ltSSpJ4lHCEFwkiAmIW3E9Ba6ON/nRz/whUuSU+Anf+q7Q7PRYuvWbWy9YiNaBzr5PHme4x2IKKLIYG2JyDBJEjE2NkUSjWB0i7GxVZgkIQSHiNDPengfSIfGaTaHMCic9bjCIiLktkCpgNIBpaoA90hrtK7kp0TjvUcrc8EsDUoZRASRcx/H0rpzrs6gGbAux3uPcw7nHHEc1+9rtb/3HmMMSlXvrveeoigIIeC9J4nPDg4JIVAUBUmSAoGizCiKgqLIAY9og/cWH3LiOCEyDYITjFLL92aMQWtN6T3DQ2MXXZ5/9N/fFkwYQrmYhmpigiISEDyRUkQGRiPDuokJMBESSiQeBklwvkCyDjbP6PV6OJ3S9xE9iVjIupzqHeKrh3bhXAFRQPnAeKPFdaNrWdcaYePYWhoqIviMM3PzHJqdoVuWLOQFDkfP5AQJlAKdABIUERFGaUyk8FgKFSiCx3swStGIITYQa0UqGqUUFqF0YIvAlGkQHIhSJEmCiprEKsFJTkkHjwIlWF+SBUtmK/1kEJJIiCQiiiKQCKVjxFts2UHEo43gQsAFj9IaBJT2lOTEsWGs1SKKE9J4iNu3//olaZuvf9dNoSwEfI84Nowk48ycWsA1hck1msn167nyqgn+7mNfZvXYFDHClqlh3vCdL2dqs+GLn36cr375CEo0NBRDYympEm667mqemTnJ2HDCFz77GDfeeC1XbZjmd//mLznTzxkbX4s/fYa5xQ7btm1jbmGOThsKm3PtjeuZm59jzxNH2LhxmtGphDXrNBsmNnN8cZaZ4/N81x3v4DWv+EHAoZQwU8zwPe98C3/5X/6aN77nFcwtnqIZOaZMwi++7/9h586b+Nu/uIdP3vsFPvCr7+HBr+3hs1/6HAdmnuLMM0fYd/AMcRQxdcUNTExvw5Z9Gmsb9A4cZ/+jj3HLa1/OgV2PcPih/Vx920tp+es49uRertlxF1965PdoJjmyCs7MLTA9vYZWq4l2nkMHj/CO2z5NGjm++OB/YHJVkxuuv4X3//sfv+jynGiYoEWhVPVuG6MIzuO8BefJSGp964mMwSgh0gGjNFoLmkA/z+mHiMb4JHd/+2t541veyvjUJJ1Ohy9/+hN89s/+GNozNJVlyEAjSfESsWChZz0d16fdL8gdeAU6SghO8KXgfaCLJ8aTEkhDINIKB/SsxQahdIEk1qSRoRkZUqXR4ohE0EHQsSJNDXEaQyTkztHNC+YX+hTOE7xBEFStE0MIWFtibaWfEaHZbDI11mLt+DCxFmICeV7Q7nSZmVtkvtunLAMhgFKQphGIoEQI2mB1TBBFWZbkec6xdnZBWT6vkeO9ry4y0khp0bHBOVt/BCulboPgofqgoBECmQVlAwRP6UBFCS7rc2q+S94raKQpTgrK4FHGECjI85zFxRLrhQKLd4rmUINOu0s365EMpVhrGRkZYe7MHHEa0S26QGWcxLHC+xhCIM97jAwN4YF+N6fIc+ZOLCCNlDXDExx8/DB7njzEpm1r2HDlGhweB6j6o+mswiQxRWGxoSTCEXxBCIZer4sNhqIrGG3I8h62FIxOUSrCiaPT6aGTGJMOo7VlKJ1Cq0CcOGyA0i4QKMj6fUYnN9Eab9GZXcTmbS6ck+niIM9L4sijdYRSmjzvMTMzT14UeBcIQBxrrHV42yFtJJSlI437pEnG8MgE2ALrSvI8I897UL9wRoHXGh0U4LDWEVyBiMaXoEzVgJdTewfBi8e5AKF8liEDggR9ge0spQZfLgshnGP4OOdqIyU5Z58VacXP2R8g4JZ/W2fxwVKljZBlQyoEDwSUQAgeay1RFC0f13uWDaolY6fa5+KjDCUh5CjAFyWNyKBlGAlQBk+MghDwpUWLrt6qvETHMUEiAhEoT6OhcSQ4q8isR1lNp8iWX0MBFLWRqIaIo2F8iPEYoHrW1gccgpVAGSw+eBSCVgbxHoUhBEFQaK/wKJQIJni8eELwhCAs5QvzAp5QP3vwoaQkAVEoAp0yQ3zJUNrCUYASlBLEaJQtER9wweGdB1EYDKIdnoDB1crXkSQGpQE8wRWE4DBGE7RGlEOj0AZKLCEoxPUviSwBVo+Os/epZ1DNhLluTmdoDh9rOifmWbNqGjqnecn1O7h+23dzy1XfzTNH5rjvcx/hk5//B4ZXJbx42zWsX7WRTes2sXHjOh57+jEOnjpF5nNGp5o0QoO77r6eJx4+ij+ds2p8nH5xBjtXsHp8Gh11OXn0FEFDqznMpukt3HLzJOPjV/OxjzzAwWNHEca46eobuG7ndqayz3Akyel05wFXy86w6+mH2XTVBvY8tZsTT3eY2GBYmLFcsX0tV++8Hq0KDh89yq+/7z/ye3/9G9z7pb/lP/3qh/mhf/ujzB2fZ2p4kjOdU9x8x6t54sA++kcfZfPql/Pnf/M5yvYCDxU9zLBh3datzCz0OH3sIUxZMjN7kM0bdrD/2H1s3LCdtveMrF9P9+QsndlFkmQcFx0GNYyIxpURIZSXRJYhBALVx3lJNyx3fIxAUDjnEVEkkULXr76i0hW9rAQV45xw992v4E3f+WaSuEF3oYsWzate+x1sWbeOD//nX8WHkjzkRFpQWmhoqTqUmcaKQimPVZrCe6wH7wMuQPAepRVGKWIRtFaI90S66nCGYFEB8J6yLBFxaCyuNjKaOsY5XXU0ReF8rQucw1mPr9u7CpUq8SFgbdW5tN7jfUCyPu3FwHBikDQiTlK0CcRxStKwRDYQpKAoHB4onV/utAY8hS2w3vP1Rog/r5FjjMHohLzM0UZR2IxEJzhnCaLwweF8QCtF4QrSRoJzJRgPIaaZgHMlrt/H+8Bcu4stLaJjvA9oo/HOs3X7Ntqz8+QWMmvxGPLM0u/3KPoZI61ROr0ezUaDsiiwpQcsznqGRxr0FttEWuj1ckZaI2glzJw5zfj4KiIj9LOMvU8ewaIYvj3lwFPHmF6znsbQEDYviKMmvcVFmsMRWmuUpJSFxatAmhpskRGCxeaOOIpxfhHrS/pZh9bQKFp5sr5FxzE265H3K6YDAaUC1nbBKJrNEfrlHEUZkxeOibG1NJOYU8f3EvmUrN+ls3DpFGlZOPK8JHihLDydTpfTZ2YrI8dDHMfEsaEsHThFUVYsnZYuadJl1ep1GFsZdt1ul7Is0JEmimMK7fHaECmFLS1ZVuCDJU1ahABGNRFlwFsC1cvqA3gXcJTLzMfZFzacoyCeD0vlK1mbEAJxHFdHWjZCfG14PNvYWblura3WJdQf4KWG5EHquVCCx7uS4GOCd7WBUx3LWluxY95TuuIiSvAsSu8oyRBXEAWgjNAxRGKwDpIgiG5gy4p98h4kUhAU6Mr4khAQibDeY6IYgxAlcObgGUT08rPzqtrPS4xIC5ynCDkqFPRsSVk6vIAjYIVKq2lFYW1lYIggShEAF6qPoVTWC0oE7xTJ0CSR6RPIKLGoUJ2fIGitWXQFUghDjQSCQsTRD12MEkxkqt5ycKADWgJGe0pRlMGiKyGjpDJQlS4xRhOrGJTC+RzjFcFZRAfEpUhckmqDSP3+BUvpLiCIi4Tf+o1f43d++w+454tfpvCaKI7Is8DI6Bhx2uLtb3oJqT3CX3/y49y1403s2HIjW77H8ysfej/5ySmOjc5y7XVXc+jgfvYc2UXRg3VXTrF57TCrRzfS9ycZjq6hfOM0+x59gvkvfZorN9xGyGIe3fUEtvS8+IbtfPVrD9NqJuy46kpWjwXK7hzv+5l38zd/+2nOZAU7d17F03sOML4p4Ttet43ymU0oVRmioPnrv/0oxMLqqfXcfevL+dqBTzO5vsXvf/i/EoUm4oQdV1/Fw488xB/88f/N97zxVn75f38/+/Yd5Iff+hY++Gu/S7JGsX/foxw9dIDeY7s5+MBhKEs2TF6LOhlx6tRTbN42xfYN27n3kS8QIazfuoPJoW2YqYLG8AjN61Zx9JlDjGrDzHyXVRMb2XPgIe647k4mRjezZePNdLuHLokszzdyoCIBlBaM0oh3OF3pi8gseUbcWR0VNwgq4fY7bue73vxWWkNjtLt9FhfbDA01yYJl7RVX8bZ3/xgf/+ifsHDqOA5L6gM6QOygFSomVImiUIqssLgAhQ+EIAQXUEphREiMRgQUirK6aFC6oiycx/rKUtHicarq9CSRqTuUGlTVWfWuun5XLyIBRag7LOCCr4wg53EefFagCPRbTRKtKKSoyr0nqMo74zxQ9gmAdaG6TiUEAoUrKMrKa7Ck6y+E5zVynHMYLeAFpwStWtgyRyRCRAGeJKosP4vClwotGi+AKHJX4HwgigzGgqiIrg0UizmjOuBLyKwjSpvMzh5ioVNQeMX8Qk4SHK3hFhIp5hf7GG04fmSWJDWMDg+zsDDH+PgqFhbaRNowc2IeEwkLvsTagkQ16XZ7JA3P/EKXRBkWFns89vgB1o5N0Ml7DCcjPPQPeykQrrlhE0lTaKRT2NKT532iWLC5w4nGqCax7jDfzvDeE0UNbF7SWXRYlxGsozUUUXYUeVEwOzuHxJZmo0lzyOMsiOoy3BxCRWOUWYG3JWdO76csPKfnFsnzPln7EmpSFdPtl3SznNMzbTrdNnNzGVmR4bwljiPiOMEVnjhSOF+QppoQ+nR7bdqLmxDRdDqL+FDinCUNKadP9ugPNUnjhGYjxZUFi4sLVS+8OUmStBCToLWhJAcfESTgveCdYF2x/PI6d/b+lcTPMnRWGiNLric4a+CkaQqw7JI6n+1RSp2duK3evzKMzp63LIu63lnjJmAJWAgBUREhWIqiR6OR4H2JDwLBg3hKW9Drd7DWEqcRkxPPNY3QNw4XAp2sQwiaRBQ9eojOGTItCBqUwdXNuywKCltgygIiizIR3hXgK6VTBM3phWOUKuHQmadxWMQ7JAg4qZSUqhiNduZoKgchp+i3mZlv46ynBHIJdLFoVRlRhQ+gK5YlVhoJtZxQUCtbyGg2xnnX636XPUc+x72P/xaJSbA+YPB4LzW7WmBDpTNaiYEowiQQxBI0BB3hgyWIx5YObaDIbSVjcdjg0BgwMUQOE1XMook0PkRQFGiJceKR0AVtiIyvjNmQgw/48Lzq8pvCgZP/nWtvbvHFz1lec+fN3PfILkaGJ+gu9jh6dJ4//einePfbXsUv/NgvgjvII3s/wpWbXsL7f+qD9MoOC8Uudj20jzVDW2muSjh16iS37LiNSApOzz3F+NgtLOaPM6Qjtl99Mz953Z08te8BPvmxj7J1xySxHmV64zq27dzIV3bvZnzdFCdmTvGW172HsjjF9771buL0Wh5+aobTnVP848cSHmjM8sPvmsb5NoXNEFnFwvxpjh2e4b/85kdYWDjEfGG4YUfOH37yl5lOXs+/uuMtvOSu6/iL+/9PfvYdv8KffepDZGIYXTvC/r1neNc7f4OvHvprHvziZ3jVa97A3/zdPbQig0kirrr2Ffzcd/8qr/+RUQ4sfo2d615DwzTIyj6FKti57RU8dOwwk/E4f//437Nlw2b27X6M6266juBb7Jy6GqPGedHNL2M4uYZjs99IYuCvD601CjlrIK9ACJ5YB5RRteFjsNbjwhJrqVjMMrZfs5N/+973YoNwZvYMWjTaFZTtjIDGxjGbd1zHe37qF/iT/+v3OPz4Q8TdPmsaKSG3NCTCRRHKO3oIDQXihDjW5IVFIkXDCIlRJEowRmOdo3SO4AM2BIIPeAmIBPxS9K6qODvvBWeFsnA4F+j0+xTeE4IieMF5CASkNnaW9HEIgCiCBJwP9POS07Oz9DoRqyenSJIEjyGEAofgELwssbwCoWKjQnCUtYGz1LF8Ljxvq9Vak+UZgqIoLCYqiZTUvVZd9WCDxZiY2DhCyPFeY3RU3ZBWxEmCKksk65HnjsIJOopQyiJUyrrb6dCe7+MclDaQZZYwktDJcgwBJRqxmjgO9Hs5kY7xHtrtNlEMszNtxloj4HKc80RRQnuuy/jUeKXITEJWCGPNUcTF5FJgraXX84RSaA61KEpNHMcE+vT6GWnD4EvP6MgEc70e3luyLMN7Q69XuWOM1rUS7BO8oii6BAJRpDDG4JwHNP1+j5HhMbx39PvzRGlE3s/wztHvObIsp8w9c7M9ssVLZ+SYKMFaz8lTMzgfQCxJ3KTX62HLglgryiyns1jQSA1KBbq9DkPNFo1mgyzrEkcJkREChhJHt9PGOUfeXySJNSOtBkYpsmweowy9rsfZnJFmC28DXhVEccXaeAdlbaQsGSErWZUlo+R8pmUJZ11Qfnn/pb9a63MMmpUGz9J5tK5igqy1+JpuXTKytNaUZY5zjizv4X1Jv99jdGwYW+QQLEWe0V6YY3wsRoKqmElv60ZtsbYg9C8NJd7NerhA1WPSCueELIAOBamGskzoi8eno1WsiYL53hmGmhM0qdgYpYRO1mWhv8h8f4Feacj6C1WbFqFAEA9JnKB1SlZkFMqymGUYycmLjNI6JFQsSqYsWits8GTeo3xFnXvvcdqjlQKlCA5A4a1CmZRve/GP0+seY8PqnRSPmIrp85U2lSWDVFfMqMfjFcQaxASUqWJoLLYudxAczleuJ5FAZBSiAogH7VAGggkoE0C5ivlRGutspVS9R6vKRakUWJfjHJfMvQFgaXPs+Dzrtmzmc59/iHRijPl2ic8DWOHYXs+vfeAv+cVfjfFhlI1bdvDnH/0rJsY28qpXvpKGFPj2aT7y2QfJlGFmtuT+rz7MK++6gVXDQzDscHnBPQ99lLtf+kasVaRjp2luLHj5DTfz2K57sUaxsNBnaKTgS/d8glQbxoYKXv3S16FCwdMHDnDtFa9lpLGNo9vnuPWaLVh/BiQhiYYpvGX25AxP7XqC21/7Jn76HR/gx3/jzVxxpeGqTXfw8OMH2H7kK6ybvhFnI+68/k5uffm1vPl//UGGh1t84vOf4N+849s4evAQ7uQCD37iHprJatZP3sSRuX9kfHWLI0dOEDc2sumWzcx3LMYohpNxvI7QQ23m+nMcPPIk29du5sTTxzEq5YH77ue1b3wdJ2f2sG3jzfzRn/4O3/U/rX/eD+PFRFmWeFEoL3hRaE1F45gq1GOps+dqEmV4fIzrbrqOwhV0en2SpEGwBcFlBO/BCe3ZOeJWRJwavvvt388HP7AXFTS9XslII6UsCvAOCR4VhFQbIq3pZQWtKKZwgUhrEqWJjALvwXvEW8QHlAdEoUN1qQCh/uukuv4QAs558rLA+8pdH3yotwcQBYR6/8rxvdIPHqTyBBWFRQdoLy6SFHWIgw/4Wh97X4cLrNDfiFREi5zV58+F5zVyyjIg4shtSRonWNsnCwERjc1zQk0l572KDk+SlNL10CqglSGgyPsVXd8vCmwQsrxgcjQlYChsYEiV7H1iL1lpWMg7WAl085zSpShb9R6TBPplhvRBB0+/mKE1lFLYgv5sSRoprIdup4+JNa1mglBSWkfoeibXrmVudUa73afdXaBTKCRy2CMnGG8OY02gzHv0OhFIhyRNKMqA4PD5Fdzxoqu5/6sfR+lThCAsdjMWu318uQZpeJRE5KFDmgzR0YsEMfQ6vcoKDgnW5RXb5RzW5thFhy8VZd4n60UsdvtkiwWnZmeJ4sbzieSbwpYt22gvdImjKn4oiiJGhoSy38MlwupVE/T6ju78HGUhFHlFTigtKEVtTIAPHpHKrbO42CaOFEZKSg+LrkNkBEUBKFyR41VJr6MxcYozEJsAyqMlQkUapSO00fU5zi5LhsmSCwp41stc9Q4q/3L1zpbL7qqVRg7A+W6qJSW3xOSE4OoeQo5zJUka4VzFDGZ5D+tKiiJHuYC3BbbIiZRQ9LtVMKuoZSNJqcrQxV+iD6OyqGAonaVfVB2PLpZGHDMlCq09FDEzvVmUD7hQEBTMd06Rxz0iFeO9Z7a3QDfL8F7o5RmpadIyXRyeniuJtCHREZGJSFODqEDPLiLOVspZV72tnEBWFmiqbSEIVoEKvlJvYhGlUWmKzT2+qNied7z+g7TiiFB00LSqWAWrUHiMNihAG9Ci0K7i1Mrg0E4IThHHZtm4dK4EKdDaEksVV2CMIYoAVSnlNNWoyKOUI4ojjPb4UDFGXimCLRGjcKHEB4t4WwdNfn3f/zeDL352mpuufyc7rhri1PEeG7dOc/+DX6OV9vj03/wBykE3H+WH/90fMjw+hLcFaTxJZ2Yf7/mh32L9as1ffOx9rN95A7/8a3/E+m1XsP9wjwce/TjDpsmt2w4y2z5IL045dObPeOCr93Hb7Tdx20t2MNvZz8abxzi0+xlGjSEr+8AUH/6dz/DffvNefuAH9nD7HWtZyDMoH+RdP/AzbJ/egbgeJ08toEgobZ8Pffg/o1WTVavW8MChD/NzV/9rrtwywfve+Vuo8i7ueeTXWbPheiyOg8dnmN/7d/zg29/E1PomP/9D/xsf+tMPs+fQLu7a8V188siHeGbfPppqHT//E7/JT/zKawlTTfJ4genNL+K6F38bhx5+mtJmjA+v5UU3voyDRz/Fy1/8KvYd2M3+J77CiaPH2LL5et70uvdz/+N/Ba0THHjm79i84Wb27n+c6S2bL4kso1qBBUIVfyJCKUtRZp5SWgiByDmUFBXLISBK47znuqtv5FXf9hpOHNzP6okxWglkwSKNiDMLixjRYBy9XkaeC0YLP/4TP8t//dBvc+TEM6j5LkNoRBQBYajRwOU9LJY0CXhxJCeNS9oAACAASURBVKlhJE6IA+jSUzpP6RwZgaK6UAS/PK2mEpD6nw6CpaqPAyeCdWArDzQBXxs4FVa67JbhA8ErtAqoKEEijXUeKXI0IMGijANVUjhwASJF7VbzKGBIa2ztDnPP0zS/zhDyihVJlMErqUaSRAlaa6IoQquojn0wJEmM1oo0TQkhYExMWTp6/Zx+VpAOtdAqQrQgztPNCzpFl6uunEbpmIXFHOuqgKUQpGI3SkeeF2T9kn6voLSahTyjRLOYWayt2KA4alIWnuA1kRmms1jQ65b0uiXeCXmecejIYSRWvOjO61i9ZpzXv/nVYC0h0hAUjWbE4mIfrVNOnjyOYEAa0F1g3yOP8uq7347NU7rdLs56GmnFbGS2RAGxCiSNlJGRJqXNqpFTVrO4cIa812fh1ALtxT7thT69Rcvc6Q4zpxaZbZe8+Xt/jO944zuJTAuto396q3qBGB2bYO26Daxbv5HRsUmGR0dpRAmx0QylEaPDQwzFMUaEsoCy8BSFJc+rwPDgPMFVb7IEqXrk3iM+VPEdgARfk4wFuD62XCTrzzI/d5T2wjEWO7P0szZ53qG0/SrATZ01ZJbYlMqC98+7rKxrra0ZGf+sfVcGHa9crLU455YDhJfql2VJlmVYW7nknCvx3hKCo9ttk+X92qUVsK6KzSrLAmurJQSHUhBF+pIFHlfGXmWU5aWlLBxFVpKVJUUI9KxjrshZKNoUrkff5mRFQVb26NsuPdulk3fo5l0KX6KSCESjJaKZJPjaSIyUBh/QApHRGFMFjJfO0ytK+s7SdyV9l6ONXr42VcfgoIQgVG4kSrpZl9I5fFBMjGwjUU0kOFwJrijQRi/HRIkIUWxIEkMSGZLYEEUGL1BYi/UOGywOB+IIqmInRTliA43E0EgUJgITBaJ6BJfWleGklCCqGvnngsXjscFR+oLCWVywWG8pXYl1ZWVEXSKo6CYkXsvkqiuwWtFuF4gkGAPd/DD7juzlqhuvQ6cpZ+ZLvDSxQfG13bvJs8CxkymvfsPP8dCT+ymihFYcY/M2/x9t7x2s2Xnf932eds55663bC7ZgURYdWLCDBCWKTSRFUgqjSjnO2Ioo01RseRKLiWMxSsaSkrEci5SijCTHqo5kypQlUiLFCoYFBEGAqAsstve9e8vbTnla/njOXZAZCZqRuGdmZ/fe3b33ve85z/P8ft/ft/Si4dZb9vHFpx7l+UtrnDixzuOPn2ZpeTePPHqUR46eQZcFfj3n9jtewd3338iR++/mI7/0MYxW9Pt9bj18mC1b9vOa7zrInfeu4+MFiA1SdFia30WaQwZ+8h/+c5546jk6c31uOLAH1xT82HvvJ/f3EyjZsTjgK488Rq+zxI+948fxTeSLf/Z1zBq88fBr+OYXHmajXOPND/w9cpkO4Gq2wbblAQ0lbuDRnS4H99/O+ukZdrrOZDpFyIJM5ow21pldvsyX/vRPyBe3svfwYeb72xHlHHvn7+bw3neyd/cRbjxwJ71Bxng8ui73UqWB7IvXNbFF+nPVNFR1Q1nX7d5atc9WpOjmHLn/FeQ6h6bh0umTXDp9glhNiXWNjIK6qYh4gmvwTY1vGlCSn3j/P6azuEyjDLWQiCwj7/SYzqYoIhowRHQMyOhbpCe9Nq0USit0uzY263n/4o+Qfgaf9lMbXBpvhYALHhsiPnCNVPxXXd8m/mi/nouBxjoaZxFao7VBZ4Y8N/RyQ6fI6RSSbqFQUmKEIEOSCTAJDEtcO/m3RHK01gQP0mQIBME2oPWmBiLB/TGitKCpE3QYgkCimE7HzGY1vj28qpaMu0lorKxAOcN9dx/ka19+hEpAFRMMlRcdfAxUdU23k1Naj48ZdVPRyXvYRhCkx7YzzzCbYJREBo+2FikVMjOMpyPKacYtO7Zy6OY93HDLbfQ6gb2v3YEzNXjP2mzC1h3LDDsDnK+YjCcY0cO3nWE9XWduvsvzTz1Jd7gf1p7EeUfeyfHCUdclUUe0lugq0ut3WF+f4IPAVg1ZNxV/wUvc2BJkKh7qxqKyLTxw92v4yl88xGB5gFQ52XUMpJ+bW0CgyPMuITQ4X6KVQoaAEQItAkYKFBLbBJyNOBeJYfMBbREWD4KIUpqi6KJoO2YViNe4LWmUaW2gqmZM2aDo9qEzRClFpwgY7TEahDL44BK5zFpCuwhky6/ZRGQ2r00058VCxuNtc+3vNlGfzeuvG3U551BKJUVN9Js9AdY1eO/phKxVDNiWHBgZjUbkKifLFFmmaRpPVVUImaN0+vebI7bUuVyn8WPwyBb+jRGsC6go0T5SScsGgTwo1iagO51UvIn2tfgG5VPjsDGdUAaBnU4JWtIEz9iWdDND5WukEHSMYTjo0tVzCJVTzxw+OCpvaURIklPpkVHirynRgCAQEkJ0eC8xWdr6YwjY2HDktncR/RjvoKlK+gs9YvAokcZLSifujDYqjZNsIFiH9wIXBNIFhA1AQhYRoX3fE/KYZUm+CmDxZEKRZ4oo0v8xmWpFFCC0AOupfZWsEGLAhQbZopfWB3rx+i3O50+d5sDeg8hqhJKBheGQuUGBUFMO3bsT9fyMh5/5DMO5OXq6wJaWnumzvjJjLpvHi5qrK/DFL51k/x23cO7cRTp6wP69OXfftI8DO5dYGTu+9MhxTh+/hOw0LO+b47knzzM2FVdXL6KKoyg15eGvXCBkhrKyZEXBw998lL137qGqDIdvP4htLB0dUeoSppDEmLOyfhSqm9m36yBOjzn2RMmv/87P8rYf7lGGGqsjD7ziDr7y+WdBvIbFfofOQsWBPXczOlYhaoPyHc5cOI1xntff/n385y/+JtuX7mNj5TjNzLG8OGT7th3cfMcreegrn+XshWPMD3ewdXE/l06f5+jFo9jK08+73HzD7czrJfy4ZtjtcPvh9zDI5ji3fpbKHWPvtsNEuXpd7qWQaaNUMRJIIxzREvKFENf2uognEFBaokQ6ioVQ3HLjTcQQ6BYFVT3FlSWXp2cZLiyTB4UREtvUxKbBAUEKZJEjJLzz3d/Ppz/1Cc4fP4Z3HtNaaxiVlM8xgkZgvUCoND6LRKKPuCAITiSlbUzaUkk7ntoEdRTICMI6ghBJOSXSevHtmMp5/kr45Fv34c2JAMEzqwMhKLpFOiuFUAiVkcVALiOl3OTyBFSrbt2c+EUkiIiQfz1e89JFjuoltYNNh0ZmOrjo001qu9VNTxGTKap6kjxDYmRjOkOpjOAt3vtr8i+PwEVFYab8yA88wOnjz7Mx8tRNJAYBUVE2NaXOCFEg65bcLB0xKmbljMwYhNscmXg6nYzaK2QMTNbXkVHR6yhEEGDg7PHT7Ny1xF9+8gvYWmJdw4GDixx++d08/vBjbNs7z+WrUybTih07FugYi3ABpCDMGmKToYrA4VtexQ0Hb+H4v/93iJijlSAEB+SgBKZroK7p97vMyqZFBRydbg9Xe6aTCikCo1Lxrnf9Q449f5y1F87StbB27BQIS4x/PUv873p1uzsgJhItIuAawcZogygDLloqO8F0BZ1BxaieYBvNsLePuV6fhYWtCb0zSRVl6xkEi6Sm35MoWSGEQymIvibGimpW4r2hnJZIBc7mMDVQr5JnQ7q9JTIzh4sCnWUYbRhPxiiVFDm5Ughd0DSqLbQcQoPSyWunrKYYk1HVJdNygpSRopMnIrW3BJGUXUmNo9EhJ4RZi7IUCCGS941okDFJoq0rEaFGYQlOcvXKZQbDXiIXuxmz6WWs6bNtuBVfBmKoqOsJw36WDvkQiTZSFD28D4TrNK7qZX1qZ9EygrXIICB6bGOpEeQqTx0aNeP1Jm2mmWDOFFjGLWkwsFHPWLclKs8Yb9R4NEVHkWlDLxR0s4zlos/WwQK5GSCEReRzzMrLlKKkyRqqGPAuITbOpqYHElLivAPSuEebDs5PWejexBte+U/pZxlZcESVVI0IT5Z1QYxRWmG6iS+w6W8UW3msm3kEYOuajpJEocmMIPhArmTi6kjIO8nXS0TQETKTvIRQPvGDRLo3MUacr6hjjfUlTUgbuQsOfEQLneTo6vp5p851+0w3Rty4awfjss+eXX1Kt8ipMz3mi23c/0rFF77yJfB9essD6sEq5VpDp9NBRcVgrs9oFPntf/1p3vKee1EDSVfn3HPLHfTyPlUzY/tSZGmrANFDD7axfdsOnn70MV5wl7lh2y7+wQ9/gBNPnubf/sIHkjfS/BDnBXfcvZt77z3E2prn3OWafdtKRvZj6CBQcj8ZfT72hY+wx72fuw/fw/GNb/Lq7/5xLo3/Jbds+TzHy2f47z7yYUSzzlznBg5+7YvsO9DnxpcNGG7TfPAD7+fSuQu8/8d+lj/49J/xlnce5K49v8inv/r7/Mh7/gfe9N2vpHi/4/f+xUfY/zOv5+yZ85w88Qg9Pcfe4QP87I/9NMbB18//ARcunUQWOYfVW5nrLvO5p36F2H0C44aoLR0af5nHvvEEh97wMpbn56/PzQybI1qBFoIoEsqNSAhPaNdHqxgnuEAUHoRmeX4Lg+GQajZDOEu0FdjAfN5hfP4so2lDZzgArWgmU1wIDBfnCYDShtvvO8IdR+7jC5/9FH/6R/8RFyJRgtY5AohVhYuBoBRr05p+0aGpLI1tUFpTNhHVctiSAjbiXTLYEDKtIyECGElsl0NE4KLEh4CLrRmHT3Yb/3++zGah42PY5BHTuIh1jsA4+WR1cnqdgmg91reou/WYKFBSUMjkt+YANlVp7q9vJv8GTs4MRGiN1AROWJwHoTRaFuA9kYTQBC/JsoyVtRF17QCB9w1GprmZEDHB1sEyqWv+y7e8ko5yhFmkDomAFIIhSgjW44LDNa2MVCYzQrwgkxlNE1AqQwMh1FS1J1MivUbryITCiwLbVGTBMRlLQr3GbJoeMhk0F0+P2LvTcte9t3J5ZcZzz51h1iQO0eGbltFRUc9q/MzRjEZYn+PRHL73CEuLf8rK2gq9uWV6nZb4aAVC2sSYl1Dkhhg9nW7OeDymMB2UkmxMK97wpvdy9BvPIKVguLCN8Ynj2HGDzlInft0uXxPxxOgIbkbwFd2uQcgCqSV5odE6Y9uORYpeFykic3MdhsMevV5Ot5d0j9Y2IBqm03XwDbVRZEYgRUiSwWiJ3uKcSwfpxgZ5oZEqoLGU07Uk0feCLHN4JMpscisCMSqkkMzKdYpiiBQZTW2TIWWUqYsXCu+bJB3GEUJDRLTeDWncUdfVNQSqUwyIOKz3ycMpJBxEkAhu0aeCVYnE1/DB0TQTGjvF+fQs182YECqELIjBokRb5MYGa8v2+wtUBjGmIiP460RulBGpwCiDEImcp3VEBIf3BqeTPNt5m+SaWuKCo/QeFzOiCwSnqIKjjJ5qNkUiKQwoISibhgePvJcnn/4ovU5BpoZJZRUild/AysTVs97hpSTqQN04vBJJeeEloLDR08l6VHaFpeVlmnLIm7/rp1nMt+M2VpCdDr6u0zg7hxgbgo4o5RHSJzVUO/KSRiCjRGUe5ywhprGZSXMxMi0QwaNQKCHQ6WlHaoUUmlxpMimIURFlJIQGoQLRtSqN4PHOE0KLFDpFDIE6ODSCmuszegSYHwzRUrJ9+4BnX5gwnYx58puPM16/yJ7FXWTZjMH9r+DkiUucXD+OWZR4NcdsNqPfHxA8aFXQ0Q0vPHmBW+7fwxVX8+8/8Vn6W4dsWRzS78L2nQu8cOxpenjWLhh6RtLkmpX1S/zxH/8nPvyvfgtrHbnWdIsOV8cb/Dfv/UV8vEq2UPPE0T9keeEkx08+yaEbbsFohYyG81c1505+ln/1v/wiP/+b72M40Bw+cicNDX/x+O+ye2uXS0+vsLp2kfnuHBfP1Fwer/LUY3/GvXNzGD3P3qVb2bX1Kfq9wPJ8RlccwpY5J46u04iMNzzwvVxYP8dTR7/OoJfjNwr+/t//Rzz19VXKepXnHnmM2+95BYdvfCXDYhfBC5rSsry3h6XmyugivlPyilffwgtnHqOc7AC+88pHxIs2GCKmQmdTHyQB2/J1Nj8rtQSZEVXGlq3baRpLXVWEqsLPSmywTKczup0e0khGG2vkvT5b5+eZOcuZs+dY3rWDfp5T22SE+uAb3srJExc4dewY9WRKUArvGmYqUFc1waWiZt02qZhXKo2jZY7Wmtg4mqYhuFSg6RbB8QJUhECilcSWVByCb6XjkZCMcfjWIuevJgen9ym0jUjVeKzyeKVBBaL3hJgmSZmCaCtEq/QUUqADeASK8JIr8yWLHCEESic9fFVVDLp9QGBtjcpcks2yOX+3eB+YGwwwiwofLE0VKasZhcqwjaesK6TOmViLdZJnjp7h3JU1bASHwAmHiDHJO2WGk47prMaLHOsaClWAEoSgcDGCFsnYLESaGLHBY3SXWVPjJzOC90COqDwLc/M4exaiYnF+nrqseOThExw81OGJb16kl3VZ1NARGbPZjLL0ZMZQmprLG1cYyDmiUjz98Nf40C/8Gz73uY9y+oXHiWNPry/Q0mF0H0JJt2+YjEuUzBAYpLDpNZHxxje9k7NHn6PXXSRIz6XjxwirJXqQxl2me/2KHKPX0qGPQ8kSKS39nV1CUCAs3Z7GGMPWbYs01ifybW7odnMyEzFF1fqWTLBiyqy6SFOWNK5Hr1ugDUSlkry8rphOJswmnslkQqTAZBKhAFcSYkJkgvAIJXE1UG+6W0pEK/0NsaYoBlRNUrhlFESbFDtlWdLv9Wlc4tBIIYjeY61NZnyqna8RqapVImCkweiE4ngfqOsJgQpXeayr6XZzqmaDGD0boxHj6Rq6GFLXJZPJGo21KGmYThVSgG3GECKTyQpSabQqCL4g+iqpBZvJdbqbmkzptGZETQj+Rbk8AaEjzjvWhURoSbANnUyyERr6EhAicU6IzFxDExPkK6IiuEgdHFvmb+WND3yI55/9OCJaotSEJlIGyyxCGQWulYpaAlPrkUohYjvK1EMG+VZu3PsKtBEEa3j9274P6SPT9QvgPcJrslwzm46YeY8ucryoiBqEAqFTUxhFOhhQApGRPLpaAnzEszkPiEEShSTKlgSuFUZGlJIokXg5WmR4IqVrIKQCR5MMDEW7eZe1o6na7jBEjBZ0VXGd7iUce/SzxL37WNBX+Miv/CpVWTLbuML+m27knn3L7L5xyLA74DVvHnJ/s8g3HnuGDTEgD6C0I8uGhABlNubM8VWWt21n2+0LTKeWs8cvc/T4Oju3zmPEjF17bqaZzRiaDp0d+xiPx4zWVvnD3/9TRpXFqEBeJDJxITOwOUbeRKYq7jz4di5ceYw7bnoP4PDlAlfdRTr2fv7yxO/wmb+8i9v33cHpS1/jzgMPcqX8DC+cnLCxdo6f+cD7+C/e80/4yU+/j+MXn+De77ufF75+mf/8Kx/m//ntP+RtP/yD/Pz/8QJ5lvPc6W/wMz/5Eaa+yzdPn2XL8g10Fvfz8KOfYjQ+w2ztPL4e8JmHPsPeHXfR2dLhgz/1H1it18jzXhq5jztMyjXG/jJUS9yw81WscYET555hX/+VrNfj63MzNwVELXKjRTK/lLFVCAZxjdAbowIpqbzDexgO55nMJlSzKWE6pZlOUXXJ2ngMaLrDOXqLy5RVg5AlusjYu3sPIc+ZzErIO+SDDv3+HP/sgz/HiRde4BMf/wQ7d25j5epVTp05zcrKCquXL3Lf/Ufw3rO2vsbC4iJFXvDYo4+Sm4yutayvXqWqKnKjqOsGGVsLvLYoEQBREGUaUSW1Z/pdhM33IAEcqh3hb8JXIsZvs731AmoLmTRoVaD68xSFppqVrK+u4m1FV6k0CpQCIQXYiJICGVJD89ddf6PxQ9NUCCEp8gGuaTBZQRQGKS1FPmA8rnB1zeLSkMlkgoya4Cu0kuT9Pt1OxnRW4qqaTBtqmyRijzx9imEOtRc4m3ggSgkMkcKkqtbS4JRiWgcyVeC9oyZtwpmONDaZAM2mJcoYjA4EF1GkSjMgKD1UrqaYTlmY71I3sLaxgTY53kY6vV7yh+lmVJOKOlTobAsiNmhlkMOcTpETkJgiR0lFWU55zZvfzcNf6HPu2OeRMiMGRfACZEbW6dAXKo3GfIOvFboLR+5/C1fPXEI4wfqlq0DD8tadnFp9gVoEZG4w+d90R/72V1FULQkujZVClERpEk9KOEyWZHlaK2zbicfoEaoiEKka1yJVFUJWFHlgY3UdISPGRBAaTSTERAJumobZrMFaz3Q6I0ZPEDUdIRFSYd0MoQRKKnxw16SCUiZlgJtEmnpKtzPHbFYSQqDrurgQ8NZRNw2KulWtbUoKW7m4jFj3os9NY2eE4FHSUKg+xuRICVU5wvkpdVVT1yVSzlNXI2J0jCdXqesxtok09YzZbA0hoWo2UNNAJ9N4VyJFpLYO6RXReBo7xbeyYx+uD5KjZaI3apmUR1pKlA4IKfAqYqXACIkQEhtSx9U4RxdwChQZUgdmNLgY8NGTyQwlI7Wrsd7RNBY7a3jgwX/A8ZNPMLryHLU9Q+08G7MZve4yk/I0eEMjSnYsHyEvDKtr53n7G/9bkBl3HTzSvoZ4LYZjY+U8SmhEJ0Nrxcb6GrGpWBUrSBFQRuGix4WACSHJx33AetcqKTxCCXRMJEkRA7EterTQeA9SSaJXKBHAQAgerXRC6kSS3WcI6sa/OO9vpfO193gbsbbl+oSAlIbaX0ckp+NQfo31S2fQbowKJTt3LDKdrfO5L53gtYM7KYY9/vy3Ps473vkqfuhtP0ihF/j8H32Veqqu2SF0u302NjZ4+PNP8daD80w3pkyvDlhYGDC6KnFVzRWxyvywg1aCC1cuMxlPedf3v4PPfvzDaJVjVGJjFEWX6XiCyZIBLFHRkbewa2kb2B7Wn6WXb+fiynlOnr5Ef6vkln338uyJMTcdXCErJJfLU5w4fpSXv/4tfOBDv8bG6jpZLfkf/8V/xce+cpS6HrO0cCOX10+xbUmz3F/mkS88wdLiLtbXHmH+wAHOjp7jDW/+Ya6WnpUrF7HVhBgmSN/l8I138eSzT3Hn0gGy2U5oKhYGWxFll4W5BaLXTKcTlrcWnDx9HNs5j6sES7v3Erg+xOMYk3VB0ufGhD4kfTUxghNFy3FJhbkWmigEvf6AvfsPkvV7WN8g1wTBQrk+pVf06C1tIXR7VFGjugVOCMbjktJZFrYuI7WBKKjKEp1lLO3Yxh1bX062tITUGUIbTp85y6VLl5iNR9x7z700TcN4PCbPc4QQbDt0F8PBgOnVi/zpf/pj/GTMZNranlQWFDhLaoxDC1rF2PrmJVFCEBElVSqASIgMBIgJfRYCMq2TfNx6dHfA0tbtvOWd7+GOu+9lfnGZq6uX+YuP/xEnjz6DGa2jZCDDY4RBKgM6I4gG2zRYL2jc37LICQGUzEEEYhDXpJoyCmTUGKmSn4qWOD9FStGSjxOnwtkaIT39Xpciz1gdjVOnheSZk+fRWPpFl7lOgWtKpJAoKdFKMJmM6PS6rKyNEcrgfKCjJcH5RAJtD7DaRzJtsF4iogFp8a5mIDXOeZRq0FIwqRq2bFvkwoUrrdpC4vEYrchzqMqGbH7AwkLGbFrh6glzcwMWFweUF8aYYeAKjsFwkZWzp9iS7+Nt7/4h1q++jo/+/m+QqZqoNE01Ijdb0GrK1K8QMajFDJHNM1qvmI1qxhtjFua3gshYWVtHS0V3yxwnnz9Bf9D7ji64b72Mnm2W32idSKtebJI2dVt+ByIBbUAIj/dJsRR9ILgqkWlFBCqKQjIYdhBSEILFuYATkRTr0Loeh4BznqaxRAIyc3T7czhfo6LGt6ZSiSvUwpebPiqNoyonzKYjZEuQCz7lZcXWYriuArOqRpg+xhh8y3qLAbyLWNsQhcf5krqeoclxxibvFy2p6g18mNE0VVLL1R7vSqxrcM0EJS3ezfBhihDJN6e0G2gV2xwYSyAiaZBaJ56al5TBEYN4SULc3+WSyuFt4qjkhQHp0cYQREI7pFItKqYSqbARxGAxRuOtRWqBD5Y6pI0rhlahIKAhjWieOPppbt/9XRx/9hgHbr6Ptbn9nD3zddZdIMinCSJj184jnDj7JIcP/ihve+NPoJQhItEmIEN6nkKglecHcA68Q2QSbUzKmMsMQkM1miUCfJbRBEcMydBPaZMUcFITg2030oBu3aeVEMnbQwqSZX6ExiGiTO6ovn282/GdUCCEJvoG2bpv++CRMUHxIkS8T3y/tCcJvI+U7vqpqzJds2vHHEqMufnQTi5cuUITJBfOnWH7tkWeP3eMXeoAOw/cxcYo4+lnT3DTrsvcettunn6sbBWtmtHqOgKFxnHp1ITGZ0zWBfV0Ri4kTeOx7iqdzpDV9WPJxh/J//qh30LJAd6XCGXYsX0Xo9EIqTzOVUhlaJoJWV7Q09up7IiN8nGMLri6MuHe123j2VO7+PMv/Tn33bPMzYffTu3GnLv0v3HPLQucOXqBPQfuZXZ+jZ966z/nB/7eDTx86t/w8Fcf5t0/8R7e9MqfxpjAbbfdw69/+D/wY+/5R7zmVa/hyy88y5XxBV724Bv4nT/4PXITKWON6Q6J0eKmJUIFfFXg44Rnnv0aPtzBnnyJXt/gfWDXni0YkdHvDxhVfQadHdSlYOeuA9flXoZWabrpCuM2RzdtjeyjRUQJrRBAxUh/OGS4vI35pWWW8i4mjri8McYI8HnGymSdK6Fh+y230J1bhKyDbSx9W9ANYBtHR+Ys6C4m66KLLgjFYDjPkSNHEMqgTMadd95JXdcp0y3PUDJlPwkpsI3l/iP3IoVksr6OD5GjzzzD0088TlVOGCzNUU5Hia9DkpW3MiliBEVEtR/jXEsHaJH5KOgNBomn2jSo7pDdN+zjgQdex7vf/f10+31mZZ1k6Ui2zN1A8+pX87GL51k56VEyjb69D6hgaVwyCLUujazdS/Qff6PjsdE9TAbeC8pqzqd57wAAIABJREFUlbl+H9dEhNCU0wlZkYOW2EZgssRNMCYnhkjRSSZlQkCRZ5hsHtskie+FK1eog8GWjqvjMVvne2iduD9RRJqmRhmN1pq1aUmnyGlcyhISwtMtFNY6lI+YaBMKETN88CiZMZlUbTiYIGpYWZ3SzwQLi328i1y4uEETLNNxze2HDzKb1fQ6SXIevELoHJ0ZtJQ0pSeamnx+kWK4hbUrU5YPwHQ8o1YF7/vgL+OtJYZAiODDlCA6UI2wXjOZTDj3zPM89slPMpmsM5ibZ2OyTmMtS6bDxvqMYy+cZdvu7ezcuvR3W2Evcclsem02es2zQDhAteaOmwsvjR4R6WAS0iAI6LiJtAi6hSbTfTJjsD7QVDUxuNZTKrRBbMnVWEpF05R4Z6ir5FQZcSgj0SZZjH/r3DZuum1GB6FFS2QqwpwV11ReWWaoa0NdlXSziJIFRIMUKUurtutUVQUk4zsRLLNqRKNGNFmO9zVVPSIwQwSYTCZU9eVrihyERZuYUBlXX5PGxzDDWRLxLiQzuYgmigwvI6AJLvkEyXh9ihxt0ogm14rMJfRDGJ2QKyEIRiICNA1YAC1QUVGGlBkngk2EPhnwwhOiYLWcImWZDvoI3zzxSW7a8joKYXj2scfZd+stvPxV7+JV6gfwPv3/Y6ee50e//45rhMJrIzMvANUq3SIiBoyEoCS95SWcd8Tgk/eFCsRGMB5v0M8GCDEjM4668TTOI1xF0iRIpIp44ZEqEGxEaYOUyZhTRklpA8Tkm6U0OC9QDiQKYRQiSKL0uLKicRXepfsTSGRRLQELTdVQVxGix2iBMYFSXD/H49OXTvHAq+/lLx/6FPtv3Us9N+PoM2fZdmArc/2Md73lNTx/7hKu26G7Zyt7d3TYs/M87/2vX8t//4//kkxkuOgw5AThQBmefuQS/fl5hPCU3qN1gRSaGHOqaoQgQ5oC6TM8BgpPd24ZFR0bs4qqdAz7OefOPER/eS/Lww7l5ClMZwtSnGPQbTh55mscv1By7tJTOOcYdX+D4+tdDvOb9LOK23Y/yD17djFrdnHzd7+bbXN7Ub0b+Kcf+m0eeeqrfPDnf4lf/7//d973s+/mD373C8z0GvN7tnFpQ/PJz/8ehw+9iVPNDr75+HNcvPAc6+U6vbzgztvfwacf+kUuxC/z+HOP05mPbN+/wLYb58n1dlyEF05/AykEjzz2CQ7ur9nauY1OvpUsH9PpCqyfAcPv+L30yITRxIgkhb+mj9OhLwQ4nxoNEFih0FmH2+8+wt5Dt3Bu7SrTjVXMXI/Z1TFOgRWR0dWrjB9/knxuiaVtO+kMBvTn5pB5QdYfUPQG9IZzZEVO1sno9of0+oPEZxPpNQ16HbSC6JOVgnNJKNBOsGnsFoSAWe35Zzce4sLFCzx/9FmeffYZzpw6yeL8PMeOPc/TX30IXzcE68G5FrnxiKZJfXTPII0hRphbXKY/mOO+I6/gZS97BYdvu42lLdtZW91gtL7GqdPnEL5hvL5CNR2nvbupcQSka6hqh6sdhU6jcKIFbOt8nAZgL0XyeMlVO+glSD+IVOnlrX+GUKSKKs08EuTrAzIapNr8hpGqSplEMXrCZsFhBN2+wbPAxUvrgEBoyeWNCZkWdIqcXmaQpoeLEnAIpZhWzTWDNRki1nuMACcc0mQE6/E0RCXp6JwoagIiEQmFABmpncbj6XcLOkYiXcF0WqOlZ8vORdavrCSeRpWSzmeVxRrLnht2slFZ6mnJmTPHuPWul6GzDlUT6PeGyBAISmBDygNyVpJ3JVcmNb6cUE5LZqtX2LpjC2pVsn51BtUGLnSZhoqGgOlqenMFqnP9IHHRQoXXXLJpP25tqoSUCc0REu82XYjbBSIUIqbOXEZFVhiCixiVYaOjUjJJsqOgrlOHYoxJBXHbzTvnqevAbFaitEbqCp1pRJs6nV5jS7kXQEyy8BgFztokEUZcg31B44RM6bahg/QBSQ5KE2KksROsLUEIjMmS/wMOqQRRBBo3oXEbBDEjI0PIhrqp2teepYDJqFOyug0EF9J7pDzWThFGJbhTRKQI4CRe2hS4F9P8OcjrxLESbQiojAiZfC5QaWQnpURLkdxHRTtD14qycXhfIxB0spQbt2nyKKWkow3WWmJs70FsmNUNQhsaZzn53DFCY1ncvhWBQWvNwX23fptR47fGcHyr+aL3SdG0mQYvpMA7WDt3ESE9g7khWxd3UfkOQkcqX+FJKgzrPKgkOVUkhA5aeauL6G6GVjmubti0JVIIjMxQLX9ASUXwEqEV3tetoGLTTDK2Y1NBpiV5pvCNp6kcWmmikhATmnO9rq3bB3zqi3/C+dUVVuOMvQdu5JmnzmKCoys6zC6OWD9xjvvf/jJMMaXfUUw3DJ02hLZuEkcyRIE2OcYodNFhOp2RZRlSSuq6JjPiWgp0jJGmhn5uaGgQQtDpDbDVFNBoYyB0OHfxq3zid3+V2aXI6954G4cO38SpC9/k7JmTbFn4HqpS8PWvPcnLHzzMyZOf5fte93NI0cdZy2L2BnyA+c5+btrWI+t2mNuxzpbVg6hnO2wbztPtLfHYI4+xuKXD+MqMP/na77N173188vF/y2te/QOouuHoseOYokMcXaaKNQ++/Pv57GO/wZmLx7j73tfymS//Cj91029z5cLHOXCPoL6ywvblvSgFUkWkWqdXzDE/3MnV0ZOsbFzlzMo54B3f8XsZYhpFCdmGVyehdauwIpn0CQ9SoFSGyjMWl7ey99DN9BeX8UsL3HDrIezlcxz/5jfYmM2wQVJkA3AGtz5jw11geKhPU9Y0jWP3nr30l5eR3Q7aZBRKYYouHkmmFLJVeCkRUvoMkuBBSXFNK+49EGPyyCIwvzhkOD9g957d3Peyl3Hp0iViCDz5xBPcddcdPPb1r+ObhtHKKqONETFG/HiDvCjobl1k266dHLzxRt7xtnewfftOcp0zmcwYjUZcfPxR3GxGOZ1gyzEyWGim5L7B2xoZItIUqBBpGktAMrUhWZfQHg/X3u+XtnZ4ySKnrmu63WSYldjSAmsteVaglEyEI+dQJHlnjBGCaLkV4VpH/K3JzLHd/Du5Zv/erUymFVfXxkST44NjNK0ZzUqkT/Cr1oqqaYhBIlSkth6jNZk0OOeQojVd8zGlB4fIdFaT5204ma3o5QUSwaRsyHNFWW2w58AuNkYTrHVcXa+4sjFmod8jEjF5hvMNri4pdg64eHqF0ka23XKA5QN7mdu2zGg0o9uH3rBHWZZknWSCmBlDXddMR4mQKmVAa0XZlJw6ezo5OTYaTEZWRi5euEyxLNiydYHhsIf114kMBwmLR35bpbPpoSSQrQHiJqss5TNFAlJoBAZBUs3JqFEiJeoqaVDUKZHeeoJN3BrhM2JH4m1DUye1k3eeuoJyVpF3MkQNRbdAybQ5C9EuuhfFCcSWb5Gu0BKJ00lmGwsxDdiqekyMDikcyhuCdkQqomhI7H+JMTlCBrSJSOmJsSQwI4YSFx1Kpe+16RMBSeUVfMpDCgG01EQJ3jUEpdqx2WZV5gnetyOqdDASrw8nR8ok2RQS8rxNQtfJT8hohSStB9uOanCRRkSc9xiRRrUogdIiecegKOuaTEusBSUlHdGh0+sjtSQ0EV/WnDl+krzfo9PtEWyDwCQTPlLBsOlptOlWvelFlD7/YiEEqYhe2L6FydUVhFYM+j3EZUcmJNJ0mExsys7yqZALIRJdCgNM5l/JVt65gMQBEiEiRIVEYnQK2FS0BM8oiVEQQopcaer2WRWJF6ZVm+WTBTomZ+Q20a5U7Lykrerf8Xr9G+/jhr1LvHD8Ch/95JdZWVml3x8i6xoaxxNHj7G6ssKTDz/C4s6MS92IrhRzZjfT2YhOdwmdF3SHc0zKGcoUKJPT76QCp2lm16T41tq26LEUMpnFaZ2I+FnehwBlU7M0N089vczhu7az96ZX8tjnxjz0uSf4w//4J1xtIkLPeM/b7mH//jfTyb9AnmcIATuW7kBJSdVYpBQoMWA6hY0L5yndlGeOP8Qwv413vu2N9BHMN3OcPnqJt7/9QT72ia9yz5uOsCIu8V1vfStPP/8Ca7NVKjcBJeh1M5yLlHGDLdsOsXvH9zKqj3HzXQdQTUahe8xtD9DsZDIdMdc7hJdniV4yG0sW5w2T6Ro37Ztx5sz1CUP27ejGB4GSyUdGxnbLJeCDRScXO0xeMFhc5La77+HOe+9jbmkLtrbMJuucOnGOjWmDzToMds1jTMHa+oyiMDS+xukUfzmYX0KrDCMNShQYZchy06KcL3pTCZHkUZvmp+n39nz2rRdaK8nOjEy8gRDJjWL3nu1s27YN7x279+zhxIUzbDt0E4NOj8cffgQjFaurqxTdLgcP3ciuG/Zxy+HDDIcDJqtrjFbXmM3WGa2ts7GxgW42ENUIVVfIpkQTcNUUZytEXSYHdjqsr65ibQQlr40BVfsrKbz+ah+0b71essjJOgVlk6S7yTRNI0kBhAJJkB4pDFlmmM1mqeuXqlU8ZHjfcPjQzSwudFi7ssLZS1eZBp8IfUoRvWdxYUAn7+JjYFzOmIxLAjF12iFS1xYpMoROQYGRSOM8zm1mHnl8TGFoHd12zzGSVQZJRZalYE4ZBUVe4OqIVoLTVy6jdYb0ChMMrp4homM4VPjgCZXDakUdBeONCZdHY/Y9+ArQBeNyRmfYoyiSSmc6nRIk5EXBbDwiywpmswlSCDYmEybjMcVwgS27buLUsSe5euIs3V5GfxjZemAnlZ5QLNREV4O/fl4cGtO6Tcp2NCRBZNf+rJWm9S1OxQaGEJNiRYj20AYQAufSYa6z9DWF1BiT3nvTKahnmv6CQHWnTOyUehKxjSMXhvF0TBAZURgUA4RucC5CMAipKPJ5ptOSrJOytpraYrJ2XNWM6HQMTWWp6wRZKq0QYZ1op2SmTwgarTrYaorAp8IbR2WnKNEgosNbx3h2kRAbInV7cGqU0m3XLtDKJWVPTOM3ZwNaGwQNITaEWOC8BaXxwaKkxFuL0Xk7y/qW9+w7fbXjphCg0IkHI7JUmKbNS7WbLTgCjghC0ul127l54qUUnUjRUSmMV2Y0jUW3cQxKWi6sHWX30mGil4iOoTc35IVnj7GwvIXB4jydTuvweg2lideKGyEjmxnEm9C92AxFJRU7QYBuJVRnLz+NNik9PjqL0ZqN6RTnPTiS15IIOB/wCIwMGJlR1ukexxgx0qTxpwxEZ+l2ummjD55QRxqXcrCshXIW8a2h5HBeIqVCq0CvUOzYkjHZ0G3eXkREMOb6rc2PfexL7OxEdu7dzZXT66z2RvT7i0jRY2FxgUlY58CBvezduR/bKTl/+SjTFUEWnmHXni5Xr0pqF+j0B2T9AU3T4IVktDZieXmZ8WgEaPK8y2AwYDarkcLgfI11U8r1KYLA7n13obWhmU4Zlxvs2q0YFjdRTp7gniOWt7/jf6axnjNrX2brlt3AYb70yAXe9X0/xBce/b/4lx/4n8jCzURhyPQSQViCTxytP/y1r/DRL36Q//N3P8TP/cIf8PXPn+bsyogff/BHCNM5Lly8zA2HlwgrR1ia28Ng/DYaG3nhycdpqjVm4xWujld541t/kGc3Ps17HvwnVJMKW9dkw91cGZ3ihWNPML93wq1yP5dXzvLqe3+CLz7zq+RhF/1sSDWT9PNbmK1Gbt/3+utyL6NKgZuIlLYtRbKrkK2bXop0EoSQYymgu8SBu48wt20HMUKuFevjKWePneDC8WPs3bGDA3feyfINByjzQRozNRWXLq8QQqA2BtPtoaWhbwyQMue8ddQx4DbTzyUolaTrWiYj31TYBISQLbKZmomUKA0JeoKm9oBAa8OWLVvozQ+5+867sdbyPW9+c1t8JG6crWtmo4roAyvHz3D18nlsNWPtwjmm43WaeoYKAtnmwUUqRHAYGREyZ1rOaITimQsnOXflEjJT+NZpOaa3jtA2t7Qv8aWulyxyUgcdyExGlmWU1YggFCGSiKtB0NimhXxTXLzWSR1jrSd6z7vf9TZ2bNlCJi21V/zSL/8KZ86dR6iMQCIJ5nn6wYa9PrbyNL5GyESSS2hQGoUgX0yRpg0CQ0hm1pJpRWwSqVAKgYjJEdZZj4oCoxRlY8mMxnqBDhLTBJqyot8vKJRmZX1CpMd8HxpXIDOD6OaYuR7L8wP6SwvkumB+cZ7+cIDU6lrX6hqLFhLr6hRYmmXElgQbPDQ+0FmaY/K0RUhYW1khNwNuOHKIq+VpSs4znc6wZf23X11/wxVTiDYx+mujDpBEKa45xib0ZNOpVyCFTpI9IdvPpytoQMgUeB1V63wpEDE5UnZVyuByRLazlUlVMp3MaKYTdJ6TuUhH5lgXybIU90EoqGrNpYvrrKysoXPD3NwcxigKT0tA7VDbVNiaIkuKu6bCN5I8E1imZHnGaLKB8OoafwffEHya59a1SNlE1ESRXEc9FiEkyiiC9zjrgAqtEziaCvg0Wgv4RNptIsbkIHU6uEODlIlM/WKBc/1iOkLrMpqbAtCgTQu4itT9kEi5WoJXkrzbodOTKO8I1iVirZJttEVCMLyXNO3mp/E8e+YzLPcOJZ5T3mFWNRTZi+nwTW3Jjb7G8xIiob3pgUto7LVoDVpbCpXWjTEm+R9lBiXg0uoLdAsDBLSQLQL8og18CAHZxj7ICCbT7fcEokTrmDw8YnI8NkqTm2Q06H0b+2FjKlh9TAGxLpHkY0gmnAKJkYFeIdiy3GNjUrExsTSVI17HBuT4mfPc871vpHEN+w/s46nnn0PKDW6+6Tac32C+M0RkM/7fT3+RVSYs7dUs6jk2ynXe/aN38O8+ciY5w3tP7QJZt0tVVfQXBkwnI6SPKBXweGZ1hcoK7KSk1++wNrPIkKS+V9cuMj+3RN7vU81m6L7gU1/6PRYXYd+ObazZbzDsfA/78h8giA5SdsmLy5w6/nn2b8uZEy/D+ZzXPPBaPvqx32RufgMtB2SFZG7B8b6ffC/ZlhXOjb7Knhu30hELvHbfg/z8v/5lmsV7eOTYQ7zxvvcje5J7bn0FH/61PyLMKjaunmJj3FD0cxb726kbx87tN/LouUdBjfn6Fx9iy6sPc+nKSU6dstyxv0DkHaKacej2Q6xdHvOmwzfy1LFL9Irt7N2znypeBbZ+52+mSJYHIrZgLpvckVZNpRR4UDIjK3rML2/jxsOHWdq6zGx9nHLbMsPOnbtQTYVRCtC4KAlKg5LojmHn3v61dai0QWrViiASUpMUBckSIbSePSKKFnPeXFstV6hVpXr/7fl+CfTf/HptsyIlndZBWSpJIKYG2f9/tL13tGbZWd752+GEL92cKndXdZc6qVvdCii0IggFggDJxhhMkCWPx3jsYYFtYBnwABoYo1kGyxaWWAxDMAI8YCSBWgIkFGhJjUIHdarurhxuTl86Yaf5Y597q1rgBrNUZ61ateqGut/99jl7v+/zPsEx6vcZ7va5cu4io+GQqiwIpgJX026npGqC0UhQ9cvoTK4j4qpkdDO2VU3e6VGWNdvDEZWNI/Wqigaf8TXQFJF/O2T1b1BXOdp5wmhYohDRAyQEvI/Qfdz8BcErjCnIsgxrDWVZkaqUf/6Of0oiJWVV0ZmcRIfAz/zkj2Kt5Rff836ePP0046JEakuWpQQvmJluo0SPsrYMRsPYkQSL0oE9sEoIj1Bxtnw1SdrFEDTrEELRbSXRkddHI8E0JMjgKRsuURJqsIIskchSEDKJR7OyWWJ9m14mcViy7jTpQc/tt97GwSOHmJiaROkEFBTlmCSTUbNvHaNqgFDQ391EkDAaFRGl6njctEGIwIu+/lU8/NFPkK0kpK0uraV5xs88wnjUxztFsVP+zz5Sf+trT8J7bXil97GYoSk4r/IoIslbSqID8Z6dVSMRUKiGHBwPNJ2o/Z8hVaCVTuG9J8vbTE5PkbY0uzs7jAZDAoY066CTadrtg2jd5dyFFe77yMc5dvRmTj99Ceuie3GrnaOVxHlDlmV02jnHbjjA0oEpdDYkb2cE4dB6Dm88QXiKYojUhuD1/u/jbEymtpXBOwPSgYqZRx6i+kBJlNJUwVKUBQTIsubwEwKdJARvqX1FbUwkwHe7eBfHth5BpjXGGZqdLqIU1+EqbcydUSL6vwihcIgYChoigiLwWGdRQtJKIEtzpiYSbFVTl2MqGVUJAsiaQlaoFNuvqWsHWrC59RT5pKLoC2rjaLXa9OZmY/FiHFIlOOJ9pIWkds1I0Qd0wtVn1LrGI8Tvj7VAI6WiPTFB8JYkmaT2l5jQXaTUtNOS2V7OsLaM6wqCQjSoSm0cWgkI0eAvSyLvimDjOIZIalcy8qWEVDjlMWWN95bKOnwtsUZgbRxnOu9JdER8O6lHhJo8DWgp6A8qXHWdUDlgsLPFb33gd5lqTzMYQpkKJqcCX3nkft749S/hSr3GrhjB4ph7bryZsd9gsL3BPS87weJ8j//87kcQuofxglZvihCiVxTOkClBNtWlLMs4Yg0BhKPTyfDeMzW5SD3awoUCaXbZXR8yMb1AonNGZc27/58/5QW3zfHm199FtX2etcsf4y3f9uN0uydxTrG98TCZHXPzsZO05F34oDh//ix33/k6jh/v8scf/3lK12F+4QTB3syr7vlXfG7lMzz+pc/z6pd8M6tJn+OvOMFOPcXdt7yWI8emeWjlLKcv7fD0mQfpjy7gvODwjSfYKQpmD7f54sofEQ68Fv3IKr/5gZ+gpVP+7FPwfd/5Lp7a+BjjcIXuUs1TT/0pdvIKL3nFG3jNKwXLw12OtW/jvvvfjddj3s4vfM3Xcp+jtn8G7/kvNS7CQqATzcFDhzl88y0cvv0ODh89QqfXI5OajSuXQQTSyQmyuQVGu30qrSmdRytFnqeIEC0Z8jwna3hZaZo+iwu3NzLmGrHJXv3ivPtrc/32cv/2X/k1YpBrGxnlwVgTs+ZCoLBjTFWxevEKm2vr7F48DS4+i6nSaKUZliV1XUcfs7pEhYpQGmpXE3zNYDzEGIdH8MzyOufOn9//+XHvuPZdDs/NNr7m+hvVVSHEMM6Y2LzHw6kba/wEaz3GxgOoLEuyLCFNU1wlOHf+KSan7mRiYoKiKJBS0s3aCKX4x2//bn743/wYWaJAKsqijsnYOr6hrVZKpzOHtZatnT5VVWEbu2zfwGuCuAHV1qETGdNRbUwOLsoR7STFuxA9YZyJi6NFdMcNAUnkCI0ri3WSbiYYlwVrW5J0IaEoa1RbcOKOW9CdNt2ZKdJ2C19FZYhWkrqIhD3dlhTFmHY7x5QVQtgoT9WCTq9NVPhIqnXPyRfexan7H+XEnbdRuj5SWIb9Adam1MX1k6lGEvhVPgTQcErk/gOxX+QI13QBNLwF18yUG9KnlPuhmEKIfXKjUrEYCsSUb6kEGjh4aI6pqTbWGIrCIGkhRZvLlwacPXea7e0RO1uWna3T3HTidlaWVxmPighFZwnG1mjt6O8YdncKzpzRfMM3vhApDEppfuHnfpVWW/Evfuj7GRcjZDImVVc7HeOiYsy5+JBJLfaVfIQYw4CP9uJVXWFsjRJ6Xx1kjCHLYuK5JaJxrTzHexcD5kyN1opctKKnSCOglH/LbuN/9rLe00rU/kYa9lqy5r5ERfMxI8E7h9aCLJMo4SJaVQusCFg8SaJItcCGQKgsOpGEoKNPTZJw6vwznFi6BaljSnJdx6T3NI1ZXUI3CqXgcd6hpSIQ9nO8vjp7bO/1xnDfHFNXkWNUJ4jUN0iNIhWKVGiCL2hl8d6tnUP4gEIQ7B4PKEFJgULgvAQXIg9JWKwtY6iw1IjGdsJ7cG7Ptye+bXVt0Zmmm2gg4BOoM4npJZQmFo3F6DrlkAGLhw5QG8Pl9U0yOYVzNT4osml48In7mT95iLWtZaZmJplbmKI/gMneJEG0KIceYwvwCUmri0dg6hiqa+2AejhmYnKKPZ6kUpqiGNHJJKZ29LpdRjueVidlONimLCx5Z4J2muFrQ2k1Dz+6zhcf+D1+6se+n5snEtLWOUKYAzFDKj2T2U1802veGTt/6ajrina7y/IFxyMPPsPLX/pG+uUF8vQoghtZu/Q5zGjMlx78MvXODFmeUG4oluZvIct7dM08l88vszO4yGC4A3hqN0aqQJZ2uOv2b0TXnv/3N3+CrCWhsjxz5hEOn5whOfxydpbPcv7iZ1mYOYbpzlJup3z0gwNk2uWRRx9kp3+FG24+dl3Wcu8w3lMseR+9cp79HIjI/fQe6xxBCIy19AcDhqNR9G7rdpk/epQ5HxDtDmQJnXbkfiql9osapdRXFSJiv8iBhggtmuK2ASbEVxU3+8KPa4oauPqc7u3ze+rJls5RKmkcjgNlbahLE5XVSJx1rC1fYtgfMNmbQIQQzzhjEEBXe6Qr8bZGCofSgrIqKJ3Dy4RHnniCC1c2999TrRpiNM00gr9xSnX1e5/rk0qpBnqOxEHvLEJIkkQjpdgnsAni1+0VQ0opWm3NJz7+Gebn5yLCk+2llyu63Q5zsxO862d/hp/4yX+H8zaamilB1OIIrI8FjFCSxflZqqpiOC4ZjcoGVfAorXDWkKWaPPV84yteycte+iJe86qXoZSmrsYMC8Ojjz6KVNBr95BS0uv1uHDhDFJkjMYDTp85S5okPPTAp+hO9BgVlrGRdNIu84eOMDu5SNbrxY3VuIgu2Zo8zwhekCYJEAjBIUXcYKDxe2lUaVPJNKnSmCDIpWPj0CYFgY1Lp+nvDLBVQu0MVXn9NtI9Ivhexf7VBc/Vyt4jpIvjKQ/s23NfPaj2ipy6rpuDLKIIMWAtBm3Ge0JFcqvOIkfDt+n12nib8vSpZT7xZ5+nMop+f8ygX1BVQxYXhtx62+2cPn2KsipwzpOlLQKeRGfs7g4pSsGDXz7NK+59Mb/6K+9l+fIWAcsn/ux+Xv+mexhXY1wq63pjAAAgAElEQVSjzvIBXKijiSCWxuyfIOT+XDdJUoyx1JWJOSreRRVQ46RrbR3Jmd7iRCSitlqt/QLH2Bqlsji28w5EQKD2vX++1pdzHqH3zP4MSmuUTEBqJBIpLQhFogJBRKi3lWoEgaAcUsvGRwhSPN5HQrrBoxXUIt4v43pEUa+gk7twpogHqLPoNNkP44xEbR+J/81GaJ1D4iNHD4V1FikjL+FZIaoyoBKNdzUvveuNfOGxM3hXkKSaNE1RZUErTbBCYLxAC4NUNRpQMm6wzsdi3DhLcDFk1XuB8AIvDbX1JDKP6x6alHoXidpKxpGfsbGhQ0X1iwwSrS1pokg16FRDcf2Uj7WAC5c3OHj4AHYYC86dzU1ufsFhXvji27i0coH5yUkOdw9R7JaUtSTVlp6VyFCDTEjaGa12RggVtSkohjt08oKZQwdZX79AS82gdRrjS5RjbXmNoydPUlWWoCRb9YCXvfRuHvrsQ2xvrZMuHGYUAtMtRVF4xrbFL//mJ7n36+6iv/Mh7n1RQnfyRdSVoCs3wHfxUmP8MtJpgheMTMH3fPe/5/EH38ZW+Sf0xGXOLgfuPfYqzj76OSYXDnL8+HFOPfwME6Li8upp6A1gY4YLK6fpj08TnEPowM7WKgdvOAR1l+P6BB+/79cQDKhHkrnpo9x84ibWzZOoJGWULjMqHKe3zzF3wyE+/NE/4K1fd5SJpYzt4UPcdvhbIB1dt/V8rksoRW0sl5aXKUTCkec/nzRNWVlfQxrH5GQXJbpIJRkVJb2JSSYmpzDWkiTJvlnqtbYbe3tV3MNhX+McIvIpJfsoDDQePtcgPnt7/965sPd/XfsHrlpEuIaoHLOq4i5aeceorsi7XWYOxKlH8BYzHlMXBUeWFnB1FcnH26vRxLWqCKYiqBBtDnoTrGxvc2Vjax912n/frq1qwlf9+zmuvyGFPGs6Nh2RGA2tNGHsoyV6goodkto7Knw0AwuOoq4QQvAbH/gA3/ntb2Npfpb5+XnyVooPnlYr44YDC7z7597Fv/7RnwQJSgusbSRvKsZHSCmj54YPTHU7zE5OYK2lKoa0W23e8Y/+Pt/yza8nzZIYQtbIkePiTwKaG2882hzk8Y8QgjvuvH2/KNsf3/BDkYxlamozRgTPk6fO0pudJgTB1to24KhMxWg4ZnJygt7kBL3JLqPS4qyl3+9TVx4lYTgY0263qX1JmmVkvR5L7RYbSnLXaztsD7bZunCZ/vYOZR3oD2uGo+vIyWnuGiEEeZPwbYPBhavQpRACqURT+UeTuDiPbVCeRkHkvL+mOHJUtcPYmPocHYzjiVY7jxKxY5Qqx4Y2Z8+v89CXn+LRh08TfMKhw4c5c/Yied5icWmOx089TH+0yeL8IrNpj4mJHjs7m1jrGBclE9NdtNKsLNf86vv/mM/ff5YsTREi5UN/+OfkbbjzngMgSrTWGGtw3mFcjRYamWl0onGEaFhI9DYSCKQQqDSOUtjjpiSSNFN4DEI6impMnrUQiYxGe43brsXFUZY3pGmO1gpXXZ/1DM2sXUoRg2KjTppOq4uwJo6ztMBrEC7K3p1zkfwo9u53KCpLSKNyoTQxa8y7KNQUeNI0oay3KKsR5Xaf2aOH40iMuGmaIEiu2SSlEs2mZ3Au3hshWGpTxfGd0tc8n3HcFDXegemJ43SzO6js/Sip9lGgVpJSCjBV7CaTJPo5SdmQnj2xklVif3N2ITCuK7qqyYVAUtma0nq889Q+Snyl8qRZ7LBN7aFzlUQdeVgNr8hdP4QVYGd1hxuPH2TX9UkncgY7Q1527FaO5vNc+Mw2p9bO8u2veyVL+QJPnt9kdmKOF968xFicI+0VDIZbtGWLoqwoigLtHSefd5wXfNNdfOiPH+SdP/iz/PZ73sv2xmXyVovaDGjncOXCKQQZ3/x9b2CYTjC9tMht3vP4w5cYjQd0sozlK1u02xPMzx5mNDT89w99hiNzM5x9us/r35Bx7MhJnnr6A6C/QPD34Itp/sn3/m/82u/9Z6RM2Vzf4rZbXsXvffIHmJkrWDxYkphX8rqXv5VyKMmGniM3vJS33PUC/uDxT1JkV5iauo3l1QcwdoD3jtHQkXRaHLr9IIUa8v53v5+nnr4vksWTjHG5yuve9E76m2tMHjtKPS65+8RbOHrkJh5b/jgTb06RbsxAXMLLHkrcSOEevT6LGa5ydvc/JCQesd80JWnK/Pw8h44eZW52Du8cS/PzSOfpJYJEaZYOHwGlMS7es74x2ItIxlXkpqoqkiRpODV7RcpVhEbI2KDGZ6Mpiq5Be679e29clWUZ1jlMXVOber+iECKO3mpX4pp20Xui75XzqHYbrTSjfsb2zg47m+vUu1vUg10Gq5epB32wNWmWEYQA78hTjUJhVcaTz5zh8w8/Rr/6q+OoPeFvfD+f/f4+V73z3JwcFzdT7yPp0tQ1uBjslUqJCjLmO5XjaByYROKjSnQk4mpN8BmPnXomBr61u0zPTDAex8NfIpiabDM10WZrZ4hEkiU5lalBRzjce09AozUkzSamFPyvP/gOXv3q1zDdyVCpjB4+PkJuUQkmKUtPml6VsYf9KtSRJhq8jT9j7/PE7r2qBCqXOONIVE5ZRsj7M3/0Ef70/geoW4q3vP51HFhc5MDRw3R6bcqyohwOAUlZWOqqQKuU4XBMnqc4H2i1WqRJQtZqMT83yw3thHO/8QhV6RnUgWHpGZnrR268tvLfQ3W8b3xR9vgcxPRoH1xDlgvsK7hxNDQ6nLORw6I11pomcVs0Hb3HOoFANf+nbjptye6O52Mf+zzbG2OqOibOnj13AWMduRAYV3Pu/Gkmp7rsbu+Q5wmdbodDhxaZn5/DeMdoVGKNZ2Z6ng9/+KNo3cHaEQJNJ+/woT/8E+5+0T+jctvgwXrXFDqeLE+QQgEBUxmcE4yKMVka5f9ZkkZirPZRNu0cSaqaZG1PEKBsRD2cdyRpQsuDaThJ1lqUlkglUVoR6uuDzHknCV5GI6wQkImPG4D3KJ0R5AAlNFLFrs1Do4iLXkFOBKq6jkTVMuC0JNhYONU+kpVBIoXnydOf5p7nfQe6nUdTRiRSK4SS+4RFoNkgBUH5PY0eYDGmohwNQQqqUcFEbwJSTZp0UA26Q4iqzG5vlvUtT02JVBH9FT6S2T0G6wKysahItIw+OEIgcQjvcbZ5PRLKwkYUUQUqIaitoaocwUfLCa+j75GUHika2a8LjXdQtMVAyugqnShMcv2QHF+N6U3M0u5Jik2FFD3Wtna5fG6HRHd5+Te/lIs7K4yyMSVthivbHHrVXUwePYbKHMb8epTqN5wb7SGbnEH1lrj75ffSWpqn3e4yCLtxna2NPikqcGBpjpMnb0XNTvO5h55i6sBh8ie3yFsJ3W4H0pyjRw9x4cxZisGAPM8xR9v8zkfvZ3r66/j273gbjzxuCGEBLQVXzq/yxte9gd/94O/glAMWMLbkH77lfXz68/+FrbVTnD31GVAZyCGTc7dz/rzh6ZURF57ZwEwWdDIL7RaHb7yTjY11JlUb0YLp7hSYy5x95nOIIJmemcAamOp2ELpHZ6ZNsbPFyDvq7grn1kcsHpnjL7/yKIv1y7npjtv4Qv0AR44OKJLrg+Sk7NPS4lhFqpjMHSQEMKMKqS2X1zbw2QT3Jm2mVY6wljRVqDQjIMhV3I9TFUe4Xu1xDEVEp5uCJlpI+IaYuyer1oTgowAoOIJPSdKYQ5llKcb91eLGWhubQucjx7QooxuyEBRVQa/XY1iMydIUpVKK0SiKjMqaqjI4a9FJ5NamXjPe2Ka/sk5iC/ywTxj2caPd6IkTWjipqJ3BJW2Uyji3usqXH3uK4Tg2Y9dEfCED0bmcPTS4IXXvj+v/x+vx3BJyqVBZSlmN0FqhZUIQESoP1uNEiGRHIUFH5UmqFSFYMp2Q6ITg4OlnnuH+Bx7g1S97CW99y5vI85y6HiKSNolKeM8v/ns+98UHec97fwVvMlSSIZTF1I4kTfFOkmjF3PQEP/oj/5xjhw6T5hHOTpJoShZHZzRKCrev2tpTcmgtscaTpAmVg0RLQmi8drAkOkGIHGMMWiiSNGO3HFJUJUFK2jk8+uRjrI92Wd7wrP3m7/EPvvUb6U52MfUCUgn6gxH9rSHb6xuYAB/4//6Awc4u9959D2980xtZvOEGsrZgamoK5yu2tjYpK8vOwLE1LrFW0x9fv47x2g46cqxA6hiXEA/tRn7saRxtY5ErruZ1N525I00V3geciyMhY2r2rOWVkhhLTIrXKXXlEaScOXuFD/7Bl1hb6SNEznBYMhHg0sVlZmdmGRcGpRNuuvkmzp07x+LsEdbXt/DecuniMr1eh4npaV716leT5xlf+MJfkuRQFgMyLSAodndGtHow7AfIY3KMsY6qjn45zgVqUzMuS4qqQuqEqgyMRwO6nRbJZNrwdwzWOILw5K3WfuQBBLq9HlIq0lQjpY6EV9rUdR09W5r8L6UVTl0fJMdZqC0IFchURB5ssIxKS6ZB5xk61Mjagfc46zAEajy+idnoD6P6r6ihrTVVbShN5B8JpdEIQjD4UPHAg3/Ay57/bSRJQqvVwnN13Fk3/I89+DvPFe1WRLKkCNR1iS/WePdP/jiTB+Z4zctfg6lT7n7Dt9LJW/v3JsJyy42v4tTFX6dtcvKk2dy9p1/VjK1DRZIYWioSKUkEiGCxFlQQaBVVflXl2BgOGZSSbifF+hHOgqnZb9pS1UgZlCLLFEqD97bJrIrJ5WlmmZ3OIudHXT/i8S0nD3HTbROsDfvIZI6zT13m0tY600uHuOPuObbMOc4tP83bv/8t1JspF//yPKE1oFoZM1brLCzOgxJUdU0iJDJLuXxxlaVza2RuxEd+87dJpcIaUMGQCcX8wRNsDXbZWFvjl971SwSZ4EtPoltMT0yzu72CVJY7b5nmwpWHQHSYnJ9Du4KnHn+MQ3OHqNOcUTnmbd/2+8gwj3GCYycOcP5BjRlm5HOecSgprad/ecTL7/kRWlMt3vitb+aTH/s4R44e59zja3Q7lvueeYK0exvlxXW+tP0E8wcmGdbPx5lHOXHXC+mvr/OJ3/ggG5sr6FRiTWB3d4c06TEaWlqtJaqpIQdnFpk5MIlWmk9/9KM8b/55LM4f5Yb2DTz22FPc8tJb6ZtTzC4sXpe11CqqmWSTGefDHoMkTjxi7SyxAQbjgmfOnacyhkxG/yatnn0sRx7VVWFHCCJyYa5BUL/677r2FMW44UteFWCEsEdXePbXD4dDrLXkeR5DO/vb1HXc0/cmHpsbRTxrx2NMY8iZ6oSN1VWMsXTbLdYuxVBPN9ylNzfN/IE5zp96jM2dNfq2jvlyjUmis4YkS2h1O7QnelQXV6INhYztdNwTYoEDceS279gfIvr71ZSLv3Y9nnOxtGZc9QnBxXGDVzgs7XYX76tY3IiAdRU6zaPhnxBY58nySJAKPuC8ZXJqmk995gG+/lWv4MCBDrWpyZJ2XMQ05a47buXH/vUP8x/+wy/jvItOpgDG0m3lvOrlL+Y7v/PvMz09QVWWKJXtzwdjoaKaNyK6IpdluT+KUkphrUHKNFarCfsLHFGNWOGmabZPnnXOoXXCeBSNibJWj1anQ+UdeEc7b2FMhOQH/RG9iQm8l4yHQ3a3tnn/b/0Ol0cOLQw3XDzPFz/7AP/gjlvx0lKVjqqqKMcjHnv4MWxVUVSS7VFBWV0/Tk5ozPxC0wUA0ayKOJLy7urc1e7D8/Ka+W9TQQeJlJoQbOReyKujwChLjIot6+rGO6XDl79wlr/4zJfY2qzY3NghSVqE4CnHNRMTE9FfJ0nQOmVpaYmLF5fZ3tlBSkFdW3Z3B9TG4tHcd9/HUFLy4MMPIWV8zXm7RVUEtErZ3hxQj7Poe5OLqKAKBtCUtcVWhnFRUlXxXsALnDP4kGFdhGfjSM6gEoENNUFYhPQoJUmzHB9iCKQQAS1jynCEhO3+GEngQV6f7r+uPVpa8laDIDmHdSWpi6TCltLRvl3VCO9wdYUJggwojWFnp2oIkfHr6srH3C7nESicsbFQE4JUw4WVz/Lql34faZrjQuTahIboX4xHuNpSKwjGkGXTWA8JJhLPk4w/+/1fZ/GG4/zse/4r3/bW76Lq5yRpVK557/aJj53WFJIDjMbruDTeP3WwMRw2SKy3yBCDSE0VKHxAqwAWNAIvJBZHMIbgBOMheF/FzjAEnBUNn8CgdQulQ0S3QowfkSoi2EI5THBIKUgSQa+r2ZPRXo/rRfcc454jR/HiTj5x9hSlW0RPlqwOTnNmeZ0DB3t0Oh12tld4we0z3L1whI2VS8hSU6W7EZVJHM4VBB9IlUXQ5XMf/gLWlnHU6jzt7iSp8mS5JJvocGz+EOVgmZEbsra5y/z8ImVhI4FcS0wRmJ2a4oZb7iSYEuOmeeQvn6bVmWRzMGQwHDHZOxKdxomjbuN2Cdk6b3jjN/Dxz38ErTUt2aWqx+xublFVLT70O/extb5FMVLs7j7O5Owh7nz+LKsXtknSjPX1C4yHqzz9+KdYPvMVnj79MBOtDrauyPMM42o6nQ7OVzEvkRELt02zaSouXPkyebvD5hW44eZjpMkk2ewGW8trHD+5yGcv/zkTszlnz28C3/I1X0ulok9NBG4aj6YmwFIIyNIELxNmFxc4cfvzOXDsGCrNQEQTzr1r73y7qowKjQlo2DemvJZwvFewRFRe7ptwah0BgTSLxUosWqpn8W32wIGqqqiqinE1jqh8Q/MQPlCXJTLJCAS0TBiNRqzv7tDNW+S5ZnPlMoPtHQSBhbk5hoM+K+sbDMqCvNdl2G8zKsa005yJuVnyLGVUjkFJltdWOXvmHN1ulzQP7A6GuGDZm1mJQNM0iehVu29rEl/f3xnJKeyIvdwfHRJ01qI2Y+pyTKJUU8AoUp3gjCVJExwOqXWTXq6QOiETOVkIyOlJdgYDup1JOt1JdhvL8aSd0m7nPO+mIyTSUpnIaVDBk2UJP/y//yA33XScvN2NJNQsmq3tzc6VkITgmpGUojIGLUAkKdbWzcJm1HVNkiiqqmxSqNXVGb4L1HWsfF1IsYyp64Lt7WUm/RKzc5bXvOkb2Sm3ePCZdbotxc23Pp+yMlgTqCuPdzA/t8B73/vLdKdmSapdZEhJU8sL730ZJjiGuwNUFsdwq6uX2R5sE0xga6SpHSDU3/nh+psuG4qGYxOLTyEErv6r3WkAfNg7eBw+2IYj0ThWB0Hw8fuUijeZ1ipC/HvdgXD7BPLVlV0+/ckn2FiDcmwpxmNoBSYmJrDGUhYjlNK0WjnBexKdkuiEwahPr9djYmqS0WhEmuX7BPc0y+hv9+l0OkipOHLkRq5cWWXl8mXyvMOpR1e59SUTeFfj/CASqX2MaLDN7NrUFlNb2u0OMk1IE01RjKN6UAmCMohEUXmPUgKtYhJ92sqiwkiYfXQsoOJDKCWNaz4xkPT6rKepHbWMHkPGegwwLipcGp9LlURkQuh4aqs0YTwu4mbVkOe11lTG7W+exjhUEtVJxknUHjdYSrqdSVqt1r5Cb69z6m9t0VKab3vL63nv+97H7NKNCCGpSkumUkSi0FpwaH6JYX2Gmw53MeOKIzffEaXlLhLBabpbHyzjcUFVjagyF9VrIjYygvi7RD6CwgsY1xYVIFMNvN0cCNZ4rI8onnWQ5tFqIvhrvK2sQCUeGa6qRvZ4ANbGgM/gfRP3oOi0rp/n0dLEAunKJFNLgptumebRU6eR5MzJBVafGCPqAVVt+JMPPcGR7Bvo6SMcWJxlY+0Kad5BqZyyGkSxBoHxaJcgW3TahyIyq8t434+GlKM+OnF0Oh1EEKzvDhibMe28g7XR8NK5irouaWVtRFBMtwU333yE6alFds6vsjXyjMY1znpEaFNVEd2VypKoDkdvnudH/s0P8Yff8LskSYJANu7oAmUF/fUNut1JxiONKWryPOfpp0/RnZhl5dIuSeao6xIzHCBdTTG4QmZ7jIsCcKR5jlKKuhaQedZGOwxD4KHHP0+7PSSppjl0+IWMN1YoyoC3genpHpUoWNu6jFVt7nzBC6/LWmZKYbBx9KljpEhonOaDkOA8KtHMzC9w5MbjHH/eSZJWi0QEEr5avr1XyFxb9IT9j19rC3KVOByNPq213Hfffbz5zW9sCMtxfx6NRlEF9VWCkz2Ev6ordnZ3WTqwgLeOwc4u66urtLMW2zZyb0Z1zfTUFJ0sZX35IqYsMVVJNRqileDc2d0YnisFhw8fRnrLZKfFysUW5XjE9mDEQjtDphoPnLtwnspU1OMKdEqiNUmcG8ezCtBSNmPw+D5EIQHxPHoOFetzFjlCCKoykKYagmY0GhDwdDqdCIlZg9CBYDVCRE18kic462lnXawbU1sTeTqNquk/vudXeec7/x4quYU8yyNyIgSTvQl0kvLL//EXEVLw1KkzzC3MMT0zSZ5nce7oAnmeNS6lTdp0CMgkwVRx0xbOE6ylqEqEtrHztBaDaYzJIncoqoI0WZaRJEmz0Tc3lvd4lzLc3WKwM2IwPEOSJRy/6SQ//e9+nv/zp/9vjp88wdLcPFmrS7fTJtEwOzlHluUkNuHW2xbxuuSeW04wnUxw4/NupijGDIdDOqrLxvoO5chiS8HQKobGYWzkeFyvq75mpKC0RoRrgjq5+hB99T3wrC4hRC8Z9nxzkEihCDLsj7KEjEZUImT80Qf/gsceuYzwk2zvrEdHa+/pdrtMTU1x7tw5inLEzMzMPrI2Ho+ZnJxkbXWD8XiMb6TM4/GYwWCAtZYnnnjiKhKnFevrG5RliZTRvn9leQ3xlTGHj06Rdzp0uh1MHSMABLFIK8uSNM1ptzv4fd+fSKRL05TORJssSdBJVI8JQbRjF540jQeyqaOiTokErVLyvEVZVg36Jcny61Pk1NbSkp1YUOmEICVCGkbDAt/2JO0UWwVq13jChMZPKngcAZTGIihddI3OpCJNIrJnaosUkqKMNgLCBbyZoN3pkCQJe7lZxaDPf/qZn2LhQMK5S1t85Pd/jXf+i3chZEKWJTFgtTnc3v9bH+Yf/y/fxf/1c/dyaXXMLS87hPQGj22QnLiRSykpBj36Zh1dDmOXrnUcF2lHXQVCrTDS4Zt8NWqLTQJSRt+gbkdTW4F1gaKwIKEdIupmnMWryOtzoUCEBBGiUEBKUCHuRwqFF4Ego1eUrW3jAn59rlarZG1tg2eKgqfCOSa7CaJ09IeWgUtYflIw2TtCEIEH/uQKu4ccnaU1krbgyaefwhqP0lFeXQxG5EmXYrRJknVxRtBtTdAJCqNzFucXufD0g1x85mmWlua4fOFxevNHaWcJw90+UzPzOF8wMdHGmF2kO0rqC049eJ7v/Ucp7//Ff8mnP3eBX/wv76PV9jg/RiaKqjK02y3Qlg9/8Iu89N67OHz4MCurq7gg6XanML6irB0qywl+iqVjN5G1JefPP0SrPY3KSi5fPs2Ro8fZ3d3EE5ibW2R5Y5nd7R0mZnrYJvy21emR6IytnTX+4U++g+3LG8wudtjdqLlx/pX0sjYPPPFJ7r77bqb0jZxe/QrbZzY4t/IFjt/8TTz28FfgW972NV/LNEuRRuK0jx5je/uliE11nmS0pmY4dvwEB48eZXbpAEmmyQRI67CVJcjwbIL+s67Iky0b35k96oFzDmMM1lpWVzfRWnLPPfewsbFBt9tlNBphrSVN9f73RWqHoyxLlFKMRiOMNUzPTLK9vQk+0N/eZnd7i7HSBGNppRkmBDY3aqT3mPGARIG0Bb7sE5QiWIVMc5SXbG5ssLu5wRc//xcUwyGHDx3k3ntfjHElmzubbO1sMyzG+4WbEjKa+jZ2MgLAx2cbosGpEALjrhlV/V2RHN04ETrjEFLQ7XUAifcBYyKj23iH8R4lAjZ40hD5LpGvEb06dKLI0gRTWTq9CT77wMPMTi0wOz1Fp9NhNI6HU5KmeBGwdc3CgTm6nTZKBrIkxdSWVGmcsaAESZbgnI0zdSlxTdCgdQbZ8EpUkIRGzlvXhjxrNa6rNI6/EmtqdJLGTa/pwPFxs52cmEAESTkeceXSJZYOHqY1O8O//Zkf58LFSwgvaeUt8iySY3d2B1TlmLd///fx3ve9n7/3tleSpNO85k1vpLQ1O/0Bu/0BNpjIlveBvgkYIzBELoH1129ctVcBAwTn9+wsr35e7FXIV6+9ImiPGyEb0vK+BDgIhIxJ0AgXvzcEysIgVYdP//lDzEzewNr6OkUxZDgsOHz4MLOzs5RlSQiBNEkpioJOp7MPm3rv951z91Q2ezPi06dPMx6P94vVcWF40Yvu4nOfe4DhcMz0VJfd/i7DJ0dIkXDi5Dx1OaCqyzgvtuGqK2/zvlgbH3TnDUrF+zeZ6DbcDIX3ETq11qGJULA1dr8DQkmUDBhTN2Ms2aAK12Mlo5vv3tLphk+VaihdRV0LrJH7KfDeyQaWttHTxnqkiCNKpSRahMZxNNqyaxkjIbyNoY8JioMHbniWqmrPJ+fKzoCb7ryD5x2fZGJ2kUe/8iRf9+p7m6/TkdMlBb/wn36Vejzk85//S77j7f+EmCR81YzsqkRVcvTQ7Tx46hxWe5SLoZyddooQ0QzNCI/zEte8/8FIfGJJtUbiGhtEj7VgXUB4QVmUZHkSR1U+ojcSFVOUpSBY13wsejwpRLOPxYTzdi7iXnKdLpOnPLl1kRN3dbk5PczJA3fSL1f4+Gcex40dnbzNcGWT177stZw4mjMyfVYvnyMkikvbAqXB2ZSyLglS4EJNuzNJMRxF5NsVIFtUoz7St1g6eBzrSnb6O6TtKYKI93cqPbiKVChG44JOq8eNB27k8KxhmBzj4tmCmVtHPP+OFX7lV76DrQs3MRhuk3cWydKU4C2F63PzoVtgN+cd/+w7eddPvy/uuRaC8KTTPawJtFsCHSyXLz6KEBI3U7NysZFU1DwAACAASURBVMKVq2ytewa7G/QHu+h6yHRvgh226Q+3ydIOve4UnhyhDKLVQs21scKwvr7KgcmjOCd4/Kkvcs+L7uHUuU9y6+S3cPTQPIPxGW6afBFnrlziwU/dD//2//iar6WSEpWmzf5KE2p9dXyUapAaSmPxXpASEM4SlGZoPHU1QsvoPaaU2kcvYmxM49xtDVsbG+xs77C1ucn582ewdc3SgSUWFhZoKcHmRh8bBDLJ2OxNEkT018paGb1OD+siajoeDsnzDO09VVUSvCdPu0wkExBgefcyWkZPnqwdgYlUBKpyjHAeETyD7R3MeABlwdjU+CDZKSp2d3dYW12hLkuWDi1xYHGBhYUFZALFcAcRDKascaWnrXMSEcfJGpBK4Bs0NYgYtRMRco1Q4FXM2hJeNOHRf/31nEWObZAFZ2q8cNEqXibUdbnvkxNEQCcJxlSkadbIbh1BJhDkvtPjsCjQKNrdlNPnzrOyuYkxllZryBGdRv+OcHU+mKYpAchbrciPUQl1c4BomeBcQIQIX3lXN9CdpTYlWqUopQk+7DPG0RrvQ0wyVpGnUxlDImTDMxH7Pz94gXUV42LY8HosO9ubXLl0ibmZWZK8zdTMHLubW1H+JqLSJdUp/eGY2+55Ab/x336L/nCLqqpRMmVne5v+zjbDYZ+yHKNFmyzrUBmJcaE5MIlGbtfputaMKlr5/+06072v897H1Ouv+j6BQoiYGRGlixKtMx5/7Dy9ziG67UVObZ0hyxXtdhutNcPhkNFohNaa3sQku7u7dLvRlbWqKjY3NyNaUBSUZbmP9Ggd7Qyi51IS58tOsbGxxWAwotPY2WdZi4mJeVYuDjl6+DAry+fQSdVEMkSFgtYpUqgmed4yGIzw3pDlKVA1ydXR2kDrZqzpDW0pSdOUqir3Ny6vHA5PWZW0Wq2GpCwbHtTX/lIiEnBjcrCMD3lwpJnAWoOxCsEeAhf1VXmeInFQRQ8qKSQmBLSCVAps7RC+UWP5QKI0NkCwgVGxtk8sd97sK/Te/r3vYGf7NG95yzdz8vYXx5y5axR8e3P9heMnMKbmO+54ASL4fY7MPpGwqQa9D+An0KqDpYoRMkJEsqYS4DVGVnir4hjGV5g6UBQ1mbK0U8nYBJJU4gXx9RuP0gJjHMY26kHA1o5UNF5QPkRO2l6x5QNKNoajCvJMU9fXZy0Bnjp7lkFe8KmzD/LmV76BlaeX6cx2mDowy6W1C9x+8yxTR1JkYbl14SQXts4jc6iFYPz0OnmeI0VCu92m3W6T5zkXljfwPtBpx/txZ3uTujLkec7S4hGGox1kEtjeHoCIirhBfwepFJO9Hj09RaZbFKN1euEgDz/4NJ/51Fm+5/tnuXL5S3QXNMfnXsLQrJPbeR784iO88KXP5+mVj7B0x+2cub/Da976Ov7dT/wynYk25TggQ4JKJwluSAiendWzDPqboBUuGMptja12ERSM++tIabBKMhp6sqSFqz11vZfPFhiXNa2lWXrTbZZ6C1wYSW694xaeeuYC7RmLCAlzC/MwNKxf2KJKHTcceR5VPeb86Seuy1p6568+A1IhRQQMRDPOnuh1OHrrbdzx8ns5fOJ5dDpdpHfYALV3eCmwwWPLMjbxQtDKW7F4Ugpb11y5cJGHHn6QD/z2f+XUk6d4+Utfwvr6Gg8/+BBT0z2ed/I43/7W7yJtTaISw+rqOkIrpuZm8EIwGI2p65LhYBAN+fCU1rC7uR4l8FUNAaraEKyn15sgiD3xiiSVASUBYylNQbCWuihwxQDhHaNRAVIy2cuZnb4J7z1VVTExMRGnPRQIrdBZypXlK7HpDDFrTwqBl3s6/EBo7C6s84QQlbG+CeYTKJT0yPA/Rsyfs8jZczRWWbLv2hhN0hRSeYRMUKmmquy++2midEPydY35W6xEs0TjbEEI0UTtv/33D3PTjce45567UTIhz1OMLRFCcOjQIaSUtNvtKJFLU9bXN5mZm2l0+hIhFHiPVBIpU0IwDVlY46xDRctTgnNYV0OjIorOjRIhIteIALUZQ1BIqfdRhD2Hxxj4WVJWBlMZzp+5xOKBRbyrWV+5wsLsJLZyuHrE1tYWWTdn4YYjSBwyk2xubLO+us75C+fY7a+idUorS8laUxy84QBz85OcXx7EpG/FdVVwOGP3g1bxgeA80fBYoFVM3I5SQoNXe1kmsXvds+I3xsSbqjGBlDLgnSOIGFshpUCKjNNPbfORD32WVB1je3sUM7AC5HnOcDik2+1iraUsSwaDXWZmZyjLMpIJnWNmZoaV5bV919w9183hcLjf9Xc6HY4dO4ZUgieffAwpNGVZMz3Zod/v84K7XsXHP/ExFhY28dLQm/bkbU0xLCLvwHoEjuFwzE6/T10bklQRvIrmWSomcw83BzF2JDjanRZKx2R2KZN9lQJY6npEWdaMyzF51ibNMoS7XjEdcRyTpRqlU7S3UQyQCGpbYmqN9Xuhex4RLEmqo6S0uf8DkIaolixDQAYJNnZGPsR7QwlBUAKtFuOIKzSu49bgQuDue7+OjZWTVO6TnDx5D4tLB7Eu7hHWe1pa7jcaabsTN6vaEBq/KnzYL8biweCZmu6CSqKqUimU8ugmHDNJBNpkWCeiLUBlKQqDt4FRcAxagbwDWdAY6nh/C4VMdCxiao8VFuFjNl4iFaEhGKc6YAiNC7hAYAhS4FXkQAR/fYwdARZtm1tf/Hw+/ektvvz404x2C9jsMVrb5fjkPCcWp3nZHTdShy0WD3aYW7yTf/XzP8dddzyfmyZPUhRfwLvYIKyvr6NkikHha8P22gYnTtzE/NQMlXN0u13W19dpdxIuXjxLXY9JSQm1pZ0quu28ee4yhJD8wA/cydpynzuHN9O60uHPv/AY09URpEpxc5azu4/zuw+9lx963S8xvDSgf/4eLu0+xdnzNXObJTLLqIoS0epyYO4EaxsV3p9iMNwk1S2qYocsz+mkgfFoyHiwSbCW8e42WZpRJVNMdtuY/gWUtDgLu7u7tLuamd4Mt772xfSmc7yXHFq6ic3BDjotWF1boTs7x5GDJ9lYOc2wWmc0vsjtC2/k3MZZvudf/tPrspZ73LUkjRmGxsV9VybRIypIxeWVTXjyGWR3luPHT+BCoK7G1CbuSUGCVgolZGzmspTgPUVVIgX0pia572MfY1QU3P3Ce3j40a9w4ewZtE4YjcY8/viTPPjQT/Hd3/t2XvGq15LoDJWmjdAgJ1hDORpji4JUwWBzjf7OFhfPnUECeeMhVluHzDscOHYjOs3J2z2SVptQ7JIJgU9rxtsrIGOodhSs+EhjCdEotSj3pO4Z46KPsQVT0x3yXpdqd5fCVJS2iqpHkTQFocDJGOVkPXgpImjhLNYGrKtpZZpcKhKlSOTfscipqqoh84I0EkNNrzVJ7SKM7aioixGZzDBBk6aKIARC5YyKeGBZ67G1a+b4UXLrnaOVJ6ysr3P67DmkcXQ6OUoLWq0Wic5p5d19753xuGRudj7KIxOND45UC6q6RGc53jp0klLXFu8kEAgihoga4xDS4Z3B+diJ1WW86XyIJmHBRmJpZeLvW1lDO2uzvrIMWuGrBGtLlpevoDXoVLK+dplycxc/GlOYPipRFIMxU4sz1HWNtxW7u7tsba+xvrrGcLCJFIJWllJVht6UQCWCmYUJLm8M0DpnXBZYf/0k5KIJ4RM+kCpNZSukisx1EaJUzzfmDs8a5wgRyYMNEW7vY3u8HKWjB1EI4KxC0uJzf/FpdrZqjhzK2FhfJUkyvP//aXuTGM2y80zvOcOd/jnGjBwqp8qqYo0skiWxiqQGUpRENSC1W3BrgtrDwrBhd3vRgBcC3IveeGd4Y3hn2F5YbslqdrcESS2RalJUkxRnseY558jImP/pTmfy4tyILEoW1VArL1BAITIC8f9x/nvud77vfZ+3pXUt6+vr0V1WRw6D7jAAUkoWiwUbGxvcunXr1Bmnte44SA8skyc3zdHREYvlnLo+ieoQpFnO8eGUyXjA6mSF7Tv3efFTV7HsUDbHkengAk3dkmUF8/k+ra3o93usra52VvrAYl5jbUtVReqyEDEhW1DQtr6LbxDkeYRQltWySyrXOB9tzcK3D2UtYxv7BOgV3QVt45FJHB07K6jNg85EkA7XhpiKLCVSPsiRig46cMZH0bIJ1D4yNpIkHhZGw7XT3/1BSqpSio3zG/zsL/4yWmt0ryCcOBsFuG606TqApFQnHZvIXGrbyN2S4qRDGFgZb5GnY4KZoZUkTf1poRtkp22QgiT1YDOCd1gTC6WWCEAMKmClQwpNohVaJThvOjRCIMjIGmpMLGjms4ZcZRgckhN7bCyATGO7kNqHdwARyQpvvP82F9Z+lL94+2VEgAsrPcIi4drmJqEUHC4brj1X8qXrf0aiPI++tBXJ60GR64zD2QypEvJiTNormM/mHNfHbKyf42g3dkrn0ynNfEGiYHhmnQLFghbhBK0tcVKwbGrW1jYZpDkqcwjtOD5asrGV8/4NeOTsRa5evso3v/1lLl0J1FawVFOO3F2SYotXXrnPj/zYJc5/9gLv7H6DohhSLQ/YWr9Cko64eLnPnVu7UO1j6yNkAJV4Fse7iCCwdUmlHMY3BNtn6+I1zl89z2tfrxgnZ7lz6zWsMKjEc2dnm48MPLo/RLnA7lsLcCOycc1qeYHBakZZTemvDbl66QKf/93vcPtbluzqkBs3X4NP/t2v5clY90QrczKq8iHuH0l/zPnHnuKx5z/Co489Qd7v07ZN5FgFMJ3xQWmF0AoXPMuqghDxF9IHFuUyjvuBeae1GYzHLOZzdJIwHk3YO5xx4+ZtXrSQZTkqTej3+wC01jA7PEBJwex4xvx4n+ODXQ7v3QHnsHXDfLGkMobh6jqtaTl/+TJpnsW9ugN/zuZLhoMB0jVIP2TaLrGmIUn06T4RKfiCXq9zU3fd76pqmE2n5ElCniT4DkEqRAAp8EoipKI2DmPiiF1LgdDREa1lDN7Ok4T0h0xAfmiRI2VnpVYKqSqUygGPtQ2OQKKLrmsjY05Tp86OoXwy6hOkRMhAomOIWABaAqkHayTf+NYrHN7ZYzhKOX/+PJ/73OcY9PpoGYPIPrihxp93pImKotHuwVtVFUmXIvxBdPXpH7kreIKPo4kTTUkkrnL6vScfTB9qZjPDu+/ciERNLcjCiP54xGh9yHS2T6835Ld/73/j/S99HZynXyS0Fzf5qbV/EMWe9ZLFYsFbr7/GYnYYQ0vTlOViSd7rM9lYQ6c5L734Sd5643fYLReRHi0fYmp1954/mCn0l//91HklxQ9+7YSeKR6IkaOYDqytCKLEO0GajPnm197grdd3MG1KVR9TNYc4F7BGMBhm0fLf/f48z0HE32GMOR1RfTB8NYRA0zSxePzAZ2Fvb++UkSRkFER7Y+n3+xweHvHuu6/yoScf5c033+CRCxchKdjZvYlxU9rGIKWmLEsODo7I8pThcIxSCbPZnKLI2N7ZwTrLaDSgrBqUEvQDNLU9hWqBwLQBoSArMpAGj6e1LcZatHhInBznkErROk+oG4SSHV06am9myxIfcccoDToovAdnPc41sbAVJ3TfgLWBunXgBdZ4ysrFcU2IY5w7Oy9HZ57wiBCwvuPkOEgyRZEmnbDfYpyLaeAi0JpAkFEXA+CsjfEtHoJ3BG9jl7jT7xAEVx55mr+X/tfcuP8Gs/kt2vAeldkFYQhOE6RHJR5fKQixqGxqh3Carc1nGa+M2Dt+lUx7TIg01toWiODxJxMnp3GNo3bErqYPHARDtqZJhcQbgygCQQmMiwTlpn14FvKvvH6Tm9ObTPrQioLp/h4XnjzHem9E28B3X/8LQm6w84v88Ve+wcWPrXF7OufRfJNHnzvDYnlInvdwTU3ZODIpaWdTVkZj1iYrLA4WOGe4ePESx8dHODvj1q1b3L9/wNr6GIfFBEtoDeVszmAwJlcJ27fe51/+4YhcKi5e03z0Uytk2YTP/9HvMz2q+PgLijCEoFZ4a+fb7O62pNd2uffu3+fG97/FT/3KhxFti05WGQzOsiwteeJRQXE0Kwl2iVY5ggTTBur6GGsrqoMpRT5C4ilSzbtvbuPkBqU9YLJ5lvnRPrODe4h8hTMXrrCcgze7rKxm9AcpO/enjPILfPf7X6Lf73F4MOfwxiHnzm0yqhN2y3sUk/ShrGWv14udb6UYDof0hwMWiwXzcknbtozPrbJ25jxrm2fJewN8iPuoUhIkyLRASJBaIzpHUXCeqqo5PDjAtREL8TOf+1k+//l/ibGW/nBAWZWcu3CBixcucLy3x6WLV3j8sScYDIYolcTOrExo24qmrPHWUi7mzPa3uXPjXaZ7uzTLaTR/tIHt+3tMp1Nubd/B+UCWF7z0iZd46ZOf5NrVx6irisX8mDwVCAlprpmsr+BcS3l8jHcOaz113SKFJGAoigIpJbOjQ4729jncP6AvE2RW4Gij6LiLkQpaglDUwtJIT+5DjGDx4IIlUzJChnVK+kNMAT+8yAkKH1okFqky6ralMVGHkGpNayuKNKO2bRwB+ehK0ImgrhqKLKGt4xszLuYCKZWgkNSmRSnFZGXA9fs7rFcjfvxTn2YyGmMwpCjwCQJI05js7L3H2VjZ5mm0wEklMZVB6mgNTXUSuxAq6ie0khBSquWCNI2i1rZto8BQSLSmO9WC6zQ8SiYsy2OW8zkSR3CBpjZc2DpDu4hisbJe8KGPPMetP/0+hUi5nxn+yT//p1R1Q2OjKNb5lv39XeaHhyjpMUlG0stY39xAiwzhNBfOPxrze4SMcKTk4RU5EcIdixPv+UEBMT9Y8CQqvg6PxQffMUJi90CKH5AwY11DILrrgk/5znfeYLF0NLWN3TYdT8qEqMV55JFH2N7ePh2FRTJn7BxNJhOEiO4mQoTWOedZLkucsz9gl6zqktFoyGDYp20MwRuqxSJ2g9Y34s9XJalWHB1MefypTfK+p9cfMZ8tuXfvPtWy7DLZMoIPlMuGxbxCCo2zUYIaAyktWkuauo8WEDz0e0XsoBgD0qBTgXdxVBpCdJp5+XDEqiEEWmOQQWCDRGgVtV22o/4S+S8ngX1SJFSujLZpEbOkvI9MHOMcTWsoa0tTe3yQqJgSQSSpZmyeeSyyrr1HEgveuq5xxHy5kyLY+y7TxjqUcVS+Jh9m+LQXHRHGRCovPkanEKI5gXBKHh8OBzyeP8P5jUtM6zmL8oAbu3/KfHGf2fIWWRqwzYnzKuqE+sUGo+FZfvaz/4jp4gje81i3x8H8ViyyRNKB2VQcYUtoAKEd+JiD1RJoyzhmNyY60WSqutgLj3p40yq2d+5hbMtB0+DrOY9eOscYyfDsFluXEz7yyKf5/vfe43f/3cvISnL1yof45utfJQ017qMLkA7vPMNBQV0Z9g92kUqysbbO/u4evjU0reJodsBwNKCup9S149ozT/PO669Q5AGHIlEJeX9wug9dOH+Rl9++Tp46Np94Aq8DibS0tuWZDz+F94ZErlJWBe/ff4fvvHKbX/qFz/L+F475zE9+DD9vGI/Ps7Ce+dIzHo9o2wPaKgYTWyytqUjsgNDlm4XgIHjqakmvl2DbiizrcfHpZ3n37Vfi3pWUJKliZW1EU1a00zllW9G2M27fqen1BFJZnn32aV5/7R0unn+Mc/oFdtR32Bic5db+N3j+sQ89lLXMi8hQa9qW+3t7JMfHDIcDsm5c1baGRbmkLCtOsqYCCqlClAyIqB01rcX4NgpvQ8AZi5AycmzmM57/6Ee4dOUSf/61r/Nv/vXnGa+ukOmEw4MjBIrNzbM89tiH0ElKURTUxqGShNDUmLpiMZ1im5I7t29GMG21ZJBnTI+PeOv6Nu/duM2P/MgL2OC5t32XZjnnK1/6Il/7ypf4yc/8NJ/73Ofo93J2t29g25okgSyJUpIkVTjzgJtmjKGuIU0UXkiO9w+4f/ces+NjUp2ggidVGtkJrKWQoDRC6ogdwCFc1C0lKuCCRktJkSSkWpLqv76U+RtTyGPrzUBI0KkA6Ul0vAFyGRDhB4WoSglCkDG8sHFkaU5dNXgCOhE4G09eygu0gLauWV+b8NyHnuCZZ55CJwq0PvX1t23btfq6sUiINGNPHGXVTcwnqstIY3QSjG2Q3uNcp0j3VewkdR2IeArWBG87cmSsHOuyOn2ALmbLjrgsWF9fZ00O2d27j3OO5aKmaVpQmloEmtTz0//lr3J3Z4+NlVW8t+T9ToWe5jEs1NZ4YVBe0OsNyLICgWJra5PLl66y/+obp6/tYV2tKclEDjoj0ZE027Y1WRZx/c7GJ1uhFN5rPJagNQFHa+MoT5HEolIJnK8xbk5rK6wXoCpaG3j/vTlNE2hNg7ORaYJw5EVCvzehLEuWy+Vpx0ZrTZFHgFV0MUmSRFEuDIKs+zumHB3tkWVZl60VyLO0s/2HU+eVTgRKSc6dP890vkTpktHKmLfeusNTz11klE7pFynL5RARLHmiGRQZZdsgQmBv55jlosaUAZ2k1G1Fg0dKj1YJTV3Tlgt6xZBy6fE4bCipak+eJkglcaE5aXLheEicHOeQOJyTVCaQFwl1HXVpwkOviKPj4APBKqyKnQ6FQwSFtS0uEJHsrcdZQWvAuk6cLgSJPLFoelp7FOfj1pNqTkdV1sYCVWuNtZGAlmjF9q0d6qPb9PKM4RDWLz6DSCSqOzzHbqAiat4kQSQxvbwbmxZZTpHlrPo1rL3A1soFyqrk/ux9jmf3ubf/beYcINwR3sPm1nP85Eu/yLWrjzGdTjm7cZGX3/4jvBYsyvvRqCASvNA4E5ABXBv1ZS6NqeOyJ6mWCq8UbWNIjEQWHi3jiZqH18ihnDd86lOfZBHuMPCK5y5fZaUa8me713nm6XPcvvU6qysjbqSHeBR//IffwhtL0h/we1/8XbJc4VrFcrFAqZSsl9Hv9bh39x6j4QqXrj7KW2+9hXNLkqTH/mLG2a0rBJ2xcWaNPPFkxZjbt+9g6grhPFYakqbk8Sd/jOvX/4x33zvgrdduce3CNdrKsX3rDi89m2FCBl7w5o1DRull/tWff55PP/YbPPXkWb74h3+BTldZn/Q5e/YytV1w8/09mnaKbZdAQCpFlvQoJkPu3zvA2QZ8QCea/iBCQ4XQlJWg6G0wGY/YdQ2tmbF9631CMAyKHE/F62++w6d//GeZHt1g7+AOF/qX2N0r2VzLqfb7FJfWcC7hzPkNgn84Jo/We2rjqFuPI0Y5VOWSXAtSFZ8zR7u7VIf3KafrmNUJMslJVCCRDi2ie9F4gxcCL6L+rG4Ns6omTVPG4zHLZYlWKR//+Et89PkXcM6ynM1xBq5cfAyVphSDISqJur08geWi5uDgCDtfktqKZrpL21RYmeNzRSNbdg4Oee/6DUSS89qbb3J0dMRJwOdgOADgK1/4I+6+9zoffu5pnnryCjoxKAUYgTexW2uMpTE1PhiC96QyR3jHfH7M3t0d6uMldtniaUi1Rpzw2ESIjk8f8Bh6WlIkgtSB8SEmt3vX4T1UzMNTf0tNTjzHR2EgwaGkICRgMEiR4NtoH4+pDg9Eu957lI9OIesDOs0gOLwSJAIcUaBc5IJhr8/qaMhnP/Nj5JkkTxNEouj1+wghSPMM24le27JEirjR5onCuxZrDN7F8VWv18OHlmZZ0usPURAR0kFS1fHmdr5BiDj+kFLjfdONsNLTkdViueTWrVt4ZzA11MEyPb7FeG1M01TcevcWWgWklaSbZ5B9ydtvvIVOCpZHC5I8w7Idq2+rGI3PYtyMfJiSJj1Go41uVOQpy5I33n0DI0KERrmHt5Na43C2oiwrsqwhy7KOrRBHckolDPs9ZrNDQmgheIx3tKbGBY+zNlp/Q0uSpDHpuJmjUiKczYHWOTs7hwg37GBdBhAMBv1Is0xyrLWnNGrgQYJu8J0m5xLT6TGHh0fUTctwOGY2m6N1/FAX9BBC0raWzfUtmrZGqUjwHA4HzOdzlFJ885vf4urVy5w9d4Y7t++xu3vAyiZxrpxkXH004fEnMnbvH7B/dJ87t+9zb/sO3gcGgx69YXT94QMBjzOWtm7IEkVd1dTNPiqR2FATXEuaKPI8Jy8yXBcNMRpNHspaLo1F2pi3JiWnHcrIeRJQSKRIaY3DO4GSGZox1kqMXYBfYtoZ87LBtR7TBhZVS/AxIw4pcVaeCm63793EGINpW0wTI1QWiwUhBAaDAU0ThYOJzsDBH/3m/81Ae/7ez/8EezcP2Lz8HE3TooUi7SWnegV4QG2NxRU/8PUTpP1muoUQgkfcBYx3LBY/w+H8mLt33uR4esDzH/5Zzm9ukWrJoNdjy21xdv08t3Z+nD9/9Xe4t/fNiCcIgtYKmtqgpUdlDg2MBxl5mlE5Q9u0hBbKpSEkgrHWCOloH468CoDLjxdsbk155sxVnjy3xshI/uT6X/Dad1/hm/+L4Vc+/Cmu79wkbzVuKKK2anvA0fAen3jhOTJ9i2nXGegPx0AUjZ8/f4EkSXjtzVd5+okPcfvO+/zMT/0U/+Z3/wXlcso465NouHf/gM//y/+DX/m1X2YwHKCEQLYVo3nFndu3OdzP0Tbn3v2MW3ffIM0kPnXcvz9jMl5lLVvnzMrT/Pl3fovKWExec3SwoFSrNF6gkRwf32P77jap9kynu6jgotg9DxHSSdznNQEjJHXbYKzj8PCQS9cuczBtmGxuMT3cZrB2kaY+RgbP7rxh7503eeTCJcZr67xz/XuEtmJZtrQ3FT/64o+zt32bM6Mj9sobHOTfp/Yl+7sPR2NlqhJnHHQRDd46WhfAgJGeyaYmleDaimY55/Bwj/6wT6YEztU0dRxxfzBr8GRsv7GxQa4UOMuoikLztqqZz2YURUFxrSBRKSrtkWY529v3WEwPWF1d58zGFvfv38cdL8A55kczZocz7LJlmPVYu7DJYyPOzQAAIABJREFU977xZd5+420gdtOzLMpMvI+mo5Pne5plbG6dxTjL7sE+vVTHHLkQMK0FDErCcNCj1fEAs7+3z/e+8z0ODw7RQSNdZwEPxAQEpfAiRrYEHdBZEnPtOnfVMO1jQsB5j/EeG1JciBE32L8lDFBKgUNAUERxYohivaZGSgtSkqQpbVOfAttOfi7p8nTiKMgiEdimIdVp5HoEC7aHNZ5f+qVfYmNjnbxXkPcKVKLRWpPnMRzz5EVmaT+6npTDtKIrqiBNJXiLCI4izdnb3mEwGEeHSGiiJihJsM6CcFgru0SvgNY5aSqoypaqrjrbn6SuqtPOilCSc+fOsL19B51IijyLUQx1zcFsSu5Tsv0pr7/2Mj4IzpzbYjQZsr6+ziMXt5ge7XN8HGgaQ5I48iKSmHWSMJ4MWV9dY7q9jw2OVP0Nded/xJVl/a7AMDRNifcGKVWXHC8JishYcS2BEzBe58ASGu9NnNMQkCohQYHo44XFhZhPpWRBluY0ZYfeNw/sxlJGp40xJo62PsBIMcYQcIxGsUi5f3+Hspqj0wxjmi4QVBCCJS8SBAnWxIwi79SpvihJFL2iYH9v7xTyWFUtVdWwt3vIaC1DWAtB0e/36fUGgGS4kpKmCc46qqpGqsj08AGyLCXNNFpLsiwlEVH86onj0ZhPHtvOTdN2zqFwOp55GJf3NkK3fGcrdU1k0ogYLOl9DJwU5EjXIw2rQB8V+iSywYkFsEsrt1m4ktZVEBTOWVIlkQSCDfhEdmRRh+1GzG3VQIjjQetgNpuysbGFVil1U6K15pf/8X/DF3/rt5ndvs+5l15iPjuibRqyPI+HEdexcbxHCk+MGlV/hel10iWW3Tg11QXae4pJj0l/hY3xWdq2ZTJZja3yDoQlVWA8HnNJPMZi8TkOZq9ia4MDnJN4bxDBkSWafl/RSzVJHsD5eHr2UJuA9NDUhiDEQ9XkXDp3jgsXB1x9dIX14pj50ZQrjyV8sn6MG6/vc+mxMV+9B3uHFU54tLaIdpXV8SquHOBrQZFnNI3pcvzivXZw7x5t23L16uU4Op/POT4+ptfrs5hXzA/uYvEkScbGxtqD7D/bknnDuVZw87u36D2imM0PWcwVzqXMqymLxRxnPWmqacyS5c4Kjz91lff2Z/SyNfI1z9vHf8zqxpi2Kbm/u82ZMxs4E/V4oWNvKaCq5qxsneUwdEna3YN9WVasjzU72+8xGJ+nl+fUiaA/2kC6Vd6dH/LCJz/DzcNvce7so0ynFU11j3s373L5yjUWVc10NuXWe+9w7ePnsUcVvfOOd969jRSXHspaZlJS9FJUltMbTDC2AecQzhC8JU8kk36PRAlm02OK4YisiCy4plwwPT4CHjDKTrqmWZZRliWZUkxGIwYrE9Z0wqBzpCYy5gnWpqX1goO9Qw6nh2ysbrC5tooWgSQIRr0+06Ml3nqUVPSLAeONM9gQMI0jVQm6y41r20ij9t6eol2cczz95FNcvfY4k0mPXuppqyXOG7AWby1NU5LmCWmS0i8KnHXc377P/u5BxKp4g0J0MOBYHGmiJingwEIj2tgRlwovRddsAXwXRtyJuU8o/n/d9cOLHCVxXiBlDGJsGo+UCf3+KAYzdvRY5xy9XtGxV7pTZRCnaeDCAw6GaYFMFFVTUxQ5w6Lg0z/xk4zHY8bjMWmWnCrRTwqMNE2jbuKEXyEDAklVlZTlkqKXIWRC8JbgLdYYEqlo2qa70R0kKnYOOheJVgkueIxpcU6TJJKmMachaME62jp2BrIs4/D4iPn8iGBavIjQwmo2ZzqdUgxGWFdzdDhFF4rRaEieJcxnx9y5fROtLeXikPX1dcrWMh6Pcc5gbBMdIknC+a2zXL+7j5eii3B7ONegHztRTVtS1yXOtyRZH+UtHolxjsp0X1cn7KDOgqtiVhUixA6PqZBSRbFjaHA4XJAQ+p2+6QQnYLtRhqVpGrK0OHVrnYQ6ntxMMesqplZ//OM/yh9/8d+idUDg0To+gK2vWR2vYRqo68DR8QG9on+6ITRNTdIVyIPBgNlsxmg0QoqE4+MFSg8RMlKNdZogtWIw6pO0luLaFdIkx/vAfHFEWS5oW0ddV6RpEuNNRLzRpVQoHRHBwidRpNuFUTZ1Q9HLSbvU34dxOQ9SSJTIECKSieMVKdSRgamQfg3t+hAmiJCjVUHAE8QIdB+nehh5G4Oh9gYf5RD4ELAhhuBZ6ynr/Q9oqAJt05xGMQyHQwgPUpGNMTRNwyd+7jP8yW/+Jv/JSy/irT0FSVrXEkI8FFnfErNnOr1Pp607uf7y5nWi/YF40lxJO1p5p4MiPDgBq074+cSjz7N98Fnevv1vwaZI7aMOR7UkypNnmv5AozWRDeJiSOd0ZhCJQFcaoQTL6uE5H/t5gZANVt2lVTtsrVyhGe5z7XLg6a2PslMtOLv1CHfeuQ25Jj+f4oTku2+/z1vvzxj3Vrg33yaE2PlqmobFYsHFy4+xs7PDK69+nyevPY6UkoODA3buHSCloJ84WqfJ0pz/8Z/9M6qqYjRaoVzOGCcZermkfCdQFylbq0NGmadXbLI7f4/58X22tlZjwK1rGduWZ57+BPM332Sx3MFxntpXJEj254e4UGHckoP97dP3fdKpGwz7WOswxp4285RSrK9PCNRI03C0t8A060wP9kgGfTLVZ/3sJdbOPML1/W/jTE6wBb1iwtYZSb9YRWeaq1cus3fjVWqxy/bbN1gdrLG61mM6O3ooa1kkktZYFtMpe3sHJGkOwSGCQ4TAzNxiNq84qFu2rjyBAXqTEXhHY8ypQWQ6nZ4+AweDAW3bxrF8njNbLrEh4IoeLpQUeYZzPjrVVIKzNWmu2TizwcpojPeOxlp8MLRNRZAKlecUvk/WWqwPJL2C0coKP/qJT6J6Q/70q19jOj2i3+/H1APg8PCARx65wMdf/ATnzp5BhIbjgzukWRonO7ZF+ECiAlqCaWr6xRBTWdraoIQmTzSmNXjgJK5CAo2xaCVRQoG2hM7MJKSP5HFPFGlD192KWmD5/0uFfnD9cBigFzjbIJMU4aJaXBFoyoY861GFGcp4UpVjT3q5PgaQGRsFfc56XBudKZUVZLIgTXIeObvO41ev8eEPP8X6+hp5v0+qohbnpJI/ab9nWdbRcaPt1DhH2zaUiwWubTG1oSqXCJlGa7sLcXzVT7HWILxAypS2qsnznKqeR2et8pTVgtT2kBLa1lFVFfPpAa5tCAGW5RQRHG3jMW2FqBOaZsFkbUR/2Gc6n6FFjpCatp5jMsH7b79Blismq6vMZyWJLvDeUegeSZKgZEaa5EilWJYLhisrtM7GzKb04Sj+oRORKkGSaKyLBYzSYINBOEEIgqZZonTAGRfjG0QSqbipirbkpiR4j7CaJMnRehDXRRpSPeL29ZIY4BlO16/ohHhaR5z4crnEGNNFa8SiNnZ24umhqioevXaNX+j9HH/w+18kTTKscehE8dM/8wk8Nf/g7/8K/+S/+w1AxYiDPDKVRCLo9/tonbC2tsH9+9uEIFksarbv7uHdeZxvO22YQIgKY1qUEmTDPpevPIIQnqqesFwuCV5y794O8/mc5XKJUgm9rIfSCpUoPFC3gqotSVLBeDzBWkOaaZJEU5aLh7KWxsfgzJgrDh6BCQ7lPVKkmFYCZxjoKxD6JB6U0igZu3JCCPpqhUKu0FPr7PE+tXvrtMDxXaczODDWMZsdsyjnjMcrp5uwtQGtZXe4Uczmx6RpincO09Qc3L3NYDLi9lvvMl4bo5O0G5HaTmfxQPfnCMiuaJLqgRPwLzsA4+f4QeGjREwqDsGfxnKctvmJZOj1yYRPv/grbKw9wXde+ReU7BKsI09gdeIZjjL6vbgVtq4FIalsYG/WRNdekaLS8AN08L/ra3KmYnfniLNbK6yd7dFTHndHsDyA7772Ct+4vk0/3+DYlaSLADPN2vjj7O0c8vb3X0UsZ5BqVlfX2N/fJ4TA6soGO9s3qeuajbUJt7dvQpB89WtfI0lyANJBj8XBgrX1M7z88hsdV8nR6w9QR8f0Ss35ey07jxdszw4Y9tbZvneTM9eGOG85XJT0R2Pmiykh+fec27+E2xfszbf56p8c8VzvP+V363/Osqmw9RG93GNVRaYUVeMg0RASTFB4L8h0SmNEt7aa2XyPjUef4MXPvsAX/q8/4Pb72wwmm4wm65g2sLa6ye13X0NmKbuvWK4+f5m775fceOcNHlv7BWa977B5/goHe/v86cE+z3/4WQ5vQf+85fzm+kNZy0x1MS86IcsEyyrGUIQQIrTTtdTllOXsmKZeUpUli/mc4B1VuWB6dEgIgV6vd7o3LpdL+v1+/P8yZj4O+gOKvCLRmtXJClop0iRBCkEuFTbAyqDPoN8nT/OY+9jr4YNnWS7p9QLbN95lYzBk5/CY8coKH3nx4/hmiVA5zzz/EYoioygKptNYEBa9rAP7BYwTyC5RwTuLdxZno8U9SQRZojAhMJ9O2d05IDgosh513WJw0cgAMdcLSLIELSVaCbSMwNPTLn8IZLlCBHn6EwqHTmPOof7banKcjwWF9w29pE/tGrI8tsatK9EiLkCaZjEIENAhWlLTQuOaNp7gdIF3LVnaxziDVpqDvX2e/Lmf59zWZsT5a41W+oE+w/s4XiJaUU9a6c45lssl5TJyApbzJWvrG0iV4JFYFzA+kFjLfB67OcJ4nIw8lqo6ERfTEXoFtrMmn1B2Z7Np7AI1NUmisCZW020F3hlwjmq6wAlP0VOR0yMFRZJj2iUra6vs3d9jMhoyngwpl3MaazizfpkkSbs8I4F3Au8tZ89fwHmwVUtZPRzLMUThsTFtLPxE7NAYY0AElBRIGR/MvX6Gaxq8C1hn4oe49XFEEUzXQowfNudCFG8HiwiCt9+8zaA/4LCeno6iPmhZT7o1+KA1/QEeIBJ807TH9773PZ588lHSNKfIexBafDCkacLR8QGvvvp9EC6qVIndFe89oUMEGNMyLGKxY4ylbSzLRYNz4GXABY81NTbYOKLREELUmqRphqch0UOkSMizlP39Q2azGW1jKdIeqIDQHqFi6GerFIlO6PcHtG0syE1rT7uDf9fXiTiYQNeFM7GDFgJKBHQoyJNVJGOSZIBWUU8lhCfpmC9BapL+BCUT8IGj+jZWLPHW4UQAouXae3DC4nwTKcMunti893gTRYDj8QpCBA7392ibhmo5JWB56+Xv0h/3EOoaveEYYxqsLTqwZBRRWu9IRdyKRCe6lOIDMSN/ydzwV/4OH/ieD4aHno66pGQy2OCpax9jZ/c17vLv8a0nTxXDoSfPVbzPg8ehsAhm5RLjBc54jqY1Oo0utYd1nbuUkGWS9c0+tT9md/kG3l2mEUds2zl6VVO2hs2ra6yOFctmjjBr3LzxXULZ0NiWdDRhPp/HuJ3uwXhyaIhcJQWC0zEuwNHRjMHggW5sNByTJBmZSsiDJA+SlaVlf+qoMsfOYpfBOGdWHjOarLCYWeTanOBnVH7A7eObYD2/9uv/mLT2/O//69u0TeRRSZ/z0R99gTsHd+knJW+9+la0SKv4mUp0TtEfo3SgKRdMVlKe/5Hn4cJl5CRnY2OTaTnn4pWnKGtHr5fQ05rmeMrg3Aqra2e5cecL7Ny7wYeeusRiept3b36fn/jUPyTJBjzx5DWOdko+ce7XWa69z/HynYeylqacIlQKJDifoFTCoqlAQFbkCJWxurLJxsoGmYMwW7DY2yPJ48O6yHLq5Zx7N97DuyjGHYxXCG1LUvRJFCTScXy4B+MVstGk00tGA8K4l+KXgaPmgNYZ9qZ7rExW0V5jlw1Na5iLlrWzF/DOcevddzgzHJB6g8sKyHNMiFgIY1um+4eU5YLBoIcyDm8tuUzx9ZKmXeIbgzfxv+AlQYh4aNQZqUzZuf4+xzv7hKZF+YAkkCUxMsX5TjnS8dByJcm0IFMagqf1FnxHqXdNN+mJ/Jy+kPjO1ap/SBDyDy9yjCNLUpyzeGVJu9yqkxZSbaLoUWmPIJ7onBY0piZXKalOOl6ARyY9tNRkKawOxvzG//BPGY4npKlGqih2dN4gXOhiArrTWADTtBhj8CZ2cDwm4r3rBgnUVWTSTCaeNkmQImE2myGkYzJepw0O13apsN3J0LgY8FctKpyJG0Fjol7l3t37URjpDcEGEC5yADKNA9pWI3V8wCuRkRWS+eyYcT5BScHO9j69PGV6bw8xGHDm3Dq1MWQ9TX80wQXVhY0Fmsrx/e99J2opoFvxh3PVzbTT5HiyND5oGm9ARl5JXZZI6UhSSSJTCDYGEziDsQbvGpxrSVLVhXTGNOzGWbysaIPh3/3J1zk6arri5gH/Js/zzhYeQYMnInXgAzb2cOqoe/nlV7h96y7OKryT9PoZ1659iD/8gy/xq7/2D/niF74KIYuOF6lPC6e1lSEAd7e3eXZts2vPH3UjzgbnBa57bScCdKUk0bXqKIo+rWlpmoZekSGFYjWbsLa2Tl03LOcVKkQVjgsVx/MFTWOgG88eH09ZLhc0TYW1LUUveyhrqYSgNdEM4GvTWcJj2nISJEN9njRZZdDbQCqFsw0+ZkBEPg2QpIJE9+nlPYo0Yd4+zV37BmV5TCCOxLyxeBcYjDd4853v8eILPw3A9OgoRlwUfTbPbjGfTdGJQknHYrpHOdvnzrvv8tFPfYKt8+ewzrCxscZg0Ed0uARvDVZKhFIIqUh1AnRFr4ijsdOU9/+A+yKE0OEOIBAzuE72kVRr1icbfObF/5x3bjzGnZ2vY/0bJHqJTmJkhHCOsnHMly21kcxLG7Pulg65DCj9cApWAJXd4/KlxwmN5LW3XifpnUcvcxoHm1t9PnThUb7xtXdxezUXBx/jjXslX/rOl1FaIqoW0dOd3i3GtZyMiK21XfxJFvdQ/wDDELuo2el+mWUZw+EKWZqTj3uI3QMOTckVm3P9u/dY+eUrQEN5ZNgYb2JKS9s2rK2c5aUnP8XbuzfID57l7LlD/uf/93/iv/qZ/57qzPfpD1YJ1RTla967e4snP/4c/UnDMy98jN/7f36ftFgh+MDayjlcO+Vwv+ajH/8JRqsNW4+v8diTL/BH/+qL7C97TDbXEOkqOVMChvXxBsudHZxSTC7OGLQ9Hrlwmfv3b3D1Qkp5R7O3V/Gx536Rw4Mv89TGr/LWa6+SPtIiV7YeylrWbRxreuFBwKjXZ2N9QtbP0IlmvLqJ1HlMts8yUh2t+73+mKSfg7PkSlIoGZlWCIreEJVl1E1LS0OtBC987EXStGAxL6mNI0EQhGbncIkKinm5YH/nHnmiSJYl1jiWZYN1Hp1G7cvB7evs3XwXJxzjtVVEvw+JZlJM6PUKBNAMR1TlnLpaUi5mSKBtD8C1OFvj7AIZLMHZSM/XGiE88+mCcrakmVdIH+NZgo4JBcYqjLU0rcH5AC7ggsCFTiYhQSYpidfoDiwYgaCu+37HqNARIKgEP8RB/je4q4TBe0kIRJidSoGT9pEkUSnCxxwJIboZe2vopRnGtacbf/AO4xqGkwFnNtf49V//z0jTNKLe0xREPOk7G7ruhukyOgzBRZjQyajDWktZlSyWcxaLBaPBgLpuWS4rer1B5IHUc5JMI0hYLMpuzCVPibqiG4VJHV/vsusKTY/ud9A522kHOoJySGIb3zusMyRpDxEMSRZPoUIElE4JInrRxoMhw35OVU9ZG09Yzmb0JmPytEeRRmLkB4W4O4cHUdhrmx9qhfuPvYQMIH2HOBYgYoEpZEwSFx212BiD7HQ4qRJRrO1dnKMGj+iIszEWwsUiODhmR1N27x8hxKDjxIRTzc3J7L0qmx8I2/zgyTvgKYqC4bDPfD5nNitJkzx2Y2ynywqa3/mt32e+qMjSWNAQdCeQdsxmM3pFETVaIeCco1zOybKC5ULhvMeGWGAlqSa4yG0xrek6exLvYqdPa/0gwNE7iiwnT/oEB87XtE5SNQ1SKnppRq+Xc/fubY6ODnE+ztYX5fzhLKYLCBX1NzGrKo53vAMZcnQ6RItJBCQS4poJjehCMaWU0TcpoqtuNJiw2t9kXu5QVdNYMDnH2toqBwdHHE73MN50Nn9P0etRVUvGozF1VSOFpiwNAiiXc46Pp5y98iirkyFFr8fG2U2Kfp/YwXRY25JojUd1Grz4trxzkbn1H+jufVAgd5eIGXQnHcITUrKUEoVkZbTClQsv4B3sHm9HG6owWNNgvaRqPIsyRkU0bZfYKwVSR0H3w7rOnxlx/frbPHHhWRq7ws3r29y9u8PeoSHr99naHPLR569wkRd557U5t+8cogIsFw3P6gFvhjnSSGSant5zJ4eGOCI0hOBO99wT/ZQQAa9bUk4iXRzBS4reCvX+K+RiSOIVT6stvrx9wHg1Jc8k29f3sAbkj0tmRzN+4unPcHT4RWxSsakv8o66z8pKSjtqsW1NsA7jBdu3dvnYiwPGo0f4sy98C+Etg9EWVV1RG0tI+3jTcO7CE7x14zX+4uWv89vTP2Wyukm/f4kkH2HrqMXcvn2b9X7CZnuWbKLor0/57lffYGN0HucE7++/yaPPPs7B3hHkC66/ep/NC7cohpI37n6ba/7Jh7KWQvcQSCajCVeuXOW999+nWR5T1ZK0SJkFwfrWI6yuT+hPhgxWxgwnKySDQRy/ZD2OZjPu3LmLDA5BPJQleZ+8P8AEz9qZDfYPZ2hVI6VmbW0V7x37R1NWVia4tuWVb32bURBMRkPmN+6wdIY2UagkQfmWu7v3eO/dN1mUc0ZrqxhT4uqAdCnVvKLpDUikpK2XeNOQCNDOcHw8Rfny1HxAaEgUCBGJ5ipJkE4xnc853DugbpouSBtIJNILhIxmJmsDrXNEGEfASoHtwoPpMimlFIjQdYiEIlMKndIhLhyJUJGr99dcf6OVJ2ZWJUQ0jsa6lkSnkZMSAirRNG2D0gJrW7I0R8tOhV23BBmt4q5x2HrBf/GP/ls21s+SpjEXKp60EtrG0VqPaltc6Nr8QdC2FtvWzKcVzp7A+mIgodIelUqqZsFwODwtVkKIsQ7GGMbjMUJEZXpTG+qq7cYZDmUUZVkyn89pq5K6qmJacS9hWUYLsNCa0HiCcyQ6QfXAtBbXZnjfRFcSXbdKaqxtQQdqB75ImJcHFIMhiUjJiyza+5TAmCZOJIWmbmNSsxSdO+QhXUH3MWZO7ZZ4lyCcBKmQVtDvF6x2mU+J7ONp8SHOWvMsZ1k6pBIU2SBCHaXCGItWBqVbnE145617eJuBsCSJwrmoyzkp6gB8sJFwjCMQ0+29d6RpRprlP0BCdi6gdcpw2OP2rSO+9a3vkaY66nNU3tFzNU27BJmQZSnlcknbNGyd2Tot3JblFATUTaBtKkgMSZKTZzHMsGlKZBggpCTN+ywOG5QaYWzA2CXWtWRpAS4j1SskmSQ4QyoVK2KETkYQFD4YMp2TpzFHZ1mWLJqHE+ooQ+xGWm9xztM2URejvYAwQIcBSmY/YMuOHVIVi7YuriWKwDOkFAx7G4x6W+wcXO9GRgmHh8c4G0iKAUXR79g2gFT0h2O0TjmeTzl39jx1U3G4v0OSJpy7eJVeliNw9Ccj8qLfCdkDVV2hJBhvQDlUSFHhgeD4pHNzUvj85S7Og8Ry8Ve6PCdFs3PutFA6SU2HKGYdj8ec23qU1n8I7G28PaJuasrWc3RUM58blrXBeUDHJPlBP4knyId0nR/+PL30yxw2r3JczqhmA97djiOMQV+yt7fN6uoWr37hDn/wlRs0rcN7SzWfkdJDS8lyuQSfncYKnGgZTowcp2GyPibI204MftIlz9I+TVOxurKG9rAxWiU56nLiDisem1xku77DhUce4c23Z8ymS6wPzNslv/fNP+XYBTa35uxc1wxVj0W75ODwHsaWzGa7bJ3d4M6te/zW//l7pGngiavPs/3Kt8nzHCElIRjaeoH38PWvfYXK1SwqUHKEFxlluSAJkPmUsnJR8O4si3LJiszYO7hBY2uG43UOju7QmJJEQW9YE0SPZ575FI9sXOPW4dcQVOxVDyegc2W8Ql2VLI72efVoHyUlxXiIylJ64xFr5y7QX1lnvLLG+OwZJpvn2Ti3yWA0JvhAP5X0egWJFsyPDqjLBUmSIpVmNFkhaEVvOCRL0ig5aC1vvPYGSaoZ9HsI5+lrjVpW3H3nPQ6bhjPDPu/dvo4dpBgCbbukqpfMyznFygjEmKauUDplWS9IgmBZVywXc7xpqMo5aeeEwhisW0TDg3BIYamtIc8yil4fZz1HR8eU8+o09Fch0F3BolRk3QilSIsCkYIPnjZ4tJDUBERbk6YdGNfH7o7wEhCkHdvMYdAiduFN/debAv4GC7kkSVKa2nVjqihyTNMEYyIrRUuFTFMcNYLoaGmqmrZt6ec5w8mQFz72LM8+/TzXrlwhzWIIl7WxiJjPDbqDC1ofU0+1lizn/x9tbxajWXre9/3e7azf99VevU7PDIfUkENS1OKRRImKosXZBF8ogIIgCIQgQC4SwDC8IEYcCIoDOQGS3PhaAQIIgbInsB3FTiIr2iiKpLhqyOGMZuue3qq7lm8927vl4j1fdQ9FjY1EfW6mqqeqq+ss73ne5/n/f/81SggIjqZJu/g0MgkMfcA5i9EFzbpH64y+SyOG6XRK23YM1jGZ1Lx/5x7Hx8e0bUuelZcJ2CmuYuDs7Iy+2eBsAvw55yjFhODXeGcYeveBcYqzBsQGKTOU1lif0sOrqkYKjVYKQaCzLdNqSlXPqCYzrlx/nqyokDpVsHme0XU9MQaWyyVZrhCYP7sz/Qs8pDboPCcTHik1UiicS5ona/tEryVc2rWTpEwSg0BETVXspM4POZt1M4qJe2zoqCfHfONrX2K17ChqgxKJ7um9H1k8qbPRti3DMFzuJNMLasuDSAvw1pEVwjDatsfcLNSl4ysRmIEQQQRXXcstAAAgAElEQVScGy6BVduCar1ej/eZo9msaZvUbfQkvpJXnhgS/0eKRLW1rqOuC6xzDK5JpG7b0/YDZb6HyZLIV6rUFTJGcnQ0RaoM53qK8iUuLvbo+5blcsn5+tlorIRWRDvgYsD2nsHGtNOSGbncR6saT7L2S5GK2Rg0QiXYlhJJdJ7uxwTW3K1nLC4OAIFD4pqOLNMphV10bDbrcWel2dnZoWka1u2Gq0fHnJ8+xhQ5eZ5z7ebzeDtAjEjhqesJMUaazYpLVrYex9RRIaLFewV0SJX0IpEPam22Hz99fK/PRQSJwIeIf6qb+LQ+pzAVVw+f43T+MVabx/TDQNNbVivHxdLRrS1tF+k7j64EdSbJDM+0y7pX/RLCHLE7/XVm/nkGc433L/6EIVswvzjh+f0fIHSS/+vzb3KxaNKYVXs0gefJ+ObqFEZXobU2xdOMz1LXdZdATUiF3mazSd3xvkcXOZOyHsd9A6v1nElQTDaBPKQrVnvB819b89Yx3LaPkNQIIsNyoHq55Pfe+B1m05u8/dBz5bDlXzr+DNP8KoEGRItiYHm25ODwOaLexRjBYt6htBpHx5KTR+9zfvoeYXBce/HT9Naw6jryLGcxf4TBUddF2hh5iVGC98/u87kf/Rf51sOv8pHdj/LyC5/g7Te/STHZ48b1GyxWp/zD3/x1jm/coBgcX7n3kDfufonJ3j5yBNv9RR/GN1SZQOU1MkY67ygmM/K9A/av3uDGx38IU0+ZXL/O0c3n2Ds6YjKdkCuF8I4iO0hZjM2aZrXEDhbvBpqmRUkBSvLg3m1C0yGkwXu4OL9gOqtRhwfYZsX7yxXFrGJ2fY9v/v7v8PVH9xHBMgwdd+7fZxkGjm/d4OjaFSb5Af1g6UPP3iTjsJ6Qi4GH9+4wf3yKUQlG03kHwWGUTNgHSYLxGY0QZQL4qjLpOMMIzwxAiBipEBn0zo6xPkn/KWIkeoEnBZN6CdJIamUoQ8R5T+McPkpsjNiQOjzzGNnJNaUylFLzIZKcDy9ytkh95wJVPU1WrmgI0ZGXJVoqfD8gkQRREEOkbRq0Sjt3kxv+8s/8FJ/97KtU1ZRcp5dVDAohxh19DAxDaqs6H/HWoqTBj7bi4HsGl+bzRZEzm+3QNT3WVpyfz1nMVyhhiSKFcbZtn9D2cWC1TG2+1WoNwl/qUOq6ZrFYJH1PCCld3TucT4XSTGRj+nLEug4tYoLaCY/JclImUHJjKS0AMy6kGiEsWuconVHlM0xWsLN7gJQapEZnRWJUrNdoY7h7731msynzxYrO+8vF/VkcMY6jNWVGy3EkYhFC0toGFdJP935AqQzilk2gkEKN1uFRJLwVDUePc+AGw533HiKlQYrs0h2z3VVvnVaXoXWjuHx7bMM/k/1YsrOzQ9/3XFwsOD4+Tlll2ZMss+2/4WlR87ZNb8awz+VyNWapJRYLQqCEJApJjBJrHTIklEBmtpEf2zDStFOWUkNMO+Esz1MGmpUok9O7QD+0TOoKo5M9czLNKMojhmFgNpsgTzbP5Fp6P9qlXUyk6rFLouQu0deEELEerAc9wjyjkIQYxx1VuCwKk0wtkchzU2J0TmtXzGYzVqslRkichbfe/Qo/9WM/T57nWJd+r7IsWS6XFEXB4Ltx7JwWZWMM2cjOSuyWLTcpjth3hxQB4fkzM/XvFhR/959/9/Hd3Zzt/fW9BMuJll0zq68z9LfwuiX4gaY7p3eR1RDoOot1YMZiWkqo6mfHsDp//IdMr2Q07ecwk9/mIpTsX63Iyhp55YC+WxC657l7skL5ISU+W8/BbI8rq4pqkCzcAF13GT4cGdv+43+tG0hvneIS0ZHI8orODbihxSjF0Dc4YdDeoaJEkkjy+vVTsv0a2wh29vZZzztCl+ITYM1685BAyd7uhNP+Ef/oS/89olT0boMdIlp5pPQgNEc3Pkq/eh+QLBcLyrLC+wHhHbPpjKw6wnaaWR5YzB+zu3uMDhbrGrxPdN0hbNi7sk/IBDuTHdbLDdNqSqYjmTQIZdipD3nuRsfx9ec4de9yfnEXU81w3vHo4fkzuZaFlik0UoAbBo6vXic/vEGsZxQ7+wSZU+8ecnTtJrP9farpJBUOwSLcQAwZQgimO7scX7tOUWSoGFguFxA9O5MJzXrJ4uwxV65cw1pP6Dacri64+/Yb6DLnbLWiDA5p1xy8/Bx/+NbXkNZSZxpdam4dX+PwxjVMXWOdZ7euKOt9qrwmywyuWTKtCwpzTJkZzs8eI2Kk22xomk0qUEgRDinbUqJNlnAuQIyGGDUxqISXCJ7gPRqBMIbo0/9XMa3NIuUEE4UHJTCZQQ2W6Ee9TvA4Ir2POAktKWR0mhl6A+WH0Ks/9KlNdm6H1AIlAr21DG2bNA8iQvAo4yEYpJfphegdSsJOVfM3/9ZfZe/wKIUw+oD3EcRYxHifXElKI6Ugek+mFdZB123AW5p2iZTQ28jB/hE+eKyPVNMJXSvI8xYllkgpePz4Afv7x6zW51hrqeodNquG3q0oy1RY9P1w2UUASd91WOvxPtD1PUM/sLO/gxMd3WBxw0BRlPR9gy4DoVcoYYiiwqseVEqgHmyLd2MbXWQgI7nJ0fmU/StH6HJKXU3IyhIpFavVEq01bdvwh1/+Cv3QIojUk/yZdnK6fn3parK2R0mfNDpSMnQd+ECe5bgIGYbUYdmCIDOyLEtwRi2RE8lg08dsBk5PLBfnPSFUrFc9ea4uXRzJcpiYOJc6LLikHj8d+DmdTtnb26EoCm7fvk2WZcznC4BRJ/UEIrgtcvI8dRCEEGgh2d3d5ebNG9y793DUxniqumZnZ8bF/AJki9EFmYGoAn6wRJNSqvshMNitVkWiVEHwpCwmqWjaJYXexeiM0IwOHjEQpcX6BSEITFZQ1ztMJhOuHe88k2upRRqTeiEAnUR/QmJ7Q6EKeicpsqRxQankYokpRyaIiNLJAZHEuYzOuUiRZRg9pcga3NBQjFsk61q87xP7R0Dft5cdOiUixii6PqW3KxHJ8gxUokvb4PF984SGPgLnhADXW8rpPlmWRMNbzZAQH3RMfS/x8ffq8mz/+yRl/cnXPLGWp9DDo90XaNo5g9/geYiPCikEg4vYLtIPnuvTaWJ3KMmkfHZFTix+m/Mzye7eR/Dyc4iDEw5Ny3Syg1wI7r8n+bX/+vNErwlSEYRD2EDR9OxcSHa1YDMpWI8xOBGPtamLGGLq0foRt7/VyGmt6YcBHQLWp66mK2quKEPz/m0mriQTEh0EygkmIuOVmwfcjxvO12uiHDu8Wc6LV59ntdijlw6tK377K7f5zIsfxeSK4mDKsIqsVktCHyjKjIcn93CrE4SIVEXJZLqPNgXrizv4IOmdxEXH1aNdFmd38N1AOZmSqRrve4Z+zvn5XV74yE9yev8CPdFI0fH+ows+8Zkf5MHdxywezDGTjNe+9RrZd77DZz/74+STKTdNRogtoX82G0o5mZLlGYezKa5tsD6yWFyQS40sWhovmMjEW6uKnFxKVIiIqBAqx0THtBDooyOiVARTYoishve4ePyQejLh+PCI08eP+M7jB+Ra0a5WLJcLzh49wg49JlO0Z3Nk7/BNQ9vAzuEVbGWYXM+oixqLxvcSYuDs5Jxq0rNcnY8wX89ycYHtB4gaERi1ipIXP/ppetGzmJ+jckmWC+rJhLKaIbMZ68YSs2vIiwvM5Bw/f4BrV6wXCwYv8ELTYhgERO8pVCDLwGhFRKa4GZdEzFFGcgWGgPRJH9cFaAZLLDTdMFBEKLM/P/Pxn2Eht0glETJ9mTEGIxI5WEWTRLhap4VdKUQUKNnzyVc+zi/8wr/O1ZtH5Fk97rYVw+AQ0kEU41zYMAxjKKVIFNe2bXG2wQ2WpllzeLTP4dUraFUSYp/asCJlZJVlTlHmtH1HXhiWyzkuiEsRc99bdFbw4MEjZrMZR0dHCKFGTofE2bTTsyOoLoRIWRacL+fb25W+65EqptBCkXSISimkKlDS4oNDyYIoe0Jwqeo2jiIrUDpDAIVJAmU9vpRjTA4n7x1Xr9ygqv4UO6SxjnmGLfEUlOaYzXbp2iGNAYVN+qW+o2s6bl6/lkTkmaLtOvZ2DhiGgFIGbTKMzuiHllk9Y7NJ6bO7puKbXzmBmLhECE2M8nKn2Pf9GKMhP6ALuLRXjx0cH+x4bgYODg5YLBYkcVoSTMYYKYpiJG6nv2Pbnl+v1yilqPLk4lIqpZOvN0usdXRtC+wSQ6SqS5TMiFFQVRXL1TlIjZQKYvp5iXfTIZUgzyV5LuhG3LoMLVIp2nYgmcxSoezDgBQGIdPHSmvKonxG13JkTIzjPiUhujSSQmp8jJdFRdJlyFHUK8YCIo0IUgEwdsRCQqrnqqKJIDXEIMdzLfjsj/0sShkkaS0YbIJsSiXH4lenImjoEgjMtbihSQXjKJDZsm/SmiDw+Mt/I1FddqQQTxcs8nvqb54ugC7PyXcVO999zp4WI1flDtpoOnefZbfEhtT9SAnQCmE9UkuMgaJUaPHsihypK0w7wQ1nvLf4GptQ4sWK5ablU9XLlHvfz+nbbxBCOhdSyQQUXTcQMgofYNOj6klaY/Af0CJtO57b87h9Np+mcktgp6yZRkWpC1SAYtS1qRiJNvCj3/8yv/Hl32EzHyiKHBccWMOnjv8Fvn3/EY/q28znt5mpVxEnL3JVR67eXLC+s6YsSzAFh0f7tP2KqsqJ5OweHLNYDAhdUpZTqnKXi/k5O7OKb3/rq1SZoMwj773zbW48/yJFaWjbgczkZPmE6e4+58MFtmlo256u7TnQn8bMJW/0X+AvvfoqwqfIGHLDxcUFq/UFLz3/0jO5lvlkSgiOx/MFuRQonVPNdqkPjqj2jtm7cY2DoyOquiYzKYQ6ARsixEiWZfQjFT7Pc+qq5sH7t6nrimnxHBdnj0cG1wYlJYvFGi1TkLUxmmFoWSzXLM5O8U1Hv1oRtWS5XnPzyq2UZYWEkeoeg2OzWWJdz2F+TGZyJtUUFQ3T6YQ3Xv82SsDu7g7NesODk7epypz9uuD4+JB+aEFovMhQ+Q51nmMqSzOZ0sxLznyDiwEjFJvlmnXT46UCH1ERMq3IlERJifMpaNY5S4gWEUKK/xCQyTTUCgRclHiXNmxWSDL5/1F4nGezVBCEJApOzZu0YBICVVETvUdkKglYCfzoqz/Ov/GLv8isqtBZTiAgVPoHCSFYLTbE6CnrCusCRkm8HRAhiSdX8wvu37/H0dERt27dSqK00dWFV5S5Sh0ZF5BKo01GaFsciiADTd8zqwrOL07JMs1i0bEz2ydGwcnpQ/K8gKjZrC4SRnvo6XxLUIJcT+gaUHKCHZZJJCsFIYgxI1kBaUQTezcWZ56hj8gcRKgQwmDKmqyoKYuCvJggZSRKgXcDLspE7w0tvbVMp2bslgjUyLd4VsfF/JTMJAtv13V0fYPQEaESVD/PM9ZNQ6EzhqxNAMeuwegMITR9PyAEifWT5VgbsLYjEnn7rbtEr4BEsCVy+ULZvoyeZuN8YIwwvo9ihGEY2NmZ0jTN2Klx4ww3vRh1TKyd2Wx2qT3YbDbkuSHPc7IsYzab0XUtXdddaoG22WrTyQSpeozJgKSh0konYGNMGU5CarxLFmofPEoa8ryiiSuGoaf3DUpnaK2QSowFWsIcGK0Yhn6cWStUeDbjKmJMuVpAGkGkLplyOcSI9REzFjmSSGE0Pel5I1pESGCyxA/fFgaJyJoLMT7PEalTkVPm+zw6OUV8Ok+Bt8ZQVzMWyzNc36G0oMw1vk80bx9Tl04aQ4iBsi4YBjtyixJo0zmLMcnSn4oSmTRXIS1kQiSnVYzyqV/7g/fOd4+jhPggJyfdQ/apF7y6/Du0UsyKq9TZi2TF27Dp0gtdanxmkbLAikCmFbOyJM+eXZHz3h1H8+Ahu3s5F9OB5XqN9zv47pzbxcB/9xv/gBAL3BiUy/g8Xc0KcqsohKQUknmfCnGlx0iap85PKnjkpR5uy8/x3iNJmqObh1ewb99juumpY33pWZFInAwce8W1fMrzn77Ja6+9hlKSXBb80VfexfdLit2aj718jXvNlKmIiMX3021+K724+x7vex4+uMt0Z0prLWW1h3MZSis+8elP8of/zxuczZd89Jbk5O4bmLxEabj73rt0bcP5xSm3pjc5OrwCezOchiZYslzhVMGtazOa5YZPF59hPWz4kZ+OPLz7FmLwvP76d5hcOeTK7i5FYXjw6PEzuZYPzuYUSlLr5HYLQqXNt4sIFyi9Q+aGuq5ToclYgJNUBH3XghBpQzfa0Q8ODhA47r3zFqv1iqosMEZz+vgRKoIWEQHMdiZUZc7gBkplcG3HsN6w2SxxzrFar0BK6qqiMhUmz8mKPEWtjJ2V5XzO0CTDyPnjc164dYvHpw9ZzE85ONghMxpDIMaG80fvk5UVOwfXUeUMiimOHGJDtrOLKXOUgvnpI+7fuY3VNuVfdg5i6qgKoUDIMSpH4ILD+qTBURFyJEpElEzBLyZGMiKtJ8V/qCTN/POOD31qFQ6tBVHm4wgpMplMQYRkJfXpZTbYNVmW8Uu/9G/zE6/+KCbPUFKDlMjgcDbtjtvNmqFPXYzV4iFD17FersAH9o4P2d3d5dYLN3nx5Y8m4alLjBVnU8bSer0C0hjBDQNZXTFDgi6J6pyTkxMQgvPlAiUijx+vKYqS+cWa3Z2K2cEu8/mCoQ9kOhVePqYcI+8Ek72KTbfE2bTTi7ZPdmEiPjgKY5JDJaZZYRpVpJ0xQmNygTKQFRVVNWEyKS8JznZYM3SCoprgh4GmvSAvpjx/48ZlV0Nrjf6QivT/7yHGbtn8YjFGKfQQICtK8rxECUGz3hAyj1aBoihZXSzITIkUGReLJcakByJGQXCarvUI4/jjL702FoND0vBIyWD7sauiLhfWLafog4vvyEQBDg8PkxA7yy5HRm3boVSyvfb9wHQ6QWvNZrNhs9kwmUzQOjmy9nf3yPOcO3fusFqtCDFpQ+rJhDxP//bVZk2eVUBK6a6rmr2DWzjnL+MnYjAoCU07pypK6mrKZrPC+ZbCpNFKWVZY26eIDG9BZFgbAIeUowbFPZukYy8EQht879IipzRZVGQmI1iHdT3DoC8LxLrICCTkPEJh222HJRCjwwcHYUDEJzEUabyY3EVNO2exPE9J9iZDjlqVspwghCNGjxQeGX2KwIipa2fMkzDObefO+23xEtG6vPyzbWzb08GET3dngMsuzD/P8XRXZ/txQsEngb+SGceHH2GwP8nF+jHB/wmL1WP0GqY7GjtEyjoDrXDWYcWzezb/07//3/KZT32U3alE7luOD69wfvshd1cntIs5X/ijHiUnDLZByJxcGpyAH5/dIFs1hADPZRUP2RBipO/TsxacT0Ef43MXY7z8PHUDPUKmMQTS8MrV53n/2+9zNeRkqNTdHCfoGRlf+M/+IZ/65Z/lO6894pWXnuf7X/k4IdTMw/scXTnmZH5GaF9inZ/xjcWb0L7AbLdgMelYNj2zegeZVXQ2crR/xGMtGbpTgnf8yVf/CUZAHwSEFWE4Zb0RnAf4xMuvsFwuAVicnTKbVXS95dgJhrM1+WHBfLkmixVVplh/x7EXr/Bbn/918jrj8fkJr/zwDxBloH174HOTf4/PN//rM7mWj5YtpVEMRY4TEUVgv5ggqxn14VXKvV3ySYVUCj1qIy2pwPEClNGEIU01vPfkRU6znOOGlsHaEbExp1lv0FoytC1IMRYMSQwchGHncB9vHYxMKhGTxIRx8yIkl2tziDYhQlw/rvvnVHWF1orgUqFwdP06XbvGKI1WzUhPB7RlvTlFBsf+7Di5rMoK53bomg1975nomnJtIZsyjZ752QW27dE6jbRD9Kyto/OBLiqGGJExpzSauswopCC6Dh0CffAoL2BQDHZAijFi5885/hmanDwF/zEki69WxBhw1jIMnp2dHXJTUpiS//hv/y0ODo7GViqYLD1E66aHqIlRYT08eHCfPDO06xVxiEz3pnz8lY8n3c5IxBVC0HvL0Gwud/B95y5hVnhwMSC6SHRg+xapDEpnEAP9piVXgr53DGGF8BkPTk5Y9w15NqWsNM4OuCjwg6VpN0QMQ99BEBDAuRVGKjwBgh8f9uTkkWTJ1Z82nwQCWmU44chURpZNUEbRuw7jyoRKtyBygbAddJ7M5CgV2TvcY3c6Y7XuiDE5V57VUU9KRMwIXqSEWWcYQsCYjDIvGNqeLMuBgHUtsQuEKOj6SAw9znWjeFmQmSLpWrKK1j5i6C2QE3GAGwuqJ1bfrX7m6bb59ggxjnoRaMdg1O1oy5g8jSj9Nq08Xjp7nHOXmS67u7vs7e1x/vgUOwy0I0ogWaQz8jx1ePq2Y71YYmRG8JJQJMKoEhnSCIpckJkBEAgtaJoFzgWGIblUQvREBtpu/BohAIXWxdhCXqG0IAV0RqJ4Rp25KEdhuESIgBYCLXQaiQZH6PvEyAkpKFUqkRgoeZ5w6YRRfB7S7+Q9MXgghdh6F5CX10ixOzskzyNNuyE32SVsLs9LpPDJlVYUEByRmITHyhBjoBizxbwLqTOmDL3tkgbEB3LEKAb/4Kjpe42etvfNVlT8QU3OB4XsiJSHtYVsSikIUaQMIUHqupqcspxgshyjc/LCUM8CAUnXeerSoDJNiM82V651JW/fXnL9Ws4sVyixYDrZ5ch8jHce9kR3indPAIk+eDIXyedrjBCYGBBDQErPkAnkKAn4btl10iSJkU2WnIrAZUG6eu8uRyimYySq8xaFRiJQUXC4qXj3m/eIpuLlj19l3c+5oV9kMb9gb+8q65Xn87//DXoVub53yKZ/je/76E+jzu7zztv/AwcHh6xXC8hr2rZlOT+l0gNN63l88h55NePmC68y2DUPH77Hzt4V6jK584wxo46o4f7DOwlm6gcuHl/gl4956dOfwBaBibFgc+7wdZQOvPDCLaJM5ofF5oIfnP08Z+9s+OSLz2ZctWgaQp5jpCQzGYXRyLygmOww3TtgZ3+Pyc7sciP39P0dRqzDNo8pOclSdl+zHqjKkrZ1KaxzvcbaJCb3PuKdQ4snBa1QKjmUtUQHhYyCTKViyAVH27fpe6SkaRoIkVsvvcTt27fJ8ww7NNg+EH3G/v4+F2enPHfrJs5abFwRZSLlCxGJKKSwtOszsuDJyyupR5xBOdkjBsn+0XXW8pTV4oKqnmD2dokhMAwNWhfowaFdRI96XYlAK4nMBEJGMlEgvUN6h/AQNNCmyYj4kA3Ih75RbUyAHkJaEJNQ9MlJdIMll4Jf/Xu/SlWljIvti2UrSiRKmmbDet1gbcfF/JwH9+5jPOgy41/7S3+FejpNsQlbUXAIdH03vlw6FvM1IAmxxboeKXK0yph352n0Mjg23ZrHZ48ILtK3HUIYpM7oNgtwjmqvSKwBKbHWslqtiAjqvCLPC4JXyUosk60yaToCLgQyk0Y1QWZIAc4FpMwARddtyLJkaxQqH/OekoalbVo8K6TQlHlJ8IFmuWBnuk8gQegMgroqid7zbKIcnxxKFEiVI7S5ZNNE36BFAk4JRgBe6AiAj2MCbJBECVmhiAxIlaP1BB80UbT4UCf7ucwxcocoAkIlzLgdQOknVnHvAkIn+CBRPOXyCoQgCCG5vzabhjQeFNT1NDnkgKquLgXNQojkhpvNsIOlb9N1W28amqYlivSiVlEgY2QyLVh3FzR2TT5kiR8TNCFoYnNOVc7wLqNtOpxvycqeEB3WWTabdYJDRoe1SSTtfaAsJ9hWoE2GkoZAhxKRKFL7mfDsAHJpbVSpiyJVemk5y+A6BD1q7KI475BSsVnPqcsalSU3xGWbPCZ3YcI09LjYjX8OEYfRU9bNOXuzY6yzo34m8VdMNCmJ2hQ4P5AZg9EGZzP0KP7dCs1jtGnmPt4LJstQyqQkGvHBwveDv+cHYxr+eQ8x3l4xpC5i8GIkdaeCOsbU5aqKPfKsRhtFViiqicb7JITMq4jONXIMc31WR7Nx3N/M2dm9zrTPyHb2UjdxkDx85zExaJyfX24AOttTDoH9qHHCMo05mxDIpKLlqbHwU2XOk7GxR0g36tzEB7Q7ctORW08VkkPRhEiGRJLo85lXHLzvuH/zghCOMRnUpibLMq7eeI6T+QU7O/tcO/wY77z3Nb74lS/xw594mXbVcu34EBdaLs5PkJMJVTblue/7Id7+2j8lqwomO1fITEXUBefnFxxfvY4I0DZr3nnnHT7+8Y+n0bMRXCwecP1a0pfcOrpJJyPvfudN1qbj5vEh37+r6Y7PWd45I8vSeNsYQ31+i4frOVeKikfxTeDn/sKvZaEEIji8HfA+ByMS6K+ukVXNwc4uk7xM62MIaClRQuJj0m06L3DjiFaS7mOHR2jNoDRRppGryQzEkMZMzhKkZ7CWmIDAI1XeIULA2R6FoJdJdj8M3aVmL88yEAJpFJ0d0Eazt7fL/PwxSgukcFi74fBwyvziPjs7UyJpDNV3HWWRo1VOHAbisEYYjdMlAYNQjqzQRF8yme1AAKFz4vI8ZSYKQVlPiXgy69EhUkWBFwqUQctAriATERkGwtAiuxbZ9agoyBjlEOrPL2U+tMhpV2uyTGODp5xOUBEUIWGWZeTmwSF/7+/+Cnmm8TIgjcT1A94nbcPdu/fYrFfcvnMHrRSr1YJ79+7z5ptvcbHs+NX/5O8gVYb3KRXaZKl11jaO1WLJpvF0XUOzbimKirZtqKqKk7NThAws5ksyU7FpNtw7O+NLX/wmLqSU1R/9wU+zXi5YzOdkdcXEGharJfv7B/SN5XzxiP29o1SsxBR2GKyiadYolREpCLZBxyRG9d7jsYnjocY0Zhkp6xmIgHeCuiyZzo7QWlNNd9B5kdJTpWToe4SXeDxNsyQvK7yHUhf8yz/1E7xz+wFbXsmzOoyeJOw7gizP8KFAuA6BZb3syI12muQAACAASURBVExFlklMNkWImLo6URMCLJdrUIFAC6bCRRBCM18teOvNBYMN4CVtA5NduHptl7ffvD9qXLYRklsmxlb0KnmyiUkfbJkZqeAJDMM2EiKN/bqu49GjR6MAub+0ml87vsLF+cVlx0hIxeB7CqnGOBHFzk7Oup9T75T0YZ1egk7ROshtEk1nZgbSc3F+n9JFtE5jq4gjMxrrJVrlCAnDsGE22aOVkBLuPXk2QUjLer2iaVpms2dT5AghCELR2UAmUpRJxOJDg/c5zm8Q2lySpb0PdM05fjhCFoYtHC7GmAJLg6XvW7puQ2/Xo+4DukbghhVSGL79+pe4cvgyR3tHbJPkpZS4MfaEEEf7PuR5QfTDZTt8O65MKAGJViniA6GQyuBdROlRGCx8Gn0+5bx7Wtv1vUI7P/SInuC2f5eEyGizdgih0ouVARc9WW3Y03J0ekkmVbLGFmVFWT67Z1OWBmkMj+dLjg6/j/fetMR+4OSh5bXPP0CpGu8MKgZAYELgZpB411EHwyfNPl+0j6nwrEJqMQshPtB7Shq5tAmT0pAYWGljg7AoI7iQ77BvauqgEDi0NJgQCWkbQkQx+/IdPvfv/gRf+P2v87Hrn+H+4Rmv/ODLfPuPfo91oZBNy8kXAsWO5dbzV/nMX34BvzzhW282rE9OONi/wum64/6Dd5lNcw5e/D5WF7dR5TH55BDrLPuTKffv3qWuam7d+Aj37z3m8ckpV64fs7+/h9GS2d4uq/mK8wdnbMyK3ed3+eFXfoA//sLvU95yuAfH+H7D7/3275NPI7PsgI/MPsvVvWus7pRY82y6rFoqtIij1k2Qm5LJbJfjazepdvbQ0qDYjgsjLqZiI0Q/djbA+ifRG8Yk/pFzDt0ViOiRIhKCQMoGrzWub5OQOEaCD4gYGakZALjgcSFpHEWMqMvxbcCO0R8ReHhywvVrV7l35w5FJsmzHG1gtbxATGuE8CyWZ0x3dhn6niKvCQ56b0FGXFzgvMeQI6RBkHAVOldM99I7sZzuUB0e4uESgstTnf/0QGhkniOI6BhQwtOvF9iuoW/WqeO/3CC7jhDiU13n73E9Puxi5dmE1XpOPckwUtG3LrVuQyBXml/5lV+mntUQAsE5YhD0fcolWq8aHjw44fT0EfPVgsePT6jrKW/dOeH1dx5wcrHm9Tfe4ODgGO8zpMxxY/jm0DvW6zXniw1dO7Ber5FyCXjuPnjIctOgM8Fm1eLcGV/+2lf49tu36VrP4C1y3GUe7+8yXzdMSPlFe/u7aKORaGKQnF+cozNDYTTBg3XDuKtJO3mtBSKL2KFnWmcQkzA41zneC+zQoGKGVFunQsYwOI6OrtC5DoRls0pOoCLL6fqe/f09vB3I8xwX0k15eHA4MllEopY+o0NpRd+70aab6JN5bohRsOw3KcKCFCCqpECr1K2IwWEU9C7twkNwNO0FVbmHcwNf++p3UlHiBwI9k2nBJz/1cU4eLtgsn9i9Y0z6m602YzvyGN92wFav8YShsy1skvstXDqqpJRJX7NaUdc1JycnVFXFYrH4wEtQSonRhqLIqScVQrZUVUHTNBhTkOmMiEgas2gRMlDmBm0kaew2Wq21TMW9yMbiLIyi5zV7uzcY7MB89TgBEg0YU1LXSaT7rA7rUswGQqcOiYTgNgw+x4cpsu+SS2NI59LZnhgCUmjkyE4JMbWGg0s6HhstFoeQSXS9v3vMerNAC8FqcZvrV59L12/UpDnnkNoQgsNkSfeDB5OLFMwbHd722C65+FCpsJRKJ3eYVCBUYmTEmJLEdSDlpm2XpydQPyn1n8EsPLGYM5K0k2YKRmqySBEtSinEGMMSYkSSHKFGaypzgM4Uqo8UtR7F0In1VWQleZlRlM+uk7NeN2kcG2d85evvkAmN3yjef7fDDiK5Urdnw3u8c3xU7rETJJ2A67HgEMPUS06E5elcjK0B4Onv3z6DW0OAVhqpHP/+r/0V3v5fvsGj33ibvdVNohjwwqQcXEguqyZw5XDOx3/gEGEkd+6+yeu3v8Hd199HvvA8MmRcv1Lw1p++zoP3H/BP/vd/wKf2X2FaX6EoFG27ojCa6bRgvlqgshpNxWw6Qfge4Szn52co6RDR8/jRPbK8oJ7kqNhx+/ZDhJDsHx3iiKxWK6xqubJ3izde/zqf+aFX+ZM3/m8yniPXE15/8y1e+YGX+ejHPsZrf/I7eBPRs12++O0/AP7aM7meyRaQikwXItrkLFcr8r0rKXoEkTZGbEOOfXoeQ8BajxtvcSklWqlx5J5QGS56vEijXgQ4nQr2aFPXPGnk7JijkIr6oijw1hFTPlEa444bQq31pTEjabWeSAO890hPEiaHgNbJWRlCoCxr+rZJrutME4IaZRwO26+TA1kls47SgnxSo4qCYjqhcJHAkw0MkDYgWxOEGteIGIjeQnSYoqLvNqimQbYbdN2z2WxGsveffy0+tMjJcrgy2We1aui75KDo7MAnXniJv/PX/wZ1XY5hhw6BxFnL+XzF8mLO+aLhwYOH3H/0kC9/9Ru8d/suSubcPz9HyLTb+/Iff4Mfe/XHGNxA22+Si2esf+/eP+H3/+gLdD08enxK2w68+JGX+J3f+12Oj44Y4sDD+4/YNC17e4dkmSGEiG8BIbh/vuTB2SLtZO19yrri5XKHB998i5s3n+P9O7eppjl5maOme5giQ6owwgQFAUlwCiUsigzXeqxINtmhs2gjiNGB9CBy0GDyEiFgMd8QhEeIgIyeMHiC0ZRFzvzigoODA5z1VJMpQmj2r+wlO71NM9dndcSYAHDWDkiboi6SZmTclQtSVyo4+q7Bu+Kys5LlmnawqQ1qHM3mPm1/QWYyvv6Vd4lBMgwNUjf85E+/iu3XrNdzyvII64ZxPBDHfJxtaOATUer22KaWbxfiSyHwuBgrpRiGIcHnhoGyLOm6jmldJ83M+P0xRopJgRpJxkoJ9venVFWgaTcURQWxRMnktnOup8gFy9UpIVjAg4CmWTObGUIcM5GCZPAOpRJB9uHJQ6So0Fom0W5w4DWzap8sy3k8f++ZXMvtWLfKdCKGhkA3eGS0dEESVgWeyGYzpe/7VOi4gT4MRKaXI4rgLdb2WNfTdWuWwymOgagAIXl0+jglG09uIn3Dnbff5XDvRpr1M443I0DAuT5xL7I8Wc+1QKsM75PDTZk07g0qFbJmhIZu9TUpzFc++Tz6y+7Lk8L3ewH+nnZT8YGPn+4GObctWsefoSAEg9E5e7NX2Nl8FRdWKZTWCSAjM1N290qq3JCbZyMiB6irWXK/9I6gFaJwdF3F45NzEPEDhV2MEakU/+bux3mpueAb7pyNi/yAPmTpPff7c8JuQdd1l+cCnsRbbGMf0vOUXm6ZyXnpFUkjTpj9wiHH/8pznP1X92m/1bKzNGSXj6lHRsPPXP0hvPkTvu/GAQ9WO7x7vsPP/Ts/y3sh8No3f49HZw+Y5DUv37zBH3/ry/xbv/hX+erN93nzjd9maNZ0dsXi0e0U9puVCA/33/sWeV0ltIAA5TVD2HD15i4n9+7w9utvcf3qFc43AwdHL7DZbJBCEntLB/wf/+g3+dSrn6JzcKpvExaP2C2v8clPOCZ5hc4zJlnB3fgHlNOaT13/4WdyLYXSxJg2hUU5RWjNxXzJ3u4xQUhCBOsiIVq0ViAizm1zABO3TIzrXXKQ2kum2HQ6JdY1buhRek7brnF9Byi8G7C6JTqLbTd4J/FeEl1K+04ku1GnNoYk13XNMCR+nBw1sYvFHEECfS7mF5RRIzJDlhu6rqFSBSFE+j6tw123ASmwLjA9qGntmmwoCdIhdIYyBdJolMwwIhmSpmIcUz993p5GQbAVx6f1XARPV01ww8Aw9Ax9Rwh+XNsczv758TkfrsnxFhegHgMTy7KkNJK/+df/GtO9KUoqpJD46Bi6Hh8s89Mzzs/mPLh/jy98/XW+8JUvM/SeddcSQ0uZF0xmE7SShCiT4DGN+IkhVXPWRr74x9/kf/vHv4WQGdFDlue8e/sOrRs4OT3FGEVV1eR5TlnmWCuYTQqKrCMEcDbN+6pyQhMbsrzgjT99BwksNiuKScWD9+7xkZu3Lnc1QgqyvMKHNUYJrE/ZSESFtT1aSezQ07ctNQWD7cFotAh4bwgeBr9ByRLrG6wdKPIKax2eBjsEdvf2UcqQZQXeWrJSMpkUKJESj58lDHDbfRBCcHZ2RlUrjq4krsbu7gzv04vcGI3rEqwvz7JLV1ZRJEs+gMkCg13TLTL6Ni2eJgNJ5CMvXePxSQrRwz8Rj25/tS2ZeCsuTsyWJ8nJW83N07DALV9nm17eNA17e3tsNhuyLLu03td1/cR+7gJapYfHeYdUyVqrtEmiP3LaxmGUoe17jB7o+xatU8q6EBZEpO8bQkiFDeT0NkHxpsUUQUvXN1SqSjbZIXW/vE8Fs1bVM7mWwaUAXJMZuqZHSkMcSB01VvS+xjeKbtbSDi1NPyBcT7ADCIOIARE8wdnUhXWW1i0Z7IIoJFJEpjt7XCzmEGCxvsuLVz9N0z4ai8hwGfS4HXshINIj1ZZ7FMnzDGNy8ipprrQQCC8vd29bo8ETgnZII2KRnD8xMtK2t+Mqj/gAryYgZCC4NKIJbKGHTxY9IZIOIa0xLiHkhUCJDNSAEJpJtk+ZHWPU+2gpkVEilSHLI0qkHayUz05f1TYeU2TgLV4PXMxXLO939C4yDAGtx+dI+pTULCUf9TW3AJcpPj88onaCF9WU1/2a22MoYuSDYm2lVMroTdNInB8QKBwNP/evfo7Fqmf+qON4dshn/8Of57f+my9y8ZvfYg9F7g02Blrgf/7l/4mX/vNPkNcDL+zd4qH4JGfNGa0QLOZn/NxP/SRf+Ke/y871jB9/7nNYKp5/7kXeemsH507ZrM453D/Ghp6+XWGHAVOYRLs1GnkZmGu58/a3kySib7l7r6eYHbO3v4+IisXilOl+RjNc8CM/81N8/vN/wPd95rO4uGAzzHl8731CaNDlOYfPvYgsDPffvsNnbv4gjX82a61Umug9eVHhY8T5iM4ziqJK6Aqlkr8lhEQrJ42TQ/AjGViOo/phTJYf0vQkzy+vox9Fy1mR412P0Rrbd7StxtueXAmGvktUf+EQLqT7Jih4ilOWkB07Y2fbJLK8MQnERxzDXQfWmwEta+KI+RAqT1qhkTbftGu0KVguL6hmu7hhg1QFEBEmQyqDyHOEyVKAZ8yQ8YPP03cbDVLHNW3EYtB4N4wBoJKsyAhBUPiAs+7Sofs9r8eHXaxN0xEROGfJ8ww/DPz9//K/4GB3BiIJi7uup21b5vM5i8WCO3ff5737d/ni11/j//zdzzNf9vTOUpUlO7MZ168dMylLqrxIreyRg7LdqaV0csXnv/RFqmpKUebs7syYVDlFmXHz5nV2dnbQQqNEpC5zXN8ho0AEyI3CKEWmDWVeAH60cisCMITAqul4dHLG4OE7777NZrMhhIALkigUWhps75AqsOV56Gyg79ok0PSBxWLJMDiCc7hhwPYbNqsLlssV5xeP2KznaKkIYcC5Adv31GWOhHFsA0VZUVU1u9UOpc4otHmWOlVC8Gidwt/KKsdaOz5InqqqgDjuJhIROoZ4uettmgYltwA/gTYSqSLvvfuQ4PUIcbMIAddu7PPqj/wQRZ4xDP13OWCetMifgNmeQOKe/rqnC75tdMPTMLNhGC6zsLZZPduX7ta6H2JEyJgozSqxiraJ6F3Xkef5+LlGiERjdn4coUVFCI6u39C063T+VEZVTkZdiaGuK7JMQQy4wSNFghYOfcfQD9jh2WlyBDFZQ0Vy/SEsIQ4E2WPjCmtX4/npcdYm+2j0yJi+PozgRWc7hn7DEBas43psG8NidYGUgoP9K0Qc87OH9P2D9PPgkpy7vS7ee6SQDIP9wPUKIVDk1WVbPI2dFIyhnOl+Y+wqPEkQvyx8noIaXoID4c/cV999fr7X94S0A0q22pgWx4inKHbI1TWMzBEx3WN5lpEbhVRJR5aMvs/m2J/uksucOEChCnSVc/fuBS56pHrKeUYatUUp2Y852uUcUCeIIYJjVfJKdUzm4iWA8elzkkaCKcpECpA4lIBbH7nCYnnKxMy4951T2nclrMDNDP/Br/1d8h//CGe1RyvJICL2GwO0AZNl9G7D57/yu5wu3ufLX/xtuk3H7XuvkZUKxwVGT/jH3/gfyas9rl59mavXjqjKnPnilNlOgRQDr/7Yj1FkJUWWkSnBf/S3/wYhdGgj2d+dsre3j3WOKAVGZ/8vbW8abNl1nuc9a9rDme65Y89oNKbGQICAwEGiSJGUElOiJFOSpXiInFgqxZWk7KrIwx+XpdipOE4lFZWdoVLxELssy7bkSB5IayApCSTBeQKJgZgaje5Gd9/5nnvPOXtcQ36sfW43KBFObPeuutXdwMHF7bPOXvtb3/e+z0uW5YBgNjsCZTlxeoW83+O73vMuXnrteXSac+/DZ3n0nY/hSfnRH/lJUpFx88YV7n/wfr7+la8i/J0Jz/WAMoo0zwgCRksjlpbG9Pp9lNEIbqEUYqfGdR3ueDCLnZvYvYmxNI40TRgMBgyHQ3q9AVnWIx8MGIzGDEcr9IZLZIMhadonTXvkvQFpmmMWRYXUx/uelBLdddEX++7igBnDqxu6DxtJJ0/xzjGdzUjTpOvi1Med+MgnSxFA09TMpoeREi4CwVuqqqBuKtwCTyElUqvjn+f2PWTxORXCI7AIbHxHhac/yBkNBiwtjRkvrTBeXmVldZ21jROsnzj1HdfjLTs5a2srpFITJEjV8hf/3M9z6sRapG12FONqXrG7e4O9vQP2DqZ89nNf4l9//ClaJKdPn0YLiRbRUSPQlGVDL005mh9y/Y0bTCYH9Id92tqSGxCJRBvFxfsu8NKrl6lsN4tXADICgTRY4aImQQnSfkJoPASJD4rWVaytrVFVFUJE8J4SkemD8wihI3jJC964tsXjD9Y0LkUSUCLGuMswwIcyPrxltOp5Gy3O1/b2GfeXSY1BpwGomE9nbKxrmqDx/ogk0RxMDugPcpQ0CGFj2rOKgt40NSipsDY+GP/sz/0sv/R//J0/dMP+D3VZ2wCaqiq5cOEC2zvXsK467qB5H8cD5WxOqnK8c3jXASCFpG0r+oM+eE2SBJra8dlPf5O2iVoIbeD8vScZj3vMDisGo5zJ/qzLPAsEL7o8nW+3Br/ZIrzo1nynB93CIXd4eHhMUm47KnJVVYxGo6htUrdzVuL4cP9gjyzL6fcChBTna5xtyNMRQmh05wQ7dfoUr732ArPikKXxEGs9IfQwukeaa/YPdpCyA/BJTV06gjOMBmPmxYSynONchFPeict3wXdCLPQ2Fu9tTBeXFpkc4K1kPt1lVpykqiqCswS7sIxbbF1TlkeU1QF1M+Ow3qR1NXEkFDBK4lvH7u4eGkcTZlx+5Vkef2KflaVloKOiE0GCCEnrI7HVGEXd0Y6dCwgRH9ZSxcyw2PkzCCFRSrxJhxU6ce3tJzohQHhxPN66NcePxoCFbkfJgBcevI6jseAJ2K7TZDsQSUf5VTpm1AVFmvRJ1SlStUrrphjjECiSxEdpA3Vnqr4z19pyn+s3djEYcm8IZJhUx+J0YfvmVqFiLOijAoNmTWQooBGCYSN41Pa4LPq85kucvJXhtXiP+1mPopnR2opMRzDccJgyGg25cukaxm6wd8Pwzo/8MFm1wQ/9+Z/jz/+ln0c/cp7Xv/Qy+vmXEQ+OmWyvsSkqpvkVfuRPvZsx57hy8zXueuL9bG5dZ3PrKveeexujtT7zpiXz25zfepI3rn6Ttm2wfsaPfvin+eV/9M/41ovPIRX4umZazfjBH/oBfvEXf4HmwGJEYHlljeA9dUfWDgHadg6iYnZwiNjd49K3vskH/pMP8S8/+q959wc/RGFavvK1r/HTf+qn+cynfg9mM3ICL3/zOe5720NkdyimY219RC9L0ELS6/cRRqKUJtcpw6SHVPIYcbH4sl1Wo7U28qKEJ4iA0JB0epzFuNEIgzY5SdqjriqaumYQFLoqQfcJTYMtpgQ5I6g5xtYoPaWtIvyxLmdEQ2NAG8l0dshgMODgYEa/36ff61PNDjmcF5xcX8OLFi1zWtvQOkjSHKXk8QG2rAWh68okBERdUbJHUClSJahkAASU7MbYQSIShb3tHv92HhY4cF3OITF6RmnVVSyx6F90kP9tz8y3XOWDyRG5iRvR//w3/ioX7joHhG4hNIcHE6qy4ujoiIPDOTdu7PGxT3ya/mhIkkqGA40MKXUxRcmEpq1ItSGEaF+cVdWxS8MYQ5KklG2FMYYzZ87y+rUbeOnxTUtdlqANwQtsG4W+g8EAIQSHh4ddVaqQMtDrJ1T1jLoOtO0sJqPXDT5YkjyGPPaSHKM016+/zpUrN7l4MWXQ62EEtEGQpD7mp7QOKeIm6GzN0VbBZFbhRYnBEUQ/WqRFn2k5p/aOQX/cgfCybqyyxGAwYjgcIhNJnuckSRI1Bz4glODM2VPkPYm0d07cuBCWtd0DMc9z5uU8jgScPxabVa0nzWOarESRGEmWJkyrA0AhVYrSLUVRsrV5iHMxzTfguHDPXaytr/Lyiy+wv7+HSXrdeOPWz/FW6P1FkfPtJ/Dbi53jLk23ece2axuTmbsOTXSWLKzCAUQgzVKqVhx356JDa4bROSFIlNQsLY3Y399jd+cApU3ndvNda99SlhV1GQWyIYguzgDK0mNkincgkGSp4eBggnV3psjp3i0W2UzWtrd0LRpUWoGa4P2Atqkjrdz7aIP3Ef7nQ0NVHtDYgrrdx8mWoDza3OLcegTW1iglcd5SFDMOJ5ssj8bH8QEgaLrMpIggiKdS2VldFx3axcnRmFvbTlzXRTHq33LTWqz37ae+b2foeBcLn9vHNLf/vwTiuHMUXXgSpcDohNQMwWuEi4JkqQJaBBIjEERB6J26GlvTGw6oiyn7N66heyu4usQjMUrhXQdus/HzZLzAlxVOJNimoofBhkCjIPOSNZ1zVdRYeUvPc7vI1FeWBx54gETA3s4hWuf0+gmnzq/wxae/zDvOnuYX//pf52/8d3+TD/6RH+aTn/s0r1y+zuPvfZSl7zlP7+I5rt2ccmJZcRj2+czvfpx0fo4//Sd+gmcvlVy5fMi9915ksr1PMj7NIIXS3yCINS5cuJ/rN75CCILxaJngQKcy6vOCIlEZSiaAjGBJ79jd3eXxJ57gpddeYzQaxfFKEsOE27Lg2huXqBPL1avXeN/3vZ/9gy12NktOrS9TF0eMB2tsjDbYP9hmtj9hdWWdvdn2HVnLDZ2Qm2iOyNI+SdehEkrhu/3NeXuMTFnct8eHuzYCGhcdjtshmkoplIx5gtaKOKYJgeBSILJynJQoZwk+dqRdK6MpxHuUF3iXIpxFkFPXNWmaHgcox3vmD7//ki4f6g9DOXx7GK5tK4JzKO3wKFQAobKYoScEQQjo2Fh/+PPgNqL7bYfh2CHuOkBdV/gP/rdvvt6yyPHBInzCH/vxH+S+u8/RxvEhdT0DF4WGB5Mdirrh5Zcv8X//8m+wtrFOkkq0Tijnc1Lt8MpQ1hVCBBLTVWAy4+r1m3zidz/Jz/zn/ylC9mhsixLx9LQ0GrO/v0+/PybNNEb18VLim1jJY6GqqggBFBqLx0uB1IY8y6mKI/p5Ti09rnEUbc1g1CM1Oc7FdlvRVuikxzMvvMyFe87hvcAJidI9qtlhFErpmgaNFBl5H1ZW1/jSpetsTeaMewN2jo6o65rx6gh5w9JfHnB9Z8ogS+knKatrQ4oqYTw+CUbT7/XxIlKRBZD0FLaxrI2HDNIRzldvtST/XlfTegb9GNFwcLiL9XNm0xKBJs/izdPPMlxlSFSKbQscJc4HtOpT1TneSXo9aBqBFKscHkSmUZIY0jzh4kMXeOON67R2TpZDNbexyu90FtC5bITAB0XwsZCMo64ehISmqZDagnddFR/fIyklgphm60LMOdEqhlNGQYjAhRIlEozuUfuC4FXko2hLYyfkA5DSohKF9yq6qQYCbMXkYJ/pUYKUgXl5hNJ98uRuBCWTgy2awQxvZ2idMB4vxdHn1GJ0i9GGIFtmRdUVHglSDRmldyag03WJ9R6PtYuxULzRpQDT94hQIdpttJoivaN1FucFtoXQVsyLIybTLYpqn1Ye4kxsC8sASkXH1H3nL3D16hXausWpkv4gYXfnJnff9WDXYZXUdXVrDCVUDAU1AkWEcxplUMLgCBgT2+ZlWXUQL4GSkrKYkWd9EF0xjmBh6ZEyfm8hHa7bTKMgXh1vzLf0WguBvSR4y/Rwk7YsMDoFo7pOkIOgyKTGq1hYpSZnY/lu3tjq07opFkEqBDL0wBU4HLa9c52c0FrQgjzkwDpfenYb5BBJF67pm2PijQ6C0SyQJhmhCRwyY4BgJjyp9xwJyaRvQPTQZYUUgqBdpHE3ltXlPvdcuJfzF+/n05/4JE7BUqpYW4Pdvdf4yH/0vaR7hte3PX/5r/xF/pv/+s/xK//in7O1W7NXzNjMdijbJV75+g1Onnw3tc7Jk7u4ubnP5oHg6s1NTp9Z5qUXrnHUVvTLIw7KGedPb5B8/yH+lT6PHn2AK5e/xN/+3/8haZJRF03U1tGA1rz/Ax8m0RnBVbTeo4Tg1cuXGY5XKMoap45YGmQU1YxidsC5c+fYeOButi5f5fK1q/h+ynvf+W7q+ZRP/MbHOLg5ZWneEJYEFy5c4On/5zc58ehdd2QtV0IgsRakJFOKXj/KEobjEabXQ8gInF2M3OFWhw7iGFjI8KZx7+KgkCQJwQvatnOdVhXORlDp4nPvhSAohdIpOo2Sg7YpY4c0xHvJl3OESPDes7S0xM7ODkKIjiF3RG50BxC1xz+fEMTDjvMkSXo8StNav0lqEIvqCuFbvG/xLupqhFCIYBG+M7nXNwAAIABJREFUiQeazin57YXO4veLkbcU+vhw9CachBAIFYvAt2JovWWRs7qyzj0n1vjIhz+ETgwy7iCdSCown885Ojxk+2DO5575BuunT2KbaPVtGxAkCBFIE4OSJo5L3KIi1VgCT33+q/yZ/+ynaRsHqoOH9VLuuvsU/f4Q23ryPEEbSd02VPOSXPUJEFt4StFWNUZpZBKDCeOCC4pihkQgBaSJxmiJD5bZLLprnHOxo0Lg6o2bDO4ZRSezAJP0AE9whixPcS6gRUKWR+Ly3lFF1Uisn1HVFYOyoioKwuVotzu1MibTgSw5zSDvMZsVmDwlTRSj5TFSwcryMvOqiOnW8ynv/Z538YlPf+7f4/Z66ysEwWw+J01TqqqkbqekaY5toymotSWp0SQmQYT4sGxsybysMSkQhkz2ZyRJGmfIraaqGqRSWOvp9w0bJwZI5VgaDzFGIVDdaT/i5OODK7DIAVMq5kcJXeJDjQjRJSe62ABBfLltOwuwjFAyiOJYOsG6lDHB1osC52sCSYwqEDlaGQbDjCzTVCFwdDjh9Kk1UpMynzf0eobJzow0S0iTHjs7N2jaOesnTnLixH28/OrXKMoW66dRmxYsyqwwmzQgNEKm5P2M4CuquYsjSCnxKPLszhQ5AhXZEh32QGiJ97HL6kMMWI1vcw1hgnUVzgWaJiLco9bogMNyj9pPsL6KnQspUcrjXRQdTiYHKA0ODVKhctjZe+N4ZGRtexwRsBgjChEF7kpAwEdIIbHdHLVT7rbCxEZtiOw2VBGjUpQ2OO+Ov/dCu6PUm7tAALdOoLc22Uhez0nylNn+dY6qltF4BZEPcb5FcOsU6L2PFtdkiTwf0/h9lrLHOHPiURLj2Dt6isZfvqOj5MPtI0YnTzGtJxE26XvRLeotWkdx9u3t0IujU8g9gRNRjZMGSY6A4NlbMexJi0Ngg6PX62MyjRDQNxlDmfHIw4/zL3/nNxEyZTBMefvjF7jrTMWBWKG90XB6Y8Sf/BN/gy89/RlOP3iR0VCztrrE9dfnPHrfo3zrK8/y0z/5Fxj0VvFa8Y1PvcKjb3sPl65tMuyP+caXvsxwaZnBkmRn9w1Onj7L1VdfjZbnXJKP11heOc3B9IBEQZIkzGYzTBIxHUtLS2zOjmjqMhbQQpJnBqUM/f6IpdUxtioZZDm+abn08lX2JweY1FJv7vHH/quf5df/0T/hHe95B6+/dImVZIl5MUMmhueffQ5NTlLdGe5RWU4R5Kg0RWuBUt0DWxm0Sv7AA33RvV589QdZHFd1Yyzg2GkK4GygaSxFURwXOcFHZEL8/Icos1hY1UXUeEgVtZNSKoTW2Krt3FSHAMcHlcVIWBvZ2bO7wmPhVuRW52bx2sV167WxVhBAEDXBKlxboqTASUGQBieTN3Xsby+UFn8PKWUn94gjsdjV6jq53bM6dL9+p+utU8iblh/70R8m0YKyqJHSdY4XgRDxzbl29TrPvvoGm9c3SZNe9PG7ijTTaG2oyzmJBFwMB2xsFFu50GLSlCs3d5kdzVlaXu1s4BFRffeFcyCbyA8QyfHmmCSapo5ZRomOAaBZlhGso/YW3Z0U59Omq2wN3jnyzFCWRewqiHDcntNas3dwwKuvXeHes2fQWY4NAYWKqHxjcBKCcBg8w6FECUXZNhSHUbwHgXI7hnkGZymrlqPpnNx4TpwcMWpXCIdbpENFYqBpS9I0ZT6fEYSkaSxGp5w9e4qmunPjjRACs9kUrVdobYPznuWlAU3tET5gehlpGkm1Rhsap5mWNVXd4kLFKD/LVEcbdZIkKO1JEgGto65b7jp/mpXVjNbtM5s1NE3AuehaQ7ioLRAiaihCzFBKkxSlG06fO8HW5gF10QV8Ek8OCy2C9w1CClRIEDKK96RYtHG7U4/UQEzh1bJBGRVzeYgbyWxW4JNAlg7xriXpew4PK7xbom0tg34cu83nBT407OxsEkiZTPZIs4R77rmbzc1tvLMUReQf6TTh9KkzHE52sW1A6wTnqjgCSbmDbBWJs5Zv9w4oHTc2pRVCBJytkKLEuYbg6ezckdxsQ0EdDmkFCGPAVQTnETIgfCxC6qpEKYn0Dmkk27s3qNoXKKuCPOvRNA1pGu9ba23nYuqEiUp2BwZN1VQYrbpNs7P5d8VFVTaEYMnz5NjBtGCGHAML3a0k+sWDAd7cOl8URMetcyFI9QqDccXhpWeiCFMn3di2Aw/eVjgYo1jqPcLy6HHOnfgeRqMRBE0/G3Ft/9co2607tJZwtDelsBI3b8jlGsFXCFkjwh/cvYUQnDdjsqC6B0mgh2IoJTcp+L3pDfaHmjTPGWX5mx6iBQ2H80O+9c9/lWw8QuqEntY88OiY03e/gaoySudZX3NcLn8fu1QTtOJn/8zP8mN/PPC//v1/StkUhCLhV/7+P+AnfupPc+9738XbH3uSo6knTAr2b1xldbzCpKzITJ/RaEAzL/jm177MhQsXefjJJzh44UWynSX6vqWaHhyzV3ppSpZlbG1fx4fquBhunIuHqdbT7w0oyhnYOjrpnCe0Do5KpvWE8mjKJ//Fv0EcVjzz1Be5cPpuVsYrpCc3cMqxvb3NztY2OzfvTEBni6P2DdJC0lZI29LYGEvUtA0qSd7UwSjL8k26qbIsQdz68+Lhv7CUBy+w9jZ7eWuR+OP7ygcfx0GI4yJAaQ3OQJBIbQhdV/LYWdzJRtq2jQaAJupZ67pGyIAXsVkQgsR73tTBWYx/F1cIAVxLB78CDD6U2Ob2vdDguGUMAI6LuIWFfDHa0irpRvK+i8JQCCnfuni57XrL1y1lgZuvvMTAaB585CGCEtRlwbwsmBVzXr/2Bi+8ts1HP/EUp06sooQgMwla92KopWvo9fo4G5DKABapajKtqGrByY01tm7s8Nlf/Rjv/akfYTDoYQxgUgZJn1F/zIGbUFUNed6PUQmlxQcHwnI4ndDL+3hvKaoCtEQ1LaVrSUxO2wIqHHcatEgIBJQKSAn1Irwwz3jl6ibvPopZWYnSJFmGD4E0jbbGuJgtRTHn8bfdz7Wnv34844+q9AV7Q+MC2LrGOsmNzYpi8hprJ1KW1pZYXV4j1RqjiLA9r9DaYfqKE6dG9PI7Z6+yriTvpdR1iZCQJH3qusZah5EKIVLms+gKCpnABkizEdNqgicGNZ46fZLWHTGdTtjfbQg+wqb6vYQf/MHvR8oK7w45mgQO9mqCz4+Jx5HUoIhRBPHv2e/nLK0JfuKPv59vPf8av/2xLxNCFrszQnSvl+gkoHQbT/0iCtB9iDNo6y24lmBzXIg6CxcatFGx2DCSXp6jlEHJZdbXVtnevcrh4Q7eCVy7QZ4N8D6QJJKVlWWatuJwOuPqtRdQyjMY9DmaTFkaxH9XFSXra6c4OJhSFnMOD4+oq6i/atsp2jiUbqnt0R1Zy9a7OP4LEISPqd1SIkIUTydZ3CCqxoLWSJ3G17uC4BxFe0ShZhz6GalJY8q0lTSNp/VRUC2cx4nYGdJGgnJ4HK3bom1r0jRBCh0BiDq2nh0e25Yx500btFbRdaZuY4HYBi01dZeCHfDYpkAJhTQGoxNCWyF1hms9shtrxQcBeLHQj70ZaLc4tCz0Da2dcrB9nUEvZ2m8wdbWJkpntJ3+TKeDaGlVncMq7XPP2fdhdI61nmrWYLTn1Or3MO4/wUtXfv2OrCXAI4/ex6yW7F494LnnXodkgPEqBpsEGb+kQARDG1q+b+M81bYksYoVNWYjQEPBF/OaTSShtdR2Rray/CaNW5rmtIlD0xB8wMjIznrw/CrGPM/5cJ5quWFn/wobqaPO70WmKc987RJHleWZ557l/T/4ffyrl29w94Nn6I8NRla8ev1lJq/V3P32J2md4mi/YP2uDRqzzOH168xnb/D+D/5Rvv6FL2JrTdrzlF4glKFoSzJXISjY3zuMIbOuoT/sdXBUQaI0VC1mSTGvp6RmTNseIYXmhZeexVtHtbPPvQ8/yGuvXKE5e8Qjd13k6tF1OJzwuc99g+/98Q/y9Mef5iM/9ZNceu3fMG/vDHj1yGTMvMA4TTVtGCYFvcMDzO4NZKJQZgNPLIYqX1HbgnY+w9sGg8AiUdqQ5zElPEiNl6LTjymsrWmaEt9W4FpEcDR1hZSgRIh5k7bEtbEITGMKJpX11LVFmR5VWSOUi91VV5D1ciSBprVoKTD9fjeOjjBUcATfZWuF2JAP1sV78TYBsO+mPeI4AkV0AmIB1hJEifUe37agDEIYXB1oW09V1dRNSRs6F6ONXfte2sMkKWl/QNPPKcqS/nhETiDv9Qkiwb1FK+cti5yzp0/xju/9Hk6fPoPoZdTlnPm8prWBsmh5/Y2bPPWpz3JqfZWbN/Y5f9dJmqrGa0c2HDAv9slVD4HsekoJJhU0ZY1SgKswqaG+cZWvf/4zXPyux3ng4j0Uc8t8OuPtjz7GF778RVyIbbOoLo901LZt0Co6lIo6slIsHiMjfMjaBiljG3yRehxb3aJjD1RUdU0vH2KMIMn6XHr9OsO3nSc1A4xJaL0nHY3IkoQsSwl4imLGub0pWfo8RRkV8gtaZASYLU6ai823JU0zjEpZP3GK8fIaeRZHOT5YlEqRKjqfmsYynxX//nfZd7h8aOjnPWbTCHb0DiaTCSF4MpNihgYfAv3+kH5vxM7+nGlV0LYOj+X6/DKpylleWWJ//4D9/UAxF2ityPt9Tq6fwugdkD20aWgaT3IcAtjZnIkUTqkEYJGm4dTZEWsnUh5wp/nNj7UEEkKIXYCFEE7rwOr6MCaSyybGNjQ1HksiYnidtwLnHWkW16EsS3qmR3+QMy/mGJ1iaZgeVSQmIUk1TQ2HBzMG/TEgGI36WFcxn0MQAhcCSnt2d7fxTnHh7gcIIZClGc5ZimLKc5s32Fjb6Dplc4qi6kJnYojnnbhEV3QrKRGqm8P7gG19B7v1hCBxwXdIfoE0EtORhWvf4oQD5XE4vJfdfbHIUIvdjuMREiHewngCDc++8EWefPv3x26RX9ybEQwa/CJwNXTzcvC+PW5JO2cJyGMo3cJJZa1FS4UTjqatSLJ4UtRdd8daS5KkZGnCdwrkW5xMpZQkaR+DZDqZIJOM/d1t+sNVVCeCztoWae3xzyGEQokIWmuaeKr0SSRcJ7nh/Kn/+I6sJYAKntn2LkIZdH+Ac7Kz0H3bpRWJ85yoFdldGzTbB5iyZE1oLkvPN/wU3c+oy+iUmU5nEfLWnbgX0DetI9VZqYThyoxTpx2DpZTqqKQ2jmzk+MonA5//+sf5wD0/zpl7T/Hf/9m/jD6xwW///u/wIx/+kyxvRMHq9KjAVoH7772X+x/6Li69/AwvfO1Zljf6TBrN2sYZhD9ktLLCiVOnufziiywPBuAt1jq0NlTljNa1SOlp2hJrb9mUBfFzUNc1mfO4uoEkQkuTVPPEE49z/dob7Fy7zJXNG4yWlzh39xleefFF7n/f4xxevYYeJWzt3ODd7/5e/unf/1UeffdDNGVzh1YzSiCcl7RWYJ2k9QLrI5wvjvDtsaOqqkqq+Zy2KZHOE5BIFTMUdZKQZRl5b4i1gcoVEBzBtdi2iaHV1lGVBVrH6YN3tiPTd52SxWdMxffRty1CyI42LkHGQFCl6CQBoKTqujUGIXwX3ntrL4ujpPj7P2yM652P3xsXx2VBAHUcn4Vozoj1kKUsHE1t2T84YF7MqOp51PIRY86ztEdiMgbLq2TVAJWnOOlokvj9kiwCGL/T9ZZFzoV778Nnmqm1JEWE2xWtpZof8MaNbX73U5+OFu5swNpqy+uXr7K6NiKXA5rDLkGcgG9akh5olWNDTHcWjaduod/L2DIJj9x1nhNnzxBUgsk17E8YDodUTdVZez0hGEya0NbRmtrr9VDKoFOJlwIV0vjnbtNWSQ5Y2qoCJE1V0u/1yPOUybRkeXmFqmzI8xFS1ly5scNdp1ZJTw0IOmd1PKSfx7GYSRQbG6s0bcPO9oRTqz2ublts647b6t77KJgUAt89KhKjydLAxcfeztra6Zjmnucx+EyBc5KybXAucLQ/Z7S88v/9Xvr/eVXVnDzrcXg0YWNjnX6/x9HRbow06MYNIQh6eQ8XPPsHh8zqObOyQOiS1ZUxHovWfdI0YzTsoWUfPCyPT/DSS1f4rnevIeSQtdUIFvTBEazt2q86PpiVIMsSPA0ra5Innrwf56f0BmASsFV3IhASIRVaC7JU83N/9k/y+tWX0d18+ubmJpcuvcZ3PfEEv/1vvsrRXouSmraNQMi0l3TQQcFw1Gd9fZ2DqSUExwP3P8QL33oGJTOytIe1jqapqJtoebe25ty501y9doWmrhkvDZAiZXtrC0TLyvIqh5NdvKtxtqSsDsnzPrNpQZbmNM2EvCcpqjsU6yCieNp5h9GxGxJcdFtIBMEFpBZIB85p6taTyJygAk3TYtspwdYkRiGciI6r4GhtwIVuow0RsNf6iBEQOJIgaMWc/rKgcRZJfD8jLDRSqLUUGKNACpyrmRcxuTz4Fp0kSJNQFgWD/ij+VaQAF++htqlpbYPwAmRzC/ToY+xKkvbeFFFwuy5nUURJKamaEi0ijLAuDlCmx9HkgOtXX2f9xFmkiR0o07T4ZKGTENimOAZL+hBwTrC3O2H95AlGw407s5bA5vYBSZBk/ZxpsU8/y7sxnT8WVi7yxAZoNmaBcj6FuiUNsOI19XjELhrTATjn8zlJNoxU4GCPxx3R2QnaaHywfOgjdyNGX6Yu5vT6y8x8xZVn9/m133mdWXXAUy/8C5756ov8wv/wV/irv/RL2PyQ3/vsb3LxgXu4+MADNDWsj0+yd20L/forPPvCZxECPvl7v8vP/Lm/xHNPvxzNC3lO7QPl9hazqaKqCrKsTzU3lN4T5AI3wHFC9+KK8QYJEkFdlpisjp91Bc8//yxnTmxwU3kGK2Ou7tyMh58NRa4l/qHznE9WOHPPCW586yZ/+ef/Ah/9rV9H95I7spbzyqKVRmWGJBugkz467aGT+BWlU4G2jY7QRUxHUzeIRQi2UjGfyqXYtqaqiq7YE0gVGVm2bvBtGwn1RYEwUZcaXGfOWLgIOz2NMYamUdhQE4RCdAVOEIog4lh/EUeBFAgvuhGx5Q9yE8OxROz28fHx5eNrfMfw8sJG/WBU9CAROOHxDsqyoqoss+mE6WSf2WyKqwuMjJKFNO2jk5Tp7IB8aYzu9WiamuFwjNYJSIVJv7Mp4C2LnC9/6avctX6O9bOH+LaiNxwzOdhkd7vgmZdeYDr1KOkoiyOyPNqgt7e3WV5eAQImGeG94LA45Ghnzvq6jidKkRAMlAe7TJuaz1/fRv6zj6L6I0ZLY3qjHjt7E37/U08RREpZlAjR0ksCNhQ4b7DWs7d3SJpGeFdVW5RuuxZdbF3buiDr9xAiWlxFkNSVo2miCHihbI+wpZTrm1t87KnP85Ef+F5W188wHI5ZXx3jPAxHPYbDPkEI3v/BH+C5l15h7+mvMmliMdc0zXHa8qLoAc/Fhy9wZuMk6+unkMLQ6w1i9VoGjMkQqkWqQFUV7O7u3tGATm0CRXnE009/hj/6oz/G5s0dlFL0+zlry6vsbE1YX92gaRzWtpSlxSQ95uUho+UMa2suXX4ZrSXLK0OMGJDmAt8KlNC8/K1XGSwVnDydUs4LTBJwTQH4zpXouzluIMk8995/mh/6yBMsjRN6A8gyzYd+6Lv56K9/E+9uIfp9CJw9s8L6yYwTZ+/BugqtDdeva9793rtJjGFn5y4+96mrVHONlAqdiMjDyfMonLUWYzIODydkqeGFZ19jPL4bgsC7gKcC2XI43SNJDVJobly/Ri9L8Z2Yva6m5OkA5wPOzqmrCttWDAcSa48oq4azZ+9hb2+PRGVMpwcYfYeKVhOzx5SM+S4CSdv4jrYcqatCBYxJ8TbD+5T5fIpPEnqDkxg0mY6sDR0MzgqCyBFhzrQsQSWdwLvLk3Ke2noSUZPlCZ9/5mNk5iRn1u8+djuUZRSJJkZTFlO08szKCBdMZADbMJtOCB0AMvh4UBHENPlEQFlVXQykYl6WGGNI84w0y1kan6Df3c+L63boH8QN1xjD9s3X0faIV77+ee568DGqquLFF19kONrk7LRg4/RJTD7AuUBQ0ZZqW085mxI6vL6USaSZl1NuXpty6uwFoH9HllOaZaY7N6mbElqPUzZ2MlV0ESolcARQkn7juH/tPObGJsIFaum4dqLPL0y+Cj1B40si60gjhKSXj3B2RppFeFuWZrRKofMML0r+zM89RKs/Ri97O8XRA3zz+YovfGFCubzJ+9/9MFdXv8rg4pC//U/+Jj/1p3+Y3/rar5GuCV7bfJ6tnfezMhjzza9/g3/4S3+Lv/Pbn+a7n3wPv/p//jN+/q/9Ar/xD/4uS3IFllM2D7aZ+ZpiawvRGJT2aKm6NO3Y4bA2jjJ6w4zIRZNolZP1ezgvcNYzHuZIEUeSw37OIxcfZmNjnStXX2PnxnW+533vp8onPP7hJ/nCP/4aIXHsvL5Drt7DO973GE99/Lf48A98iDl3BgZ4c3eHft6jaFpEbwnZtpStpXSe3Hn6CLTSHfhW08TWRtS+YRChReAITUlr6xh/ICOeQZkIlI3cthiX0tYlwjmCDLRFg+8gg7fE+J7Q2cuFFCRJhvCBJE0J3hIINHWDcy1Capyz1K5GS9UhMkT3XAoIovTg27PQvv0KbmEwAb/IUlPRiOCIocHImKEYsAhh8W2JKwv89JAwnyCIMOIiKDyaSd4nGSxh+kOqM2co1052Wq7AcPnfscjZ3Jnzd/+vv8c7n3wbDz7+KCY54FsvP0PVOD76G5/h/AP3de4OoAtzXF5eJoRArjXTpqHYP2I4XEbLgn4vZW9SIITixo3XWR0v4+aeS5cvszRbZ+fv/RPe++EPYjLN3qTi6uYW/X7OsJ9RFgUuNIQgqJoGZTTBReeGEIpcJgjpOmW3pm2KCN8LnmBbkjShqRqsC/EhpiRKJtR1Q5IKBJokTTkq5jzz8iucPXU3ayurtG0UsHof8F7iXcXSeMyPfuTHeObF1zmazrsTZKxQrV+o0y1ponn4obejQyC0CtVpU0JnnQ6hpa0soXHoYLh8+TKHh3duXLW8vMTNG/s8+eQT9HoDvIemnSJkHO1ES2CgruaUVYOQkuXVNaZ1RZJopkczloZrXLhwgZ2dXZLM0rgJebKE8yWvvnqDBx8b0raa/jDDpGCUpiyLrl0Z3Tgrq0t8+Ic/wP0PjVk9NUMKDTQYI3n44Yv8y1/7CoKUEGJKMjIWoc6X9HqS2bwm4OgPdHTp2YYL967zhacvEzrLudbqmDtRlWWcPbeOXp6QJBqjBiRqzKlTJ9nZfYPVjQGvvf4KSjuKoiDPBtS1YHl5zObWHlVVkCQpS+MekDOfz+n1E5p2znDYx3lPWdWUZYGUmtNnznP1WoNSgzuylrF7E4dH1jqC77KogkCEEEP9EBg/JNWxLV3MZ5AMaGyDaFJys0pfOiQSD2jvsakiz1uUTNHK4GxJ29YU1RG1nXB69TTnTtzPysrd2KMdxNoFlIhC57ZtkFJxsLfNbDZhfX2d5fXTKCWpiylb+3v0khSTZOg0jTqCwYCmqmlbh9Seg/19+v0hRVOQ5zlSZxSzgjxfjsnmt50gv5NtVEqJSROuX7pEcDHXZ/fmFWS1T9YX+PkVmoPABKgHY7xrSHR6XMiqoKibGqQmqD6He1usbJw8jii5E5doZpw5dYpLV3YhFLeAhzK27PExxDGr55ybGUJRMpWWJEiM6vM/7jzFjZWoYWhde9tkIT7wvIunfa01UrQYk9K2lrRnKMtvMVraQPt7qexpPv67v8xrr+9Se48jo2x2Cargvu9a42svfwqMZWncJzE9BoMRq2srPPnux/iF/+Wv8s4P/CQvfOUqk6NdfuOX/zEr62PmezPk3DJOE5ZXRkway6lz5zg42KI9LCjLgtRktLZAqS5TL0RNXpr2cDYeMhyaJJc0tiUnogXa1tLv9Rn0+wz6Q2bVnPd/8IO8qL+Byx1pFjMBHzh/D1/85OfY3bxB5gb81sd/l1/8a//tHVnLo+KIsirQ2kCaowYD5k1Bz1Y0vsHjkZ3QN01TXJPiqwRvW4JvCa3FBUtZeFw3sjRJFnVkSYazNoJaO1eVEAEtILSR/9W6lsb6OMruEA0gCV2XEwUhMUgp8FbifBqfUS66IKUU0LSdxm6hs4ndRKPFscD/LT/P4RZtRxC7w9AghUdYhcAgkHGvNjHiKUsUPk8xTQ/pK1Rd4H2gaR02WCySsqg5VLu0VY1HsnbyNHlvCdd+Zxr5WxY513a2qcuKy594mh8ophwcNbz6xutsbk04c+4M29vb9LIE8AwHcf49yvtoJF4Z5nsH9PKcsixxOLb2dvEu2o7X1tZIlGacZBwcHPH5zW3y3R2ykaEJhn/1uc9zemMDQrS2DQYDWmtJtGEw7jEvqtjyalqGo5zp9IhRf/nYOr6Yzc9mFcbk6FSjlYEOBiaQXaBjYDZ1SFkzXkqQWC5f3eegnLFyOMEkirWNFQgCayvSRJGmmgcfuMj73vNOtiYHeA9tx3EhRFu6MpouAIEk0SyNh6Rm0NnuBEmS0LQlbWupysDh4YzLN7Ywd6aDCkBbtayvLrO0JJjMj6ibQNuUmEozn0XL79F8h8NJwdbOASuraxRlQ2r6KKmZthVKJ/zOxz/J2soKa0t3844nT/P1L9/AmJT3fd8TjIc5bVUwn035mZ/5I/xvf+vjcZ+WKU3jGOQpD158iOnRIVWlgZrp7CByU1SPs+cepGkteZJ3YXUWiSJPeiz1exzsvUFTF9y8fo1HHnmU57/1Kvc+8AAPPXwCqb7WFb3Rmp6niryXoYzmiScf5ebmG6yeWMK1Jft7uzAUXLq0x97BDfanAzY3r3H23AmOjg4AT/AxeyVNU7xzrCyNESEKYY2BomhQckj/K7w6AAAgAElEQVR/STObHyKtjJZyISnmFilTjqYHd2w9pRB468hIyHROPlqF4QpNXdLvp6Qm42C3Qtk44pkcHSIGy5F6WgeWRid516nHEMHjfSwKEQovPUp26fTzgt3dLZyzPHrvg6wtjYEScFFPJhxJb7lzZSj2D3YYDweMllcxUmFMnzRN6PWXWNk4g1SSm9eu0XZhqnVdU1d11HbMZ0ynU5yLG2tRFIyGnuHyOAYThg7uyK2wSXgzY2Tx+9F4levKsHHuPvY3L1HsvMoHvu9xeoMxUimSTGLbHUJ5yMHVa5QHVygrRVO2WDvntW89x32PvYe22OZTH/8YP/lzf4H+aMh45cQdWUszSrm+s0+rcoSYHIs4F46ywlpOFDW5tzwiljGjDPO2c+zv7rPrAx+1ln6r2XeRlxKCjHpE38Qva+P4vwvt9L4lHyb8xB+7n5X0JHkiGPIhpnaTct7i6xGy1/DsSzc5czFh4+4+Z+9e4+Urr7P5Vcd0v8B3ERy9Xo/1Mw9w8vw9nFvvM7v7DP/Fz/+XfP2pL+EyzSPvfxej/pij61ssra1w/zvfgVUJySt7THa2GAwGTPcnXXdAHaMIQghUZUuSKpq2RaUJaS/H9DJCCKyunKapbvDZL32Gd73rXQyHQ4SR/Mqv/AqP/OT9mFGKwtFPe7z6jUssj1e4uPowlam5cOFhfv3jv86P//CP/gdfy9Usp6or2rphMrlJstRjfX6ErUpoanyXFpAmCTbv4RtLqwqcTnFtoLYxfNc7C94jgLacUTmLAJRK4rNMACEcs2vaJjpTOzM5zkdRsJAq5rGhkFLR1hWC+H0RAiUHlMFTO09qUoJK4oQh+O51kXcjZUAE2YXz3kI73H4fLn6NDqkIZI38LoHoGD1Ij/A1MaszIVMZSZ4iV1axRmN7CWYmSQuDbVtm84KydRx5G5sDQqMTxWC4RJqkaBmQ4TuDOv8tKeSautVM25aPf+E5psWcLM1ZPXGS1npWV1ep6gJQFLUlSRWhrUjMkGY+J8sSmtqS5Rll7amLGmUEqY76lcoFtIZ+njGtKw7qwBdeucr21hbj8RiI2ruibclTs3DE0dZFdGxIGVttjcWG6JYyiypTCqQJhCbSdm3toRNTZVlGWRXRoWMtxuhYMdYVWao5mjf8/tNfYfkHl9g4eYrZYYVvJQSDswYpDINexo995Ef47ac+jfUKn3axA97Gmbd3JB2oKE0z8jRDK02axEILAkYbpr5C6MCrV14m7w2YFXdKDAdGpEgDjStpnWP3sKCfC3QyJKicyeQKtZ1jvWS4ukTtWsZZj6YJ1JXj2s2bjFd6qADF1HPQHnHfhVMU04Yn3/EwJm3xzrGzvcd4ZYTCcua04I0bAW1EB3XM2N06IPgUk86ZlQ1Ly+CdoQWq/i7LY0FxCK7D8Wv6GHJk46ARGJ8gSk/iUh6550mQGZPikKbyaJ1GvYqUZFnMUfJSoVJIUsH+3j7WFRzNjiiaHZLEkOSSotzHuprd3X2MSTpqsmVn9wa9vE82zAkOjDJonXDU7mLUGEGPeXmN2k5pmix2cU6fYlZsoXSKUnemM9eTCYnMkCIhl8v0knWG/ROkKo3E5SwDFJt6l1kRM4dEmpJnAxKtGJ88w/J4zGh5nUXgpfcWgcHLWxqQWVnSUykr4z4bK1GTUldVdC/aBpn04mnTeaqqot8bokyG0hplDCpJ8SKQJj20isEId9/7AM9/4+vUs8OoubGBophSli1NNWc22aM3WkVKSZq3mNq9maHBrVyzbyckL/65VhmDfMBschnfzFldOxXHyVIiTYo2CinMsd6lbWtMJpm1BfNywnJec7B1iWe++nvMpgXXX/kKaysZ8NAdWc9c9FHMeOnSZSADOCbetm3L+txyfmnAN/YOuHDmXkrpOLq5TTZM+Z8ufZZ6HRrl4Xiv7+jgWjOdHjIa9Dg6OkIIQWJyEC2DYY+HHjjL3nXHsJUw+CYm6/HAAxd546Xn8KZie9KSyrtYXlnnC59/nosPneXzn72KtwOKYob3nn5/wCDPeO6lr3PvqRNkKxkuOB547DGWTi1TeEGZxYNV/8y9rPROsLu5y9mTpzi89gZNEwtk11mTjTHHXJg00VTVnCQbkGYZKIFQCmddR7eWPPzwg+zv7yOl5Pve9z6uXt/k8tde4sEfegd1XTEejllZW2V3Zw8lclZWc777+7+bLz7z2Tuylo/cdY7J0SFH0yllXaHLEl/McUWBrRqED8gQiwEpYuEhZDyEexkPGkHEkWkEnXqC9zjXkigVn2e3EYadvTW2XWQ/ig7BoKVCG4MWktpHfpwgZhYuhO0ixBR6Zz2uiRohRYS3CiGRnStWCff/0vamQXpl533f75xz9/e+S+/obgCNwQCzYGa4DSlSC01KjBQtlChZUhRZUmSHkaKUbVX8wWWnko9JPjiVSimyncRWKYpdZVfiSJQokRJJcRW34Qy3GWI2YAZAY2mg13e961ny4bzdM5TJccoWblVXNV6gul+8995zn/M8///vj5KefXNsHf9uRY52c7OCc3PkjPD/Z+sjSpywYPW88+4DdLMkwboWLTRKdIgV1EVBVWtCWrIwJe70oTdg6dxF8qVV4jQnCGPC4N9TeBwGIXHo4XfTSYGVltWlRZI0wc0rp7IsOXXKZ+M0TUUaRdRtw3g6YWVtjbbSWCcIAoN0UOuGLM7QzrfapFL0+l3cRDA0BS9t3yCQim4cfjs0aV49WuuQKjgBLGln53Y1P68No3m+RxhSlBOUCk88/UYbwhNGgaWb54yGE5yz5HmPw8OWTpYRBC33DvY5GI0ZDo9YXlyiaRo6LkO3zMm9lrXlZRbyjGHRoB3Y+e95PRypbioG3QytG4Twwsg49g9RYwxxklDrCZdfeNHHxr9B2+0/9HBOMZtNibKQo+KQuh2RRivMxiGn18/RTXuMxwd0+wscju9RVw3FeMJ0OPWguaZB0CVQAbNZiWv965cuPUyaJkBL3hkQxyFpEuDahh9873v58Ie/yMFRRTfvYI3l9u0d4mSDo33DY2/eoqx22Tp7gfF4Ql01LK/0uTmtThbsY+jUcDgmSiKEkzx66RFUoHjk4kMQJhyOnqUsLEnsS0gVKJSKCWQ6HzndwrhDHrl0lqJsSJKIVtf0ekseHqkKFpdy6toQx13CIJ/rrALCIKCYzHBOsLK0Sjl/yFeVYHV1lbtHNyirEiUCrJ1x+fLT9BcCnChx3J+i9XR+iVj1CUTMUneJJF4gSwfI4DgPKsBoRxx02T+aUlpBmg08hySKWBis089ysrx/4lQKrMUpD147PnTdEAtIYn/PSymJwi4IjZCGIEho5wj3JEnnGPqAKIoJ58GAbh76Gqh5u1zAI49d4oXnnmVvb48gSphMJh5uVlfs3r1Df6Fm4/QZqqpicfnfbm++fkH1zkYvknbOL7y6rRFY0lgRd9dAxoShIkm7MIfrOavnDg9Hkklwil7XYe06Fy8+grGOR8+vc+2V60Sy4nDvJufvy9mEUTHjga2LfPXpAx+9oTw3RgQtaVOwOch4+sbLuG7EmsjRWUjUD/k3e9/iLxYLAqFo5w42Ieaht9JiakMUeEG6swJh/ecjXM6ZB1d46vI15KDlyfRdCGGpdcn5zZzy+87y9ItDKlFytC8YdCY8/fQ2Zx88xTvf9ji7twNu3r1NEgqmw5rtV17i7Moqewe3aSaWw6MdtLIEdomnP/5pFs8uk8qErYUVpgauP/9JRrsHyCRBmpLKaoQDJWMEIc46ojCitQYZZGht6YddukmftpFoY33MQJjSEjKtSt785PdirGV97Qwv3j1g06wShDmvXt3hofULBC7i01/8U4JBzJm3nqc190eTM+jFdKMBupNSN5YASdo02LpCG89WU0JgmLuaQoUKQ7AGE2ns1PmohpNOicG0LcZoUD7yAWG+DYJ5/L0vnI5NA/7PCkE7DzMOhB9h6XYeyWK9MDiUiiRJmGqNNX6T6FDeMIKPvJFCIhXzLLdvP14f6+ALrtfgnG5e8Jxwe+ZCZWE8+sIJjZOgwgDp0nmYjKVqDFVgIVfEKiDu9kmWVggHyyyceQDVWSZfWEZKhRXfXcv6hkVOnqT0shTtvEPFqZhEhGSdhMlkSBBKlhZXuHfvngewBSFTa6nKiqXNFcrZhNmsxOqQuBMSRiHatFS6ngtBFWXZkKQRWbLMYq8iyvvYxiFpTvQtUsLR0RHCQhIlNLqm0/UhjEEoODw6YtDLmUwnNJUnOgJ08x5lVdPt9TwRUiifZDunKRZFgZSSWTUjDD0Ir2kqAgKckvzL3/8Qf/9v/zqhClhdXSVOAg9Vw6Jdy2I/54ff/f38yac+Q2m8MNBTYDVhGJJmMaPREb0sZnlxAUSLEKnfMQuBEJK2qRgOh+zuH524Q+7XMStLiqogIiKKIM0cdV1yMB3y9ree5qmnXqScTbGDhIAYIT0Vc3XQZzyZcO70WaIk5O7NHfr5Cgf7I45GQxAFTjacPn2aycSACGmqhiCIeODsGf6Tn/lRfud3/gjahhZJKEKuXr3B3oHiwYub5P1ldnda0qyLUo6f+Mkf5H/77Q8BEX6i610hvV6PaX1AkkUs9AYIEl54+QW0kXz5y08RJ95GrQIPK0zjPnGcgGi4+PBpjOtgnW/fLyz2vaVca4pZBeGUbrePNQFhkBGlHaSyNM2MuqlZXl5me3ub4fCQ1miUCClnDelGRDWTRFGPfr/H3Z1thqMZYRJzOLyHEOl9OZdve/D9xFGEkoooiVHSJ6lbAoS11MagW0Nb19iOYLeA2ji0MfhAiITKRogaZOC1bRaJtT7E05gGrS3Xbl3DlC1ZkuLaBqWkJ3k4eOnVbd4yeAwtDIFTxHHH78SD1KPYCeY2doOuKq8BiSOSQCBFyKUn3sKnPvIHpAurTKczytmE4eEBzlhGR0dYrXno8bewtrY+Fyga4DXr+LeBAYXBE8o1FijGhxwdXmfQ7REkHdJu7nk+WYKKYqQTHOcCSSlptEY4R11W4BTWOPJYkmWCziAlDLL7Grly+crLfPmL1zFa4qxCGEMUxeSjkkUtePrgBk0c0FEB2+UBomn414eX+Z/VS4ykAcs8LmMe8Ih/8Fgzd1PN3ZNZktHtLxEM+qxsPcrO+Dk+8hdjPv/lL6EoeNfbHkWZgJ/92XcQfiyhjQzffO4pbt0omUwSdq8Jbl0ZsdF9mB1zBam8rmJjcxWpHPvbuxzsTbh++yYPPfAgB7eH3Pjmq5w7/wAq7/GNT3yE/Vdu8uYn38QXqzFx2aUcz7xVXBh0+9rDPYoiWutIkgQhBP1BH6ONLwiE73BtbG7S1hGPP7lJ2wrGh0esrS5z/uIl5JHgb/7S3+Wpz3+Kpz/7Fba2thBuhTf9x9/LCy9e5vJT34B/+I//ys9lFAREqSJUMa4xEMUkzhK2JaqZ0hYl0jpU4jdQcRyTd3NmWJq29Y7A0sNqtTHMZjPapkZJQdjJcM74guf1vzOKvHheVxgj0NbrERtjKZxjdHQE1pGmqddeOkccp0gJ1mh00+IQJGkH0gx0g7MGZxuMsYRBiBQGJ/Q841acjKX0nDfnXleYfXvM2/F4y5PppfDdWOesz4gTCuGM12DKABF3sCLEqZw8jImzLjKMCfM+Ud4h7vaIun2I+gRhDHxn8fPx8YZFjnYNuraEUUJTVnQXOoyPRtS6JM8zyqJBBdIHT8qu362JABYsSOF3UXFMoDrsHuxSGY/3x2qSKMXoljiYL4S0hGGAxOGEoWntHIktadsSORei+fh5g24qhGtJ49yPJNqWMAiQwhJFAWL+oXpbrGcrRFmMw6CNJlAx2mqMtaRpOifB+uo4yTJsqJiMx+zuHdDNIsJohab1QY1V1dCLI7Rp+N7v/14+8sm/QDc1aZx63ZAKkCr0zAupWFpeJs97DAYL8yLJXxxWexuhLioO90dM5xTd+3UUVYWxgumkpqwbTBtSFPu4ZsKffPT/IUsdUjqaesLpjTPUde3puFZT1yUPb17kpatXSOIuuJA0kZw6FWMBJUP29w/Y3Nxif/+Quzs3mU0nmCYBkfHk2y7w4ovXKJqCphHESUgnW+BPPvwF8p5isBDR7Sve/Z638vibLpF2FJOxV+g750eSqytrLIiEazdepm4mrJ86SxQF7N7Zp5NlfgeLb2Erqeh2+xjTkncjgtBSlzVZkkBh0bqlrlqkDMi7faa1ptUB2hrGszFpYtFtRZZFCCSHR/tzaqymrmaEUU5dNly//ipWB+T9FabDgtmopJzOKDuOs5tbjKf3R6za7y2eEEdF4OnP1nrLsbGO8aygrmtG04paW+rWj5OKomA6KxCyRU0bkqQmUCFCWhQ1xgpoZ7S6pm1KdneH3Lv1Ktmbn8QY74Y6ONwnUgF3b77M4d51ev1zTJupz9WZL3rHTkMfgumtwa3VOGc9EG0+JprMCqb1DtPRIUEQMBqN5nydECcCRuPihHr8l++N14+pjosdJwS0FdLUPPjwI560nuQEgZpHbQgcIXU1I40Vxmi0nrtAHKjQQ8+iSGFtS9tqkAFW+E3c/TrWNjfZvrpHJ5ReU2McSirOi5QvH72EjlIfqaMdf1y8wrtm5/id+gWKjiS2ktLqk4Xef1bqZDMnhPAj+rLEOKhbzYMXn+Shx97JU196jr3hhGkcUFX3EM/lXH3mVd793ie4fneXw+ltsh4ImbO/f5NnnxtDK1lerzh/8WHyTkaoEs6fe4Ltm9cIA8m5zTNsnHqE//tf/Qt+6Iffw8//lz/D4vppLj97heuvXuXShTM898IVHn7kHNcmI45ue5dnVTQEyj+0jrsSTVN7TkySoqRkUhbkcYYKlA91jlM2Ns4zKUuyfIBykieffAcvXXuFrc0HODjc5/y5BzBz/tj1l6/z9We+zo//yl/n+x577305l1Z0qG1L61pkADKQJGhCXZGU07lN3BEgvbssDGniCNVEBG2DjkJUE6CFdz6djH04vua/A5dm3kk5FqyHKmA0HfkCqa7nJh2JEhInIIwTZKiQbh6zFAZgHU46T08WApzGGS9URjqEcAip5lTzbx8X/2WH47cjnsScGzfX0QlwSuAsBLIFd3xfhSAlTiaIuEM6CAiClLizgFIRSbdLkMSEaUyUJLRagTHoOUn6ux1vPK4KQ6R0pJ0ArTKUUkSxot/v0uoKFRq0LghUB91666pQxlOCEbgWqqZBqtG8kPBtZSEEbS1Jk9i3m3FUdYnRkthOKFsfGjadTufjKf9eosBXoUsrPUbjQ4IgQmtLHIfosmGwuEKjW6azI/JsybtkOillUXqY1GSCVJIsyyhMgySgm3epqoamLen2EsajmqqYEIYhC0vLfPgTf86v/fIvcDAa0x+sgMDnF821PRce3OJNTzzCN559ycdYNA1hGFI2LXt7e77CJpwv+m5uxVNYW4AylLMpTz/zF2jtSNPs36la/w85xtMjprOW1dXTCJ0zPTzkcHyLteUzGAPTac3pjXXG+yVu1TI+GjGZjlBSMZ6MuLu3S5ykiDjDtoqymLK8usLd/TukWYckzvjiU18mVCmz6ZSDgwOyJKOpjrh44SwrK4t87ktPs7W1xauv3mDr3AZf+OINllc2KIuWU+sLHBwcMhk9P79p/CVa1zVFUTIazRhN77C0soix3qlQ1SWb62uMJpYkCWiq13YKxhiSNODsuVVaMyFJQvZ2DyjmtuZzWw9grWU4HLFx6gnu3r1DWQ1BVNR6QhIlaC0Z9HLaquXM2U1vq2yOSKKYhb7ESc0gX6QpLGk0QIp7rCwvkHckcZixtnJ/sqt27uyTdPw96ZR/WDe1obE1k1nF4VFBMZtycHQIwrG+8jDT6ZRxMmYyLvnac08jbUCnkyIDBaJFUuN0QSokUjmyMGRv6BAy4eOf/gJ/4+fejwgjBn3H4d49HnjgArvbVxmm+/RWNphOfWEjcbRJTBT4YkY3LcY4ynJGHEmUS0gSn9K8vrnF9qsvcrh3h06+ysHBLsWsoK5bHn7T9/CmJ9/u1wtdImREFIRYXuNyWKux5jXootWWenqIru8QoLD43ysIKCvD4soiIpBEWRfdzLBNA6JBqRShAhwRIgjRtkbIHipOMXVFXWuaRnPmvpxNuP7ylDAO8dJSQ6AlC/sTolIziyPPbHOgjeByt+Xndz6KyAQWR6WbkxF5HMcnDxxjfN5bmqY4JVno5sT9ZR558n0sbF1iZy/l4cd/mhde/NeMhlOUWuTqt24xsF2+9dlXuNs7IssylrIuulVIFbH9yhEb59e4eXCdiJxqphlPDvnd//P3ePeP/kdkvfN86Pf+Oe/8a0+iTMv151/Cnhuw5+7SNIKf/9Xf4JmnP8/mm7aIXYWMZ0iV0NYFnU7mIw6MJYq9W3Zp0CcIAqazMb0lQ5iGiMgSSNjdu0ujJ6ytP46oKuq6ZjidMpxO6eVd7m3fY1bvoWzMBz/4a/ydv/Ob5GnO42cuce1rV3n3k99/X86lEQsUZkLrHOnczZnRIOsp4WSIq2tcnKCkJBIhMpx3QYz2MQj1FNqGpmnmUD/j5SFW4awX7lp73LmYgzKNxToJ4tjeLbC6wZkWa1qSOCGJY8IwIktTGuE3g7rVMIds4nxmoHPOj7tM43UzTmL1ccTGfH2dX3PH15qPZBAnRZixx4FSfozsgaDaF9/CecegAowmFA1IhwwiZBAhggjCDJl2UGFGkPWRQYKIE6ywtNZiytozrcqGaTGlmE6+6/l4wyLHBzlW1BM/1hmPKoQMGU3GzGYTVhaW0FaB1oQy8qGACopmRifOqeqCIExQcUKoW4q2Qc8rQOskZVMjlQ8SDIOMMLREYYKrKj/uiWPKskRISWsNnTCkrhtms8JXwlIRyhiloLGCQEmG4ymtlp7oay24FERNknaYzVrCIPW0ZSxJGlAU/mdZ42hmDbECbQEpiAQcHY2IwphIeVFUJ0uRyo+kqqoiixN+7qc+wOVv/SMcHlgWRgHCabIkmWsVYtI0nrdgY8/CANrG0FrDzu54blPnpEK+H0fVtoxGE86czqlmNUsLqzg5ZW3lNHfvzGhqTdGzGBNSNiVOOoyDfr/PrTs7FPWYTt5HuC5ZmmPMmEZr6rZmtn8X3YJuBUkMximq1qLtDFNrdu8ekKQ5D17cYGNjmd2Dm/QHAVknZO3UEmkW0e35ROtBL2NjY4Gb2yXTomZ1acnrg4oS5wzD0SEqAStCzj1wjnu3D9k/OKCpLcc3lrWGtq1RoWVltcd0ekRV1RzsTxBSe4u5bSnLAqEsxaxGyojZrADRogKD6DgiFVLVFf28i0/RdSSJ9C67yLG6scTm5gW+9tUXWBgs0u+soQLHM1/7HLrt0djpfTmXTz9/mTzveMdEEFLphrI2NG1LUdRMZjOPSa9K8jxlqd/4LlRd0+qaaraPrmpm05BI+qiTTpKikBBHJFFMmKT0ehHbN25hkXzz619neXWJtm1Z7vncKicdpp1xtLuNrVviXtczeub3sNHmRDcTBAFVVRPPtTlBEPDgxQvc3n6V6bBmcTGgaTTj8ZRyMmQ63CGPXhv3Hf+cY2fV6zN9nGkwArAOW1eMR2OwkqqaEWYLTCYHqGZGf7GDm4+TCQTKSZyL0aZBYT3c0GisDImiDJUKAtMihaCq7p8p4ODuhCDszPV+0KBpCk3c6SEbOSdcG7Is85/F3LzxnWz0x5yuIAgIgsBvMG2LTTuce+J7WTrzIBunT7O4uEw9UkwmloXuOkpGjO7eYrW3yTevPsdif5Ha1ohAsrS0Qp7ssHFqlSCAw4MJ0hQEb41oyikb/S4OjWkF29de4hc++AH+01/9RT7/2a8wnRb8wLvfxaevP0WQx+wd7HJp5TTbL1+jKIf+fXZyyvEhSqkT4XHbtiSxLwA6ScroaJ9uPkDO8wWMnrGzO6Y3eA/dXkQxa5mMJty5c4dOJ6OTdbl6/R6bayscHo75wAd+kq986RmuXr3K0mKPb8y+CL/wy3/l51JHDcIJVBMRtiVdoek2U4I6p6lL4qYmcQ5d1VglQUIcxLg4x2mByQy1CRBNC/UMlMPZBkmEKRoaXfnE+jRFSIF14LTzAdeS13Ad1ndPW9cSiIB2vtluReg7KQ5UFJBFCdYY5q0ipHMoW2GFw2rAKOIoA1qEa334phJIGaAEFHXteVPzzuHr9+linu0ohEWpeQdICoTzAmxBhBXKc5LU/Hc7McdjSLRzNKZB4rCmRlgNxoBtmJUTrDHURUlVfPeIjjcscsqyJEkyXODba7H0uVvCOfrdPoEKcWhqWxMpgVQRTd2gjWVipgQoynpCaCyRDLDWB15aI9C2RioPL/OxAsk8k8NzTtrWIJQXZKVpRFHMqNoSEfgdStW2BDiyrMesKk6Af8BJ0FgQBJRliVQSZwyBCk5aeset/mORMoCQjrZuCIIQbQxS+m7C/vCIs1tbwHEr2CFlcNKd2do6Ta/XZfv2XWSgKIqCqm3pdDp0ux1UcCzI8mh6a8T8Zg6YTqe88spN30o2hk4n+/e5r/5/HXXTgvSLx3R2QBKHdHLBcLxLknVJkoSDwx3OrD+IcQ0icCRpirEORMjy0iqHB0f08iWwksWFFRpdzcWeoI0mzTrUdcXa5jkOxxOsKVCxotuPybt9zq30qesZ7/vht2NNwfe/+xJg2dhcoSj3GSwMqOuWTscXJseLe1U1lEWFk5rOIOOZ557msUffwtHwgG43Z3FxATDEcYSQfkYslSNJA3r9lNH4Djt39njg3GPU9YQw9NdGGEIYhbxy4zrWGupGk2YRbVt7dkOSIIXnTzRNgW410+keoVzAOnjpxecIwwHLi6v0+wOcMEynh0SxYjodE6T3Bx737DeeRYYhVijs/JpWIsLhQztbXQAS07QEojPXZJh5MK3DtdYL/LTFhYogjIiiFKQjiCNPT5UBURgzmcxYWT/N7qThaHaDAIs4cw5jDYOgxTpLpImuxvYAACAASURBVDR7dy4THPRYOHUByzKdTgfm4kpf1ITEYYjWpdcbaI1Sgkcfe4Ivf/4jqG3o9jpMJgdcvLTJ40/+ADIJ/bzfzkWUr3N+vTbSaBC2wrQVxc4rGFn7h7qOkSqhmwasrT2ERhNIz1XSrc/3ccIShR0UviO0u3ON3/rH/we/+Zt/j/2DGQ88eB5LTKfTOQmEvR9HEmQ4DHZuzTUBtKlgphvE/KkhpcdehGFIZf0YsH1doO+xM+l4TTsuGDystMVGGdnyJkl3ea7XsbQmoSo67G5f49y5CxyOar545TmCJKK6U3H2VJdXb4659cJlVgdrHBwckJOyd69g89QS2gnyUDBYW+RwPOHpz/0ZT77rEv/0f/1t/rNf+hVkp8dP/NR7aMuKH/qRH8Y4w9ve+ma2X9lmc2WNF5+5TL+/xWTYUFeaKPZr5bEJw5oRYRiSRClJbDBNQzEZkyZdppN9huMRuzdv88DDpymLIUmSkOc5u7v3oC/p95YYHo0pZiVvecub+cwnP8cTb38bHSV4+OJD9+Vc5s7RCokLQnLhSIXBNDVlMUUWBW48hjglC3oIEaCC+TWe+M6IaVq0rmnLFNNmviNT+c7JdDalMTVBOIcDzk037i9Zuo9xC1K+lhR+HPVgnfMbtnl9LB0IJeaOdF9ouNbz56TUGCfRtvVJNc5vxOexnq+79uycJXc8UpPznz8PWj4BE3oGhAg8z8tZi8PgpAHlu0ZOSIT2Tm2tW3RdA5K2qRHa4EyDmKMRrLU0de3t+d/l+HcGeSZJRFU7sJbh0RHdtEvPBZgkJDQBIRGz2FJO9kjiHp2sT914C5rWFmSKFILGtNS6IbAWgULKAIxmcbDAaDQhDgOEjLAarDUUxRQ9j1o3jUG6EGEtUeCdWUsLaxRFwZ292ywMlijKKdZq0ijAKUFZTBgMFhFCedR8ALq1YBsmwwYUlI1Glw7dVGRZTlEXBGGAVBC5kNpq1tdXeO6lFzi3dYalpUWCsEQFIWGSUhRTLxrLQv7ub/wt/rv/4R9hrL/Y4iRhOp2S5h16/QxcTag6HtamvNq91YZnL1+m1C3OCdI4JsvvX5GztLTO6fWUyXTE+uYC166/AOGQhf4pFIooELSt5er217h4/iHyTp+7dw/R7YQ8H9DoMZubZ1BygFIJR0dHTEZDtCnZPxixtrpJ01RkWYdnv/V1ts49yFe/+gVCobh08QmOhkOy3BF1FGU1Ie9mJFGPm9t3KKsJ6xun2N29STWbsbKyzObpKds39zlzdomb1y7z/EuvcvHiEt/4+mXiNGdxYQFbaA6G97h18w7aWBY7Cc4JojCi24lZP5UThYZb9/ZYHCxx6/o2W+e3KOshZdUymhSsnlpmfb3vO3NFSJJ0WFle5WD/Nr1eTts0BEHAbFbRVCVhFPLS1Rd44ol3IMIZt25tE6mcg4ObpEnCZDbk1OqA/YMdwuD+gI/yvI8Rc1yCsJ7abCVOpCAskUrBSYyKCETCuPL3h2+LW+I4oiwNYRIjhUNJAcKzhoVzBCJABILx0ZBpdcQpdYad3X1+8J2P8ad/9mm+9dINIqFodEs3k7zl0UscTfd5cOscZILd8R0W++8lTRPKsiAIJVL55HSHo66nICydbp+z50Le/shFghCEXOHJS5uEBDz02CWiIPIr63zxNMacMLC861KiwpB7Lz9DMzugHO2T5B2idAER1JSzGa++fIUHH3nSj5HnIZ/eXWXQTtI2M5I4wwjHYOUi/+Af/vdUTU0vhXu391haXqUyjkbevyIHKXBOIC24wLeTx6liIVxEHd2D+S44ikKkAue826WdYxZgntslNEkakAQxaZJghI93wNZEnYi8t45BIAjZ299j0A955/f9LNvPf4K9vbuowPG+H/1Rts6d4ff+2T/hoZXz7H3hDg88+hBxJ8WIgHu375ENOijlSDNF1o1pBwlCLlKNZ7xw7Q6pDfnd3/5X/Mhv/Ap37+1zeG+Xi1sP8cd/8CGEbnnnE2/iLz7zJU6ffYTmlsXpDkUSe0mDsnPxtC9uCB21Lshlim5HVJUliRPu7Wwjm5J/+Tv/O4Qhv/Ybf48zZ85w7949Hr5wkTs3byKFQUURly+/yE+8/33857/+QV588Spve8f38PAjF+/LqVy2NRoJSpBHIThLWReUTmE7Q0Rd0THe6RtnKWaeJxeqgEAF84iVlrYd+HNrBbpoqWZjRuMjWtOQpClRHBMJn63GMZvGOXwauafl+HslPEmhN8YipCFO4pMSRTrmjDd3UuQ0Jpzb0H0QrrbNvMiZ/xslfUfHSQ/fbet5keN8uLJ8jVt1Mlo2PufRSZDzbEIpjUeRKo1ra6xyPmzYtDSzMa02zGqNbi3NnOwsTAumJQkFoQStfdf+ux1vWORYazk8PKQ/GFA3Na6f88/7PwqFI0VRZAq1JHn/nX/D1uIKOIVUHhut64a9vT3WT5/D2IYo9JbwJPQtaW0Fo+kUFZW01lC3LVnWoZh5t9VkMqGTdk5CzKwFoyJfzSlBURQn3Zrj1ubKyiqj0cgXRdLvwsfj6Zy50JDnXdrW/7wgiqgbiVQ1URT50VzTkCYdwkgxnVTEkdcAPX/5Jd7+xGOc3jg935XmaFuTzuffYRixceY0i6sr7N87JE1TJrMZWZqw0Ot77HbsEd4yCBiOS5zzWoFvPfe8H40lMULCwf7+X8Ft9l1OtotpqpIsSRgeWd725Pt46umPoWSfnTv7ZGmPzY0NkmQJ4xy7+4eEQcbywoCqnLJ/OKGsGsJoxPPfeprHH3+cxTBBTELGswiUIE4ztG3pZIK93RsMugve4qc0o9keDwR9ymZG1o+p6ppyqFnqr9E2jjv3DhkOGzpBxNkzC9y7u8/KSpesM+ORtyzzpWeucO3mIb/wyz/Os89+kdHuiCQISLOYM6cfBPdVklQyGQmiUJGpgHMbS+SRYildJwkD0pWIo+E9othycDQmShJu7xyQih7FZMbp02eoK8tyvkzgwJgpcRzS1Jrx0YyFpZRKxxixzc7+dYpZxfqpU7TtAUFH07SGtfU19o8qsibB2ftT5JjjoDshUYFECwc2wAmLQxCKEON8dlzZ1BRFcbLDa3XDcXimPyRSeFv19GiPiWl58MEHcc6j3M9tXaAoChb7KVeuXfPRAIlCqZTR/hFVFfKpLz7N2sYqunmF6ze32Tj3Vq5du8bFixdOQjo98sHhnKFtDdlcU2SCgPXTm7RtiQgCsBInIhaWTyOcQ1tz4uCIX0fL9LtSjdEtztYMFhZZWj2DiiOCIMLYll6tWTlzkUhxMqprKk/3DmWInid2T8Ka/f1d7rzyEtOypDzawWZneOfbH2f75WfY37lLtnyBR9763vtyPqvWa/nkMezQCYx17JdTAhVhpcQ54Uc4SeKVO/PP5FhwbK1FKum7Oc75bLE5bybPMvb377G1scaw1igV0rZeaP7whSd5+jO/TxxDk8Rcfv457ty5Rr6yyIc/9gnWz5/j5ZeuYTAMFjtsPLTGTO8xnpUIZ9g72OfKS9/g7JlFjBNsnN7k+S9/k+WtLdbX17m79xI3r99gIeyxsLxIaByf/Pin2VjfYmP5Ea4cXGG0r0nSmOlk5tdr4/ll2jSknYTWaobDQ8IwRqMw86wlqQKiOKOcGz92d+8yHA6pS5/KXZUz8jxHBh1Asry8wrlzzXyscn+kAaHQJ1OCpiwJFYRxjJE+kVsID7gN59MEGaoTQ40QgjAJCJuQOEpoo4wwapAqxAlF6wxNq5HKa3aYd0lVMC8m5mHUcDJ94jjqxOeB+WmCKQqyNPWaPn2MePBi9bbV88gHSWAU1vgNELbFtC3O4t2IeNSOR1aEGN1QzUNPlQpfs7TPx8pK+c9cKYGwFiF9KKivnizOtPMxlQU0rfaQ8aYsKauGuiipywlOGzqxwimHTH1QcvMGnZw3tPLkeU6n02E6mXA27vPJ7KepSs2lf/BBwve/E/HoOm/9X/4bbv7RV6grHzY2Gg1Pio+trS3uHexQ1hPatiWOPUocvOVtcWmVoqy9SNQZmpqTdjpYQiWIAv8WpZQYJ6jbmuOgOSH8XPKYtmqtpdLG202d4/Dw8KSC9X/vXxfSz7LDMCZJfMqrUoooSkiSjNm0JE0zrIU87zGdFuzv7/kiLUlI05QkyVDSt4SVlPSynHIyPXmvUSApp2OcgTxLTzQIdh6UdzxKu3HjJlZArVsMjn7//ghVAazxu7qyKsnzAQcHQ4SL0S1s37gDKHr9PmneQcgYRMja5ilG031u7bxy4phxWPJuyq2dbY6ODgnCgEcevkiapjRtxe7uHZaWF1ASur0e1hq+/s1vsnZqlcWFAdYaqqaiKP2Dt21a6rphOi2oqob9/X12d3ewlLz5zQ/zjnc+ysWHzjEcHvHCi1f4oz/6KKvL6wRByJ2du9zY3mb7xk2ECDDWh6YKMR+VxoJuL2PjtKftZp2Mvb1dvxOKfNfn4GDIrCiYzEY0ukQElkZXlGVDGHQ5OhpzeHhEp9thOjtEBQHrm6dQocO4lqIYYUxDMRuTZJILD53BGO3HPcH9GVc5F3oHX+ChdlEUowKHkhAqiYpCgkARh4oo8DivADC6xLQlSZL74LsgIgxiH6apPUFZt5a7O7vUM43QPlg3CUJWBgM+9fHPE6YdillNoHyWjWkqGu1IowiLZX/U8MqVK3zsYx+l0R4uhpN+PFI3J/EhggAzd2IUs4qDo+FJ4vRgcZGkl1MbzfGz6DhF+1joqOeBf3VVM5kWWBkhww5plGK1wcmMOOmS9weMjiYc7B2x/dIVICMQAdPhiGtXrvBHH/oQX/n8J6AeM9y7zXIn43BS4UTMUx/7Q/ZffZHQljx/+Zn7ci6Bk3vLn1t38v99YbhLID1vyH95PeBxsOOx7uY4wsQaCFREGEWo+et+dBtSTg74+pc+zuKgj1LKB3iGPXZuF/QXLzIdzkjTHBO0TMsJOpGIJKWb5vTyVbr5EmGYcHAw5OzZTfr9LrZtidMeDz3wVh48s8LFRy5w+pHznLpwGpcHHB7s0E5GxBLu3rrJmfUNiqMxh4cjxuOCRCkiFXj6/DyM9LhjB1CWk/n3jqoq5+YVH4ngjH/gT8uKleVTzGYTDg8PyfOcYjbl0kMXOdzbo5xOmU5m3Lh+k3Iy4/zZTYQQHB4e3pdzGaaSKFek/YS8nxOFEIeKOAyIw+DfNkc5XteF8bT2IAqJ0w5p1iNLe4RxhyCMvFPRej3odDqhqkrv0NU+1fz4ew+m9QJl32HxN5FSwTxOwl9vbdt6sfdcROyvI0PTaKqmpmo0ddMQRQlBGBFEEUEYo2RwwmNqW03baLT2I3HfWdE0jXcnHn81jX7d636d0a3PSfTvu0Xrhrb1a4Q21q8T0o/0nAAp5gTwoqCtWsqiQDftGxYyb9jJaZqGMJJkLfz95nt4VuzzwH/xk9RrkudfGTJ96mu88MFn2VID/jj+GX6x+iizuJpj9UM0js21ZU/adKCNYVp6+3ndTJBSsTDoMTw4RKYRdV2jAkFZ1gwGA4pJgdUGQkEch5jG0F9YpKlKkjTCWs10OiWJc5wQjKcNWdghTBXCeuz8pJggw4C6btC2omlb+v0BRTGl1+kxmTSkacpwMqbT6TMZHRAGivH0kE7qqZ4PPPgQX/jyN/iJH/txL0rGFzLT6YROGsOc2vwD73w7n/zcF+YXqmDQScm7IY2GPI/8gu68nbOd295E0EEBgSgJAokMvnMez1/FkSY5nU7EeDqlbVvu3LzJoHeKTrrAwuAUed7l+o1rLK8M2N4ZUk4rRrMxiwtdNvMVRBujtU+fPnN2E+sse4eHjEdjru+/yPqps4zGB7ztycc52C9I0w2+/KVvcu7caYLIsrjY52B3nzRO6S0M2N09YP/OIYnKsRgWTy2QZRnj2QhjDd/zzsfRpkIbRxgJfuTHvp/RcMKb33IBFdRMZzVJp4u1jhdf/Cqdju/8hVFGFCtm9R5Olezs3+D06Q2CZIl7e3usrp6mbQRLCxvs7N6l31vE1C1rp5ZJMlDScePWt+hk65g2IY66VMWYbhJQ6wZrWurG52itri1wsLtLGMRsbW1w5+6rfOzPn6euLAuDVZy+P0VrZVpCEaCcopHCU1SlxGg/A7fzh97r+RXWWpo5FMwvii1KSSw1QgaEYczi2hk6WXSimblz5w79xQ12dnZ4/MIp8sEiw+mElJAs7dHqq6i0w+F4j+Gwy3ZRkgjB4EzM3itXOdjbZ3l5xRcorbc5W+MIJEwmE7JOQphE/M6/+L9YW1zl/T/2I7hsgWb42kiq1Ro11xaI41iWuQ7puDsVCYvRDdsvfQWha+4ezTjdg8/+6ac59/AjVGgCtcSnPv0ZTp3d5LHNnFdv3iXobSCtw82mfP2zf8Z+HeIMpJ0Bzz7/HJkbUqmQ9TXFUv/+WciPi5F5JqrflDlNtdwjbDQy9JBRY9s52LQ96cQds36EEOTdAWEQ0Niasi6RxvNm7t3dJ3ANX/zzP+Qt7/lJBotdTq2/iaoqMFXGD73vV/m93/oa3QXDNKzRiaKbZcwENEWLyhOCMCYKBU5qbt/apd9RZFHCzEjWtx5g+8qLRHFAshrzAz/3wwQLC5zaOMXLz75CMdrhaHSDC4sXmO0fkmaKKBZ84k//kHPrFz3Lp1YofUzaFVRVjbGlnwisLTKezAiCmDTOqOuavNcnQPK3fv03eP7ZF5kVYx5++GFeuXqV73n7W9h+9SpPXHqIPM85PJzhrOTM2U22b71If2GT23fu3JdzOawqrAqRMiIWkjDqIMMYEcQEKkbO4xiOsQfW4iMyrAFnCBHkcYrKBUoIokDRtL4zNZtOMa2hLmaMD4+wTUOnk2NCQxAniEB6ka8UPtvK46NACqz2URHKCWgFTpgToTHWeLbO/B6NkpBABGjr8xiLuiYOBHGSea4Oxgv0NRiLx1dob+d21uGERszBg8dfSiqkUiglPS5Gzs02tKD8s1EEfpympENJT07vxh06TtDtDtBtTV0WVOMhTTnG1L6BEc15Od/peMNOTttqyqLmfzrzfu65IcMfusj5H3iSaTHhaHzIZXfIdlhCWXEnrvmttR+bt719ArdvF2qSOGdWzLz9e2kJpST9QQ8lHArLwqBLPZudkG2VDNGmRgSK1mjiOJ6PrCxVOZ231NqThTsIIi+4di2lbqhmBU3TzKnCrW+3OV/BBoF3VIEv4pRSJ90e78hpadsGY1uMs6jIcTQ+4u7uHnVT+x3EXNQVBBJjW4RwBIHipz7wk+R5hjEtIPnpv/7TZFmOkOakugYI4oDWtqhIUJviJL3Zd8JGfzV32nc4illFXbcUZcWVK1c4/8BF2laAC8k7A4qioCynFNWEvJ9iVAOBJckTWitojaYsZ1hryHsZw+mQMAyYjAtOnz5DWc2wtuHgcI84jhiPxzz66AXW1la5dOkRBgs5nbjLdDKbd1skSMHK6gpSKrIsO+Gn9LpdnKhZXetyb/c2aZrS7UecPbsGeC1GXVuyvMfyyimM9oA55yBNY6IoYPPsCucvnkGolv3De1j8jWc0HOyNEMQMh1OGR2OmxYTF5QUOh/toVxFEltZUNLqhaVtWljepW0HTyDkbKqOTp5TVFKE0Ugm0aUFUbGwu4tBUVU2/f386OWBpTU3rWt+1mD/wrWhpTE3TtOj5zt5ZgdGV3+kZqNtjHLvvmCrlKcVOeW4Hws+9o1BQVIfEEaTdHh//7JeIo663vSZq3mEQJGGXQadLWc8YTWdoa4lVyLWXv8Y3n/kyTVv5nVqraXVDVfo/11VBPRszm86ojeK551/hw3/2UV65us3eaDIXMfp2d1Nrn5IsxFzobkBYjG149eUbNNMpv/+7/4RPf/gPKG49y5//vx/h65/8JGESIpTDlDPaYsjOzT2ORlOKYsq5Cxe58uKzONtw794YFQmq0ZDd/T2KsmDr7GnW1jZQQcby0mkuPfHkfTqXoOZW4QqDlgGV9GGnstIkUU6QdTA4tPOhiccC4+OuTxTFJEmKShKCOMC1BmkcWpiTEaGUGd04RrQl16+/ytHhiMlkStzNeOjN7+ADv/i3aSPD6lKXolOiZzUPnT/HsDQk1qCLGpUpcIJTK2eY3J4xrg2rq6t88+tfZVwcsHdwnWyxz0vfeI7cSnZuv8DZBx6AI8OZ5Q0uv3KZiw9uYYSmOhqSxjF3hruEUUzTGk/Idv5eTpIEbSRhlJD2BygExjnCKOLCxTNsnX2AOM743Gc/Q3fQw1nJwb0d1leXaduaU6dOEagI2pr3vef7ONq9y8vXrvh1uyl57/t+8L6cy0J0KVzO2OUcuoyh7DIVGTORURHj8MWGNdaHYho/o1RSECrh6cNhQhSHRElAlIaEcUyU5qTZInHcRUpFNZsxOTpifLBHNZvSlDVN47t8s8mQcjajrWp03SKcom1aZtMpk8nQa+3GU+qyxllHXdaUs5KirCirmqoq0VaDPI5wsBRlzWxW+mw5FYKKQYVIFfnMPhTCCJx22NbSNvrbv1qN0cbHR7QWqy3m+LVWY9rWa1WbhrapvZvKGeJIkWcpea9Lr79Ab7BAd2GJdHEJG6XUVjArv3tSwBsWOULC+9xZ2nHDUDS87fxD/I//1X/NUT1DT2bMopYDW/ID/+y/5chUyGnDIElR2tDalqqoSVLfFusP+gQKnG5x2tLWgrqFaVkwmxaknR7T6cgXDFGItDEBEVEUMZs24CK6vQ69PPOp4Q6w/maoqopuJ0EbzeryImneQcUBVrQEhDhdYYWlLKd0si5OOLrdHkVdkff6VI0hTTpMpyPiLMWJkJXFU0ggiTrEgS+G/RwxoCobnG7AWF+NzqvwM6tr/M2/8UtUbYNSglMrA6IoIk9zhHDU5Yym0UjpUDIglCnL+SIYMI3BtY2H1d2nY39/zPb2Te9+Wl3n+vVbjIcVzz9/lY31sxweDInjhJvb28zqQ/qLEdNyzGxWo3XE3b19jNDo+S7x1KlVwlixuLDMyuoiZ7fWWVld8M44IaiqgjzPuH3nBoiGIBD8tXf9NdqiYef2HbI0JYoClFSsrK7w/9H25jGaZed53+/cffn2+mqv6m16emY4O7ehhiKpISlFIiXGtkIJkqXYUBY7MGwgRgzBixIpQBJHkRknQWJLdGxFoC1bkiVRlEjJ3DUUrSFn4Sw9Sy/V1dVde3373e895+SP+3VxFJgTQEQf4OulqtFfd526977nfZ/n93S7XYqiYHd3H9uxEUZOmh8ThBbdbgfXkwQNzXgyoCwkh8djXntjmxu39rixtY+SBrJSNBoBSpf0V0LScowbGNiuhTANkiSl1Wrjug1eevF1+r0V+ot9ur0Or756GVCMRkOieFrHbbzxTabxjMOjMaG3imksY1sevheSJDGOY+H7Ln7goLWk2QoQRkVRpCTpFMe7O7ZjKesbA5U6PcUbhoFr2biOU3cF5Lctxlkek2V1cXFntHHnAVlVmrKsuzxJGSNJKYiZqhPO3XsvX3/6C4xPDgn9xfrwEE2xlGD3cJ/AbZLGxyTTMU2vxVpvAb8RcnhwwOZCj+e+/Gk+/+nf5GRwQBRPSZKE6fiELJ4y2LvF8d4+P/e3/zpWmbPab+OaJrPxMctnLpyOLYqi+DM/3zng3Dkhvv7iN/m7f+cXuLa1TRKnXNubcemBdRItyKTNzq0Dbu3HHE8yyjIimYwIlu9j+/otnnzySVqtFlLOCFs93vbI44ymEYODPaI0ZqXtIScnPP+nz3Dl8ht3ZS8BHrf63JdbnFMGrbzCliZSQrPVJ9w8gxM06SwsYlsulum8abRhzsfoAV6jSyEhn6d2K6Xwtc00rzBcF23bGK0lhoPhqaTg6OiIsiz58h9/lfUH3s3SWQ/zZEYvVbzjsQewrAS7yGoruuVgORItci4//SwfWHyI4e6YG9eu8YNPfQ8f+r4neP2151lv9OkENuQRLTPgT3//i0y2Brz8rW/xgz/xo3z1S1/mbH+NVtNHNyX3f99DNPotPLse6xuGgSEcDFG7/NzAR82/l+98PxdK8v4PfZD3PPU+nnz/+3j0HQ/SXWygtabX69Hr9VBKsbq6hDAU169v4TgeWVqhJEwmE668ceWu7KXZW0K3+1Rhm9zxyUybzLTITYPcssjygqLI568CeQfgZ9t4no8fNPD9kCBo4AUNPD8kCBs0W216vT4LS8u0Oz2KUnIyHLG7d8Dg5Ijx8IR0NiGLZxRpjKwK0PXXrSzLOl7JDXCDFm6jien5aMummjvBDNfDbbQI2h0sJ8D1GgRhi7DZodPp4XoBZaXJC4kwbDBtMGpop1SCUkJZaSoJSVaQ5yVZVvyZV5rmpGlOnhVkaU6e1x/Ps5zZLGI2i+eviDiKSdPsNCPLDwKazSbdbpfu4iL+Qh/leiSVYhJ/Zxr5WxY5tufw8fZDJLJgUCT81q/8c7bzKf/s5/5nXvja1/gfPvVJ8rJArPY4SqY88rlPMDEMumHdom82awqy49YWRqjniULUmRitVrtOY/Uc0jTGdx2KLD29gblePYtut5torYjSnNFkhGk4lLKiUhIEOI5Fls8wDIPhcEKWJTi2i1KCvKrIK0VZ5ZiGUVeilSLPSywBeRpRyYxoPsLJsuyUvFqWmukkQUpJq9UiTXP2dk/qFqPUOJZDmc9bgii0rnjiXY/hO7UgeXNzE8uyqM15Css20VqSRQmOYdUUSlPhex7dTodms02d83F3VjPs0usuoDXzrljOaDTGdVyuXbuO74UIbKSCNC6oCk0zbHCwt080SwnDAMMS+KFHEHq0uy2+933vZXGphxCK4egEy7LotPtEUVw/dD2bJIk4PNrD8yye/uqf4FkBWZaTpimT6ZRz588xm83q8ahtc+7cmboFbwrChlfDqwqFYWqGwwOSaEael1TKYP/oiFmSkSRQFHONgm3hODYPP/4QR8MD4izh8OSEUipanRZLbT++pwAAIABJREFUS4u02x08z0cqhevZ5GWBNgR7h0fEacHLl69y+/ZtXnvtFSaTGY1Wh62t2xRZ/T12cjKkKCo8z0VrhW0LyiqjyBWu26TdbmMYipu37s6DUaoStKztxYZGK4mojHq8Kw0qWYGQaFWh5zoOpUFV9Tz8TiegLhwKyjKjKDMKmZDJnFTPKKoYoWA0G4NlImXCyfg2ZSlBFuTZlKJMiLKcXm+BwLHrbuRggJYZURRjWQY7V75FPJ5QpjPyJKJII0ZHexT5hGh8xNXXLuO4JlIroMQzJIZUczfYnOJbS63/DFVVaomqFKPBEV474K/+zM9wkmqeffYqWsLF811wNEHgkpWatb7Ne9/7OO1GyM4bL7O1dYODnSsYWrG+ssDWG9e4+eqzzCYJZy6c523nzpBNDlHRiDyfsb9/dzQcAOmDj3HPD/9FnvjoX+Ht3/shzpy9j8J0qdotUschK0oMq445uUMxBk5Hko5j4zfbuEGI5Xz7oKTRPPqej+B1ztBYvIf3feTjBJ0lVlZWCMOQxx9/nH6/z8VzF5jMBMJYYHNzFZFmpGrGwj19Omu9WgdjmHi+g2EohBcwLRQ2LpZh8hu/+Rmef/kKS7110iM4d+4RBvEhr/3Jyzz5rg8gDZsqSnj2y09z8cH7KY8zFtwe5XBGOp6wcc8mSZLPoXJgWbV4fH1zg7e/650YpnmKIgCwHJtZHHFmYxNRSibHh4gyoygKRqMRL7zwAo1Gg4V+j/X1VYoyYm29X9PqWz0eeuhBtm5s3ZW97LZDWk2HRmDSa7u0PEHLE/hGjijGaFURx8ncAfVtrpFtO3VsijHP/pYahIlhO1iuh+242K6H4/i4QQPb9SiKktF4xHg8Jo6mddBtNCWLZyTRlGg2ZTabgRBYjovlejS7PZygQbu/SH9llYWVVfora3QXlwlabbywgecHCNNBCxvTdMFwcb0GjheisSgqSSU1ilrvJZWmrBSl0hRS/Qc1OXdeVSVPLedlKetCJ6+BoVlakCb5fOKQkGUpeZ6TFwXyTdMQ0zAQWmNQR0w45p8zoLNIM3zT5cTKkJZJGk/45W98nr//wAf5xFd+i//mox9noCX//Ud/gvNBmy/85/+AD83afNE7wrFdijKenzBFDfkTOaqs8dCqTKnwcOwA2wHLc5nNInw/IM8yZnlBO2wgdYFpeQijFqgahkkyjVFGTUyUUiHLGg1d/5kYpVymxRTD1JhW7cXPkhzbrm/UYdgkTTIcJyBKZ3NAoMaxjHlxZSKlSRD4ZFmGaRscHx+xvXWT8xccTo4V7Va7nm+aAh1AKUtsy0FUgjwtKKqIMAyxzTpzxzTBMl2UzNAWpFmCHTrEWUpWpqR5hWlrXPc7zxa/21UUFYsrPWbJlL29fTy/iRCCxcVFHMchikd1MnW7RaO5zv7eDVqhy/DwBoXIaLdCikLihT6GZTCZjAmbDQyz5jfYtmA8ytFyRjTLWF5e5tlnvwFCsx60GQ1PSAeSoiro9nukScrmmTN8//f/AK++9io3b95kfX2N5maD/b19AtcizWbEcUKrKSjLlLyICbwFhqMRSkCWV+RFOU/HvaPiNzEtie2YdHtt0nxGVZkU827F8fHhnC4NSRIjrBzbrrsfKyvrGMKl3VzCddt0e2tIafCZz/wBjz34blzfZjSa0uuHJElKv98nioa0Wi20rjCEx43r+3NxuiKO7k7gqpY1kAs0qiwpqwIlSoQJShcoWSC0Qho2WLX7sFQVeVWPcS0zn+tA7mS9zVk7loFlF6isrPdTZbS8BmfObDI7GZGmKS23QV5VYBj0+z3UyWgupI9x3Tr4FG2xeeESxXSPaGDxud/7Te657wHO33OGdHRCbpWosuCT//STNXVYe/XIxfXI4ojD3RsUxXvqLpWux25izgIxjDugT4WhK25tv46lM379U/+ahx96FEfl3NjexSwVjhMyOB5xdqlLGc9wHZNuQ1BODrn0wCVcNGWZUM5iHn3gIq9f2aLTXkEnCUV0xGK3xXT3hLDbect8nO923ffUx8ijEV5nhbd3nmLyhd/gYx/6MM989ctsLC1StdqMh0cErRidpUghsCyLqpK1oSOXeKZJYLvYwme8W2LgUxma+x98N0tr91NpSX/tItowWV5ZY+fWjbl4VLHYX6DdbnLxoY/xtd//n3j43fcTOA5N6ZJ7JicnYxAVDZbIq4L+SpuvvvQC64+9k9Xegzz8xEPcd/9DlIcTDt8Y4K049DotDmcj9rd2EamETNFybK7dOqE4Srhy5Sv85f/sx3j1yi2OpwnScXCokErj2yZe0+fcffeQTFPKNEEKg8AxqYqEezfXaTbbdDsdemHA8eEBWZaxuXmGk+MTFhZ6zNKEnZ1tHn/4AfYPBnQ6HVbSpHYx2Ra9/sJd2UslJBKJFhpNSbPtYWiJlhotSqbTMcr05/ceB9tza3itUWfvKSWQWqHQ9cFEg9IaLUxMa17wuD4YdZRLVVUcHR6QZSndSuLYJrYh5/RgG23YKC1qKn3QQBsWpmdhej6mZaFhLuRWUJVoKRFViZBlDQkUup7ACHMeu2FQZAVQw2KVFpiWi2lLpKqfM1VVi8XfrMl5s7jaoB6DaSEQpg2iJCsVRR0tj+u4uJ6PxEI4CY4UYFpYwkDJkjLLIEtw5gehUn3n++xbc3LynLhR4mCwV8V84rkvUqH5pef/iL/7gY+hpEFllkxkQl6FVGi+f/FBvnyyR2kaSKXmJ12J49ackXrmajKdRti2ptNpE8VT/LmdLUkSHLumnFqei+8CmNi2iWkKsiyj22gR5xXNZpM0qwVZoOep6S5pUtZJ6VTkkwjHCSgNA6UrLNvEtDRSGlSyni9W1Yxms8l0OmVpaYkkSWi1WgyHYyzbIkkT3EbAwWDIwkqE1hWmbSPLgjxNaDQatLoLICIsy6HbaWEYPtFoxMpCF8+rhZyTyQAhTPyGi2PbOE6FrDS+1yJJEhqef6oXuhtrNosoZEaap7hug+FwxPvf/wRFkfPpT3+GRx55EHtokMQJH/vIx1ntnePZ5z+LaZSUZYTjNlhfO8/+0SFJqjg6OSZOYkajAYtLC8QRrK2tsntzgmkaDIcDHnzwQVrtBmFDkEymaCXY2bnNur2KNKDb7fHLv/JPODw6xGvYdRq1jCiKnCTR+IHGtC2Ojo4JWiXnzm5yY+uI8TTn7D3naXcWuHb9JllmYIecaqqEKdm6uY3pTAmbBq7T5ngwIU9iAt9AKfB9j8XVHpPokDQvcN0QhMvrr99gsb+J7/W551yP8eSA9z75Pbx6+XUuBeuUpSZLSmzXY3AyZmNjk4OD2+RZjNBNhLBYW+symhzQ6dydG6ljOgjTgDkm3TRq3DvaqMXEUoJhglGnEOdpTBJF6LIkjhLa7TpXzrbnwXtaU4oZpmFhiQpBiUMLp6idf2UuMZRiPB5z79lLSK1wbQvbsbBtC6VkfcOsBI0wxLBtDvcPubS+zO7xgKf/3e/xe7/727zj0bfx2tVXsApJr+2j0hTP82snY1PjuSZlmbB/7QWK/OO4rothCIRlA0btthCgqTC0wDQFg5uvYxmKpm3gGWP2trZpWJpma4WZUtx/7zp7O0cMLYO15Q6HOyU3C4dH2i3iwQFl4bDeCdnf2yVstjA7TYoqrenPCoTrMokLTDW9K3sJEARdlvs9rl27hqE7nL1wibJKOHvhXsYnh2RpUtvum23GUYQxpz/f0RQ6noHSFijJaDpEWPXpW1iKwcEOC2v3snn+IrtHe5xdWeULX/gCjz7+IFWpWF1d5fr1ayzKgl77Yc7f/yEG8fMsLmwQXx6iq5Bus4FlS/IiwXZMLN/G7NbdBNM20LriF/72zzK9fcJf+vhfwQlM9q6P6AYdZrsTOq1FOp2AZL+kHAv67SWCsEFRSJJJjGWGWLaNLIoaiGjY2K5HmtXZVWLOctFzfdEPf/QHeOGFl7ly9VUcA4QykUqR3r7N2toaAG+88Qb3XDjL3t4h/cVljk+GBL6PZdlMoxmba+t3ZS9f2h2SVoqilHiUhEaFYwkKbWL4io6VYDgxRVHiyfq6Ukoiq5rdJGWNBaikolSSUqk6LNwwsV0H07KRQBSnDEYjoskQU9Qh1sPRhDDw6LZCXD/AdD1MyyMvC6IkwQ6a+K6PFYQEQYBl2eh5lINSCqusCxuR1YaPUha1e0kbCGFhuz6WtjFNQZnnpMmU45Mx0WRKnmVE0wRZ1cGeb4YB3oGCmlYdJFwYZV1gCxCmjUYTpVld5FC75xzPw/UzkkJhOxHy8BATUXenkwS3mCGqkiqOyeLvTDx+y3HVYtCladrEWvIP//3vo20DK64QFuRC0W208BKFY1nkZYGJwERjugEKUTNxspJKVsxmUyzTxbFdpJJIUd+wxuMxcRyjtcayHdrdDlrX5NO9vT1s00VWtVurKCo822MWZ1SyJIpn2FYd6pWVObJSxHE9JinLkjTJsQOv5tBYVk2jNmtrred5dNo9Op0OruuTZTmW5ZCmWS3eKlJKWVGWsrZlGgaD0Yi8iDk8OmB/d8B0GiEMkEqRpQl5mnFycoREMpnNsAMXKSvKKkVWBa5XZwVZloeBwDUErXaI41osLi6TFNmcEXB3VtCp+QbTWcH6xiqtpsfB4Q6WLbn30iaGqTg+PsY0HZJ4wkMP3YfjerheB8tu02x3GUyGYAjG4zGBG3J0OKCqXDynB5XN8HhIrxOgZIptavZu3yYaRwjpsLc/ZFLlNNs9PCvkve98gunJMUqlSJlT5BV5XhGXMQ+8/RJRmtHprZOViqSaEqcFB4NjsqIijnLi6RgTg2wm8dsaZY6pFCTJjHarV4/ZxpKDW/X7X31tm8sv32T7xhGvX90iTnMMfJKpzcHeBLAZDgdsbm4yGsYc7R2w1u/RcE2QEdHsGF2a5KnGNJokEZSFoCgTsqxkde0CfsNlaWWRSkkaLZ9MfueL77tZhmEg7gS9zvU1lmVhmOY81O/bq7Zc19ZrWVVUcwHvmxkWtfspQ4sES90R99YCe6nq66rT7dBsNsmynEYjYDComU4//IMfRiLJypw4y9nd20NpyflzZ9m+/jpaGDi2zf5gwuD4ALTEdSwaDR/PN2iEPn5g0e8v4/phLYK+Y4lWam4gkPNOivq2TVZXIGwefNe7aLXabK73iSYzOv0V7j1/DlU4NCyPyWjCYK+kv9fl7B/2CXyLjaUmUZwgDQcMC6PKWGh4GDJnod8nSzOi2ZQqn1LmBWmacXh4fFf2EsB3mxwfH3PpvguYFrSaHU6ORzTaHQzbwfQcGp02wnIo52LsO617z/OQQtLqLBNH9cgnL2UNSjRcrr76HFkRE0UTHMdhZ2eHjY0NhsMh6+vrXL16lYcffphWq02cwmNv/zgycSljOH/mHryGi7YNtCM4Ojqci5gNeot9HNun2Qx47ZnneNvGef763/9b3Pd999Jq+PSXVrh+YxtRWDQbHfJMcXv7Bq2OjxVYLK4usNhfQui6K3zm7BoYok6WNkxMxzuVLhRFccoEMk2Tr3/9G3zjmecQQpAUNdNrMmfsHB8fs729jeu6zGYJju2xffMWtuvRbnVrsFxREE3uTtF6ME44GE/YPrzF1v4+r97Y5/WrE67diLl1kJNGKYbWGEojEHWoNTXXqpICpVJMUWAb9bkFCaZhYZiCrEjI84SqKE5DpSulSIuSOM0YTyNOxhGH44TxNCWNc/IkYTYYMB0Oa0SLaeOGLcwgxHR9DNvB8QIcv86U83wXOwyxgwDLCzBsl1KJOo9KCwzqVALbcrBtF+bMriRJSZKULM/JlSaTikxK0kqSlCVxWZIUJUlRMC0V40IyzCqOpjOOJjOG04jJJGIymTGdJESjnNkkYjg85vDoJoP96xxvv8pk6zXU/g7l8THTwTHDyYjD+M+ZXTUqIqxHzuFffgNlQCHg7/zQX+RjP/mf4HoBsyTB9n1MJWg4HjaC23LGaDam1WiS5znNZpdMJpiGw2g4IQh9lFJ4jkk0TQgbLoEfUuQlYdhGU+I4GtsxOXN2k52bt2g0GviBOz+11LM87QiiaMZCp0daZHQ6nVO3FECa5jQaDdzARWAxHY/q0M84JssSDMMhywRh6BPNYrSuLW5RlNJsNoiiGc2mT1lqqGo3wxe/8lU2V5YpihlFXtFf7BI2FphFMZJ6rvryt15mNJzUGRvKIMtylBL4noFhW6eIesdx8H2f6aQe0WVZUhMsw7vlxgGMEsOqH4wvvfQC73nPk1y7fpmNzWVs22R5eYmjo2NA8MUv/QHPvuARJXUGUhh00AheevlFNjfPgRasrq6xurLJi9+6yje/+SznNjdphg163QVm0Zgg9PD9TWSluXHjFoeHA0KnQ6NVpwgPBgM2NzYYTWYkScJCo8FkPEZYJdNoQiUVt24f0Fvo13PZPGcym1JJl/X1dY6P9+m0uzTCFg8+3ODqazdQqi7AzugNep1F0nxGt7cA2mRz8xxFWV+MXmDS6YQURUm/t8L2zjXW1x9k5/YVisrizNlVVGFw8+YN+os1Bv/RRx7G91t4QZvh4Ijh6ITV9QVG4xGzScrqikmSRFx5Y4tHH7+PWbxHlnbuzlYaBupNpNs7RUmlNQg9tyC/iTY6B+o5pjl3//mnrWPmAt9K1QJzo/Br/YsSFHlRd1NMxfHxyal4eTgccM/F8xwe3OJ3f+t3CHtLdDpdpidTvMBnd3eXMSle0KLdXeBkFNF0j+h22hwN9nF9g24z4PZwRKPr0et2ySXkeYVvhzXgbO60q6oKhEmuao5Gs1nnJClVYNg2670ez5yMyJOabD7KEpb6bTJjxEO//zY6cZ/3VjmmZWGVJr+Yfo4/emkbCXUisgasmrtSy+e+jkDjAP/LX/sebNPk+OAEo3F39hKg1eqy0LMYDG8DJVmWc/bsWXZubrGxeZbd3Rtksxmu56Hno8U69b3+T5SyoKg0nt9E2xWzkUkpJZYy2b21xROuprfQYZbW19HbHnyQN65eZjQa8c53vpPr168xngy4dN9FsnEIaYf9rTH95WU6Kz3UYIrtKtq6id/0mRwPycfGXNAqaSgL6Tksb/S5fP1bPPnQk/zb536XH/jID/H5f/M5Lpw7y+7eDYRw2Tx3nm7gcXCyzx9+9o8IvB6GmTMajTDtOnlaVXLuhKwYTgbz0WqtW7Etm2tXb+I6DSbjGC0cKg2yrBicHBEGAa7r0O12qUpJ2GjQ7nRZWdtgNhpg2y6dbofZcHxX9rJZgGe45KXN3u4uVqXw7SnCtWmIhDzqUyVdRJVhUeHMk8qFYVAJUGU+B32KuQj7zWGXdw4kJcXciSTLkrK8cyCJyIqCPM8o84w8z3Bdj1lWkpWa9fP34Xm1vsexPQxToCsTyzTQyqQSBkpaCEsiTQPXsagciwgNVf1+qpIUeXEa5mnZNtoQaDF/AXlenP57edOvhKjq0ZVRoLWB0nW8yB32TSUlQoBjFWR2gVN4GFkMQlEkCWZZ4khomBaOYaBMQSYlefWdR8lvnV0VKK788TdZ6nRwMRGZxAe+8Mv/klno8t7v/17+3ac/h0aw4Hp4ps2njl9B2IoknWBIkzRNwKqDvprNDkonCKMisGyaaz3yvCDPNGma0vBbdVFAfbOzbE2/X3N2Ot1WTSq2LaRMUcogDEPK+cWQJGkduiglpmFhGja25ZLE2dxiLkmzBN+vE31ty2Q2G1NrEcTcTguWaVMUOb7vkxUpWlnYpkXoB1jLG/zSr/wLzmz0+bG/8FGcOIDDEYXMuLDQIcsyfuMzn6EyDYpoSpbHKNlFK5M4yvFCB2EpDGsunlSCs+sb3NzdRUpJp9dlOr47Fx6AlBWa+jR83/33sLdf5zXt7x3SarWoKsl0OsV1StIsxQ6WkbpAakVWZEynBqurm0wnEWma0e0scnQ0BBS9hQZxMqbVbCGQ9BdbdHt9tq4d8OqrV7jnnntYXOxz9swavV6f5557Ds0iZam4fv0GzWaDdrvN3/xbf5P/9X//RXZ3d7EtC891KYuCO5d5UUh83yPPU5aWFlnsL3PjxgEXLz7A4DDn+pVtuq0ON7ZuEvZ82h2P5aUNKhkzHJ6wsLDG+fMX+OKX/pC//FM/xp/8ydcZDsZ0eg5Xt16mqjIEGWHQAuFiWQ7NZo80SVhY6BAGPW7d3uHcuQuUVU6ZC3oLq8hixGwWMxgMWV5eJU9LegtLfP3rN+7KXlZVgRIC2zDQVV3gyLJCYyCFwlS1A8I0bCQCDBspSwppIucIdDmH6ul58WA5Fq7h119p6YDhkGQTPNsl8FuM4n06rTZVmSBMh8HJAZPRMUraWGWJKWxMXWGZIa6d0vKsOnJh75A8m/Gedz7MbDRESgdhuRyeTOiunyNLEqK04mTngA9/4N2IImP3+HAODZR1jpwpsD2TIk8pMwPXtSi1RkrF8PgmvdCnuRBgVnmddGzYtFyXtahP/8Z/h1eWmKbi+B8/w97P/p8srW/ypS99gbe//e386q/+KlVV8TM/8zO4rssnP/lJPvKRj9ANQ4Rhk1QZym9wPP7ODo7vdr34rW+wvtpGFhGVTHECk+3tW3Q6fa688hLdXgdTCcoqwgscyPK6SDVM0rzC8RvowMM1+hTTGNszyKdTqry+1xzt3sCweiys9Ol0mty6fZMkzuj1TV66/Ar3XLiXSiums5TR8IAP/eh/y+d/+W8wnqZEs5wgaJM7Fb5rk84KVjprVA1NphNCHdBY6PD0V7/JyW+fEE0SXn3mRZYX13n+mT/mYHeHp558H1tXXuO+hx7iyv4W1oUFlh/eYDaNUGXB4sISZh4RjyZYpolh2+hCMjkZQymZTqIaSunUVnEnCLAsC9dd4I033mCl30brnLC1iioqZrMZX/7yl3ns0Ycx7YJOr8Mrr7xCv9PEbXns3LyOSu+O89HDxBYGXbeB31+h5zh0HYEbGPSWOzRXWqwsNVhse4ShheUaCNesLztTkykTpTWmqWqBrfFnBy61i9LCMS1c0yY3LZAlZUWdKq4kSRZTxFOGloU2LIJWn7C7RG9pBcdr4PgBrufV+rY5XRopqe6gWqJZDRtFYBliniGVkmZxzZzLS1RVMptEHB8PiKKISRQznU9l7nQZ37zudGaVUigM0OIUQPhmACZAblZMqym2W6MtlFKoqsKQ4BqCyPPxXBfP9xCGc5o/+R9abzmuMjOX19cUax/9Xn7nB/4Gn3zvT+FmkLoW7QqufOmbPBgscn93DcNyWLw640jELLeWsI0AP2wymYyZDEek2ZROK2BhoUfgN3G8kNksmZ8wC5rNkNF0QlFJEBWB3yRLS4LQY3VtkaPD2tVk2BamY2OaNnlWIoA8K2g1u6cpvUopTMcmyXMMw8J2BJWusG2PNM1I4uw07iGOk7l9z0TpjFbbxzIdmo02prDwnSZSlkxnQ6Is4czZs9zeG/IHn/9jXr9yheHJgBeff5Hrr29xfDTm+s4xVVERhE267R6gyLKa4Dgbz075PUmSIHXF97z7XUDN7JlNJri+/1Zb8l2t6XTKZDLh7NnN2uWVJeR5zmAwwHX9OuDPcmg0Q5otG6kSWq0mSik6nTbD4WiexWSglcF4HBHHCUJofN9hY3MRrQtMy6DdblHJnE6nRafTZnFxkY2NDZZWO7xx9TLtbhPHdTFtjw9+8INsnjnDY489xm//zu8QBAFHR0c4jsPZs2e55557WFtbw/d94tmMwA+YTiesra2S5/WYsdXskOUzGg0fw9SMJyNcL2BtfZM0zxmMRjz6+OM0mk2iKOKpDz7F9vY2Ozs7xEmMbZscHhyzvb1Lp9Njf3+XLKvbr1tbO2htsXNrjyRNOXN+ndt7OwRNn1JWzOKUw+Nj4jim3e4Q+CG3bu/zxmtXCFp3xy2ntQIlUdUdgnCdYWQIAfMk4DtspjujDaXVKRX1zo1IKUWlShQKL6wDOd/sYLqzyrIknk04s7GGVhVSQ7PVrYsk22Q6OyEIAqSsQAjKSjONMlzPpaw0jmuxsbLELC/xgxZFCWlmMhrFGJbL+uYGUZrUYDIkDd87DdxlfuOrqupNQX/1p6oyJ4sjGmGLPCtBu2gk08kEEChdsvXOn8e2LLS2KD7xFf7jpQ9wsHuLD3/4w8RxzMc//nGeeOIJVldXsSyLH//xH+f69esYAoxSMcsLjqYJcX73hMdnzm7WEDQLXM9ie3sbz/OwbItOvweGQy41paww57TaO3lDhmFgWy7tVhdhOiz01qnKWrtyx6q8t32dJ554gsuXLzMYDLh69SqXLl1id+cWD1y6j+vXr9eAyDyl125S5T5FrimKgrzImUwnmLZNpUqkKrm+dZVut8Pyyhpf+eJXef2163zoYx/i5NqAdz76Dt71znfhlBoHwbufeBdPP/00WZYxm8YEfoOdwwO00symM7IsY3trC1MIDFMjVa3DqaqKOImJ4xjX9bDmOXC2bfPKKy/SaPgcHBzQ6/VIkikL/SZZVvOg7r33Xi5dusTFixfrvCQkYJBnkOUJzK+Pu7FuT04YzI5puRVPnOvz/gvLvGO5y72NkGWz1hrVVu02fqNJGIY4lsAUEstQ2LZ1Gld0h6h/BxSplKpHznk5D7fUdWimpP5+VTWjRpU1lqTMC8q8wA8CGq02CgMvaM7DeE2EYeG4Xh0+a5pgWgjDwAtCTMdBAVlRIoSFMCygjhexhU2RluRFHWUTpRml0uSVJMpykrwkySqSrCRKCmZJTpQUxFlJmpekeUGS52RlSakUlVbkUlJpKDW1g1PURZsuCoRU6Dl4sNSQa02uFMK08DyXZuM7PzffWngsLP7V6Hl+8vc2eMdPfpSm4/JH//encBT86Kd/mU/8hZ/mr33qn/LqT/8C7/jUL/Lif/VziKs5KlA0W/Wb2r5XFxfJhMlkSKUVvh9iiNpqHCdDXM9mOhsT+A1cz8S2XdIsOgX4ZVnM8vIag8EJtjXP+UDgWhZ9SEAaAAAgAElEQVRSSQwTpMoQ2GRp3YLPyoTFxRUGRydUsm7Rx1FMGDbmN3iBlClVlWNZFo1mgJQ1jXg8qrUGSgJWNU97Fci0zu5YWVvj9uGIf/5vfhtTCzrNgOdeeon9cYXneWjTotPqMJsm6KDWFri2ixCKOCrQRjZ/wEi2rl6j22rTChukcYb6/89M/XOvleUNTNNkMhljmgaj0QjDsLAsB8/z6bR7jEcRW1tbbJ7vEmcRw/EEgcHN2zd42/0PMjgZkmeKJCm4fn0L1wnwPJcknbK6dpG93duc27yPq9evkOUFnfYa9957idFoRBA6VNKh3WkisAiCkKtXXkUIwebGBs8++yyNZgPTNnniiSdAVuzeus3ly5d58sknObt5hqO9HYIgYHFpgd3dHRy7wWSUg9jh7LklGm/r8OpLl6kqxZXrV7jnvg0WFhdwA8HO7V06rQXQmrIo2N7eZmFhASEsDFHSa7cw1Izt62MEGiFntBpt2q0uUhn0F5a4sX2V/cENGs2AlZVF3FBgOhLLql2EMtdcv73Ne97zTl5+9es0mncnuwo4pf9WVYnjOBhODao0hUYqgWm4KCEwde3wK1TtmiiKOaZBa0opKbKCskowAkmSWdiWjZLiNCSxygvyNCWapawsLjASEWmakk322do7YXmh4r6LD3Dz1k08x2F/MkBKQTyd1OnwpmZ0GPPqK5fxvQZRlFMmOSvLfdrNkDhNeem5Z0gyyXhyjG/7YBjs3XiNpY0LWIbEEu6pPkPPoyAMrSmqjKos2dxcIBkprGbGyvoZrm9dpb3WxUCw/FMfxMhh/9F/hKUUfym8xC8YFrdv366/jkLw8z//8zz11FOkaUI0G/OPPvGPQYPKKtJxTMN2aYd3L3Jlb/8WjpnRa9ewOCEEnU6HaDIlU5KGF2DZHo22xcnezqlDBWrnjWHatNtdLMdncnsLy/bI1bjGCAAnh7s8/bWv8uijj5JlKT/0Qz/EZz/7Wd77xPewc/0GSimWFxbZWGrz8ovP8+rTv87u7j4rFxcJgxAbm2Q6pbMZoouE5oUNXtu5ytsHQ86tXCQfKG7c3OHRM4/haIsmLb76pc8SF5Ll/nne9fjbublzjZvbOyxcWOYH3/dRXvjGH6MqxSyeYGgHLSVpGuG5d8jloqbgS06fBUk65Ob2IVt7LR5++EH2dvc4f/48XqOD59s0m01ubd9kOBxgGIKlpSW++exViqLgzMYlms4qG/d7fP1rX2V0eHRX9vLw5g7rHZvV5YB3L7VZsGOGrssBPnG7y9I9j9I9e5FgcQMvrN20piwxpQYhKYVGzwubN7uTDFF/DKVRUtYd3PnLvHOWEgYChSnqmuXOLzqdDo1mG9PxwLJqU4IwwRQ1mRgFUiMMsx6VGdRFjWmBYZGXEVVekBUlWVlRTqbMpjNmsxnjyZSTwYg0z4iSBKVryKE4javgNPFc/9kfTtfp59/0YUOfxlqdUpxBgGWhTQsvdGgEFk3fwX2L8Ny3fKKGno2sBD999Ft85Z3/NVgFyb9SWNLin/y9v0ceCkxdh4197R/8Q35p+GWCzQWiNIGiosgFYdis36ixwGw2w7IhT1LKckqz20cpcEyYqRLhQJ7VieBlWRJ6LseH+2hhEobQ6zQ4Go7wXBsLhVY1fEjKEsdpU5UaQ7jkhcJCMBkOa1y4lDRbPZJownQ6ZXFxmSzL6HQX0bri5OSEOJZoDNJoH9PxmcURggpRCGzXxvNtOu0+w/nfaaJoBQFJlnM8HDKaTFlfX8dvLTCaTbly7TovXX6FSxc2cf0mVaVptvza0VXVwufxeMwwHjKeTfB8i7SIcd6yt/bdrdFwytr6GktLHrPZhPX1DZIkw/N8bNsmz0v29vZYWloizxOUFJwcD9nc3GA6GzMZT8nzkjyrsEwP0zFZWlqm0WiwdeNZNJIzZzd55plvUlaSdqfHze1d2q0uQeBhCM3h0Qmu12A0mvGNZ59nOknYO9jl/e/7AGEYcnx8TNC0mU2neKYJsqZiHuzu4boujz76GIOTKQcHewQNk3bTZmW1z97hIa5vcHB4jYXFgOvX9+n11tEUjCcD4mTCxvpZjg+GNVfENU6zz6JZilEIrl7ZotnoAxWGWRHNbvHEu9cYT2acOXuW8XhMUdVAukYjZDqd1HgAS7C2scxLL71EoxEwHVe88cY1Lpy/xPUbh3dlL+9oz6RUpwA1IQSICqHuiI0rfDcATLT4dmemqsoaJKg0pllTu9MsRowkMQ5Bg9PAzpO9XVrtbn0QCB18t85gM4VgNh1z78YS48mI48EJi90OwrSxTEG31+IgHiN13QVybBfHEiRRhCVMvGYL23brLLU8wSgUQks8P6RMUxy3wZ9+5fP8Rx//q1RGQRiGaFXVGoGqwrbrgMl0eMj05Jj24gL7t7Y5f3ERebiPZYXEcYJpmsz+ty+y/X98kaoSCEvgpiZCVacSf601v/ZrvwZQW+q1pmkbfOhd57E9m0mcs3RmhUl89zo5STTmzL1nmM0OyPIZYbd9Cm08d+YMUkoWFzpsb73M2+57iG89+3UsTAzLrL/GsuB4eMRwkrC8sESqNVqVICwwXd7+Pe9laX0DhcYLAg4PD/mRH/kRDo4PSdOUpMx524VzfP5zv8PO9mWsaIzteiRlgShTxkVJJkqcpS5RMqNKk7lWCxphh5/4T/8Lnt95mvIoppoo9oY3WOlvcGX7Fg88cImXX7vC8kqPcJZglgWJqgjMDsc7L+C0QmwgyiJ8z4I8Qlt9qlLX5N/QIY4PyOKSWTpACMFKb5XpcELgumRxzNraKoacooXAbgTMsiG6krz66qtkWUHo2qTRFKnOk9+6RTKZUb2F7fi7WT9y/xlCR9NxJB4Vrm3Q9D3KYJnu2kW6m5t0+r06P0opBPUDHS1Q2sA2TLTUmEJhWALTnsf9GGZ9fXkBbhhi+z6GbdWFjKqLAUOoOr9OzMc0CgzLwtAmpmHNLdvW/D01pjZqAnSlThEcQgCGcRr0iVZoLalkhdY1rbmUBaUsSbKk7sgUOVlRUFSqLlTU/yega17ovLmI4U1NbkN/+/di/m+wTbAsgSkMQOAKG6Xr/4/nOJhaI6Sus/PEd35wvmWRMx4P8b0mybkez/7s/0isFYdHJ6T9Ho/EPsa5hzBNi6rh8huNa+xYY8zEnNs+bdBzZ5GU2JZLv99DGJosjmi2WwzHYyzLZG21j+F6FFmJMG2mkwgpFb4DtuWghUU0SzCFwLYFrltrbTqdFpPpCN8PORkMsCwboetIhTvJ5GHDpCwEfiPEd12m0xlFWcc+TKYVpmliWTVBtMhzbEPQ7bSQUhJFtSMsTiPipMKxU5IkQURgeya+7+F4HsvLSyTTGa7rMp1O0WikFnz9uZdoNBzuPdcEFEqVJEmC7Yb1jSVJOT4eEIYN0izCtu27yuKI44LJKKLGRUMcJzSbLSaTCa1WLaZ1HJfpJGJ5owPaQBhTFIKiymm1OuSZJgxbXL16nc3NTZ7502+xsbGEHzqMhiMmkxkCk4XuMnlZoVXFeDzFces2fJnqOp296xKGXW5c3yEMejQbTZ760If51L/8FKZTu7ze8cgjPPvss7SaTRYXF9nZ2WFpeYHFfp9r165RVCWmaHD16g7nLp5DVhmHh1Pe9+QH2Ds4QFgZfmiQpFM83+fw6JDQ7/DKKy9x5twa4/GYdrtTj8GyKY1Gh9df2+J97/9e9vav0+lauL7FaDQjTmJMS9QEb+0TzRQISdhwmc2G9DpLuI6HUrC8vMobr1/FCy4yGeR3ZzMVQA0BPC1wtEZrk0prlCwx5rNsDAHaqMdb3Anhq5OoBQWWEOiqpIoLSrug8p15+9wijkZ4nTMoVUFeMR0dopUi14K2KxAyRwsbW9TiZscLGZwMkZUmLTLyQpJNB+Slxg96LCz2efnKVcywiWFaKFXUpoHhANNqkJYFForhZEZ0ch0lMlReB/WhK3zPQasSqVKELHn6j36dTr9HlhX0F1s4vstqz2d716MwTvh/Fn6LftBg8+wlnn5hi6eeuI//8p/9Wi06xkBQC7XPtn0+8r6HONMxKKyQfrvL7b0dSl3imSaDwxHSvXtd1tXVJbSuaLVamEkdNDwYDKjy2pU5Go1o+h6zWVzzU5RCoRBz4nGW1zEG7Z7gnjPr+G7O137vX4OWmF7I2rlLnAzqEfCdUZAQgk5/gelwwIWlFT79bz9FO2yyubrG5HCKMi3iUS00DxYC2s0muzuHbCyvMyindDodTFOwuNjn6pe/iNOzKVqCM4+eZev5iDhKCYImhwcnLC+ts7raY2dri/HOiOf/r3+BmRa0m10yJVGA57o0Gg2m6YA0TQlsF9fxSdMUw7ZI4gRhgtaSjY2NufMuwbZN0njKe9/9MF/89y+SlSlV5XN8cMiD9z/CdDpm7eIFJqOcR+97gGevvPT/tnemP5bl513/nP2ce+6+1V7dXb0vMz1jj+2ZzGRsHNsJAUwsISTgLUFC+S9AQuENywtAoEgoEEUkAQKSwzB2Yg3YMx7baXt66Onp6e7qpbq2W3X3e/btx4vf7bIDnkkUaCGs+5WOrlSlW3V01uf3PN+FotA4tXn2mZzLF1dMwgImUcKDMKeHoNKq4a6fpnbueUqdFnbZwjZ/PHotFI0CGY+g5SlqkQIycNc0NUzTJLNtXLcuSdkqdNY3GI77DIbHks8DqKosEDRlTlgWKo5h0ao3KdsOeSaJvkou0HUFXVXRFEU6+s+7KzIIU47HRCFHZIqiIIoCVYAicrI8Jc4SZoGHH/ikc/5cUSALmp9yXBTUH3dslIKf9L2VhZF8VD0tctQCNIFUjAppHSG7QwUUBXkKURyRp7Ir/XH4xLu20WgynU5Jej5/U/wnXrC7/MPGF2W0+r4gUXw++rV/wK8Nvo4d6Gip7ILFcUK1Uses5fihJPsGQUAQK+RJhOM4ZJmOJsDUdfYPB3N5YHaS4aQoClGSkAsVyKSsOZzMU8djVE0GeQmRIrBwyw5xlGMYFmkak+fanJ2uoygFCOmo6JYdPE++9CZBiGvZKBhkuYxqb3WXmIwDdDKSKCMzYwxdpyhUgjSlbLpERYJjl9FNk7Kl0ts/kEVREtBptAj8CLvk8K3vvMvp5Q7NWpfVpbYkb0UFhZGSxTEHT3ZJ0Rj2hxiGii504vzZScgVYXDr1l3Onj1NpSqPV6mUE4UJO4+fUKnUuHz5Ch/dvYuqOoyGU9bWTtMf7HPp6nmOjo64+d4drly5xnPXrnP79m1ee+1V3njjTb76Ky9TLlc43B+xubFFECh88MH7NJtNyethBgiq1Q7TWUSt1uCju7dQNI1qrcr9+/cIk4Rms8l4dsTFi5d47733eP3113nzzTfZ39+nUqkQxykXzl9A0zX2Dx7gTaHd7rBxqsVk0uevf+qXcAyXz3xui5deO82jJx9iWRbt1ioUFlk8Y2NjE8cxGI/HhGHE6soGQTjh2rVrHO5PaTZreIHNlaun2TvYwbGa3N++x+rqEm7VZrl7hXfe+TamXfBXf+UvMp4e8IPv36RIQ+r1Gqura+i6zsF+j27z2fjkpHmGlG6qiEK+sOR1WpBmKYoQ5HmMyGKEOs9bU6QdfpqmqKrsyIgiw9R0yk6JPJPjrzTzUciJY4v1s2cZDqFcLnOoKzx4sEertY5W+AzGM3Ld4fK1y/gTn8lkgjmdcOb0Kfb3j1EVBdNSZRq6amI5VfYODrFdlyiYIhrSEX25s85Eg8hIyLKcmusyzXKmT+5x8NE92uvrpEkAeUSiCzSRkSsm9957hxtv/3cqqoIXRESKype+8gu89dYbjMclVg2H7vkaD70BcWXGY3dKtDXjb//ql9i0Vd69+R6rW6cZHR2y1l2miHwKrYJlWYRpjO6YhHkubShQmIyfneNxmkXoRoWb773PufOnuXfvHtcvX2U8GNJs1Th9+jT373yIW6oSj6TaqEBDZJl0phWSP1N2l7h55w5e5LD53OtUahVq7WVyq8qZ5VNUajVUVSWOY27evMkvfekL9A/uUtJXGU6HRFGMY2UIp2Bps8vB44cYrk2cZ4TDEVmu0D8Yko0UZpGP7Ri8891v011dJl4u89KVz/Dv/u2/wtsZUdOXcEsma6ublCtN3vzm72BoDnma8crVz/K9H3yfJJTOvqpRUJjqyTjyqWzcdW06nTpCE8R+CkoZTZOr9jAMccsWSRpw9swGcRDx8vMbROExvV6PUxsb3N++Q61eZnv7IY1mnbdv/h7tTpWo6GE7z6ZobdgRwSzhydDjo0ChvL7Jtc5zrG9dRd08RaNeQ1MU0iyXDseKIo0DFfmG1zQNHTFfgBdkRYGqKhi6geM4FKKBUFU2ti6RZ4JCqDx5tE1OBppBpqpkIsPRTSzVwHJKpL5Pb+cJZqmBrZlYm5uYpiRvJ0k0t5JQT3heWTxPAs/yn7rwTuOEJIoIPI/xcEScpGT5jwuUT6g5/gQUOCmKVHU+nlJAnxdLzLtChSiI81iOqTUNVEGhaogENApE/vEk8k8cjoShT71exTDBKencSvb5S4Pf5FcHv8+vi+/xd7Nv8Td2fo8sijnujzGtEqDIsUO/R7/fJ89SvOmUcsnF1HV008QPAqIoolotgxKfXNiyA6RSr9fpdrtMp9OTCHkhBK1Wk0rFnVvRC5IkQ1PlDe5FMWEWEcUzarWalMkZBpPJhKIo8KZTkiRhPFcv+b5PtST/lm0bIFRs22Y4HKJqgiSTDsmKIkgSua+rKy0KEkolncDzmIyHHB0dUqm6mIaG65QRIqfklmjW25iGzW/9hz/g8c5jDnp9Zn7EYDCEVMEwbH77d/89aZphmtIs0C45tLuNP9vV8efAzs4ejXqbz3/+y/R6A17//M9jGCXW1k6hqNpJ1MPm+hk211co8pQkTmg0l3j08Igoyjl//izlssnRcY+NjXVsB1559Tp5Ibh/f5dKpcG5S2fIRcz1F1+QhLeGhVEyGUymuG4Zb+azfX+bIPA5fWaFetshzDzu3vuQMI6xLJfhYEyzUacQPkvLdWqVOgf7PTRVR1EzZt6AKAoIgimbmw3u3bnJykqdo+MdVtYanDu/QpKmZKmgXGpgqy6JnzIbzbjzwQdkScJyp401V/90O1282Yxf/MoXGY0G2E6Zg4Nj4jBhb++IbneDwdDjyZNDDvbvc/bsWS5eeY6RNwZVZWNjg7PnzlKtVNh5+ABvFiNEFbv8rJKrxTywUsxN0lJJMlYUObsWKiqaJBXnIaKQqossT2SCtaKj6rJBbWg6pm6DVpCLjJyMPPU5PpoQZlNsx8A0baZ+zOrGeXRDZWNzFcttIwp45+13WNrYkHEDas7uzg5OrYJtaCShN+cHFXiZXOlpRU4axzx69JiyW2U4GjOdeuRZQp5mjDyPrEhpNhs8+uBtkshjMj5GZIJgOiSJQ7Ki4Ov/5p8hpmM0JYcQNFXjhzducfnqVY5mPkahMPD6XD53hmsXljh3psrO9j5VMyfTBG61xnDg0apV6R0NsFyHeDamSEMajRJZFCDiGE0XJHFE9gwXICLxePxom4sXzxOFCa++/CqhN0NRFHYe7/Fg+yFoBrZTRnUsNNOZF7eAUNEVyPyAvIg5tXGay+cucv21L/O5L/4yL33+K7jlCrapc2/7IY12C9SMi2tNPnjvbeIgoFYqcfHcFa5duUQwm2JpCvfv3UW3qxi2hecFqKpGuVTh+HCM7Tjs7x4RjXKWLp5itzjmVOcy//jv/yMG72/z+mc+y8aZVbrLXRI15dadGyfp1KbjcP/+thyxqJJDRpZKo0HDRNUlHcFQhez2KdBprVCrNXArTcpug+5Si1LFolKt4toOk+kU26mxvNLl/NYKpindeV977VW63Q5poVKkFmurDcaTu9QaNVT943kc/ycwoxmnai6fu7jFF37uNa6/+DKb567Saa9QsUzSNCFOEqI4IozkJoRAURWyn8hoe2p++FQgkOcZSZqQ5QV5AdOph+f55AUYhoNlldF0G6HqoJuSu6KqhFFIv9/nwf37xJ4HqTTqO3nvzN+Vuq6fbLZto+s6IMOw4zieh2TLgieKQob9Ad50hrQ9Bl0FjZNBwf+GQkjxg7StYN4VktM2XQFdnRsGzoOQVORIrUgzslRGQWR5QZJJv51UqERFgWaa1D9hMfnJEvIwBFQct4apGXh6GTXJeDSeMDAOyXKferWGXnaIh3uMvQkizVBVnXJZJkp74zGiEEwmQxyrIeWgqoGqa4wnEY7rouvMDc1yilxB0cAPJhQiw9R18lxKZi3LJU3liEkUOr7v0z8esrq6iohTHFND0TRU1SRXUjISDN0iTSM0TBQ1RZ3L4RTVoFapYhoaWSadmDVFRajzEZmQHQ5FzVhdXePw8FAm3Zo6WV6ga1CuVUnTmMALZQaXaeMHEzIKFATray3uP9jj7/2T3+DnXrzGi8+d453vfpuvfPlrfP2N/0qiCAxN4Nhl6UtQZPSPnl0KuWlabGyc4p233+VTL36KH/7wBgcHI7rdLgJZQX/nO+/w2c++gkJGq1nluD/FG8Vomsb1yxdJkxnf/MP/wtmtq1y4cJGj/jYT75C8qHB26yz1SoPJrM+TvW1ss8nSyhpONef5rYv86MYtbMui2WgymUzIsjKVismDx3fYOHWe6ThhZ2cHyzLwfY/XX36R0ajHc9cu0GpsoWoKx8eHFCJk89Qyq2sddh4f4s1iKmWdet3leLCHbilE4ZSWs4ZllhkeTWhuLrO1eppbH3zIKy+/imYkNBtnePxoj2q5S3u5hGW5+EHOZz77afqDIzyvj22ZXLpwgTgpyHOFlbVVHt+/TX8Q0eiskhQTvMkxS+0Opq4yOuwT5zlxIDh9+jLHx88mH+fHKiMZcyCEQiECUB00Q0CuoqmaNEEWBWpRIIRCmsiHKCLCUBskhPOujoGaKRhWjqPoRJkuXcZjh1yRgY/1Wh3LsEgzjZ1HPWqVGiVLYXcfqtUqJdfC92Y4tQob3S7HWYyu6ZTKLnFcIJKUbqfM4fEEHZX19XVyTUcgiJKMjZUVPL/g6OCYpVNnSITJwe4Ot//Fr/PX/tbfYWIUrKyuYttVHvzxN3BUhdWtLRTNwmCPySTh4e4OirVBksDMjyhVSvy3G4+5MJYS2I1rz9M7ekieQKXq8P6HO5z59CXCWMruS7U6hqGjKCaxN0GpVsgij2gUchw8GzUOQJpKFdRgMKDT6dDrHUvPKFWnXq+zs/NovvhboUh9ut1lxntPTr6f5wm1qsvG1mkODg4oipylpSVq9TKJAD/OMF2LM2td+ge3yaKIyaTHfu+Ier3O9959l0qzy+j4AFWFw/42ndU640OP5eY6EzEljwowZOe0Vq4zPhxhmTZLS0ssH3TpPzngysVTfHrlFcJc5Z3vvMlf+MVfxio5GJaJZVrYJRdVMTk87NHpdAjnvCnTtph4MbqaExcplmahoGKaJv1hn2qjzvMvvsB+7xBDhWrJQFAwmfq0q3Xa7TaFgH5vQDj1qdVqTKczDg4OcF2X9ZXr3L9RI/NMzr6wwkpziSQNn8m5/MHIwk0KnIbGhbNb2JtXcDYvoNkmViEVkIWAKEn+hJnnCbE+k2ojPwqZ+gFJlpHPA0oNwyAOQ2LP49G9uzy8+xGTQQ9DkWHRuqGDoiFUFV0INCEFCoPhkMaKhV2xKFVL0m/IMOb/U8z3Q537b+WkeTwPDLUhc9GVAtKE2JPmnCIXqCjoqoY9570W827xvIbhk5o5CrLAeVrMPB1FPS2QNCELJrWA4mTEJbdCmSvJhIZWyE+9+Ph+zSd2cur1xlwN4RNHEXkoHXkbrQYgCY9hGNI7OsLQbCquS6VSO5HxpWmK6dawq23COMWPfJI4wS27GIZBknkMByN6PemJUXKqVKplDg+PCIIAVdHRNRPXtdHNnOl0Ih2NNYHtaLhlnfWNFcIwpNtZptFoUuQQhsGcdCU7RCiCPE/kGK1amZMoXY6OD5lOx4RhjG1LeaQMu7Oo1WoYpkaz2aHXO6RUcshTsM0SJcfFshwm4xl5LrDtMnmmEScTOp0OrWYLx7KIg4hqpYSiFHz//dv8xm//Z967O+Kf/st/TWE5hEnMbDYmzWMmozElu0S3/ew6Oe12hxs3btBoNBiNRqytrUnjw8BnNpsxnc7odLogCg4ODilEjhAZ0+mYSqXCj370IzzfBxTW19fmvkNyFbC2tsbu7i5xFPPgwQMalTre2OPT11/AVDTe+tYfYpsWtz/4UJJNw4BKpcL58+dpNpqoClQrLr7vkec5o8GQBw+eoGvSBNIPJmxsLPHB7Y847vdx3TJRJG/EdrvF5uY6QeCzsbGBEHDl6jXp2aMK4jihXq/SatW4fPnSPKE4Z3V1Zd7Js8jymN3dhzSbVe7fv4PnT8jzlIcPH3F8fCTHNYeHc5k2rG+sMpsN55yzhPffv4mqylDaF198kVqtRlEIVLX6TM5lWshsmGKeD0MBCTMy80Ni7bacW6OC8jT3JpcZOLmQ2VZFgaIIFGTAnQAUXcUwTEy9zmTkk0QJ0SxiMvHwfR/P9wAFQ7e4eOUcpm2RxhFOyebW+++hohAnMWEU0zs+mre6BYZlybWZEERhhOPYaKqU8OaZlJmaloE3mTCaeix3y6RxRhSH1GpVQj/grTd+h9SbMRuO+OEffYM/+o+/y8rKMnbJwbBUbKeDbitodpW6lfP+7XuUai3CQqc3Crmz/QS37PD40R537x6TqwWu4+I6NYI4Jo4CKuUSumUxm4wxUSgSEGoCc9+npw/bZwFN02i1WtRqNbIsQ0dhpbvEvXv3yPOcSqUy50WoFIU8B6okqKAoCrqu4vseURTQ6x2gKILhsM+TJ09QFIWVdgODlAcPfkQUDvBHfbKs4Nq1a1y6dEm+0ByDarVEs1ljONslKXxMTef4sI9jlmg1WuR5Tq1WYzadsr68QtVyeHDrDm/+899ieXCKJHEAAAZBSURBVGUJq6ryV776lznYO8QxbA4ODuj1eozHY6rVKgidIhdUKhVms9k8mFJ6mum6QS4MVM2VpptO9aTDUCq7qLrGlStXWFntoqoZmipFL0EQcNTrsb29Ld3VhYz/CcOQe/fu0e/30YycZqtKt72MrtjsHR4QZ8+GePzGkxnffHDMdx8d8mQ6Y5znzFAJNZvEdCkUlYK5sjFLSbKU0WTM4VGPvYN99vb25DGbTAiCQPI3fZ8wCEmThCxOSMOA6XhAGEwxVAVNAUMX2KZOyTJwdRNTM9AU2RWxbJ2S62CVHTTbRNO1eddGfj49zk8/lXkEg2Ga2I5z0u0RQpBmGVEo9+tp1+mpj5nGn1JU8BPGgP/Lz58WOMpP/P7p9vRLBfNiB4iCiCSMSYKYJPx47uMn7o+um8xmPpZlkWc5rmWiGTID6mmb0bJMSqUSZApFJsjSnE57CSGkwZ9IEyLPp93tUK6VKJfLhEHAYE4UrlSqNJtN4jgmCCLCMKDRaGGaNoZhkSQZeQ6qoknPhzgjibMT+bOiqFiWxWQyIwxjDMNiPB7hTScUmaBac2m3m6iaHId5nodpmkR+gKFryARpQ1qpN6okUYjneQwGA0loCyMMQ5dZSpFHlsgTm6Y5juOi6zatVhvDUNANhd7hIZPhCF01cKwS1YrL+bNnsS2TWqONXdLpriyhipxatczyyiaTcISh6AyPB3izwZ9yifz5MZnIYmVvb49Hjx4xGU+YhVMUVRCEIY1GC8eWq3HLklli9UaNJJFhjtevX2d5eYnXfv4VLMvk6KiH7Vjzua5M/53Oppw5c4YsyQhnPn/83e+RBCG6EBzu7Uqjtrm3R1HkBKFHvz/A0HUURfD8c5fZ3FhndXWDleVN+v0xQRiiajmdpTpntpbY2jqNruv4nk+32+HcuTNkWYbrlmg0miRJiqZqOCWHTqfD6toycRwQJxFpFrO8vEQcx4zHI06fPsVwNGBpqY1p6ezuPWbmjbj1wU2WVjpsbZ1hNBqxv7+P65bY3t7GLTu4rk1WhIwnfcIwOCnsVQ22t++fEN9LTvOZnc+nHqhyTCQo7Cck1pRMj0j0hxTKTLaHkQVRPifrZUUqnWqLAn0+h1eALE8ptAxF1ZlOfcrzVbcfBLLLikIQxOR5wY0bN7AtkyBOcCybPE1kFk2RowKNahPHcXBd6bPkBQG9/oBZEMkxmaZSqpRJ4oSKW6NcLhEGIfVGjXarwy984XMYmoaqQqvVplsx+cFbf8A3fv832f/gXTTDII5DDM2k5to83umzce4UfhhScUqUKiVa3SZHQw8lnSFQsOcP90ZdLsQCP6TdbFGuVCmX63i+z8HuPkWWcnSwR5GBatoYOkRp9FMNzv5vwXEcVlZWqFar7O7u0e50uPX+/+Cll17i6OiIU3N1n6IouCWX4XDIUxF5URSkacJkMuKwd8D1F55H1RR0Q5uLPjRKhsL7P3ybyxfW8ScjIj+kUpaho7u7u4RRzGjUZzwdk2YJmpnR6tYpOTZpmGOoBqP+iDiOCcMA27IoOSUm/QFGDsJLyJMYq6rxvRs/4Gtf/RqO7XLmzJmTIq3ZanP16lWSRI48ZGFln4gwNEWnyA2qlTaG6WBaJUxDOsOHUUSSpozHE1RV5dzWKcpOCduy5oKPGUvdJYoC2s2O9J4xpQns0dEReRZx/uwLzI6XmI5U7m5vk+TPpjP3mVMdrq63WamVIY6JpzMIQ5QwJPF8gigmyQUZCkku8KOETKhkQmEWRAynM6azgDgWiEJDpApZlJCHHt7okH5/l15vjyQKMDUwDUGzZrO+1GS1U2W5YbPWtmk3S9SaLrW6Raeq4GgRFII0FyjkaAh0RZmPisA2DSxDRUNgOCaKaaGVy8To+JlCgoKiqih5QZyEJJFHHvnYIsOaO4RriuTWaIqCrqjz0ZNy0tmRmwz2nIcJkBaQ5pApghxBhiBWYAyMc0iEQFWlCWBJ17AVHTKFDEGqqAS5wij8eMGOIv6sDKEFFlhggQUWWGCB/4/wDF1ZFlhggQUWWGCBBf7fYVHkLLDAAgsssMACP5NYFDkLLLDAAgsssMDPJBZFzgILLLDAAgss8DOJRZGzwAILLLDAAgv8TGJR5CywwAILLLDAAj+T+J+OH+FFiXdvsQAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "#hide\n",
- "clf.show_batch(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Detect\n",
- "\n",
- "## from_xml\n",
- "### Steps:\n",
- " . list annotations\n",
- " . read and parse annotations\n",
- " . read images\n",
- " . return images and annotations\n",
- "### folder structure\n",
- "\n",
- ">/root\n",
- " /image_folder\n",
- " /annotation_folder "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "class Detect(object):\n",
- "\n",
- " def __init__(self):\n",
- " self.CLASS_NAMES = None\n",
- "\n",
- " def from_xml(self, path: Union[str, pathlib.Path]):\n",
- " \"\"\"Load dataset from given path.\n",
- " Args:\n",
- " path: string, path of folder containing dataset.\n",
- " Returns: image, label -> tf.data.Dataset prefetched with tf.data.AUTOTUNE\n",
- " \"\"\"\n",
- " assert isinstance(path, (str, pathlib.Path))\n",
- " path = pathlib.Path(path)\n",
- " remove_dsstore(path)\n",
- "\n",
- " list_folders = tf.data.Dataset.list_files(str(path / '*'))\n",
- " list_images = self._get_image_list(str(path))\n",
- "\n",
- " self.CLASS_NAMES = tuple(get_basename(e).numpy() for e in list_folders)\n",
- "\n",
- " data = list_images.map(self._process_path, num_parallel_calls=AUTOTUNE)\n",
- " data = data.prefetch(AUTOTUNE)\n",
- " return data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/nbs/08_model_converter.ipynb b/nbs/08_model_converter.ipynb
deleted file mode 100644
index 54142d52..00000000
--- a/nbs/08_model_converter.ipynb
+++ /dev/null
@@ -1,687 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "known-machine",
- "metadata": {},
- "outputs": [],
- "source": [
- "# default_exp converter.core"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "latin-cartoon",
- "metadata": {},
- "source": [
- "# Model Interconversion\n",
- "\n",
- "> API details."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "happy-retrieval",
- "metadata": {},
- "outputs": [],
- "source": [
- "# hide\n",
- "from nbdev.showdoc import *"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "frozen-device",
- "metadata": {},
- "outputs": [],
- "source": [
- "# export\n",
- "from chitra.utility.import_utils import INSTALLED_MODULES, is_installed"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "departmental-queensland",
- "metadata": {},
- "outputs": [],
- "source": [
- "# export\n",
- "import torch.onnx\n",
- "\n",
- "\n",
- "def pytorch_to_onnx(model, tensor, export_path=\"temp.onnx\"):\n",
- " # Input to the model\n",
- " torch_out = model(tensor)\n",
- "\n",
- " # Export the model\n",
- " torch.onnx.export(\n",
- " model, # model being run\n",
- " tensor, # model input (or a tuple for multiple inputs)\n",
- " export_path, # where to save the model (can be a file or file-like object)\n",
- " export_params=True, # store the trained parameter weights inside the model file\n",
- " opset_version=10, # the ONNX version to export the model to\n",
- " do_constant_folding=True, # whether to execute constant folding for optimization\n",
- " input_names=[\"input\"], # the model's input names\n",
- " output_names=[\"output\"], # the model's output names\n",
- " dynamic_axes={\n",
- " \"input\": {0: \"batch_size\"}, # variable length axes\n",
- " \"output\": {0: \"batch_size\"},\n",
- " },\n",
- " )\n",
- " return export_path"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "utility-procurement",
- "metadata": {},
- "outputs": [],
- "source": [
- "# export\n",
- "import onnx\n",
- "import tf2onnx\n",
- "from onnx2pytorch import ConvertModel\n",
- "\n",
- "\n",
- "def onnx_to_pytorch(onnx_model):\n",
- " if isinstance(onnx_model, str):\n",
- " onnx_model = onnx.load(onnx_model)\n",
- " onnx.checker.check_model(onnx_model)\n",
- " pytorch_model = ConvertModel(onnx_model)\n",
- " return pytorch_model\n",
- "\n",
- "\n",
- "def tf2_to_onnx(model, opset=None, output_path=None, **kwargs):\n",
- " inputs_as_nchw = kwargs.get(\"inputs_as_nchw\", \"input0:0\")\n",
- " onnx_model = tf2onnx.convert.from_keras(\n",
- " model, opset=opset, output_path=output_path, inputs_as_nchw=inputs_as_nchw\n",
- " )\n",
- " return onnx_model\n",
- "\n",
- "\n",
- "def tf2_to_pytorch(model, opset=None, **kwargs):\n",
- " with tempfile.NamedTemporaryFile(mode='w') as fw:\n",
- " filename = fw.name\n",
- " onnx_model = tf2_to_onnx(tf_model, opset, output_path=filename, **kwargs)\n",
- " fw.seek(0)\n",
- " torch_model = onnx_to_pytorch(filename)\n",
- " return torch_model"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "guided-plenty",
- "metadata": {},
- "source": [
- "## example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "modern-terrorist",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "True"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "\n",
- "import numpy as np\n",
- "import timm\n",
- "\n",
- "model1 = timm.create_model(\"resnet18\")\n",
- "model1.eval()\n",
- "\n",
- "model_inter_path = pytorch_to_onnx(model1, torch.randn(1, 3, 224, 224))\n",
- "model2 = onnx_to_pytorch(model_inter_path)\n",
- "\n",
- "x = torch.randn(1, 3, 224, 224)\n",
- "np.allclose(model1(x).detach().numpy(), model2(x).detach().numpy(), 1e-4)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "southern-linux",
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "imported-bathroom",
- "metadata": {},
- "outputs": [],
- "source": [
- "import tensorflow as tf\n",
- "import torch"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "monthly-endorsement",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'2.3.0'"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "tf.__version__"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "permanent-windsor",
- "metadata": {},
- "outputs": [],
- "source": [
- "# tf_model = tf.keras.applications.MobileNetV2()\n",
- "# model_test = tf2_to_pytorch(tf_model, inputs_as_nchw=None, opset=13).eval()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "innovative-senior",
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "tamil-class",
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "parental-vatican",
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "above-traffic",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADkuUlEQVR4nOz9e8xuyZrYB/2eqlprve/7fd++9b379Dlz5uaZsT2e4CGOBImCrKBgBUwksGKkYExgAsJSkPIHJkjAnxHEREiICEdYSaTgYAQmITgQy1wMSMYenEzsuc+cS5/uc7p79758t/ey1qp6+KOq1qpa7/vtvc+cOfG2pqu1+1vvWnWv515PPSWqypfpy/Rl+r2bzN/rDnyZvkxfpr+36Usi8GX6Mv0eT18SgS/Tl+n3ePqSCHyZvky/x9OXRODL9GX6PZ6+JAJfpi/T7/H0QyMCIvKPi8ivi8hvicif/WG182X6Mn2ZfrAkPww/ARGxwG8A/xjwMfC3gD+pqr/yu97Yl+nL9GX6gdIPSxL4B4HfUtVvqGoP/FvAH/8htfVl+jJ9mX6A5H5I9X4AfKf4/THwR+7KvN6c6cWDR8BSKpHF79+p1JLLLev7fsqmXye78LslTUn1pCfqlVOtpRcid/dEkKP6JLV3XGY5X39vvErzXJ8cc5Hu/v599PsFWctPy7bKGSq/3dWnl40lVvbDme+njz/7QlXfWr7/YRGBlyYR+QXgFwDO7z/gv/zf+OfSeyWqKCYC9REg5AlSIKQnmV+ViC45b8gvinoEEYpf8VFTfTPK5P6Uz5r6pcV6vWThpoGcJkSCYItaRGOvVXR6mcU2TX0TPQ1UQWrgNAgmvQkyE5c4yjh4SW90modAWYtOY1BEY6t5Vr+vJLnfgopO7cX3NaHS6eP8Ylqt1AebeheO+MUxAavq0/nlcs3LOc3jruc5w1HxfgGnAgSU5RCm/mp89uQ1mstmeMsrMP1bLHQo11HL3s19L6CYv/i//HPf5kT6YakDnwAfFr+/kt5NSVX/vKr+vKr+/HpzXhUWEUTS0hQAnQF1npE4PaIJKKTOOddnkInvReSXaUbTe5WpbqlBYFnbVEf8K1Uf70xS9u/oI1aEPIxq5QEjEYnn0eXRyEQAFVCR9C8REAzKXG/GCxGDiAEDYuJ8mwQKdqrdpP4u50Bm/LpzNKfnQyT1+64JK1/r6Vqmt8XnU5y5LqqLXCW/nmcz9rGefpNgkCLn3as4E9YZPY+WM9Yhef0ocuY2yxVmWnuV5VilKlcPWxN0vKzXPzxJ4G8BPyEiXyci/z8F/FdeVEAKgDv+ePyoGWImCrwQdyXXCTNtvrN1EDnR+glxXLSQTgouI4tpVjDpc5BaEJcFMciLHKaeylRGkMg5JUs8c/uhwojcJ5nqzxwXZq6ScTB2cQad3D9DBrZjBaKWj4qxqJ5EsRelEkkmZH6ZGFzoO7knvkDau1p5YS8k/S2yznJj2TYLMb1sNdajKuWbuuvFu1x/EJ2ar+Y6ZTYLgqKqR/VP0kPZWT3+/h87EVDVUUT+DPB/JUo9f0FVf/nVSuduG04tYgk8Oi1iuRjxyxH3nlZh+e1EDySv9zyF5d/y/yfTcgWKHi6llQzXnhnGNEsZcCQCKqBmUSeR4GQRO+RmZJYSpuaZkXl+FjBRzPdaqwqZOOsksqf6CkKm0zgXkFi0KsKLZqwaT6wqr1NJZHKOUlWpa6hJVF3z3H45L3mBSkaxrOW454aZaC8HYICgi5csEJ0ChtKfUv4sVVUKNWk56pKw1GRJX4j4Zfqh2QRU9a8Af+V3Vrpk/Xl2jonCcmlqre4FNZdIWi1SkW9amAxASqUxpj5ljfJUqji1lo1mArAoV3C1iutKKQoeSxxCrdcJUaw3SR0ImVPNReY+TxMSVbByNJPKoQW4iyC6mOVaAKvAtRR6lHrNssSilb1EJ8L3UslMyrWYEX3KXRqVlumokUI0l6KvE4ut4eQEnZ9/6+K9ZKQs3umixxLnIa9NBaLlcAtY0kSUBbB6LLeVNOZF6e+ZYfA4nRo2BaFcUsIZOafSAqKz+azOuWhnIgDCUhEol0sS+4tChBzlOMndTjKpGb1PZck9ofg7l6vzVXORubPMEkTuoSZonI2CGRQhCmhQC7+SOLAm3MojW/K9WlWY5uIFOFcOesmhamKQbA5lRZUEMld0RL5PSiSnpBMtstecuu7hbDxWdF7/RCSUTEtqSeOuKVgMacpfrsCSqVXl8/tE/ALzKi4ZR1YjXyW9RkTgVMo6o1LDxWkZAO5egKnYKTWjgDAtvte1FpAoNdWN1tmXtV7weNEjql4RJY02gZI0KGECiRI4ZOoPE/GPhlKPhgF1bSKkUV4wU1u5t6asjSwY6MQpsygfpZ4oFeRK0jwdGTxlIeXIkpbdMT9zr473O5XTqywFnmvF4Y9ItlQDr0ZRt76QJlPRPCdasg0BKaQ8hUk9qussyTfFWsYUFhBVj3yWRzOJz/tiEYTmOcg7BTVZenF6rYnAhChHfHMJBOXUlly8yFM+ZoQtjXkZ+jOZL6qerQCn+N/3O57Z2lxh7lHeYtxa63dHxSsgSGWDEjTAZOWfh1Zbm2v2rWRpQGaClyQKSTswpUgLCyH0JLYvkOolqZ7Z+dcrzfYi0yxVaPH9uM662Ewsyp5PdEl1MtrNpU9CW11vwUeWEPvCIeXlK4ZQGmhl+Tet2V12hGV6jYhAMYl3sg098VxS2IL219h91JRUP0tBUJOlXyvuvpQK4i7Bsr16v3aqXYj66aI3S+svhLiApty2nDlYbNkkYNBoINT5u2QEVUVNQndjJ66Udf7U47k/SbKZhRJLaR2IYv48Q3mHJAIbU43fV0prcFz+Dh52pyfULMXN0tTyW/51ihjlltIkLfY/y35MCDt1vGT5UreX3xXwYIj2mYXMMxWYYXZeixn6ZrtPKHpWIn81eplLv2xP9zUiAiXnz+loaMXvOwYmp3+UMDS/zVNYShCL3YPKsrUUHEuafqoDc4unHDI0cft52Hbe3kv/05xDpXqXy+W999nwVAB13kUoIKMifsciRdX1zFFy3tyXEnHnPCUoLsD7lLpwNEf19yNpb+pDmD4d28xrylKtpAhMBk5Tva5xV5cQUIHAaS5/Cj7v+DJJE3Md5WhLZXU5M+X7mfvPBKL+nnZ3Chp5V3ptiEANJ6e5Sg1MaaHTCI8Ruyy4rCkbuooMFeWep/GI0iYKmxnwkvHPhCwDW3IoqsAs1ZHyZ7QvZYUZrJdeffNHqX7KhMdx8QOTY06WJk5ybVnQuYUIOUkX5dhrJK38MbKFW5YjWc7RXHYmNCWBOZIFpvkov8Zt0WJMelxK0riOa9Spo9XcZiIjpwXqpcxSTUfVSP1SjzMAx34Jeat3QZOPimbHrpL0l8kkCE5K4Z3ptSECR0myeypwgjrn9xVjPpIQ6lILPlg3dyQ65hKFFeAE0i86UKRkcJv08RkJ5/dLK/SiV9O7JTrVbEQnUEiYGgJ+u8N2a0xbIM3kkCVUkDsJAVIBmuZ5oVSFasmiJsaGeX//OM9dal6J/LPqcSpvJmixPUVmDng3JtYrU0gKkp4r5JxASk/g69yvqrmStU9rMY9ndk2uCfYSmE6zvsX3icqnF5W68TtLr3VQkWOBML69CzzqUi+Qf04Kcif4x5KmVKUSEksG7hMZJUkB1fZgwXZi4Ul6kJISpHqji+/s+z+/M4iJZUyuxxiMEaTvGS8vQXVSFzJwzi7DMvVv4oaSjIaSjIkLjl1OyPJ3omyLeZAT707lK9MpCaPMH0FWp/7NTrHHxOe4L/H/S718sT6x8Sn/JAYVxC/vz981jKqNu4Z74v0p6NXFc56WctP2RQTkZTszr5EksFiw0pgxM4AFdS7E7AXVrt5znKVewFC8jLxFVF8ysVIR8qUoe5LrSf0Q+yD1mwknC+kgW/+rvJkdxFHl8Rgf8Fc36HaHJSH8JM0Uwm2urxSmdP4hmhyhJG1NZgFiUoM0/RVmk1ceOzWXO4ktCzSUU1LWqZSVgFhH6VA11ywzd576WEoXi76d4jaFT0Bpe9BFwdmGUGjleSuxBM3ldNSNVb2bxlYUrGQjnWdcJc+GUizf3EK5A3ZHem2IQL0OmdsUXwpRthLfpkVcYDuLdymvHBn35nxpKqtqSo/BY3Xhjt5nLiLLduZ6S+lh0uzygk60YAbEAibn8U6YE5/Fe+TZFq720Y14GGeDXm5PBUk+B0riqAlhRMLckAkYjQh0TA6lIgRzf4oRihaQf5qvnd5RqUH2yKuwSuX6l4uzzFvKz8cc/bhmOfG8UFFK2DyVls78LEd2/HvZ49PqwgyrRx4vp8Ht7x8icBKHT/ya8D1zpOJL5MaZXZXlMzWNwHlsGyiP0qRWJtxIji+6XMpyWzCVTb9rUfkONWPKnxlldsqRqq6JICxgkKItJRI3vdwTPr8B7zEEuDpg7gW0MbMcKQBmpq3l3KiZDFJa9CHSmWijyXRneVhrxsdiJiv/jZxCTdzrAaWx6xEe17sQx+WrtyXjr+atIJpFHTWoyAQnZe3VUCrCkdZ78a7sRp7LJa2b5nGBpUqd9y5kNyr4Wf5a1PDq6fUhAimV3PjYbTKjaOkHwLy23GGUSsgVs6ST2yUgJlG+3LWvF3K20NerXU/80jYgRf1zteWWIFNfZoJQEA6RCfkwmbhlAJ31YDN6uNwxPNkSvKI2IIPC1YC5PhDeOCvaS+JrriYhOCSpIDARykxL49zNZxyzn/JsxGMaQDl6yOtSSkXC8dGbTPhO+VmcIiTlt7Jend/XHKLIsahHFus5VbMk4BVKJ3phqrwVQa2KnyBcJyWQovtQG3Jzbj1ZWzVLpb/Iq6TXhgiYYmhHXZd5+eYtwQIAMgGoSHpRvPpbg+mkjU3N10g8r6PUM53aLLe3am52YpDJSFdLABTGwzy2SKuE5OibOfiEaDNvMF6RJ1v06Q76MRILiLaAQTFPeszZGr/OS30KMHK9SpgAL0yzE+nP7FCUVZbsMFQjYyGbqRTfYbkSR4jLbGeYreqnJIRlPfP81sNbik85iyZkWhD3XGdFGBbwkcdeDXWx3VxmrWhM8U0rRbNoq67plLyU/4UMQCeWtNzzOAWKZXotiMASZStOqUy+2SqnBpQIxFI0ACj87ad3Uk770oCXyawsgGDJ8ynU8Zz3FH2uuzThcn6VrfrTu5xJpkgzFHnmcUToElXk+RZ9tsd7wBqMRANdMLEGc+sxlyO6cqgRJqcjdDpwVEpBEeENNfoVElP+nQnAAlFPE8KSR85gnMX7WVQ+VgNOTmT1txSnM/FIX04z4Kl43dacuQKBO/LMv0uj8mmEPNHjk9+P+siEDVM+md7VcFl7NNTblC9LrwURWKbpDPtCrCs94wRYGn1LDpXfnKKuRUNH7483IDO/qH2xM97nAzzHHLFA7Jx3oRbkEGozAQBM9gBLiD4hfepJITHYyy36xS06KtjkHiwag5mIjduBqrjbkXBQ/JktpMoUeUY1cXmojVmZEBRW/7wcaesR1TuO69ZAmo+8Ms1Q2oFJ4v+pQ0l3/Z5sJUU6bj6VS+PJ3P8F3Vy8KtFVql/xIasDab1P1qHlj1dMWTLRSl04RTxKwpKPmUvKlHut5aS/IP2O/QRE5EMR+b+LyK+IyC+LyD+X3v+PReQTEfkP078/9n3VWz1nqUAqhCW/O6LSs0gpGemKffA4yTLlqUXRULQj9SyXbS77lwmAMv8jE7LatXeqLhkBqzZM3vfXgvtHH4H4Pn43AmLA9iPy+AbtPWqTUdEIYgVrDcZYxJooMvaKG6I/wTQ3yccAMcVcmWk8ktqnCM02hVJL7yaBdiKChgxSyzHP9ebxZ1mnlsYqyWxJj0+ml2WqEUGW/4p1KLlohr6qb6eqPimvLz+cEPjLTpwajcyfSx5/6hhAZhrmDoeEMrTcqfSDSAIj8M+r6t8WkQvg/ycifzV9+5dV9V961YrylGW7VCmMHvFlyWVKrjwDXE0/C868MM2Wi3Fi2qbGRMN8Tl/nk4Qzx8hPJZQd1zgz8IzgzJx+UgkyASqRC2bEim0YBfN0h9/7qLDbWM6oBfFgDWBxoaGhpcEhgyGowZswSdATzOQdlWn0qV851lhys542XSakyYQ4TOtXzX3OV0lzuYX529INuZ63miu/oq3ruJ4a0xfYeAdsHEFGmI1uUHi05ioLNXPZRCGZHLVb6TBFu4XrcEVSTkzXkmfdIcOcTL9jIqCq3wO+l56vReRXiaHGv/+UKNWLaHptOdbpXfFzruxEA/F04CKPHOfPnHr2gU8zXiBOPl4sRwXr+iqun/IHMRiZBGwwJnJ3lBT1M3oAQvqbWXdBMG57uDogxhDGEIHRpmChxoCN8YWdt6zU0WHQQ6D3oC5atLMdYIqXJMSXIbZfnhqMTxaZDu8kYkQUOWNsPT1eilPzU2Qot/1ivIKlF/2xAJwluFexHWSieeyFLJmmMzEKKfp/VHcmarOMMG3t3QV7eU01Mwut+3DXACb4muueZ6O2ECyiXcxVw7R1mE3IL5qu3xW3YRH5EeAfAP6/6dWfEZH/SET+gog8fJU6ZrSYeaJKHT47tTZ9z79LDlSa2aq8Jw2Hdd2ZSx19KEJMnUL8WWYpzV5ZpC7KFRx//j4jehm5OLvuRnUgSwVJXL/pER9VGmOiyG7EYa3FmagOWOeQxqI2UljXK23PXIeRpF5IdDWWRFTN3K9SrcqqQUXsJI8zEp1pFnJdJ9U4pnLVmlUqQc2Pp2XQcjemWOVCzTlu7NT7sh2Z+lwWO1rnSW94Eau6o52i3FTLCaYxi8SLVyJVn6T6nxCgiCtZj+9VBKcfmAiIyDnwvwf+u6p6BfwrwI8BP0eUFP7cHeV+QUR+UUR+cXd7W307SYjJgMXJBYnRekrFXI/LV6A3A2L9vET4krBMHSkQg2mB8rqU7cxYHZ+N1EA/A2JB/jIiFoTAJMQ1Y8DcDoiJOrkYixGLMRZjDdYKRizWtUjjGI3iJeAGONsZumARY+b6p7ZSVMJsA5CiVyUhKgkWgGQbTCYGMqnEMbeZ5618mqeyXt/p+8v41+l07Cb7YkJQHwIoBOiX4PspHD6CysrNc/lYQUmdpi5lODmOSJQ9LU6dQETAFmv1sln8gXYHRKQhEoB/U1X/DwCq+lnx/V8F/t1TZVX1zwN/HuDt9z+cIgMSxwwsPaV08fk4Ilz8UQxZjx7m30tSX6zqtCU5/b9YzCrw5MJycQThc/8mgiLz3wx20ejHxKHj2FNwEZksAvHbs2s4xKU3IqhJhCINyRjAWJAO1YbgwY/RHfieX+ODMLpDEuPjObwJxIyJYuoULldADKKR16jGPBIylqfx66zORYejLKpOL5mDgxUad6UOZK+MJbhT5T9OJ/Inde64/Fym9jcon08o2yexaIHZVXsLNaY2DszfF2D7AtNILLX4nsdj9Lj3mRgdRUQ+kX7HREDiivyvgV9V1f9Z8f69ZC8A+CeBv/vyugpE1nKxY/eX4ZSFdN56zlJIUrOuNFN4KL02cvXH1LxgT2XAgKzDqxa2Cy3azqswi8t5vUoicSRbmMQpTabgZmo+2xJM5mzGYAYPlz1DAjhjDUYiZ8eH6DcggnUOaAnaoE4ZfcCLsrYtgzFcS4+fZx8hO+n4uF0YIucnZFcqg2r0IQhAMCBhDkE2EYAsBVTzWerOUr4tepC3GmX6+koGwAQ3r36p7rwqUvSpxtETBKSkFXl8hc1kIn4FTFT8Que1P2ZluRqpVYFFHyZie+e45m9zANLI0JI15870g0gC/yngnwb+joj8h+ndvwD8SRH5udSnbwH/7KtUtqTJeUCGeMGEAvYFgEQiDEpNGY9p45T7JR2SmSC9ZIO5lAni7wklZu4zEQeTLksSZnEgcdwsIZhSJ892AYO52qKjIgY0CCo2iu/GoGNAvQenGDVgLGIdOAE/MGpAg6ehwRqLZs6OwqRrJ6nAEI0xhlmwkvl0pRWS41Ey5mmYRg0Z+GeEJhOZ6eOCa5ZIFQeXiNL3rw6cTqckiBIR60NSp92XF8WWXJm7IWIhF6R3RYmqKa1evUg4yO/nKZ0JS3lB3w9NElDV/zenZ/d3eNcAVXUZ1SfieDSSjGrzwEUj7AYRrCYOgxSsv0TVpGxIWV8ZAa7owyJGk6bSFIAdpZOsJ8/9m7hO7odIPsqf6kgEoDAMmpQ3Svppr34MyPO4I2B97Kcah7E22kOsQ4NPvgCpTmPAmcjRBxj6nm48Y9213JphMrRlp6BIomJSYyAk/qGZ0+W10DRbhQSTgHCS0LKUUMS3mbhjoabVxqtIcGdBTKb25xKnxPy0LgXiHjtvLQ8gMcPFoo1cvoyyVPPtQppYlq2knmOx/25uXtdev19ElzpBoKbT5hpRf8KL4yk8Sq+Vx2AQTeekZz5S8+9FfqgWIm9ZZTnsOEbvTF9LSjs/mDqOwOKcqSKcX1zw/tuP+PZHH9EPs1AdqxDKUNuKzIA8ITrV3xwNOAsGJr83ZlYLjMHuekI/YsVgxeJFMI1DrMMEH6UHtVgJaV4k2QZs9CiUQBB41G44rCz78Tk+hAnhVM2kU5kQA2CrEUIQMAGZbvw0UQKQMBHN7AGopH1tmQJiJ6DNClBS75bSVdK4Mv+8KxTn95/ugpwivaCJysOz4qoL2aGScnKzMxze3WDNp+e6YekgIEWmU10uy57evrw7vT5EoKBYE/DIzE+1nIWUTMGd40Kk465FtUuf6oo7pMWqRLTJQaPchY3cTATwPe88MLTyDr/8259EcEhVTtQ4j2MSQkpDYDGuyVsvcnwDk3Ew7giYBIiCuTxgcKgo1jlULWIajLFYFTw9Ihq3DA0Y6xCxYC1hDOCFMSh6GNmcNThp8GZI3COgGtBgYqAKYxIe5x0XwRiDhuQnIEK+C62MYByJwzzz5SlKzXEddb7ZQSeInoFWqxksYOMVAPqURPDy75K7WHwrWEQGlVrBj/0sRPDvs6tLnjS9yMQwy6Uvqnsh10zSgtHZrjufBL07vVbhxSbOv+h1vWTzZtqpfZ/ZGTXP7SLPUZllPcXCU/8FYbcf+LVvfM4Hbz/gq++/xaT3i1STPW+zMW+3ZQRP/cjlDGkL0CbdP4UAy/o+Y0B2ProCm8jhXWuxjcM2DeIcoooxEVljPoexLoULi7sII8q+H+LpQpPbkrqttH1IVkOmLcSSaGnxjmkcpKhl0ZiZQqBFKjMBenmqcFaYZjyY7kJYgu3i1emdgu835bXWSTWaVLdT7R+/rT+/SpcW4DbDc838Sykjv4tX1Z/uSyJvlWz2qjcQvWZEYCm+z2L78v756WcGRjJQFQSitMoJBVLOzxNwFqXn2mebQQZ4RbneHvji8paf+epbPGiauXxJwWRuJ/+Ykaboswia4wgm0R+JyK7JJdjsPIyKbWzkqCIY0+DE4JzDGhd9BRJCi40+A3HiFGscrmkjl9NA17Q0tk2EQKZ4g1P5iSCkA0tpG3L2KSAdEzBR2sgIX87nlKlEdKmeTqV5q7gmqTPHLlSsKeuJ31LM+cl0vMb1+7uTHP2a4fTIM7jq/bLU1IM72p5h6WQn7uiqFp8zZL8I0V8fIpBmIhQTV7yeUvaOmssppTtxqVHGehJ6q6RILsuv5a+cX2syugCoYRj57W9/junhH7p3n0c9M3JMsD+TlZLgTBJB5pgSufdkAExcW0x2ITa0e48VC2Jomy4SgKahcR2NczS2oXEN1jRYmzQ8E4Vu4xxN12FdjBrUH/assKxci01tWxOdjdTYwoMwgo4pCFQmUlmCmNSXRACkUG/ytCElgSiIdJ7/gvNOXyX/LW0JS+H3mJhW36oaOVFuwZFfgbi8EqfPw6yY0R2VyGmicepnPXOnO5Lkr1kFpbR93d3518omMIW3iz8Xtl2qsR+rffnjydvlT+bNounkt5+nLPnCq0hhG0x5Jba9PQx89OSKn//gIT/56RXf/KTnsBJCE/+NjTA2TA4/eVFqqUBmxCl2AkwS+UUEo0p3CNB1qLP0w0jjBDENrmvjSByRcKjF2PmEpBjB2RYThBCi20hQ5azruFh5LsPtTETFICFFqFeJ4clE0WT7VAOEkP6mXZs8ZRJSWLeUMd+1qOlo0RSiLdsY8iLOazzNseSdh8kaVMvALzCsHf9+uTx8ajvwxarGCQlC4+pqaUg+0bXT8QwXeQt16WhoOb3ImFlUmM8PxDn++4AILE0gk14k8/eSOEyfRObyCncKNwuCXPCiSmwj1ZkNKsfXj8RfIShPbw6EN9/h7bcv+N5Hn+G+ACtRTx9b2F8I+wdCvwa1TMhf2ggiTUjiQw4Znnz0jRHM7QBY7LphGEfERvfexjlc02C8oiYGEbHEi0wzd3a2wRkbtw7TGeSgyuHZNaMfMdai+OgEFOI5hIAiIaBiCATEmugGEBQj0Y8gOwtN86LZoSBbo9KaJYQPArb0IswcShTR6LMwkQGJxrlIgLMktVhIZiYwk4o6KlF5K9ISqb8f/4O7fAaq9xP81BDDPKqUIUfHmvtT7jIs6cb87gUEcPGpZIEzW3uxCPOaEIFadIlvqHZcantBzrDQpvJiTycAc92wIB0lxs8kR6TOlrwGy5bnCDhKP3gOdLz53hu88eE1H33jGhMEGxSzN6xGx/muYbgw3DwI7NdhRvqsY2dDXDLKaRK5jRGsEczVQBiVi7M1+6Fn3B2wrsGKxSU3X28EMWByRCBrsdZijYtc2Ni4E2k8+2Fk3ytNu8JKjw8KAYwJhBCwJoKlFzDBEIIWdx6GxM4MhkAIObhIMX0KQSXdgBTPHprMARMrjMsSnYKmwBzFxGfPxJmoZ9AuhNsy8mex/z9JQdNazkS+Coeo81rKYt3vlAzy2h+9n9+dds+p0Vyq/mT1kwKnF85LxVMVx6nodxVyXSPhzcTGJinkrvT62ASKVCN7bdioCMULjD7KcilKkbL8HbevpqmdjIxz26frV/aHPU/2OzYPHvLuV+7RnBsOMrJnpA+e3g/Qj5w/h6983vHe5YputFPf8+3AIen7k3EwEQpBkF5xTcft/sDBjzRtQ9O0uGaVEFww1tBah7UO6yyNjYeKImVIOwXGYp3BWsODB2vefHBB51yh06ddhVwm9ydZ/DORMvlikmRULPuaSfW0k5AiR+a51ORWPV0bNotjaYVNMcM5MPqpNVs8y0z/X7jki5dTj192WmhZtMx6hFylLenlVVYlZ3rKCwdV2hnkRBcW2V8m97w2RCBTsgp5S4Rc5C0nawa8UnSQCdiORKzaIjSXyX8WcLesOou9/TDyyafP8L7j0dsPePRoFbmYRJF5ZTuccXiJ0X/ffNrxlWdnbMZmRr68DZeO9VpjogRgDNYrZgBrkmFNFecil8/EoLEW55LnoMknBKOdISOwNQbjLMZajHXcPtsyPt1jNFr3RWYCMG8zzqqLEYOV0liZ+25np6akbsT8ef6jUBppgiZoy0bEZMaSLKvNUJ1/qZHJHJDz5V0YOVqoeZ3KXYjTmKgTMdKynokb34G9E+de0oGCVxcEkdzXk8Sr5O/H7ZXE81VTzlnOGeW7O9LrQwSYETAkIJqAgVqgmuBpKptDYyz0do63Fk+1nM+4LbG/KlrrJgB4VW53A7srZeXWPHrzgmblcNLQGkdnLZ04nFosFoPh4W7F16/vczG0EyEwYmZfgYx0VjAeLJZDCPRDj4YoTjtjcYn7O7G0zkapwko6hThb7KegQdkF1kbjog4eJ5FwRMRPzkmZw5tIkAzZZwEyZcl+DJMUUPzL65YJ8WwULTYMsyTA7BEwSxTlNGuBpMeIVPLzcu3u4nylj0L9Qeul5y4JcP7+EnHgxdlfVEZOZH1R0rtJXW76WCqu02thEyg0vRoNC31nWnBdaF2FVLAkGiVNnrJPLL1wKl5IAdHzOBu5dHo5e43NKzWEgd2t51wcDx+cc3Hvmu0IG9aMGk/2ndkVLVEkN2K4tzNYueCTh1tuVjk4SEKkJAmIGJp9wIohNIaBgHqw0uCaNnJrMQQjyBjisWIbtwFjfIG8lecm7mmSse0QPO0YMJqJRnSXzlZ+DWCwqASCAaOBoCniUIDoJRiiL4NGjm3CfGhFxSRvzkKDzdGH8gJJnt78ncJle45CUAYprSBmNvoUq178hLRes63nlNGtqnOqKhspY44jw2AhMeh0R8MrGBuX3cxDr+2Lx0XmKaKcwhc3NcPoqfMWZXotJIEZeWdbZmUYycQAZpmPYtKmdwU3kOTPMhmDpFID6gmfCcPRx2zBX0gJJPlhDEo/gKFjs1rz6OEZrgE1iohh1ECvPaN6JAijH/HAZu/4yvMNDw9N2n9nEsONSZLBCIMGwjhgjNC0Dueiq7BrOkzTRh09BAxgmxRgJG01WmOiQ5GxOJs8CK1l1TbcX5/TNV1SP7IYH0X8fNeBJAkBEbC2yBODVmRvREOWIIhEpZjnid9nF+jE9o+iOk/Swfx+CnGa11byGs3If7wu+W1BIAqd/241W6rfd2Jk7uaJTxVTmepYnFc9qreWbpZJ7/h2JKkUP/MMTVaWl4gCr4UkALHTZSixLMaW24LVab7FoHMdM3U+xUEoyi2uDq9NjuSLLuY8BSUSmc8XWGU00O8jVzs7X9Gd79hf96w5o7WOQQfQARsamqbB+xiwst0JH9gzmmbgyg2FPm9i/YNORMiI4KyJIQTtLL5jLBpimHGxgs+cXbI7MhMwGmPj9l9Q9ldbtPHRCzFxfFQRn3A+Hj6cuUTi0qoh+SRowZry/Q7RnGeIOxaEIsbdpKgq0RdhLpPvLVRJx8cqWiyUAT2zcTFKL0nWkBcFIJ3Xd7kD9ap+tSe3CTPRmoBvnoFjqUBgQfaqX0sQvIPYHJOIQky6gzAt91VOpdeKCMwULFn3C0IQKaqeCPR5PFOS8pbGo5Pxiyu2UO9iayISZfz45W0yCvTBczP0dH2gDwfWXcejN+7xzO8YtgOdNLSm5RB6YM89HC7tt7eupRkbuquO77r9RAgwBhmVsPeIcYh4RITGdVjr0u5awDYOcS7eOeAswYyY5OVnc8ixFDZM0HhHobF4hd3tHn/fYlcpLHmINg7RHFhIkZA4fTpWHC80iWsiPqDWzKJzRmqNbZlsp0l6/nQYRiUdrMpbfyVhr2X2mSHIFO0pr+0kF1dLOZfXzCgmlYDMSYo6Stib7UJL+1IW/XNmnRs5SqX/QvYYmJrOMCgsxlm+KKXZeTxTjiLroprqnVJ4195lC0nptVAHYpqj7OaUvG8pL9yY+UNM8z31ZU3Tub9p6NMUVLpk9bJ4m7lWoUKkcrVVWvBh5Lq/Qb3D+4aua3n06B4P3jxHVspW96gIjW3xomzDgTEEAsKIZ8DT9YYfub7H/aFLIcMEQ0NjW6xzmKalaTusa3HiELWxh6IYl3R/a2N/jcWKxdoGa2Lw0aZp4hmDfKZgstrHsmLjv3JnYDb+JRdhMZPhMsc+nET8JMHYbAhMOwRxM0HyVOb/Fa6t83wvrf9IaUiUiZhkaW/SEJbyvVR/KklaF9ky6NTkYAkdx7B3/G4JT7NUMHeozneqVO7jS6T3aT7n3ko1xowzs1H8xRLPDywJiMi3gGvAA6Oq/ryIPAL+t8CPEKML/QlVffaieqYzAzLv8ZdSkRD1+yIC1aIjs3RKmaV4mDn9cgz5yTAFK51Z/lRSJcx2psRRxuC53N4iD97hbPMQP16zWsGDR4bDXrl8tmUvPRu7QjAM4hk0sBLHtKshwupg+frVPT5yt1zakXube9AoB3Z4DdEO4Fw84hs07gQI2HRQaLQwmqg2KCYivLFIuoBVRKJNwEdj4/rigv1aOdhD9AHKc6OBMMleaa4UhBhTwBgBD2psDGcW4rcUjwwj5RFYqdZJE2GIB5nmPZl52RbcMBGG2H7B+cvIJBVRnloq1i2L3pkLS91eCShHcCXUe2szs7gLrUrtMlabJaUig6YXNWe6m7XDQt2JIzPTU8nbYoHCCb5s4WT63ZIE/jOq+nOq+vPp958F/pqq/gTw19LvFyepH0sqVyKv0cVc3TFp5efI92ZOM2c7BrqpmlkYoKS0eaLzFpkC3oHbdBjbgRqcNdx/dM5b7z1gc97Ry8hBxshxxTKYkVGHCcGyKHpxaPj67T1W2vD7PviANx88wIjFiYkHhGw6NWij9d0S44aYCeln6UWQyeg3DTWdlXfW8M4HD3nw6B7WusTlzbSjMG0D5puP8talMQh28inIzk3p/DD1ceP0O4tzacvSWGG9anBtklyyNDEtd14p5r8nuWh9QrGGnFNgvST/d/DiSsIo/i1+5rzZJn28D1XC2B1wJiwfjiWko1/zm1DEcpicyyjxQ4qSp+SOmH5Y6sAfB/719PyvA//FlxWoh5C0WHnxkpYPc8nlXvMsPVSwVKwr5IWsKUq9VnP/SiKlAmMYCRrikV7T0NiG9WbFo3fvc/+NC6y19DISRFnZDjGGvQ74EDBYJJ1wNCI82K/4INzjHi1+8KiPQGREsK7BOIezlsbY6C8RYpAOY9NWYCKSdooVkOcvngkwqZ2Vs6xdJDBRnZgJgUlXohmZzzJMMQ4KL0EXhG6E1V7p9oG2BzcqNmRaWRKCuA364KLh/XfO6dq2mGmtgX/akcmzHcOWTTJwcXnLkkZXC18QitNJ5uYmVWdRiSivGv587u9dbSzGWHZ1QcrK8pP6c6pNYXKeW9IhKd79sK4hy0mBf1+iHP2/SqHE3ykiDn8KvHPcefkF4BcALu4/LD7o1ONjU0n+PdM6oylcVV13Cqcdc2uKFqTUU531J0gHhqSmn9MAp+bSg8TeSfp40JHD2NN1URoQM2BFWG9aHr5xzu3lnt1hQE0Ulzu3wuvISGBtTNTdTSJBA3zYP0D2MI4Bay3Be8QLTmIkYRkUZ6JdwPgRqwZcjjAUOau1aasQkyR1E92GEVDD4ekenJkQXUPMF7L5SrOXYowuDGB9wI4G18MYPN2V0u2APXgfGIzSu8ChDQxNoG8F3+Tj0YFNa3jjYctu79nvD0l1SasySfvFRrGk9V0CT4X1eXFq9JuNe7XZrSoy/ZCpFEe571IBpPpeNy4THB+Vq4Ba6vHmDLn4qXJVDxZnCYqumWX5F6TfDSLwn1bVT0TkbeCvisivlR9VVUWO92LKewfe+eCr1TxUt6xGBXyBwDOiV3UWOFoajPJuVg0kS8pc6mWLBZ6mOz8VdQODjhz8QLu6h9oNontQMCpcPDzjwVs94fOreOhIxomrKvG6KJeAIRBP6q22DrcDYw3OOoIEVl1LY1zaPgzJS1eQUbEq0XKvLnL7QoRHQUJyILIphuKo3FxuOZy1yHk8ezD7XOq0t+xVccYgg2B6odvC2XNoD8J+8JitoB6GUTEB8AGjHtUDanrCGegDh24sjQTOzxoOfeDTLwZCyMaVPMPJ7kLW5UOh56YHLdewCKY5f17g5GJPSGBpsZ8Llilzby3AoNSyX4ReJTIviJMuvsdGTpoElk5SdzHEur4iV8W4wLygzz8wEVDVT9Lfz0XkLwP/IPCZpPsHROQ94POXViT5zzzMfMDm6A7Bu3sz5SsnrRTTKmJQUAIp8lerkbanZrqQhdB09l6iA9Dt/hbTvMtqc4HgCPs9XgOrlePR2xfstwO77QG1MARPh6NNxsEQAq2Jp/6MdXTBMn62pzWOtmnwXmiso3EuhhpPF2OKMclYGg2a2Y9msnqrRruBJMQKPsFKlA8b57B2ZAwBTEKPFGLLGsNGVmy2Qvv8gL0ecVtBdp4xBPyohLStGAgM6hl0ZNSR2+HAEA6MuwF/NSIXge7M4pu3+GzXMI75Yk8t5reY9AJ4ZULVmlNCjgW5OIq7YL2n3sUP+Vhv9TLWW3Ho5dflmwmQ5nfJu/Roq5GJpx2n6YSlnGiZgmOdYvGvoKq8QB/4gWwCInIm8UZiROQM+M8SLxv5d4A/lbL9KeDffnFFcfClNm+qX7Vho5raGctP0ukI81Llo/hZc3sWGfJzucBlXRFhvHqu91sUWN/fsLp3hu1cMuRZ7j3ccP+Nc5rWxb19G4N8iMQAHl4DpAg/1jbRHffS02nc2tusNpxvLpK3YHT6sZh476DE8GJi4oxlnT7eHCTTMCSADeCSfu+coV01WJdcjEWmMwOtbfiwe8RP6Tt87emGR08NZ9eCHcAHGIbIpccQEb8nMODpGdmHkVE8gw0MbiDIlqa/YmUte10xjOnobmUMlHmNC4K/pP2Zp0UaUJLteTVroDLMVVZkfpEvd0cW+XLDx2XyOQepPtf5qmJlDAGp84pUv6CcizuGVoIpBaHMv5eSw4vY5w8qCbwD/OUkejvgf6Oq/xcR+VvAXxKRfwb4NvAnXlZRwWgnV98jkV3nPIUqeVKcqn6f4gRlo/mH1EtRa4NS1TPxKQFvAttxx2G356JZoTSYtiF4j7UGcfDgjTN21weGIWAQgg+MKI4o+AaT7hC0FlWhMQ3vtBfsD3vEWi7OLjiMPYdxF7fnEJxGCq9iEemZHV6Sw21idSIG4wQbBEc6DBQ0bjUWln8N0XD5tdVD3rnZ4L+44fL5ljB4AsqogUHD9PfAyKg+EYG4A9LLiLcjwQzYZqBrlM3qAlYP6a1FvE+emELl6VeI3roQkYWsOiwdvsoD5keadQE35boWXH4pnmfkXEgHWT6Yay4Ab6ITQr5ifeK6BfCV/5/hLY9ZKzg9hr26P3fJI6d+TSVeQAV+ICKgqt8A/tCJ90+AP/r91yjVYynGmeKzlpmEKMKmWQxpfcxirmst8AVcYWohaaclDZgkMa2zC+zCwO3llofbe5i1wbYtw36PAFYM5/dW3H90zuWT7XQ3Qry4R6MXrRqMcXELEIdxylutYdevuWkMTdMRNBCMTecSBIciXvBWmC5kTYTBTGf543+G5Gqs0alnkh7SjkAg4HB8KA95b3dO/8kVt19cMnpPQPBExB/Us5eRQUe8eLwEvAQOEjh4j7cjyIiTkaaFdbvGyQNuQzddVhJxfFZfKmo9zXcZIyd7GUI+0DXRiUrWL0WGtNZaIvApBKkJf37S/P8Fzkk2x7OAw8WbWv5Yfi/7k9uoJqKqp7RGxVpOEK5c39RlrYb7IoXhtXEbLqerEq+yVKQZNRdTf+rOtuphXuhqwU/tuaRIQmX5aQk0Ae6imABq4KAj28OeMIA2oGk/HaKxzzXw4K1zht3IbjvEwiN4iZw6ivKWtnGspEF1wAwjD8MK0zha1+KHA6N1MHiMtTR41EsMHUMy6CVRezqmjMH6iPxG5+0+Iw1BJe7vazxo9A5nvHOzZvfkhtsnV4RhYFSP10AfopPTIAMH8Xj1qAQGqxzEMwQPNmBMQMOIFcE1HcKavm8Zs6Oi1MBc21uYT/4tYKJ03855mWpZPqW1nri1LOBEjgn6UszLRElreJh+TIQmu05HIqwVy00V6Vxd3feyt1JB9pFl4MS4p/QCNn+KrCzT60MElpNcPFV22SwWLkZX7ijUdP+UG8ei6VOYzUIsq64iU+oahSEM3OxvY4guNSCOZrNB+wPGGsIQOLvoODw6Z+iv8IQI8OlOP5PO7jfGsLIGRsOghk5bLtTgExcU4s1DxghONRoKm2gszOJy3lKHaBQ0KjjSCUMVXDC0TQtNjmhkecee8d5ly/DZFYfbPToM+ODpg+cw9vQ60DPSiycYxVsYVBhEGQnYiMGE0eOMxjMPdPhhQz9AMKlTkghrPlpcId+8thmZ8vrHW5UWemKmzhMQJKScnov1WlwlVwJQfQYnGyxJyHWsctSAcoLL3xlRtGj/ri9TdWW9ctRKXUrrn1P5l6F/TK8PEUhpMm2YLNbO1Hma5rz1VfgUgE7jnlH0RX5SRV3zD+bFLihzyRkq0jCXHdVzdX3F7dMtD87uYdcdRgz9tQcfsMagVrj/VrQN7G57jLE0OIzG4CBNPvhjDXiXogIp3TDShyjiGxWMs1gDtlfA4sUzh16fY+bFsOCCtY7GOIxxiILDsrpYI6t4MOmN83M+uN7gH1+xu7pBxjSfRDvATns8IwMjI4o6GG28zCSkHYigAR0HIKTLT1rCuEIPFpUxSSszgkRETwFKpx2XuAaTQJY4uZB55QIVMzfWvBoz0Nd5mFWPAj9LOeNlCHPEEHJ/JmCTCYTmGKcz7E5taZZqlqpB3W8pyld2jGk8MueXUtnVovzLoD+m1+cAUUUG51eZj2dQMOQ1SG9kLjVf4XScSqB4cUjp437kd7VMUR9QCg622nP9/AZRwTUG2zTYpiWMOp3EW501nN/fxJ2D1rHarHFtgwg4G3cUxBqsa3Cmo7EWezig+wOS/AbyfYQ2iftSiKQQxxePEVuMbTA5xmCKPGSMpSdw0EDbOr6+vsfmMjBuD1gVnBpCiAbAGKhACNl41QphZaERTBNoV4pxI37skz+CgHSEsCYMhjGFKZcUQl0W8yipv3MU5izVlQtbQ8QRcZfEsWWOelztQMQ3LM2KlVQwZa+t/rP7MAhl/yeSUPSmzJf7dULKTJ6JkolY7u+yd4viS6ic1WMt3hw/viy9JkRgARoyT2wZHkwkUsA8X/mbktSEefqLmmfJbkkY6yAjwnS0lQwUy0UsuU3mbPFfsMKt6bm6uWbYj4ReQQ1uvZo4QTTOwb1HG1Zti7GW7mLN5v4Gs24QF88AOGtpupaua2lNgwwjYbuP24h2CrURt/uCJR9EMtkGMLn/pliFWbpIor/DTvEC316fcfGFwT8+YAJ0YnFpiCMBlUCTYhjiBDoDTrAu0HQgBMZ+j1FNbTYgK0Jw+KAoIzQgLh9kmnFTBIxoDYSS4wpm5JgAIv7VGuWOlT1hAQKp3bukQin+Ld+9Sr4MF9n8WvR16uEpTD5FIGQqEUdvZrE+E4+JwCzHcUpVebX0mhCBYo0Ld+8poKikMyoUxD1Bk4pETsPsKV5Obzk1WZrIItQp/WoGFpmbmfqn9QKnZyUC7l56nl4+4+bxLTrGLSPbOtyqjef/nYWgrC9aLu5vcNbiOsf5W+ds3thg1gbjDHZtMRcWu2loTIsMMG73U+9jcBHFBMFJND7mCChxsyFdSUY0vMVjvTEOofVCK5Zm3XB+vuJdv0G/2zNuB5okBYBiTDyg4gmoCYiTqDxawZiR1gVMGPGHPSZE9+YYHqlDvUGTCmQM2NYgjZ1Ym1YkP0/wCeQSEndfSmE1ah1x9mPImp+rBZ0hY17/krMnLlshdVGX5vVPsDUxZSmGVbR3ijgdnW+oR3WyWAmbGQ+qb/WMvOwExWtBBKouy2KhJgCZBydEYxc6/y6HPqkQBVOIInI5tTmVOkRNOu6SqI6pcfIXsMr14Zbrp1eoTyQnGJr1CiXFEYx+Qdx/95yzeysEWD3ouHjvHLdxIIpZW3gomPtC0zSglv5qi44jIBkXkaA0YuPZgCJAtxiSZAA2BSWNMQFs2qlwbM5afry5x6MnBm76SCwUVAMjgVE06vk2AZkTaASxntYFCJ7QHzDBx5OKxmBth4QW9SYGJFGixNFmZyYmsb9kmLPfj0wgMK/jYuZz+WkdT3PT8tBPJIbLFSzAqqqrJE4FIh7BYAUAxbOwhJxScSjf5vHLUW0Ljn+qmfRhynmH7vAqZoHXgghAjcgTahcAU2AzedqmU6r5TVq0ivun1S73pKtdQFlUXX7IX05NsEQekDVNo0Jwwt6NPP/iGbdf7Agj+CDYbkW76hBV2q6BENjcazl/sEJQMNC93dLcs6gDOpB7QCtY06C09Lc9w82OUQPqowidT+upRAMd6V+OFGxttAMY0uGfEImCGOj2sPm2h+/ukH7EhQA+xBuKdGTAI40BZwitQdcG20DXgJGA90OM9mMsiMNIi9AhOBrX4WyTkMdA43KEkcngnk/szT4c5fqXCHjC8r1Al5l5LFDw5LLJ0a/MUY8RL0MZL7zOfLIOle2VcQ1PtFv3v6hZYIppUQN+PZh6Gk7gzzyml5kHXhsiMK1jEqemAIn5I8spkXpyZUZ4ZFYrVGqJ4LjZE190EvBmk0thgTwWThPwWdi7gcvdNfubXbrZRzBdQ3tvEy3znY0BQJ3h7H6XrLgBuxbahw3SCaFRdBQ4AGPAexgGz7A9gETfAquR8ORgn6LEq8FU4/0COXiozohmMFgVGmeRXtk/33HYHZDRY4Iy4hltiNt+TvGtgBOkE4wJbNYWI4FxHLCajkFjsabD2jWiLp2INDGakW1jIJPW3bkNe0SZpzczxxfiSdHSEj5LjFIR4/xpRuLipcBCJFh25kisnnuwJAI13GW0jTZrU+Rb9EMz/JQhQZhKzxpFvYNQIfmk6t0N12WajhrfkV67LcJpx6VIeT0Dx3Q07zcpOu3IaLFAcLyNU1V63FK1dtlJqO5jGbSyrsOvDHs/sn2+ZdwFxDqsg2a9ItzsYQg0rUNVWV907M88vveoKu6Rg8NI2AXMrYUnsLs5sB8OBPWE3Q7r1/H2YLW4kPsYYlwBDRNBAMHa5B+g0WDn1GGJPgLqwfcDjCPee0YZ6Y2nV49aTeHKI2ETRtbOoGFED306udgw4hEMQRqCGpwxMWyaDqj38VyCs4yrdgL7IDI71Mg0wcWExwWbuVP2/9cZF0UJE+ON6z+HK88EPH9dIu/yZr9y/WoSMPVRa+v9fM9hLlPXOPkwLKCmfo7lBCo36bL1ivToso5FrSc2Bio29gJq8XpJAsziS9ZwMwU0k9+oLItV//Q4yyl6XH+fGJHO/ah0Sxa9qWueVBaFsRW2nefZ02fcPrkFr/ghgLE0F2t8P8ZttDHgGsO9tzYwKOHgkQ3wwHJ1dWD7jVvCk57dsGXQA5YA+56+37P3PZ5oGDQqmOAx+AmHjCrWCM7Y6GcRQnwnBoehaRuMKtJ7GKPnX5CAR+P9Bq3Bdi1N53CdcL91nBlDOPTIIDR0oDHoSNeuoiFSLUYczjqca9MdhIrtHKxccvtdCqwlLS7WV2beXqPwXG4Zj/KIyxf2oqOMJ43CVNLIiY+cgqBSEqWAj8puUUo9k0SyhEqpyh/1a8G0SjnhZemOWqf02hCBaWul0M0q+2A5d4X+VxKJfPJQmC2i84ZaEaZM6mlZimT50+yzXUoQaduq8FOY6hAI6jmsAld+x7PvPWXYDhBAA7jzNeIsYQy4xiIENm90uM5wuBqjgX8jaCtwzyL3LaaN/nJWwPQGgjIOOwhDjPlHlARiv5K4ZCzWxROJ8Y6CFtc2KT6BxTgwvY9egX5kCJ69ekajjI2BVUt3saJbW847y72uQccRMwbWrkPExENObo3IhtauYlBU0yDBYNXQuRVWHLRxS3EC9UwMKnGeuyl1pq+JSJeofWwOXq7+XOUShe98PkEIlu8qm9KifEW0KuTNkHgHISk6Oe1QnOr0ZEjRae6k+jaXqyNf3E0GXhsiMHWkmAhYiPb5MU8SZaG5nkkj0/l3Bo0F4Y0TWda72Kqqt4uWqRa8cqX7JrB/23DAc7ju4z2BNhrI2vNN3D5rYngwa4T1Awd7ZdwGaKC7cKx/okM+SBeMisHh2JgN1kexXHTAJgMgeISQ+m+wKbIw6fpw1zQ4a7GeGMBkNxJ2h3gHAcoBz95AaAyubTg/W7NeNVy0hrebDfQe03vumRWNi67HnVtjJNoBjDha08UjS5LiFxiBRmCVtgSVmdMv51Nmoj8dIZcSrQW7QHiQI2I+L6qZAWhe2AXSFNLeK6QZLnTxu+hnxvnCQjCr9nP/jyxKR50oiYccfZq+3CEK1IThRegf02tDBKaprDotE+fXUyOqjH6lEeeOYeedhQnAagJQkpblVlTS3qr+xrS0FwiD93x+uOTTyy+4fXZDQKfz/u5ihelcjKxjDKEfac8a7MYwPB0IXnH3LYwKe2UlHefNmrP1PT64/4hz00SnCa/YIPGiUIDgk09AfpdCrAXQMSA+HltuWgs+4IeBIJ7BesZW8Z0lOMPqrOP8bMWZM7zb3qPxCoeR+2bNyqxhFFppaNwZopmQWRqb4hgExQkIkRix6ibOL8W8ZaQpOVYpWs+5l0ggLOh0seZSIWc0CtfldfGv0AWLJk7Dj0xtVS+mftY7ANNA6jJTblN8P9kaNUyX7xc7/0c05ZhwvIgQvEZEIKZquOVYMzHPmSbPoHR8eDFPpXW5rPt4MooLITIhWHCRknPMW1dzmfKgmclWXgOD8Vx/esnu0y26Deg+II2lPV/B4GMdg8cQaC+E0AeG5wFsUkm80lys2Zw9ZNW0DOMNZr+Nfo1KPG0r8cxAdB7OXnsu6uzEmISNtTSmwXobtxUHz+hHDmZk1yh+3WA6x/remof3L+gE3jAtHYbQD9yzHWd2g6rQSsdZ9wBHRyctrTS4IKgPmAArcVhvcAqNcWhr0/zItC1Yokxh82bislMwFJkJfWUJT8emjyAmL1nmxzloWi417/K8gFW8IC2R/ESOI/39bmlD5ER8wCqd3qsgRRnWUwSs6mOaBz0tx+b0O94dEJHfR7xbIKcfBf6HwAPgvwk8Tu//BVX9Ky+vcDaALqlftcWXkDIfMhHVKYbAaWuoLOeJbHysbTTHBGNuP1uf5z2BDEgTKM6yIEK8WGRrD3zx7Ann3zln83BF2zQxbsD5inB7IBzijUHhtsesO8Qpw+WAPYscW85BgmF9s4FruNneMuiAnHUMGqLjUWtojWAO0SAokgiBtTjTTMgvh6h62LUguwFl4GCVoXUEgbY1vHn/DVwINCqsVbna37LRlqY745lsafue1fo+t6MQwg7RHsHgveEQ+rg7oSFtWzqGNtk38oROW5XxRSBhd/6bg3Iw29znjYO0jskyXx0pl+N4kwW+FG2X67/MP0OdFrsBy3qXbZ1qO0uNZd+PTjWm57yj8UpjOP5UPOliwsq+cPyhSL9jIqCqvw78HICIWOAT4C8Dfxr4l1X1X3rlyjIBOBLDTtPJ+TqyfKRYUh2Zk9Sly/MHWW8taETR3AyElcVPEkeZ6hXaeP4PgFFgwJMXQiUGDdXWcQgDX3z0mIdfe0T7sI1ZnMVtVvinu+hI4wXMgHGG/iawvQx0Dy124+ASfOhRBozzNAjh4BnbHlSxBhCPM8T4ACSCFJKo4D12dLiD0qG4w4HxcOBgA4cGtHU0TcP983POXIvb7+hw9IctbTDc3zxi50dkt+ON83c5hJbDeEOnIwRB9IAGA8HTex/VD/WYxuHPLd5pvJZmUgcCIolwT6cHS8IqMxKWtwNXz4WaPe3KlUiUd3Rym7G96fDZUf5XlwoiB6bSx08jcIn4s3QCOebAMWZXjKcgFEuJ4BQ6S3Xgnhr1XzK43y0/gT8K/LaqfvvlJ/SOU0a9iroVDGTm5vPqHw9yDuFUnrmoqHFFkAt5Y8L3zG3SPxN/WBWMOrpeWIeWC2858x3nzRmNa/FG+cxe85E8paXhXFbstKdvA+6tc8bHPdffveT87TOaM4u6KA3oZY8ePFYa/NUBVQijRbEMg6czFt0HdvtrYASURoUWGMcdQQZEWlQ9qh6CYCxAiNuCNp4taKzDakAOA/iRIJ6xhWDBWsv55oyLZkXX97Re0eEAw8BFew9BuLk98OjsHbD3eHJzS6s9GLBjjwuw1x12VNY0KJagI6Mo/ZlJUZ9CIo5CjvsXry5SpqvmE3KHHAxBs/X7boPsvF4zgdAJyRKflQQZEzwcI+aLEDjWWbRRQOzL0knicCTnFMheBDYo2NFRcxnh61D4uaDMBaqm78bL3y0i8E8Bf7H4/WdE5L8K/CLwz7/sCrIsmh9J8wXHnv5KOXXFYqtM0kH+dIrOT/opUX+faZZg8jnx3BcENwbs04GLw4p72tBKw7ptY1APier7yjR8Xd/kveY+rRHOtKMXeOxvGC4EMziuP7rm3ru3PPjR+xH4Vg53b41/fIu1StgpGvaod6is2B08nVNs5/H4GJIsCGGM+/8wEBgBi00ejoqP3rnKdHrQYXA+XlIiElDj6Y1nNDE4yeZsxfm6w+72uP0hngkYBjp3gTEr+utrzlZnuItH3F4r59YjDWzHLdYKDYIPB8Q7jJUYcUAN+40wroFEAE5cHpDE8iSZaSYK84rpIm/ETSXeZhTROcV8rqS0ZeTeKQ8F4kMtXbAgBlKQjJNS+rFKMsHYsp47r0xemptL7hVvaJ7gfCIQmTDIRORmfK+lgbmvLyZZP7BhUERa4L8A/O/Sq38F+DGiqvA94M/dUe4XROQXReQXd7c303bPZDwqkHPm1kIW8qa80xvSFWWpsBSnu8qSqf686zB9KYhuJCrK6snAGx8Fzr8I2K1ivaG1MQZgY1xaLwVRGgyP/Jr7YU2D5T4rfsK/yQfhPu/86Nus39hw/dE14+0APq3aWYNtYkDSBge7ER13KD3j/sBhGODc0p2vaawDDcTNwhhZiOAxRoERm0eq8SKQqJtrjHK0V3TXgxkYzMjgFO8C7abjbNXh9nvczRYzjqgfsLrBujWMI27d0b3xBtYa1s5w5lac2Q1nzZpzd8ZGVlyYc+65c85Yc49z7rcXmHsbQjq34KC4In1e1zIEUu57vmaOAg7KorMrsRR0RRYHZWpJ8ajpogs1oan/Vny62i3KIPaK24wLA97d29C5dTPB+/z1zlFUfa47SFXPXel3QxL4zwF/W1U/A8h/AUTkXwX+3VOFystH3v3wRwq6zTSicvhTkImJ4odpkcrpCdQLBxz5WJuibgppIItvxsPZ44H2WcDiaO2aVbNi41oaNVgFi0VVo+cegRA8owiIpU2++1YMb48OexkwH9zHnzf0AZxPpwBbg7lYwdMbnMBaV+wOT9HGEtTS07LpWs4ePGC3veTgt7RuxYgwABiPmgHQNKbolSSajl57xQSN24kWTAN9o4zW49YN9y7OWAew+z2tjnGbkTXSnMUoQUEx79yP4uetxtODzhCcQ8cOrBIYOXdrRlq8H2LIvUZow4Hzbc+2CQx5/ZINoA78WbjxZn2/4ORztmNeVm8eZbFRC9FSo6cptRowwWDxdyI8ejrvi9JRPUWqOP1SvLkr34mvS9yYf5y2ayzretGIfjeIwJ+kUAUkXTqSfv6TxHsIXilNouFcV3obp1dJRpkScEiGpKJgIciRxcPT11mBShShSuJ88d2BzXPBNSusNTTGsXErGpmj+Cjgw4iOitE2Xd4Z/eIVQZ1NnnKC+IB+csvwqENboXvYYK2gYtCNxVx2ePZ0ZkM3XnN7fY2sDT2Ow7ph3Rm6rkFuG867FWMXCKNEAxtjvPmHgBBigE9no+tuMMgQMEPAWk9oPIMJBCecnZ3TioHra+RwSFedNZhuHfs7BnjzAjlzcJ1mzgjWK10QxLaIDRjr6RVYRQmk155b2WOu4e2bln7leHa256br6dOKwSxMR/zOKxqptdFS1C4pfxSt826RPYngx+pAhiVdyPYK5AhnWbKe3lPwz/J8QyUMJJ0/SRQvct6Bmo6dUh/mkUaYr8IMYpj3Ek7qJ8eI/orhxX4gIiDxwpF/DPhni9f/ExH5udSnby2+na5n+l85xzOND8hEEGIy88RJvL1muu66istG9VzqPhmQ4lqkTSuFR5fC+nLAq9KoTb75sc6AR9OzjCHBWzz8M5qA05FgYqgwtQZpYpAQow47CqunI+Y8EN7y6CqGEdONxW46/M2ASOBCLtgPn+LtDaO17MeGMI4Mw4H1uuHsrOHQjRw8WGdQCagMqIQItNZincNIjP3XIFg8WB/vBXBKc76haRrC7RVhe4MfRtRb2u4iAnY/wIMN8qCFIao7OGAP4qEx8SDQanTYpqNzhmDjpaGH0bEzgukHGA3dNbxz03F/7fj8fM91GybRLO8KSt73Rk5y/IwQeW1PcdxjiCoIBxT1FtJHUcksDVC9nGqaaNRsqixhrWI8J2wMWlV2qrelLPsizl1SLDmRMYdlPW7jrvSD3jtwC7yxePdP/07qyiJ9vo5K8kmtQlmv9JrEFaSY2wo4pOACxQqXEsRMZ6Ik8eip4Z3PGnpRejNgQu5XwNse7wyeAQ2CGy246J7qAzijMeauj8eAG6PTcWaxDttZ3BCQ724J5w26bmAt0Bj0wtE826DDNV2zYTM2XPW3hG5FP+4Yxh7CQOssuMB6ZdnuouXfyEhgnI5MW9dE/Xv0OAXTR/VGVuDdiF03dOsWtlvC1XPGvkdGS2vvx6k+9LA+gwfdDGjWgoZ4NLqxqIVmVExrcG1LEIt3MI4jihAOO5rRMpoYmERGWF8b7vXC8FDYNXHXMC5EjQJZLC8gKhL3kjOm13ndS6R7kdibjcpZY4gSR1I/0vsKHpeIn9SSikF/H6k0UNawynQKsvZhWFCNiCCL9iuITsmgJSGQRT2L9NocJZ59bQrRSKmMhKcmv1ILTnlVUMKUphuMZTpTkM9an13Dm59ahnFAjdDYln4cYjw+a9iNB1QM3kS630gAicEz1YJYi5iAiEcYIrnxBh1i+9Ya7Mph+oB85wbOHea9NRzAW4M9b5F9C0a51zxi138b9lu8a2m7GJ7LMOLDDTJGw2RjDQMjIYwTEbXWITaGH7WjYPceS2CwPaEVVusN9D3D1TPs4RYzKKvxDCMWOQRoG+TBClYmYuoYos+BAg3gwIyC8wbZuRhgpHUYG5Destd4utGOliABY4RRA+M4YneB+16w9w3Xnc6EoOLOS2lg5r1SQUheap3EfJF0janOhEHy98w0iIwmFk2ShdY1Z7t8eXQ98+cCHI84/tGWYGFjmJ2k7rBNFJy9VnJkRoaFeD9LLjoRtpN6y0vSa0MEsjUfBUt07phFudlPoF6U+COpZem8OoUkmCe11gNFmI2FAl0Pjz6Dw7jndtyzch0NEcEDykE9cX87IMahjY0hs6yJl3e4BpwjQNx6cwZvQcQzBmK48GDiKb6VxQVFf+0avQ6YDzdIZ/BvGtzNGnZXtPaCe+aM57srtOsw3UUMRLr37Ptb9rcjIi0YCGYkSNwNiMTGxkhCxuAGosV/PTJ2HrdZgyj91TPC7hkheFaDixKPV9Q2yMUZrCTuYGznuUz3pcUJthEhzcoQDorYZJPZRF/9M1YEo8gOdAiM6lEdsV7oDob2icXeEy43MYBJZoulUS4vfUiLnK/ajrcmx8yasUfyBTGSHLWy57VOjmJGM4wVXH/BVYIUN1fN4FVlqovMyDdJDZMzUwZCneGxGJgUqk1WhWwJqSUcLwhH7Wyc668KFLTmWD1epteHCDB7kdddLp4LbzFBk/Yzi/WSglFUqoFIEsPi1FmKRUvlzp4FwtVAL9A1LRu3irsEIgwMBKNoK5jO0XRrmnWLa9LFoSHQtA3W2InTSOvAuuj8AwzqMWHEqqVtLBiH8Qqf7JDbgPzUGbzZwO0Kud1B7zlv32C3e472t4RmRbfpYOg59IFd72lXChIYdc901NgIrk0XjqrFDYpzgfFshI3DtY7D1XOGmy8Qf8AMBukbxFkUh5xdwJmLk3NIUBQPKcbUpmeTxHMjMfrwGNAhoGvFriwr1yErobm2tL3DbIU9wKCMQ0D6wL3nhoDj+WbE48n7BjCDbV7nmctFJBPV7IRY4JgwqYxJussGvyPJcflOItJmJlTlLTz9SmxXIvOZ7EwVnr6ColBJDYnJhaJcbRVclD1ubxlIpxApXtqd14MIFERqcgZaEi6J1vCYXQpikYAkO/pM1uOygojxkzGQRLEFXO9ZP4vRfgQQE7jilhAU6xxq4nn49t6a7mzDerNmfbaaQDb4EefipR5hCHFrzkWjH8h0fbfXgA8jvTeIFWTt4vVglz3ya4L+wXP8VxvszRny8RXO3uPMrtkOtxA2yOYC2cXDObGRADLiwzDdJmzF4CxYAq4PNMEg65GwBne2wfe3DDePIdxigmKHFodDaJH2Ajnr4t5luiUNlxYiA11Q6GLQUdV4gWnepwsWeNfSWKHbgN073HnD2m9oL1fsbrdsb7dwc0O/3WMPgUdXDcHCZesjx58uJll62hXqQurKzDWTZMAsJWQjXL7m7C41Mu9IVDhSSCClymAKeJqYTAlnJQXJYsGSQ9+Ramcn5lu2lv0qPSHLMU3GjtkoWNkWXtKF14MIME9mtbWXnspc5ZzHRUrEYfKkStJASe3zHCGIMawbSwgeCYFHzwa6MHJwsA8BNMbww1qMU9xqRdO2rB/e4+FbD+i6LhrWVFHvGYchqsxeCU2YFjQfY/UaF8UTGIOn9yMmGCwW28RgoO12QH9ri/+ZDeHDFebpFnpl07zJaL6D+ltCs8F1Djs4rPWo9WACKp5gAsFGVQVjMUFoehAdGc4C5t4a1YHt9eeEcIU1HnOAlpbWtNj2HDnfxGvJfBpA3oR3cU6jCCWoU0KMlYr2gIfgFF1DOBd0lBhYxFi6zmLGEVkZun3L+nbN6nLF9dO4DWp6zxuXDcODwE3bx1t1snonC+RauO9OkFEQDKlQO4n3iRBkdWPWaGQyxk1epAspYApkosXvhNgqOt0CNMFYgXMl3t3pnrxMheNUTZiyXaPGhlJBqaZr6lLZv7vbfn2IQB5EcQdd/f/0VMyQFgs+W35nsSif/KOoxTUNX/3Km+iwpXt2zcNNw/4Mtr2yPQjjaOIFnGO8VYgW3FlD07W0q4Zu3WCcoW0tIQTc4PBjwI8B9QENAe+V4CFa1GOgNG9gUIMhMOrIGCyuMYSVJbSKve6Rjyzj19bouxv45DnOXbB+/x3661vU7zDna2RvsY2gdgTnCTLSrkCC4IPB2gYbwI0Do4Vwz9KdWXbPPmfYP8GYIfoNeEtLQ2tXmM0ZdG2cppHk4pf+5WenaNrxUDRJC/FdaME/MIxDiP8OyrDzBK8cdj3DoSeMHrHC+aMz2i7uUAy3e5rbA/dvA3s7MkjWOwoxmRL5MqwsDXDUtsTEB7PdSKUQ3SWfL1i6LNWSf36Xqw3CZGvIPcw2hKmYSGXlTx7+BTNKkkcuI4Xb8NFpxVKtL92BT3D3YttjkgAW4s+LyM9rQwRyqnaHppdMg0pEuxIOBZLDCdMi55meg4rFNI4jYiw//rUPuX/vKfLWLXs/sN/23Nx6tofA4RDYbnv2Y9z7FunZb6+4fCL05ytcY+m6jtWmxboYTMO14IeRft+jPjCOHvEaHW+MSfcNGByWMQQGP2I13ihkOoe0Hvusx24c/q0W97yBqwPtWx8Szr+L/9YNrDaYdQwW6m0gdCPdPeUN4+iHgH+utK5nI4/pjEHaC9yDB0i7xZtLrOyxQWjUsLYrVqwxqzPoNjEkeOa6ViJktApN2urMXNMoGogETzQSynOB+waz12hQNKBGGPYj4+DxozIcRsLoYzkfaNct64sNh2db+uvA9dBz2fpifam5ft41kPmU4ew3ENl8tgNUZF9mL9IUaqVyRjLURscaWmbVMzBLDUbr+iXVNxGZTAhO6SELsM6pJHQVzdNlXjnxsmwgOxXNJOxlUQteEyKwnPZZnZLF8MvnypW4FBIK0aCsCwQNnm98+xNubnb84Q/e44FpWfk96A6kR8KAhBFtTfSIawU1gTBec3Mz0PerGL/PNJxfnNOtm9gPI6j39PuBcfT4/QCj4iRevmECeBG8WkYVbBDGEG8eNtZhugZzO2Kf7PDrNfpojey2mGvFvW8J37khuEdRKhktwYKsAxdftYxbz82zkbetIvo5F3ZH98Y5um5Rd8A3l9hujxOP04aN6VjbDc5ukPUm+hNLwdYckeUZUJf+hoSEmpGc+LeF8MjEi0nU4MRBE7AroTm3NPuG0Hv8YWTsR4bDyLgfouMVir1oueg33BsPbJuBvgjsOqnVKR3hUrGdmLd68yW2mSdmDRlJLt5Js4kOaMwHzk6A40QQEmzl8HRK6bIsR8RjeSwo/7xD2J/HJrPUfirXPFwpfr+Ix5e4czcheE2IAOSZroX34lNejYmuFdQ/63dJHMsLsxQrhBj/bhwDn37+hG+uHvCHLh6geknQkTAMyGgwvSCDIGNAQx/36EXxw4CXEQ0GNQ231yOHnYt7yiGgCGGMl4P40WO9QtPGLTTxEQDTFWJ2VIZBMH28EcivLXLhcPsB+/gWPbfoPYdc77H+GvvmJeFmR/PQsWbAmAPmImAeeuz9jpUqzc3AuDfozQdg3oALg2k+R+UG2W1xQCeOlaxwzQrp1mA6CGb2BXAJysckP2eLdZilK4hEIKwC4QLCWiAo0krcBm2I8Qy9xa0tYQiEscWPPs1PwAfPfrunbwQnyvu3cbvwC9nFOxDRI5eB5Tn+mVEU3G7S1bWOt5/sASqRCETpkVIPXULd5MmY722QKV+GuVktqOML1PaB3M/lMfbcbiYwdQ+OSMnCA3HxsRKhSmlBThO6Ir02ROBIDZDqz/R0LBnUPla5rjzuTCQysEiR4bNnz9i3b+DG83jDT+8BE0/fEc/u+37ED2MkEiIMg8c2DmlbvHrwTbL8+7gT4BVU0KDxOYygHrEWYwPWxuvGLWAHwRlhsAazssjKIq7BXe4xYUDPHewG7NMG92jF0F8jH3S0jdJahzG3hDDgzQb3zob95ROG8U3Uv0m7dhj7OeK/he4sdhBa61hph3Md0pyDO4PQJNaW5dwsGwtovPKckaTWEImDDWijhDMhnJsoRNgkLRgf/Re8xLiGJl7WOvYB1YD6ETWRuJqmp7vvaVbCarvBHUZc73k89hx8dNepCUFC91IVWFjST94IkRBDJ98CUjQqnZC3PIx0l2ow96CGzVJNOOa3iSAt8pcHguZbmHQidDO9mEXdu7n+KS5fvKsMDMfptSECd01fhfxJRqzIwORWCNUmwckWCguBwPXulptd4I31OToeCCNI52mk4TDe4kbBBIvgGb0SdMT3BwZ7YOwGmnbAuXjR5nQEOmjkihrtFH5UvAEvDV6EcRBGlKYFtcI4CrY32K3FSkNYt/iLDjv26GokYtQGWf8Icu8xer7HP7uPuxgQq/jnT7l9LnT3Njj7HNwT7IN7cLHFyufoeEu4WcWdANfipEPMOdgL0A3QgM2naIg6fVCwCZUsEfETcdAQCPchnFnYMI1ZvaIapuvQsl1GJEYSEgmgA/FapQFjtrTtHtyAugE5h7M+cN/f5xvjyOObHZfXB/rDOKHR0c5bAQayeD9LiBlJI3AIEUaCzGqETAW14OjpvKMwxXSM07EwOk65tYbXwjZQKg5zSxwRhuW7aoBAvGQy5prbKmtjFgaWPtYvSK8REYjppGFwSnXc+UnknwjBzP5rUaqkihlYhMGP7EdP6Fs2D+6jV5beHxBrWZ1bvB0Iu5FDOIAKwQtBPWYMKCNjiAiOCsbaaCRUQX3uh8SLPYbk9y4mqhJhZrIhKN4L41ZwQaMccuYIzmKaW8y4RVc7MNfYM+AwoLc3SPgeYkZMeE7bXzF+J9BuhNVbjl4fIWaPMQe8rrHe4kybVIBzxNwDfw5hFe0BJs1h3tHIoKjMDu8K7AN6poS3XNoyjGc8NCG+oPF0ZCLOahL3F4+1A3QDYg9oOCAcEDwmndtADerPaNpzDCNvH3Z847tbPv74c7yOE4cvt+lMWuGg9QHlvP5LBjhJgsx15Bx5qFJmLrhzzBQ9EIXI9SdvRJiOLOcUEgERTVvOSuVNOLsRQw5fp9RqxDLN2+hLReEEwhcqSpZU7kqvDxGQO35IKQUUn7I+lwiAZEKgs/C1HHepGkTaGdjKgPFrXNvx4H3H9bMbbp4pbtXQXQjmMLJ7fsvtrQVvOOg+ipUhoGNsXgME6/EmgiYKVk0KuGkgHtXH+0AgoLYlBAijIi72O14LppgtWLcmdA7unyH9LcF9itqPMO5r0CjN+58hYYteHwjbS7rVjnHoEdNiu2fI7hsYD0iIF5A+iLcBSWjAP4ThIYybSATExjlNSM0uc/3oDozVeCNxADWKf8PEmBdBIYQ4/aoYTZeihrgDwDjCEIOUqB9RHREZMGYAfJKcGqxdIdIRworPtsrHTy4ZdY/XwDCGxLXT2iWfkPgcgUGhMgRm+hUNhBEBowBZEBGyCJ7VB6r7BEtCMMUDLL5Hm2mU6CqunjhYIHo02kxLU4VhBtFqF+NICij8Co5wd9KPloRg7vTSzfhl6bUhAhPKFn8KyazKk4n0NGGTP0ASt6ZtwmUj85TGQyTK93bP+LG3HyG9xxjH+Rvn+BAYUUwr2AvFizJ4j8Fig2MIBzx9BFANsX0P4k3aPhLEpDPhBIJXdFBCH/CDZxxGfDeivo1++I1FWhPrGxR7EBha6M4Jmw1qe4J7iGkPiG6R1SXqDOpu0aun9PuB1YM149AT/BbTf4RZdaAOzh9g3D2EFl2toF/D5Rns1sho5+ibCtpHxGY3wiCIT/PlNF6n9o7AmUGCJp+IMRJDrwQ/4McRHX3kqkq0h+ARE4ObBFGMST5t0gAN3ncY2fB0J/zq9z7mkyffxYcRHwLD6FE/X682i+0kBC0WuOIbpTfhLMyUB2yzZ2GlWuhMDEQjY5nKaNlEfLJkpJ/ViiqoTQmTKU9tMNSjvGaqcxZn72bipySCEu51+vsiAfu1IAIl5ZUT7+fv86wI84xmhJ6EAS0r07qWElhEeLJ9ypP+A94KDYdrz9n7a1Rg8B4fPEM/wMoh6xhDrzVCs29QHRm9ZzA9g8Qtr5BuUHRqaYLDYeZbeQDxHt0Hxt5zsANu1eN8wOWVdkTxeUgn+AKEzkC4QPUdtHmM9FfQf4q6B7C6wNwL6M1jwvp9rHMEGbFrj1kNSLNBNw9g/zb059A9gjceopsOeWZgl2VGhT0wJD1lPMB2IDwFzhzSGMIDIVw0hHEgeE8IMbip9yHFNfWFWpbm3UQJJ/iAH9NpRyNAh/cNoXdIaMG0fPT4C777xefsDvuIHCEeQ4asjQjppEiuvWIOmqSBiAe13Shbx+dIU7NakdFIpu8afTo0tpltBzY1GKSGyyxNZPkzkM+ozD0oXY5zf7MMEhIBNtObWhqRYnwl3E5pEvmPON40wNLQeCq9EhEQkb8A/BPA56r6B9K7R8R7B36EGDzkT6jqM4k9/J8Df4x4Du2/pqp/+5XaKZ/SYs4rnU8SVlg8IX/2voqjnYdcgUMqn98YhCH0PN5d8876LWQYGXeB9YM1rR857HswwrhaYTcjg+7ww4hpLY13tB4CK3p6BvZ4PF5HvA6gHsHhaGlNQ2sdzhpEPFbAakD7AX95yzh63GHEPtrA2kX72egI+wPYgGyBZk1oGsTtoW0hPAfTwkVL86AlNELjIFx9AcYjq3vo5hxChxzOkP4tuHqEdis4T+7BPkQPwV7hekSe7uCwizcV73v6ZwPaWJoP1vi3VgyMsPdJdE3cNkTVKIwjfvBxt2JUgno0+GgwzMBoVxjXEbwl9EroBauWmyHw+Pkl+343A3OFpDKtX32kYH4hRNNGmBiATirAXZJzdTI/fbcL5InHiucqM7rl3YCSkweZdX1R8IXuH4pxxdCKC8SmHgvFmHMXT6bJ8FGQjQlPZk/D3w1J4F8D/hfAv1G8+7PAX1PVf1FE/mz6/d8jxhz8ifTvjxADj/6RV2tmwa2lPCrErO9VJ7tkcpqIIldNJScgKFtIkkSGjc92z/jp87dZuQY/BhBH2zWT+OY3azaZYY4wmoEwjtgAjbac+xU6nhHU4xkYpWcMPYGRnj3BD6AtTlZsVhu6pqFpBecUKwHnAoy3hN1IuDiL/goHgd5Bf4XRz8Fv0AZUnmOaRygN9L9EaB4jDy8I3MOHEdsd0PAMbR3h7ALZtggrcBeIrGBnCB1RxD8E5NLD9oD/4hnD5XPUD4gYLB16H+QNT/jQ4tcQdhIlleAjZwe8T1ebD/GdogQVjLHYtsW0DWItIQhhtAyHGKLNNiABwiA86a+57K8JRYSBeQlL/7cCMbQOKJP0g2l9FYrzIxMGn0SGUovO332RP78LE9woWVOazoqQDIslwUnwU/oQlIFFyrYD0Ydlio1w1MklBawqoaAx0/9fNfzJKxEBVf3rIvIji9d/HPhH0/O/Dvw/iETgjwP/hkaF7W+IyINF3MGTaRLVXrg9sDT2zSL/tJAFNV36nOf8gsToOynfZX/FF7Ljg9U9bKeMO4+XgF052nWENNsIjTM0zrHd7Tlsdww+qgEuKK63dL6jlXik2PseH/poO2BEGdkPt4gMWDlj3Z2zble0Zw57oYgd4dEGzhr8t76LuAGjlnD5BM7BrkMy3j8j+B1ifwZ4C1VPsBsw91BrodlivCdsGtTFE4s00QCozoMHeaZwu4MvbtEv9oxXz9lfP2O72wLCanVOd26xb4N/EBiawHi5ZQg9amD0A94H1DXxOLFt4qWrTYs0DZM7jnGgJhIAiOcrBsU2BnEGY5UnN1u++ex73A7X84IUxqDyEGMl2ldrmrZkC8E5CYdTUrJ78GxELOue/PwLjabk8mVAkKJ7kyjvE7xlAXZCxiLeYekbUCKtl2QLSExOi3HW4J47dvxNJomglC6YpJYXEYIfxCbwToHYnwLvpOcPgO8U+T5O715IBDJyvuh9qQ3E5+RHPk/vfGJr5htVXWRxjXiXrxEY/ci3rj7nLTZYie6/owYs4DoHK0AMxtgYw+/KQoC+Bx8Ggoz4Nob5Qjs2oePMb3AhOh6pDIwcGMIetCeEnkN/hbU9bn2PldtgNit49218f4W2gbD9gvHSYtefwrjBtBfgn0P7AB2+DZyB3IJ5C9q3QbeRo3SPEPcW4g4w3qLGo+vnhO5TkEeYy/eQJwe4voKrG8Llnv5qy6E/4PHRhbm1jOsDgYFwC+FgCUbx4mHVIl2DW3dIu0LaFnENYmwMdarRtjj2nvEQosGUPH9RZNae6DmI8PR2y7PtM0Yfzy9nP/xpLTVz4xr5pzB08cfJEGFTWrzLcJFROjv5aPEvI7Ayc/LSeF3KDhnW8oHLaZO1QPZlhOtcXzYAZqklpDbL25IWUHwHOstUz0lJ4gXpd8UwqKoqIneTmhNJRH4B+AWA+w/fqDt9iiAUFEAqvK6B5ijU07QQNUmYg5HExf5ie8ntvZ7NrUOMYl280BMf7/ZbrQ19WhkRxSvIjTDsd/h+YCQF0DQ9wQS88Zz5FSvtWJkzjDXx2K8dwB1Qd8CIoqHHH4iBRlRwG0N4uMLsB8LnH6Hv3aJuix/foun+MOg7+OHfQ8dvE8Ye79/Hbr6KH64xtMD3MNygwxOMFbS5wZ9/K+5ChA4dn2Jur8Ef0G5HeGuHvN1zdtOw3p+hODCCZ4S9RYIBLOa8oT1r0LM1rFpomhip2bhZVFdFx7gDEiWAaOCzIlgniLMMIeCvPK4TbtXzxe6Kw7iv0CP+WxCCCUkm4Y8gknZjSg6bF1yYWMGkDRTGQyAfippFfpk8CXNnSpUj7/3H95nZMG87FjA7pkCv+c3sqDZLKkxlpWJw85uXo9TpXPNsLjwoTqYfhAh8lsV8EXkP+Dy9/wT4sMj3lfSuSuW9A+9/9etaI+lxpyfX3zzhBZLnc+iL+mtCUNYqUq4OIsJ+2PPt/TN+Zv02quBai1jIQUhtY0ADvre4psWtA673+ENAJR4RjouuBAPeKr4JeFVGDbRqaLWjYY11QDdA52ETMN2IukDY3tB+7U0IjwmPgZsevfGYdxpUheA/R+xDxLyDmj2BZ4TRIuN3EPdTaOgBC3qIXMEc4s3O4T7oPZA3QJ6j3Sdwvie8rYh2tNcOwaHG4UNHGBrM2IB1hE2DPGrxFw3aRXfpYOaTdWEMifDauBWa/wVw1sT4i2Iitx5BvGIcDIPy6fUln98+xatf8HlmzJqXaUJ01flzkPwuY+f8p6Is9eepztk2pNX23gRzU3e0Kje9L97mbchQGStk6mvOObtjxTely3IOflrLDHWSQi1Yfs/XppVb5LOqcDr9IETg3wH+FPAvpr//dvH+z4jIv0U0CF6+zB6wYO3T3yVByL9LQgCZvte+1fl35Wi0rEtmHqAEvn31KW9tLni4a6ARGmehS/vFvYIX2q7B94Fm3TIeBsJ+xITkvaYBo0qjLl7Z3bSRU4rFBzCjxyq4weJ0FSMCjQGsJ6w99AeG2xH3xu8ntL+JPHkOjWKbgI6/wjh+E9M8QLgBWSHmPfpxh15/hl29A4e/Q2M93cXvA3MflQG4j8p9RB5FN9azjxH3KTJ0yM09zNUabho4NIRDg2gDYmDToQ86wrtr/LkFZ+PZgRwxScEPPvkIgKqPEZWcjSpVSBxvULBCOAT8TqFXxArPd3s+ev45u+Fmlnsz0iQ0mOMBzGgxhSkv0G8+J7LE9CUqzSpEfpq5c3REivdTCLXeness3c51imcZcV4LoK1NcrN/QN5GjO+ng0yU0sgsDeXbje48M/AiY2E5/OMfVXrVLcK/CPyjwJsi8jHwPyIi/18SkX8G+DbwJ1L2v0LcHvwt4hbhn36VNlI7L/gY/1ePK05C5vjVhQ55apfBGkhANFGSuarDuOXXn36Pn7fvE27AOhub8JpmSpAguMbiwogGxVgLDQTxyCi4YOikTfcFGlSEMcXtd61FMRGBCNgR5CqG5LYHgz5Swnc/47CxiA2waqDxBD1D5TlN909gm4eM46+j/S+B+VFs89vsd48J/q8h4xPW7/63UbdGdAP6TTR8BPotVFvgPnpukLOfxDwBswe2DeyEMDpGY/CdJawc/qIl3G/hvENXdtptUg/jqOmqM/Aego/h02yIcQ4R0BDDrI3BM96kucIQVNjtBz6+ecIX+6f4k1fCFDJ/uUjMl8iIynTGv9ICqFEwH/8NE47KpBrM/v+TvnCMKrleXb4+PrgWmP0E8r9QDKMM1yip04Z81exsnHyx8P7ytGSec9zk0+lVdwf+5B2f/uiJvAr8d16l3jLNuwNwpzowPU8ZoSAAx3fJn6ireDdJEkmEEhWe7a+4fONNzq5GsNCsY9Rhk1SIeFBG0D7QiEGdRaygO41bhumuQlWDYMlh+Iyx0XnGgLosxgbU+qid3IxIPyJnI3bTE7oDrFvk3KJsCOF7+PFTjP0RhHcI6QZgIy2ueYPt87/Eo3f+EcQMqL9E9W8i+k2Qn0bkJ0CH5BvQwep99HxNcE8QOxDWgl87eizeNbDu0Ptr9KyFlUWNiaJ+SOMfwfcBsTGGYhgCfoRgAtaB6yyiwrgL+D5JUWMkfH0IfHx5yUfPP6X3hxros9SaziHEWCbHyFbDxOwtmv+fXYszZdBJadeaUGRPyYWkOEkGqfaJ2bC0AdTwlRE+boIeHzIqaYnVmVBMcQoygaPc4eckbOevR4yzUBHKE5U/MBH4jytVSHtqorMuv8TrE5IAJCHgyF45qxNTPkjWZkG15zduP+dn9A0On3o2D1c0G4cJJkbS0XjltyHeBSBBkUOMtW9SHaMGWolXhAZJ5wcwUQoQGCVgXEBc3Ho0ZkTEI6ZH/R6CxzxsYX2OhscY+6NY8wjVnnH/F5HwS6j5g+j4nPHwLTAPadye8favY9uvYpr/JCI/i4hFeA+Vn01AP4B/Sth/B5r3kbddvFvw0BCCw4vDG4u3LWIa2CfINBmgdfq/dTbFB4AwZAlAUBWGWw8az0YwKgwwDJHnf3p7zW8//y67cUtRJfM1YfNLYT6kk8XpCXdlzjU5jFFoAmVNJ+B/Futz/Rnl75IIEokpNRd9EWrVYb60KhN3M3KEomxLmOBwGTeAgmHdJf6/QC0QzN8nB4iAIwJQqQD1KEqHobi3W+wMTIV1WtyyprqpQsJIj1/sn/GdruGtQ8vweKA7a3FdugnYSYyKI4LBIQS0T+6sDnTUaJsTxVvF2MgBB/HxRGEQGg/GBExIwOtC9Ay0gHPYNxz2jYZx5xB5goYtxv0+dPg/gf4yQZ+j4QkqD2ju/TGMuaBtPsY1FhELHFA8wj2Cv0L5JTA/iZgfI3QfonpAw4i5B3reEJ4J4doQBsWPytgr9GMMpmIEaTQhOIQQz0LghfEQ599aE/0GfLzcRcd4ujAMyaV4gHAIPLnd8o3b73LjL6djttNRXs06eukaXDrYLjk+xxi/ABNJ6xsmP4JCgNRZbdCs2GuGCC2kkroRLSsvDyUV/VBJfgPpQ7bLaZIKdSqbidHs5ESC5Tup2qmBLvtW5Xi5cvGaEYGYpumZyWDxLf1/IuWTtDZ9L6lp1r2KwlSov5QKJC7Kx/0T1g/f5+zpgf3jG9p2hTUG20QDWWjiAZeh7wmDn07jBqPRRkBAjeDdTOc1LbcYg3GCMcRbi6wgqxaxDdoq5v6beA+HZ5/gVu+j3Rld12C7P4qOFh3+JoRrRH+NoAe8fIppfhS174D9SQi/jfDXQa9QfQ/VA8b+JJgLkHiCRwmMNwNiA9p6fN8zHqKRb+xjYBB7L15kMoUW98SzACP4QwwPFkJEAj9qksaAIIx9jCI07Dxj77nZ7flG/znPeJ5u9ylBNqNrljRkRkKk8PUvzscVEt4UVW+JyLBopUR6TnPPCV706HepVZTUoKg1Ess8igzGmoVYYSmZCrMKMBGp/KC8NCrQXJGcHs/Ux7vreW2IwNLiP/tEn8ib/jdRbJ3LFbQh/i62COe2ci6p2gyT5KH4MPLN8Jif+uBd+PaBm6fPcdZhJG57BQcjIaoHqqg10SpubfIZT66lGsOYi4nqgzcw4LGtwThiSK7OIg6MEzDQX+/AbBhvd4jfo/YGac5onMHvfgtrDKJPCEGw7U9j7B8FsyIM/zfU/x1ErjDm50DOwL8JXKLaIBJjCQb18cjwpcfve3wIcasv7etPUD5C6BVpIGhE+OCVcYzbgCEoPihjSBx/VHTwBFX83uMHz7Dt2YeBb8lTHsvT6HbMbFnPtwllnCw5dMXxK74Z/04Io3MJnZB7RrhppZUTjsm55tSPgveU/H8mU8dInJF/7plOXoOT3KLH4DwK1Y1HS559UtApdsSWH0/ddPwq6bUhAiVS5l+V0sasHiDFMwmpNXPxxVbhCV1z5jxF/VLTSgH6Yc+v3HyP3//jH3Lx7SsuP32OSINtXAR4k6A2Gw2tohoYgxItgAomXkTijSLiY81TQDnFetBDgO0BdSMwEL4IHB5aGr3BnRnaBz+BcW9i5AuwLcI5Ku9jTQD3+1F5kxit58cRc4WIIvYnUH4Ewt/ByCPC7Zqwv0atiy59Wx+DhAzxGHQIM6IzCEhUc3wAzuL9TeMQ8x9uBsKgjNtDdN6x8SIS9dDf9oTdgDTx3UEHvt1d8jnPo00lXW1YMtppDZTJE3D6LicQqHTFm2nDVMcxss5be2ZSOHTmPFoqGiTiUZxMLaBndhI6oSLkosgUyWiWZ7J6MYO1z51SSTdjaeGQlOA8yxlHdgKholh3puUEHafXiAjMa5J+Lb7JlKcUFgCy2+i8nVzvGNSHOqSstCY9aZVESEY+8P7Arz77iD/0/oesbw/cPrtB6TCtxQYBMVP+6FCYNdmQLvKNEoEEJfjk4eZMBK4hwDAifQwuYr96gTsP8GyLMSNqGtQdELGoHAj9LyPyLkoPegkygu6AWwhXaPgeRh6D7iNhkAuMNWB+ChnP4cnH2MsRuRnxNAR7QQjxYgEJwKjx/P4hcfirEbVCsIZRoqrgh5Hd5Q6CQfuoEmAMQRXX2OjIEzxOhb16Pm4u+Vwu4/SG6OWXXXyNKpOTToXTMrHujHITp6/+r3n5p/gAk8PPpD7MSJiRqjQkZjjIV87PfYDpFGKpXCzYs1YFmMT7TAhyPYVyk7LPcFkGGRUojI9zmTLl5s00T+n9Se7/congtSECJ7cI5YRfQAaO6UOmmDFNvtPLrcNKqphpeznNM72UOb8qo+/5rmz5Q//Aj3L9zcc8++4T9jc34BzGOpyLLr9Gkp7vFWPiuQSxSVgYwYjGeJ7ika1HjNBcnLP6mUc0X4nXgIk9sP/2LzPuFPOgxZ2tUFkxXv+f6dY/D3qB8b+E6t9E9Rb1b4L9h0E/wcgB9CGYLWH8/4A8R82PY+xXkXYgNFsIA2IULwO39hr7JMAuENSiQfBBCB6CNxG5RVArMSpSiIBmRoUQcLad5lwboi+AKkEMT1cHvhOe81xu4sxqiHVNyBZ17ICJRsIUYis6KWcfAInBS/NmW7nmWfQrCIKmcOOh+DwFEpWoCiwjCtVwUNc/E54Ib/lIcSxSnF7VDCr5wFN8l70ZybXpaSKS687RkBbCUCQMheG7PIV4V1oayl9ECl4LIjCh5kQIFlJAgeWVIH8kOeSZm/OXW4e1mlD3QZndN0sRNZf97OoLvn1+wU/9J77C+aMzvvjW59w8u0F7D6MSjEdMDCNiTLy/w+IxFlwjNFg6sbSuwbUW9+aK1Y/fp/nKGWEc2X32HJWB9XsPOP/aV/GHz+gHwdgN6DUSbgk6YvRxjOirP4EQwH6ImIegl0h4Cvoc6EDO0NARxi8I4TcQLgirA7oW3B6aMdA8OCOcrZFvPsc93aHB0mhHGICmAWtRZxkUVqochgE/BjrX0o8jGBOPvxrwo2f0A6aB/duG3xyesh2uMcRTlbMoPPv5h2nfKiEIs5fgtJ4C5Q08IsUaTyK9xojokhFJ8SKVtBxSB2b9fYaPGuayClCoFHl7cMnyF/lqRkR1GCp+TzXI7IcgqYAhEQ2ViXCVILqUjk4fMqzEggrI5Tj7lF4LInAXlTrtQTgvVmbdlTPF0WmyQhQ7qq/gBqrke+uVOr5mBLKBX//eNxk08FM/8SZf+/A+t9+5on++5ebTa0YPjThaaWldQyOzRdZi6dYr2osO90ZL+6Mb3Hsr9l/csv27n2C2t5hhC83Izf4Z49e+hrXv0z/7Ju2ZxXZvoLpGx1/DNm8h3T/C0G+R8MsYeRSJAj8O/v+F8gwNFut+Hu+vYLzE7wTj3sE9/Cq+aen1GfaLLavHl/h3z9A//DXM1Yi9UbgB3Xu0EfS+JawNnUI4eLrHA7vP9ozDiFk17PsBEcV08QKVQQPP3hr5zeEL9uMNZoqOm2c7I3Ui5Rn30/sYWCPjeHYFT2t6EkiyYD2nSTgo8Dee0FvK8KVKIEUbydlo0tcLCMpIWrZaSZinOllKFcdp8mgssudoQzJVObc4EZ2XsffvI70WRACOpYBTBKCmdEkNkOX345mZPMZOzdoJieCuBQth5Le/+02+ePaUr7/zDl//qQec9+esv7Hi+beucas1Z+drnIkn7uyZQbcBOQAPHTy0uPdWyNpw9SvfI3zrMc6N0EFoBbm/Arti/93vQH/F5oP3kJUn+F0cr24w7R/ArL/KOPwdRFYY9w7IGEVR8wCjBpWHaGhBLjHNB4RwxnDj8FhUWkLnGFcGrnbIb35EWN2Dr71F86NnyEHhoPGWYauMrXAwMVBI+66jcwbz6YA3iuka+ps9z92Bb7inXHLL9jLdUjoZbvK8zqG08oHTyed/gXGvDN8Vqyy36soa5Ki95XNFAxacu+LkSvUNKSWcmQCVUYOkQOJKkEjPmdksd/gmabTo2zRLRTtLiWauYFHhC9JrQwQq5DuBhUdEQYgn5I5zLmq9C6iOPQerKhZ6WVyFGEf22e1jtt/ZcrV/l/ffvM/51y94eL6ie3fN5q0OayzWWW63PewCZ13LzntwhuHQc/1Lj9GPn+AaxV808SBRC91779BfX6HXN4gJdI++wnD4LsPtx4g+APfTmPVX8Ycn4B9j7D3s6qdBR/Qw4uUfQvRXCPpVlPeQZg36HBsaghj8Fx8TZI0GA51FW0XCiNw+J/zSjvHePezXH+Le3LDH8+T5gaefXdPv9wz9wHrT8CPvv4XrXbQjOOVjs+VX9WO2YQciOJHF7m5yCspQPCH+/D0Tb10gWcnxyrP8FeJVC3Tqea4vs9ZyS7nsY5V/1lCq9pc5axxPhGFBYGLGNMZMkIgHiOJ4ZgU0KwoFCIKQbleOVQUtqi3Umfmeg7LxlxOC14YIlOlkcJH8TbIEoEfvj62jGSCLab5LsiThftF0mGaa+SG1se+3/NYnH/Gt7zoebC74qQ8/4I1OUGPQRujHIcbUP3McUMKgDJ9cc/j1x7jtFtcKobMYK0gTGwo9nH/wHv0XA839h7jVBvX30M4w3uzw3jEebuhv/y5WdkiwoAHEIKyx2hF4F/UrlGusfQ9xH2ANjNePkf0O8eDtCm0ceh6Pr+gQ0HFEnl0yfnbDvlsjP3KfB++tePjhA9rOctgPbPcHnu92uAeWvhn4jj7jN/tPCGHAplsAZv47T12l50+YW2BzylmL3SUczI46x/x5lsjL6mrwfzVkiIif80aEnnb6KPqUYCofADrujdZ9h0qlmftZqzPlnJWMfNnz7HUYUrUV89TZ+ehuLKrTa0EEIvLJERLms9F1zvl5lh60LvOS45XV5JQrUOl3y1TIKql+lZFRPU9vBn7z20IzfkD/fAAbdwnGK2XcxSu6uNpjnl7S7LaohdE0uNalqwAl3k3429/D2A85+/ofJPQHts8+Z3XxkMPNRxDO0P332Df3aLsfh/63UO1AB0IIiH0TNe/hw9vRCj/8BiKfYDc/T+CAWSnqDP6mB4kESBsHXdoNQAmDR8KIvfH4/2CLfuuM5mfu0/zEBef317xlDPv9yN/47Lf45PZzduEQrxmTeNPy5NlXzNm89TdzwOpwTp7yKiZExepqHC7Xq5CPTyFinW9m7dmqX+af4WZe59N+h8fp7iNOC3sFtUSTGVIl0ZSaQ6FKAUVoNUnIrmCkMoNJUU250/YinHgtiADcjXozfMw5Sv+Awjlg3rIpKlueK6jSkgQftZ1F0vn46eySnIKNGMu9ZsXbD85YO8f+SU84KGE3wnaMZY2H51e4sUdWDtc1WCuEEPAqWG9gq8jBM3z7Y57vnoC/Bb/Hv/cuYRgx7ftIO+C1w/sBY76Ctvfx/oDqgLVnBPfVuCMQekQMfhgZL7+AcIvtVshZg7m6RW8HwmGPrlcEa/EOtAM/GjQMDGGMc/b0mvAf9ahT/FfPaFcNTWP52T/4FZrfgI8/f8zt0HNI1m1CKI731uAfbYFFOLAl0mTcSByysswfbXXNVvZsgV+eKKy2l5ciOqdgQu94X6gCBTevZQs9qYJPEspCqlly6SmacaF0HBGWAsOTVlOdNITZb8DCUWdedEz/tSECFf1ddLiK2559qhNQVa8nuEkAofP7l0kI8ftsJ5gpahbvmAmAxOk3Ynnn/hv83I9/yNm6Zfd4wO9Hxud7wrMt4gPGgIYeJ4qmLTc1BnGCrAwSDOZWMTtFHsTrfM0w0r3zFiLQ3H+L26crzt/+kP3NDaE/MHLJ5uGHIIbD9VOkOY9HAvwAGNADmPfi/vPtAR0Mdn0P3CXYXTzPeOsJ3sPGpYNPoK3BDyFGOzaAjvhbwf/yM4ILbN7d0K1X3HvQ8bM/+zVWv9Hwm9/5FD8oqiM5GHlez6wGTId3KPT8adHT2YCaCpA9P+O852AGUIP9tEiJm8pEaEoN7vtOr6Y93Gl7m2Gt1ifLXwrFtmDi3BXO65xvel8QEim6uejvK3Z/Sq8HEbjLPyCpA9N0ZvWgkByP7IUvUwdyujNL1gcnWSwJG3HF5z4a7nVnfP3hW6ykY385cvvpjvHZDv/0Fvqe0Y+oUVxjMM7hWhfPHVhPaBtsMMge5FYwGwvrgKrH73poHtBcXLC/fIrVyCOGw4CGPdKuMe6MEPaM+1s4jBj7EJV7hP4jJNyg/DimvY9efob2I+Mt+OsR3Q+osYgBuQnI6JF17BdG0LYBBL8PMATUe8KzW/xvCKYx8Jah61q61vLTP/UV+gF+6zsf48UnIinVPXyviowll6/WIT0fEZCizlJ0nqMOxwz54FHecsx3AJQMYqqliAycuf7dRvYS1WpkXw5ZFnmzzDKfVaGKRxikCD5y1ynYlN9yhzpyuksn00uJwB0Xj/xPgf880AO/DfxpVX2ewpL/KvDrqfjfUNX/1su7QUEIFoNIz5N+Vs1Drd8tCcBptaAsXwNVNjZKQQDyHynrF1i5jq+//Q5vnJ1x/emO/Rc7/LM9/nrLuN+j6qMYKlGFMCYih0WgtaAW2Sp2Gw8Q6ZlHdIAxHiu+/dVvcNNYTDdibcvV4BgErNyitmMcDxixoA162DLaPaQ7A0O/xm8H1F2jtwN66Bm2j2F7G4lA8FEaEZDrgAwB2VjUEQOLmmbi7KqB0Svm82v03DIA+khpOocxhp/8sbe5vtny8dPPOJjoKp1lpwyaOYzXjJ61Maz2zauWfdL4ZpNBQoql2jAhWkl9KsqQCFN5/FeoFOoSLupeZGg71cMCfhLp0axCaqH312Wr5mTesVii+6RSUEoKxSGqou0j5veK4sCreCD+a8A/vnj3V4E/oKo/C/wG8N8vvv22qv5c+vdqBIASFyel4GSeyRo6iYAp9wt0nqN2lgT8RC/y4h1llWgHePfeQ96795DDbmT76S2H713TP71m2O0YfE+vAz2eYA0Yi9eAxyMrg7UO6QNcRRHWr0YGf8uw38VDPPuA//gGc9hiQ0C3I8PzaxgOcNjirz/ncPUJwY/xeO/BM95+jr/5Jv6wQ7H47RXD59fozkfEHD1IQ9A2nhw8bGMgUkBuFbkNE4IGQK0hOMFbYTDKoR+4/dZzrr95zeX3bjgcerz3bM4cP/2TH3CxvsCIKfTaYiJfRQyQeU2P1qLAiNnYFRlA/FdzDuGUWjfThbKPcqLHP3BaSqfFs5JsGczDBpmDiiRpZem9unRyDi/p8imp4a70Ukng1MUjqvrvFz//BvBfelk9r5IytS8R+tiFeP5b70cXeYoyL1UNZDlhx3Sx3KUQ4Lzd8LWHb2EGuP50S//4mnC1w3tPYGRkjBb/xkKTfIhRgouLF7YeuxVQh98EwnCLHm6xK4P04D/fIyI06w71QgxeHeIVYRxguMXfevaj4G9uiNch2+gtHAK2M3jbp7I6cRIQxK1Qf8D7AewWjEPGDeYG3ErT5SIBnMF2a2hGhusdGhTZ9fCdS0wXx3XxhtK0jkePVnz9g7e5/s3b4tBMmIA6z1u+BGM+31FIDBOGltF7Zv45IbEWdS2ku8kjESiDyWTsz29OCfG1LFLLKyWHP5Y2C+5fgxUsufMkYGYiFb/Fa87ncWjxT4relAKqUgsy5Xh8ev+qjPFVJIGXpf868O8Vv78uIv+BiPw/ReQfvquQiPyCiPyiiPzi7fVVfjt9z4Os3mbKT2EbmLjDVO+ypbj9KAV3mElsQUUyiITqdc6rqR0rlrc3DzkzHfvnPf75nrA9QPCMYWAfBryJ235ibTxmywhNiDcPHxS5VkxvCG5kGK7pry8Z9z1j8Ow+2TFcDegm3oSEjxisYUT8AcYxBj71yvD0E7Q/wCjo4EDuI6bDOIe9WKPSE8YhhQHPYqqF0OF3yrjdM+6v8RziJSG38XCQsYnLGoHOIusWtQaviu9Hdp/tuf3egavHOw77uEX5lfcf8OjiXnQVTqBbCb9H812v7cQZs8VLym8ZFaR4Lku9mNOVSSXDlZTFX8pMXjWVxyHu6pcsfuRulKHJ83XssxpVFpGCsJdMrATsV08/kGFQRP4HxGCp/2Z69T3gq6r6RET+MPB/FJHfr6pXy7LlvQMf/MiPqYhUe8zHPgJFWRIhqAx1p3PPuwNUHmDH+U6CwfRkUp8uujPeu/eAsB/pn+4Ynm7RYWT0A0MYGEzAWofr2hieWwO2MdEnYDSYvSKjxDsJ/C3D/hlCj9s0DI8D/rmwemsV/d13Ck0+ehvAD/z/2/u3WNuWNDEL/P6IcZlzrtu+nEteKqtcaVdVq+ChKCzLEuBuNajBFlIBD7T7oW1aSG5LRgIJhGx4sZCQGoSNhECWQLawW2CDuujGanVLbSwEAmGbMtTVVenKqrzUOXny7HPO3nvd5pzjEvH3Q4wYI2LMMddaJxOzVyp3nLP2HJcYEX9E/PeI+AP1gMUUF7j2NbghEAgGdIXdGExxilmVaLGDzoVIQhLyaau4vqDfg5cezxYpDEVhML5CtmBWBmc9rvV4azB1QbdrUWC3azAvb3AC3q9xref03Zq6Lvipr36R3W80vNxdTWQakTVbszuMX+KII47PwaL92YClt4tDP2XIZ4amjLl+kRewJOnnPqd0ebrOYTmOQsEfkSw1nnfL2D0yrVCIh62YpXzj79Caoa8/r2T/npmAiPxzBIfhPzpEGEZVG6AZrv+2iPwW8JPAL3yOkoffafnkUB8MDp3cJcKEMwuce1oAEstZ7vj4bnnPQjgUwmL54ukznl1suPnghu7TLX7b0XtH63ta7cPutSGQCEbBKEVZULiCsgHbGZx1OHG03S19u6OsDe7G419D9WSNlAbRArxFWw9l1AYGn3FRY8on0L9CnUe8D0zDgZgVyhoRh6oP0UIEcB5tHf1tT79zdLeCp8eXHu1u6AuoygtMV0Hfw0bw4vE+nCWIDduKW+8wux1cWZwD+pqiFuQpvP/uKV/+7B2ufuc2zBCMc/jTiIYO1clAn0ZqHMxsD382b5Yr8KnKHnHkcBFQVONhUveXxv6Q2B+U5jxqaJem3EHI75M2KOnak/g6BiENzuRo/0cLIjKFkCVHaE3MqfHZPU34npiAiPwTwL8K/G9VdZs8fxd4qapORL5KOJn4t7+XOo5UnDconT65Y+CmfkolTLhf1PjS8UpMiIvVKe+vzuh3jvZVg153aK/02tOqoxOPKcpwnLnrQkyBwgb1vXVIZ/HioBS8cbT9Pswc7C16LRTritX7K0w45SOE8Ooc2LAPX9QH5LBl2NvfSyhbXVg5Ro3rKoT9EOornO+HF7Tx9FtHt3N0ux7fGboe8B1qoW0CI6irC9ACdg4qRY3H9YGxucFj5dXR3u4pVejqgt3LHlMJqxP48vsXfPjZKZ/dvB6m42TqUoW4sGeUwzL5A8aNPskYxKFK1WVJ8ygTgWtSdkJ4kzaS4kS68/QOyTDPOz0dcGXSLjjCYkbTVRNFJ9r5idk0tVVGkFItIFswN0EQTF0NR6EHPfHzpYdMES4dPPKngBr4a4PkjFOBfwD4N0SkIxjXf1xVXz4EkNg3oX+m0V72cs4tpHk3JjkPxleIhzEsa3Ay6iARHhGhkJKvPH+Hi7MV24/3uM8aXOfpfM/eteylQyvC/Dsx4k4RnHadwztoRSlXJZTQ3G7puh7TW9zeYqXAnlWYtUGacGiJV8V5PzTJY1wIP1XUFa7ZBUJXEHWhD4zB7fcYa/CNC0xALaqBWcTw4H2nYY9DX+JcD3WLA/r2it4pq5MnGFdgmg4KDYzOgeJCyPSuD5Job5BLi1YmnJRUGZ5c1PzYF9/l8us3dOpmvew5HCpJpP3wUOPYR+Kdqe2RoBZGPDqXp01CykHE6UQ7GJ1xkTDv0QbuDv09AZYJ9wSWtBk5qk6YPWpCw2rYUeqPuSb1P+06SdonCYzHHOgxPWR2YOngkT9/JO/PAz9/X5lLKV0BlRPn9CT7V5K+Gzr4HoaeI1UMSTbPET2ASV0GOF+d8P75Bf3OsftoS3/d0riO1rW09HSmR8SA6zDGURYWdS6oxJ3Qaj9424V+e4Pft7ArMY1BigL7pEAE/I0PK0VsCDzqrQ0hvHsPvUfE0/eg+8sQ+ptw+KepDFIK3fUOEcHvhjUHSDgt2GtgGr2Eg1AqKNmgtxoOVS0avBS0u0s6lM3mCdZbjO9AQkBVFU8vSucd6hztvscNgUWtOWG/7inesbz//JSTD054vW1n47gwFsl4j/dRyCKD4qaZ9MzOHYzjObsPiJ/uXZBE68gBmAuDAzgWcCr3NyQmyWhyDPb/AFZY65AwuQg2SdOG5GOEoTmQA3M5PDMxJDO7T3McM4PgsawYHJMstSC8STuMaVCX1Pklx03khlG6a2I4LZoEMnFUg+H986dUGK6+c0X3YkvftbSupZMeXwqmLPA4Ot9gKajFUHqDeKHpGnrfU4hSdntqazD9Gm5bisIgJ5b6eUWpBuMEtRL8fL3HV0EjoO+xfTikpP/kMhCmF0Q8xjrk5IR+19G/eo2oR/vBEeg93hi8C0FCjRHK0xpF8b2gYumvFdfc4qzHW09z+ykOz9nqGYW3dMZhDDgNqwalF7q2A9eF9QXeY0SwtaFaFxQIJ+WG13IJmi6ATaSSztR/ohA91PyizZwq0OnvJACWlvPkC4oicxhXFs7jAGaSZGJPhwwh0S4OnImT+RnNkmW9YfJ+pO91+D7ErAx58iPMD4laxhLHUvKp9juE46NiAulGstioUWNc1A+myDOZN3ph80TmHR6LOpRH2Wa2oVQrlnO7Yf+ypf3uDt23dK6n146+UuxJhS2Uvm9RDcuEKwzSw36/o2lucNpTu471xbsUekJ3e40xBXJiMStLITVFZYIzzwREDaHAFbSDtkVcj/NduC8t3pYY61Hn6W4adN+guw5RB17xneC9CXsWPAynjIepP2ND29YrpG+Rm46+3+GrcHbC65uPcapsqqcUxtKbFhHBWkO5KsI06L7HuY7t9gasxa4r6rOK+nlBXZRkp0WnausoDHOynt6lunSUorGMXDJOYz5lnCTwwCZGs4Cs1sygmMN5kO7OkGuhcjTfQRo0hJSo0yAjYxdKiAY9TY4Oh+A+EMq7ZgweFROAqRF5eK/DTKNEB8a14QvmQO71ZXTM5IgYGUNK/tPFxekp53XJ9oNr+tcNzod4eq7wyKZEaoviKIylEEONQTvH7W5Ls93Su4a6WrFaP6G2T+g/uUV9D6cGrQxlWUNraTuPikOKQXU1Htf34BziWoxz+K5BixL1Yd0BOATwr7cIDvGCOsJsQOfxvUGN4lsJ5oNXxA9MppPAGcoKrSvsrafd79GVCVukr79Lv/Zs1hdDSOyw78BYS1kZWgedb6Fr4fIawVJUAvaU956tebU75dX+ZoglmBNdlMhRJ47dn0npUdLHsdDEFxAdgJN5MKn8C7r+MZV+Kpook++aJjzErVh4TvgHCkVilmQzGsCSVI+fjG+iNCRqp7G0w+8X0x1rHh4RExgkMRNCxMdz8Mdxzbwjh1J9jBWXvJtUv1k9WfnT+8KU/Ph771MidC+3uKahp8cVPWwsdlPQ9h14R1UaShG07dnt9jS7WzrXYMVQ2XNqf07/WYPrtti1gdJiioqiqvF+OJTDKeI8Xh2+6NFawHlktw9Hh3UtvlJQg4jFeoOiGA3HYGIsqop3Hdq7cHaAKOos2gnahh1/GIt6izrBuhKtKtR7iltlv9vDqsD5lte3H+NVWa1OQ3AS30JRUIhF6wpV6Po9Tb/HXL6i/LigXFe89+NrnH2fX/p6h3PbYSAHyhiHQ/LrdOfdFMI34diptpdoAAcWcm6jk5gNeZ6Beejx6UGd/c4dg8f9UJOkSZ2Ri9mSm3S7csRYTdotCTAyfj8EaNWJZebaz92ayaNhAnMZHDtuvo14bq3FvNNin0TSLCBI7NiUAUwrCdMOD0h7UZ9y7tZcfWdHf9mFU3fE0RaKrCrarqNtdqxqQ2lLfNPRbve024a+77BiWHPKSXeGvfL0usfUgQFYU2CrFWDwrcM7xTuP9z3edPgTDQ71tke2e6x2SNtSiIC32LKEtguIdnEKmw1SWNhe425v0bbDd2GmQcUOaywU33t6F7QM40voDVLVuDOPGLCvlWbbYdYljW95dfsJ516pqhOshU471ChGCorC0hcW51qavuH200vquuTk3ac8PzvhbH3CttsmIzDZ/flo5Ix8/mSyyRP1/Q4BmBNrxIlBCmdWwBGnWZJXI5Lcs3bggEEcKfvQWy+J9GPih0mK4cUC3urgGxizZ9pR+mbJPJ6nR8MEYFKD8pRHiJ8yJ09nnGHZLJiE0Px59nFSpEH44skT5LJn+8E19MFL3luHbCxeHX2zo6hgtSnxTc/25oZ+16LOU0jFqZxxwVMqv8bbFr92iC0xpsQWFdQFXdNTnNaYTpBe0E7pmwYnPkjtpkP2LY4O23VI7VFv8PvAANQDa4d5tkbWK6R3uE5xbYu6Itj/hcdrcDL63qM9iLFhGrIHIyWc9LizHtGC8rWh23VIXdC0e171n3K6caxXJ6gIjXG4Phy4RmnpewOdZ397w/azkpNPNqxO1lycbPjkyhBsEEnO3UuJc0DdjCjn5kBq0Kd+82QhkMb7RLIzMZGx/FFIP0DlT2o/plDfPW2Y54tMaU6u476Z4Vk4UIXB2ZnCEb7wg61s8m753AuF4BExgVHNSXp6qeNHlWh8kKuXkwmQf5MvJEtQSMPgzH0CAJtqxRdOTmi+scW93OK6Hq9KZ8Jho33fUFXK+rRCO093u8d3YYmENSWnPOGpfZeSgl52aO3BFBRUgQGcFEgVvO1tD6uvPA8e/ZdX9B9v6YblFtJ1wR+g4ZgwiwV7SrffI/T4HvTVDrU3+KeCYHFO6HsXphfFYozFi8VrWMCjxOXGirWW0gvGF7SmwF848EJ5o3RNhy0L9v0WduF49sqcYq2n9T0qBfWqwmBo2dPtHTevrzn9+Jz6vRXPztaUH1e0uh8tN513dURkmcYjldjT0V/ksjVaE7PvR4QaqD9sUErV85l+uMAARn10pD7NKjgwGx7gQ0jBWpRUC2puohxkMS9Ha2qmEciscQ+wBh4HEzggdO7mYFEHiEwicMFU0UzyHszjKrl9NtQ2hjCPeic8W5+zKlc07TW+a3C94ipHXyqu6ylXwun5hmbbsLvc0TctKlDZNSfugiflOxSmZKc3YHvEGkotKYoac2Yp3qmgUSgMhRH6mxZtO/rXO4qnJ7SmQTuP6UAdlPUZXncUq+eobOhvX9M2DtN7vNvj+0v8rsesinDEuHfQOcQW+L4K+wxUUEyIKaAeRDGFoVBD7ZVWOnrj8GcthS9Z3Qhb2WMLS+N36M6wUqVijXpHjwex2GI4cLV1dF3DzSdXnLw+4/kXV7z75ILvvGoGE2uyk/P1+3G8hqejDTCttY8jfKjiJjMCkq4cnJmIc/V8YDaTJZmoizqiwVhCes+R+3k6YAgjU0pwL7Y31qThxKQo3ad6Qhvc0EfxzIK5RiyDvZEYt8fVGB4JE5jaL9m9JP9O8/ZJHjlqLDC3hw6miWQsAIbjo8L0UlgraIzhqV2zf7Fl98kubAMwSrPyiFXqUjl5Z4Pfd7RXDb51iIHSrziXZ1xU74A17OSGjpZCCqyWFNSwsvhzizmrMNbj9w4dpu04LVidFuzaG0y3pa5r3NUNvbtiffFl+pvXlJv36BF039Lur6B1lAWgJWKDs86bCucUdR5DcCgKNUpYgqwGvFf6rgMVXC+013vMuUFWJVoq/YmjYMWmKbjtr3Blz77b0jnPGoepSwTBt2FzkRjF2XA6cbPds3/ZcvZOzZfffcKLy1e0riFD/Dj+GYVNFm7mH1hYcZcr1cn7uK5g+F2UhsO9zO5DaamPKf/uYI/BIJYfYhJMzUyBORR5o1acpHzCI2dmkx9rUgviHpusjUfSo2ACaVIisU8EP8+RNksGQj4MQZ6qiZMtdniajUx5YvEGalvx3ukp7e/c4K5DoA6pw7RdVVrOv7DBe8f2ssF0UFhLoRvO5JzT8gkOz062eNNjqajNikLKcAz584LyoqI8r+h9j9QlJ19YhdOJVXH1mvbjno1/l9XFGbf7D9HKY8wZ5UlBuT6lbRtsWeGlwLUtvYOidGGvkRikPMFJidNbrO8wfQFSIFKEGAetH1YQKn3b4XrQxmPKElMIantc6fEnnsJazm4vuOqu6GxH1+/wO8+JbCjrml23BwqqukJOoHc9za7l+oMr1k8rzt+rOFmf0N40CUGTILWmt4z8OWoMSYDSkE8PiVE10QLmgmWYARjWk0RNYZKVmlQ8gKYTAt1lPtxHYGn+pTKioJt20CaETKLpztA2Bh5J4Zu1fJxmvw/O/yXiCfy9SZGTDYZO2gFT58xVyfibPp/lGeesZXwdtsAPDqaBDT/fnFFrwe1HW/p9i/OergRTGy6+eEK1srjLBtMLRVGwkXOe2fc5q57TWcfW3KLGY21FVW6wdQnnBvNeiX1SYdYFiNC/bKHxdNc9vhBu955X37ymqFZsnj/H1ivwFSdPv0RVrlldPMUZoW86is0ZVKeorcLCIx9WBvreY6sNZn2BE6HTntZ1YUZgQCaP4FVwfUCdsi44OT9lVawpKDFao2LxVmgrj65LzvSCwldQKn2zZ3+zw+0bKjMQslOsFDgLXd+yv76lueyo1fL0dDN0dnR0HUrMQydtJBFJ1IU03zTWS/Epl2JLzPMuXaVRfe4j8iXzcwme+74eiZ2hqclfytAiAzUIRicIj8F6zIxJ06PRBA46TabGJbdENT81C1R0WjwRTYC4FmDmKMyno5IymTpKVXj/6VP2n16zf71FvVKsHL3tqTYlq5OS5vKWggKtgL5gY55SFxt27GllDyIUpqQsKsQafCWYE4O9qCg2JcV6OKjTeagM1btrTGFpP/2Ui2cF5mKNF482SllsWJ2fIabCXoQgoeW+ptv2NDcO9kC5wq7XGFZAiTFQrp/QXl2hfYtzPU46jDdIKyEKhBcKawGDquC8Bm2gNoGYpQLpUdOzqztWUnG+f8JVf0VjgxO02UFtDEVp6Ls29G9l6LuevmlpL7esmxNO6w1WCpRuYaYtGZMo9katbaY6p2G/E20vRZu5EzjOBMhwfzQmJYOWooFJzdf6L6dDdX6qWmbmKOQmaR5bQCQQt0+exZWUySMY8ogMy4kJswQpRivTCUcHMRlm6dEwAZiYfc4PEgKVeTNllN4K43TKaAjNbLngcNED1SqtB8CIoX+lNJ9u6bZb6mJN7/cUDi6eV2jTYXYCRUXXQm0qiqLi1m7ppMFgKW1FtaqR0kABxkqIOmyF4sRSn1d0Lzvqd9esnpR0L/Y0tw2b33WC1xAJyFqhb5Ryc0L9ZEN31UERYv/JqqL95JZ+u2fVW06qEyo9AVkhdYmshMJ4iuqc3t+E8wylw6uB3mKcUBgb1CAxiBqsDVOURR/2CFhfYUwFRUcnDTvp2NgVF9dPuNLXtNLCrmevt5RnG7xC1xlsWeNrS7Pfc/PJDetPL9iclZS2wvV9ttgHmEw1Epwlt9yyKb7x5XCXEfPMFzSUF82ABCEmdX8k9sN5fR2yjpi1wEAeOkUY4Zv7NhJ9fpmnzHwZ41JizVfVKiEQlR26B8J+VlmIMZCmR8ME7u++SfIfqD2jZ19H7Iq5U4/xoW4UHUCKqhksD8GI4USV/qqnFIvi8aJcvF9Tbwzdq46yLmm3nlrXmGrDru7pcFipKCmo1jXFSYmtBe88prCsTmuKdYFZWSgkxNv3gisLqieWp+9dUFYl2+0O17uwYGcbIvtKbcF0YAme/8bRbRukcazKDevnTyhP1zgLrrTImaUwa+r6CeKDSeA0LAbCCr5VfN9jjCK+wNphN6MUlEOgkkIIuxOtgVbQpqWh4WSz4tn2fV7xgk46tHW0t1vspgY6XCfYosBZZXu5Zf/impPzJ5ys1uxvtvPRS4Y4EOa4/DeSvOYxAlLv9yExT3lGgo7LilM8yLTDBUwbvxdS0ZwyqCVbP8LxYIaQUGfEbZNdBzh8/lX2O29HSiODi2suWbP0qJhA6PzcIbKcN1ffI1eU5KNll870QTjSKZVA03VVlGyqmo9eXAaV3baUG8Pq3RJaT1lVtDulsIJfF2zbhg6lrCuqusIaS7UpsbXF1hacx1SW8qyi2FiqjQ0hvd5dYaRl+91b9isbFvhww/odS98p9UlBs1PM0xo82FWBXZdsX9zi2x7feCosm5NTimcnyPMK03tYC/Z5gVkbaJ7DS2Hv9ri+CZuJrGBKgT6EOouCsG8drnXYqqSuCtqyx1QlRWUp6hpbNDRXO3aFZ7MuebJ/j0s+o5cO34FvO8qqotv3aAutGmrvoe+pCsPZas3L20njSpfejmOWmH2ZibCglk8OwWEED+b6E+dbwgDyYEW5yi+zEuZapRzDqQSe+56lxS+t8otGa3zq41Qm0VzQ0XcgKvRojGVLDDASzapjDCNN9zoGReQviMgLEfnV5NmfFpEPReQXh78/lLz7UyLydRH5moj84/eVP0IYOUC8nQluIag0qVc0fpP4RxKOF5Bj7iQcgz0PavABuxE4q0/g0z3tvsFYUN+yeVcojVJYi0cwVcH6S+fYd2p8DWVdsr4Ianv9dEV5HqS+SMhr1gVqQEpBKhO2B5clfS/YsmDztMIUntVFGcJ2CRhjAvxGwEBxUVCcCbaC5ranu24oTUX95Az7vIInJhx//qSifrbCnBUUT9YUqxMKu8IWFeXJOsBTWYqzFWYdIiH5Lhw2IoQVhdIHU6GqKqqTFfXpmrN3n7C+OEPqkn3ZIicV58W7lMUGY8G0ivSOauXx3oFRvHraa4fZw0m9QsROXT77y0ZiUP3jgzFYxuj9TYdbIu5NDw8knyafycgYsvLHeiY8XIrtlyWRFHsWHYP3OS2jBooMBJ40MTLGdN1gpIEYV8COZUxWRYTN3ClOQ3qIJvAfA/8+8Jdmz/9dVf13Zo37aeAPA38f8CXgvxKRn1RVxx0po+Hk3yif8wGfvkpkxcGYHzqNBokXVbvIOWQSAZErn8mKT775CcaUdKpsnpRsnhaIKfAuFL5+5wRflvimYXW6RkxBtamxlQ0EYYf1BlYo6hDww64M5dpgC0N32XH1W5dUp5bqWYWcGjr1uH3H6rymuW2gJsQAWIWlxHZjA5JYg991SNtTVqfYsw1aC1oDhWDXhtW6DlKwUbqrE6rmGdJfU15csGNH3+0IdCqIMeHgkl4wHva7JtiWa0NRlqxOVkHtHbxPYoX91Z7GdVRFycntE27kFUiP8RoOU/HB5GilZXezpbtpBr9Aie/76NEZR/AOYbmgbpPY7zNpLYOZNeZNpodTiz+aHiOCzXYPDqgxEpVE02QZvrvJ7OFpUoQSn8PMdBnRmKjuh69inOyUlh5ilHxP5w7ckX4O+CtDwNFviMjXgd8H/A/3fZhy/eFB8puokMh4NDOkWyqXNmTmjp8ppFSiYpJIEwERg73uaW92FNbT246TL64p1wVSWBTh9EsnUK65vWqxRUn97goZvOzGymjXGiPYSijPLKaymEqwhQ2QukHqdh6co98p1amhWFmq2rJan+F7z027ZXVWw1owa6Hvgx/B9wJ7S3m2gpXFecAppjIU64KiKFhvVnAO7WlHeb3G9R3Fas3pl9bcdJ/iLzuksGEHog8ah3NKaYDe4xxYUcqyCMuk1bN6WoTIRGpotw1N27Fel5x3T2nMLcaGOXmzUXY7xbWOfrejf3XL+ukZdVGz73fp6JCr3FFKh/EZ1/llqwAXiHY26lHSZz6AQX2e7xmIfqR4clD0JUXkGIN36rTLTxIKO0ZsBz6Ke0yFXACSzooG8HXKkym+8zIGgALIB9LwIH0/PoF/QUT+CCGS8L+sqq+ALxMOI4npg+HZQRKRPwb8MYAnz9+ZvTz0ysYXqfo3nnKb6RIPsclyFIRJkzAi2F2LEYuceJ69X7B5BsWmxndCeXGKqze0W4/roagrik2BrU04AqwP24FNKRQroVhb7OADsIN6r+pxvVI8KfDA/ralcIbGGWy5ptm22MpgKbAroVgXeA3OxVffuKS57GkvG2wrlFWNbkwY9Fah1iDZBay1AbbzgvJ6g9MeLwa7WVO929PuL8MCJQwUFlHB4vEIXbeHduhZE5ib+rC+oDrfcIrQXJfsr3Z03lE3K2gMfXFLXVoq6zFPlO0LF74pSkxRUpUFsl+wg+9aaz+Mc7YsOPmNRWmcDp4hflxwlEYPisxhqdpob083uTQe9e6RC9xFaHcTYBZ7kLyYQeHJHH6RGUQTwDOdUZBWFbdKjPLtDjC+18VCfw743cDPEM4a+DOftwBV/Q9V9feq6u89ObuYGpvo9bk2L1FYD/cHJY6s4JhdFpcE5/uyYmGKGRZj252itJTnnrMvWKrzFRhD/ewpXV9w80lDt+0oakt5VlKeF8EBOHhnbAnFqVCcWcrTIjjWikBIMhATvad71eGuOzbvrpBVSbdTmuuWrnWYoqDbdkEDsQbXO24+29O8bthd3dBc3VJaS3leQwWcDsQiQlWXgyTQcObBxmJPSigr+sbh2p7ydM3573mH0991TvWkxJhhAKwJGoxYrC/Cc8KBJFELK1c1J++ccfLOOZtnZ9hVTbfxFGcllVlhTcGqXFHXhqKG3a7j+tMG2QsrWzNpXdNwZ3azkGFwtNPvW4CT+RBS/wATMaRcX6JPINE6NatzAHXIFxXIJT/BXT6A+54fS1HEmZQJycQMvITQbZpwh6gZR+bg7qL+IX1PmoCqfhyvReQ/Av7fw+2HwFeSrD8yPPtc6cBpwoJduGCFpV7ipWWlS3njdayyEMNJVdKulGdfENZP1ygGe3rOfm9pbpqwdPekpD4NxK8o7W0PBqrzAluCqWUkfjFmdPJ59aiGqD5mbVm9X7K/7th9uqO+KGleesTUdLuO7es9Z184ob3saBvP/qqn3e7ZX13i2luK6jmcFKgN05CyIszvF3bsI2st5UnBfqPwKUjnMaUiteC7EntRY77QY751i3/tcLdgfIB370PQ06Iw2HWBw+FbjwiYqmT9zGJKg7EmxDd0LWW3QnyLKYSqL9mcEKIb7XeU3rOuykEFHwhrtvsupEFPmAz4ZRyYj/FoPAwfy/gzw5xJsxhLH2BZ0icjG1E07Ouf1JIBzvukfVKXzGvI/SH5tmpGlWRqv2aMIOENST7N6MbJ3YT+vZ478EVV/Wi4/aeBOHPwV4H/VET+LMEx+BPA33pQmcm/y3XGfMK4zj/Jn+kPs7njdCpq1B6jjTi1CQVOiprTqsQ/M5w8K1ExUJ3R7AuaVy2lMZy8s6Z+UmIs+N7T3Hpc4zFVWBhEwShBUgagGpb0usbTvurRArZXPcYaLn7XOX2n+H2HLQS84nZKu+vprxxd57l6saXvHV2zhcJRbGq0suEY8SF+YN92NPuG1WY1tqvclNTvVLRXJd2toTorMKuwOKi56vBYyp+6oP2whW/cYNSgPZhGcU04qNR3BE3JmHD2gIdqU1CsNpR1QXPZsLveQ91RFAXa7rEVrDcW5wuaLTSXLfV5iRGDS3zFi9q0JIg/rv7Ms6TmQLpPX8ZPJpKY7Ol5INIcyaZdhYlTegDOjuUtp2XBs8RWDmo+eD7uhUl8GFFZi/1iUhgHBqUyBNSfh2m/I32v5w7870TkZ4Yavgn8XwFU9ddE5D8H/g5hYeqfuG9mIK9s+bHKPLBC8m58Pt9ZddCOcYB0hgXRTECE94sVJ65HvlLBaoWXNfvbCoB6XbF5p2bzhRXeeXZXLa5X6JTCGmwd5t9tbVDncb3DFnasu2t7us7heqXzHbRQ1wVuCy8+2uK2De/97ie4TtnuetzWs3/p2L9w9HTsPnvNbndNs71hXa6wqwK1oO1w+OcutM09y7vc2OAsrJ7XeN9QVAVagBp4/tWn0MP1R1v0tsN8dUP79R39PmxmMj1oD6pD7EOFwhoUQ7cNh5+unqwoTyrK1zXt1Q4xDtYVzeVrKlG8UfSqw313R30S1lE47UgweGHEJpQ4OIlskWksPcxLGt2KqT9Bg1o9lS/EWIZHY1wmMM1R9ti6gIcvIErggJkdkIq+Odbni4pEpsCk8v06Bj/PuQND/n8T+DfvK/fgOxY6NLHL4pMxv0xPJs1+xqnjNFDKlQdtIODftJZABNal5StSUp5ewzsVujrHbSusCqtnNasnJcU62OfNbU9347GVYOowFUhBWHqwhB2D8uad8uFnW1YbeHqxBjHcfHJDf3XFu196Rt8ou12D33qqqqT5qKd53bJrrmmur3D9FsVhCoPUYfjEg9sSJPQmbBGeuiCYBNYWFGclRa9IIawvwsKmqqwQEdYXa5ofPeXVb73C1IL77R286FAH3ntsUUAl2NKEqDeF4HvobnvktKA6KSmqIuwh2PV4W7EW0N0VZqP0pkf6nrKtKIty2FYcJF7c6pHtqc+xgBhS69juQVTH7eAwLSeL0nHuwzu2ejAe9DGS3qQOzPA0qirLnv8UvmP3nzfleD08iZrtgPdR60GjthDhP54ezYrBmBa3Dwf2HTPkfCF+N6ptkePfrbrFnELQcEtr+LHzE96RBnm/wp89pe9qNs8qsBZKwSk0l90Ag1KtJZwbaMJhQ2IDAYoEB+DojJRg94kxvNzu+NZ3XvC+nrEuV2jTYBTe+/H3wFquP7mh37f4vWN9copvDV3T0Fxd4nd7CmvwWMy6QE6L4Ca2AnsN5xZ2wZSYT4OVdcnqzNNe99BDXdaj70BVES+sNiue/eQzXm+u6EWwTwU9LShqwdQWb8LhqurBlmFpcHvb0++UvutZn9Wsn29obzr6psOJQGWxssVWjv7VLf51wXpVsE2IMxfCMp68M43UXMgvE+BIqpH5xyd6qE2MBDTg1jh7ELVFA/Ecg5GB5LV8z2lux9+ZRMb1ClHQxe8PoJAgENJyw3S63Anyo2EC2UowGZiBQooPcX1Pyo0nLWDeNYdqpsogbsYfwVo4WVl+9Pk5P/XeO5TqcPUZlgpxQr/z7F71wfNuoVxbirVgigEgDQiDEcQI1pAQfqh7WDnLdz/b8Xd++7vcbrd89eIE63pMIUgdTvdtr/fcfHaJOk+/29LftLS3DSKEiL0WBIMxBaYukFMTFgjhMfWAvx5MZfHeD8eEB3iKokBrpVrv6W7Dfn/jw2lE1liKwhIdicVJgXle4TtPc9txWgpmM6wlIBxgggnaT7UucK2nbzzNVUe5ttTnNWVv2b00dDtB6gJzcc161cD+hhOxvDQyhDeTaZDHBfJHTISEaOMy73xxj4waQ0qr03x7RJ50Z+lkJkRTQcalxqTItshM5lOW6bPFJPlipph/xNE7NIWUuMcgOAyibnhphvb4YaZAUpX5SHo0TCAmmd3EcFLzNCkHOikJE0c4OiCjxghYI3zp6Qm/50tPWG2e8tGtR1VYacEKZdU5aJWyBLuxgdCHLVquD6qsGLCFxRQ2MS0E74NN/fqq4YOPP+Pqds/lzQ3X+yvquqJ6fopQINaivccUQnPb4HZdOBbMXaH9Hm0biqIODEAsTjy2KMN31kMViNEbRVZmYBhuUnVju0Uw1lA/WdG7LU3TYpzgOqUsS9anNVVdUtiCk/M1+5OWxgK7BqnOkdpgdTi7wCk6HIluKgnTilboO6Xb9bhGqE5KTp9b9iL0vcUYoah3nF4IJzvFtnYwW1KKmuGACDo4xuanFc2RZloElGuCo/RMPP8jjqCZbT/WMJu7TzBnKC7RGD6nep/ylcVa7sDXuGtyFHODQjR2Y7xnmBFIu/YOOB8VE4ge+swkOND9Mx1gxiCmbl3yExmGzRiDPVWWBe+/+wU+2bb8zje/Qdt0GAxiLJVZ8RNf+CJfPltR2lCq6zy+C8tn1Qd/QHVig+o/wG+MBG7vhX2nfPu7r/jGd17Q9g2KhlV3CO2tQ04F3yu7q55+14WluDdbVMP5f6p92IZclLQ0lGaFY4cpSowM/gCF4mlJd+nCNOEamn2LLQ2rVR1W9w2wRfNHvWIw7K87Xn37BoCT9yre+coTTs9OWG/WvPPjYbXjdakh7JkARrEFaG/C+QgmMEFRwdTBT9D3it/7EEzkrGT9fI1vKvqmoCjXlCvPe5uWF/2ez676ZJruSEpP44y2fGZDBFyI++ozwkpw4KD8KEmnpYGYlMAScs1iEaDDDsKB+O5JdxoPKbM50C7I3i31TySN9PTnhAIebLg8KiZwLI1CbZQUMoVNii0d1bbIKw0ifvwoxqs3omEaRaHrHb/027+Dd8HONxiMeETDBpjf+OgjlC/yxfMq2FYuHPkVp+OCGqjTRh8E74XOea5vWz765IoPP301xOkPSOMV+s7R3nb0pbJ7tcddN2ghuLbDtz1iO8QG1daIocPhwqI+iqLCrivA4Dy4vVJ4Zf1+xf6qQyul3ffUG4f3cQFUSNZaVusV7abFq7I+KeiehXUK3U1Hs2tYb9aIFapVRXlaYZ+vR3HjDVgJ2lBQmydmgB/m0UWwmwL1gnaOXg1WDPX5BkXZGo+u9zy/2HO93dO0LrHlybF2kGwyrBOPdBGnxrIwY4MJeejsO9Dfw5eJmh+3k4SVhUxSnsM8I06O71JOsyB5JBFpOsE8QXfMqZhUPoM/leo5weuwelCwB9zvuD3waJjAfIVX9ozY37m+mKtUaYfJ4tiPK6uG/N47utaNKrwTH5xuXlHxeG75je98wG37Du8/3VDXQmlDZGB1QU1zavBdODK87ZTtruO7n17xyatrdu2OzgUNwBMYgCooHqtA56lL0CdrXl/e0jXd6GMwRhCvWFvRWo+oIKuwoafY1NjOglP6Vx1mbaifVZQYtpcdoPjzsN4+W1pLMF1WZyu2NzvKVcnFl09ZN21gEJs6MDoTZGK5KtipRwVWgB0W+HjnR6Y6uB2mcNh9iMhjhkAqeNBe6Zzhde/44PqSm/Y15yeG082KfXuba365F25aB3Dwb4o80fadmRbxeLpBcViMyx/15wyCRPoPmeLS5XH6PtM6U9/EAiP4PlO6tFgj94mzJWm+4TfsMpx6NW49PpYeDROIWyMnM04m8yzzCySbiSK3lJhvxqpnC4UCJ47ihVGyZEmHSLwEnaLXPd968V2+e7nmdLXi4qTmbF1RGoNTz/a1o20d+7bjZrdn3zS0XUOvDs9wpDc+GQjFFpaiKvC90qtl+3JLe3ON7h1GDGoCU7KFBVOghUOspTivKcsKdYayNogDEaX7qKN/v0Jqob3u6ZueYmUxVlifrCnsNMwiQcq3TYOYcF1UBSKGvu3wzrMxG4qi4Ox8Q1dd8c0PP+O956dcrCvWa4tVCUtZi7BXInikBayEnYbKwCQFrKFTeHG757defsLN/hJMi+oKxIzTexOAEc54M6NQmTTD0Sk3ysG0EI20MuBK+HCypwfciBpA+n2CYNGJl27eyVjAEZrPFzFN5S5J/qVVhKO2cjQlTG/A/Qjf2HWqebuOpEfDBEI6lOCjOs8k+efvGHJIgiDpYEMcjCgZkqmfoYioJYgJu/RkOBk4OLA79n1Pe3PL6xuLMQWFLVD19H2L94HYPWFJsAccHuc9qmMIiAmTTJj2KVeG9mUzeKMt3oMTj0g4EMRYgzMKRqjXK6pNTVnV9DcdZVVQlgWiBnFh2y6F4fbTPdo7io1ldVqxPjnsZWstRVniNBxgikJRFJja0Ls+tMd7jMBqZfn01ae8vL3kdLPh/HTDaV1xtqpYryzVYG8YQKwJ21q9oCLsnHKza/jsZs9H16/Zdpco4bi1y9sGHerOrDly9Tky+Kh55Gp4lBV+zC8psS+ZBInWoAN+aIoLB9p8lB6h3DRLGuDjuLJ9mI7PHtxVyqFpMPrFBhii4Bri5gbt8wFFPxomMO7ujdfxJhJpYlsFZjB9kJoKAQd0USuTeHQTEfGECQVz8yMWHGexzKDUK2G1X+sJxDvgjyOsEVDVcLSX94M6zrREOfI4DbEBug5cq3R7T3fd4pzD4VgVlrK2SBHWJohaqs2KoqyoVhXSQVXX2JMqBAY1hu7W0d50NC/3GAv9laO5cfSnDru2mcotEtYEtF2LEUPbdlxf3lCUFlvZcC6BKl3f470LDj9teLVteH17hZGC9WrF2XrN+SZsCKqtxRqD+hDIonGe19s9r25u2HVbelpAh7KhG2YwYpePjOCAouaqdszNKDMYED4d9GyOICoG2ftDYTH5FjhgBlGrWCLdGMNQEjjnRJ7K+HvTvJ5D+k/KmVYMppnG9i0wtnl6HExg1F9yQpz7BMyYJ3C8+OaAdhdWakGqmumR0Yir0qayIyFPnuDBvkfDoPvh3keb34dAoT7acHEv/KSWOVGcge51g7vu0F2HuDDjsLYriiKo8x7BajhluNrUFGVJfVJjvKGwFVKGqEXihfaq5+r1Fuk83gWHo1lZViclZV1gUg8hIWqRd37YOAyI0nYtuje4lWd9UgMeGxY+BCJVgiT3jptdy+3umhevQxyFwljiMlyxlr7v6VyL0jPudGMsZOrxdKHPgLmpMJiTqySSPBnxUf1NngyjFdX3PBZBLEzCgCdwJOQ1RgOe8kWVITLzWWVH04HVc+dagrGa0dSJxaemwwGfSjQkL9Pah/u2Cj8OJnBPklQLiAMhh5I7Jfa7FmCIhM0Y+RRPRJChy+LaSyZ1MT8LbpD68VdB/UT0YwDKcT45InqUfp6iNDTO4bser47SFJSFYCpHURlcZ1BrsQpFVbI6rVEjlKsSbQAr2GpwAzkPu56ysnR9T7ttMa8slx+XlKuCzenqgMFaa+m6jq4JYcDVQXPdQO8xFsoqrINOWOfwO6icMrg8Reg0WdnWh37woiMTnb6c+u5gnEmQfpC82cvZfaohyNDBqrlUD9XOxLgMbEH1/qAbuSWxoCAIJvoWFvwAqWNT5oxqAUezpdB3wDJ1kIxY6xOmFP1rw4H1d2ogj5YJRP4fk87fJq7epf66r3RJIy5kZST66KDHj0KAwDhGKZASvE4MwEcmwaCxDEVm01Jq8I5AvD7s1CuxSOEoTyy2EkQMasphJZyl3FT0O4dYodxY1ClSBjvDbQzri4q+KzC7lu2uYf96FySBFeQrsNrUo0YQVxE6F6YSt68afK8h7LhA23Tsdx2vX+4ZV6QldOQZ1uUPY6Fm2GU3tB+YMYB8+JYiAE9jPjB9o3ml5LdiphmXMebeZOuNo7lEvaPDL3mVOguXYFYYVyVGOEL5C4xE8g67T1mYM+icScr479z9eXCdoLUfZkbi+pBj6VExgYz7zZwCstBiycRFqjIe88AO3aieaKMfjB0JxQ8SG80XbxxIxkj8MCLROBcQByXBuF49zbblpCsoikCUhR9U9qqnqC22EKSo8FJhFLwbkNYIVWWx1uAbjyq0lefDT675kWdr5NLheo9s9/i2Z/dyy2cEDeTZl8/YnKxGRmCtpSjCqcLuTGluevAhMlFZlNy8bLn67BbFZ2pppFafqMYQJFEq6ZcZgI52/5ze4uk6EYnHGoeBGp14KRLEMSMq/SRMa4n6Iw0vyfW85ElbYNkfkFD2vH/GqTzSlYrL2sLnSjNtIC5emvfKyKxG7eM4G3g0TOBo1BUhIcqEo41iY3nD57y8NL7gaLvmOcaCAxIvL1fOU67qxp9xy3LGtWUUS51ztF2HmAokLKYxYvDWUWygqEJ0H7ErvIblitYMbfdKsS7xnac4LfGqvLi84RsvPubsS1/m2aaiuWmpihAEpPeO3cfXXNpwyKp8QdicBdPAGENRFFgbVj1uzgmBTQtDvamwUsIHn0ATWjPfrDMqTExEoslv1gfj2tclwpQ5bg+fRIJJHkbzjDxwRmr1xzJJCETis9S2T5jENN2YgZBcZzrDoOklWsHw+gBljvOaz5fuKSftuzgrMDkr70bkR8MEYpqkQCIVDjLN38YeyntqHlAkZ75y6KyJF8kJE4LJP04ACodW+gnhoyQcmUBsy3AXkdornSjd3uF3jlIsfQE6mAJFZUCFTixlVQbnnA+794ph12KxCl58J8oHH7/gZn/Nt69e8uT9H2FzW1EUwn7fIH1H73ual3subYkVS1mXVMM2ZGuD47Gu6iT6kYJ6yo0Nh57cBILUFNPuClt19NVcoc1HzBC7KFEDMlUhThFO46EHpRyCEBnA0tbh8CopL2EQkuDUvElzzTSYR4xaQaqdTNL44WmuMUwYnsfNmGbJBjYYNdbxsWRxCpfSQ4KK/AXgnwReqOrfPzz7z4CfGrI8AV6r6s9IiEr868DXhnd/Q1X/+L11kMrzVBU/ljtNKdGH96nqPv9OJK52g7jvUjXtzPlnUddKdL+kQp0N8HgGQqKJeRMDQ05SyJngCyitAWOxFvraYldB6iOWfUMIZbYqwglAnWf1tMI7pdoYXKc0/ZZ9d41Tx4urV3xrc8pX37mAK4MXKNTS2oZm23D7cdgGcPK0pqzsiGjRPwBh81Gzb0GUtu3pnZ8kJxE5532bqN8S+0gTNTn0yShHxy4dO382RowkND1PxnkYjzHs9mznYM4AZuM2bsIJfqHc9A7wJDkglfhZc5OdjDOVf6r3OOktaarL+TLok2+THtKEORgdrQCjs0VQR9L3dO6Aqv4fE4D+DHCZ5P8tVf2ZB5SbpFG3J1X/RWJnT6phpNXlDUTzMicva3TWpQRKRASSzhQ9ZAgylTcvP0KTDuKBFAJST64CjfTYtaVEkMIgtcFvDLJuMDWIWWNaMIWlWld4o+EMksrgd4GZFBth9/ITqloR8ey7hg9efcKzL6+5qCzVusSpCQugnLLft7z68IrVk4rVWUVVh3h/3gdyir9d27G7bmlV2TXN2JJRBo0zHFNjwxjp2Lfjtm+d2j1+kn6b+YGSyxnT8MP7g2W7yTBEUyQP7TUX+9NnnuUsSwp0FFCThJ+SgUSwMDG2tG+4O929gOghWtfYMcvy8yidfJ/nDkigsH8W+N/fV85D0iGckl3lqJS+yTtp5J6LemcirZIVStn6gNmKlbvcFQH7InQDOznAz+iJnuC/7VrYWAop0NohGwunFgrFFB5sRbnyoGDKAtRhDdjK0t90iEDPFudesa5L1FhU4Wq/5cPXr7h4+h6lKTC9QQqhb0CaLfvrWz79hmXztOb5l87GwCIQmIBIWGrsWserVw37LjCBVDPPukOG/hnbrLl2NPY1Q09MhaXljGVnPCEUPhFHZOz52OY8ZUZMiXYQ3ykxcAmZZpBreUMdB3ZkIoUlRh4e9vAzS6lmEv0ed5gF2RqALNu0FDjti4OyokYw9HlkXPexoO815HhM/wjwsar+ZvLsx0XkfxaR/0ZE/pHPU1hcebWUJPsLyJGqszLeL7OSqGBEzSIT9BGRx+up3OPMQKdnsZ+VKbSTJBJFg6QY479BOCC0EKS0uK0PO/MM2MJgbY0tS+qzmtVJFaL4lAYzRPWpTgtu25ar7UuqqsTYAj8wot45Xtxc8bJvsVWBsSZEHK4tdV2wWln2r7Z8+tuvub0K03+xvc459vs9fd/hvXJ729P7/igKjX2Z9F1O9AxEFp2sORtJGcuk4aX9PxZBXCsyvlv6S6fZxkzCAkqM8I9QSf5dKi+mGpN6MmY1wRl1FEne5biWINuRdGhczL6fbrLWxD+FzHq5u7bv3zH4fwL+cnL/EfCjqvqZiPyDwP9LRP4+Vb2afyjJ4SNP33l3bMNIOOkUYRyMsZ3zQCJpuYkQGp1BMuJm6s2N66zRsOz3gOAThSBqCbmkCSsBY3ARdVEcDnUMH5t0GMK5ILS+pzGO9U5YVRZqg5aCLQxiLWZdYjScZVCubDAHjOD6nmJV8e1vfsqziwYRpe+bsatA2TZ7Prp+xdPnX8D64OyTsxoRpVhbbq/2XH98zWcfVFSrgnpdhSXLzg3BUISiLLjZtTgdgpimkj2bvl2wrSMFzVXTRCjFSF5CYh7MTD7GGZp8MdCkdYQHcym+JPtmw5m/H8ub8mR5B3h0umCQuaNFk8GQwidHpP/ofwjXx30Cd7xL+ixdgp0C8RBt4HvWBESkAP4Z4D+Lz1S1UdXPhuu/DfwW8JNL3+vs8JGMYyZceWK6kRnMVbNDPjdpBcm1ppJFhsWyk3SZpP68vIXyOcLMR7gnZJg0ggkmYwSvjq5W6lPL+isbpCowpcUUYNcFGIOtg/POWKhOK0xtqdYFH7/a8+0XnyGmCpt8aoO1E1L06vj09prPun0IFVYLdl1Qn69Zn284f7ahtMr+VcPt6z1d1w8MwNG3jutP91y/9mz7/aA+HyJQPlaJFBqYXyrNJeHgkn48fDZK1/SxTjqhGQhqfKJ55weN4j55lzOY9EAPGa5jHVF9vw8VoobjI0hpO2cIsiSzI+zL4B6WMb1Kp6+H1g8CYL6T4M46hvT9mAP/GPAbqvpBAty7ImKH668Szh347YcUJvkwJ8+HfyVR0ST5HXNJRvwDDLNrmdSxhPD9VFFe75wrjbfZ2chjlqn7BTMMSmo2GEa2g6ryst2iTwq6Ftytw1iwtaU626Am7Mm3dWAaxghFIdx2wq9+40N27Q1d76iKmtIWIXhIJCiFbdPwrdcvuTKOYh0OCBVrqE9LTt45ZX2xpr3pefWtW3ZXeyDsd/De01x5rr7TcNu0w7Lo5W6ACRmn3/xZZmolenc21sk4hanIiamk46A6fSUDg/Uz5I+9TsZUZMKdVMIk0IzaYlZhWkI+z6Bp3oFhhMVMMVPClpZlVdY5meCaZV82ke9heiNsw/UdnOAhR5P/ZcKBoj8lIh+IyD8/vPrD5KYAwB8AfllEfhH4fwB/XFVf3lfHUFHOHoWsU9Js4VkuaXJT6RgHjd+m9C2jFZf6ALKIdJIOUrJ1KYFPkQk5NMzzmwiXWXZ83XQ7+kKRzlPU4chxW1dhx2AliIXVukAErDFs24K//evf4Wr7GkXpvYKxlGXBpi5JHRNeHZ9dX/L1Tz7lBsLZhpXFVAW2KFhfbChrw/5yz+V3bun3jqqqKcqCfu9o+pZmCIiSqdpZrL9j2D3kmEtTyS+jb2d6sIzsKgfCP8NpnZVrUsJaYADL4epjuYmUFZkkfFJvGvA27Y2pjWErdSICAj4taAf3kPKYMfcFHJYSF1SNzCoBaRI+y+l7PXcAVf3nFp79PPDz95V5vLLJaTcushiBn6ZnJpULjrG4dCPGfGtxQJT8Phab7hNIJd24qUMmxhpVfJVgswbpJKMUSO3KtC1RWu66hq06ShcCibjOUV/U2KKgqHrqVR3OMBTh09cdf+tXvs3V7jPAo+po+x7B4RX2nRvLjVV57fnuq09Bhd9z8YxVD64Ph5HI4Ez0nUO7sNS4Pq05rQqu6o5P2x2db5P+SFszoNrIgJfs1oiMM+Sbrb+Nkb6zvpkv+WZYATd0arYaWBiWyA5jRL6YZiwg+iLGZ8mqPw3kms5qjGsERqQY2iJpQZM/JEXFcRZiBHiC4S4bP/32zqTDP0clfPIi7bMj6fudHfh7knQOVWSiCQcfX4ks/sV36W/g3qGwaYYhhO23CUKj5iiLluQvf66TKjxWl0qVSEyRLxs61/Pa7zEbA61C12EKi+sdRWkpS0tVVry8Uv7HX/0WV7tPcepwaNhVWK4wONalY1WOToEBwIDY3vV8fPmSb99c0tdBknedY3vVhvBlheH2lbK/8bjOcXu5o287vtPcDAFOspEZ+nMycXKTjPH5wbPINJKn8TqGwpoYWMJ8IWhVB8ieSLx0KfMIQ44suXa4NHrL9CTZPzKM3MQAowNQBhjNsf0KabuPaKoHsN+T8vYyr2Toz/tXDD4aJhCRIDbCyORVV6LtN2UQuYdbxnJT5jAyACbfAJP0FEIg0lCTHJRz7Df+jVs2JUQ19kNJRiBlOrHBapSPtld0p0JRQ7mxGGvpmp7TkxPElPzS1z7jv//Fv8vl/jOGgGU4VXat47b1FHaF8x2d65M+lNE88UDvWj6+fMmn3RYqwTU93W2Ddx7n4Po7L3n9Wy/xXYiRcLuCbb8dhdjRfl3s69gLc1KfFGdNxjUtZDTx4r8RkYci0hIzyZb6FJZgXXiW173kvZ8ymJmGqsO26bsqmWhSRkLM3ifC6qEp/+ZQFM2faPr7A6EJJBwslyCR0053pFmPFXfkpUnqyp1TOUFHD7ckyHBUw0jgidw3lj/Ok8dSsvdwtb3iu7LDPqswRjG24OziFFsU/MrXPuY3vvnb7NwlXj1OPf0QsUgA51oQT2UNq7JI+ifIq4nYhG3X8O3Xr3lteqozy2plaW972qsttXX419do43Ct5cXtFu+7ac3DzGxKOnC8n7piNJTyocw6OiViyV8nYlOOhfKZxHs2BhOKTO8XU1Z3TlTZTJEk5Y45Rg8S0Rwc65/5QNIxvy/NQb2LSaTsd75m4ZglcRetPIoNRBmHH++DJJu0gQMUvL/cxL5KV2OF//PQU2nJIpHja6LyHhmQhCFE4hzHJWH/02wBYX33yGw833j1GU9txYXtKKuSHsP//Cvf4Rsf/g5eeno/hCxTTQKhCM5bRAxF2YFx2UgnfvTx2avba76G8JVn7/CFL51iuh53pVQnK/Ad+xdbuqridr9lspGHXjuk+7FfgtmcZmbE/nF+n2l8R10rYxCZaGc8SWDmYwHBH67Ny9KBTR3LGCpc9F9Eh6dmn0zw6QTh3GMRXs9MkhT3YJzynPsr8hmsQ/gXYc5wNqeXJa656CdJ0qNgAhABHZZhytSw8f3AVqOaa0Zmf5wl6MHAT72nEiMGRd6ebCMdBz1BvaS+pVgF6W7FWVyLrA2jrE6Yx7a54cNXr3j+vuG2gb/1a7/Jy6uXKC5EK/ZT0FIYwp2h3O73wIbSGNal5Vr6TEJldrEENLm6ueTXbm747sVTfvJHn/OOCzD4qxZ9tUV/tKCjHQ+ziMwg+jxCYWaY+Thk30kP5+/iuQHJ/oK8c3IhPn1HMjoDU44bY+5xoKW0Mh+36T6Fc4J7vnsPBkmvQxvGlGxpnkuVhPkxvBpnKL5P52BkUmPfxH5N8D0S/1wgzdPjYAKplEk6CvJOjHk+pymVVzWx25HxxAjEI7JDWAGoclB/VsbifRgWSzgKChh9A3amPkbkQZTL/Uu0+iJf+52PeX3zEvCj9Hd+OXK884r3e7zuELsCmnACEonfA4KUE01WvHV8evkJu6blK++9x1een3LxhVMqHFeuA+mHdkcGwOiBH02byIVH7Sm022tclz+J0nGtfmJWzAljgprxm0hQmuTNtYLDcTlk/Bxcz76aaQHpWOpAbaS8jDF0XJLbz7SF9G3EsUOz6uEpgnFMoOvsLmcSd6fHwQTggBFA4kyRCUkmr7FkDo3MNktMgNwcSJe3Bu454NUkiSY1ZOQ48RNzB/eZoBmktUwDkMzeHsAaa61XhmsxfPezz3DDKUlOFad+jGOYqqcCYZsvgrhX+O5srCOaMMYMhH/glTKoKte71/zGt2749ndO2axPePfZKf+bHzvnyfmKy10zi8Eo2WWcOoxakw4u6MGbwhS8Cybta7zMpgVJrxO09fegbza+5AxjnmeOC5Pany95ju9EUjyacGSaD2RcZThuOBuECMyCrwBx63Kimgwvlts4LjxKBn0eSSBrr6ZPI+MZ/kkXLi2kR8ME0pDikHCvBDfSDshw6IhkPiYVYDAnRjzNkTWUMb+Yyl40B8adhzJqGDL7flKnE1kYmU9Z8Ontlm2zHw4sIZvaib/jHnoEgwEqSltQ1zVy0yFiBgYwwXLQhykx4Nj2l+yuL3l5LdTVV3jvyQUffnKFc2kXDGLQTB77qd9n0Z3mPEfJWMO8Tyd2kTKFqMYmCK0zfpYNwx0xAxdJYDks/YyMZs+m+1RniQQqKaBRCKSMW/P4E0ouWA7wKjRifHeXhSBDYwLkkvyblHUkPZ7ZAWbdnOJDlo41ZyHnguSepgvjN5mMDn+jGs3oi0iLWlqTgDCGxgn+hvCRxLbIaGiEOiePIwrUlXDb7NFB/i3ZvClDCKvWFNcrxlTIEBUoMIDpOpuxi88kr380O/B865PP6LBIGqLcaDh8VBIGMNMMRhjnTHPo4Xgghhy8G8Yp4Y0J+xruExYxcIGD48SmwZnqWCTww2tJxjsyhxzChI+OWmn4J90tGq8nLWeaIUn48PhrUnASOA5SwrTlrvwywSpIXAN1JwOAR6QJzIfnQBPVhGONmZfjCx6tY+Sq8UEUMzoO9SjPYx0aDgU9AHKWzIAAfsCGAFmiqsZCBzUvbo+N5a4quN7do/6SI1HnhLBVo8OIG5iV5ESuJKpvrFgnYvUTQakql9dbfr1/QeP8VJlOHTJqABLl39i5uaNt5iCLHXvMrk3bNtap0+XYj4NqkIKWVrFU/CTx59L/ANPy2lJTYTTKY3marWz0UxPH5kfNIPDrzOYYajrsiOMzGBPMd/n6l9t3uKYjTY9GE8hjoyfclrzzRxZ8MIDKkoQ+kNgkiByJfhSKB6gYwUm4wsJrCXLLSKJ+J9JECCcYiQzRgVLBJ4I1UJYF2244YnqpKpEcRhHaXnFaYW3JugwnAEWNwJgQcV4nmTpiqZgI6wC7mersnOf29hp10+bqoGpK0k9JRybicJyZgGzhFOkvMya1YBrENmoyRvEvxYEs7+LAsNyXTNVOv3nm+T3527HOyFdVpjbPmfVcwE3tZGTcR9Mc94b7Y2tV8jbc2QVjeiSawOEg5m4VRvUmwaXkYr6XeqGGAw477eUep6/GYicGk6lgcshR82mneKhJHkAkMIgc5LScuhA6r2zb9sBOHQlmtIfDhSD03rF3LSeE8wIwJodvEgTDqT1M7WLSVtLDOketIekQ9RJ8Deaw8NGBxfRdKrmPhxWdpWF87tPtJryIVxEpko6Tqd44qxHzT327pENA6jRMwGIxSOmQV2NIOk1Yw4LfKGtFoiUspfs1goelsZw7evXRaAKJ/z9jo1GqxPs5lt/JRGcaQPo8TaMDLhNMMylwVEAvSIsx84I0SZs3SMJ1AU3b4fwh4kSJFJjREPl4WPYogHpFpEKkYNq/EOtd8ApLWKkvU2jfHLAB0UcfF7LUjFnSrL25l2Viq8dStt4g1dg0l6ypU3AZpRPCSc2JA4JMIUobp9kzWdoyPq9N8vYGBhTbcbzVx5YRH10luPROlt/JrJ/uCzX6aJgAgxSdtzMZy2Bzx3udvz2mHk3PMjNhQO5QXlCbU/Nv2Yw4zlRS59LctBniD82+CfALcFKWbJvJk30420GiFRoQg5eApOoNqrCqwvkB6feZD1uYNmYNzMeYYAqMs4jjdwlpyFCOmfeHzHPmzFsgidYRnKV3cILoJ5n6Jhk3JtZywKNnqvKyWbDIvjMGm9cbgcqwglToLDH/GN9Ah5mZo/BA3hbu0H6yaiaN9+hJSYcfHXkypcfDBLI05wY5ct4tlRKiPKomCFG1z1YeJqrtokqeXC9z7mnwxeS2thwQd7i2otRVxbYJob0jA4oe/qnOwE7MgAhWlELASIHiaPsmIG0qBQanYLRdo/AfUVuSshOCO0izTZXxm4G6k/Yk9toYAk7TYjK7OfaL0WknYdo3BziuS/AtO9cWx4XYzpSxp0QeodNEY9Pku7SsSQMY/x2LDsxPk8c5r5z5jmaNygTPfch+JE34Oat8IT0kqMhXROS/FpG/IyK/JiL/4vD8mYj8NRH5zeH36fBcROTfE5Gvi8gvi8jPPgjo4VeTf8cXszbM0fUod54R8rE6cxkTr78/WyytZG5KpFNipTXsnaF1C7HrFxiOMROqGmtxFIF5aE+iLhCPRjsKz1hmOP1o5JljZzJsiAmIZOZzcotNTUXfJF0lHj12kDslnCmlWsHco7DMCO6Da9AYF3BAZ/BmarzM7pOcoy9CYlsm4jYpX4l9OGtX3rbjZsABvPGLkcAflv+u9BBNoAf+ZVX9aeD3A39CRH4a+JPAX1fVnwD++nAP8AcJYcV+ghBI9M89oA5SbFgCPKqrsbPDQxOW9uqE+IelLntSZSwvuK/mrsmlDr5LG5gGJV9SOq6xHwgubrWNq806FT6+CQuEluozqbc/MgIJNv227bne94ipKYyMC6AS3+dh9wqIYZylMHH+HwnMgKjBTIQQ+jDtkxlHllxeSVpZSuWafJssGoiReqbc0YTI6xvn4ZO6DvcCJRw3u07KWpS+HCbJ341axAJDHJmAzoqf15vUL+N/sRvv8GHFb++g6sNv9UFM814moKofqer/NFxfE04Y+jLwc8BfHLL9ReCfGq5/DvhLGtLfAJ6IyBfvq2cAmRm2zV5GPSHloYcps/EOBnvioEeZzdGSk3JY6vSp/EntlQShIzMYxW6I6+fcgs9AZmVGBJmCkohAOC+kCucJJu77uFAuRt8Ldv/ARJj8LxKZAROepY0chWEG1yT3Dnoq3mRb8CbEP+rQk7TNy8Jg5CEHhD17v4wVyU8C+UxNm2uFctC4aFzJlHtep0zvYGJyab0LqJlDO9dq72rTHY/vYwDwOX0CEg4h+QeAvwm8r6ofDa++C7w/XH8Z+J3ksw+GZw8ofzbwC4OcR0nRZBxzP8Do9Jmz87TwGdJNHDn+HSHy2e88jQxAYFwnKAS1ODp3pkpytMtUf3Nwnz5ThaZ3eAoY60kRN9qzU7lmdp/9zfoqsJrDwZgEU9KHcxGdEEpWwkg1Ux0pyQQH4uCvSb/JypzuD/p/YXovf5DUGNsRVyEumgtpOyZfwZxNjc1PNCiD5NHIslYs+ZTuTst+qHmmFL4Jx+5KD2YCInJKiB/4L83PEdB8T+ZDy/tjIvILIvILN1eXad8lwiNFzKVC8usD7noHR0w1rIngD/8WO37OpTPGMzjeEsRNCSx1wJlMK2BxgFPCN8ZgrcEW4dRiBLq+R6mxYrDDaEYhHHfFRYY1MYClbkxlVMg4MquFfkHS1YJJPyZ9cii9ZhJwhGWB+ObjLjKbdTkc67zsFNZ5w1N7acmxuMQQ8nw6zzP2VQ6YyUlycYyP3c+fL8UZmJeXX4X23cdmHsQERKQkMID/RFX/i+Hxx1HNH35fDM8/BL6SfP4jw7MspecOnJ5f3APAwu0iU0gILMm3pFrHfOlfuHg4P5uXO0GX7BNIJP2xgVsq92BwRyZgKWyBsRYR6PoW5wEscWYq7l3QYV3BxHDG0vI6omaR0/gBYQc4kjI4fD93RwysNO9znZ5PjGDKf8RQy8f9oPtmhCARCz5PWp5pgLkQmNcr+WONbUs5UybSjtTz8Od3pTl9fN/rBCRA8eeBX1fVP5u8+qvAHx2u/yjwXybP/4iE9PuBy8RsuA/0ZeLO8kjarw8rM94tcNiUgWff3McHJC45joRkRmJK4bvrVNiHMIJUC0i1AisWI4betTRdi/cdhu6g+Xdpg3OnZtRMjCyscJy4JNOZjTlNjgxgYKQHbZfZR7N3mjCK9BORSWZHi3zeqfMhlAGisURlVJGmMGCBUeTM9qC0ScAvwD0J/0PVP3Ngfk5afgjx58w5F0Kp7+I+VH7IsuF/CPg/A78i4TwBgH8N+L8B/7mEcwi+RTiYFOD/A/wh4OvAFvi/PKCOrEVLNDmXNqNlt9BXhyHD8v3kwOF9Vse4Kzx/enRgUizJo99EeKeFMHfbdYs+BmOybdGRKARDIXv2+xZVoTAdQo1BE99J2qq5o4uRAaQ+g0htE+IqDI7Isb2x833so1mwj8hLo4NSZ/6chSnDsWiVqe/H6cU8MEkoWw9KiP7jeDyozl8u4EbshymoSKrH5MDK0Jb4mxYzbZVOgBq0nnkQ4nScl+JfZOXOn6fvc/CAhTgMCS4upYecO/DfkTcrTf/oQn4F/sR95S7WtVTNSIeJKjVI2LCpJXbgzIWVMY/liDMH92m9xwRW8k0cnCBFA4KOxxFKatcOLOYeyX/sPtY1+RwgBoqw5hb1t4icUxYO2qdTnkROjyYyZGWF6+hgFUTjXoKA1BODiEiUzHtEjE/27KfnLzO+HpjSSISRiUwwpkx4TjDKjOgW+m48czJG/ZGFQiaQiCQrMoWZm8pbIPSsPzXLl74Ox5Tn38S2Lcnk+ZOU4PMYJDl+jKtLmdT9Q0E3VXCXNvBINhA9LE2oNoQCS5A6ptTuysbnGDcdvxsOuEjujxFtfJczgghQqN9nu50mJJ9rAveZBHPYZVIDUBW8GurSgzmhKhO1eUCAMBWYRMjNVN/p2hgyQsIk0jj2upjJh8ChNFQYNypNgjdnR6mknLS5aeosaO068RamNpHUeVw6zuufYkhOaS4pD4tZKBiy/vDJs6mYuP5DyRdImQRmXSjx/rQcBGUR1yNDHjdUcWcbHwUTyAlvgePnuBg6OP/qoLypo2dBmY6pYUllKQN4kG02I1Insf4JzihR598dLXNs2SSx5t96MXT6HtX6x6jrd1nvbzBXrwN6RuE28aaj9aaSz4wazEBCibQmqkcSyXWk5lHtnbdhuk6/yMXynBBSbT09CVgO7pcZwTGcz/IvUU+WN8VDGe5T8g21RO0JOIyBLJM0H9uXiOcEK4cmzSS65M+XQNUjzw/bcxzXHtXegWFsj6cHtXZQj4a9+5IR4iEhHTgJk+tj+dK3B1pIlPQZGYfrh+4KnbQKBiJe1h4E6PwaX/wI1eoZ6/UJhbXJd4kGMoc1Mwfmf2mb431sTqLqLzFrFhAzgTfv7QhobgoeMJMH9ts8HUV7yRlNplGOTE/mACefL2kgyfehs7MyMm1mVuzDNIE7ct1XwJF2xPRomECcUlmENSXA5HLJnsqQflKOOVLyDIaJYJfBkARRliVq/J2y5Wsd5uG37gboMO+cGXnVEHBUoLRCYfNa56R1PyNI4JeoCQyyLCHmscwl8Z9z0Nk303cpM2Oo5yCyg0ztic+W5ssPhy0a1Ev9nXwzw6IMTzS9W4pZEQl9FmFpMU96F/+Ve/e3pM+P4XDm8E0JgIVuWUiPhgkAo0qZMtOE5sJFysI53J6aRvIbcSBuab0nPYQ8Dw8zOSwjXxUYC44i4SHDMitT0halBBA2CXkNx4qLTqsGp1WLy2sOjl2nSshsNIAYGDNHxyXJlpczVpD7BLMvyNYpzGuf3F/HxlGynxkv+VymWF5QdIpm1JqblcdIbd4OOXh1FBPug+/w/TB2ydhEjfI+zH8cTGCJa8nBk9m7ODBTnnH85QAHjlc9SkOYn2/4EH9AzJeVE6FKVOo4Nz3y9Hu4/pQGTUYSaZgguqrinKNrdnRdkyD93Yg/OePm/XBoeowhy2LeWAGH/XuogaTv8ot0BWDWvnkbM0mwwFwOa1hIM+Y9ek9zaJen0lKSPV5HwjYOcPHupUJJGZ9HU8zSLBpxvJ4FWFlKj8IxCIz+kqi4H+X3d4xH9EMLSZyAoSA/lLo81TKWvlDfQyXIrJy0ETIgvMoQouthPuEDMhM5dJqo4rqGtuvpXUs8eSa3so/AP/cxHDFvNEqZOEipvTvLn4Kn6Z9IAtv0HpGMqDNPfoYIo899yikLjsGHcn+m/tWxTYM3VUgckZF5GFT9UGfe3iVZK+PTfPaAqfgk5zLzmTuc5+cn3N2yhztSHocmACwh1Z1545WSIdHIb6O3OsHXJQI+mHKRuyTNPO9MsibaQArlNN+el3/ocFysZQi6kQI9/XgU5xucu8JpN4Np0giOaQHRiSlyuGEp6rCpIJ58BPcMlxzmuUtDkBkpjQxwpgXMU+6ATCuY17ZQyJFHcljyrMYFTjNHtqSsGWslaV02Dp83HXNWZ+8eUO7jYQLJUtS0E8fX6c3AUkeZoAmuSFLEMF73q2F3qBfcPUDTu8Ohzp9qRvzj0zu4epQcx7aARH2itBbU4/stRjRENVqQ7rkjLncmxZanZxakyHrIowc/ywTkUEf8x4wMOcQ9Xujdeb/O4JmHQVzsn5h/xJlDxrE4fkn7csaRmpl3EVpGwoewJfBE23yR6IeHxzXf4x2wdAjO+C7zHcmd/fh4mAAHCvWRm6Xck+kTPxhtsBmR3iV9Jx6/wL/v6sUFQpuckhGa/P3n4fx6xLkjBEddYcIOwro0GGMPtJ6D6cWR6JOdeSLExUDjfgWRJO7jxGUlI7JE4qSIz3yNwZRMOgaxzFnOA1w40l1zstTsbs7+g+6UPTngcAsSKL4ZzKCpa6OvZtqjENtx1+iObGYm2TKf9x1pWaNdjiR1HyzwqJiAzBCUkcOP8iiVZA8webK16seQKNZxxB7On031Tx7jAbEk8TdI2vUzNLxr1eKdDEKy7+OgiwFjHKoOW5xgZXK3HfdnhE4NwUUGYmdS+5fWC8wJek4z+Yu5jZVe5AQ/3x48/ybAE+FfasshqY/PJFmBeAhMgmQZeMn4pf04fzYfxxniztuwDEEGr6TXCziwNJ5H/TmRWSWM+Vh6NExgXF6qd4E7+yZOKUZEJR/DdGwNmp37tqQRyAjHkWnAxM8g0U4f61oqa5ASCSZ/nqmqibtHJ0DOABSl90rbK0Ybut0lLh4aktR3YBIMwU1iH42RhmL+Y/2zwCwz/0BCraNkPCCwZE5H5qVMWWHy0cUMOp8PzqHLvk3t9rkZljGTIesCe8sJelbmElmPGsECmNEJmmpMD3HdPSRPPsM1tS8wQBYYYZ4eDROAZPCRzKYyS9wamA4NmVShVOhMzq2hc5J+OJgSI+3EJckyv8//S6VGKmDyowCXkfgujj6liRmMWgAMS1aFonpCURZMUX7zsuaSM0r/CKjAdIISy99FOHLJOEjFOERj+2Uk+DHybixBJpt5DEU+dFrUOCIck+o8jU3u28jAzRhNBGMxw8z4I2u55J+M5czKyKTNoWaQTQrO4EzHKDfVlsb/cDyWzdp8XPIvj6dHxARk+omIoJKsvZ516FzyDirrfA97SoRBsiyrWlN028MzAsLzBESNCCoDnGaEYbhIAD1EqBzmhwxTtBjzvKrgvND0St/tMGIP5OFBfaQqeDgabWSA8XdObHfAOT2PBDXjuJIu3zr4eKnEoLUNzciOML8jTe0+UleSiywvEz2TMI9hwEejb5yqm1UxMoI510irSZgZkd08jEDvynNcus/G4p6CHg8TWII1ezZJm1EVXyxEZkM9SZVRfY/vRns3R5z55FZGBAIqPkHQiWgySGSSNfNYxp/LKUgc7JTYUpVGca6nwOF9dyBhDuqStE+Sh6T4IuM5AAeyZqZ6LrlTU8lKej3j80aZwnMPgysJILMePeibvLSldPw4b5kTx+HkVGDzkgQmCaKEjMgOTIScxPM8mZFy8OxYOhjCB6JPOKDkfoPi8TABIOXnGSfNsgydvWAfTpx2zgpCOgzqndZ8jDsvPQnPUqdWvvgj8Y7L1KrUI7zkvV9kDuMOsvS/8UNUhd4pyAmlNVjjl0DOixRmsEzXJvnLJdwSsc0Z0tjYcQyFxHcylidDfyT3I3Oa+mucZJxVO6n6S+r2MPpLXXlXp8g0rqP9nnyUOkdzRpH0w9j+QwY6v58LmpTxjWXPcWSsaRmHllI+W7KcHg0TCHZl3KN93M2WP5LDR1mZE3Fl6jxLBDfZurHoZWRK8kSPksSpNJmBNEnU5TY/3BxAB5Mgpbnhr3MOpy0KbOoVhcmHNfcHMO4xmL8b349MIoUzv7+zHQlBZixE0lcJwSxI/lF+HvKApE/m7kQh+EQSxXsB1oM0rzhjbockn7D+Y5CN2SadYUGzkuwnBXJRWCzlXR4Xyd7dh2KPhglACmyqm8mICIddn8r++wqfCQtyJjHH4XlNY/7xu3nVhwXcJQm+pzQ6LiaGpQieAhFDKR7DoPHcgfyHiJRoIrGKOwj+cBefLGpmR5lfepGsLJz6KBBzfKfZR0tEE2EZYB9nVDyp/icZcecFKIn/ISGmubPuAEc5ZILHCP2ueS+ZMiUP8/xLMRhzbJ1JiDs7LXn1/R59/L9EEpFPgFvg0zcNy/eR3uEHG374wW/DDzr88Pe2DT+mqu/OHz4KJgAgIr+gqr/3TcPxvaYfdPjhB78NP+jww5tpw6MyB96mt+lt+l8/vWUCb9Pb9EOeHhMT+A/fNADfZ/pBhx9+8Nvwgw4/vIE2PBqfwNv0Nr1NbyY9Jk3gbXqb3qY3kN44ExCRf0JEviYiXxeRP/mm4XloEpFvisiviMgvisgvDM+eichfE5HfHH6fvmk40yQif0FEXojIrybPFmGWkP69YVx+WUR+9s1BPsK6BP+fFpEPh3H4RRH5Q8m7PzXA/zUR+cffDNRTEpGviMh/LSJ/R0R+TUT+xeH5mx2DcVvqG/gDLPBbwFeBCvgl4KffJEyfA/ZvAu/Mnv3bwJ8crv8k8G+9aThn8P0B4GeBX70PZsJ5kv9fwjKT3w/8zUcK/58G/pWFvD894FMN/PiAZ/YNw/9F4GeH6zPg7w5wvtExeNOawO8Dvq6qv62qLfBXgJ97wzB9P+nngL84XP9F4J96c6AcJlX9b4GXs8fHYP454C9pSH8DeCLDUfRvKh2B/1j6OeCvqGqjqt8gHJD7+/6eAfeApKofqer/NFxfA78OfJk3PAZvmgl8Gfid5P6D4dkPQlLg/ycif1tE/tjw7H2djmH/LvD+mwHtc6VjMP8gjc2/MKjLfyExwR41/CLyu4B/APibvOExeNNM4Ac5/cOq+rPAHwT+hIj8gfSlBn3uB2rq5QcRZuDPAb8b+BngI+DPvFFoHpBE5BT4eeBfUtWr9N2bGIM3zQQ+BL6S3P/I8OzRJ1X9cPh9Afw/Carmx1FdG35fvDkIH5yOwfwDMTaq+rGqOlX1wH/EpPI/SvhFpCQwgP9EVf+L4fEbHYM3zQT+R+AnROTHRaQC/jDwV98wTPcmETkRkbN4DfwfgF8lwP5Hh2x/FPgv3wyEnysdg/mvAn9k8FD/fuAyUVkfTZrZyP80YRwgwP+HRaQWkR8HfgL4W/9rw5cmCVsN/zzw66r6Z5NXb3YM3qS3NPGA/l2C9/Zff9PwPBDmrxI8z78E/FqEG3gO/HXgN4H/Cnj2pmGdwf2XCSpzR7Av//ljMBM80v/BMC6/AvzeRwr//32A75cHovlikv9fH+D/GvAHHwH8/zBB1f9l4BeHvz/0psfg7YrBt+lt+iFPb9oceJveprfpDae3TOBtept+yNNbJvA2vU0/5OktE3ib3qYf8vSWCbxNb9MPeXrLBN6mt+mHPL1lAm/T2/RDnt4ygbfpbfohT/9/5PuSrOuEGKEAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "import numpy as np\n",
- "from chitra.image import Chitra\n",
- "\n",
- "image = Chitra(\"https://c.files.bbci.co.uk/957C/production/_111686283_pic1.png\")\n",
- "image.image = image.image.resize((224, 224)).convert(\"RGB\")\n",
- "image.imshow()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "controlling-wrestling",
- "metadata": {},
- "outputs": [],
- "source": [
- "x1 = tf.cast(image.to_tensor(\"tf\"), tf.float32) / 127.5 - 1.0\n",
- "x1 = tf.expand_dims(x1, 0)\n",
- "\n",
- "x2 = image.numpy()[:].astype(np.float32) / 255\n",
- "x2 = np.expand_dims(x2, 0)\n",
- "x2 = torch.from_numpy(x2)\n",
- "x2 = x2.permute(0, 3, 1, 2)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "impressed-spank",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([1, 3, 224, 224])"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "x2.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "choice-rapid",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADkuklEQVR4nOz9e8xuyZrYB/2eqlprve/7fd++9b379Dlz5uaZsT2e4CGOBIEgKyhYARMJrBgpGBOYgLAUpPyBCRLwZwQxERIiwhFWEilxEgQmITgQy1wMSMYenEzsuc+cS5/uc7p79758t/ey1qp6+KOq1qpa7/vtvc+cOfG2pqu1+1vvWnWv515PPSWqypfpy/Rl+r2bzN/tDnyZvkxfpr+76Usi8GX6Mv0eT18SgS/Tl+n3ePqSCHyZvky/x9OXRODL9GX6PZ6+JAJfpi/T7/H0QyMCIvKPiMivi8hvicif/WG182X6Mn2ZfrAkPww/ARGxwG8A/zDwMfA3gT+pqr/yu97Yl+nL9GX6gdIPSxL4+4HfUtVvqGoP/BvAH/8htfVl+jJ9mX6A5H5I9X4AfKf4/THwR+7KvN6c6cWDR8BSKpHF79+p1JLLLev7fsqmXye78LslTUn1pCfqlVOtpRcid/dEkKP6JLV3XGY5X393vErzXJ8cc5Hu/v599PsFWctPy7bKGSq/3dWnl40lVvbDme+njz/7QlXfWr7/YRGBlyYR+QXgFwDO7z/gv/rf+qfTeyWqKCYC9REg5AlSIKQnmV+ViC45b8gvinoEEYpf8VFTfTPK5P6Uz5r6pcV6vWThpoGcJkSCYItaRGOvVXR6mcU2TX0TPQ1UQWrgNAgmvQkyE5c4yjh4SW90modAWYtOY1BEY6t5Vr+vJLnfgopO7cX3NaHS6eP8Ylqt1AebeheO+MUxAavq0/nlcs3LOc3jruc5w1HxfgGnAgSU5RCm/mp89uQ1mstmeMsrMP1bLHQo11HL3s19L6CYv/i//nPf5kT6YakDnwAfFr+/kt5NSVX/vKr+vKr+/HpzXhUWEUTS0hQAnQF1npE4PaIJKKTOOddnkInvReSXaUbTe5WpbqlBYFnbVEf8K1Uf70xS9u/oI1aEPIxq5QEjEYnn0eXRyEQAFVCR9C8REAzKXG/GCxGDiAEDYuJ8mwQKdqrdpP4u50Bm/LpzNKfnQyT1+64JK1/r6Vqmt8XnU5y5LqqLXCW/nmcz9rGefpNgkCLn3as4E9YZPY+WM9Yhef0ocuY2yxVmWnuV5VilKlcPWxN0vKzXPzxJ4G8CPyEiXyci/z8O/NdeVEAKgDv+ePyoGWImCrwQdyXXCTNtvrN1EDnR+glxXLSQTgouI4tpVjDpc5BaEJcFMciLHKaeylRGkMg5JUs8c/uhwojcJ5nqzxwXZq6ScTB2cQad3D9DBrZjBaKWj4qxqJ5EsRelEkkmZH6ZGFzoO7knvkDau1p5YS8k/S2yznJj2TYLMb1sNdajKuWbuuvFu1x/EJ2ar+Y6ZTYLgqKqR/VP0kPZWT3+/h87EVDVUUT+DPB/JUo9f0FVf/nVSuduG04tYgk8Oi1iuRjxyxH3nlZh+e1EDySv9zyF5d/y/yfTcgWKHi6llQzXnhnGNEsZcCQCKqBmUSeR4GQRO+RmZJYSpuaZkXl+FjBRzPdaqwqZOOsksqf6CkKm0zgXkFi0KsKLZqwaT6wqr1NJZHKOUlWpa6hJVF3z3H45L3mBSkaxrOW454aZaC8HYICgi5csEJ0ChtKfUv4sVVUKNWk56pKw1GRJX4j4Zfqh2QRU9S8Df/l3Vrpk/Xl2jonCcmlqre4FNZdIWi1SkW9amAxASqUxpj5ljfJUqji1lo1mArAoV3C1iutKKQoeSxxCrdcJUaw3SR0ImVPNReY+TxMSVbByNJPKoQW4iyC6mOVaAKvAtRR6lHrNssSilb1EJ8L3UslMyrWYEX3KXRqVlumokUI0l6KvE4ut4eQEnZ9/6+K9ZKQs3umixxLnIa9NBaLlcAtY0kSUBbB6LLeVNOZF6e+aYfA4nRo2BaFcUsIZOafSAqKz+azOuWhnIgDCUhEol0sS+4tChBzlOMndTjKpGb1PZck9ofg7l6vzVXORubPMEkTuoSZonI2CGRQhCmhQC7+SOLAm3MojW/K9WlWY5uIFOFcOesmhamKQbA5lRZUEMld0RL5PSiSnpBMtstecuu7hbDxWdF7/RCSUTEtqSeOuKVgMacpfrsCSqVXl8/tE/ALzKi4ZR1YjXyW9RkTgVMo6o1LDxWkZAO5egKnYKTWjgDAtvte1FpAoNdWN1tmXtV7weNEjql4RJY02gZI0KGECiRI4ZOoPE/GPhlKPhgF1bSKkUV4wU1u5t6asjSwY6MQpsygfpZ4oFeRK0jwdGTxlIeXIkpbdMT9zr473O5XTqywFnmvF4Y9ItlQDr0ZRt76QJlPRPCdasg0BKaQ8hUk9qussyTfFWsYUFhBVj3yWRzOJz/tiEYTmOcg7BTVZenF6rYnAhChHfHMJBOXUlly8yFM+ZoQtjXkZ+jOZL6qerQCn+N/3O57Z2lxh7lHeYtxa63dHxSsgSGWDEjTAZOWfh1Zbm2v2rWRpQGaClyQKSTswpUgLCyH0JLYvkOolqZ7Z+dcrzfYi0yxVaPH9uM662Ewsyp5PdEl1MtrNpU9CW11vwUeWEPvCIeXlK4ZQGmhl+Tet2V12hGV6jYhAMYl3sg098VxS2IL219h91JRUP0tBUJOlXyvuvpQK4i7Bsr16v3aqXYj66aI3S+svhLiApty2nDlYbNkkYNBoINT5u2QEVUVNQndjJ66Udf7U47k/SbKZhRJLaR2IYv48Q3mHJAIbU43fV0prcFz+Dh52pyfULMXN0tTyW/51ihjlltIkLfY/y35MCDt1vGT5UreX3xXwYIj2mYXMMxWYYXZeixn6ZrtPKHpWIn81eplLv2xP9zUiAiXnz+loaMXvOwYmp3+UMDS/zVNYShCL3YPKsrUUHEuafqoDc4unHDI0cft52Hbe3kv/05xDpXqXy+W999nwVAB13kUoIKMifsciRdX1zFFy3tyXEnHnPCUoLsD7lLpwNEf19yNpb+pDmD4d28xrylKtpAhMBk5Tva5xV5cQUIHAaS5/Cj7v+DJJE3Md5WhLZXU5M+X7mfvPBKL+nnZ3Chp5V3ptiEANJ6e5Sg1MaaHTCI8Ruyy4rCkbuooMFeWep/GI0iYKmxnwkvHPhCwDW3IoqsAs1ZHyZ7QvZYUZrJdeffNHqX7KhMdx8QOTY06WJk5ybVnQuYUIOUkX5dhrJK38MbKFW5YjWc7RXHYmNCWBOZIFpvkov8Zt0WJMelxK0riOa9Spo9XcZiIjpwXqpcxSTUfVSP1SjzMAx34Jeat3QZOPimbHrpL0l8kkCE5K4Z3ptSECR0myeypwgjrn9xVjPpIQ6lILPlg3dyQ65hKFFeAE0i86UKRkcJv08RkJ5/dLK/SiV9O7JTrVbEQnUEiYGgJ+u8N2a0xbIM3kkCVUkDsJAVIBmuZ5oVSFasmiJsaGeX//OM9dal6J/LPqcSpvJmixPUVmDng3JtYrU0gKkp4r5JxASk/g69yvqrmStU9rMY9ndk2uCfYSmE6zvsX3icqnF5W68TtLr3VQkWOBML69CzzqUi+Qf04Kcif4x5KmVKUSEksG7hMZJUkB1fZgwXZi4Ul6kJISpHqji+/s+z+/M4iJZUyuxxiMEaTvGS8vQXVSFzJwzi7DMvVv4oaSjIaSjIkLjl1OyPJ3omyLeZAT707lK9MpCaPMH0FWp/7NTrHHxOe4L/H/S718sT6x8Sn/JAYVxC/vz981jKqNu4Z74v0p6NXFc56WctP2RQTkZTszr5EksFiw0pgxM4AFdS7E7AXVrt5znKVewFC8jLxFVF8ysVIR8qUoe5LrSf0Q+yD1mwknC+kgW/+rvJkdxFHl8Rgf8Fc36HaHJSH8JM0Uwm2urxSmdP4hmhyhJG1NZgFiUoM0/RVmk1ceOzWXO4ktCzSUU1LWqZSVgFhH6VA11ywzd576WEoXi76d4jaFT0Bpe9BFwdmGUGjleSuxBM3ldNSNVb2bxlYUrGQjnWdcJc+GUizf3EK5A3ZHem2IQL0OmdsUXwpRthLfpkVcYDuLdymvHBn35nxpKqtqSo/BY3Xhjt5nLiLLduZ6S+lh0uzygk60YAbEAibn8U6YE5/Fe+TZFq720Y14GGeDXm5PBUk+B0riqAlhRMLckAkYjQh0TA6lIgRzf4oRihaQf5qvnd5RqUH2yKuwSuX6l4uzzFvKz8cc/bhmOfG8UFFK2DyVls78LEd2/HvZ49PqwgyrRx4vp8Ht7x0icBKHT/ya8D1zpOJL5MaZXZXlMzWNwHlsGyiP0qRWJtxIji+6XMpyWzCVTb9rUfkONWPKnxlldsqRqq6JICxgkKItJRI3vdwTPr8B7zEEuDpg7gW0MbMcKQBmpq3l3KiZDFJa9CHSmWijyXRneVhrxsdiJiv/jZxCTdzrAaWx6xEe17sQx+WrtyXjr+atIJpFHTWoyAQnZe3VUCrCkdZ78a7sRp7LJa2b5nGBpUqd9y5kNyr4Wf5a1PDq6fUhAimV3PjYbTKjaOkHwLy23GGUSsgVs6ST2yUgJlG+3LWvF3K20NerXU/80jYgRf1zteWWIFNfZoJQEA6RCfkwmbhlAJ31YDN6uNwxPNkSvKI2IIPC1YC5PhDeOCvaS+JrriYhOCSpIDARykxL49zNZxyzn/JsxGMaQDl6yOtSSkXC8dGbTPhO+VmcIiTlt7Jend/XHKLIsahHFus5VbMk4BVKJ3phqrwVQa2KnyBcJyWQovtQG3Jzbj1ZWzVLpb/Iq6TXhgiYYmhHXZd5+eYtwQIAMgGoSHpRvPpbg+mkjU3N10g8r6PUM53aLLe3am52YpDJSFdLABTGwzy2SKuE5OibOfiEaDNvMF6RJ1v06Q76MRILiLaAQTFPeszZGr/OS30KMHK9SpgAL0yzE+nP7FCUVZbsMFQjYyGbqRTfYbkSR4jLbGeYreqnJIRlPfP81sNbik85iyZkWhD3XGdFGBbwkcdeDXWx3VxmrWhM8U0rRbNoq67plLyU/4UMQCeWtNzzOAWKZXotiMASZStOqUy+2SqnBpQIxFI0ACj87ad3Uk770oCXyawsgGDJ8ynU8Zz3FH2uuzThcn6VrfrTu5xJpkgzFHnmcUToElXk+RZ9tsd7wBqMRANdMLEGc+sxlyO6cqgRJqcjdDpwVEpBEeENNfoVElP+nQnAAlFPE8KSR85gnMX7WVQ+VgNOTmT1txSnM/FIX04z4Kl43dacuQKBO/LMv0uj8mmEPNHjk9+P+siEDVM+md7VcFl7NNTblC9LrwURWKbpDPtCrCs94wRYGn1LDpXfnKKuRUNH7483IDO/qH2xM97nAzzHHLFA7Jx3oRbkEGozAQBM9gBLiD4hfepJITHYyy36xS06KtjkHiwag5mIjduBqrjbkXBQ/JktpMoUeUY1cXmojVmZEBRW/7wcaesR1TuO69ZAmo+8Ms1Q2oFJ4v+pQ0l3/Z5sJUU6bj6VS+PJ3P8F3Vy8KtFVql/xIasDab1P1qHlj1dMWTLRSl04RTxKwpKPmUvKlHut5aS/IP2O/QRE5EMR+b+LyK+IyC+LyD+d3v9PReQTEfkP078/9n3VWz1nqUAqhCW/O6LSs0gpGemKffA4yTLlqUXRULQj9SyXbS77lwmAMv8jE7LatXeqLhkBqzZM3vfXgvtHH4H4Pn43AmLA9iPy+AbtPWqTUdEIYgVrDcZYxJooMvaKG6I/wTQ3yccAMcVcmWk8ktqnCM02hVJL7yaBdiKChgxSyzHP9ebxZ1mnlsYqyWxJj0+ml2WqEUGW/4p1KLlohr6qb6eqPimvLz+cEPjLTpwajcyfSx5/6hhAZhrmDoeEMrTcqfSDSAIj8M+o6t8SkQvg/ycifyV9+xdU9Z9/1YrylGW7VCmMHvFlyWVKrjwDXE0/C868MM2Wi3Fi2qbGRMN8Tl/nk4Qzx8hPJZQd1zgz8IzgzJx+UgkyASqRC2bEim0YBfN0h9/7qLDbWM6oBfFgDWBxoaGhpcEhgyGowZswSdATzOQdlWn0qV851lhys542XSakyYQ4TOtXzX3OV0lzuYX529INuZ63miu/oq3ruJ4a0xfYeAdsHEFGmI1uUHi05ioLNXPZRCGZHLVb6TBFu4XrcEVSTkzXkmfdIcOcTL9jIqCq3wO+l56vReRXiaHGv/+UKNWLaHptOdbpXfFzruxEA/F04CKPHOfPnHr2gU8zXiBOPl4sRwXr+iqun/IHMRiZBGwwJnJ3lBT1M3oAQvqbWXdBMG57uDogxhDGEIHRpmChxoCN8YWdt6zU0WHQQ6D3oC5atLMdYIqXJMSXIbZfnhqMTxaZDu8kYkQUOWNsPT1eilPzU2Qot/1ivIKlF/2xAJwluFexHWSieeyFLJmmMzEKKfp/VHcmarOMMG3t3QV7eU01Mwut+3DXACb4muueZ6O2ECyiXcxVw7R1mE3IL5qu3xW3YRH5EeDvA/6/6dWfEZH/SET+gog8fJU6ZrSYeaJKHT47tTZ9z79LDlSa2aq8Jw2Hdd2ZSx19KEJMnUL8WWYpzV5ZpC7KFRx//j4jehm5OLvuRnUgSwVJXL/pER9VGmOiyG7EYa3FmagOWOeQxqI2UljXK23PXIeRpF5IdDWWRFTN3K9SrcqqQUXsJI8zEp1pFnJdJ9U4pnLVmlUqQc2Pp2XQcjemWOVCzTlu7NT7sh2Z+lwWO1rnSW94Eau6o52i3FTLCaYxi8SLVyJVn6T6nxCgiCtZj+9VBKcfmAiIyDnwvwf++6p6BfyLwI8BP0eUFP7cHeV+QUR+UUR+cXd7W307SYjJgMXJBYnRekrFXI/LV6A3A2L9vET4krBMHSkQg2mB8rqU7cxYHZ+N1EA/A2JB/jIiFoTAJMQ1Y8DcDoiJOrkYixGLMRZjDdYKRizWtUjjGI3iJeAGONsZumARY+b6p7ZSVMJsA5CiVyUhKgkWgGQbTCYGMqnEMbeZ5618mqeyXt/p+8v41+l07Cb7YkJQHwIoBOiX4PspHD6CysrNc/lYQUmdpi5lODmOSJQ9LU6dQETAFmv1sln8gXYHRKQhEoB/TVX/DwCq+lnx/V8C/t1TZVX1zwN/HuDt9z+cIgMSxwwsPaV08fk4Ilz8UQxZjx7m30tSX6zqtCU5/b9YzCrw5MJycQThc/8mgiLz3wx20ejHxKHj2FNwEZksAvHbs2s4xKU3IqhJhCINyRjAWJAO1YbgwY/RHfieX+ODMLpDEuPjObwJxIyJYuoULldADKKR16jGPBIylqfx66zORYejLKpOL5mDgxUad6UOZK+MJbhT5T9OJ/Inde64/Fym9jcon08o2yexaIHZVXsLNaY2DszfF2D7AtNILLX4nsdj9Lj3mRgdRUQ+kX7HREDiivxvgV9V1f9F8f69ZC8A+MeAv/PyugpE1nKxY/eX4ZSFdN56zlJIUrOuNFN4KL02cvXH1LxgT2XAgKzDqxa2Cy3azqswi8t5vUoicSRbmMQpTabgZmo+2xJM5mzGYAYPlz1DAjhjDUYiZ8eH6DcggnUOaAnaoE4ZfcCLsrYtgzFcS4+fZx8hO+n4uF0YIucnZFcqg2r0IQhAMCBhDkE2EYAsBVTzWerOUr4tepC3GmX6+koGwAQ3r36p7rwqUvSpxtETBKSkFXl8hc1kIn4FTFT8Que1P2ZluRqpVYFFHyZie+e45m9zANLI0JI15870g0gC/yngnwD+toj8h+ndPwv8SRH5udSnbwH/1KtUtqTJeUCGeMGEAvYFgEQiDEpNGY9p45T7JR2SmSC9ZIO5lAni7wklZu4zEQeTLksSZnEgcdwsIZhSJ892AYO52qKjIgY0CCo2iu/GoGNAvQenGDVgLGIdOAE/MGpAg6ehwRqLZs6OwqRrJ6nAEI0xhlmwkvl0pRWS41Ey5mmYRg0Z+GeEJhOZ6eOCa5ZIFQeXiNL3rw6cTqckiBIR60NSp92XF8WWXJm7IWIhF6R3RYmqKa1evUg4yO/nKZ0JS3lB3w9NElDV/zenZ/d3eNcAVXUZ1SfieDSSjGrzwEUj7AYRrCYOgxSsv0TVpGxIWV8ZAa7owyJGk6bSFIAdpZOsJ8/9m7hO7odIPsqf6kgEoDAMmpQ3Svppr34MyPO4I2B97Kcah7E22kOsQ4NPvgCpTmPAmcjRBxj6nm48Y9213JphMrRlp6BIomJSYyAk/qGZ0+W10DRbhQSTgHCS0LKUUMS3mbhjoabVxqtIcGdBTKb25xKnxPy0LgXiHjtvLQ8gMcPFoo1cvoyyVPPtQppYlq2knmOx/25uXtdev19ElzpBoKbT5hpRf8KL4yk8Sq+Vx2AQTeekZz5S8+9FfqgWIm9ZZTnsOEbvTF9LSjs/mDqOwOKcqSKcX1zw/tuP+PZHH9EPs1AdqxDKUNuKzIA8ITrV3xwNOAsGJr83ZlYLjMHuekI/YsVgxeJFMI1DrMMEH6UHtVgJaV4k2QZs9CiUQBB41G44rCz78Tk+hAnhVM2kU5kQA2CrEUIQMAGZbvw0UQKQMBHN7AGopH1tmQJiJ6DNClBS75bSVdK4Mv+8KxTn95/ugpwivaCJysOz4qoL2aGScnKzMxze3WDNp+e6YekgIEWmU10uy57evrw7vT5EoKBYE/DIzE+1nIWUTMGd40Kk465FtUuf6oo7pMWqRLTJQaPchY3cTATwPe88MLTyDr/8259EcEhVTtQ4j2MSQkpDYDGuyVsvcnwDk3Ew7giYBIiCuTxgcKgo1jlULWIajLFYFTw9Ihq3DA0Y6xCxYC1hDOCFMSh6GNmcNThp8GZI3COgGtBgYqAKYxIe5x0XwRiDhuQnIEK+C62MYByJwzzz5SlKzXEddb7ZQSeInoFWqxksYOMVAPqURPDy75K7WHwrWEQGlVrBj/0sRPDvs6tLnjS9yMQwy6Uvqnsh10zSgtHZrjufBL07vVbhxSbOv+h1vWTzZtqpfZ/ZGTXP7SLPUZllPcXCU/8FYbcf+LVvfM4Hbz/gq++/xaT3i1STPW+zMW+3ZQRP/cjlDGkL0CbdP4UAy/o+Y0B2ProCm8jhXWuxjcM2DeIcoooxEVljPoexLoULi7sII8q+H+LpQpPbkrqttH1IVkOmLcSSaGnxjmkcpKhl0ZiZQqBFKjMBenmqcFaYZjyY7kJYgu3i1emdgu835bXWSTWaVLdT7R+/rT+/SpcW4DbDc838Sykjv4tX1Z/uSyJvlWz2qjcQvWZEYCm+z2L78v756WcGRjJQFQSitMoJBVLOzxNwFqXn2mebQQZ4RbneHvji8paf+epbPGiauXxJwWRuJ/+Ykaboswia4wgm0R+JyK7JJdjsPIyKbWzkqCIY0+DE4JzDGhd9BRJCi40+A3HiFGscrmkjl9NA17Q0tk2EQKZ4g1P5iSCkA0tpG3L2KSAdEzBR2sgIX87nlKlEdKmeTqV5q7gmqTPHLlSsKeuJ31LM+cl0vMb1+7uTHP2a4fTIM7jq/bLU1IM72p5h6WQn7uiqFp8zZL8I0V8fIpBmIhQTV7yeUvaOmssppTtxqVHGehJ6q6RILsuv5a+cX2syugCoYRj57W9/junhH7h3n0c9M3JMsD+TlZLgTBJB5pgSufdkAExcW0x2ITa0e48VC2Jomy4SgKahcR2NczS2oXEN1jRYmzQ8E4Vu4xxN12FdjBrUH/assKxci01tWxOdjdTYwoMwgo4pCFQmUlmCmNSXRACkUG/ytCElgSiIdJ7/gvNOXyX/LW0JS+H3mJhW36oaOVFuwZFfgbi8EqfPw6yY0R2VyGmicepnPXOnO5Lkr1kFpbR93d3518omMIW3iz8Xtl2qsR+rffnjydvlT+bNounkt5+nLPnCq0hhG0x5Jba9PQx89OSKn//gIT/56RXf/KTnsBJCE/+NjTA2TA4/eVFqqUBmxCl2AkwS+UUEo0p3CNB1qLP0w0jjBDENrmvjSByRcKjF2PmEpBjB2RYThBCi20hQ5azruFh5LsPtTETFICFFqFeJ4clE0WT7VAOEkP6mXZs8ZRJSWLeUMd+1qOlo0RSiLdsY8iLOazzNseSdh8kaVMvALzCsHf9+uTx8ajvwxarGCQlC4+pqaUg+0bXT8QwXeQt16WhoOb3ImFlUmM8PxDn+e4AILE0gk14k8/eSOEyfRObyCncKNwuCXPCiSmwj1ZkNKsfXj8RfIShPbw6EN9/h7bcv+N5Hn+G+ACtRTx9b2F8I+wdCvwa1TMhf2ggiTUjiQw4Znnz0jRHM7QBY7LphGEfERvfexjlc02C8oiYGEbHEi0wzd3a2wRkbtw7TGeSgyuHZNaMfMdai+OgEFOI5hIAiIaBiCATEmugGEBQj0Y8gOwtN86LZoSBbo9KaJYQPArb0IswcShTR6LMwkQGJxrlIgLMktVhIZiYwk4o6KlF5K9ISqb8f/4O7fAaq9xP81BDDPKqUIUfHmvtT7jIs6cb87gUEcPGpZIEzW3uxCPOaEIFadIlvqHZcantBzrDQpvJiTycAc92wIB0lxs8kR6TOlrwGy5bnCDhKP3gOdLz53hu88eE1H33jGhMEGxSzN6xGx/muYbgw3DwI7NdhRvqsY2dDXDLKaRK5jRGsEczVQBiVi7M1+6Fn3B2wrsGKxSU3X28EMWByRCBrsdZijYtc2Ni4E2k8+2Fk3ytNu8JKjw8KAYwJhBCwJoKlFzDBEIIWdx6GxM4MhkAIObhIMX0KQSXdgBTPHprMARMrjMsSnYKmwBzFxGfPxJmoZ9AuhNsy8mex/z9JQdNazkS+Coeo81rKYt3vlAzy2h+9n9+dds+p0Vyq/mT1kwKnF85LxVMVx6nodxVyXSPhzcTGJinkrvT62ASKVCN7bdioCMULjD7KcilKkbL8HbevpqmdjIxz26frV/aHPU/2OzYPHvLuV+7RnBsOMrJnpA+e3g/Qj5w/h6983vHe5YputFPf8+3AIen7k3EwEQpBkF5xTcft/sDBjzRtQ9O0uGaVEFww1tBah7UO6yyNjYeKImVIOwXGYp3BWsODB2vefHBB51yh06ddhVwm9ydZ/DORMvlikmRULPuaSfW0k5AiR+a51ORWPV0bNotjaYVNMcM5MPqpNVs8y0z/X7jki5dTj192WmhZtMx6hFylLenlVVYlZ3rKCwdV2hnkRBcW2V8m97w2RCBTsgp5S4Rc5C0nawa8UnSQCdiORKzaIjSXyX8WcLesOou9/TDyyafP8L7j0dsPePRoFbmYRJF5ZTuccXiJ0X/ffNrxlWdnbMZmRr68DZeO9VpjogRgDNYrZgBrkmFNFecil8/EoLEW55LnoMknBKOdISOwNQbjLMZajHXcPtsyPt1jNFr3RWYCMG8zzqqLEYOV0liZ+25np6akbsT8ef6jUBppgiZoy0bEZMaSLKvNUJ1/qZHJHJDz5V0YOVqoeZ3KXYjTmKgTMdKynokb34G9E+de0oGCVxcEkdzXk8Sr5O/H7ZXE81VTzlnOGeW7O9LrQwSYETAkIJqAgVqgmuBpKptDYyz0do63Fk+1nM+4LbG/KlrrJgB4VW53A7srZeXWPHrzgmblcNLQGkdnLZ04nFosFoPh4W7F16/vczG0EyEwYmZfgYx0VjAeLJZDCPRDj4YoTjtjcYn7O7G0zkapwko6hThb7KegQdkF1kbjog4eJ5FwRMRPzkmZw5tIkAzZZwEyZcl+DJMUUPzL65YJ8WwULTYMsyTA7BEwSxTlNGuBpMeIVPLzcu3u4nylj0L9Qeul5y4JcP7+EnHgxdlfVEZOZH1R0rtJXW76WCqu02thEyg0vRoNC31nWnBdaF2FVLAkGiVNnrJPLL1wKl5IAdHzOBu5dHo5e43NKzWEgd2t51wcDx+cc3Hvmu0IG9aMGk/2ndkVLVEkN2K4tzNYueCTh1tuVjk4SEKkJAmIGJp9wIohNIaBgHqw0uCaNnJrMQQjyBjisWIbtwFjfIG8lecm7mmSse0QPO0YMJqJRnSXzlZ+DWCwqASCAaOBoCniUIDoJRiiL4NGjm3CfGhFxSRvzkKDzdGH8gJJnt78ncJle45CUAYprSBmNvoUq178hLRes63nlNGtqnOqKhspY44jw2AhMeh0R8MrGBuX3cxDr+2Lx0XmKaKcwhc3NcPoqfMWZXotJIEZeWdbZmUYycQAZpmPYtKmdwU3kOTPMhmDpFID6gmfCcPRx2zBX0gJJPlhDEo/gKFjs1rz6OEZrgE1iohh1ECvPaN6JAijH/HAZu/4yvMNDw9N2n9nEsONSZLBCIMGwjhgjNC0Dueiq7BrOkzTRh09BAxgmxRgJG01WmOiQ5GxOJs8CK1l1TbcX5/TNV1SP7IYH0X8fNeBJAkBEbC2yBODVmRvREOWIIhEpZjnid9nF+jE9o+iOk/Swfx+CnGa11byGs3If7wu+W1BIAqd/241W6rfd2Jk7uaJTxVTmepYnFc9qreWbpZJ7/h2JKkUP/MMTVaWl4gCr4UkALHTZSixLMaW24LVab7FoHMdM3U+xUEoyi2uDq9NjuSLLuY8BSUSmc8XWGU00O8jVzs7X9Gd79hf96w5o7WOQQfQARsamqbB+xiwst0JH9gzmmbgyg2FPm9i/YNORMiI4KyJIQTtLL5jLBpimHGxgs+cXbI7MhMwGmPj9l9Q9ldbtPHRCzFxfFQRn3A+Hj6cuUTi0qoh+SRowZry/Q7RnGeIOxaEIsbdpKgq0RdhLpPvLVRJx8cqWiyUAT2zcTFKL0nWkBcFIJ3Xd7kD9ap+tSe3CTPRmoBvnoFjqUBgQfaqX0sQvIPYHJOIQky6gzAt91VOpdeKCMwULFn3C0IQKaqeCPR5PFOS8pbGo5Pxiyu2UO9iayISZfz45W0yCvTBczP0dH2gDwfWXcejN+7xzO8YtgOdNLSm5RB6YM89HC7tt7eupRkbuquO77r9RAgwBhmVsPeIcYh4RITGdVjr0u5awDYOcS7eOeAswYyY5OVnc8ixFDZM0HhHobF4hd3tHn/fYlcpLHmINg7RHFhIkZA4fTpWHC80iWsiPqDWzKJzRmqNbZlsp0l6/nQYRiUdrMpbfyVhr2X2mSHIFO0pr+0kF1dLOZfXzCgmlYDMSYo6Stib7UJL+1IW/XNmnRs5SqX/QvYYmJrOMCgsxlm+KKXZeTxTjiLroprqnVJ4195lC0nptVAHYpqj7OaUvG8pL9yY+UNM8z31ZU3Tub9p6NMUVLpk9bJ4m7lWoUKkcrVVWvBh5Lq/Qb3D+4aua3n06B4P3jxHVspW96gIjW3xomzDgTEEAsKIZ8DT9YYfub7H/aFLIcMEQ0NjW6xzmKalaTusa3HiELWxh6IYl3R/a2N/jcWKxdoGa2Lw0aZp4hmDfKZgstrHsmLjv3JnYDb+JRdhMZPhMsc+nET8JMHYbAhMOwRxM0HyVOb/Fa6t83wvrf9IaUiUiZhkaW/SEJbyvVR/KklaF9ky6NTkYAkdx7B3/G4JT7NUMHeozneqVO7jS6T3aT7n3ko1xowzs1H8xRLPDywJiMi3gGvAA6Oq/ryIPAL+TeBHiNGF/oSqPntRPdOZAZn3+EupSIj6fRGBatGRWTqlzFI8zJx+OYb8ZJiClc4sfyqpEmY7U+IoY/Bcbm+RB+9wtnmIH69ZreDBI8Nhr1w+27KXno1dIRgG8QwaWIlj2tUQYXWwfP3qHh+5Wy7tyL3NPWiUAzu8hmgHcC4e8Q0adwIEbDooNFoYTVQbFBMR3lgkXcAqItEm4KOxcX1xwX6tHOwh+gDludFAmGSvNFcKQowpYIyABzU2hjML8VuKR4aR8gisVOukiTDEg0zznsy8bAtumAhDbL/g/GVkkoooTy0V65ZF78yFpW6vBJQjuBLqvbWZWdyFVqV2GavNklKRQdOLmjPdzdphoe7EkZnpqeRtsUDhBF+2cDL9bkkC/zlV/TlV/fn0+88Cf1VVfwL4q+n3i5PUjyWVK5HX6GKu7pi08nPkezOnmbMdA91UzSwMUFLaPNF5i0wB78BtOoztQA3OGu4/Ouet9x6wOe/oZeQgY+S4YhnMyKjDhGBZFL04NHz99h4rbfh9H3zAmw8eYMTixMQDQjadGrTR+m6JcUPMhPSz9CLIZPSbhprOyjtreOeDhzx4dA9rXeLyZtpRmLYB881HeevSGAQ7+RRk56Z0fpj6uHH6ncW5tGVprLBeNbg2SS5ZmpiWO68U89+TXLQ+oVhDzimwXpL/O3hxJWEU/xY/c95skz7ehyph7A44E5YPxxLS0a/5TShiOUzOZZT4IUXJU3JHTD8sdeCPA/9Kev5XgP/yywrUQ0harLx4ScuHueRyr3mWHipYKtYV8kLWFKVeq7l/JZFSgTGMBA3xSK9paGzDerPi0bv3uf/GBdZaehkJoqxshxjDXgd8CBgskk44GhEe7Fd8EO5xjxY/eNRHIDIiWNdgnMNZS2Ns9JcIMUiHsWkrMBFJO8UKyPMXzwSY1M7KWdYuEpioTsyEwKQr0YzMZxmmGAeFl6ALQjfCaq90+0DbgxsVGzKtLAlB3AZ9cNHw/jvndG1bzLTWwD/tyOTZjmHLJhm4uLxlSaOrhS8Ixekkc3OTqrOoRJRXDX8+9/euNhZjLLu6IGVl+Un9OdWmMDnPLemQFO9+WNeQ5aTAvy9Rjv7fpFDi7xQRhz8F3jnuvPwC8AsAF/cfFh906vGxqST/nmmd0RSuqq47hdOOuTVFC1Lqqc76E6QDQ1LTz2mAU3PpQWLvJH086Mhh7Om6KA2IGbAirDctD9845/Zyz+4woCaKy51b4XVkJLA2JuruJpGgAT7sHyB7GMeAtZbgPeIFJzGSsAyKM9EuYPyIVQMuRxiKnNXatFWISZK6iW7DCKjh8HQPzkyIriHmC9l8pdlLMUYXBrA+YEeD62EMnu5K6XbAHrwPDEbpXeDQBoYm0LeCb/Lx6MCmNbzxsGW39+z3h6S6pFWZpP1io1jS+i6Bp8L6vDg1+s3GvdrsVhWZfshUiqPcd6kAUn2vG5cJjo/KVUAt9Xhzhlz8VLmqB4uzBEXXzLL8C9LvBhH4T6vqJyLyNvBXROTXyo+qqiLHezHlvQPvfPDVah6qW1ajAr5A4BnRqzoLHC0NRnk3qwaSJWUu9bLFAk/TnZ+KuoFBRw5+oF3dQ+0G0T0oGBUuHp7x4K2e8PlVPHQk48RVlXhdlEvAEIgn9VZbh9uBsQZnHUECq66lMS5tH4bkpSvIqFiVaLlXF7l9IcKjICE5ENkUQ3FUbi63HM5a5DyePZh9LnXaW/aqOGOQQTC90G3h7Dm0B2E/eMxWUA/DqJgA+IBRj+oBNT3hDPSBQzeWRgLnZw2HPvDpFwMhZONKnuFkdyHr8qHQc9ODlmtYBNOcPy9wcrEnJLC02M8Fy5S5txZgUGrZL0KvEpkXxEkX32MjJ00CSyepuxhiXV+Rq2JcYF7Q5x+YCKjqJ+nv5yLyl4C/H/hM0v0DIvIe8PlLK5L8Zx5mPmBzdIfg3b2Z8pWTVoppFTEoKIEU+avVSNtTM13IQmg6ey/RAeh2f4tp3mW1uUBwhP0er4HVyvHo7Qv224Hd9oBaGIKnw9Em42AIgdbEU3/GOrpgGT/b0xpH2zR4LzTW0TgXQ42nizHFmGQsjQbN7EczWb1Vo91AEmIFn2AlyoeNc1g7MoYAJqFHCrFljWEjKzZboX1+wF6PuK0gO88YAn5UQtpWDAQG9Qw6MurI7XBgCAfG3YC/GpGLQHdm8c1bfLZrGMd8sacW81tMegG8MqFqzSkhx4JcHMVdsN5T7+KHfKy3ehnrrTj08uvyzQRI87vkXXq01cjE047TdMJSTrRMwbFOsfhXUFVeoA/8QDYBETmTeCMxInIG/OeJl438O8CfStn+FPBvv7iiOPhSmzfVr9qwUU3tjOUn6XSEeanyUfysuT2LDPm5XOCyrogwXj3X+y0KrO9vWN07w3YuGfIs9x5uuP/GOU3r4t6+jUE+RGIAD68BUoQfa5vojnvp6TRu7W1WG843F8lbMDr9WEy8d1BieDExccayTh9vDpJpGBLABnBJv3fO0K4arEsuxiLTmYHWNnzYPeKn9B2+9nTDo6eGs2vBDuADDEPk0mOIiN8TGPD0jOzDyCiewQYGNxBkS9NfsbKWva4YxnR0tzIGyrzGBcFf0v7M0yINKMn2vJo1UBnmKisyv8iXuyOLfLnh4zL5nINUn+t8VbEyhoDUeUWqX1DOxR1DK8GUglDm30vJ4UXs8weVBN4B/lISvR3wr6vq/0VE/ibwb4nIPwl8G/gTL6uoYLSTq++RyK5znkKVPClOVb9PcYKy0fxD6qWotUGp6pn4lIA3ge2447Dbc9GsUBpM2xC8x1qDOHjwxhm76wPDEDAIwQdGFEcUfINJdwhai6rQmIZ32gv2hz1iLRdnFxzGnsO4i9tzCE4jhVexiPTMDi/J4TaxOhGDcYINgiMdBgoatxoLy7+GaLj82uoh79xs8F/ccPl8Sxg8AWXUwKBh+ntgZFSfiEDcAellxNuRYAZsM9A1ymZ1AauH9NYi3idPTKHy9CtEb12IyEJWHZYOX+UB8yPNuoCbcl0LLr8UzzNyLqSDLB/MNReAN9EJIV+xPnHdAvjK/8/wlsesFZwew17dn7vkkVO/phIvoAI/EBFQ1W8Af+jE+yfAH/3+a5TqsRTjTPFZy0xCFGHTLIa0PmYx17UW+AKuMLWQtNOSBkySmNbZBXZh4PZyy8PtPczaYNuWYb9HACuG83sr7j865/LJdrobIV7co9GLVg3GuLgFiMM45a3WsOvX3DSGpukIGgjGpnMJgkMRL3grTBeyJsJgprP88T9DcjXW6NQzSQ9pRyAQcDg+lIe8tzun/+SK2y8uGb0nIHgi4g/q2cvIoCNePF4CXgIHCRy8x9sRZMTJSNPCul3j5AG3oZsuK4k4PqsvFbWe5ruMkZO9DCEf6JroRCXrlyJDWmstEfgUgtSEPz9p/v8C5ySb41nA4eJNLX8sv5f9yW1UE1HVU1qjYi0nCFeub+qyVsN9kcLw2rgNl9NViVdZKtKMmoupP3VnW/UwL3S14Kf2XFIkobL8tASaAHdRTAA1cNCR7WFPGEAb0LSfDtHY5xp48NY5w25ktx1i4RG8RE4dRXlL2zhW0qA6YIaRh2GFaRyta/HDgdE6GDzGWho86iWGjiEZ9JKoPR1TxmB9RH6j83afkYagEvf3NR40eocz3rlZs3tyw+2TK8IwMKrHa6AP0clpkIGDeLx6VAKDVQ7iGYIHGzAmoGHEiuCaDmFN37eM2VFRamCu7S3MJ/8WMFG6b+e8TLUsn9JaT9xaFnAixwR9KeZloqQ1PEw/JkKTXacjEdaK5aaKdK6u7nvZW6kg+8gycGLcU3oBmz9FVpbp9SECy0kuniq7bBYLF6MrdxRqun/KjWPR9CnMZiGWVVeRKXWNwhAGbva3MUSXGhBHs9mg/QFjDWEInF10HB6dM/RXeEIE+HSnn0ln9xtjWFkDo2FQQ6ctF2rwiQsK8eYhYwSnGg2FTTQWZnE5b6lDNAoaFRzphKEKLhjapoUmRzSyvGPPeO+yZfjsisPtHh0GfPD0wXMYe3od6BnpxROM4i0MKgyijARsxGDC6HFG45kHOvywoR8gmNQpSYQ1Hy2ukG9e24xMef3jrUoLPTFT5wkIElJOz8V6La6SKwGoPoOTDZYk5DpWOWpAOcHl74woWrR/15epurJeOWqlLqX1z6n8y9A/pteHCKQ0mTZMFmtn6jxNc976KnwKQKdxzyj6Ij+poq75B/NiF5S55AwVaZjLjuq5ur7i9umWB2f3sOsOI4b+2oMPWGNQK9x/K9oGdrc9xlgaHEZjcJAmH/yxBrxLUYGUbhjpQxTxjQrGWawB2ytg8eKZQ6/PMfNiWHDBWkdjHMY4RMFhWV2skVU8mPTG+TkfXG/wj6/YXd0gY5pPoh1gpz2ekYGREUUdjDZeZhLSDkTQgI4DENLlJy1hXKEHi8qYpJUZQSKipwCl045LXINJIEucXMi8coGKmRtrXo0Z6Os8zKpHgZ+lnPEyhDliCLk/E7DJBEJzjNMZdqe2NEs1S9Wg7rcU5Ss7xjQemfNLqexqUf5l0B/T63OAqCKD86vMxzMoGPIapDcyl5qvcDpOJVC8OKT0cT/yu1qmqA8oBQdb7bl+foOo4BqDbRps0xJGnU7irc4azu9v4s5B61ht1ri2QQScjTsKYg3WNTjT0ViLPRzQ/QFJfgP5PkKbxH0pRFKI44vHiC3GNpgcYzBFHjLG0hM4aKBtHV9f32NzGRi3B6wKTg0hRANgDFQghGy8aoWwstAIpgm0K8W4ET/2yR9BQDpCWBMGw5jClEsKoS6LeZTU3zkKc5bqyoWtIeKIuEvi2DJHPa52IOIblmbFSiqYstdW/9l9GISy/xNJKHpT5sv9OiFlJs9EyUQs93fZu0XxJVTO6rEWb44fX5ZeEyKwAA2ZJ7YMDyYSKWCer/xNSWrCPP1FzbNktySMdZARYTraSgaK5SKW3CZztvgvWOHW9FzdXDPsR0KvoAa3Xk2cIBrn4N6jDau2xVhLd7Fmc3+DWTeIi2cAnLU0XUvXtbSmQYaRsN3HbUQ7hdqI233Bkg8imWwDmNx/U6zCLF0k0d9hp3iBb6/PuPjC4B8fMAE6sbg0xJGASqBJMQxxAp0BJ1gXaDoQAmO/x6imNhuQFSE4fFCUERoQlw8yzbgpAka0BkLJcQUzckwAEf9qjXLHyp6wAIHU7l1SoRT/lu9eJV+Gi2x+Lfo69fAUJp8iEDKViKM3s1ificdEYJbjOKWqvFp6TYhAscaFu/cUUFTSGRUK4p6gSUUip2H2FC+nt5yaLE1kEeqUfjUDi8zNTP3TeoHTsxIBdy89Ty+fcfP4Fh3jlpFtHW7VxvP/zkJQ1hctF/c3OGtxneP8rXM2b2wwa4NxBru2mAuL3TQ0pkUGGLf7qfcxuIhiguAkGh9zBJS42ZCuJCMa3uKx3hiH0HqhFUuzbjg/X/Gu36Df7Rm3A02SAkAxJh5Q8QTUBMRJVB6tYMxI6wImjPjDHhOie3MMj9Sh3qBJBTIGbGuQxk6sTSuSnyf4BHIJibsvpbAatY44+zFkzc/Vgs6QMa9/ydkTl62QuqhL8/on2JqYshTDKto7RZyOzjfUozpZrITNjAfVt3pGXnaC4rUgAlWXZbFQE4DMgxOisQudf5dDn1SIgilEEbmc2pxKHaImHXdJVMfUOPkLWOX6cMv10yvUJ5ITDM16hZLiCEa/IO6/e87ZvRUCrB50XLx3jts4EMWsLTwUzH2haRpQS3+1RccRkIyLSFAasfFsQBGgWwxJMgCbgpLGmAA27VQ4NmctP97c49ETAzd9JBYKqoGRwCga9XybgMwJNIJYT+sCBE/oD5jg40lFY7C2Q0KLehMDkihR4mizMxOT2F8yzNnvRyYQmNdxMfO5/LSOp7lpeegnEsPlChZgVdVVEqcCEY9gsAKA4llYQk6pOJRv8/jlqLYFxz/VTPow5bxDd3gVs8BrQQSgRuQJtQuAKbCZPG3TKdX8Ji1axf3Tapd70tUuoCyqLj/kL6cmWCIPyJqmUSE4Ye9Gnn/xjNsvdoQRfBBst6JddYgqbddACGzutZw/WCEoGOjebmnuWdQBHcg9oBWsaVBa+tue4WbHqAH1UYTOp/VUooGO9C9HCrY22gEM6fBPiERBDHR72Hzbw3d3SD/iQgAf4g1FOjLgkcaAM4TWoGuDbaBrwEjA+yFG+zEWxGGkRegQHI3rcLZJyGOgcTnCyGRwzyf2Zh+Ocv1LBDxh+V6gy8w8Fih4ctnk6FfmqMeIl6GMF15nPlmHyvbKuIYn2q37X9QsMMW0qAG/Hkw9DSfwZx7Ty8wDrw0RmNYxiVNTgMT8keWUSD25MiM8MqsVKrVEcNzsiS86CXizyaWwQB4Lpwn4LOzdwOXumv3NLt3sI5iuob23iZb5zsYAoM5wdr9LVtyAXQvtwwbphNAoOgocgDHgPQyDZ9geQKJvgdVIeHKwT1Hi1WCq8X6BHDxUZ0QzGKwKjbNIr+yf7zjsDsjoMUEZ8Yw2xG0/p/hWwAnSCcYENmuLkcA4DlhNx6CxWNNh7RpRl05EmhjNyLYxkEnr7tyGPaLM05uZ4wvxpGhpCZ8lRqmIcf40I3HxUmAhEiw7cyRWzz1YEoEa7jLaRpu1KfIt+qEZfsqQIEylZ42i3kGokHxS9e6G6zJNR43vSK/dFuG041KkvJ6BYzqa95sUnXZktFggON7GqSo9bqlau+wkVPexDFpZ1+FXhr0f2T7fMu4CYh3WQbNeEW72MASa1qGqrC869mce33tUFffIwWEk7ALm1sIT2N0c2A8HgnrCbof163h7sFpcyH0MMa6AhokggGBt8g/QaLBz6rBEHwH14PsBxhHvPaOM9MbTq0etpnDlkbAJI2tn0DCihz6dXGwY8QiGIA1BDc6YGDZNB9T7eC7BWcZVO4F9EJkdamSa4GLC44LN3Cn7/+uMi6KEifHG9Z/DlWcCnr8ukXd5s1+5fjUJmPqotfV+vucwl6lrnHwYFlBTP8dyApWbdNl6RXp0Wcei1hMbAxUbewG1eL0kAWbxJWu4mQKayW9UlsWqf3qc5RQ9rr9PjEjnflS6JYve1DVPKovC2ArbzvPs6TNun9yCV/wQwFiaizW+H+M22hhwjeHeWxsYlHDwyAZ4YLm6OrD9xi3hSc9u2DLoAUuAfU/f79n7Hk80DBoVTPAY/IRDRhVrBGds9LMIIb4Tg8PQtA1GFek9jNHzL0jAo/F+g9Zgu5amc7hOuN86zowhHHpkEBo60Bh0pGtX0RCpFiMOZx3OtekOQsV2DlYuuf0uBdaSFhfrKzNvr1F4LreMR3nE5Qt70VHGk0ZhKmnkxEdOQVApiVLAR2W3KKWeSSJZQqVU5Y/6tWBapZzwsnRHrVN6bYjAtLVS6GaVfbCcu0L/K4lEPnkozBbReUOtCFMm9bQsRbL8afbZLiWItG1V+ClMdQgE9RxWgSu/49n3njJsBwigAdz5GnGWMAZcYxECmzc6XGc4XI3RwL8RtBW4Z5H7FtNGfzkrYHoDQRmHHYQhxvwjSgKxX0lcMhbr4onEeEdBi2ubFJ/AYhyY3kevQD8yBM9ePaNRxsbAqqW7WNGtLeed5V7XoOOIGQNr1yFi4iEnt0ZkQ2tXMSiqaZBgsGro3AorDtq4pTiBeiYGlTjP3ZQ609dEpEvUPjYHL1d/rnKJwnc+nyAEy3eVTWlRviJaFfJmSLyDkBSdnHYoTnV6MqToNHdSfZvL1ZEv7iYDrw0RmDpSTAQsRPv8mCeJstBcz6SR6fw7g8aC8MaJLOtdbFXV20XLVAteudJ9E9i/bTjgOVz38Z5AGw1k7fkmbp81MTyYNcL6gYO9Mm4DNNBdONY/0SEfpAtGxeBwbMwG66NYLjpgkwEQPEJI/TfYFFmYdH24axqctVhPDGCyGwm7Q7yDAOWAZ28gNAbXNpyfrVmvGi5aw9vNBnqP6T33zIrGRdfjzq0xEu0ARhyt6eKRJUnxC4xAI7BKW4LKzOmX8ykz0Z+OkEuJ1oJdIDzIETGfF9XMADQv7AJpCmnvFdIMF7r4XfQz43xhIZhV+7n/Rxalo06UxEOOPk1f7hAFasLwIvSP6bUhAtNUVp2WifPrqRFVRr/SiHPHsPPOwgRgNQEoSctyKyppb1V/Y1raC4TBez4/XPLp5RfcPrshoNN5f3exwnQuRtYxhtCPtGcNdmMYng4Er7j7FkaFvbKSjvNmzdn6Hh/cf8S5aaLThFdskHhRKEDwyScgv0sh1gLoGBAfjy03rQUf8MNAEM9gPWOr+M4SnGF11nF+tuLMGd5t79F4hcPIfbNmZdYwCq00NO4M0UzILI1NcQyC4gSESIxYdRPnl2LeMtKUHKsUrefcSyQQFnS6WHOpkDMahevyuvhX6IJFE6fhR6a2qhdTP+sdgGkgdZkptym+n2yNGqbL94ud/yOackw4XkQIXiMiEFM13HKsmZjnTJNnUDo+vJin0rpc1n08GcWFEJkQLLhIyTnmrau5THnQzGQrr4HBeK4/vWT36RbdBnQfkMbSnq9g8LGOwWMItBdC6APD8wA2qSReaS7WbM4esmpahvEGs99Gv0YlnraVeGYgOg9nrz0XdXZiTMLGWhrTYL2N24qDZ/QjBzOyaxS/bjCdY31vzcP7F3QCb5iWDkPoB+7ZjjO7QVVopeOse4Cjo5OWVhpcENQHTICVOKw3OIXGOLS1aX5k2hYsUaaweTNx2SkYisyEvrKEp2PTRxCTlyzz4xw0LZead3lewCpekJZIfiLHkf5+t7QhciI+YJVO71WQogzrKQJW9THNg56WY3P6He8OiMjvI94tkNOPAv9j4AHw3wYep/f/rKr+5ZdXOBtAl9Sv2uJLSJkPmYjqFEPgtDVUlvNENj7WNppjgjG3n63P855ABqQJFGdZECFeLLK1B7549oTz75yzebiibZoYN+B8Rbg9EA7xxqBw22PWHeKU4XLAnkWOLecgwbC+2cA13GxvGXRAzjoGDdHxqDW0RjCHaBAUSYTAWpxpJuSXQ1Q97FqQ3YAycLDK0DqCQNsa3rz/Bi4EGhXWqlztb9loS9Od8Uy2tH3Pan2f21EIYYdoj2Dw3nAIfdyd0JC2LR1Dm+wbeUKnrcr4IpCwO//NQTmYbe7zxkFax2SZr46Uy3G8yQJfirbL9V/mn6FOi92AZb3Ltk61naXGsu9HpxrTc97ReKUxHH8qnnQxYWVfOP5QpN8xEVDVXwd+DkBELPAJ8JeAPw38C6r6z79yZZkAHIlhp+nkfB1ZPlIsqY7MSerS5fmDrLcWNKJobgbCyuIniaNM9QptPP8HwCgw4MkLoRKDhmrrOISBLz56zMOvPaJ92MYszuI2K/zTXXSk8QJmwDhDfxPYXga6hxa7cXAJPvQoA8Z5GoRw8IxtD6pYA4jHGWJ8ABJBCklU8B47OtxB6VDc4cB4OHCwgUMD2jqapuH++TlnrsXtd3Q4+sOWNhjubx6x8yOy2/HG+bscQsthvKHTEYIgekCDgeDpvY/qh3pM4/DnFu80XkszqQMBkUS4p9ODJWGVGQnL24Gr50LNnnblSiTKOzq5zdjedPjsKP+rSwWRA1Pp46cRuET8WTqBHHPgGLMrxlMQiqVEcAqdpTpwT436Lxnc75afwB8FfltVv/3yE3rHKaNeRd0KBjJz83n1jwc5h3Aqz1xU1LgiyIW8MeF75jbpn4k/rApGHV0vrEPLhbec+Y7z5ozGtXijfGav+Uie0tJwLit22tO3AffWOePjnuvvXnL+9hnNmUVdlAb0skcPHisN/uqAKoTRoliGwdMZi+4Du/01MAJKo0ILjOOOIAMiLaoeVQ9BMBYgxG1BG88WNNZhNSCHAfxIEM/YQrBgreV8c8ZFs6Lre1qv6HCAYeCivYcg3NweeHT2Dth7PLm5pdUeDNixxwXY6w47KmsaFEvQkVGU/sykqE8hEUchx/2LVxcp01XzCblDDoag2fp9t0F2Xq+ZQOiEZInPSoKMCR6OEfNFCBzrLNooIPZl6SRxOJJzCmQvAhsU7OiouYzwdSj8XFDmAlXTd+Pl7xYR+MeBv1j8/jMi8l8HfhH4Z152BVkWzY+k+YJjT3+lnLpisVUm6SB/OkXnJ/2UqL/PNEsw+Zx47guCGwP26cDFYcU9bWilYd22MaiHRPV9ZRq+rm/yXnOf1ghn2tELPPY3DBeCGRzXH11z791bHvzo/Qh8K4e7t8Y/vsVaJewUDXvUO1RW7A6ezim283h8DEkWhDDG/X8YCIyAxSYPR8VH71xlOj3oMDgfLykRCajx9MYzmhicZHO24nzdYXd73P4QzwQMA527wJgV/fU1Z6sz3MUjbq+Vc+uRBrbjFmuFBsGHA+IdxkqMOKCG/UYY10AiACcuD0hieZLMNBOFecV0kTfiphJvM4ronGI+V1LaMnLvlIcC8aGWLlgQAylIxkkp/VglmWBsWc+dVyYvzc0l94o3NE9wPhGITBhkInIzvtfSwNzXF5OsH9gwKCIt8F8C/nfp1b8I/BhRVfge8OfuKPcLIvKLIvKLu9ubabtnMh4VyDlzayELeVPe6Q3pirJUWIrTXWXJVH/edZi+FEQ3EhVl9WTgjY8C518E7Fax3tDaGAOwMS6tl4IoDYZHfs39sKbBcp8VP+Hf5INwn3d+9G3Wb2y4/uia8XYAn1btrME2MSBpg4PdiI47lJ5xf+AwDHBu6c7XNNaBBuJmYYwsRPAYo8CIzSPVeBFI1M01RjnaK7rrwQwMZmRwineBdtNxtupw+z3uZosZR9QPWN1g3RrGEbfu6N54A2sNa2c4cyvO7IazZs25O2MjKy7MOffcOWesucc599sLzL0NIZ1bcFBckT6vaxkCKfc9XzNHAQdl0dmVWAq6IouDMrWkeNR00YWa0NR/Kz5d7RZlEHvFbcaFAe/ubejcupngff565yiqPtcdpKrnrvS7IQn8F4C/paqfAeS/ACLyLwH/7qlC5eUj7374IwXdZhpROfwpyMRE8cO0SOX0BOqFA458rE1RN4U0kMU34+Hs8UD7LGBxtHbNqlmxcS2NGqyCxaKq0XOPQAieUQTE0ibffSuGt0eHvQyYD+7jzxv6AM6nU4CtwVys4OkNTmCtK3aHp2hjCWrpadl0LWcPHrDbXnLwW1q3YkQYAIxHzQBoGlP0ShJNR6+9YoLG7UQLpoG+UUbrceuGexdnrAPY/Z5Wx7jNyBppzmKUoKCYd+5H8fNW4+lBZwjOoWMHVgmMnLs1Iy3eDzHkXiO04cD5tmfbBIa8fskGUAf+LNx4s75fcPI52zEvqzePstiohWip0dOUWg2YYLD4OxEePZ33RemoniJVnH4p3tyV78TXJW7MP07bNZZ1vWhEvxtE4E9SqAKSLh1JP/8x4j0Er5Qm0XCuK72N06sko0wJOCRDUlGwEOTI4uHp66xAJYpQJXG++O7A5rngmhXWGhrj2LgVjcxRfBTwYURHxWibLu+MfvGKoM4mTzlBfEA/uWV41KGt0D1ssFZQMejGYi47PHs6s6Ebr7m9vkbWhh7HYd2w7gxd1yC3DefdirELhFGigY0x3vxDQAgxwKez0XU3GGQImCFgrSc0nsEEghPOzs5pxcD1NXI4pKvOGky3jv0dA7x5gZw5uE4zZwTrlS4IYlvEBoz19AqsogTSa8+t7DHX8PZNS79yPDvbc9P19GnFYBamI37nFY3U2mgpapeUP4rWebfInkTwY3Ugw5IuZHsFcoSzLFlP7yn4Z3m+oRIGks6fJIoXOe9ATcdOqQ/zSCPMV2EGMcx7CSf1k2NEf8XwYj8QEZB44cg/DPxTxev/mYj8XOrTtxbfTtcz/a+c45nGB2QiCDGZeeIk3l4zXXddxWWjei51nwxIcS3SppXCo0thfTngVWnUJt/8WGfAo+lZxpDgLR7+GU3A6UgwMVSYWoM0MUiIUYcdhdXTEXMeCG95dBXDiOnGYjcd/mZAJHAhF+yHT/H2htFa9mNDGEeG4cB63XB21nDoRg4erDOoBFQGVEIEWmuxzmEkxv5rECwerI/3AjilOd/QNA3h9oqwvcEPI+otbXcRAbsf4MEGedDCENUdHLAH8dCYeBBoNTps09E5Q7Dx0tDD6NgZwfQDjIbuGt656bi/dnx+vue6DZNolncFJe97Iyc5fkaIvLanOO4xRBWEA4p6C+mjqGSWBqheTjVNNGo2VZawVjGeEzYGrSo71dtSln0R5y4plpzImMOyHrdxV/pB7x24Bd5YvPsnfid1ZZE+X0cl+aRWoaxXek3iClLMbQUcUnCBYoVLCWKmM1GSePTU8M5nDb0ovRkwIfcr4G2PdwbPgAbBjRZcdE/1AZzRGHPXx2PAjdHpOLNYh+0sbgjId7eE8wZdN7AWaAx64WiebdDhmq7ZsBkbrvpbQreiH3cMYw9hoHUWXGC9smx30fJvZCQwTkemrWui/j16nILpo3ojK/BuxK4bunUL2y3h6jlj3yOjpbX341QfelifwYNuBjRrQUM8Gt1Y1EIzKqY1uLYliMU7GMcRRQiHHc1oGU0MTCIjrK8N93pheCjsmrhrGBeiRoEslhcQFYl7yRnT67zuJdK9SOzNRuWsMUSJI6kf6X0Fj0vET2pJxaC/j1QaKGtYZToFWfswLKhGRJBF+xVEp2TQkhDIop5Fem2OEs++NoVopFRGwlOTX6kFp7wqKGFK0w3GMp0pyGetz67hzU8twzigRmhsSz8OMR6fNezGAyoGbyLdbySAxOCZakGsRUxAxCMMkdx4gw6xfWsNduUwfUC+cwPnDvPeGg7grcGet8i+BaPcax6x678N+y3etbRdDM9lGPHhBhmjYbKxhoGREMaJiFrrEBvDj9pRsHuPJTDYntAKq/UG+p7h6hn2cIsZlNV4hhGLHAK0DfJgBSsTMXUM0edAgQZwYEbBeYPsXAww0jqMDUhv2Ws83WhHS5CAMcKogXEcsbvAfS/Y+4brTmdCUHHnpTQw816pICQvtU5ivki6xlRnwiD5e2YaREYTiybJQuuas12+PLqe+XMBjkcc/2hLsLAxzE5Sd9gmCs5eKzkyI8NCvJ8lF50I20m95SXptSEC2ZqPgiU6d8yi3OwnUC9K/JHUsnRenUISzJNa64EizMZCga6HR5/BYdxzO+5ZuY6GiOAB5aCeuL8dEOPQxsaQWdbEyztcA84RIG69OYO3IOIZAzFceDDxFN/K4oKiv3aNXgfMhxukM/g3De5mDbsrWnvBPXPG890V2nWY7iIGIt179v0t+9sRkRYMBDMSJO4GRGJjYyQhY3AD0eK/Hhk7j9usQZT+6hlh94wQPKvBRYnHK2ob5OIMVhJ3MLbzXKb70uIE24iQZmUIB0Vssslsoq/+GSuCUWQHOgRG9aiOWC90B0P7xGLvCZebGMAks8XSKJeXPqRFzldtx1uTY2bN2CP5ghhJjlrZ81onRzGjGcYKrr/gKkGKm6tm8Koy1UVm5JukhsmZKQOhzvBYDEwK1SarQraE1BKOF4SjdjbO9VcFClpzrB4v0+tDBJi9yOsuF8+Ft5igSfuZxXpJwSgq1UAkiWFx6izFoqVyZ88C4WqgF+ialo1bxV0CEQYGglG0FUznaLo1zbrFNeni0BBo2gZr7MRppHVgXXT+AQb1mDBi1dI2FozDeIVPdshtQH7qDN5s4HaF3O6g95y3b7DbPUf7W0Kzott0MPQc+sCu97QrBQmMumc6amwE16YLR9XiBsW5wHg2wsbhWsfh6jnDzReIP2AGg/QN4iyKQ84u4MzFyTkkKIqHFGNq07NJ4rmRGH14DOgQ0LViV5aV65CV0Fxb2t5htsIeYFDGISB94N5zQ8DxfDPi8eR9A5jBNq/zzOUikolqdkIscEyYVMYk3WWD35HkuHwnEWkzE6ryFp5+JbYrkflMdqYKT19BUaikhsTkQlGutgouyh63twykU4gUL+3O60EECiI1OQMtCZdEa3jMLgWxSECSHX0m63FZQcT4yRhIotgCrvesn8VoPwKICVxxSwiKdQ418Tx8e29Nd7ZhvVmzPltNIBv8iHPxUo8whLg156LRD2S6vttrwIeR3hvECrJ28Xqwyx75NUH/4Dn+qw325gz5+Apn73Fm12yHWwgbZHOB7OLhnNhIABnxYZhuE7ZicBYsAdcHmmCQ9UhYgzvb4PtbhpvHEG4xQbFDi8MhtEh7gZx1ce8y3ZKGSwuRgS4odDHoqGq8wDTv0wULvGtprNBtwO4d7rxh7Te0lyt2t1u2t1u4uaHf7rGHwKOrhmDhsvWR408Xkyw97Qp1IXVl5ppJMmCWErIRLl9zdpcamXckKhwpJJBSZTAFPE1MpoSzkoJksWDJoe9ItbMT8y1by36VnpDlmCZjx2wUrGwLL+nC60EEmCez2tpLT2Wucs7jIiXiMHlSJWmgpPZ5jhDEGNaNJQSPhMCjZwNdGDk42IcAGmP4YS3GKW61omlb1g/v8fCtB3RdFw1rqqj3jMMQVWavhCZMC5qPsXqNi+IJjMHT+xETDBaLbWIw0HY7oL+1xf/MhvDhCvN0C72yad5kNN9B/S2h2eA6hx0c1nrUejABFU8wgWCjqoKxmCA0PYiODGcBc2+N6sD2+nNCuMIajzlAS0trWmx7jpxv4rVkPg0gb8K7OKdRhBLUKSHGSkV7wENwiq4hnAs6SgwsYixdZzHjiKwM3b5lfbtmdbni+mncBjW9543LhuFB4Kbt4606Wb2TBXIt3HcnyCgIhlSoncT7RAiyujFrNDIZ4yYv0oUUMAUy0eJ3QmwVnW4BmmCswLkS7+50T16mwnGqJkzZrlFjQ6mgVNM1dans391tvz5EIA+iuIOu/n96KmZIiwWfLb+zWJRP/lHU4pqGr37lTXTY0j275uGmYX8G217ZHoRxNPECzjHeKkQL7qyh6VraVUO3bjDO0LaWEAJucPgx4MeA+oCGgPdK8BAt6jFQmjcwqMEQGHVkDBbXGMLKElrFXvfIR5bxa2v03Q188hznLli//w799S3qd5jzNbK32EZQO4LzBBlpVyBB8MFgbYMN4MaB0UK4Z+nOLLtnnzPsn2DMEP0GvKWlobUrzOYMujZO00hy8Uv/8rNTNO14KJqkhfgutOAfGMYhxH8HZdh5glcOu57h0BNGj1jh/NEZbRd3KIbbPc3tgfu3gb0dGSTrHYWYTIl8GVaWBjhqW2Lig9lupFKI7pLPFyxdlmrJP7/L1QZhsjXkHmYbwlRMpLLyJw//ghklySOXkcJt+Oi0YqnWl+7AJ7h7se0xSQAL8edF5Oe1IQI5VbtD00umQSWiXQmHAsnhhGmR80zPQcViGscRMZYf/9qH3L/3FHnrlr0f2G97bm4920PgcAhstz37Me59i/Tst1dcPhH68xWusXRdx2rTYl0MpuFa8MNIv+9RHxhHj3iNjjfGpPsGDA7LGAKDH7EabxQynUNaj33WYzcO/1aLe97A1YH2rQ8J59/Ff+sGVhvMOgYL9TYQupHunvKGcfRDwD9XWtezkcd0xiDtBe7BA6Td4s0lVvbYIDRqWNsVK9aY1Rl0mxgSPHNdKxEyWoUmbXVmrmkUDUSCJxoJ5bnAfYPZazQoGlAjDPuRcfD4URkOI2H0sZwPtOuW9cWGw7Mt/XXgeui5bH2xvtRcP+8ayHzKcPYbiGw+2wEqsi+zF2kKtVI5Ixlqo2MNLbPqGZilBqN1/ZLqm4hMJgSn9JAFWOdUErqK5ukyr5x4WTaQnYpmEvayqAWvCRFYTvusTsli+OVz5UpcCgmFaFDWBYIGzze+/Qk3Nzv+8Afv8cC0rPwedAfSI2FAwoi2JnrEtYKaQBivubkZ6PtVjN9nGs4vzunWTeyHEdR7+v3AOHr8foBRcRIv3zABvAheLaMKNghjiDcPG+swXYO5HbFPdvj1Gn20RnZbzLXi3reE79wQ3KMolYyWYEHWgYuvWsat5+bZyNtWEf2cC7uje+McXbeoO+CbS2y3x4nHacPGdKztBmc3yHoT/YmlYGuOyPIMqEt/Q0JCzUhO/NtCeGTixSRqcOKgCdiV0Jxbmn1D6D3+MDL2I8NhZNwP0fEKxV60XPQb7o0Hts1AXwR2ndTqlI5wqdhOzFu9+RLbzBOzhowkF++k2UQHNOYDZyfAcSIICbZyeDqldFmWI+KxPBaUf94h7M9jk1lqP5VrHq4Uv1/E40vcuZsQvCZEAPJM18J78SmvxkTXCuqf9bskjuWFWYoVQox/N46BTz9/wjdXD/hDFw9QvSToSBgGZDSYXpBBkDGgoY979KL4YcDLiAaDmobb65HDzsU95RBQhDDGy0H86LFeoWnjFpr4CIDpCjE7KsMgmD7eCOTXFrlwuP2AfXyLnlv0nkOu91h/jX3zknCzo3noWDNgzAFzETAPPfZ+x0qV5mZg3Bv05gMwb8CFwTSfo3KD7LY4oBPHSla4ZoV0azAdBDP7ArgE5WOSn7PFOszSFUQiEFaBcAFhLRAUaSVugzbEeIbe4taWMATC2OJHn+Yn4INnv93TN4IT5f3buF34heziHYjokcvA8hz/zCgKbjfp6lrH20/2AJVIBKL0SKmHLqFu8mTM9zbIlC/D3KwW1PEFavtA7ufyGHtuNxOYugdHpGThgbj4WIlQpbQgpwldkV4bInCkBkj1Z3o6lgxqH6tcVx53JhIZWKTI8NmzZ+zbN3Djebzhp/eAiafviGf3fT/ihzESCRGGwWMbh7QtXj34Jln+fdwJ8AoqaND4HEZQj1iLsQFr43XjFrCD4IwwWINZWWRlEdfgLveYMKDnDnYD9mmDe7Ri6K+RDzraRmmtw5hbQhjwZoN7Z8P+8gnD+Cbq36RdO4z9HPHfQncWOwitday0w7kOac7BnUFoEmvLcm6WjQU0XnnOSFJriMTBBrRRwpkQzk0UImySFoyP/gteYlxDEy9rHfuAakD9iJpIXE3T0933NCthtd3gDiOu9zweew4+uuvUhCChe6kKLCzpJ2+ESIihk28BKRqVTshbHka6SzWYe1DDZqkmHPPbRJAW+csDQfMtTDoRuplezKLu3Vz/FJcv3lUGhuP02hCBu6avQv4kI1ZkYHIrhGqT4GQLhYVA4Hp3y80u8Mb6HB0PhBGk8zTScBhvcaNggkXwjF4JOuL7A4M9MHYDTTvgXLxoczoCHTRyRY12Cj8q3oCXBi/COAgjStOCWmEcBdsb7NZipSGsW/xFhx17dDUSMWqDrH8EufcYPd/jn93HXQyIVfzzp9w+F7p7G5x9Du4J9sE9uNhi5XN0vCXcrOJOgGtx0iHmHOwF6AZowOZTNESdPijYhEqWiPiJOGgIhPsQzixsmMasXlEN03Vo2S4jEiMJiQTQgXit0oAxW9p2D25A3YCcw1kfuO/v841x5PHNjsvrA/1hnNDoaOetAANZvJ8lxIykETiECCNBZjVCpoJacPR03lGYYjrG6VgYHafcWsNrYRsoFYe5JY4Iw/JdNUAgXjIZc81tlbUxCwNLH+sXpNeICMR00jA4pTru/CTyT4RgZv+1KFVSxQwswuBH9qMn9C2bB/fRK0vvD4i1rM4t3g6E3cghHECF4IWgHjMGlJExRARHBWNtNBKqoD73Q+LFHkPyexcTVYkwM9kQFO+FcSu4oFEOOXMEZzHNLWbcoqsdmGvsGXAY0NsbJHwPMSMmPKftrxi/E2g3wuotR6+PELPHmANe11hvcaZNKsA5Yu6BP4ewivYAk+Yw72hkUFRmh3cF9gE9U8JbLm0ZxjMemhBf0Hg6MhFnNYn7i8faAboBsQc0HBAOCB6Tzm2gBvVnNO05hpG3Dzu+8d0tH3/8OV7HicOX23QmrXDQ+oByXv8lA5wkQeY6co48VCkzF9w5ZooeiELk+pM3IkxHlnMKiYCIpi1npfImnN2IIYevU2o1YpnmbfSlonAC4QsVJUsqd6XXhwjIHT+klAKKT1mfSwRAMiHQWfhajrtUDSLtDGxlwPg1ru148L7j+tkNN88Ut2roLgRzGNk9v+X21oI3HHQfxcoQ0DE2rwGC9XgTQRMFqyYF3DQQj+rjfSAQUNsSAoRRERf7Ha8FU8wWrFsTOgf3z5D+luA+Re1HGPc1aJTm/c+QsEWvD4TtJd1qxzj0iGmx3TNk9w2MByTEC0gfxNuAJDTgH8LwEMZNJAJi45wmpGaXuX50B8ZqvJE4gBrFv2FizIugEEKcflWMpktRQ9wBYBxhiEFK1I+ojogMGDMAPklODdauEOkIYcVnW+XjJ5eMusdrYBhD4tpp7ZJPSHyOwKBQGQIz/YoGwoiAUYAsiAhZBM/qA9V9giUhmOIBFt+jzTRKdBVXTxwsED0abaalqcIwg2i1i3EkBRR+BUe4O+lHS0Iwd3rpZvyy9NoQgQlliz+FZFblyUR6mrDJHyCJW9M24bKReUrjIRLle7tn/Njbj5DeY4zj/I1zfAiMKKYV7IXiRRm8x2CxwTGEA54+AqiG2L4H8SZtHwli0plwAsErOiihD/jBMw4jvhtR30Y//MYirYn1DYo9CAwtdOeEzQa1PcE9xLQHRLfI6hJ1BnW36NVT+v3A6sGacegJfovpP8KsOlAH5w8w7h5Ci65W0K/h8gx2a2S0c/RNBe0jYrMbYRDEp/lyGq9Te0fgzCBBk0/EGImhV4If8OOIjj5yVSXaQ/CIicFNgijGJJ82aYAG7zuMbHi6E371ex/zyZPv4sOID4Fh9Kifr1ebxXYSghYLXPGN0ptwFmbKA7bZs7BSLXQmBqKRsUxltGwiPlky0s9qRRXUpoTJlKc2GOpRXjPVOYuzdzPxUxJBCfc6/X2RgP1aEIGS8sqJ9/P3eVaEeUYzQk/CgJaVaV1LCSwiPNk+5Un/AW+FhsO15+z9NSoweI8PnqEfYOWQdYyh1xqh2TeojozeM5ieQeKWV0g3KDq1NMHhMPOtPIB4j+4DY+852AG36nE+4PJKO6L4PKQTfAFCZyBcoPoO2jxG+ivoP0XdA1hdYO4F9OYxYf0+1jmCjNi1x6wGpNmgmwewfxv6c+gewRsP0U2HPDOwyzKjwh4Ykp4yHmA7EJ4CZw5pDOGBEC4awjgQvCeEGNzU+5DimvpCLUvzbqKEE3zAj+m0oxGgw/uG0DsktGBaPnr8Bd/94nN2h31EjhCPIUPWRoR0UiTXXjEHTdJAxIPabpSt43OkqVmtyGgk03eNPh0a28y2A5saDFLDZZYmsvwZyGdU5h6ULse5v1kGCYkAm+lNLY1IMb4Sbqc0ifxHHG8aYGloPJVeiQiIyF8A/lHgc1X9A+ndI+K9Az9CDB7yJ1T1mcQe/i+BP0Y8h/bfUNW/9UrtlE9pMeeVzicJKyyekD97X8XRzkOuwCGVz28MwhB6Hu+ueWf9FjKMjLvA+sGa1o8c9j0YYVytsJuRQXf4YcS0lsY7Wg+BFT09A3s8Hq8jXgdQj+BwtLSmobUOZw0iHitgNaD9gL+8ZRw97jBiH21g7aL9bHSE/QFsQLZAsyY0DeL20LYQnoNp4aKledASGqFxEK6+AOOR1T10cw6hQw5nSP8WXD1CuxWcJ/dgH6KHYK9wPSJPd3DYxZuK9z39swFtLM0Ha/xbKwZG2PskuiZuG6JqFMYRP/i4WzEqQT0afDQYZmC0K4zrCN4SeiX0glXLzRB4/PySfb+bgblCUpnWrz5SML8QomkjTAxAJxXgLsm5OpmfvtsF8sRjxXOVGd3ybkDJyYPMur4o+EL3D8W4YmjFBWJTj4VizLmLJ9Nk+CjIxoQns6fh74Yk8C8D/yvgXy3e/Vngr6rqPycifzb9/h8QYw7+RPr3R4iBR//IqzWz4NZSHhVi1veqk10yOU1EkaumkhMQlC0kSSLDxme7Z/z0+dusXIMfA4ij7ZpJfPObNZvMMEcYzUAYR2yARlvO/Qodzwjq8QyM0jOGnsBIz57gB9AWJys2qw1d09C0gnOKlYBzAcZbwm4kXJxFf4WDQO+gv8Lo5+A3aAMqzzHNI5QG+l8iNI+RhxcE7uHDiO0OaHiGto5wdoFsW4QVuAtEVrAzhI4o4h8Cculhe8B/8Yzh8jnqB0QMlg69D/KGJ3xo8WsIO4mSSvCRswPep6vNh/hOUYIKxlhs22LaBrGWEIQwWoZDDNFmG5AAYRCe9Ndc9teEIsLAvISl/1uBGFoHlEn6wbS+CsX5kQmDTyJDqUXn777In9+FCW6UrClNZ0VIhsWS4CT4KX0IysAiZduB6MMyxUY46uSSAlaVUNCY6f+vGv7klYiAqv41EfmRxes/DvxD6flfAf4fRCLwx4F/VaPC9tdF5MEi7uDJNIlqL9weWBr7ZpF/WsiCmi59znN+QWL0nZTvsr/iC9nxweoetlPGncdLwK4c7TpCmm2Exhka59ju9hy2OwYf1QAXFNdbOt/RSjxS7H2PD320HTCijOyHW0QGrJyx7s5ZtyvaM4e9UMSO8GgDZw3+W99F3IBRS7h8Audg1yEZ758R/A6xPwO8haon2A2Ye6i10Gwx3hM2DeriiUWaaABU58GDPFO43cEXt+gXe8ar5+yvn7HdbQFhtTqnO7fYt8E/CAxNYLzcMoQeNTD6Ae8D6pp4nNg28dLVpkWahskdxzhQEwkAxPMVg2IbgziDscqTmy3ffPY9bofreUEKY1B5iLES7as1TVuyheCchMMpKdk9eDYilnVPfv6FRlNy+TIgSNG9SZT3Cd6yADshYxHvsPQNKJHWS7IFJCanxThrcM8dO/4mk0RQShdMUsuLCMEPYhN4p0DsT4F30vMHwHeKfB+ndy8kAhk5X/S+1Abic/Ijn6d3PrE1842qLrK4RrzL1wiMfuRbV5/zFhusRPffUQMWcJ2DFSAGY2yM4XdlIUDfgw8DQUZ8G8N8oR2b0HHmN7gQHY9UBkYODGEP2hNCz6G/wtoet77Hym0wmxW8+za+v0LbQNh+wXhpsetPYdxg2gvwz6F9gA7fBs5AbsG8Be3boNvIUbpHiHsLcQcYb1Hj0fVzQvcpyCPM5XvIkwNcX8HVDeFyT3+15dAf8PjowtxaxvWBwEC4hXCwBKN48bBqka7BrTukXSFti7gGMTaGOtVoWxx7z3gI0WBKnr8oMmtP9BxEeHq75dn2GaOP55ezH/60lpq5cY38Uxi6+ONkiLApLd5luMgonZ18tPiXEViZOXlpvC5lhwxr+cDltMlaIPsywnWuLxsAs9QSUpvlbUkLKL4DnWWq56Qk8YL0u2IYVFUVkbtJzYkkIr8A/ALA/Ydv1J0+RRAKCiAVXtdAcxTqaVqImiTMwUjiYn+xveT2Xs/m1iFGsS5e6ImPd/ut1oY+rYyI4hXkRhj2O3w/MJICaJqeYALeeM78ipV2rMwZxpp47NcO4A6oO2BE0dDjD8RAIyq4jSE8XGH2A+Hzj9D3blG3xY9v0XR/GPQd/PDvoeO3CWOP9+9jN1/FD9cYWuB7GG7Q4QnGCtrc4M+/FXchQoeOTzG31+APaLcjvLVD3u45u2lY789QHBjBM8LeIsEAFnPe0J416NkaVi00TYzUbNwsqquiY9wBiRJANPBZEawTxFmGEPBXHtcJt+r5YnfFYdxX6BH/LQjBhCST8EcQSbsxJYfNCy5MrGDSBgrjIZAPRc0iv0yehLkzpcqR9/7j+8xsmLcdC5gdU6DX/GZ2VJslFaayUjG4+c3LUep0rnk2Fx4UJ9MPQgQ+y2K+iLwHfJ7efwJ8WOT7SnpXpfLegfe/+nWtkfS405Prb57wAsnzOfRF/TUhKGsVKVcHEWE/7Pn2/hk/s34bVXCtRSzkIKS2MaAB31tc0+LWAdd7/CGgEo8Ix0VXggFvFd8EvCqjBlo1tNrRsMY6oBug87AJmG5EXSBsb2i/9iaEx4THwE2P3njMOw2qQvCfI/YhYt5BzZ7AM8JokfE7iPspNPSABT1ErmAO8WbncB/0HsgbIM/R7hM43xPeVkQ72muH4FDj8KEjDA1mbMA6wqZBHrX4iwbtort0MPPJujCGRHht3ArN/wI4a2L8RTGRW48gXjEOhkH59PqSz2+f4tUv+DwzZs3LNCG66vw5SH6XsXP+U1GW+vNU52wb0mp7b4K5qTtalZveF2/zNmSojBUy9TXnnN2x4pvSZTkHP61lhjpJoRYsv+dr08ot8llVOJ1+ECLw7wB/Cvjn0t9/u3j/Z0Tk3yAaBC9fZg9YsPbp75Ig5N8lIYBM32vf6vy7cjRa1iUzD1AC3776lLc2FzzcNdAIjbPQpf3iXsELbdfg+0CzbhkPA2E/YkLyXtOAUaVRF6/sbtrIKcXiA5jRYxXcYHG6ihGBxgDWE9Ye+gPD7Yh74/cT2t9EnjyHRrFNQMdfYRy/iWkeINyArBDzHv24Q68/w67egcPfprGe7uL3gbmPygDcR+U+Io+iG+vZx4j7FBk65OYe5moNNw0cGsKhQbQBMbDp0Acd4d01/tyCs/HsQI6YpOAHn3wEQNXHiErORpUqJI43KFghHAJ+p9ArYoXnuz0fPf+c3XAzy70ZaRIazPEAZrSYwpQX6DefE1li+hKVZhUiP83cOToixfsphFrvznWWbuc6xbOMOK8F0NYmudk/IG8jxvfTQSZKaWSWhvLtRneeGXiRsbAc/vGPKr3qFuFfBP4h4E0R+Rj4nxCR/98SkX8S+DbwJ1L2v0zcHvwt4hbhn36VNlI7L/gY/1ePK05C5vjVhQ55apfBGkhANFGSuarDuOXXn36Pn7fvE27AOhub8JpmSpAguMbiwogGxVgLDQTxyCi4YOikTfcFGlSEMcXtd61FMRGBCNgR5CqG5LYHgz5Swnc/47CxiA2waqDxBD1D5TlN949im4eM46+j/S+B+VFs89vsd48J/q8i4xPW7/53UbdGdAP6TTR8BPotVFvgPnpukLOfxDwBswe2DeyEMDpGY/CdJawc/qIl3G/hvENXdtptUg/jqOmqM/Aego/h02yIcQ4R0BDDrI3BM96kucIQVNjtBz6+ecIX+6f4k1fCFDJ/uUjMl8iIynTGv9ICqFEwH/8NE47KpBrM/v+TvnCMKrleXb4+PrgWmP0E8r9QDKMM1yip04Z81exsnHyx8P7ytGSec9zk0+lVdwf+5B2f/uiJvAr8916l3jLNuwNwpzowPU8ZoSAAx3fJn6ireDdJEkmEEhWe7a+4fONNzq5GsNCsY9Rhk1SIeFBG0D7QiEGdRaygO41bhumuQlWDYMlh+Iyx0XnGgLosxgbU+qid3IxIPyJnI3bTE7oDrFvk3KJsCOF7+PFTjP0RhHcI6QZgIy2ueYPt83+TR+/8ZxEzoP4S1b+B6DdBfhqRnwAdkm9AB6v30fM1wT1B7EBYC37t6LF418C6Q++v0bMWVhY1Jor6IY1/BN8HxMYYimEI+BGCCVgHrrOICuMu4PskRY2R8PUh8PHlJR89/5TeH2qgz1JrOocQY5kcI1sNE7O3aP5/di3OlEEnpV1rQpE9JReS4iQZpNonZsPSBlDDV0b4uAl6fMiopCVWZ0IxxSnIBI5yh5+TsJ2/HjHOQkUoT1T+wETgP65UIe2pic66/BKvT0gCkISAI3vlrE5M+SBZmwXVnt+4/Zyf0Tc4fOrZPFzRbBwmmBhJR+OV34Z4F4AERQ4x1r5JdYwaaCVeERoknR/ARClAYJSAcQFxcevRmBERj5ge9XsIHvOwhfU5Gh5j7I9izSNUe8b9X0TCL6HmD6Ljc8bDt8A8pHF7xtu/hm2/imn+k4j8LCIW4T1UfjYB/QD+KWH/HWjeR9528W7BQ0MIDi8ObyzetohpYJ8g02SA1un/1tkUHwDCkCUAQVUYbj1oPBvBqDDAMESe/+ntNb/9/Lvsxi1FlczXhM0vhfmQThanJ9yVOdfkMEahCZQ1nYD/WazP9WeUv0siSCSm1Fz0RahVh/nSqkzczcgRirItYYLDZdwACoZ1l/j/ArVAMH+PHCACjghApQLUoygdhuLebrEzMBXWaXHLmuqmCgkjPX6xf8Z3uoa3Di3D44HurMV16SZgJzEqjggGhxDQPrmzOtBRo21OFG8VYyMHHMTHE4VBaDwYEzAhAa8L0TPQAs5h33DYNxrGnUPkCRq2GPf70OH/BPrLBH2OhieoPKC598cw5oK2+RjXWEQscEDxCPcI/grll8D8JGJ+jNB9iOoBDSPmHuh5Q3gmhGtDGBQ/KmOv0I8xmIoRpNGE4BBCPAuBF8ZDnH9rTfQb8PFyFx3j6cIwJJfiAcIh8OR2yzduv8uNv5yO2U5HeTXr6KVrcOlgu+T4HGP8AkwkrW+Y/AgKAVJntUGzYq8ZIrSQSupGtKy8PJRU9EMl+Q2kD9kup0kq1KlsJkazkxMJlu+kaqcGuuxblePlysVrRgRimqZnJoPFt/T/iZRP0tr0vaSmWfcqClOh/lIqkLgoH/dPWD98n7OnB/aPb2jbFdYYbBMNZKGJB1yGvicMfjqNG4xGGwEBNYJ3M53XtNxiDMYJxhBvLbKCrFrENmirmPtv4j0cnn2CW72Pdmd0XYPt/ig6WnT4GxCuEf01gh7w8imm+VHUvgP2JyH8NsJfA71E9X1UDxj7k2AuQOIJHiUw3gyIDWjr8X3PeIhGvrGPgUHsvXiRyRRa3BPPAozgDzE8WAgRCfyoSRoDgjD2MYrQsPOMvedmt+cb/ec843m63acE2YyuWdKQGQmRwte/OB9XSHhTVL0lIsOilRLpOc09J3jRo9+lVlFSg6LWSCzzKDIYaxZihaVkKswqwESk8oPy0qhAc0VyejxTH++u57UhAkuL/+wTfSJv+t9EsXUuV9CG+LvYIpzbyrmkajNMkofiw8g3w2N+6oN34dsHbp4+x1mHkbjtFRyMhKgeqKLWRKu4tclnPLmWagxjLiaqD97AgMe2BuOIIbk6izgwTsBAf70Ds2G83SF+j9obpDmjcQa/+y2sMYg+IQTBtj+NsX8UzIow/N9Q/7cRucKYnwM5A/8mcIlqg0iMJRjUxyPDlx6/7/EhxK2+tK8/QfkIoVekgaAR4YNXxjFuA4ag+KCMIXH8UdHBE1Txe48fPMO2Zx8GviVPeSxPo9sxs2U93yaUcbLk0BXHr/hm/DshjM4ldELuGeGmlVZOOCbnmlM/Ct5T8v+ZTB0jcUb+uWc6eQ1Ocoseg/MoVDceLXn2SUGn2BFbfjx10/GrpNeGCJRImX9VShuzeoAUzySk1szFF1uFJ3TNmfMU9UtNKwXohz2/cvM9fv+Pf8jFt6+4/PQ5Ig22cRHgTYLabDS0impgDEq0ACqYeBGJN4qIjzVPAeUU60EPAbYH1I3AQPgicHhoafQGd2ZoH/wExr2JkS/AtgjnqLyPNQHc70flTWK0nh9HzBUiitifQPkRCH8bI48It2vC/hq1Lrr0bX0MEjLEY9AhzIjOICBRzfEBOIv3N41DzH+4GQiDMm4P0XnHxotI1EN/2xN2A9LEdwcd+HZ3yec8jzaVdLVhyWinNVAmT8Dpu5xAoNIVb6YNUx3HyDpv7ZlJ4dCZ82ipaJCIR3EytYCe2UnohIqQiyJTJKNZnsnqxQzWPndKJd2MpYVDUoLzLGcc2QmEimLdmZYTdJxeIyIwr0n6tfgmU55SWADIbqPzdnK9Y1Af6pCy0pr0pFUSIRn5wPsDv/rsI/7Q+x+yvj1w++wGpcO0FhsExEz5o0Nh1mRDusg3SgQSlOCTh5szEbiGAMOI9DG4iP3qBe48wLMtxoyoaVB3QMSiciD0v4zIuyg96CXICLoDbiFcoeF7GHkMuo+EQS4w1oD5KWQ8hycfYy9H5GbE0xDsBSHEiwUkAKPG8/uHxOGvRtQKwRpGiaqCH0Z2lzsIBu2jSoAxBFVcY6MjT/A4Ffbq+bi55HO5jNMbopdfdvE1qkxOOhVOy8S6M8pNnL76v+bln+IDTA4/k/owI2FGqtKQmOEgXzk/9wGmU4ilcrFgz1oVYBLvMyHI9RTKTco+w2UZZFSgMD7OZcqUmzfTPKX3J7n/yyWC14YInNwilBN+ARk4pg+ZYsY0+U4vtw4rqWKm7eU0z/RS5vyqjL7nu7LlD/19P8r1Nx/z7LtP2N/cgHMY63AuuvwaSXq+V4yJ5xLEJmFhBCMa43mKR7YeMUJzcc7qZx7RfCVeAyb2wP7bv8y4U8yDFne2QmXFeP1/plv/POgFxv8Sqn8D1VvUvwn2HwT9BCMH0IdgtoTx/wPyHDU/jrFfRdqB0GwhDIhRvAzc2mvskwC7QFCLBsEHIXgI3kTkFkGtxKhIIQKaGRVCwNl2mnNtiL4AqgQxPF0d+E54znO5iTOrIdY1IVvUsQMmGglTiK3opJx9ACQGL82bbeWaZ9GvIAiawo2H4vMUSFSiKrCMKFTDQV3/THgivOUjxbFIcXpVM6jkA0/xXfZmJNemp4lIrjtHQ1oIQ5EwFIbv8hTiXWlpKH8RKXgtiMCEmhMhWEgBBZZXgvyR5JBnbs5fbh3WakLdB2V23yxF1Fz2s6sv+Pb5BT/1n/gK54/O+OJbn3Pz7AbtPYxKMB4xMYyIMfH+DovHWHCN0GDpxNK6Btda3JsrVj9+n+YrZ4RxZPfZc1QG1u894PxrX8UfPqMfBGM3oNdIuCXoiNHHMaKv/gRCAPshYh6CXiLhKehzoAM5Q0NHGL8ghN9AuCCsDuhacHtoxkDz4Ixwtka++Rz3dIcGS6MdYQCaBqxFnWVQWKlyGAb8GOhcSz+OYEw8/mrAj57RD5gG9m8bfnN4yna4xhBPVc6i8OznH6Z9q4QgzF6C03oKlDfwiBRrPIn0GiOiS0YkxYtU0nJIHZj19xk+apjLKkChUuTtwSXLX+SrGRHVYaj4PdUgsx+CpAKGRDRUJsJVguhSOjp9yLASCyogl+PsU3otiMBdVOq0B+G8WJl1V84UR6fJClHsqL6CG6iS761X6viaEcgGfv1732TQwE/9xJt87cP73H7niv75lptPrxk9NOJopaV1DY3MFlmLpVuvaC863Bst7Y9ucO+t2H9xy/bvfILZ3mKGLTQjN/tnjF/7Gta+T//sm7RnFtu9geoaHX8N27yFdP8Zhn6LhF/GyKNIFPhx8P8vlGdosFj383h/BeMlficY9w7u4VfxTUuvz7BfbFk9vsS/e4b+4a9hrkbsjcIN6N6jjaD3LWFt6BTCwdM9Hth9tmccRsyqYd8PiCimixeoDBp49tbIbw5fsB9vMFN03DzbGakTKc+4n97HwBoZx7MreFrTk0CSBes5TcJBgb/xhN5Shi9VAinaSM5Gk75eQFBG0rLVSsI81clSqjhOk0djkT1HG5KpyrnFiei8jL1/H+m1IAJwLAWcIgA1pUtqgCy/H8/M5DF2atZOSAR3LVgII7/93W/yxbOnfP2dd/j6Tz3gvD9n/Y0Vz791jVutOTtf40w8cWfPDLoNyAF46OChxb23QtaGq1/5HuFbj3FuhA5CK8j9FdgV++9+B/orNh+8h6w8we/ieHWDaf8AZv1VxuFvI7LCuHdAxiiKmgcYNag8REMLcolpPiCEM4Ybh8ei0hI6x7gycLVDfvMjwuoefO0tmh89Qw4KB423DFtlbIWDiYFC2ncdnTOYTwe8UUzX0N/see4OfMM95ZJbtpfpltLJcJPndQ6llQ+cTj7/C4x7ZfiuWGW5VVfWIEftLZ8rGrDg3BUnV6pvSCnhzASojBokBRJXgkR6zsxmucM3SaNF36ZZKtpZSjRzBYsKX5BeGyJQId8JLDwiCkI8IXecc1HrXUB17DlYVbHQy+IqxDiyz24fs/3Olqv9u7z/5n3Ov37Bw/MV3btrNm91WGOxznK77WEXOOtadt6DMwyHnutfeox+/ATXKP6iiQeJWujee4f++gq9vkFMoHv0FYbDdxluP0b0Abifxqy/ij88Af8YY+9hVz8NOqKHES//AKK/QtCvoryHNGvQ59jQEMTgv/iYIGs0GOgs2ioSRuT2OeGXdoz37mG//hD35oY9nifPDzz97Jp+v2foB9abhh95/y1c76IdwSkfmy2/qh+zDTsQwYksdneTU1CG4gnx5++ZeOsCyUqOV57lrxCvWqBTz3N9mbWWW8plH6v8s4ZStb/MWeN4IgwLAhMzpjFmgkQ8QBTHMyugWVEoQBCEdLtyrCpoUW2hzsz3HJSNv5wQvDZEoEwng4vkb5IlAD16f2wdzQBZTPNdkiUJ94umwzTTzA+pjX2/5bc++YhvfdfxYHPBT334AW90ghqDNkI/DjGm/pnjgBIGZfjkmsOvP8Ztt7hWCJ3FWEGa2FDo4fyD9+i/GGjuP8StNqi/h3aG8WaH947xcEN/+3ewskOCBQ0gBmGN1Y7Au6hfoVxj7XuI+wBrYLx+jOx3iAdvV2jj0PN4fEWHgI4j8uyS8bMb9t0a+ZH7PHhvxcMPH9B2lsN+YLs/8Hy3wz2w9M3Ad/QZv9l/QggDNt0CMPPfeeoqPX/C3AKbU85a7C7hYHbUOebPs0ReVleD/6shQ0T8nDci9LTTR9GnBFP5ANBxb7TuO1QqzdzPWp0p56xk5MueZ6/DkKqtmKfOzkd3Y1GdXgsiEJFPjpAwn42uc87Ps/SgdZmXHK+sJqdcgUq/W6ZCVkn1q4yM6nl6M/Cb3xaa8QP65wPYuEswXinjLl7RxdUe8/SSZrdFLYymwbUuXQUo8W7C3/4exn7I2df/IKE/sH32OauLhxxuPoJwhu6/x765R9v9OPS/hWoHOhBCQOybqHkPH96OVvjhNxD5BLv5eQIHzEpRZ/A3PUgkQNo46NJuAEoYPBJG7I3H/wdb9FtnND9zn+YnLji/v+YtY9jvR/76Z7/FJ7efswuHeM2YxJuWJ8++Ys7mrb+ZA1aHc/KUVzEhKlZX43C5XoV8fAoR63wza89W/TL/DDfzOp/2OzxOdx9xWtgrqCWazJAqiabUHApVCihCq0lCdgUjlRlMimrKnbYX4cRrQQTgbtSb4WPOUfoHFM4B85ZNUdnyXEGVliT4qO0sks7HT2eX5BRsxFjuNSvefnDG2jn2T3rCQQm7EbZjLGs8PL/CjT2ycriuwVohhIBXwXoDW0UOnuHbH/N89wT8Lfg9/r13CcOIad9H2gGvHd4PGPMVtL2P9wdUB6w9I7ivxh2B0CNi8MPIePkFhFtst0LOGszVLXo7EA57dL0iWIt3oB340aBhYAhjnLOn14T/qEed4r96RrtqaBrLz/7Br9D8Bnz8+WNuh55Dsm4TQnG8twb/aAsswoEtkSbjRuKQlWX+aKtrtrJnC/zyRGG1vbwU0TkFE3rH+0IVKLh5LVvoSRV8klAWUs2SS0/RjAul44iwFBietJrqpCHMfgMWjjrzomP6rw0RqOjvosNV3PbsU52Aqno9wU0CCJ3fv0xCiN9nO8FMUbN4x0wAJE6/Ecs799/g5378Q87WLbvHA34/Mj7fE55tER8wBjT0OFE0bbmpMYgTZGWQYDC3itkp8iBe52uGke6dtxCB5v5b3D5dcf72h+xvbgj9gZFLNg8/BDEcrp8izXk8EuAHwIAewLwX959vD+hgsOt74C7B7uJ5xltP8B42Lh18Am0Nfggx2rEBdMTfCv6XnxFcYPPuhm694t6Djp/92a+x+o2G3/zOp/hBUR3JwcjzemY1YDq8Q6HnT4uezgbUVIDs+RnnPQczgBrsp0VK3FQmQlNqcN93ejXt4U7b2wxrtT5Z/lIotgUT565wXud80/uCkEjRzUV/X7H7U3o9iMBd/gFJHZimM6sHheR4ZC98mTqQ051Zsj44yWJJ2IgrPvfRcK874+sP32IlHfvLkdtPd4zPdvint9D3jH5EjeIag3EO17p47sB6Qttgg0H2ILeC2VhYB1Q9ftdD84Dm4oL95VOsRh4xHAY07JF2jXFnhLBn3N/CYcTYh6jcI/QfIeEG5ccx7X308jO0HxlvwV+P6H5AjUUMyE1ARo+sY78wgrYNIPh9gCGg3hOe3eJ/QzCNgbcMXdfStZaf/qmv0A/wW9/5GC8+EUmp7uF7VWQsuXy1Dun5iIAUdZai8xx1OGbIB4/ylmO+A6BkEFMtRWTgzPXvNrKXqFYj+3LIssibZZb5rApVPMIgRfCRu07BpvyWO9SR0106mV5KBO64eOR/DvwXgR74beBPq+rzFJb8V4FfT8X/uqr+d17eDQpCsBhEep70s2oeav1uSQBOqwVl+RqosrFRCgKQ/0hZv8DKdXz97Xd44+yM60937L/Y4Z/t8ddbxv0eVR/FUIkqhDEROSwCrQW1yFax23iASM88ogOM8Vjx7a9+g5vGYroRa1uuBscgYOUWtR3jeMCIBW3Qw5bR7iHdGRj6NX47oO4avR3QQ8+wfQzb20gEgo/SiIBcB2QIyMaijhhY1DQTZ1cNjF4xn1+j55YB0EdK0zmMMfzkj73N9c2Wj59+xsFEV+ksO2XQzGG8ZvSsjWG1b1617JPGN5sMElIs1YYJ0UrqU1GGRJjK479CpVCXcFH3IkPbqR4W8JNIj2YVUgu9vy5bNSfzjsUS3SeVglJSKA5RFW0fMb9XFAdexQPxXwb+kcW7vwL8AVX9WeA3gP9h8e23VfXn0r9XIwCUuDgpBSfzTNbQSQRMuV+g8xy1syTgJ3qRF+8oq0Q7wLv3HvLevYccdiPbT285fO+a/uk1w27H4Ht6HejxBGvAWLwGPB5ZGax1SB/gKoqwfjUy+FuG/S4e4tkH/Mc3mMMWGwK6HRmeX8NwgMMWf/05h6tPCH6Mx3sPnvH2c/zNN/GHHYrFb68YPr9Gdz4i5uhBGoK28eTgYRsDkQJyq8htmBA0AGoNwQneCoNRDv3A7beec/3Nay6/d8Ph0OO9Z3Pm+Omf/ICL9QVGTKHXFhP5KmKAzGt6tBYFRszGrsgA4r+acwin1LqZLpR9lBM9/oHTUjotnpVky2AeNsgcVCRJK0vv1aWTc3hJl09JDXell0oCpy4eUdV/v/j514H/ysvqeZWUqX2J0McuxPPfej+6yFOUealqIMsJO6aL5S6FAOfthq89fAszwPWnW/rH14SrHd57AiMjY7T4Nxaa5EOMElxcvLD12K2AOvwmEIZb9HCLXRmkB//5HhGhWXeoF2Lw6hCvCOMAwy3+1rMfBX9zQ7wO2UZv4RCwncHbPpXViZOAIG6F+gPeD2C3YBwybjA34FaaLhcJ4Ay2W0MzMlzv0KDIrofvXGK6OK6LN5SmdTx6tOLrH7zN9W/eFodmwgTUed7yJRjz+Y5CYpgwtIzeM/PPCYm1qGsh3U0eiUAZTCZjf35zSoivZZFaXik5/LG0WXD/GqxgyZ0nATMTqfgtXnM+j0OLf1L0phRQlVqQKcfj0/tXZYyvIgm8LP03gX+v+P11EfkPROT/KSL/4F2FROQXROQXReQXb6+v8tvpex5k9TZTfgrbwMQdpnqXLcXtRym4w0xiCyqSQSRUr3NeTe1Ysby9eciZ6dg/7/HP94TtAYJnDAP7MOBN3PYTa+MxW0ZoQrx5+KDItWJ6Q3Ajw3BNf33JuO8Zg2f3yY7hakA38SYkfMRgDSPiDzCOMfCpV4ann6D9AUZBBwdyHzEdxjnsxRqVnjAOKQx4FlMthA6/U8btnnF/jecQLwm5jYeDjE1c1gh0Flm3qDV4VXw/svtsz+33Dlw93nHYxy3Kr7z/gEcX96KrcALdSvg9mu96bSfOmC1eUn7LqCDFc1nqxZyuTCoZrqQs/lJm8qqpPA5xV79k8SN3owxNnq9jn9WosogUhL1kYiVgv3r6gQyDIvI/IgZL/dfSq+8BX1XVJyLyh4H/o4j8flW9WpYt7x344Ed+TEWk2mM+9hEoypIIQWWoO5173h2g8gA7zncSDKYnk/p00Z3x3r0HhP1I/3TH8HSLDiOjHxjCwGAC1jpc18bw3BqwjYk+AaPB7BUZJd5J4G8Z9s8QetymYXgc8M+F1Vur6O++U2jy0dsAfuD/396/xdq2pIlZ4PdHjMucc9325VzyUlnlSruqWgUPRWFZlgB3q0ENtpAKeKDdD23TQnJbMhJIIGTDi4WE1CBsJASyBLKF3QIb1EU3VqtbamMhEAjblKGurkpXVuWlzsmTZ59z9t7rNuccl4i/H2LEGBFjjrnWOpmYvVK545y157jEiPgj4r9HxB+oByymuMC1r8ENgUAwoCvsxmCKU8yqRIsddC5EEpKQT1vF9QX9Hrz0eLZIYSgKg/EVsgWzMjjrca3HW4OpC7pdiwK7XYN5eYMT8H6Naz2n79bUdcFPffWL7H6j4eXuaiLTiKzZmt1h/BJHHHF8DhbtzwYsvV0c+ilDPjM0Zcz1i7yAJUk/9zmly9N1DstxFAr+iGSp8bxbxu6RaYVCPGzFLOUbf4fWDH39eSX798wEROSfIzgM/9EhwjCq2gDNcP23ReS3gJ8EfuFzlDz8Tssnh/pgcOjkLhEmnFng3NMCkFjOcsfHd8t7FsKhEBbLF0+f8exiw80HN3SfbvHbjt47Wt/Tah92rw2BRDAKRinKgsIVlA3YzuCsw4mj7W7p2x1lbXA3Hv8aqidrpDSIFuAt2nooozYw+IyLGlM+gf4V6jzifWAaDsSsUNaIOFR9iBYigPNo6+hve/qdo7sVPD2+9Gh3Q19AVV5gugr6HjaCF4/34SxBbNhW3HqH2e3gyuIc0NcUtSBP4f13T/nyZ+9w9Tu3YYZgnMOfRjR0qE4G+jRS42Bme/izebNcgU9V9ogjh4uAohoPk7q/NPaHxP6gNOdRQ7s05Q5Cfp+0QUnXnsTXMQhpcCZH+z9aEJEphCw5QmtiTo3P7mnC98QEROSfAP5V4H+rqtvk+bvAS1V1IvJVwsnEv/291HGk4rxB6fTJHQM39VMqYcL9osaXjldiQlysTnl/dUa/c7SvGvS6Q3ul155WHZ14TFGG48xdF2IKFDao761DOosXB6XgjaPt92HmYG/Ra6FYV6zeX2HCKR8hhFfnwIZ9+KI+IIctw97+XkLZ6sLKMWpcVyHsh1Bf4Xw/vKCNp986up2j2/X4ztD1gO9QC20TGEFdXYAWsHNQKWo8rg+MzQ0eK6+O9nZPqUJXF+xe9phKWJ3Al9+/4MPPTvns5vUwHSdTlyrEhT2jHJbJHzBu9EnGIA5Vqi5LmkeZCFyTshPCm7SRFCfSnad3SIZ53unpgCuTdsERFjOarpooOtHOT8ymqa0ygpRqAdmCuQmCYOpqOAo96ImfLz1kinDp4JE/BdTAXxskZ5wK/APAvyEiHcG4/uOq+vIhgMS+Cf0zjfayl3NuIc27Mcl5ML5CPIxhWYOTUQeJ8IgIhZR85fk7XJyt2H68x33W4DpP53v2rmUvHVoR5t+JEXeK4LTrHN5BK0q5KqGE5nZL1/WY3uL2FisF9qzCrA3ShENLvCrO+6FJHuNC+KmirnDNLhC6gqgLfWAMbr/HWINvXGACalENzCKGB+87DXsc+hLneqhbHNC3V/ROWZ08wbgC03RQaGB0DhQXQqZ3fZBEe4NcWrQy4aSkyvDkoubHvvgul1+/oVM362XP4VBJIu2HhxrHPhLvTG2PBLUw4tG5PG0SUg4iTifaweiMi4R5jzZwd+jvCbBMuCewpM3IUXXC7FETGlbDjlJ/zDWp/2nXSdI+SWA85kCP6SGzA0sHj/z5I3l/Hvj5+8pcSukKqJw4pyfZv5L03dDB9zD0HKliSLJ5jugBTOoywPnqhPfPL+h3jt1HW/rrlsZ1tK6lpaczPSIGXIcxjrKwqHNBJe6EVvvB2y702xv8voVdiWkMUhTYJwUi4G98WCliQ+BRb20I4d176D0inr4H3V+G0N+Ewz9NZZBS6K53iAh+N6w5QMJpwV4D0+glHIRSQckGvdVwqGrR4KWg3V3SoWw2T7DeYnwHEgKqqnh6UTrvUOdo9z1uCCxqzQn7dU/xjuX956ecfHDC6207G8eFsUjGe7yPQhYZFDfNpGd27mAcz9l9QPx074IkWkcOwFwYHMCxgFO5vyExSUaTY7D/B7DCWoeEyUWwSZo2JB8jDM2BHJjL4ZmJIZnZfZrjmBkEj2XF4JhkqQXhTdphTIO6pM4vOW4iN4zSXRPDadEkkImjGgzvnz+lwnD1nSu6F1v6rqV1LZ30+FIwZYHH0fkGS0EthtIbxAtN19D7nkKUsttTW4Pp13DbUhQGObHUzytKNRgnqJXg5+s9vgoaAX2P7cMhJf0nl4EwvSDiMdYhJyf0u47+1WtEPdoPjkDv8cbgXQgSaoxQntYoiu8FFUt/rbjmFmc93nqa209xeM5Wzyi8pTMOY8BpWDUovdC1HbgurC/wHiOCrQ3VuqBAOCk3vJZL0HQBbCKVdKb+E4XooeYXbeZUgU5/JwGwtJwnX1AUmcO4snAeBzCTJBN7OmQIiXZx4EyczM9olizrDZP3I32vw/chZmXIkx9hfkjUMpY4lpJPtd8hHB8VE0g3ksVGjRrjon4wRZ7JvNELmycy7/BY1KE8yjazDaVasZzbDfuXLe13d+i+pXM9vXb0lWJPKmyh9H2LalgmXGGQHvb7HU1zg9Oe2nWsL96l0BO622uMKZATi1lZCqkpKhOceSYgaggFrqAdtC3iepzvwn1p8bbEWI86T3fToPsG3XWIOvCK7wTvTdiz4GE4ZTxM/Rkb2rZeIX2L3HT0/Q5fhbMTXt98jFNlUz2lMJbetIgI1hrKVRGmQfc9znVstzdgLXZdUZ9V1M8L6qIkOy06VVtHYZiT9fQu1aWjFI1l5JJxGvMp4ySBBzYxmgVktWYGxRzOg3R3hlwLlaP5DtKgIaREnQYZGbtQQjToaXJ0OAT3gVDeNWPwqJgATI3Iw3sdZholOjCuDV8wB3KvL6NjJkfEyBhS8p8uLk5POa9Lth9c079ucD7E03OFRzYlUlsUR2EshRhqDNo5bndbmu2W3jXU1YrV+gm1fUL/yS3qezg1aGUoyxpaS9t5VBxSDKqr8bi+B+cQ12Kcw3cNWpSoD+sOwCGAf71FcIgX1BFmAzqP7w1qFN9KMB+8In5gMp0EzlBWaF1hbz3tfo+uTNgiff1d+rVns74YQmKHfQfGWsrK0DrofAtdC5fXCJaiErCnvPdszavdKa/2N0MswZzookSOOnHs/kxKj5I+joUmvoDoAJzMg0nlX9D1j6n0U9FEmXzXNOEhbsXCc8I/UCgSsySb0QCWpHr8ZHwTpSFRO42lHX6/mO5Y8/CImMAgiZkQIj6egz+Oa+YdOZTqY6y45N2k+s3qycqf3hem5Mffe58SoXu5xTUNPT2u6GFjsZuCtu/AO6rSUIqgbc9ut6fZ3dK5BiuGyp5T+3P6zxpct8WuDZQWU1QUVY33w6EcThHn8erwRY/WAs4ju304Oqxr8ZWCGkQs1hsUxWg4BhNjUVW869DehbMDRFFn0U7QNuz4w1jUW9QJ1pVoVaHeU9wq+90eVgXOt7y+/Rivymp1GoKT+BaKgkIsWleoQtfvafo95vIV5ccF5brivR9f4+z7/NLXO5zbDgM5UMY4HJJfpzvvphC+CcdOtb1EAziwkHMbncRsyPMMzEOPTw/q7HfuGDzuh5okTeqMXMyW3KTblSPGatJuSYCR8fshQKtOLDPXfu7WTB4NE5jL4Nhx823Ec2st5p0W+ySSZgFBYsemDGBaSZh2eEDai/qUc7fm6js7+ssunLojjrZQZFXRdh1ts2NVG0pb4puOdrun3Tb0fYcVw5pTTroz7JWn1z2mDgzAmgJbrQCDbx3eKd55vO/xpsOfaHCotz2y3WO1Q9qWQgS8xZYltF1AtItT2GyQwsL2Gnd7i7YdvgszDSp2WGOh+N7Tu6BlGF9Cb5Cqxp15xIB9rTTbDrMuaXzLq9tPOPdKVZ1gLXTaoUYxUlAUlr6wONfS9A23n15S1yUn7z7l+dkJZ+sTtt02GYHJ7s9HI2fk8yeTTZ6o73cIwJxYI04MUjizAo44zZK8GpHknrUDBwziSNmH3npJpB8TP0xSDC8W8FYH38CYPdOO0jdL5vE8PRomAJMalKc8QvyUOXk64wzLZsEkhObPs4+TIg3CF0+eIJc92w+uoQ9e8t46ZGPx6uibHUUFq02Jb3q2Nzf0uxZ1nkIqTuWMC55S+TXetvi1Q2yJMSW2qKAu6Jqe4rTGdIL0gnZK3zQ48UFqNx2yb3F02K5Dao96g98HBqAeWDvMszWyXiG9w3WKa1vUFcH+Lzxeg5PR9x7tQYwN05A9GCnhpMed9YgWlK8N3a5D6oKm3fOq/5TTjWO9OkFFaIzD9eHANUpL3xvoPPvbG7aflZx8smF1subiZMMnV4Zgg0hy7l5KnAPqZkQ5NwdSgz71mycLgTTeJ5KdiYmM5Y9C+gEqf1L7MYX67mnDPF9kSnNyHffNDM/CgSoMzs4UjvCFH2xlk3fL514oBI+ICYxqTtLTSx0/qkTjg1y9nEyA/Jt8IVmCQhoGZ+4TANhUK75wckLzjS3u5RbX9XhVOhMOG+37hqpS1qcV2nm62z2+C0skrCk55QlP7buUFPSyQ2sPpqCgCgzgpECq4G1ve1h95Xnw6L+8ov94Szcst5CuC/4ADceEWSzYU7r9HqHH96Cvdqi9wT8VBItzQt+7ML0oFmMsXixewwIeJS43Vqy1lF4wvqA1Bf7CgRfKG6VrOmxZsO+3sAvHs1fmFGs9re9RKahXFQZDy55u77h5fc3px+fU7614dram/Lii1f1ouem8qyMiyzQeqcSejv4il63Rmph9PyLUQP1hg1Kqns/0wwUGMOqjI/VpVsGB2fAAH0IK1qKkWlBzE+Ugi3k5WlMzjUBmjXuANfA4mMABoXM3B4s6QGQSgQumimaS92AeV8nts6G2MYR51Dvh2fqcVbmiaa/xXYPrFVc5+lJxXU+5Ek7PNzTbht3ljr5pUYHKrjlxFzwp36EwJTu9Adsj1lBqSVHUmDNL8U4FjUJhKIzQ37Ro29G/3lE8PaE1Ddp5TAfqoKzP8LqjWD1HZUN/+5q2cZje490e31/idz1mVYQjxr2DziG2wPdV2GeggmJCTAH1IIopDIUaaq+00tEbhz9rKXzJ6kbYyh5bWBq/Q3eGlSoVa9Q7ejyIxRbDgauto+sabj654uT1Gc+/uOLdJxd851UzmFiTnZyv34/jNTwdbYBprX0c4UMVN5kRkHTl4MxEnKvnA7OZLMlEXdQRDcYS0nuO3M/TAUMYmVKCe7G9sSYNJyZF6T7VE9rghj6KZxbMNWIZ7I3EuD2uxvBImMDUfsnuJfl3mrdP8shRY4G5PXQwTSRjATAcHxWml8JaQWMMT+2a/Ystu092YRuAUZqVR6xSl8rJOxv8vqO9avCtQwyUfsW5POOiegesYSc3dLQUUmC1pKCGlcWfW8xZhbEev3foMG3HacHqtGDX3mC6LXVd465u6N0V64sv09+8pty8R4+g+5Z2fwWtoywALREbnHXeVDinqPMYgkNRqFHCEmQ14L3Sdx2o4Hqhvd5jzg2yKtFS6U8cBSs2TcFtf4Ure/bdls551jhMXSIIvg2bi8QozobTiZvtnv3LlrN3ar787hNeXL6idQ0Z4sfxzyhssnAz/8DCirtcqU7ex3UFw++iNBzuZXYfSkt9TPl3B3sMBrH8EJNgamYKzKHIG7XiJOUTHjkzm/xYk1oQ99hkbTySHgUTSJMSiX0i+HmOtFkyEPJhCPJUTZxsscPTbGTKE4s3UNuK905PaX/nBncdAnVIHabtqtJy/oUN3ju2lw2mg8JaCt1wJueclk9weHayxZseS0VtVhRShmPInxeUFxXleUXve6QuOfnCKpxOrIqr17Qf92z8u6wuzrjdf4hWHmPOKE8KyvUpbdtgywovBa5t6R0UpQt7jcQg5QlOSpzeYn2H6QuQApEixDho/bCCUOnbDteDNh5TlphCUNvjSo8/8RTWcnZ7wVV3RWc7un6H33lOZENZ1+y6PVBQ1RVyAr3raXYt1x9csX5acf5excn6hPamSQiaBKk1vWXkz1FjSAKUhnx6SIyqiRYwFyzDDMCwniRqCpOs1KTiATSdEOgu8+E+AkvzL5URBd20gzYhZBJNd4a2MfBICt+s5eM0+31w/i8RT+DvTYqcbDB00g6YOmeuSsbf9PkszzhnLePrsAV+cDANbPj55oxaC24/2tLvW5z3dCWY2nDxxROqlcVdNpheKIqCjZzzzL7PWfWczjq25hY1HmsrqnKDrUs4N5j3SuyTCrMuQIT+ZQuNp7vu8YVwu/e8+uY1RbVi8/w5tl6Brzh5+iWqcs3q4inOCH3TUWzOoDpFbRUWHvmwMtD3HlttMOsLnAid9rSuCzMCAzJ5BK+C6wPqlHXByfkpq2JNQYnRGhWLt0JbeXRdcqYXFL6CUumbPfubHW7fUJmBkJ1ipcBZ6PqW/fUtzWVHrZanp5uhs6Oj61BiHjppI4lIoi6k+aaxXopPuRRbYp536SqN6nMfkS+Zn0vw3Pf1SOwMTU3+UoYWGahBMDpBeAzWY2ZMmh6NJnDQaTI1LrklqvmpWaCi0+KJaALEtQAzR2E+HZWUydRRqsL7T5+y//Sa/est6pVi5ehtT7UpWZ2UNJe3FBRoBfQFG/OUutiwY08rexChMCVlUSHW4CvBnBjsRUWxKSnWw0GdzkNlqN5dYwpL++mnXDwrMBdrvHi0Ucpiw+r8DDEV9iIECS33Nd22p7lxsAfKFXa9xrACSoyBcv2E9uoK7Vuc63HSYbxBWglRILxQWAsYVAXnNWgDtQnELBVIj5qeXd2xkorz/ROu+isaG5ygzQ5qYyhKQ9+1oX8rQ9/19E1Le7ll3ZxwWm+wUqB0CzNtyZhEsTdqbTPVOQ37nWh7KdrMncBxJkCG+6MxKRm0FA1Mar7WfzkdqvNT1TIzRyE3SfPYAiKBuH3yLK6kTB7BkEdkWE5MmCVIMVqZTjg6iMkwS4+GCcDE7HN+kBCozJspo/RWGKdTRkNoZssFh4seqFZpPQBGDP0rpfl0S7fdUhdrer+ncHDxvEKbDrMTKCq6FmpTURQVt3ZLJw0GS2krqlWNlAYKMFZC1GErFCeW+ryie9lRv7tm9aSke7GnuW3Y/K4TvIZIQNYKfaOUmxPqJxu6qw6KEPtPVhXtJ7f02z2r3nJSnVDpCcgKqUtkJRTGU1Tn9P4mnGcoHV4N9BbjhMLYoAaJQdRgbZiiLPqwR8D6CmMqKDo6adhJx8auuLh+wpW+ppUWdj17vaU82+AVus5gyxpfW5r9nptPblh/esHmrKS0Fa7vs8U+wGSqkeAsueWWTfGNL4e7jJhnvqChvGgGJAgxqfsjsR/O6+uQdcSsBQby0CnCCN/ct5Ho88s8ZebLGJcSa76qVgmBqOzQPRD2s8pCjIE0PRomcH/3TZL/QO0ZPfs6YlfMnXqMD3Wj6ABSVM1geQhGDCeq9Fc9pVgUjxfl4v2aemPoXnWUdUm79dS6xlQbdnVPh8NKRUlBta4pTkpsLXjnMYVldVpTrAvMykIhId6+F1xZUD2xPH3vgrIq2W53uN6FBTvbENlXagumA0vw/DeObtsgjWNVblg/f0J5usZZcKVFziyFWVPXTxAfTAKnYTEQVvCt4vseYxTxBdYOuxmloBwClRRC2J1oDbSCNi0NDSebFc+27/OKF3TSoa2jvd1iNzXQ4TrBFgXOKtvLLfsX15ycP+FktWZ/s52PXjLEgTDH5b+R5DWPEZB6vw+JecozEnRcVpziQaYdLmDa+L2QiuaUQS3Z+hGOBzOEhDojbpvsOsDh86+y33k7UhoZXFxzyZqlR8UEQufnDpHlvLn6HrmiJB8tu3SmD8KRTqkEmq6romRT1Xz04jKo7Lal3BhW75bQesqqot0phRX8umDbNnQoZV1R1RXWWKpNia0ttrbgPKaylGcVxcZSbWwI6fXuCiMt2+/esl/ZsMCHG9bvWPpOqU8Kmp1intbgwa4K7Lpk++IW3/b4xlNh2ZycUjw7QZ5XmN7DWrDPC8zaQPMcXgp7t8f1TdhMZAVTCvQh1FkUhH3rcK3DViV1VdCWPaYqKSpLUdfYoqG52rErPJt1yZP9e1zyGb10+A5821FWFd2+R1to1VB7D31PVRjOVmte3k4aV7r0dhyzxOzLTIQFtXxyCA4jeDDXnzjfEgaQByvKVX6ZlTDXKuUYTiXw3PcsLX5plV80WuNTH6cyieaCjr4DUaFHYyxbYoCRaFYdYxhputcxKCJ/QUReiMivJs/+tIh8KCK/OPz9oeTdnxKRr4vI10TkH7+v/BHCyAHi7UxwC0GlSb2i8ZvEP5JwvIAccyfhGOx5UIMP2I3AWX0Cn+5p9w3GgvqWzbtCaZTCWjyCqQrWXzrHvlPjayjrkvVFUNvrpyvK8yD1RUJesy5QA1IKUpmwPbgs6XvBlgWbpxWm8KwuyhC2S8AYE+A3AgaKi4LiTLAVNLc93XVDaSrqJ2fY5xU8MeH48ycV9bMV5qygeLKmWJ1Q2BW2qChP1gGeylKcrTDrEAnJd+GwESGsKJQ+mApVVVGdrKhP15y9+4T1xRlSl+zLFjmpOC/epSw2GAumVaR3VCuP9w6M4tXTXjvMHk7qFSJ26vLZXzYSg+ofH4zBMkbvbzrcEnFvengg+TT5TEbGkJU/1jPh4VJsvyyJpNiz6Bi8z2kZNVBkIPCkiZExpusGIw3EuAJ2LGOyKiJs5k5xGtJDNIH/GPj3gb80e/7vquq/M2vcTwN/GPj7gC8B/5WI/KSqOu5IGQ0n/0b5nA/49FUiKw7G/NBpNEi8qNpFziGTCIhc+UxWfPLNTzCmpFNl86Rk87RATIF3ofD1Oyf4ssQ3DavTNWIKqk2NrWwgCDusN7BCUYeAH3ZlKNcGWxi6y46r37qkOrVUzyrk1NCpx+07Vuc1zW0DNSEGwCosJbYbG5DEGvyuQ9qesjrFnm3QWtAaKAS7NqzWdZCCjdJdnVA1z5D+mvLigh07+m5HoFNBjAkHl/SC8bDfNcG2XBuKsmR1sgpq7+B9Eivsr/Y0rqMqSk5un3Ajr0B6jNdwmIoPJkcrLbubLd1NM/gFSnzfR4/OOIJ3CMsFdZvEfp9JaxnMrDFvMj2cWvzR9BgRbLZ7cECNkagkmibL8N1NZg9PkyKU+BxmpsuIxkR1P3wV42SntPQQo+R7OnfgjvRzwF8ZAo5+Q0S+Dvw+4H+478OU6w8Pkt9EhUTGo5kh3VK5tCEzd/xMIaUSFZNEmgiIGOx1T3uzo7Ce3nacfHFNuS6QwqIIp186gXLN7VWLLUrqd1fI4GU3Vka71hjBVkJ5ZjGVxVSCLWyA1A1St/PgHP1OqU4NxcpS1ZbV+gzfe27aLauzGtaCWQt9H/wIvhfYW8qzFawszgNOMZWhWBcURcF6s4JzaE87yus1ru8oVmtOv7TmpvsUf9khhQ07EH3QOJxTSgP0HufAilKWRVgmrZ7V0yJEJlJDu21o2o71uuS8e0pjbjE2zMmbjbLbKa519Lsd/atb1k/PqIuafb9LR4dc5Y5SOozPuM4vWwW4QLSzUY+SPvMBDOrzfM9A9CPFk4OiLykixxi8U6ddfpJQ2DFiO/BR3GMq5AKQdFY0gK9TnkzxnZcxABRAPpCGB+n78Qn8CyLyRwiRhP9lVX0FfJlwGElMHwzPDpKI/DHgjwE8ef7O7OWhVza+SNW/8ZTbTJd4iE2WoyBMmoQRwe5ajFjkxPPs/YLNMyg2Nb4TyotTXL2h3XpcD0VdUWwKbG3CEWB92A5sSqFYCcXaYgcfgB3Ue1WP65XiSYEH9rcthTM0zmDLNc22xVYGS4FdCcW6wGtwLr76xiXNZU972WBboaxqdGPCoLcKtQbJLmCtDbCdF5TXG5z2eDHYzZrq3Z52fxkWKGGgsIgKFo9H6Lo9tEPPmsDc1If1BdX5hlOE5rpkf7Wj8466WUFj6Itb6tJSWY95omxfuPBNUWKKkqoskP2CHXzXWvthnLNlwclvLErjdPAM8eOCozR6UGQOS9VGe3u6yaXxqHePXOAuQrubALPYg+TFDApP5vCLzCCaAJ7pjIK0qrhVYpRvd4DxvS4W+nPA7wZ+hnDWwJ/5vAWo6n+oqr9XVX/vydnF1NhEr8+1eYnCerg/KHFkBcfssrgkON+XFQtTzLAY2+4UpaU895x9wVKdr8AY6mdP6fqCm08aum1HUVvKs5LyvAgOwME7Y0soToXizFKeFsGxVgRCkoGY6D3dqw533bF5d4WsSrqd0ly3dK3DFAXdtgsaiDW43nHz2Z7mdcPu6obm6pbSWsrzGirgdCAWEaq6HCSBhjMPNhZ7UkJZ0TcO1/aUp2vOf887nP6uc6onJcYMA2BN0GDEYn0RnhMOJIlaWLmqOXnnjJN3ztk8O8OuarqNpzgrqcwKawpW5Yq6NhQ17HYd1582yF5Y2ZpJ65qGO7ObhQyDo51+3wKczIeQ+geYiCHl+hJ9AonWqVmdA6hDvqhALvkJ7vIB3Pf8WIoizqRMSCZm4CWEbtOEO0TNODIHdxf1D+l70gRU9eN4LSL/EfD/Hm4/BL6SZP2R4dnnSgdOExbswgUrLPUSLy0rXcobr2OVhRhOqpJ2pTz7grB+ukYx2NNz9ntLc9OEpbsnJfVpIH5FaW97MFCdF9gSTC0j8Ysxo5PPq0c1RPUxa8vq/ZL9dcfu0x31RUnz0iOmptt1bF/vOfvCCe1lR9t49lc97XbP/uoS195SVM/hpEBtmIaUFWF+v7BjH1lrKU8K9huFT0E6jykVqQXfldiLGvOFHvOtW/xrh7sF4wO8ex+CnhaFwa4LHA7fekTAVCXrZxZTGow1Ib6haym7FeJbTCFUfcnmhBDdaL+j9J51VQ4q+EBYs913IQ16wmTAL+PAfIxH42H4WMafGeZMmsVY+gDLkj4Z2YiiYV//pJYMcN4n7ZO6ZF5D7g/Jt1UzqiRT+zVjBAlvSPJpRjdO7ib07/XcgS+q6kfD7T8NxJmDvwr8pyLyZwmOwZ8A/taDykz+Xa4z5hPGdf5J/kx/mM0dp1NRo/YYbcSpTShwUtScViX+meHkWYmKgeqMZl/QvGopjeHknTX1kxJjwfee5tbjGo+pwsIgCkYJkjIA1bCk1zWe9lWPFrC96jHWcPG7zuk7xe87bCHgFbdT2l1Pf+XoOs/Viy197+iaLRSOYlOjlQ3HiA/xA/u2o9k3rDarsV3lpqR+p6K9KuluDdVZgVmFxUHNVYfHUv7UBe2HLXzjBqMG7cE0imvCQaW+I2hKxoSzBzxUm4JitaGsC5rLht31HuqOoijQdo+tYL2xOF/QbKG5bKnPS4wYXOIrXtSmJUH8cfVnniU1B9J9+jJ+MpHEZE/PA5HmSDbtKkyc0gNwdixvOS0LniW2clDzwfNxL0ziw4jKWuwXk8I4MCiVIaD+PEz7Hel7PXfgfyciPzPU8E3g/wqgqr8mIv858HcIC1P/xH0zA3lly49V5oEVknfj8/nOqoN2jAOkMyyIZgIivF+sOHE98pUKViu8rNnfVgDU64rNOzWbL6zwzrO7anG9QqcU1mDrMP9ua4M6j+sdtrBj3V3b03UO1yud76CFui5wW3jx0Ra3bXjvdz/Bdcp21+O2nv1Lx/6Fo6dj99lrdrtrmu0N63KFXRWoBW2Hwz93oW3uWd7lxgZnYfW8xvuGoirQAtTA868+hR6uP9qitx3mqxvar+/o92Ezk+lBe1AdYh8qFNagGLptOPx09WRFeVJRvq5pr3aIcbCuaC5fU4nijaJXHe67O+qTsI7CaUeCwQsjNqHEwUlki0xj6WFe0uhWTP0JGtTqqXwhxjI8GuMygWmOssfWBTx8AVECB8zsgFT0zbE+X1QkMgUmle/XMfh5zh0Y8v+bwL95X7kH37HQoYldFp+M+WV6Mmn2M04dp4FSrjxoAwH/prUEIrAuLV+RkvL0Gt6p0NU5blthVVg9q1k9KSnWwT5vbnu6G4+tBFOHqUAKwtKDJewYlDfvlA8/27LawNOLNYjh5pMb+qsr3v3SM/pG2e0a/NZTVSXNRz3N65Zdc01zfYXrtygOUxikDsMnHtyWIKE3YYvw1AXBJLC2oDgrKXpFCmF9ERY2VWWFiLC+WNP86CmvfusVphbcb+/gRYc68N5jiwIqwZYmRL0pBN9Dd9sjpwXVSUlRFWEPwa7H24q1gO6uMBulNz3S95RtRVmUw7biIPHiVo9sT32OBcSQWsd2D6I6bgeHaTlZlI5zH96x1YPxoI+R9CZ1YIanUVVZ9vyn8B27/7wpx+vhSdRsB7yPWg8atYUI//H0aFYMxrS4fTiw75gh5wvxu1Ftixz/btUt5hSChltaw4+dn/CONMj7Ff7sKX1Xs3lWgbVQCk6huewGGJRqLeHcQBMOGxIbCFAkOABHZ6QEu0+M4eV2x7e+84L39Yx1uUKbBqPw3o+/B9Zy/ckN/b7F7x3rk1N8a+iahubqEr/bU1iDx2LWBXJaBDexFdhrOLewC6bEfBqsrEtWZ572uoce6rIefQeqinhhtVnx7Cef8XpzRS+CfSroaUFRC6a2eBMOV1UPtgxLg9vbnn6n9F3P+qxm/XxDe9PRNx1OBCqLlS22cvSvbvGvC9argm1CnLkQlvHknWmk5kJ+mQBHUo3MPz7RQ21iJKABt8bZg6gtGojnGIwMJK/le05zO/7OJDKuV4iCLn5/AIUEgZCWG6bT5U6QHw0TyFaCycAMFFJ8iOt7Um48aQHzrjlUM1UGcTP+CNbCycryo8/P+an33qFUh6vPsFSIE/qdZ/eqD553C+XaUqwFUwwAaUAYjCBGsIaE8EPdw8pZvvvZjr/z29/ldrvlqxcnWNdjCkHqcLpve73n5rNL1Hn63Zb+pqW9bRAhROy1IBiMKTB1gZyasEAIj6kH/PVgKov3fjgmPMBTFAVaK9V6T3cb9vsbH04jssZSFJboSCxOCszzCt95mtuO01Iwm2EtAeEAE0zQfqp1gWs9feNprjrKtaU+ryl7y+6lodsJUheYi2vWqwb2N5yI5aWRIbyZTIM8LpA/YiIkRBuXeeeLe2TUGFJanebbI/KkO0snMyGaCjIuNSZFtkVmMp+yTJ8tJskXM8X8I47eoSmkxD0GwWEQdcNLM7THDzMFkqrMR9KjYQIxyewmhpOap0k50ElJmDjC0QEZNUbAGuFLT0/4PV96wmrzlI9uParCSgtWKKvOQauUJdiNDYQ+bNFyfVBlxYAtLKawiWkheB9s6tdXDR98/BlXt3sub2643l9R1xXV81OEArEW7T2mEJrbBrfrwrFg7grt92jbUBR1YABiceKxRRm+sx6qQIzeKLIyA8Nwk6ob2y2CsYb6yYrebWmaFuME1yllWbI+ranqksIWnJyv2Z+0NBbYNUh1jtQGq8PZBU7R4Uh0U0mYVrRC3yndrsc1QnVScvrcsheh7y3GCEW94/RCONkptrWD2ZJS1AwHRNDBMTY/rWiONNMioFwTHKVn4vkfcQTNbPuxhtncfYI5Q3GJxvA51fuUryzWcge+xl2To5gbFKKxG+M9w4xA2rV3wPmomED00GcmwYHun+kAMwYxdeuSn8gwbMYY7KmyLHj/3S/wybbld775Ddqmw2AQY6nMip/4whf58tmK0oZSXefxXVg+qz74A6oTG1T/AX5jJHB7L+w75dvffcU3vvOCtm9QNKy6Q2hvHXIq+F7ZXfX0uy4sxb3ZohrO/1PtwzbkoqSloTQrHDtMUWJk8AcoFE9LuksXpgnX0OxbbGlYreqwum+ALZo/6hWDYX/d8erbNwCcvFfxzleecHp2wnqz5p0fD6sdr0sNYc8EMIotQHsTzkcwgQmKCqYOfoK+V/zeh2AiZyXr52t8U9E3BUW5plx53tu0vOj3fHbVJ9N0R1J6Gme05TMbIuBC3FefEVaCAwflR0k6LQ3EpASWkGsWiwAddhAOxHdPutN4SJnNgXZB9m6pfyJppKc/JxTwYMPlUTGBY2kUaqOkkClsUmzpqLZFXmkQ8eNHMV69EQ3TKApd7/il3/4dvAt2vsFgxCMaNsD8xkcfoXyRL55XwbZy4civOB0X1ECdNvogeC90znN92/LRJ1d8+OmrIU5/QBqv0HeO9rajL5Xdqz3uukELwbUdvu0R2yE2qLZGDB0OFxb1URQVdl0BBufB7ZXCK+v3K/ZXHVop7b6n3ji8jwugQrLWslqvaDctXpX1SUH3LKxT6G46ml3DerNGrFCtKsrTCvt8PYobb8BK0IaC2jwxA/wwjy6C3RSoF7Rz9GqwYqjPNyjK1nh0vef5xZ7r7Z6mdYktT461g2STYZ14pIs4NZaFGRtMyENn34H+Hr5M1Py4nSSsLGSS8hzmGXFyfJdymgXJI4lI0wnmCbpjTsWk8hn8qVTPCV6H1YOCPeB+x+2BR8ME5iu8smfE/s71xVylSjtMFsd+XFk15Pfe0bVuVOGd+OB084qKx3PLb3znA27bd3j/6Ya6FkobIgOrC2qaU4PvwpHhbadsdx3f/fSKT15ds2t3dC5oAJ7AAFRB8VgFOk9dgj5Z8/rylq7pRh+DMYJ4xdqK1npEBVmFDT3FpsZ2FpzSv+owa0P9rKLEsL3sAMWfh/X22dJagumyOluxvdlRrkouvnzKumkDg9jUgdGZIBPLVcFOPSqwAuywwMc7PzLVwe0whcPuQ0QeMwRSwYP2SucMr3vHB9eX3LSvOT8xnG5W7NvbXPPLvXDTOoCDf1PkibbvzLSIx9MNisNiXP6oP2cQJNJ/yBSXLo/T95nWmfomFhjB95nSpcUauU+cLUnzDb9hl+HUq3Hr8bH0aJhA3Bo5mXEymWeZXyDZTBS5pcR8M1Y9WygUOHEUL4ySJUs6ROIl6BS97vnWi+/y3cs1p6sVFyc1Z+uK0hiceravHW3r2LcdN7s9+6ah7Rp6dXiGI73xyUAotrAUVYHvlV4t25db2ptrdO8wYlATmJItLJgCLRxiLcV5TVlWqDOUtUEciCjdRx39+xVSC+11T9/0FCuLscL6ZE1hp2EWCVK+bRrEhOuiKhAx9G2Hd56N2VAUBWfnG7rqim9++BnvPT/lYl2xXlusSljKWoS9EsEjLWAl7DRUBiYpYA2dwovbPb/18hNu9pdgWlRXIGac3psAjHDGmxmFyqQZjk65UQ6mhWiklQFXwoeTPT3gRtQA0u8TBItOvHTzTsYCjtB8vohpKndJ8i+tIhy1laMpYXoD7kf4xq5Tzdt1JD0aJhDSoQQf1XkmyT9/x5BDEgRJBxviYETJkEz9DEVELUFM2KUnw8nAwYHdse972ptbXt9YjCkobIGqp+9bvA/E7glLgj3g8DjvUR1DQEyYZMK0T7kytC+bwRtt8R6ceETCgSDGGpxRMEK9XlFtasqqpr/pKKuCsiwQNYgL23YpDLef7tHeUWwsq9OK9clhL1trKcoSp+EAUxSKosDUht71oT3eYwRWK8unrz7l5e0lp5sN56cbTuuKs1XFemWpBnvDAGJN2NbqBRVh55SbXcNnN3s+un7NtrtECcetXd426FB3Zs2Rq8+RwUfNI1fDo6zwY35JiX3JJEi0Bh3wQ1NcONDmo/QI5aZZ0gAfx5Xtw3R89uCuUg5Ng9EvNsAQBdcQNzdonw8o+tEwgXF3b7yON5FIE9sqMIPpg9RUCDigi1qZxKObiIgnTCiYmx+x4DiLZQalXgmr/VpPIN4BfxxhjYCqhqO9vB/UcaYlypHHaYgN0HXgWqXbe7rrFuccDseqsJS1RYqwNkHUUm1WFGVFtaqQDqq6xp5UITCoMXS3jvamo3m5x1jorxzNjaM/ddi1zVRukbAmoO1ajBjatuP68oaitNjKhnMJVOn6Hu9dcPhpw6ttw+vbK4wUrFcrztZrzjdhQ1BtLdYY1IdAFo3zvN7ueXVzw67b0tMCOpQN3TCDEbt8ZAQHFDVXtWNuRpnBgPDpoGdzBFExyN4fCovJt8ABM4haxRLpxhiGksA5J/JUxt+b5vUc0n9SzrRiMM00tm+Bsc3T42ACo/6SE+LcJ2DGPIHjxTcHtLuwUgtS1UyPjEZclTaVHQl58gQP9j0aBt0P9z7a/D4ECvXRhot74Se1zIniDHSvG9x1h+46xIUZh7VdURRBnfcIVsMpw9WmpihL6pMa4w2FrZAyRC0SL7RXPVevt0jn8S44HM3KsjopKesCk3oICVGLvPPDxmFAlLZr0b3BrTzrkxrw2LDwIRCpEiS5d9zsWm5317x4HeIoFMYSl+GKtfR9T+dalJ5xpxtjIVOPpwt9BsxNhcGcXCWR5MmIj+pv8mQYrai+57EIYmESBjyBIyGvMRrwlC+qDJGZzyo7mg6snjvXEozVjKZOLD41HQ74VKIheZnWPty3VfhxMIF7kqRaQBwIOZTcKbHftQBDJGzGyKd4IoIMXRbXXjKpi/lZcIPUj78K6ieiHwNQjvPJEdGj9PMUpaFxDt/1eHWUpqAsBFM5isrgOoNai1UoqpLVaY0aoVyVaANYwVaDG8h52PWUlaXre9pti3llufy4pFwVbE5XBwzWWkvXdXRNCAOuDprrBnqPsVBWYR10wjqH30HllMHlKUKnycq2PvSDFx2Z6PTl1HcH40yC9IPkzV7O7lMNQYYOVs2leqh2JsZlYAuq9wfdyC2JBQVBMNG3sOAHSB2bMmdUCziaLYW+A5apg2TEWp8wpehfGw6sv1MDebRMIPL/mHT+NnH1LvXXfaVLGnEhKyPRRwc9fhQCBMYxSoGU4HViAD4yCQaNZSgym5ZSg3cE4vVhp16JRQpHeWKxlSBiUFMOK+Es5aai3znECuXGok6RMtgZbmNYX1T0XYHZtWx3DfvXuyAJrCBfgdWmHjWCuIrQuTCVuH3V4HsNYccF2qZjv+t4/XLPuCItoSPPsC5/GAs1wy67of3AjAHkw7cUAXga84HpG80rJb8VM824jDH3JltvHM0l6h0dfsmr1Fm4BLPCuCoxwhHKX2AkknfYfcrCnEHnTFLGf+fuz4PrBK39MDMS14ccS4+KCWTcb+YUkIUWSyYuUpXxmAd26Eb1RBv9YOxIKH6Q2Gi+eONAMkbihxGJxrmAOCgJxvXqabYtJ11BUQSiLPygslc9RW2xhSBFhZcKo+DdgLRGqCqLtQbfeFShrTwffnLNjzxbI5cO13tku8e3PbuXWz4jaCDPvnzG5mQ1MgJrLUURThV2Z0pz04MPkYnKouTmZcvVZ7coPlNLI7X6RDWGIIlSSb/MAHS0++f0Fk/XiUg81jgM1OjES5EgjhlR6SdhWkvUH2l4Sa7nJU/aAsv+gISy5/0zTuWRrlRc1hY+V5ppA3Hx0rxXRmY1ah/H2cCjYQJHo64ICVEmHG0UG8sbPuflpfEFR9s1zzEWHJB4eblynnJVN/6MW5Yzri2jWOqco+06xFQgYTGNEYO3jmIDRRWi+4hd4TUsV7RmaLtXinWJ7zzFaYlX5cXlDd948TFnX/oyzzYVzU1LVYQgIL137D6+5tKGQ1blC8LmLJgGxhiKosDasOpxc04IbFoY6k2FlRI++ASa0Jr5Zp1RYWIiEk1+sz4Y174uEabMcXv4JBJM8jCaZ+SBM1KrP5ZJQiASn6W2fcIkpunGDITkOtMZBk0v0QqG1wcoc5zXfL50Tzlp38VZgclZeTciPxomENMkBRKpcJBp/jb2UN5T84AiOfOVQ2dNvEhOmBBM/nECUDi00k8IHyXhyARiW4a7iNRe6UTp9g6/c5Ri6QvQwRQoKgMqdGIpqzI453zYvVcMuxaLVfDiO1E++PgFN/trvn31kifv/wib24qiEPb7Buk7et/TvNxzaUusWMq6pBq2IVsbHI91VSfRjxTUU25sOPTkJhCkpph2V9iqo6/mCm0+YobYRYkakKkKcYpwGg89KOUQhMgAlrYOh1dJeQmDkASn5k2aa6bBPGLUClLtZJLGD09zjWHC8DxuxjRLNrDBqLGOjyWLU7iUHhJU5C8A/yTwQlX//uHZfwb81JDlCfBaVX9GQlTiXwe+Nrz7G6r6x++tg1Sep6r4sdxpSok+vE9V9/l3InG1G8R9l6ppZ84/i7pWovslFepsgMczEBJNzJsYGHKSQs4EX0BpDRiLtdDXFrsKUh+x7BtCKLNVEU4A6jyrpxXeKdXG4Dql6bfsu2ucOl5cveJbm1O++s4FXBm8QKGW1jY024bbj8M2gJOnNWVlR0SL/gEIm4+afQuitG1P7/wkOYnIOe/bRP2W2EeaqMmhT0Y5Onbp2PmzMWIkoel5Ms7DeIxht2c7B3MGMBu3cRNO8AvlpneAJ8kBqcTPmpvsZJyp/FO9x0lvSVNdzpdBn3yb9JAmzMHoaAUYnS2COpK+p3MHVPX/mAD0Z4DLJP9vqerPPKDcJI26Pan6LxI7e1INI60ubyCalzl5WaOzLiVQIiKQdKboIUOQqbx5+RGadBAPpBCQenIVaKTHri0lghQGqQ1+Y5B1g6lBzBrTgiks1brCGw1nkFQGvwvMpNgIu5efUNWKiGffNXzw6hOefXnNRWWp1iVOTVgA5ZT9vuXVh1esnlSsziqqOsT78z6QU/zt2o7ddUuryq5pxpaMMmic4ZgaG8ZIx74dt33r1O7xk/TbzA+UXM6Yhh/eHyzbTYYhmiJ5aK+52J8+8yxnWVKgo4CaJPyUDCSChYmxpX3D3enuBUQP0brGjlmWn0fp5Ps8d0AChf2zwP/+vnIekg7hlOwqR6X0Td5JI/dc1DsTaZWsUMrWB8xWrNzlrgjYF6Eb2MkBfkZP9AT/bdfCxlJIgdYO2Vg4tVAopvBgK8qVBwVTFqAOa8BWlv6mQwR6tjj3inVdosaiClf7LR++fsXF0/coTYHpDVIIfQPSbNlf3/LpNyybpzXPv3Q2BhaBwAREwlJj1zpevWrYd4EJpJp51h0y9M/YZs21o7GvGXpiKiwtZyw74wmh8Ik4ImPPxzbnKTNiSrSD+E6JgUvININcyxvqOLAjEyksMfLwsIefWUo1k+j3uMMsyNYAZNmmpcBpXxyUFTWCoc8j47qPBX2vIcdj+keAj1X1N5NnPy4i/7OI/Dci8o98nsLiyqulJNlfQI5UnZXxfpmVRAUjahaZoI+IPF5P5R5nBjo9i/2sTKGdJJEoGiTFGP8NwgGhhSClxW192JlnwBYGa2tsWVKf1axOqhDFpzSYIapPdVpw27ZcbV9SVSXGFviBEfXO8eLmipd9i60KjDUh4nBtqeuC1cqyf7Xl099+ze1VmP6L7XXOsd/v6fsO75Xb257e90dRaOzLpO9yomcgsuhkzdlIylgmDS/t/7EI4lqR8d3SXzrNNmYSFlBihH+ESvLvUnkx1ZjUkzGrCc6oo0jyLse1BNmOpEPjYvb9dJO1Jv4pZNbL3bV9/47B/xPwl5P7j4AfVdXPROQfBP5fIvL3qerV/ENJDh95+s67YxtGwkmnCONgjO2cBxJJy02E0OgMkhE3U29uXGeNhmW/BwSfKARRS8glTVgJGIOLqIvicKhj+NikwxDOBaH1PY1xrHfCqrJQG7QUbGEQazHrEqPhLINyZYM5YATX9xSrim9/81OeXTSIKH3fjF0FyrbZ89H1K54+/wLWB2efnNWIKMXacnu15/rjaz77oKJaFdTrKixZdm4IhiIUZcHNrsXpEMQ0lezZ9O2CbR0paK6aJkIpRvISEvNgZvIxztDki4EmrSM8mEvxJdk3G878/VjelCfLO8Cj0wWDzB0tmgyGFD45Iv1H/0O4Pu4TuONd0mfpEuwUiIdoA9+zJiAiBfDPAP9ZfKaqjap+Nlz/beC3gJ9c+l5nh49kHDPhyhPTjcxgrpod8rlJK0iuNZUsMiyWnaTLJPXn5S2UzxFmPsI9IcOkEUwwGSN4dXS1Up9a1l/ZIFWBKS2mALsuwBhsHZx3xkJ1WmFqS7Uu+PjVnm+/+AwxVdjkUxusnZCiV8ent9d81u1DqLBasOuC+nzN+nzD+bMNpVX2rxpuX+/pun5gAI6+dVx/uuf6tWfb7wf1+RCB8rFKpNDA/FJpLgkHl/Tj4bNRuqaPddIJzUBQ4xPNOz9oFPfJu5zBpAd6yHAd64jq+32oEDUcH0FK2zlDkCWZHWFfBvewjOlVOn09tH4QAPOdBHfWMaTvxxz4x4DfUNUPEuDeFRE7XH+VcO7Abz+kMMmHOXk+/CuJiibJ75hLMuIfYJhdy6SOJYTvp4ryeudcabzNzkYes0zdL5hhUFKzwTCyHVSVl+0WfVLQteBuHcaCrS3V2QY1YU++rQPTMEYoCuG2E371Gx+ya2/oekdV1JS2CMFDIkEpbJuGb71+yZVxFOtwQKhYQ31acvLOKeuLNe1Nz6tv3bK72gNhv4P3nubKc/WdhtumHZZFL3cDTMg4/ebPMlMr0buzsU7GKUxFTkwlHQfV6SsZGKyfIX/sdTKmIhPupBImgWbUFrMK0xLyeQZN8w4MIyxmipkStrQsq7LOyQTXLPuyiXwP0xthG67v4AQPOZr8LxMOFP0pEflARP754dUfJjcFAP4A8Msi8ovA/wP446r68r46hopy9ihknZJmC89ySZObSsc4aPw2pW8ZrbjUB5BFpJN0kJKtSwl8ikzIoWGe30S4zLLj66bb0ReKdJ6iDkeO27oKOwYrQSys1gUiYI1h2xb87V//Dlfb1yhK7xWMpSwLNnVJ6pjw6vjs+pKvf/IpNxDONqwspiqwRcH6YkNZG/aXey6/c0u/d1RVTVEW9HtH07c0Q0CUTNXOYv0dw+4hx1yaSn4ZfTvTg2VkVzkQ/hlO66xckxLWAgNYDlcfy02krMgk4ZN604C3aW9MbQxbqRMREPBpQTu4h5THjLkv4LCUuKBqZFYJSJPwWU7f67kDqOo/t/Ds54Gfv6/M45VNTrtxkcUI/DQ9M6lccIzFpRsx5luLA6Lk97HYdJ9AKunGTR0yMdao4qsEmzVIJxmlQGpXpm2J0nLXNWzVUboQSMR1jvqixhYFRdVTr+pwhqEIn77u+Fu/8m2udp8BHlVH2/cIDq+w79xYbqzKa893X30KKvyei2esenB9OIxEBmei7xzahaXG9WnNaVVwVXd82u7ofJv0R9qaAdVGBrxkt0ZknCHfbP1tjPSd9c18yTfDCrihU7PVwMKwRHYYI/LFNGMB0RcxPktW/Wkg13RWY1wjMCLF0BZJC5r8ISkqjrMQI8ATDHfZ+Om3dyYd/jkq4ZMXaZ8dSd/v7MDfk6RzqCITTTj4+Epk8S++S38D9w6FTTMMIWy/TRAaNUdZtCR/+XOdVOGxulSqRGKKfNnQuZ7Xfo/ZGGgVug5TWFzvKEpLWVqqsuLllfI//uq3uNp9ilOHQ8OuwnKFwbEuHatydAoMAAbE9q7n48uXfPvmkr4OkrzrHNurNoQvKwy3r5T9jcd1jtvLHX3b8Z3mZghwko3M0J+TiZObZIzPD55FppE8jdcxFNbEwBLmC0GrOkD2ROKlS5lHGHJkybXDpdFbpifJ/pFh5CYGGB2AMsBoju1XSNt9RFM9gP2elLeXeSVDf96/YvDRMIGIBLERRiavuhJtvymDyD3cMpabMoeRATD5BpikpxACkYaa5KCcY7/xb9yyKSGqsR9KMgIp04kNVqN8tL2iOxWKGsqNxVhL1/ScnpwgpuSXvvYZ//0v/l0u958xBCzDqbJrHbetp7ArnO/oXJ/0oYzmiQd61/Lx5Us+7bZQCa7p6W4bvPM4B9ffecnr33qJ70KMhNsVbPvtKMSO9utiX8demJP6pDhrMq5pIaOJF/+NiDwUkZaYSbbUp7AE68KzvO4l7/2Uwcw0VB22Td9VyUSTMhJi9j4RVg9N+TeHomj+RNPfHwhNIOFguQSJnHa6I816rLgjL01SV+6cygk6erglQYajGkYCT+S+sfxxnjyWkr2Hq+0V35Ud9lmFMYqxBWcXp9ii4Fe+9jG/8c3fZucu8epx6umHiEUCONeCeCprWJVF0j9BXk3EJmy7hm+/fs1r01OdWVYrS3vb015tqa3Dv75GG4drLS9ut3jfTWseZmZT0oHj/dQVo6GUD2XW0SkRS/46EZtyLJTPJN6zMZhQZHq/mLK6c6LKZookKXfMMXqQiObgWP/MB5KO+X1pDupdTCJlv/M1C8csibto5VFsIMo4/HgfJNmkDRyg4P3lJvZVuhor/J+HnkpLFokcXxOV98iAJAwhEuc4Lgn7n2YLCOu7R2bj+carz3hqKy5sR1mV9Bj+51/5Dt/48Hfw0tP7IWSZahIIRXDeImIoyg6My0Y68aOPz17dXvM1hK88e4cvfOkU0/W4K6U6WYHv2L/Y0lUVt/stk4089Noh3Y/9EszmNDMj9o/z+0zjO+paGYPIRDvjSQIzHwsI/nBtXpYObOpYxlDhov8iOjw1+2SCTycI5x6L8HpmkqS4B+OU59xfkc9gHcK/CHOGszm9LHHNRT9Jkh4FE4AI6LAMU6aGje8HthrVXDMy++MsQQ8Gfuo9lRgxKPL2ZBvpOOgJ6iX1LcUqSHcrzuJaZG0YZXXCPLbNDR++esXz9w23DfytX/tNXl69RHEhWrGfgpbCEO4M5Xa/BzaUxrAuLdfSZxIqs4sloMnVzSW/dnPDdy+e8pM/+px3XIDBX7Xoqy36owUd7XiYRWQG0ecRCjPDzMch+056OH8Xzw1I9hfknZML8ek7ktEZmHLcGHOPAy2llfm4TfcpnBPc8917MEh6HdowpmRL81yqJMyP4dU4Q/F9Ogcjkxr7JvZrgu+R+OcCaZ4eBxNIpUzSUZB3YszzOU2pvKqJ3Y6MJ0YgHpEdwgpAlYP6szIW78OwWMJRUMDoG7Az9TEiD6Jc7l+i1Rf52u98zOubl4Afpb/zy5HjnVe83+N1h9gV0IQTkEj8HhCknGiy4q3j08tP2DUtX3nvPb7y/JSLL5xS4bhyHUg/tDsyAEYP/GjaRC48ak+h3V7juvxJlI5r9ROzYk4YE9SM30SC0iRvrhUcjssh4+fgevbVTAtIx1IHaiPlZYyh45LcfqYtpG8jjh2aVQ9PEYxjAl1ndzmTuDs9DiYAB4wAEmeKTEgyeY0lc2hktlliAuTmQLq8NXDPAa8mSTSpISPHiZ+YO7jPBM0grWUagGT29gDWWGu9MlyL4buffYYbTklyqjj1YxzDVD0VCNt8EcS9wndnYx3RhDFmIPwDr5RBVbneveY3vnXDt79zymZ9wrvPTvnf/Ng5T85XXO6aWQxGyS7j1GHUmnRwQQ/eFKbgXTBpX+NlNi1Iep2grb8HfbPxJWcY8zxzXJjU/nzJc3wnkuLRhCPTfCDjKsNxw9kgRGAWfAWIW5cT1WR4sdzGceFRMujzSAJZezV9GhnP8E+6cGkhPRomkIYUh4R7JbiRdkCGQ0ck8zGpAIM5MeJpjqyhjPnFVPaiOTDuPJRRw5DZ95M6ncjCyHzKgk9vt2yb/XBgCdnUTvwd99AjGAxQUdqCuq6Rmw4RMzCACZaDPkyJAce2v2R3fcnLa6GuvsJ7Ty748JMrnEu7YBCDZvLYT/0+i+405zlKxhrmfTqxi5QpRDU2QWid8bNsGO6IGbhIAsth6WdkNHs23ac6SyRQSQGNQiBl3JrHn1BywXKAV6ER47u7LAQZGhMgl+TfpKwj6fHMDjDr5hQfsnSsOQs5FyT3NF0Yv8lkdPgb1WhGX0Ra1NKaBIQxNE7wN4SPJLZFRkMj1Dl5HFGgroTbZo8O8m/J5k0ZQli1prheMaZChqhAgQFM19mMXXwmef2j2YHnW598RodF0hDlRsPho5IwgJlmMMI4Z5pDD8cDMeTg3TBOCW9M2Ndwn7CIgQscHCc2Dc5UxyKBH15LMt6ROeQQJnx01ErDP+lu0Xg9aTnTDEnCh8dfk4KTwHGQEqYtd+WXCVZB4hqoOxkAPCJNYD48B5qoJhxrzLwcX/BoHSNXjQ+imNFxqEd5HuvQcCjoAZCzZAYE8AM2BMgSVTUWOqh5cXtsLHdVwfXuHvWXHIk6J4StGh1G3MCsJCdyJVF9Y8U6EaufCEpVubze8uv9Cxrnp8p06pBRA5Ao/8bOzR1tMwdZ7Nhjdm3atrFOnS7HfhxUgxS0tIql4ieJP5f+B5iW15aaCqNRHsvTbGWjn5o4Nj9qBoFfZzbHUNNhRxyfwZhgvsvXv9y+wzUdaXo0mkAeGz3htuSdP7LggwFUliT0gcQmQeRI9KNQPEDFCE7CFRZeS5BbRhL1O5EmQjjBSGSIDpQKPhGsgbIs2HbDEdNLVYnkMIrQ9orTCmtL1mU4AShqBMaEiPM6ydQRS8VEWAfYzVRn5zy3t9eomzZXB1VTkn5KOjIRh+PMBGQLp0h/mTGpBdMgtlGTMYp/KQ5keRcHhuW+ZKp2+s0zz+/J3451Rr6qMrV5zqznAm5qJyPjPprmuDfcH1urkrfhzi4Y0yPRBA4HMXerMKo3CS4lF/O91As1HHDYaS/3OH01FjsxmEwFk0OOmk87xUNN8gAigUHkIKfl1IXQeWXbtgd26kgwoz0cLgSh9469azkhnBeAMTl8kyAYTu1haheTtpIe1jlqDUmHqJfgazCHhY8OLKbvUsl9PKzoLA3jc59uN+FFvIpIkXScTPXGWY2Yf+rbJR0CUqdhAhaLQUqHvBpD0mnCGhb8RlkrEi1hKd2vETwsjeXc0auPRhNI/P8ZG41SJd7PsfxOJjrTANLnaRodcJlgmkmBowJ6QVqMmRekSdq8QRKuC2jaDucPESdKpMCMhsjHw7JHAdQrIhUiBdP+hVjvgldYwkp9mUL75oANiD76uJClZsySZu3NvSwTWz2WsvUGqcamuWRNnYLLKJ0QTmpOHBBkClHaOM2eydKW8Xltkrc3MKDYjuOtPraM+OgqwaV3svxOZv10X6jRR8MEGKTovJ3JWAabO97r/O0x9Wh6lpkJA3KH8oLanJp/y2bEcaaSOpfmps0Qf2j2TYBfgJOyZNtMnuzD2Q4SrdCAGLwEJFVvUIVVFc4PSL/PfNjCtDFrYD7GBFNgnEUcv0tIQ4ZyzLw/ZJ4zZ94CSbSO4Cy9gxNEP8nUN8m4MbGWAx49U5WXzYJF9p0x2LzeCFSGFaRCZ4n5x/gGOszMHIUH8rZwh/aTVTNpvEdPSjr86MiTKT0eJpClOTfIkfNuqZQQ5VE1QYiqfbbyMFFtF1Xy5HqZc0+DLya3teWAuMO1FaWuKrZNCO0dGVD08E91BnZiBkSwohQCRgoUR9s3AWlTKTA4BaPtGoX/iNqSlJ0Q3EGabaqM3wzUnbQnsdfGEHCaFpPZzbFfjE47CdO+OcBxXYJv2bm2OC7EdqaMPSXyCJ0mGpsm36VlTRrA+O9YdGB+mjzOeeXMdzRrVCZ47kP2I2nCz1nlC+khQUW+IiL/tYj8HRH5NRH5F4fnz0Tkr4nIbw6/T4fnIiL/noh8XUR+WUR+9kFAD7+a/Du+mLVhjq5HufOMkI/VmcuYeP392WJpJXNTIp0SK61h7wytW4hdv8BwjJlQ1ViLowjMQ3sSdYF4NNpReMYyw+lHI88cO5NhQ0xAJDOfk1tsair6Jukq8eixg9wp4Uwp1QrmHoVlRnAfXIPGuIADOoM3U+Nldp/kHH0REtsyEbdJ+Ursw1m78rYdNwMO4I1fjAT+sPx3pYdoAj3wL6vqTwO/H/gTIvLTwJ8E/rqq/gTw14d7gD9ICCv2E4RAon/uAXWQYsMS4FFdjZ0dHpqwtFcnxD8sddmTKmN5wX01d00udfBd2sA0KPmS0nGN/UBwcattXG3WqfDxTVggtFSfSb39kRFIsOm3bc/1vkdMTWFkXACV+D4Pu1dADOMshYnz/0hgBkQNZiKE0Idpn8w4suTyStLKUirX5Ntk0UCM1DPljiZEXt84D5/UdbgXKOG42XVS1qL05TBJ/m7UIhYY4sgEdFb8vN6kfhn/i914hw8rfnsHVR9+qw9imvcyAVX9SFX/p+H6mnDC0JeBnwP+4pDtLwL/1HD9c8Bf0pD+BvBERL54Xz0DyMywbfYy6gkpDz1MmY13MNgTBz3KbI6WnJTDUqdP5U9qryQIHZnBKHZDXD/nFnwGMiszIsgUlEQEwnkhVThPMHHfx4VyMfpesPsHJsLkf5HIDJjwLG3kKAwzuCa5d9BT8Sbbgjch/lGHnqRtXhYGIw85IOzZ+2WsSH4SyGdq2lwrlIPGReNKptzzOmV6BxOTS+tdQM0c2rlWe1eb7nh8HwOAz+kTkHAIyT8A/E3gfVX9aHj1XeD94frLwO8kn30wPHtA+bOBXxjkPEqKJuOY+wFGp8+cnaeFz5Bu4sjx7wiRz37naWQAAuM6QSGoxdG5M1WSo12m+puD+/SZKjS9w1PAWE+KuNGenco1s/vsb9ZXgdUcDsYkmJI+nIvohFCyEkaqmepISSY4EAd/TfpNVuZ0f9D/C9N7+YOkxtiOuApx0VxI2zH5CuZsamx+okEZJI9GlrViyad0d1r2Q80zpfBNOHZXejATEJFTQvzAf2l+joDmezIfWt4fE5FfEJFfuLm6TPsuER4pYi4Vkl8fcNc7OGKqYU0Ef/i32PFzLp0xnsHxliBuSmCpA85kWgGLA5wSvjEGaw22CKcWI9D1PUqNFYMdRjMK4bgrLjKsiQEsdWMqo0LGkVkt9AuSrhZM+jHpk0PpNZOAIywLxDcfd5HZrMvhWOdlp7DOG57aS0uOxSWGkOfTeZ6xr3LATE6Si2N87H7+fCnOwLy8/Cq07z428yAmICIlgQH8J6r6XwyPP45q/vD7Ynj+IfCV5PMfGZ5lKT134PT84h4AFm4XmUJCYEm+JdU65kv/wsXD+dm83Am6ZJ9AIumPDdxSuQeDOzIBS2ELjLWIQNe3OA9giTNTce+CDusKJoYzlpbXETWLnMYPCDvAkZTB4fu5O2JgpXmf6/R8YgRT/iOGWj7uB903IwSJWPB50vJMA8yFwLxeyR9rbFvKmTKRdqSehz+/K83p4/teJyABij8P/Lqq/tnk1V8F/uhw/UeB/zJ5/kckpN8PXCZmw32gLxN3lkfSfn1YmfFugcOmDDz75j4+IHHJcSQkMxJTCt9dp8I+hBGkWkCqFVixGDH0rqXpWrzvMHQHzb9LG5w7NaNmYmRhhePEJZnObMxpcmQAAyM9aLvMPpq904RRpJ+ITDI7WuTzTp0PoQwQjSUqo4o0hQELjCJntgelTQJ+Ae5J+B+q/pkD83PS8kOIP2fOuRBKfRf3ofJDlg3/Q8D/GfgVCecJAPxrwP8N+M8lnEPwLcLBpAD/H+APAV8HtsD/5QF1ZC1aosm5tBktu4W+OgwZlu8nBw7vszrGXeH506MDk2JJHv0mwjsthLnbrlv0MRiTbYuORCEYCtmz37eoCoXpEGoMmvhO0lbNHV2MDCD1GURqmxBXYXBEju2Nne9jH82CfUReGh2UOvPnLEwZjkWrTH0/Ti/mgUlC2XpQQvQfx+NBdf5yATdiP0xBRVI9JgdWhrbE37SYaat0AtSg9cyDEKfjvBT/Iit3/jx9n4MHLMRhSHBxKT3k3IH/jrxZafpHF/Ir8CfuK3exrqVqRjpMVKlBwoZNLbEDZy6sjHksR5w5uE/rPSawkm/i4AQpGhB0PI5QUrt2YDH3SP5j97GuyecAMVCENbeov0XknLJw0D6d8iRyejSRISsrXEcHqyAa9xIEpJ4YRESiZN4jYnyyZz89f5nx9cCURiKMTGSCMWXCc4JRZkS30HfjmZMx6o8sFDKBRCRZkSnM3FTeAqFn/alZvvR1OKY8/ya2bUkmz5+kBJ/HIMnxY1xdyqTuHwq6qYK7tIFHsoHoYWlCtSEUWILUMaV2VzY+x7jp+N1wwEVyf4xo47ucEUSAQv0+2+00IflcE7jPJJjDLpMagKrg1VCXHswJVZmozQMChKnAJEJupvpO18aQERImkcax18VMPgQOpaHCuFFpErw5O0ol5aTNTVNnQWvXibcwtYmkzuPScV7/FENySnNJeVjMQsGQ9YdPnk3FxPUfSr5AyiQw60KJ96flICiLuB4Z8rihijvb+CiYQE54Cxw/x8XQwflXB+VNHT0LynRMDUsqSxnAg2yzGZE6ifVPcEaJOv/uaJljyyaJNf/Wi6HT96jWP0Zdv8t6f4O5eh3QMwq3iTcdrTeVfGbUYAYSSqQ1UT2SSK4jNY9q77wN03X6RS6W54SQauvpScBycL/MCI7hfJZ/iXqyvCkeynCfkm+oJWpPwGEMZJmk+di+RDwnWDk0aSbRJX++BKoeeX7YnuO49qj2Dgxjezw9qLWDejTs3ZeMEA8J6cBJmFwfy5e+PdBCoqTPyDhcP3RX6KRVMBDxsvYgQOfX+OJHqFbPWK9PKKxNvks0kDmsmTkw/0vbHO9jcxJVf4lZs4CYCbx5b0dAc1PwgJk8sN/m6SjaS85oMo1yZHoyBzj5fEkDSb4PnZ2VkWkzs2Ifpgnckeu+Ao60I6ZHwwTilMoirCkBJpdL9lSG9JNyzJGSZzBMBLsMhiSIsixR4++ULV/rMA+/dTdAh3nnzMirhoCjAqUVCpvXOiet+xlBAr9ETWCQZQkxj2Uuif+cg86+mb5LmRlDPQeRHWRqT3y2NF9+OGzRoF7q7+SbGRZleKLp3VLMikjoswhLi3nSu/iv3Lu/JX1+DIczh29KACx0y0J6NEwAGFXKlJkmNBcuUhbO4fbUNJLfiANxS+s96SHkeXiYyWEZ+arAWHAUCQ8ZllmZkrYoJYCwSchrOFZcdFo1OK1aXF5zcOw6VUJmowHEwJg5Oi5JtrycsYLcJ5h9QbZOYV775P46No6S/cx4yecyxfKColM0o9bcrDxGavN2yMGro5hwH3yH74exS8YmapT3Yf7jYAJLXEsOnszexYGZ8ozjLwc4cLzqURrC/HzDh/gDYr6snAhVolLHuemRp9/D9ac0aDKSSMME0VUV5xxds6PrmgTp70b8yRk374dD02MMWRbzxgo47N9DDSR9l1+kKwCz9s3bmEmCBeZyWMNCmjHv0XuaQ7s8lZaS7PE6ErZxgIt3LxVKyvg8mmKWZtGI4/UswMpSehSOQWD0l0TF/Si/v2M8oh9aSOIEDAX5odTlqZax9IX6HipBZuWkjZAB4VWGEF0P8wkfkJnIodNEFdc1tF1P71riyTO5lX0E/rmP4Yh5o1HKxEFK7d1Z/hQ8Tf9EEtim94hkRJ158jNEGH3uU05ZcAw+lPsz9a+ObRq8qULiiIzMw6Dqhzrz9i7JWhmf5rMHTMUnOZeZz9zhPD8/4e6WPdyR8jg0AWAJqe7MG6+UDIlGfhu91Qm+LhHwwZSL3CVp5nlnkjXRBlIop/n2vPxDh+NiLUPQjRTo6cejON/g3BVOuxlMk0ZwTAuITkyRww1LUYdNBfHkI7hnuOQwz10agsxIaWSAMy1gnnIHZFrBvLaFQo48ksOSZzUucJo5siVlzVgrSeuycfi86ZizOnv3gHIfDxNIlqKmnTi+Tm8GljrKBE1wRZIihvG6Xw27Q73g7gGa3h0Odf5UM+Ifn97B1aPkOLYFJOoTpbWgHt9vMaIhqtGCdM8dcbkzKbY8PbMgRdZDHj34WSYghzriP2ZkyCHu8ULvzvt1Bs88DOJi/8T8I84cMo7F8UvalzOO1My8i9AyEj6ELYEn2uaLRD88PK75Hu+ApUNwxneZ70ju7MfHwwQ4UKiP3Czlnkyf+MFog82I9C7pO/H4Bf59Vy8uENrklIzQ5O8/D+fXI84dITjqChN2ENalwRh7oPUcTC+ORJ/szBMhLgYa9yuIJHEfJy4rGZElEidFfOZrDKZk0jGIZc5yHuDCke6ak6Vmd3P2H3Sn7MkBh1uQQPHNYAZNXRt9NdMehdiOu0Z3ZDMzyZb5vO9IyxrtciSp+2CBR8UEZIagjBx+lEepJHuAyZOtVT+GRLGOI/Zw/myqf/IYD4glib9B0q6foeFdqxbvZBCSfR8HXQwY41B12OIEK5O77bg/I3RqCC4yEDuT2r+0XmBO0HOayV/Mbaz0Iif4+fbg+TcBngj/UlsOSX18JskKxENgEiTLwEvGL+3H+bP5OM4Qd96GZQgyeCW9XsCBpfE86s+JzCphzMfSo2EC4/JSvQvc2TdxSjEiKvkYpmNr0OzctyWNQEY4jkwDJn4GiXb6WNdSWYOUSDD580xVTdw9OgFyBqAovVfaXjHa0O0ucfHQkKS+A5NgCG4S+2iMNBTzH+ufBWaZ+QcSah0l4wGBJXM6Mi9lygqTjy5m0Pl8cA5d9m1qt8/NsIyZDFkX2FtO0LMyl8h61AgWwIxO0FRjeojr7iF58hmuqX2BAbLACPP0aJgAJIOPZDaVWeLWwHRoyKQKpUJncm4NnZP0w8GUGGknLkmW+X3+Xyo1UgGTHwW4jMR3cfQpTcxg1AJgWLIqFNUTirJgivKblzWXnFH6R0AFphOUWP4uwpFLxkEqxiEa2y8jwY+Rd2MJMtnMYyjyodOixhHhmFTnaWxy30YGbsZoIhiLGWbGH1nLJf9kLGdWRiZtDjWDbFJwBmc6RrmptjT+h+OxbNbm45J/eTw9IiYg009EBJVk7fWsQ+eSd1BZ53vYUyIMkmVZ1Zqi2x6eERCeJyBqRFAZ4DQjDMNFAughQuUwP2SYosWY51UF54WmV/puhxF7IA8P6iNVwcPRaCMDjL9zYrsDzul5JKgZx5V0+dbBx0slBq1taEZ2hPkdaWr3kbqSXGR5meiZhHkMAz4afeNU3ayKkRHMuUZaTcLMiOzmYQR6V57j0n02FvcU9HiYwBKs2bNJ2oyq+GIhMhvqSaqM6nt8N9q7OeLMJ7cyIhBQ8QmCTkSTQSKTrJnHMv5cTkHiYKfElqo0inM9BQ7vuwMJc1CXpH2SPCTFFxnPATiQNTPVc8mdmkpW0usZnzfKFJ57GFxJAJn16EHf5KUtpePHecucOA4npwKblyQwSRAlZER2YCLkJJ7nyYyUg2fH0sEQPhB9wgEl9xsUj4cJACk/zzhplmXo7AX7cOK0c1YQ0mFQ77TmY9x56Ul4ljq18sUfiXdcplalHuEl7/0icxh3kKX/jR+iKvROQU4orcEavwRyXqQwg2W6NslfLuGWiG3OkMbGjmMoJL6TsTwZ+iO5H5nT1F/jJOOs2knVX1K3h9Ff6sq7OkWmcR3t9+Sj1DmaM4qkH8b2HzLQ+f1c0KSMbyx7jiNjTcs4tJTy2ZLl9GiYQLAr4x7t4262/JEcPsrKnIgrU+dZIrjJ1o1FLyNTkid6lCROpckMpEmiLrf54eYAOpgEKc0Nf51zOG1RYFOvKEw+rLk/gHGPwfzd+H5kEimc+f2d7UgIMmMhkr5KCGZB8o/y85AHJH0ydycKwSeSKN4LsB6kecUZczsk+YT1H4NszDbpDAualWQ/KZCLwmIp7/K4SPbuPhR7NEwAUmBT3UxGRDjs+lT231f4TFiQM4k5Ds9rGvOP382rPizgLknwPaXRcTExLEXwFIgYSvEYBo3nDuQ/RKREE4lV3EHwh7v4ZFEzO8r80otkZeHUR4GY4zvNPloimgjLAPs4o+JJ9T/JiDsvQEn8DwkxzZ11BzjKIRM8Ruh3zXvJlCl5mOdfisGYY+tMQtzZacmr7/fo4/8lkoh8AtwCn75pWL6P9A4/2PDDD34bftDhh7+3bfgxVX13/vBRMAEAEfkFVf29bxqO7zX9oMMPP/ht+EGHH95MGx6VOfA2vU1v0//66S0TeJveph/y9JiYwH/4pgH4PtMPOvzwg9+GH3T44Q204dH4BN6mt+ltejPpMWkCb9Pb9Da9gfTGmYCI/BMi8jUR+bqI/Mk3Dc9Dk4h8U0R+RUR+UUR+YXj2TET+moj85vD79E3DmSYR+Qsi8kJEfjV5tgizhPTvDePyyyLys28O8hHWJfj/tIh8OIzDL4rIH0re/akB/q+JyD/+ZqCekoh8RUT+axH5OyLyayLyLw7P3+wYjNtS38AfYIHfAr4KVMAvAT/9JmH6HLB/E3hn9uzfBv7kcP0ngX/rTcM5g+8PAD8L/Op9MBPOk/z/EpaZ/H7gbz5S+P808K8s5P3pAZ9q4McHPLNvGP4vAj87XJ8Bf3eA842OwZvWBH4f8HVV/W1VbYG/AvzcG4bp+0k/B/zF4fovAv/UmwPlMKnqfwu8nD0+BvPPAX9JQ/obwBMZjqJ/U+kI/MfSzwF/RVUbVf0G4YDc3/f3DLgHJFX9SFX/p+H6Gvh14Mu84TF400zgy8DvJPcfDM9+EJIC/z8R+dsi8seGZ+/rdAz7d4H33wxonysdg/kHaWz+hUFd/guJCfao4ReR3wX8A8Df5A2PwZtmAj/I6R9W1Z8F/iDwJ0TkD6QvNehzP1BTLz+IMAN/DvjdwM8AHwF/5o1C84AkIqfAzwP/kqpepe/exBi8aSbwIfCV5P5HhmePPqnqh8PvC+D/SVA1P47q2vD74s1B+OB0DOYfiLFR1Y9V1amqB/4jJpX/UcIvIiWBAfwnqvpfDI/f6Bi8aSbwPwI/ISI/LiIV8IeBv/qGYbo3iciJiJzFa+D/APwqAfY/OmT7o8B/+WYg/FzpGMx/Ffgjg4f69wOXicr6aNLMRv6nCeMAAf4/LCK1iPw48BPA3/pfG740Sdhq+OeBX1fVP5u8erNj8Ca9pYkH9O8SvLf/+puG54Ewf5Xgef4l4Nci3MBz4K8Dvwn8V8CzNw3rDO6/TFCZO4J9+c8fg5ngkf4PhnH5FeD3PlL4/+8DfL88EM0Xk/z/+gD/14A/+Ajg/4cJqv4vA784/P2hNz0Gb1cMvk1v0w95etPmwNv0Nr1Nbzi9ZQJv09v0Q57eMoG36W36IU9vmcDb9Db9kKe3TOBtept+yNNbJvA2vU0/5OktE3ib3qYf8vSWCbxNb9MPefr/A+TzkqyYVtEUAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "Chitra(((x1[0] + 1) * 127.5).numpy().astype(\"uint8\")).imshow()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "figured-professional",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'pinwheel'"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from chitra.core import IMAGENET_LABELS\n",
- "\n",
- "res1 = tf.math.softmax(tf_model.predict(x1), 1)\n",
- "IMAGENET_LABELS[tf.argmax(res1, 1).numpy()[0]]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "wanted-damage",
- "metadata": {},
- "outputs": [
- {
- "ename": "RuntimeError",
- "evalue": "Given groups=1, weight of size [32, 3, 3, 3], expected input[1, 224, 4, 225] to have 3 channels, but got 224 channels instead",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mres2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmy_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m# IMAGENET_LABELS[torch.argmax(res2).item()]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 891\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/container.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m \u001b[0minput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 120\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 891\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/onnx2pytorch/convert/model.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, *input)\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0mactivations\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mout_op_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0min_activations\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 134\u001b[0;31m \u001b[0mactivations\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mout_op_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0min_activations\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 135\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdebug\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 891\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/container.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m \u001b[0minput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 120\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 891\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/conv.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 398\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 399\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_conv_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 400\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 401\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mConv3d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_ConvNd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m~/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/conv.py\u001b[0m in \u001b[0;36m_conv_forward\u001b[0;34m(self, input, weight, bias)\u001b[0m\n\u001b[1;32m 393\u001b[0m \u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstride\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 394\u001b[0m _pair(0), self.dilation, self.groups)\n\u001b[0;32m--> 395\u001b[0;31m return F.conv2d(input, weight, bias, self.stride,\n\u001b[0m\u001b[1;32m 396\u001b[0m self.padding, self.dilation, self.groups)\n\u001b[1;32m 397\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mRuntimeError\u001b[0m: Given groups=1, weight of size [32, 3, 3, 3], expected input[1, 224, 4, 225] to have 3 channels, but got 224 channels instead"
- ]
- }
- ],
- "source": [
- "res2 = my_model(x2)\n",
- "# IMAGENET_LABELS[torch.argmax(res2).item()]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "atlantic-system",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Sequential(\n",
- " (0): ConvertModel(\n",
- " (Conv_mobilenetv2_1.00_224/bn_Conv1/FusedBatchNormV3:0): Sequential(\n",
- " (0): ConstantPad2d(padding=[0, 1, 0, 1], value=0)\n",
- " (1): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2))\n",
- " )\n",
- " (Clip_mobilenetv2_1.00_224/Conv1_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/expanded_conv_depthwise_BN/FusedBatchNormV3:0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)\n",
- " (Clip_mobilenetv2_1.00_224/expanded_conv_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/expanded_conv_project_BN/FusedBatchNormV3:0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Conv_mobilenetv2_1.00_224/block_1_expand/Conv2D:0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (BatchNormalization_mobilenetv2_1.00_224/block_1_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(96, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (Clip_mobilenetv2_1.00_224/block_1_expand_relu/Relu6:0): clamp()\n",
- " (Split_Split__8143:0): Split()\n",
- " (Pad_mobilenetv2_1.00_224/block_1_pad/Pad:0): Pad()\n",
- " (Conv_mobilenetv2_1.00_224/block_1_depthwise_BN/FusedBatchNormV3:0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), groups=96)\n",
- " (Clip_mobilenetv2_1.00_224/block_1_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_1_project_BN/FusedBatchNormV3:0): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Conv_mobilenetv2_1.00_224/block_2_expand/Conv2D:0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (BatchNormalization_mobilenetv2_1.00_224/block_2_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(144, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (Clip_mobilenetv2_1.00_224/block_2_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_2_depthwise_BN/FusedBatchNormV3:0): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144)\n",
- " (Clip_mobilenetv2_1.00_224/block_2_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_2_project_BN/FusedBatchNormV3:0): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_2_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_3_expand_BN/FusedBatchNormV3:0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_3_expand_relu/Relu6:0): clamp()\n",
- " (Pad_mobilenetv2_1.00_224/block_3_pad/Pad:0): Pad()\n",
- " (Conv_mobilenetv2_1.00_224/block_3_depthwise_BN/FusedBatchNormV3:0): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), groups=144)\n",
- " (Clip_mobilenetv2_1.00_224/block_3_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_3_project_BN/FusedBatchNormV3:0): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Conv_mobilenetv2_1.00_224/block_4_expand/Conv2D:0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (BatchNormalization_mobilenetv2_1.00_224/block_4_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(192, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (Clip_mobilenetv2_1.00_224/block_4_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_4_depthwise_BN/FusedBatchNormV3:0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)\n",
- " (Clip_mobilenetv2_1.00_224/block_4_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_4_project_BN/FusedBatchNormV3:0): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_4_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_5_expand_BN/FusedBatchNormV3:0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_5_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_5_depthwise_BN/FusedBatchNormV3:0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)\n",
- " (Clip_mobilenetv2_1.00_224/block_5_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_5_project_BN/FusedBatchNormV3:0): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_5_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_6_expand_BN/FusedBatchNormV3:0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_6_expand_relu/Relu6:0): clamp()\n",
- " (Pad_mobilenetv2_1.00_224/block_6_pad/Pad:0): Pad()\n",
- " (Conv_mobilenetv2_1.00_224/block_6_depthwise_BN/FusedBatchNormV3:0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), groups=192)\n",
- " (Clip_mobilenetv2_1.00_224/block_6_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_6_project_BN/FusedBatchNormV3:0): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Conv_mobilenetv2_1.00_224/block_7_expand/Conv2D:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (BatchNormalization_mobilenetv2_1.00_224/block_7_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(384, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (Clip_mobilenetv2_1.00_224/block_7_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_7_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (Clip_mobilenetv2_1.00_224/block_7_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_7_project_BN/FusedBatchNormV3:0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_7_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_8_expand_BN/FusedBatchNormV3:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_8_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_8_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (Clip_mobilenetv2_1.00_224/block_8_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_8_project_BN/FusedBatchNormV3:0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_8_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_9_expand_BN/FusedBatchNormV3:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_9_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_9_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (Clip_mobilenetv2_1.00_224/block_9_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_9_project_BN/FusedBatchNormV3:0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_9_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_10_expand_BN/FusedBatchNormV3:0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_10_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_10_depthwise_BN/FusedBatchNormV3:0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (Clip_mobilenetv2_1.00_224/block_10_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_10_project_BN/FusedBatchNormV3:0): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Conv_mobilenetv2_1.00_224/block_11_expand/Conv2D:0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (BatchNormalization_mobilenetv2_1.00_224/block_11_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(576, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (Clip_mobilenetv2_1.00_224/block_11_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_11_depthwise_BN/FusedBatchNormV3:0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)\n",
- " (Clip_mobilenetv2_1.00_224/block_11_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_11_project_BN/FusedBatchNormV3:0): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_11_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_12_expand_BN/FusedBatchNormV3:0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_12_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_12_depthwise_BN/FusedBatchNormV3:0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)\n",
- " (Clip_mobilenetv2_1.00_224/block_12_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_12_project_BN/FusedBatchNormV3:0): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_12_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_13_expand_BN/FusedBatchNormV3:0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_13_expand_relu/Relu6:0): clamp()\n",
- " (Pad_mobilenetv2_1.00_224/block_13_pad/Pad:0): Pad()\n",
- " (Conv_mobilenetv2_1.00_224/block_13_depthwise_BN/FusedBatchNormV3:0): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), groups=576)\n",
- " (Clip_mobilenetv2_1.00_224/block_13_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_13_project_BN/FusedBatchNormV3:0): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Conv_mobilenetv2_1.00_224/block_14_expand/Conv2D:0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (BatchNormalization_mobilenetv2_1.00_224/block_14_expand_BN/FusedBatchNormV3:0): BatchNormUnsafe(960, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (Clip_mobilenetv2_1.00_224/block_14_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_14_depthwise_BN/FusedBatchNormV3:0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)\n",
- " (Clip_mobilenetv2_1.00_224/block_14_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_14_project_BN/FusedBatchNormV3:0): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_14_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_15_expand_BN/FusedBatchNormV3:0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_15_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_15_depthwise_BN/FusedBatchNormV3:0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)\n",
- " (Clip_mobilenetv2_1.00_224/block_15_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_15_project_BN/FusedBatchNormV3:0): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Add_mobilenetv2_1.00_224/block_15_add/add:0): Add()\n",
- " (Conv_mobilenetv2_1.00_224/block_16_expand_BN/FusedBatchNormV3:0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Clip_mobilenetv2_1.00_224/block_16_expand_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_16_depthwise_BN/FusedBatchNormV3:0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)\n",
- " (Clip_mobilenetv2_1.00_224/block_16_depthwise_relu/Relu6:0): clamp()\n",
- " (Conv_mobilenetv2_1.00_224/block_16_project_BN/FusedBatchNormV3:0): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))\n",
- " (Conv_mobilenetv2_1.00_224/Conv_1/Conv2D:0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (BatchNormalization_mobilenetv2_1.00_224/Conv_1_bn/FusedBatchNormV3:0): BatchNormUnsafe(1280, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (Clip_mobilenetv2_1.00_224/out_relu/Relu6:0): clamp()\n",
- " (GlobalAveragePool_mobilenetv2_1.00_224/global_average_pooling2d_9/Mean:0): GlobalAveragePool()\n",
- " (Squeeze_mobilenetv2_1.00_224/global_average_pooling2d_9/Mean_Squeeze__8183:0): Squeeze()\n",
- " (MatMul_mobilenetv2_1.00_224/predictions/BiasAdd:0): Linear(in_features=1280, out_features=1000, bias=True)\n",
- " (Softmax_predictions): Softmax(dim=None)\n",
- " )\n",
- " (1): Sequential(\n",
- " (0): ConstantPad2d(padding=[0, 1, 0, 1], value=0)\n",
- " (1): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2))\n",
- " )\n",
- " (2): ConstantPad2d(padding=[0, 1, 0, 1], value=0)\n",
- " (3): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2))\n",
- " (4): clamp()\n",
- " (5): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)\n",
- " (6): clamp()\n",
- " (7): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))\n",
- " (8): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (9): BatchNormUnsafe(96, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (10): clamp()\n",
- " (11): Split()\n",
- " (12): Pad()\n",
- " (13): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), groups=96)\n",
- " (14): clamp()\n",
- " (15): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1))\n",
- " (16): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (17): BatchNormUnsafe(144, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (18): clamp()\n",
- " (19): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144)\n",
- " (20): clamp()\n",
- " (21): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1))\n",
- " (22): Add()\n",
- " (23): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1))\n",
- " (24): clamp()\n",
- " (25): Pad()\n",
- " (26): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), groups=144)\n",
- " (27): clamp()\n",
- " (28): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1))\n",
- " (29): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (30): BatchNormUnsafe(192, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (31): clamp()\n",
- " (32): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)\n",
- " (33): clamp()\n",
- " (34): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))\n",
- " (35): Add()\n",
- " (36): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))\n",
- " (37): clamp()\n",
- " (38): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192)\n",
- " (39): clamp()\n",
- " (40): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))\n",
- " (41): Add()\n",
- " (42): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1))\n",
- " (43): clamp()\n",
- " (44): Pad()\n",
- " (45): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), groups=192)\n",
- " (46): clamp()\n",
- " (47): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (48): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (49): BatchNormUnsafe(384, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (50): clamp()\n",
- " (51): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (52): clamp()\n",
- " (53): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (54): Add()\n",
- " (55): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))\n",
- " (56): clamp()\n",
- " (57): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (58): clamp()\n",
- " (59): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (60): Add()\n",
- " (61): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))\n",
- " (62): clamp()\n",
- " (63): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (64): clamp()\n",
- " (65): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n",
- " (66): Add()\n",
- " (67): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1))\n",
- " (68): clamp()\n",
- " (69): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384)\n",
- " (70): clamp()\n",
- " (71): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))\n",
- " (72): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (73): BatchNormUnsafe(576, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (74): clamp()\n",
- " (75): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)\n",
- " (76): clamp()\n",
- " (77): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))\n",
- " (78): Add()\n",
- " (79): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))\n",
- " (80): clamp()\n",
- " (81): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576)\n",
- " (82): clamp()\n",
- " (83): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))\n",
- " (84): Add()\n",
- " (85): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1))\n",
- " (86): clamp()\n",
- " (87): Pad()\n",
- " (88): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), groups=576)\n",
- " (89): clamp()\n",
- " (90): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1))\n",
- " (91): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (92): BatchNormUnsafe(960, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (93): clamp()\n",
- " (94): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)\n",
- " (95): clamp()\n",
- " (96): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))\n",
- " (97): Add()\n",
- " (98): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))\n",
- " (99): clamp()\n",
- " (100): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)\n",
- " (101): clamp()\n",
- " (102): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1))\n",
- " (103): Add()\n",
- " (104): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1))\n",
- " (105): clamp()\n",
- " (106): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960)\n",
- " (107): clamp()\n",
- " (108): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))\n",
- " (109): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
- " (110): BatchNormUnsafe(1280, eps=0.0010000000474974513, momentum=0.1, affine=True, track_running_stats=True)\n",
- " (111): clamp()\n",
- " (112): GlobalAveragePool()\n",
- " (113): Squeeze()\n",
- " (114): Linear(in_features=1280, out_features=1000, bias=True)\n",
- ")"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "my_model"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "fossil-watch",
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "loaded-meditation",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(torch.Size([1, 224, 224, 3]), torch.Size([9, 1000]))"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "x2.shape, res2.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "empty-literature",
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "touched-education",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/nbs/example_01.ipynb b/nbs/example_01.ipynb
deleted file mode 100644
index 1c552015..00000000
--- a/nbs/example_01.ipynb
+++ /dev/null
@@ -1,766 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#default_exp"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "from nbdev.showdoc import show_doc"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example - Image classification w Chitra\n",
- "> Training Image classification model for Cats vs Dogs Kaggle dataset."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- " "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## install chitra\n",
- "\n",
- "`pip install --upgrade chitra==0.0.20`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[K |████████████████████████████████| 1.1MB 18.1MB/s eta 0:00:01\n",
- "\u001b[?25h"
- ]
- }
- ],
- "source": [
- "!pip install chitra -q"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## import functions and classes\n",
- "### Dataset Class\n",
- "Dataset class has API for loading `tf.data`, image augmentation and progressive resizing.\n",
- "\n",
- "### Trainer\n",
- "The Trainer class inherits from tf.keras.Model, it contains everything that is required for training. It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import tensorflow as tf\n",
- "from chitra.datagenerator import Dataset\n",
- "from chitra.trainer import Trainer, create_cnn\n",
- "\n",
- "from PIL import Image"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "BS = 16\n",
- "IMG_SIZE_LST = [(128,128), (160, 160), (224,224)]\n",
- "AUTOTUNE = tf.data.experimental.AUTOTUNE"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def tensor_to_image(tensor):\n",
- " return Image.fromarray(tensor.numpy().astype('uint8'))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 /root/.kaggle/kaggle.json'\n",
- "Downloading dogs-cats-images.zip to /content\n",
- " 98% 427M/435M [00:02<00:00, 161MB/s]\n",
- "100% 435M/435M [00:02<00:00, 153MB/s]\n"
- ]
- }
- ],
- "source": [
- "# !kaggle datasets download -d chetankv/dogs-cats-images\n",
- "# !unzip -q dogs-cats-images.zip"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "ds = Dataset('dog vs cat/dataset/training_set', image_size=IMG_SIZE_LST)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dogs\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOAAAADgCAIAAACVT/22AAEAAElEQVR4nDT9V7BtW3rfh80x5pg5z5XT3mvnffbJ5+buey+6LzsA3QCBBgEBlGhRomW6ypbtssqlsh/lB5fLZavKLy7RostiNkk3QJkCCICd+957bjz57BxXjjPnMKYfFrQe9uuae9Wsb4zv//3+/w/8p/+7729vbwEATk9PtrY3CAKWStp4PDSMpaIoGS7SLCOKAkFSkiQSwEqlgkikyPJ0Ou0NxqKo3rl9W+D4y8sLURLUkmb6th+FNMscHR3dv3tvNBxinC0Wi/ff/0avf3V0dLhcLh48uH/Tu1bkkms7URgCACRRZBCV5znDMJ7trm+ue2kYZalterf2b19fXYssX2QZhUCjUUMUtOzA8eJyubxYLDDGm5ubeZ5TFGUYBk3TURCFbogodHZx+ubbby6Wc4alZsuZ4zqiLIICcDTL0JQfeINBn2EYSZRFUaEpnqLYXm9o2NNKTcuyPMsySRTTOJEEQZZk13Vtx15vdwVOsIxlSVWIAgeBn+PM9V2GZ1qd5qvXx5ggiwKzLCtJYprG88WM53lRFOI4zjKs6tWCgCzLDAaDfr9frVar1WqapovFotFs5CR1PehZplWrNYbDAUPzzWYrTTNJkpZLA6QJKDLPc1VVlWVZkkRVlR3HPT45UhRlu7stMHJRANM0McaaVvJcv9frKYoqy0qaxlkeCQInyfz1zWUYBc1Gs9/rr611X78+sW3P9Nz9g4ODW7dfvHh1dnpJUUwcZ47lp2neaDbjLKNZDlGIJMnJZMJxnOd5JEnyPB9FEccwoe9yHE9RVBzHSZKQJOl5HkVRaZpWK3UcgfliSRAFRVGCIJAk6fs+y7IEQeQ4t+wgwzlFUbIsF0Xh+74gCEmScBwHi6KYz+dxHKuqdn5+YduWaZoQwvX1dU3TVFXVdb1UKm1vb3Mcx7Ds1dXV2fmZbdt5nm9vb3//+9+vVCrlcolhaI7nTk5PcJb5nocxrtfr4/Hkrbfemk4ntVrl1x//0jDMcrm0v7/nB56qqjc314Hv37p1S1PVdru9vb0timLgB3ESDwZDx7WPjo7qjXoQ+IqizhfzJEkkSTo9PpmMJ3EcaZoiCPzm5kajUY+iUJalLEtJEtI01Wq1VE0NAv+tt96yLFMURUmSIIQbGxtEQbiea7vOeDLxg6BWr+/fuoUo2nGdVqcNIGw266IsCIIIAHj48KEsyxsbXdO0oigqlUocy03n0zCOSITyAq+trTEMk2apIApRHKd5jkGhaRqEkKIox3F2d3cBAJ7n5Tn2fZ9EiETI89xnz54lSfLBBx+kaer7PkmSFEWdnp4tjcXv/e6Poiiq1apra+sQAowxw7Cj8di2rCiOR6Oxqqp7e3uDwSDLspubHkVRBAEsy1osl9c31wRBJEmCMW42m7VaTdNUy7IWi8XLFy8ZhrcsxzK9O7fvbW/uUYgVRc22go3u9oP7D7/5zfdLevnFi1ez6YxhGACgKEjdjY1KpaLICkki27Hn8/lkMmEYJsuyJEkQQhBCjHGWZlmGPc93HJcgQJblnucXBZFluSTJo+EkimOOY+v1Os/zvu+7rhuG4eo5AQAsyyKEsizzfd8wjKIoKIoiCCIIAvB/+e/+C57n+/0+xpllmfV6vd1unV+cLZdLVZVlUSYK4oMPPnj9+rUgCPPZjKbod955pyiKyWRimg6AKEvS2XS6s7NNUZQbuJwkpEV2cn7mul6n2dza2vzpT3/ieV6lWi6KvNVslMraP/x//cP333+/Xm9enJ0jknRd99befv/6xjAMTdVqtartujkqAInm0+U7b71nWY7vuGVdAwS2rOVap725vXPVGweB36g3Li4vSnoJQnhxcVEqlRRF8Rx/PJiIosgJ3N6tPcs2x5Nhb9DDBAYk8FyvwMSd2weO64yGAwLgooC7u/uBn2ZpEUUxJ6IsTwAARY7jKKrVar7n5WnWqNVrtdonn3zaXe/Kghj6fhKHjm3du3eHF/k/+e//hJfFzvrmcmG6ngMAuHfv7nw+G4/HGGe2Y+/v77mOR5CUqmirwo8xTtNUluVOp/P69aHjupBlLq+uoijqtNeyLNf1iud5PC+JEm8sjZpeajbqL1++ZBhGFPkg8Le3dz7++BOGobrdddfyKnrt+qrXaDTmswXH8R9++OHe3v7PfvaL0WicpKkoijzP7+3vXFycWpaRZhnLcMPhpMBEo9WO82g6m6QpdmxP08osw9m2l8TpYmEwLEeQMIoiURQhhK7rFkWBEIrjePWCMgwThSHOCwIQDMPQND2fzUgSdTe6o+EIEBDkMAjCSqUSx3H2P344jkMIAQhyTMZpEscxAGD1V1EU3/fTNAX/4E//qyiK5vPZcDg6ONi/urrUS1oQ+J1OR5KEYX+oKure3t5gOBj0B9947xvPnz3b29tbLBZvvPHG5XVvMpxSFCrynESo3qifnB2RNGm4zv7tW+cX51W9fHZ21mw1eJ67vLzQNHU4GlIUpGlqNBo+ePBoOp5SCKVJ5nsuS9NpkpYr5Y217uX1ValZncyXgR/pSkkUJAIXw35/f3erXNEZmjJtFwPI85zreiSJ4jiqVqumaR4fH+Oi6Ha65tzheW5hLApYEADLsqRo6ldPviqIQpZlVdHiJOr3ezSNVFVhGK6kVz0v7PWGLMOnOKzVy57rZUnaajYNwwiDgGe4JI4PDg7Gk2m5XPEtm6GRLEmTyXhtvZ1l6fXgprOx5jjB6enF3bu3h8Oh67o8z4VhQFHkw0cPHz/+VFE0WdV0rZRmqW3ZtuPcXF9vb2+zLHtychxGCeI4huM++OCDL774giBggQmW5YIgwhhXKpXQ9WRRCIJgVXg2NzfOzs7eeOPRyckZy9EcxR+9Oh4ORgzNPHr4xmw+VxS1VKqMRmNd16Mw8fyk1+9119t+4GiaqqiqYzthmHTXtp4+f5Fg33JMlhV6vT5Ncc1W21xacZxqepkoiKVpkhRst9uu48znc1wUkiTZts3QdEEQBAZFgUmSWlXWosBJkoZhKIoiy7K+54McBEFUKulJkjAMgzHOsowkSYIgcFEASEGKSuKYIAgIoed5AIA0TUmSRJPxDFGQ5/ludx0h6v79BwAQWZ7N59Pz8/Ot7obIC1998WWj2eAYdj6fJ1kKSTJOk8+++JwggKTJURBijAe9a4yTzc1ugrMteWdhLoPAez4YKoqo6ypN0xhnSRpTFEzTFIDiBz/4wc1Nz3VtEkII4Np6O0/SAhdxHFmWkaVJFEUCz8uSitMiCkKGYb717W/7ng0AHE8mtutW6o0kSTDOPc8hSfT1119JkvTw4YNSqXRxdgFJwnbMRqsuiqIfemHom6bR7Xans6njOHGccDyn6pqiSHEUFYDARJHm2db2NsvyYWg/efrVt7/9bQTJ09PTaqWy8fDR86dPJUUGEIRxmBGZ4dsKIdb4WmutzUsSzdCcLo8mk96g98ajNzqdzs72Li7y6XT62Wef8jz36tUrnBfj0Sgv8OnpCcdxkiQRRFEqazlOZaWSpImqSl6cWLb105/+BGNcEMRiZtTrdcfx9FJJ1zUjy6IoabU6n3/xRa1Wmy+Mg9t3vn7yXBCETqc7uB56Xigr2tbW1lWvXy7pg9HYdoJPP/0UIbS1uUdgJgkJUSgZS2fgzXs3U4bmKYr+y7/4ebVez1KCwORsskjCfDmfkQSdZpiESOSk6WRmGaaqqa7tDgdDWVb8wHdMR5blcqlsmqbtODTN0TQNYRZFCUEQkiRnGQ7DiGU5mmbTMCmXS5IkrY4OkiQhhFmWYYxzjAGEPMtmEGZZxjAMz/NxHFMUJYoi+K//yf++u7F+dHSo65phGBsbGxRFJkn8i1/+fHNjI/R9TdFevnz51ltvea7XaDX9wGcYBkL48tWru/fvp0kmctxkMlIlhWGpi6tzPww4WRJkIUlS27K3tjbTNJ3NJjvbOzf9K4yx49gbG12M8fHxca1SLfI8imJRFMzFUtd1jDGNqDiOI6Ko1puuG5AE6na60+k0zzNjORc4ptmsvzo5vHXrNkEQk8l0Mh7XarXBYPjw0cPDw8OiIEpqiSYZnuMM25JVeTAcNBq14XiMCYwoFMcxxbCNZuPq6sLzHEkSiQJUa/XDV8d/6w/+9qDXXxrTN954OJ1Or88vISK3N7cm47HveRBCEkACwVKl4nteEkSaKvd7NwRBrG103dD1fK9Rb1MALRaLra2tL7/6QhB4SRJns+n6euf6+np7Z2c8ndi2neeYolC1Wi2KAgDY6bRvbm5ms5mXpKpWkiTZ8zyGYfOMSJPEsu319S7Lsr/86S9u7d+ybTvLsjfffHMwGGBc2LbN80Kz2ehd9WfTeb3aoCjq4vwyjMIkySzTUmSF5XgacRJfmc3ngsA7rrW21los5pbl0hRbFJAXuBxElm1lWY5xkSaZIMgUxcRRyvP8cmlQNJnjFCGKJEmEkB/4FEXxPF8qlQzDCKMEkogoCAhhFEUcx0EIkyShadp27LJeDlyP5/ksy0zTFAQBQkiS5OoFxUSR54BiGN/3kyShKIpl2SiKCILgeR78Nz/+Pyqq8uTrJwWRMwzzjW+8NxoNJEnq9/vNZuPw5avQ82VZKQBxa3//8PhIUVWWZRRNz7JsPBnFcSTw/O7m9sX5WbvTpBn6/PpS0ZSzq4sc56uiGwRBtVau1+pxEpdKJUEQnj9/LgiC77uyKJqGqev6/t7e6dHx7u4uItFoOPR9PyEKXlKiKNMkNc8KAADLMgTAiASGMW932v1Bf3t758c//vHBwUEcx0kc1+qNMAzCMNzdvjUbzXZ2dsbTyXXvWhCFUqnECfxf/eQngiDs37r18WePf+NbH7quc3T0uiAyjhOSOCUA2W6ueW5QrepB6HMsiyCZJokkSmEYWKal6zoJQEFCXBRJHCMC1qrV0PdkVbnu3eREsXew/8mvPwmcgOf5MApbrdZsNvYDv9lsUBSlKLJj22mWYoyn0ynLsvV6neO46XR679698XhsmIakliaz2Xy++OD9DwmCWC4NEqLZbN7v9+M4TeP0m9/4YDDoP3r0xk9/+tP9/f3trd3j48PJZLq9vV2t1F48ezUeT6qVKkXR5UoljpMnXz/xXB8XhWX4klCGELqetbnVnc/nNE1nGS4wEfhRuVzBREwAIssy1/MhQCzDMQyLEEXTHEFgkgSjYR9RVLvd7vf6Oc4lWfJdHyGUJAkniGGcpFnGcVxRFGma0DSNceG6rqZpYRiILLfq64uiUFU1jmOGYeI4LooCQJhjmOZZkiSrsrrqkFYf8H/4r/+neZ7P5/Od3Z3JZNhqtWmaqterNzc3DE3XS5Wz0zOWYyu1KkmSfhjEcdxZ69iOK8vyde86ikPbtMqq6tpWs9VUVMUwlm7oMQJXAPDq5ctbtw4gKPzQ53leFMXBoL+7u5ckycXFBYQAFFhVVMMwWIbJkvThgwd5lp0cn9A0bfpevdHGaZFjIgxjXdM3NjeSJBz2e4a1iNNoc2NzMBgcHx8/fPjw4vIyS9PpdPb222+bptFd2/RsHwIoKtLxycnB7YONjY2Lq6skS+fzeQGIAqI4DTHOJFkgCGxZNsfyEKKjo5M7B/dc1+Q4XlWVIst9z6tWq57r2pa9ubl5c3VNIBIDol6tljRtPBhRiMxxJsgSpJEfBAInuaZt23ZRYEVRXr16dffuged5QeTvbG+Hgf/1kye7u7sMw5TL5V6vx/P8dDrd3t4OgiBNM8sLcgKPR5N6rbFYLKrV2uXlVb3WUBSFRHSREYevD9fX1oIwfOvNt/v9YUkvBWFYqVQWi8X52QWCVJqmlUotjuP9/YPnz5+PRuOdrV2Kpj/99HMGya7rQogpmlQUeTQaZVlWKTfWOt3joxPDWZTK5cAPFVlJklTXS5ZlNxqtPMMXl+ccQ1E0SSGK4znHdoqiSLM0z7IkSeM41koV2/eLopBlKUnSLEsxLgiiAAASBAEBiAO/VqtBCPM8xxg7jrNq5/M8JxHJ8bLr+wghTdM8z1vJTBBC3/dhGqccw8miFPmBpmgUiUSel3jp4YNHmqZBiFiaNQ07jTOW4VmaQ4j+y7/8iarpYRxX67XpdLq3t9ftdnf3d1mWWS6WR8dHX371pee6h69fIQpmecwJgsBLFGIuL67KpSpNsc+evvBcjyRR4EeKom5ubjm2t9ZZj6LYdf1arUEAcq2zVuQ5gJBhGKIgZFm2LSsIgiD0y5WyLMmfffYpTaM33niUJBFNoWq1/OabD0ejgarKJILX11fjyfD6+qrZbHAc+/nnn7948dxx7MlkcnNzg0iy1+sHQWBZ5nwxDwIPFzmEsFqtsDzteG6G00azfnhyiIs8yxJc5LzAXl1dttdavMSVKvp8ORuNBixLLxZzCjH9/ghj4Dgey7I0w8ZJYlp2nKbf/f73/DCazuccx+OCuLi6OTi4nWV4uTRpmnEcbzSakCSV59i23dF4kiYxkRYIkJPRSJPVq4urLEkBLoa94bg/sCwryXJBVgiInjx/eXRyOhhPEM2Op4vxdGHaLsuLEFELw0AUc35xTTN8s7XmBmGYJJpe4gTGD5xbd/a3djZs1+IE9uDOLUHmXh6+SIu0pJY7zTWO5h3bDf3w9Ogs9GLHcm6ubnBa5HkhiUoQRJcX13mOswxHYZxlBU2zLMtTNAUhKgoAAMKYcBwvDGMASJblwjAOgmClnk4mE9/3AQCiKKZpWiqVyuUyQhTP86qm8Ty/EsJ1XU/TdCVxgv/T/+N/w7Kspqmz+dSyzWazkWWZ57pxkiAEKlq5UqrYjt1stxzPRTT99NkzThQIQOzt7T9/9Zwg8gd3707Hk+HNNcYZQhRFo9FkRPPMcDTavbV7+/bti4vLq8vrZrMVBGGtVk3TNIqiJEn0klqrVAI/GI1GtUqVRsgwDEAQ9+/d++KLL5eWsba+oWrlPMMYg05n7aZ3TcKi1qxFcWAa83KpBCF8+fKlLMv9ft/zvEajwTAMQihPMQUpy3K0kj5fLrvdbppmlutAEjIM2+v3bT+4e//OcjG1XYuhySAIKIoCgBqPpvv7t2gGpWkynUw7nQ6DKJZmyuXKeDR0HVcUxYkxF2SZhkiXlcj3DcPkeZGkqRRn9WYTEpBBTL/f8zy30WhMpuMsyzDOeJ73PKcoCgoh07RYht3Y3DAN0/d9AhQAwN2dneFo3B8M79675/s+xoRpmhCiwA95XoiiiGE4ApCeH7Asy7L8bDqPohQhSlO1KIpt23Vdr1KpXF1epknGczzHC7quZ2lOUbReKmVxOhqO6406z9Oj0aBWq/l+EAQhy3E4IyaTBYFJCEjDWKqqVhR4NJpCAEul8mg8LpdKAGJFlYuicB2HAIDnuCzLVmd0nmNAIoCoKI44jqtUKi9fvmw0Gp7nua6LMa6US5Hv8Tzn+z7DMKvmPYoiXdcRSXqBjwskqwrGeKV95nkehmGtVovjGMmiMpmNB/1+u9O6c3An8IOr4QXDMBzDtFpNz/FMw1waS16U+sNBrV6v1xuvjg4VRYEkmaYZgMSLl6+atdr2zh5R5Fma+qG/ub3lBl6cpnlezKZzx3YRorMsQ4gCgPz66y9qtdqDBw+OTw4d00nShKYoTdNVWcnzolwquW6wmBs/+tHvPv7yCwjA1s7uxeW167pJkuREZp2eqprMc/x8PldVlSTJOI5lWV4J1Iqi2LadJqkmqZqm5nma56lhLFRVFwWBE4TLy8vlYiHrpd7VtapKFV0PAi/wvDCKaIpRFYko8sFgAkBBMcj1nPU7t49fHwWh73tetVIFgKBpqlbWh/0BTzO1el2Wlclkvt3dmBnLLMsFgSMwwBirqk6S5HQ6k2VJkoQkSRRFi6IQZzkJKUEQKcRsbm6dn1/0+z1dLxUFyLJClpQkSSFJbWysn56cXV1dI8Rg7COEGo1mQYDxdJHE8dV1L/ADimLoAkxmcwhRlmOW5YsCMCwvK5xj20xBxGnm2h7LsX4QqaqKKHI+nwkCQ5LkeDKqViuOY12cjyiKLuk1CnJFTiCAwjD0A79SKmuKOpnOup1OGEa1RsN27SiOSIphGSZOEtO08hxDCLMsJ2kKwESWZV3XkyTRdT0IAoIgRFHMssxxHEUURFHM85wkyaIoVjKT7/sIoThOZEUiCGI8Huu6LsuyIAiGYTiOk2UZypNkrdGSJClNE2O2mE4naZw0KlWGYca94Xq369iOpmosw5T0UkEUGOc7u7s3/d755SXLcYIkHL18lSVpu96IwzBNk8Gob9suL3GtRnsyn1wFUa3WWFvbCIJoOBjMpov9vdu1Ws33IgrRECJA5CRAruMnUdJd33AdB5Fks9m+ur6+f/eu60XD4ZCEMIpCAhDG0hiPh1s7G7IshZ6fxIkgiHEcp2nGcZyul6IoRghxLJfneZwkBQHSNC2IYjweMxx3dXPTarU0TZsb5uHrV3fuHYShx3G0oiiqogAIJ6OZLMnr6x1cYNu2CUAQBCEIQpqmEEJcYMd2Wo2GKIob6916tbGYzSzTFHiu3+/TLDvs9xmak0Q5y/J2u3Zzc9VsNPSSfnFxsbe3M5lM4jjJU5wk6Wy2IEmqWq1qWslx3Pv3H0wmU8d2bMclKTZNs8uLm0a9WSpXBV6cTmcQUr4XjCbTIIpVVV0ul6Io5zn2/SCOU5piKYpOktS0hlEUI4oJwijHIMuLKEpolvODEAAyCsI0iZOEYll2uVxCAH0/jKIoz4swDG/GI4mXaJoOgkDg//oKGEcRzvMkTd1LT1JkSVFpih6NhkkcK6qOEOIFPgyj3qAvSQJBEFEUpmmm6zqEIAiCNE0lSbJMk6dRGIY0TUMIEUJRFJEkmed5URRJkgSBL5CQ4ziCIGzbvri4EEVRlmUIIWQQTWRFEsZnJ6ehF0BM3Ll1q1Gtba530ySxDTMMwlqtFoZhEsf9fp9ESFPVarV6fHyMKAoh+tEbb17f9E+OzxaL5fn5RbVUrdcbRU6kSarIaqVS43k+z3ASpywrjMdTVS2TkH369DlBAJpmCkwYhjWbLRZzY7EwXNfX1NLa2nq1VptMpkkcG4bRbDYlWd7Z3X3jjTcUTWUYlqZpnuMXS2M4HJMkBQAslSqSJJMk5ftRGEYcx3Ac7fteHIdpksVxfH1zUyqVPM+/deuApZlWs0lBMnC9KAhVSZYEXuT4bndtPp3M5rNWu83xvCIrWZpxAu94Li6Kv55tEEXouwWBF/NZq9HornUXi8V4OEqT9Oz0wjQtggCtVocTeEDCIIo8P9B0/fDoeHt3j+P4SqXaarZ1vZznRUEAggACL1YqtUF/GPhhqVRZzoyKXl3vdJMokUVlNpkXuKiVG1mSx3Hied5wONnfv4UQFYZJmhZZVnheGIYxgCTFsGmeLw0TIBqQlB/GSZZnmCAgms2XpulQDJ8kOAgTRNGLpem6QZrlAFAcJ7ZbnTTJLNPyXB8AsJqSl8o6JAFFIQjJJMvn8+VsPs+LAlJ0mKZuEARRbLuuY9sUhRzHnE4nlmVAWNRq1UqlFMdRHEc8z61+vZVEtXpHeZ5nGIaiqNX43vf91cV0Op1WKpVSqbRS8lEaJ7quW7a51mpzHOewXOyHRZaJvPDw3v3FcolI5LquHwae7zMMQ9E0IACJULfb5Th+Pp9rsvrwwRudZnPU6wm8mKYJCUhZVgFCNM8EYXB5cSUIUr8/8LyQJFEUxsbSfvTwLcc1RIFnaC7Psnt371qGeX11tb+/7/thlmaqotA0TUIqvLiO49hz3QznF5enb7/11tnFaeB7vuvhPE/TNAyj+/cfzudzhCgA4Hy+0FSFZ+hqtXp13SNJcjVU3Nra8oOAYdgXL16V9FJJ18LIW1/vuJ5jmss8y1rtTrPRKvICIzKMIkEQZEl6/PhxqVRSNS2JItd1gyBQNYUkoWM7G53ubDI9Pjq5d+/+aDpdGubtg9vzxQIhJIjifD4rl8thGAiCkGWZoqhff/WVKIg8L0Zhqqn6bD53LFcQhA8//Pbjx59ube1YlnV2fpnnhSDIFxfna2vr0+mEhIjI88vLK9Myc6KoNRpxnJydnUdRKks6BIimWN8LC0ykaV4QBEXRQRBynAgRggDgKA3DmGZo348Elg/8mKJggUnLcglAsLRQYNLzwihMHMMzDCNJEsdxJFmM41gQRYQQTSPDNDlZ9n2/XKlEYegHoa7rcRTHcYQQKgiiUqumaeI4FkUxcRytpF/btooCO45V5BhBiBACABRF4bouz/MQwjRNkySJ41gQlVVHH4YhQRAIodVo3jRNGPmBxPO2YQmcgABZLZcRRLPJjCYRkeF2q80wzGAwMAyDAESj0UiSRFFlCCFFU0vTbDTbgiBBSBIEQdHM5ubmgwcPZEV1XV+SlAIX19c93w9omuF5caO7dXDrzt7egeN4iKQgQJKkIER7XqhrZdtyCQJOJ3PX9TEGs9ns/Oys3+vPptPr62tN1RbLhapp88V8d2/X87xGvYUQ026t1WqNPMNBEC0XFoXoje6mpmkIkbPZTFEkiqZa7YYgCrIskwjRNE3TVLPRrFdqFEnSiJJ4MQmjTrudJ+liNldkSRJFQRAs2/Z9b219PYwigihEUazUqju7u0VRDAYDCEC/359NZ48ePNRUraSXihyzDAsK4AeBbduDwQhCUpLki4uL5XIhy7IkSeVyBedFURAkSVGIEUU5TfHNTc/zwuvrnmU5LCtUKrXpdFat1hCihsMJRbGiqCwWJkNzpVL58vp6tphnGIuiuDCWQRhGSZZk2A9jx/WiKFEUrVyu8jyfZ5nrBgQBioIQeFGSVYGXVaWMEGvbHoX4PIVFAbe39tut9aOjM0AQt/b3d3Z2OJbN04ymKAQITZGLHNdqVY7nCgi9wHd8H9EUxdBxnkIKZQWmGKZcLrEsA0kQJ4Eki1EcOK51dPS6KDJREgSJT9OUpuk8z4Mg8DwPQkgQRBiGge8HgW/bzgqXAQBAkgzD0DAM23HSLEUcw/iupytKHIQkggSgCQK0Wm3P9zzfN12ngKDV6QxHw1Kp5DrO6fnZTa/HiLwgCLIk+65Xq9S6rc7xq5fdtbUg8CeTHiChZTrt9bWbw36Bwbvvvue6Xr3eDILYMq3ZfEoAQlFVRIGL86tqtdKoN+aLpR+ECDGO68uKggt8fd1zXBvj5e7enmk58+WsUi67vjMfT8M4kGWNQjTOi3K5QlFUnmOcYYIgeF5oNBqOa8ahN73piZKsVyqiIPAcW+S5ruoMw2ia7rsuBEQapwyD5vaURLRp2mEYdtclCIGiyMvFPE9ShmKSJK1WKnmSEiQKgyAiwm53TeS5PCuIvLCWFsswAADHcQBR+J4XxeFiMRN5nmO5m5ubRrPB83xR4MD3AUEs5ktdrdTrzSiKarXa9vauaZqQJJvN1mQyWSyXqqrxvLi5uRlFUb8/5Dkhy7IcF6Ioyopi+46sqkkcwwxHSYIQcjyXQjRCdJYXOMviOKIQmWU4jiJIIppCmiZjTISBH/geYIjQD2iGxHmBKIQxEfjRdDrPUqyqquM4BC44nqtUy5Ik+b5LImSaput5QoF9nJOIDOOYgASJkOU4BFEIkhyFoR8EpfWW6xqapq4qYp7Ti8WMYWle4IPAY2iWZdg8z/M8tyyLoqgVx5RlGctxFEPHcc5QtG1aBEE0a/UgCHKMeYZFiIQ7e9sUg0oVvQA4TqO8yCgWNTqtpWmqJV3UVV6VKZ6heJYVhWq9zvG87/slVcuSNPL9OAh0RYr9gEXM4GaA8wLjYmlZQZKOpgua5ur1huv6lu14vj9fzmVVms7HvEgDVKRJRNP0eDwzHe+q37d9nxJYQZed0Jsac4rjIEWXqmVZVzmR64/6rm9ZtimJoqqom5ubFMO0Op1ytRqnKc0ygizEWVzAghNZmqG8wJdkhWPYVrVR0ytJkEicMOoNeJafz2YkLKbTUams2a6XZHmOcX8wBIjCJKmWy51mK/PDzU4HEUTsutPB0LUdRVQ4mu+02gggElBZkpmGNV8sn758MV8uppNx6HuL2aRWLYsiH6cRANhznclwxDGsJIij4YgogG3ZNE3NZtPXr14SBEFAguEY27GCKGi0mpVahSAyCPKLi+OryzPXMRv1qigKRZ7TFCUJ4mw64xnGtR1JEHmWxVmaxnGeJWHg0yQsl9QsjR3LikM/z5I8i4ki8VwTFIllzTiWZHlEIJziJMVpvdlQNFWv6LZnRamfZGGpqgdREEQ+xVBe4EmKkmZ5luG1tS4kkSRJ21sbFAlJQHiu45hGmsRpHOZpInDsfD5d0Y+qKquKzNAUz3Pd7jrGGUEUEAJB5JMk8X1fkiSM8UqTkWU5x1gURFHgPdf2XQeRIInCIs84ll79LzBOQ8ez/NBL8gQDHEQhLwnHpyeypl1cX0m6Rov89aBvee7hyfF0PiMRWavVdEU1Fsvri4tKSXcMczaZmEuDpdnTk1NF1Ta2tsu1ahDFul5S1ZKul2zbybIsTUOKJikasTx1enpsLJYIwrW1TpxEJ2dn9U7TDT0v8kiWHC+mKS7cIFI07fD4iGRIAhaYyA1rOZ2MC5w/e/bs+uZG07WCIDieG0/GuMCVaoUXuOcvn2V5BhF69xvvAQDNpVnkxf0794isqFdrk/FsMBj4vkvTEFEkIEFBgNt377GCiBgG0lSpVrNNczoaXV9ckAQBC6LTbJX1UhiErWZzMTNdOwi8iKbYJMmarZaiaaIsRnHU7a4/uHevVqnkeeY6trFcUghxHCsIQrPR3NzYggQQOJZhGEkSCUD0+jeXlxdplp6en3daa4ZjPnzjoayIYeRkWRQnYZJEtmPVKpUsTe/evefYDseySRT5nhf6QRyFLMtkWRwGIctQjmNahoEgoCiYJCFB5Ens51kURx7GSZoEosRAskizKM0SmqX9wEvSxA88P/QYnmZYxHK0pAgsz9Askxd5AUABQJxl8+WSZvl2p+06tqbKNIVEgSMIHPhegXOGoRRZIkkyzWJIFmkWN9sNXuRUVVI1KYp8vaQiRAZByDAMy7KqqgqCoChKmqZhGBYYr45+TVFKmkbgwrGtNElgQSAIeY6Dk8m4KLCua3pJpRkmimMSIU7gojTu9fuz+ax3c9Pv9xVZXi4WcRxDAqRxYlkWg9DG+kaWZI7jXF9f8SKfZLGiyqZpGMtFpVb1fYdlGGMxz5J4vd1WVRXnmKHpkq4zNJMlqWks0yw2zeVGd02Rhel0TJJAkaXLi4tGo7Y0l1pJtxxnvpgHYdhZ63iBr5e0AhKu5/lhwHEMRVGua5fLpWazsepI0jShEH12fg4RkhSZ5TmW5+bLBc1QtutGcez6Hs8LKzHlyZMnrutVK9VSqby3v99ZW18ul9fXV3mea7qaYzyZTnFBSLLcbrcJABzXW516cZykSbqxuckwTLlSEQVxf3+fF4TOWqdRr/ueRyFULulra2s0RSdhuLWxefvWrZPjk1q1GseRbVvvvfcuTVMUhabT8WI5T3Di+57nu1Ec+oGvapppWQzLRHF8dHIUp0mcxBzHURRVFECWFYZhOI7P85xlWJqmWZZbX+tCCFmGFQUREAAhBCGZ51gSZUAAkiTDMHQcZ4VgqoqSZRlNUwAATVWrlUqj0bAdi2YQhAAhyAsCTVMIIYTINMsQhYq8GI9GFEKKLDM0s762VtJ1RZIZmp7NZkkUG0sDkRQJEQCQpukc4zhO9FJ5RY4yDK0oCsuyAICV2EnT9Ir7zPMcEkWz0RAEPk1ijmWzNAnDAJGkLInQcRxZlhVVpWimwMVGt1sUhef7eZ4rqjIejYzFkgSAZzkEoWPZRZZLghCHoSSKsiiRCA0Gg4IoigJfXJzJkphliWkuo9BTZDHw3GqlxNA0CYG5WJa18qg34hHLQTawXZpCiiRhnAWBB4oi9D1d06rlarVSxRgjRIqiAEiolfSjoyPbtcvVMsMxrMD3x4OCwCQJeZ5mGUpTFY7j/cAvCOy6LsMwaZZlef7q8HWcpY1m04+CDOPZYk6zbFEUgii8ev1KFMW7d+7QFOX7/nw+L5cr+/v7JCSnk6lhGHGairIISJLjBdt1Hc+jWcYPQwKCJE8VVZVVNctyhmPTLEvSVNFUjPFgOIzjmKUZSICSruMsT6IIAjgcDPq93nQymc7nHMcsFjMIgSDwN72r6WxaEPjl4XO9pD179jTK8snMmMxmBIR5QfQHg9FkqpfL1VpNUpWCICazGctwlUpNltUswwzDKYpiWY7juNVKFUIySTKOEziGBwRJQhSGMcfxLMO5rpfneavVIgjCcZw8z1VVFUVR07QoiiaTCc5ziqLCMFj15p7vFgWWRInjOJZhzeVSFMQkTihEAYLgWI5lWAAAy7A4zz3PkyUFAJLnhflsHvghx/IcyzM0wzK8aZqTyXS5XFqWhTEWBMHzPJZlK5WKKIq+79M0jRCZJPGqAWAYGuM8y9IoCuF0NqNZhgCE4zhBFMRpQgCg6/pwPDJM8+z0LI4iSRAno1G72S5yDAii1WzWKtVWoynLMkmSiiqrqoJxXq1WNFVZX+/IIkfg1DYXSRxyHJulCUlAVZAUTvQMm8qhM7NEWmBpzrbsNx48jL3Atew8yXzbnY4neYZlUYnj9KZ3k+O81W5lRd4fDV3PdQO/IInxbJKkkShxlr1M0uj45Oj165ej0dAwjDzDEJIcx0MKnV6cm5YZJpEXBhnOKYahOdYLg+FkHKUxpJCsKIIg5HnuOA7PcRRCe7u7CFHT+VzT9BxjmqYBhJpeynPM8UIcx7Kq0Ayzub1lOTYv8WvdrmEarMBnGBcADMcjnucb1VqWJGvtTknTsjjJ0nQxXzA0s721dfvgIM0ShqGjKKAo0ve8IPA6nZbneePxEFFkURQMx01mcy8Ir3s9LwgKQBi2dXF9dX55QUCS53hdL+u6jhC1ubG9u7tXFIRtOfP5guNE348s20aIynEBAMzzIk2zLMMsy2FMrJxAEEIAQBRFruuu7oIrtkiS5BUCl2U5hAAAyHHcSnVyXMd1XZEXOIZJ46RaqZiGwVA0z3GNev3hgwfd7vqDRw8URaYoiqbpVYHUNI2iKMNcMiwry7IoiquTfTqdrkagGGPP8zDGRYHzPAOAIEmYJLEo8gxDQwjyPIN6SQcATKdTz/e3d3auezd+EBimSdOMpuuiILIMy9CMZViaqlIksk3LczyOYZM4kUQpDEJZUubzeZZnnbWWqskAYEnkyqrMs7TAs4HrBp5nLBYczaICUBiuNTpb7c17e/ea1SbHCLbh8DTHImZvc1di5XF/Mp8sdaUiyaqqaYNBP0lTSEJIwsFwYNk2icg4TWuN2ng8ODo6jJM4CP0kjfI8S9M0imLP9Tc2NqM04UUeIDg3FoIoPX3+rLXW9oMAMXS1XnvrrbfDKHry9AlN07u7uxhjSRBm06nneySEKw7HD0JEobzIJ/NphgvbcS3Hdl2XZhjbdRiWLQBIs1TWVdMyZ4u5H4WlcslxHIHjBY4P/QDnOYQQEABBEpHkndt3bMsSRWF3b4cARaNRbzTrFCKD0E/TOM9TWZY4nlN1FSJKUuRqvR5E4Xy5XD2qHwSBH1TKNY7jl0vTdb3FYkkQMMtwvV6v1RrX170kTnFOZFkRhQlNsapaUmQ9CtMgiCnEZFne7/c5jms2m7qur6xaK7qX53mKQivUDSGEcV4UhWmaYRh22m1FURAi4ygqcMFQtCSIeZrJkkRgwne9IsdZkuZZXhDFdDpdmUBIRNq2vRptUCQSBJ4gCI7jVuomQRBFUcRx7LouRVE0TZEkJIjC9z3PcwuM8zyDgKBpCtIMjYuC4ThRlrIcN5rNar3mhUGSpgCCVrPBsxwJQLPZwFmmqgrHskdHh8fHR57jAKLQVTWNYwghJ3Ce72Z5EseBpioMg9qNuiwKZV23DVPmRYiLPMpLckkXtI3GekOvI4LeWttZTgwiBY1yY7OzpUslIiXXmpu+m2qKDgFpWZbruizDSaLEshzH81tbO1s724LIu54DIBHFkee7kiwBCLa2tyVZyjGWNZVh6UqtomjKwlgkaZIReDKfuL5ba1QFWQQQVmv1Tme9s7bearVvH9zx/ODq8mrYHwqC0N3oEhCIspwVBUQUhGgwGlIMLavqda9Hc9zF1WWr0yYAOL+8lGXl9PzcsqzpfMYJguO55ZLOscyrly/N5bJaqZAk9HzXcR3Xcy8uzimKzLKEoknHtXzfpVmKIDCARbPV8H0vDGPb8RzXX90iNre2ZVXlBT7FOWLoKIohRGmazeeG6/i27UwmU5wDCBGEKMtyhBiOlQoMSJKmKE7XKoqixXFqmS4Af426+b5vmqbv+4vFIkmSoijSNA2CIM1SP/QBBJAESZp6vodoJEoCJnCcxBRFQQgsyxQEbrmYK4rMMjTGmWEsF/OZ53k3VzckIAEB8ix3HTdP8quLq9APaUSvjLvz+dw0zaIoeJ4HAKxq7QptliQpTuIwCvM8oyiU4TyKwiRLcYFhhrEfhjTLKKry1ZOv8gIXgOh2u17gGaZZEAXPMhCAsq7PJhOeZe/duSuLwmwyCQPfskzLNuv1uqZppZJeEMTZ5bmqqrVqpciyNI7X2msCx8uCLPOiyAjG1CgrZXvhoJyUWYUlRZGWVU5HOSJTcnAxgCmqqk0ipiRGsw130BtmKcZ50emsQYKkaHaxNMfj6e7uvu047U5bL5Um0ynHcyzH0AxV4EIQRZqh4yRO8tQLfAISjut4gVuv1zRdmy1mFEs/ff705PTMtp1KtQYhSRCgXKmGYURCRAJSEiRFUUmKAiRCNFMQRKvdoVm2IAhN1yv1OkVTmCDG06nlOHGajCaT+XJBc5wkS4fHR7qutVstXdXarSbHsrIseb4XROHqqR4+enhzc3Vxee66zmIxMy3D892iyPZv7SEEDXPpeb5hOppems2Xrw4PW+udcqVsu66q61ES8YIQhXGaZqIgJklaKpUoRGNc9G76o+FI4EWaZgiCIElSlhXbth3HMU3LdV2EUJpmQRDQNG2a5nQ6dRzHdV3P81YsnChJDMfmOE/zlAAEohAvcKqmFGRx3b9aLBayLNWrFRohx7Ft24IE4bkOgpDAOYXItU6HpmiKpLY3tymSQhAlcUJTNIUo13I5lq1WayzLchzHMIwgCBjjlXtO0zSEEAGI6XRCUajdaTMsoyiyrMokCbMshQd37mQ493x/Mp0SEEZJ8vT5816vlxdFnMaGYXIcm2epZRiu63Ask+epKiscw8ZxHEfhzfVNnMQ0S8/mszTL5rOZaRhJGIauL/JiFuckQZXUsu8EDGRFRuBpniqoPC58y69oDc+IGMA5c88YmcvB8vLw+vqk3zsfz4eONXcABhWtlsd4Pl6SgGIonoL0aDCdTRYI0TTDOK5bq9U2NjdH44kgShnOWI6NkySMotOzU8/3F4aR4xySZBCF7XZbUiREIV0vOY47ny9My8IFMRyOBv1+gYlud4Oi6MAPB4Ph0jAIoqjV6jTNuJ4rSdLh8fFsPhdFwbLtPM8N04iSaG19HUCg6hogQb3ZDKMoiqKTk+O9/d12uyXLkh/6GOcEIBzXoWi6AAUuMACE73vlSgVCmMTx9c2N67qGsUQIua6/AmRpiuE5fjQcz2Zz3/dazQbHcRgXGOe+73uexwuCbTlpklIUVas1SJJcLBckibIshwBRiIaQdF1vuViGYezY3ookWtnSJUnieb7T6VAUFUURhFBW5CxPi6JgWbYgiizPBFHwfC9NU5pmFFVO05goCoahzaUhcGyepXEcea6TpQkEIPD9PMeL+cIyLd/zV3W02WgWuMjznKKY+XyxMrwjhFaoPMZ4Pp+vLqNJnIRByHO8JEqAACSJCkwgRJGQhJqu+WFAM3RvMJAVGRdFkiSD0XC+WNAsy/FsmqW+701nk93dHQjBq1cvr26u6o0aCYGqyCxD9fq92WKOC2w7drPZGg+GJ0cnnu2mfvLprz4DGZyPFq36Gs+Iu1t7ZbVKEmgxXfYuBrGdestgOTImN1MyJcmEHF2NR5cT34yffPbCGFlEAna7e5mPcVwwJA8ycqe716h24iAXBZWi2SwveEE4OjoZjyeu6yGKms3nJCIvry+XywVJkq7rhnF8cXkRhMHzly82tzbH4xFFoXqrVanWEKI5jveDcLkwLNOyDKusl+Mw1vVSGISKoqxoqSzLhoMhx7Icy3GsMB6PKYqq12qb3Y0oDG3LkgQpTzNEkvVaDWP8/NmTy4vz5XKxMJZhFBzcOcBEvrSMwXjgei5BECtvNMfzAs9DCGvV2mI+N00LAGiaZqVc8Ty/KMDmxpbvBas2JYrClVsyx3g2my8WC0SSHM85rhNFsaJILMNmWe57AQlRURBpmsmSGgZRlhVZklumw3HcyvK1ck7meZ6maVEUmqZlWZamqWWZuMAIUWmWup6TpAkuMMsxRVE4jn1+dhZ4buR7BM4oklRkkUZkFAYcw/AsMx1PFrO5YzuL+YIoAASQKIg4iiGAqzo6Ho9Zlg3D0PO81QWUZdk8z23bJgjC9TyW5RmGdRwP46LARRwlJEQQInR2fj6eTJI0jdOY5fnrmxutpLWEtTRJatUqz1Ce4xSAIClEQPDsxTMv9KvVarVemx8ulsaCohEigWUudVWJo6TABEnSOC0ITGQFjrw0i4rt7l6W5EmU0yR3dXGtSjaLWNNYFIBGmCyiXOcVmRUoyGzWu2uNrd5olgPCdxwSocnN1LKtervBQI4owHxkjGfTnb2dIDBCItP16uPPvoyjSC/pkCTDKHz2/LkkSXZgRVE4noyTIFZlzXdcw1jqlVqSJMcnxyzN7G5u+UFAEMTZ6RkkoSiIABDXV9eP3niU57kiq3mamUuLIhmaYrI0QySqV+uKok7HEwqisq7vbG0fHR3lOL+6vLp9cMCzHEszWZLSNH1w+/ZXX325tr5+07+uN5ulagVeX+I4ygnMsBxDMglObq5vKIamaVbTKEmRPd+fTibTyaxSrnquj8LEc32aokkIIQBxkoRBEAaBIinD4dgwjEq5Pp/PG40GzgsAyPFkHPghTdMY5wzDx0ksiHyep5AEICsoGtXrVUEQCKJYNS4rs16apvV6nWXZ6XQ6mUwAQaRZatomy7JxkkCSBJCwbMcP/CRLWJqCEAKCYBmGQghneRLFoChICNMkgQAAAEhIIpYUBMH3g6LAURiuGqM0TQSBX+WArKIAsiwrioLjuNV91HUcjuWTJA2CkOd5hGiGYYuiyLIUXl1fQwhfHx8laSYr8sM3HuGiKJVKeqlEkHA0GduuleTJ+ub6eDpqr7e1ktbqtGbLmSRLgAQUSVbKpW53bWksRVH2vDDPCFnUHNPvdrbfevgeIliQI12qSII26E0G/clibvYGwzCIpoORTLObrU6rVNlotHI/jCy7CFMesVudLZESyYTqnQ+vjnvPPn9JJshbhERMRnaCIyIO8jjBpuUDwJSr9ShOM4wxAZrtRpSEeZ5SNDkZjQAkOJZeW+sEvhfHwcXF2e2DW7cObg1Ho+tez7Rsx3Ety9Y0vVFrQABd2xV4oXd1/Y33vrnWWkvjdDlfhF6oq7pjOc+ePD0+PBY4DhIAEkS/32cQVS6V8iynKWo2nYZh6Fj2zu5Os90Mo6DRrEdx+OuPfwVJkBaZVtW9wKcRbVlOgYnJaEoQUOClLMX93tB1A1XVJVEucsJaWiIvpFHaXVtPwpgkgO+4ZU3DRU4Qha6rABIIweVysbOz9fDh/VJJK1dKoii02k1RErIsoWlKViVd18oVXVYkraSmabqKVOB5HiG0OnDDMOz1en8dRlIUAIIMZzRLC5LI8iwkSc/3EY30kl6pVEBRUAiVSyUSwjAIREEgiiKOItdxAFGU9BIJYZqkPMcHvu+5HlEQgR9AAjiWTVHUKqxBlmXLslbRPSv1gCAIgRfiOLUshyAgQvRoNFkuzThOSZKGSZqajg0IQhAEwzIFSUAIffnVV1medbvder3ueh5BEFme7e7vPXj4UC/ppmVGcTyejmmKxjjjOFbX9Pv372Nidb1mScBsb+yrUqlR6gR2PBkuZUHL4iKKMlnSKJpbGnaGMcizWkl7/sXng4szgYKp68gcbc1nie8XSbJeW+tU1nK/CK2IKbivHz9fjMzlyMx8PLqaXl+MzKV7dHgmS/r21l6z0X7+/OXFxYWiKM1mo9Nu39rdr9WqiiRHYWQaBgnBbDwpctztrGdJiguMMR6OhoqmyrI8GPSHw2FJ143lssixpmp5kgk8H4eR57ie41qGgbOsXq299867BS6iIHAd17Xss9Oz2/u3+jc35nIJi0IRJd9zLy4ujk9OaI41HUdUZMMyLddNCdxst8bL2S8/+5gi6Xqj2Wy2GYZ78eLV5eU1CZGulShEQQAlQaIQFQQBIpGxWKiKkuc5QRAcy6qqoqhSuVyiKBhGPs/zcRJxPMcwtCCwvMCvTk+aptI0zbM8DEOSRCv4cuXxFQShVqthjFen/AossiyLYRgAgSSJHMc6jgMhXC6XURSoqtxqNhVZ9jyPhBAhlGdZGAR/PWWCsMA4TRJFkn3PW8XdpGlKUXS5XEGIyvMcEAAhyvf9oiiCIDg5OQEAlMtlkiRLpVJREIIgAAJlacYwfKVSy/MiCmMK0SzD0zQLr26uZ/PZ/UcPt3e3gyB88uQpYmhEUy9evRqOx5zAQ0S21joAwmqtZlrW3fv3AISu79EME4S+wLPz+ezWrVt6qXJz09P1Uq3SQJDZ37ltLdzFxAAYbXf3PDc+OTynKNb1gyhJ1HK5PxwEvv3l41+Zs0HkLk9efO0aEwZinPiBbSzHw7pW8+aeM3XeuP3WVnvn5devEz/rX42WU2s5MXlGrtU65VJ9PJ7/2Z/9VZritbVunue+77daLcsyd7d3Go2aLIqIJClECbxAkRQoisViblum7/uKpiKa9nw/jmPLsifTqSIrFImM5ZJjuc8ef3Z9db3W7oiCuL62pkiyLEm3D+7s7u42683JaAIJgqXpNx4+fHj/we72dq1SC/1QU1SKonrDfpQmYZJQNB0mcYwzWVf3bt0iSHJpGIIgEQRYLowVqO/7gef6cZxSFN3vj/KsiMPYMe35eHZ9cTWfzjzHqVeqRY5Hg4EsihSNbNtKkpjn+fXumm3bhrlI4gjjnGXp+XxqWSYAwLLMJIl5nuN5DkJQFBhCsLKk8TwfhiEAgOO4Uqm0en3zPGdZ1nYsAAHLskEQ1Ou1RrOuqDKJUJZnEIDlYhH6vmPbLMOEQRB4Hk1RAs9TCEGSnM3miqKGYWRZTrPZ4nlB03QAyBwXsqJyHJfneb1eX0UzuK5rWRYAwLatKIpJiNIsN5amY7uAgCzL8bxYFMD3AsgL/Pr6+nw+Wwk3CCHLshBCWZ49e/bsr37yEwIAludolv308ac5xgzHQUTmGG/tbFu2meXpcDj85a9/nWbZD3/7tx3HwznIUuJXv/jEs0MEWIApz4muLvq93qjfG2IM+sOR7bk0TQksnI+v15rlVlXrXZ7IApqPbmq6fO/2zv07B67ljq6n3/2N789Hy/lwXtfrv/jLX14cXl4eXbaq6wIr7u3e4TlZ1yuiKB8eHhmGeffuPZpGR8eH1WqVKIp6tXprf4dj2HarxfPcZDy+vuojSNIUhf66ewWqqmxvbQk8jzGeTCYURY2Go95Nr1Iqq7LCsWwax2udjqIojuX84he/oCAJASjy3DItBMnJaPLy+fPA813HMZdLCpFxHIdR/PCNR7Zjy6qyNAytVBpNJoPx6PTijGEZz/VxXvC8sIpF6HY3FEVVVRXjQpGVaqUaBaHneYoku45br9QJXLQazdDzCVxQFIrCUNEUx7EBwIaxUBQxiqI0T3Kc4zzjed51Hc/zkiRZYUQY5ys0mGVZCOEq9wtjTFHUakDvui5BEGmaeK6LcQ4AyHO8GvxACAGASZrEUcyyLIUoY2mQJDmbzgABPNdbyai+58VRLEsKhHCFg8xms1UGmCRJvu8vl8vVl0ZRtApdWuXApWkqy1IYhrwgNmpNimJs28V5URQgz4s8xwQBIYRwZ2cnTdOr6+vziwvXdYIgqDcab7399mw+sx07jGPXdT/74nMMgO25Z+fnlm3zouB4nqwoJEKarq2E3/lsQZF0GEQ0ybz37vsCK1OQSWMc+elivgzCyA+i6XxhOZ7t+BwvqIr4e7/7AwDy68uTO3d2Qt8WWLLIgjwJChzXSuVGtZlF2Ww0azfW3n30TZGVeEZEBXV5evHky2ef/PqxwCs4AwInLRe2JMgUohFJ2Za1ur83ajXLcu7euXN9cXV9ed1dX2dZOYqSSrVGQjKO4ulkVq3U1ta7d+/eE3ie4zic5Zsbm9ubW3cO7oS+/5O/+vcFxl998RWNGApSzVrt5YvnvZvrLMuyNJUkCeP8V7/6lWEYvufV63WRF3VdJwDR6/Uuri77gwHLshRCnuednZ8NhkNcFJVKVRQkz/NvbnoIIY7hMCYURdvY2EIkyVL0VndDFuVOe+2Nh48kSfqND75VLpUKnO/t7uE84zh6o7vWbNY1TRuNBnmexlFYEDhJQkAQoiAURZ4kocCzURgs5jPbNkkSFEVGQlAUBU3TURQhhFYC02g0IghiNpumabo0DEEQ4yheLOaiyF1eXJyenkVhUOAsS1PPdZM4VhVlOZtDAPIsq1drJIAiL+iazrKsrEhLw2i2mgzDzGYzjPFwOOA4tiiKNEk4jms0GkVRVKtVVVWn06llWQRBFAThul4UhZpW6nQ6siTHcUoQkCAAQQBRlGCKs+PzE8RQru84nk2Aotmsy5J4dXWpKHJ3c1NVtfFkGidJpVKdzmZZnouyTJJosTQyAJVqtYDkzvZuaPtlUetUWlW5UlaqoZfyjKSIYhpF09mU5TlFUy3HISC0Xe/w8DjDRE7Qn331Uq029u7dF2VVlVTXshqVqsCx42H/6fOn69210WT6ne/9Vn84nc6X3fVtnBOqWnr57AXIydDJGSCxUC5ibjb0J30DZFRJrX73o+8KLDseDl4+f+k5vu+FtXqLZaVqtfP3/2f/icCKiqhvrO/sbN36vd/5kW3YURAXeQFwAQnCMk2AcwiAbVkIUaIoGEvDskxNUzRdXqEwHMuoqtrv9yCEaZooirK/v1+vN2zLOTw8ns/niCL1SqlarWZZNp1O5/N5vVoLHE/keI5hGAbZrpVlCU0jz3Nmi8n+7lYc+T/5q3+Xpcl8Nl7vtASOFXmeZTnfC1VVb9SbCKFSWZlNB7WKhtPwwf3bbz66L4t8Godp7Es8yzGo3apmSSjyrCIKLI3CwJdEQeT4RrUGC+B7bhA4AOA8z1bu3izLRFEMw4Blad93OZY1lqbn+SLHzyZTmkSoAIHjGvMFSRBpHM1nE9NcNpp1giA817VtazQaTadT13Fsy4qTWC9puMgvri62tjcRTUZx5Ic+xVD1Zp1C1HAwBASgaRpjvErGq9freZ7rmhrF4XjSWy5nGU5xkQFQJElUFEWepbC93rIdq9ao5kQeJVFBEnpZ7w9u6rUKxtnx8fFVv+/4/t37Dza2tymWo1iuVKk6QbCxtS2VSrQsX9wMIj+eXg/ZHJUZ+c1bDzjA+lakKXoeJ7ZhYJx9+tnj8WxqOI7hurwsV2r1s7Pro5PBaBEuA0xw6mhmHx+dQ0zyFDseDf3Q00uq6VkxzkzPExUNQ2ptc5thuFJJr9drsZ8cPz3/+CefXRxOQCxutW6rYucXP/miyOnjw3OaZASavbm8aTfaaUpopcY7737oeSlNyZpaLau133j/ozwhzIVTr7ZODk/+/N/+WRzEkCDWOx2aohBC51eXXhhs7+7ef+NBs90cjAZqSV3bWHM8J89ziiIVRV4FcB7cOpjPlo7tyLLKc4KkqH4cJknMsHTguztbm4HrBY7fqTQrcokhqOlsqpdViGC707IskyJhGPg8y7z37jtJHJRL0njSazWqWZIeH53NpstPP308XyyanUZWxLY95VC2vdHGcdC/PKuqqsxx00GvVdU2O3WZZ8pltVYtlXQ1ioIsSeIgSJO0pOkMxUKCCEM3zSKOoyEJVtRIkkRZlgCIEQ0AAAIrNqr1AhOBFyqSzDMMhygiznAc0yRJUSTPMYHvCTzbbNbjKFRlxXd923I0XY/SiOXZIAxwkYdxCEnIi3wBiiD0PM/L0jQKQtdxLMPM02yt3alXa7PJNPJDBKGmiYgiOAFJEkOAtCiyosgrlRLN0LBU1jd3Nm961wAQ52cn7VbTsU2KIgGBZVm8f+8eCUCtWv3o298+fP069H1IEKVSSVOU87PT4WhIQPTbf/N3JEHiGdaazRVeSoPYNsz5dCaKwqeffBxHYa/Xg4AQJVGQxcPDI2Npyqra3dxqtLsXvfFlfzIznYXtttfWAEE8e/q0pKnnZyeeZ4kS32jUdF2L07TV6QzHoyiOV3mLo+Hk8MWRs/QGV+Nf/fzTIqXsue/bcf9q2Ki2cU7c2jtYa3VwDtIkT2OMc2hb7tHRSRQmlUoNEqBRaxAFWMwWHMMt5ovpdPbg3v1+r/fVV19NJuPZbGZbliRJgADtdpumqYuLi9FoqKhKkiarjKt2ux3HyfXNjaIo4/H05ORkd3d/Pp/f3FxPZjNdLxEEMR6Ndza3RZ7P4owmqIpepmnq+ua63WkNRwNc5DnOkzQ+Pj6cz2fvvvsOAPlsOnj58tnh8eEHH3xQrdUkWU7z5P0P3js9P7Jto1rVBY62jOV777zT7a5dXZxnSbK9tXn//u2vvvoM53Eah3HkgwJvdtdURSEBcXZ6Yi4XDM00mvUkCRGCuqbIspDniePYlapOkgTH0CSCvMDmedJsNihIlvVSpVRyLKeilQAmZEUSRL7ZahMALA2j1+8XAEKSjKJovbsBSRIQwDCWWZ5HcbQ0liQiAQQURQmiFISB53kZzlY6F8MwKzgVIVQulyVZYhgqx6nn2XmeaJqqqHK1Vk3TxPMcZCyWd+/cfWaYEi/gUtmznfPzc1EUhzd9hMjGrRoJiCxLZ5Nx6HsAABIQHIXeffutTx9/euvBvTTPzk9PuuUmtgJFlDzHHlnjk5OTR2+8Mx0PHMfiRT6LgiLPICREQSiX9PliZhpGRSs9/sWvmq2qaVtb3ToBCZ2m+xfXa+tttVb5T/7jv7N0wtnSGvZ6a93tW7ubhydn5tIgEfLDEKWQoWldluM4EgRlrd2Jg4gXxO2d20+/+pwi7xcA/4t//q/fePQ2zohatXF+1guC+Pbt2xxLC6Lw8ce/WuV5+J7/5huPLNMgEcqK/PT8QlLk5Cp98uRppV7b39/P8/zVq1eqqq6vr1uWdXx83Om0BUEIA//58xeKol1dXZ2cnM6m883NrUajASBRqdQoDj599jwKY8tyHScol3LH8TRdoxl2tlhUq1Xbtq+urlzXLZfLtm1PJhOSRCQip9PJcjpPEywrMiC523duHdw5+G//2/+GEUD40kmzpN6oJ3nuRf7axvrZ5cXh4fGjt9+olCvXN1dRHLbbzTSJeY5Ok4wgSJylFImiIEiSJEuSMACCrGU4KzAxn84VRaUR3N/d1DTl/OKs2Wz0b8ZLY05TVOAHoiTM5zNIQF3XsyRNkozl6EqtCQFJMRxfgDTJgjC0bLesV8IoMQOboKDneo2GKMuK4zi27ciykuc5w7AkSc7HcxrRgiCwLMvzfBAEAIAwDE3TZBjqf5TARISoKIqCIBIEEQKSphmoqmp/0H/77bdVVX348KFpmgcHB5IkqZpaKpfPz0/n89nO7vbp6cnV9QVFoTxPLdu8urrsdrujwfDm8moxm3mOs9Zu7W1vmcaCyFOWIkWO+pN//S95ljo7OaYoWKtWDl+9evn82Qfvv99dW2dYttvtbuzuQYadW85lr39yfn54fLK1s4VxupxPXjz/2piPW/XKtz/4hq7Kz5989frV84O93T/8W39gm06SZDRFAYx914VEkSVJGATHh8eD69HOxr7AqteXoyJnDl+fFxgN+lPX8T94/1vd9fVOZ+3Vi5dPnnz95OlXs/lsa2vj7OwUY/z3/rP/jITkx598+ulnX2zv7AiS1O12b25ubNve2dlhGGa5NBRF2draSpI0yzOe51dZbYIg3L1z5wc/+K08z9fW1l6+fAkIsL21p2klVdVpipVFdbkwswzXq81Go8Uw3Hy+IArCcZxyuVwul1ec/N27d5M48Txvc2cbQHDVv/5bf/Cjx599apjz7/3Wd4ejAYAAQNgfDebzqed6tmO5rr27u41x+u/+4n8olfVKtcQJdBC4BIHzInUc07INXqCzPBZFrlorQZJwPYtmUZKEqiZBsmBYajodjcaDUlmxnSXL0+WyKolcGHmqJlumYZqGpmmCIGiaygtijokwSUhEc7y4vrnJ8lKS5AvTXBgGxiBNUoIgFvNFmmYrLHo2m6dpGsdJ/6Yv8MIqh7/f7xuGIYribDZjGGZ3d5eimKWxzLKUJFGaZo7jMAwdx7Ft24vFAvb7/SdPnnzxxRfL5bLX661GYbdu3VrRUPPFvFor9/s9UeJ1XWM5Ok6iHGearnieMx70Njrtg90dFlH7O7v9mx4FgMBSoWefH79OIjf0nXqt8urF882N9SwOv/M3vnP0+vD89KxaKv/VX/1kMl+ubW7OTNt0fa1SCZOY47hSSQcgF3g6Dpzp8NoxZ+P+lUChewd7oef+mz/9U03TFoaRpXkWJyAvrIUxH83NhRU44ce/fPwXf/bTP/lX//bXP3tKQxVB/hc/f/z6+UmSZARB7mzvUYja3d2VFfnu/btxGk3nU1mVgsh/+uLZ9t7+Nz54n6Qoy3E93/c8P0nSxWK5MtqvBBddL7EshzFutZo//OEPVuBtmqYvXrykKOrXv/51rVYPAv8v/+IvHct99uT5Rnezu95tNpoEBsdHJ8evj0EBKUjOpjOc4dFgNBlNAi8osiLwAmNhpEk2mUze/sY7B3duff7F4wwnXz97UqmXm61GnqeOZzebdcu1B+NBtVbOcOJ4jumYLM/e9K49z3344EGjWRNFfnNjneORqglx4qsa12rXqjWNYck49gmc5nm8vbWexP54dIMQQVOEYxtR6JMwr9d0kiQEnvFdC+dpFIbD4ZAkEU0xkqwalpVj7AeBaTuApJIsL1UqlWqdpJi8KOIoGfZGaZLlad6/GYAC1iv1JErjMK5VawzLIIQwxjzPy7I8m82CIBiPx1dXV4vFgqGZPCtMw3IcjyRJSZIwLjiOK5dLMI7jUql0cHBgmuaKhvI87+joKMsymqG63XWWZTiOlWVpd3fHssytrU1dX4VLDVzHur64DD3PnM+t5VJgmdloYBtL3zaOXj9/942HxmKqSsJvfv87z589efuttziGqlUrkCSXi+W7776LaPqzr56+881v+ElycXWdF/j565ee7yzmk1az+uDufqdRIfM0DR1YpDLHmsbcsUzHcQ4ODvI0JYtivdUmCYKl6TzKOIqnIeMs/SKh/t7f/Xvd9U0io/c2D3AOZV79/JPP/9k//uc3V72L84tH9+8tF/N333vn/v17JEm+//77BAEEUZjOFmvdDV5QCgwmkzEAkKbon/zkJ6sk1el0+urVqyzPm812r9e/vr6uVCqmZTIct7m5YZomwzAbG93JZBYEEQnRwa077daabbtbW7tEAYgC0jTHMvzde/c5jtvf35ckaQUFx3E8Go0EXmBZNgj8r7/+6qOPfiMrsuls1GrXbm6uHj560B/0SAoSgOBYNk3SFy9fWLa1ttaJo2hvbyuOA9s2X75+DkAxX0xynECyCEIXwsJ17dPzwyB0mo1yloWe7wCAz89P8jze2urmOM5xompirabzAjOfjRx7SeAM5xkusnanyfOcbduIoW3HlmQ5imPXD4IoHgxGBAEYlse4IEkECEBRlCTLK0vxatQ+nU1VVV1bW8dFMZlMDMNYLBYrxk+SpLt375Ik2e/3VzENFEUBQOR5DgBACCVJbBjLXu8G/Jf/t7/91ltvhWH49ddfy7KsKMpisdA0bTabtVrNKArLZd3zvHa7/dfWCJ4/OTm5e/fuq1ev6o2GZRhNtXqwvvv84y9rko4jPBmOVF0/PT0lSZoE7NQw3vvww9HCGM2X9Wb72cujvZ39Tz95HMUZphjEQI4tZoPLriY2JX5N00xjQQucFQfbW3uLueUGUQFogqT70wUjlwqGfnZ41B8PGrXybDR67733r676juuXK1XDMjGRrK23vcB59frlo3dvf/Ob721tbo0mk+OT4+29zVu3diWFH08GR6eHalmrlMuyIv/yl78cj8Y//OFvL+ZL3/eSJMqzfH29c3j4GgCAEHVwcEsUxdFoNJvNaJoRRD5wbUnkm83meDwlIVkQBIXo7e2dr776slFv3fQHM3Ni266qquVK1TLtPMOTyfThw0crmGMxHWVZsrm5OZlMjKXB8VylUgnDcGtz69XhS05kAQkZis8xjKI0w/mDh/f7w950PrRsAydRHIaLhaUqpd/48CNF0f7sz/6cZRmEwMbWxouvn22u7cRRhBBFUdRoNOr1ejs7uwAQgR8tjAUncQAAEtKBH7bba7/4xS9//2/9TRKC07OTLMsEXsAZNpYOS/OypFqmv7d34DgBz4knR6cMzzI87/u+bdskiQoMarV6HCePHz++ffu2IPJREiiKen5+URR4tVhnNZHyfV+WZY6hsyxbLaYpimIV+RaGoSAIRVHkeS5JUp7nYRgVBbEKxSVJKAgi+Jc//78appEkyWQyWeXFqarq+34URTzPl0rqYNDPsmxjY4Om6QcPHvz0pz9dGQZOT058z6uWymvVdjTz5jfDulzSBeX66ioIggJgAFDopqPZPAHEex9+1JtMt3ZunV31aJrLYnx4fEownJ/6NIW/+PhnVR7dbdaj5VwWeb2mS7ra7W5Nx3NZLSVZ8fzV6e6d+3/x81/fe+sdN03Prq7ms0keR6pWvrrqSZJ6cXWtanqrVRtNhgzHNpoligeiKMmKMplMStXS1k632a62O/WXr5/6odfqtk5PTyEkIQkhhGvtznK5BACs1MFqpTSZjDqdzs3NTb1eb7Vao9FoZQTN8oylEQkKhBBBQIZh8iyPouTFi5fd7rqq6q+PjpSSStO0wIuvXh2++eZbw+GwVKrs7e1//eSJpsgiT5mmMRqNRFEEAGRZduvWrclkghAVR8Hp5Ul7ba2kV0VZ/eKLL+vNRpzEF5fnFE1qJWVva2M+nQ2H43KpLksahOjLL7+iadRq1zmO7TTan/zy8YP7D/r9viAI+/v7X3/9tbFcBmHQarYJCCiGtGy7KMC7b3+DounPHn9WEPjm+ure/duu43he2F3feP3yUJLU+cyCkGForqTXZEl/8ewZhoDl+Xa7PRpNcFFIolxgYn29e3V1GfhhlIQMx4xHI71UEgQ+SdJVLVQUZRUhNpuMZVkGAMiyHATBapXHyia/2rTEMGwcR0mSsCy/IlqiKOR5HnqOc3p0nEZxs1bf3drWJBmnGSyI7Y3NbqczGY5Fnv/Gu+++/eab73/jG2cnJ1sbG4vZbDwcIpJMk7Tdahd5URSYJMj+1eDi7PzxJ5/QCNjGolHViTz64L23JZ77+svPQ88d9Huuaf3Jv/7/PvnqK47lprPZcmEuDCPNM4xxmCQHBwelksbQqFopaYq4vb2xmI4qqvq7P/heFrh3bu18+vEvT44OLy8uCIwpiCI/EHkhS9Kt7malVA79WOAUCjICp/zB7/3tJMKD/uTunYcM4pIgG/bGV+dXe9sH3/vub212d2rlxp3b9z745m98+8OPJpOZLKuCIPG8uLG5uVgsSqVSGIbdbpemaUVRVpn+PM97rrfCKFfmrzRN9/f3W62Woii/9Vs/sCyLougPvvkhKODh6+M7t+9AAGeT+XQ0xVleUvUCE7Zln52dcRy3sgRpmnZ5eek4zmDQj+K41Wy/fvWaYShjOb9//47r2IAofviD32w2G816I0mSO7dvQwKeHB9fX17/6Y//xDbNtU6HYzhQFL2bnsRzeRo3ahVdlX/1i5+JPFsp67/5ve9KIqtrIoUIVRY/+tYHRJGdHh/v720367Xt7e5kMnjzjQfVqm4bC56jdVVK40CW2Y2NtVqtYjsLQRJUVRYl4fDodZYlosDpusILLEWTBYEXxhzjPE8TRAIEAUWSksAXeToZDSejIQUBx9C1Ws33fZ7naZpeLexKkiRN0zzPOY5DiE7TjGE4AMharUbTNAAFxjnGOfi//7P/YhUshjFeLpeu66qqur+/f3l5mWXZu+++PRoPGZqtVMsAgOvrG9Mw2u321fXVxsbGcj6fDad3d26HMye3wxefPa2qJdOY1uolSRY67c5ktDw8Pr398I3jy5tb999IC3R6fp1kxacff7Z/cE+p13792ScP37j9+tkX0LeEJPqdb31gzkbb+9vN9eZXXz751m98++WLVxwnHZ1ctrrbc9v/6vVxznI3o2mr0Tw/PclxQZIULmCWERTDAAgJgkAUhRh49/6BVtJfvHzhhwHLUhQDtve6v/f7vy2JrOmalXrlX/zzf1Ft1AAkjOUSUSjNE5ZlJpNJpVKez8YIAdf17ty5gzHe3d199erVxsbG8fFxpVqRBe7rr7741re+dXV1YxjLTnut1epcXFw+ffq0292EEA7Go9/41rdubnqWZRtLQ9NKRUEAADzPb7dbSehABC4vL/f39ymKWl33f+d3fsc0zV/+8pd7+zutTvvw8PD6ptdsthfLxfe+/73j02O9XLq5uZZ4pqyVLMsVeOno8CyOkzRNf/O3vvvzn//MspYszd7aPhgNB5Ik8jx/c3Pz0UffCqPg6OiYJMkHDx8Ikogxfvzp574fVcq1osAkgu124+Wr59/9G995+fwFCWia5c5OLwM/JiHrBhEEVJLkW5s7SZZ6Ydhqtmu12uHrw+XSlCRlPp8GQcyyLMbY81ySJOv1+s3NNUIUhHAV4ChJkut6q6VyjuNIkiQIwmKxWGmiFEVpmqZpJdd1F4sFz/OO4wiCQJLQ81yGYWBRFLZtf/3116u9PtVqtVarnZ+f3717d3d390//9P+XJrlpWp98/FmBQRwlpmkbhmVb7mg4ubi4enD/gWv7H//6cYHR3t6tbrebJMnu7g7L06a5aFT0H37/O/Nxv9moLudTxzJIRJ6dnt+7e1eRpcNXL0lIzKYTEsI0ycvVmmW7DMdJonB6fFyrVp89fYJImGdpp1E9P3w5Hd+wNFxr1N96cNdYLgVRwhizHEfTFAEwRZEkSeY5juM4idLXL0/mEzOPgWv4thWQgC2rdWNuTyfL/88//Vef/urzRnWtqtanw/mwN3704NHG2qZlWHGckCSJEKXrlffe+6Zp2jTNXlxcjcfTyWS2sbE1Hk1M00qSxDRNAMB0OgMAnJ+fkST54YcfPnv2bD6fR6E/GvRKqiJy3Ntvvpklke/aRJ77jiuwbKPRvHfnfq1S5xi+rFe+9eG3H9x7+NmnnydR+p2PvqNKyuXZxXQ0ETgOIbi50f2rv/iLze6GLEo0STeqrc8+/XLQG5AAvfv2uzgreJbr3/SM5bKk6Zvdjel0jBBZFBjA4uD2PkVTnudlWXpzc/2rX/7i5PDV06++3uyuNWrVQe/6G+++s9VdHw8HDKIOX78cDgbXVxe2aa6vtRECuEgAkSuqaNvz2XwwnQyzODg7eaWrwnBwKfDo/t3dJPQbNR0UKUUSZV1lKHT0+tXB/n53ra2IQpbE3bUOjWCzXgvDsFKpKIrCMMzKu7fadMhxnOt6w8F4uTA9N2AZjmXZKApc10mSGEIC/K/+q7+5GuFvbW2dnZ3Ztl2tVi3LWnEo5XJVkqRSqTQejxVFGY/HjuMsl0tdL2Gcl1SFSPHJsyM6QeulRkOreIYRetab79wjYO673u76luOFcQEWbvTq9IpkJE7SEc3/yY//+9/5mz8KcfazX/+8XFGnk97i6vLNnY1oMf3hd799fPIqxslv/eAHxsK4vLjQJMV1gtFs6SYY8LIZZcOF4QZxkuHlcknRTBBEvChvbm9HUTKbzsMoLpVLSZIgihJEMUljXOS1Znl7b31jsw1ILElip9M5PDzsrHcuL89rzdLnXz6+e//uZ18+brWarusoqsRxzHw+73a7g8FgPB7/4Ac/GI/H0+ksz9M3Ht7DeWKa5rNnL/7oj/5oOp198vGn3/ve9z///PPHjz//4z/+o7OLM4qiJuNZp9PZ3t6hKPr6+kYUpdOTs06nTRQpgKBarc7n85OTE4qibm5u1tbW7t+/P51O5/OpIkkczzmec3F5ubu7G2cpAYCmaT//+S8f3b+3mMxu3713+9ZdmuZOT88uL89Pz44VRUzTWBIlVVaXS4NlaUkWK5XyZDLxPAdCaNv2Rx99+/DoNQmparVhmpbrBBzHmqZx995thMB4PHIMF2NiPltsbu2Uy7U0K5IM4wLMZvPezaBaraZpBiGiKESSlKpqoihdXl5ZpnV1dQ0hOji4e319XSqVXNcVRZFhmKOjoyiKZFm2LBvRbL3eWDF+s9mM47jVtqQkTWiK4TkJ48J1nSDwCwJXqxUACM9zGYZGZb10eHg4m0yjIJzNZvv7+0dHR91udzqecByfJ3m3s3F6egoAlHg5L2GRk3Y2d8vl8nA47N1cf/vDD0EE2JQ2+tN6rXFumHfv3YvjJMk8mRcCx57N5pv7d7UaN55bF72xP5xMp+at/f2vv/p6NB9msNDUjS8/+3VVFGfT+b3NjdlsAQDpuV6S5gRBkARo1GvG4vCDb7x7dNkjWPGgVP2rn//qrXfe/fzr5xwvhGFIMYxWKimKhFC4NEgKI5qmiQIkSZonue9HJII4A3kMREGfzYf/+l/++D/+n/yn//Qf/as/+uM/+OLLr/bv7LSba8168/b+rVevXtQa9d5Nb2NzY7k0ZVkVRfnRo9bJydlKHMnz/OnTZxvd9s1NT5bln//853mO19bWfvrTn+7s7Pz+7/9oNp+HYcCyyrvvvdVud05PzhiGjaKwKPDb77yVJMnx61fd9fX5ZD4YDP7u3/m7GONPPvnEMAwEkMgJ87wY9Aa2bdea9Y++9Teardaf/ps/LZXLnz/+8v1vfnB6eEgWRFWvPfnyWafTEVjOtZwf/c0fmeacYamf/PuflOSSrmqDQZ+EEFbAo4cPh8N+t7v205/+9MnXX9XqNUCQoR/gNG/U6p7nNuv1f/Mnf9LdWKtWKxzDtZrtu3fvO47nus5ssUwz/OZbbyNE2I7BciQJ8aNHD0mSvL662d/f+vyLL6PAns+Gbz66c3p+NZuPRYkvirxc0W3LpijyG994dzKZOI5D03QQZfP5nOO4VUToKr3Wtm3HdtrtNc/zEKLL5UoUi6LIu64dxzFCkKZpeH19/bu/+7s/+tGPdE3/z/8X/7mmaR999NGqhe90Ot/93vcURb28vOI43rYdWZYJArx+ffj48Wej0biztv782UuBlwzTKpWrJydnGxublUpFkWWSJD3PybL4wb27/ZsrtVLqbm1AABCAJb3061//+u7d23/8B3+Q+P5sOlrvrImiSFN0o9FKkrQoQLPZyvKMpKnPv/ji9euXdw72szTeWG9dnB5mUbi53vn88ePpdGYYxmQ6MS3TD7zlcm57Ni4yCCFRFDjHQRCtdk3oWqlaqa91uubSfvONt0p6/R/9v/+pQEuKoJ6dXMwmy52N3Z/95Gee4//BH/zhe+++++677967d+/73/8+wzDvv//+X0f9IuT7fhAEiqqcnp42GnVd14uigAAAQCRJcn19vbu7qyqSosj37z94/Pizf/D//AdpmiyXy9UN7PXrV8Zi+fs/+lGe58+fPYcQnp6ePnnyZD6fR1F0enpq284PfvO3v/Pt7+zu7D26//Dq/Pz8+OS3fvM31zqdg/1bn3/y2FyY3/vOb54enTbrjd517+zkzFyal2eXezu3XMttNVpn5+csy1er1fX19a+/fvLZ488ePXqUZdlqfnNxfjEej8qVUndjQ5bl+Xwex8lHH33kui7LMKIgTifTn/3kJ69fvrJtmygwAXCcBIgCW1vruztdgUf/w7/9E8ucN+qVVy+fRoEjiUyrWUnTMEui27cPKpWS69mmueQF9vzidDobZ3kahB4ucKVSrtfrK5BeFMUgCEaj0arNj+OoVqvJskQQBcuws9nM87w4jlcrbMB/+X/+DzzPMwzjD//wD6+urjRNu7q6WjX/s9lcVcrTyUwvlW5ubjY3N+/evbsq4EVRfPr403arEbkBmZIdtbHszVpaOQ28Owcb1/2zelMf9S7vdPcAYnOKQYI6mttfPHud5tSL16dRmPd6fUFiAEPu3bnVv75kiZxPsjdv7U4HV+1O7fz6bPfg1u1btx7/+te9ywsSgDu37+aAQaJyNph+/fJw5qVmlEdJFEURRVGiLKZZXhREAVCaZhKvBG6U54SkyJVKpd6sQZL4X/9v/5dXV6fDce/Fixd/+ec/ee/dd2r1yr/5tz/+zR9+p1yV/chZ32wNJ0NJ5r/7m9979vz58fExSZKaptE0/e6773788cerEA5JoIeD69lsxjBco9HwPJ9jOABJWZaLggjDgOPp09NT1/UePXyUptlgMFQUrdPpmKa1mC2Wi8X+/v5wOIQQlsvlt99++8c//vHW1tZwOOx0OhzFmIYxnY4LCCRJHAz6sqomWR5FyXw+/9YHHyRhPJ8t33//w5evDgVecF07y5Pd3c3RqH95fQ0AWRS42WysrbWePP0aIaTpynw+m87GFIk67bXl0vjww29PJ/NKuS6KwmefP9Y1pbu1NhwMipS8tXf77OIsx7i7uXF5dYUB/NnPf765tcmynMQKiiQLgtjr93e2d2iaZlj+H/+jf/I///t/H5Lkl1+9iJJiY2Pz8ePHL1686HTWSAjCMOz1+lvbWyenF1vbt1d7Oy3LiqLIcZzFYrGxuUEhyrIcRDIIoTRNdV2LkxAhiHGeJLHj2jDPcRwn77773tHRsapquqZ3u5tZluUYtzotSZFkRd7Y7G5srgNQmKZB05SmKQCAb3/r247ta2qNY/l2u72+1tFU7cGjhxlEk6X57372q5kTvr68Hi+Xp+dnWRJpirC/u0Hg6O7d3fVufWNrLYwSx3b/6T/+J8vZrFWv8Tw9n88arYasqrV6Y319/Ve/+jVNM7Ks0BT14sUz05iFrnV7b2t/ax3mCUUWWZYBEpE0DUmKIIgC5xLP0giFQRiGwd7eTrmkMSyzsb7+Oz/8bUiAcqnyvb/xPZwTnebacmaenpzHYXp1cT0dzy3LIQkEc2I5XRqzOc8y773z7meffAoK4oNvvv/s6yedZitPYgLnURSGQdBsNDzHnY4noe9jnMWRf3Z6VKvqYeh/+cVX62vrjUaLIECpVF5f75qmeXNzo6rqYDikWOr2ndsfffQtVVUkSXj1+nWn03n+9JksSu1m6/z8fDQeq3ppfX1dEoVWu8VxXOgHq1puGeawP5hNJs+efK3K0tOnX7uO7QfBn/27P3/x6nVREK7nAwANw/zVrz5566137t69CwBiGV6TS92NrfFkOp7OwiiiaerTxx///Oe/EDg2TZIXT55DAoZB+Od//ucFJkRemI1ntmnXyuUP3v8GRQKBZQqA796/k2TR/Qd3eIHp9W6i0P87/9EfE0RGAqzInO/bP/n3/67Trv3xH/1+p131fUuWuWazXCkr77z1yHetQe9mPBoEnpMlCQXJje6GyItBEJb0UrPVbLWaBFHc3Nz4vrdcLqMgQBAyiIatztrm1o6ulQgMipy4vrhezJdhGGd5EedEpV7f3t92A3dja5OAxPnl2dJcnJ6feYH781/8rNPeoJHQqHWiINB0OcnDBKc5Qoe9iQP5J1fTp715zwnESi3Jk8Bb1HRWEfAXj/+qu1H+4KN39fZarb359htv729tjW+uH9w70EvS/sGepEiGYSZR8saDN7Iko2iK5/nNzc1KWSNwqrHU/Z2Nps7zZC7wTJDkGPFukJEAMZBcDCeoABzLCiJHgByAbLPb+r3f/eFGt+2YZq1cffH0JchBo9WeLpYvX73OM6yIakWvOUvv68+fEino1NeX02ka+scvX/zhj35EFeAf/8P/TpWko1evPNsicbqYTEAB0jiuVkrTyXB3p6vIvGXOyrp4eX749Osv3njw1tGrE3NhplFmLkxYwIO9A03R0ij5jW99sH+w9/z1k198/Iskiz3P6V9fUyT8/ne/w9FM4Hr7B/v1Vg0goJdKV/0BRLSi681OS5SF+Xz66vnzNAjq5dLh65fVinrv/oGg8tPFOEzjartB8xwBYRgnUZoWBHz86VfzufO3//DvqFKlpDVurkZ6tf7wzbfUcpliaU1TAMAP79+nIXr/nW9EdoBIqijA06+f9W+GSZRkcTa8HhjjhYiEvc3dKI4/e/KFXtW9wO1urm9urVvmvHd9fnVxOuhdaqqgKcx/9B/+/mRyc3lxFIXWo0e3S7pQrSiddoXAgW8vBAbAPJEYVuL5KAhiPxwPJhSgaUQfnrw+PHm5MKeNZgVASCMkS/JyZsicAFlesB03S3OO41+/fG2aVkkvHdy+m+VFt9s1jMWrVy9tx6JZqr2+xnHc9fU1hVCn1g7jcDgcXV/1FtMZgYvAcdvtJslQXz57gTj5arj4+KvXz06uhwu3P54ORsPRsM8iePdg95vvvX15fvzP/vk/QSwXxPHzZy/m48mbDx+4tpkX2dXNFSRhvV53TPf68npjY6NRa2ZZzvN8EseB51yfn2gS9/9n6r+aLEuz60DwfEdrdbW+rmXoyIiMzMisFKUFBAECIEBhaNKa3ew2Nm3a5h/MvEybtc2w52F6mhroIgEUUAooVhUqs1JGRmSGdq39an2P1moeTqFs4tHjupm7n322WHvttcp5kWdxlqUxnNAMR9FMAMEUTggcFwWR69hyRh70e9euXfnWt78Ow9Dq6opjW1k5E/ihyEuWaZIkWa3UcrkCDNDxaDYbzcb9qWP6SAL/4Ps/LhUKLM3iGDHsjzbXN472j0SOKxcLo+GgWW/ks/lyscqx3G//1m97rg8l8b1X7+IE5vnOt775zSQG3/rqb4RBTJI0BMEvX7wcj8e3b93OZrKmYX7w4fskSebyWV1XT05Orl+/2mw0To9P11ZWSAwP49CLwnKtenp5/uZbX6rWa1Ecm6Y5Ho9eeeX26/fu8QxTq5avXtl6/5e/qFSKL3ee7+7vcAKfyeUyhQKCYtV6o1KqXdm+dvP6LWWm/S//y/86HIx1xXrttS9tXr2aILAfBDNFgWH4ytbm06dPd168eP70ueO4IIa3t65cuXIVQVCSoKrlqqmbPMsLnPDXP/wxhmG5XO7w+Nh2nL/8q78MA79cLoWRf3F+iuMox9IYCvb3XyjzkSjSpVIOSnzXNT3PME01mxVvXt+mSZwm8UI+07k8Z2kyk5FFQbQtW1XU1ZXFbD5TqhQtx9R1BQawazkgjjVFhweDwb1790RJOjs/W1leXl1ddT3Ptu3Ly4snT55ohtZYrJuWeefu3ZcvX2AEASPIzs7LR08f6Zoe+gEGw416o1gsQlASRRFD0aIgdrrd05Oz2Uz1/eTxk51ef86x2ftvfpXns7YT05QAwWQ+VyoWir1ub2Fx4eaNG8dHh/3+wDCNcrmcqqN0Oh2WZfd2d4vFkmVZ0+ksm81JojgejXdevuQ4bjabYiiayWQ4lltqLuianhLhmo0Gx3PLywu//Tu/mcvnGo1GuVI2DOOdd975yU9+8mf/5c8ODvbrtbooioqimKY5GI5PT84mE3U4UGBAjMbzb379W8PBxDBskCCO47bbnVwuP5vN0hvI4+Nj1/UURSnki7pmaqpB4IwkZZeX1nd3jk6OL4IwePLiCcuy6RFjsVRSFOVv//Zv/+RP/0SURFEQ5sosDIInT55Uq1Vd13Z2djAc6/cHj58+mc/mMAQFrkcRRK/TvTy/+OzjTwq53Ne//NXDg0MURXP5PAzDhq7HcfzgwYO3vvSl+/fvkyTZ6/UIgshks8Px6MbtW8PppD8e3X/zDQAjW1euyrksQzO+H87n6nA0JgiKZrjT07PFhaVr124uLCwhMOZ67vXr16vVanrzmTbfCIz4vl/IF7bWNybjsW0YlmlxLDccDZ88fRKEoSCJKI61223LMqIwePON+/VatVwqrCwvWaa+sb6mKjMEhlRtJsuCKDIAjqq1Ei+wTx8/nkwHFI0zNGHb1mg0UOYzx7Y4lhVF3vc9OZNhOBbO5XIPPn2g6dq7b78Lw/BgMBz0erqq8bywtrYqCvwvfvEL0zL+9E//dGGxiWJIvdE4Oz8fDAc3btwAAEIQaHl5sdNpFYoFgiA0TQ+CMAriKIo9NwxD+De+87vt9vgXv/hkf+/MMKM4wuIYM00/idG//vGPCByfDIeT6ZQg6EKx0Ov1Llut+XxumEYum1MVheN50zJxHO/3+x/88pcQAH4YcLyAodjW1nbg+aPRSJYllmNJkgyCQNd1CIL+6T/9p+Vyudlsvvvuu/l8/uHDh/v7+6PRSJKkpaUlGEZa7VYQeGEYUjQzm87mc8223SSBBoPx6dGlqpo4RhM4s7117atf+YaiaqZhUhTdbnVPTk5pmlVV/ejwZG9vv9PpuG4gZ7LHx+d/+/P3r2zfgAG6vr6ey+fCMHzvvfdevnzJctxkMkFRNJPJnh6fbG1u3b1zF0GQ3/qt3/qN7/wGx3Grq6tra2v9Xr/eaGTlDIkTKIxkpcx4OCoXil96482l5iJNUQxFm6a5ura6feUKy3Obm5tBEDx69OjKlas3b94IgnAwGBAkubCwkIpJjSfj2Wy2vrFeKBS2trf/9v1fXJ5f3rn9Sq1WGw2GuWzuxo2bJ6dn+WKh2+26nre+sQFB0Gw2S2lW8/n84uLCsixREFdWVo4PjyiM+P2/93uVUqmYL0AJZBhGc2FhOB5/8sknCAoa9TrP8YVcfjweB77fvmz98R//sWM7hm5ks5k33nwtgfwwdG1HX1issRz1tW++g5PIbDZS9BmCApqmMRTFcZxhKAzH0lW+4zio63uiLHme52G453mT8RggsGEaLMtYlhXE/tLqUqVUsS3nw48+cmw3I2VyuZznehiCJnEocLKhqwmUkCRhaoamGbPpjGU51/IwmOh1JpeXw4XFNQZDHz/e2d6+ImcrzNyFIdKxZwgMyqXCwNVWVlY+/PnfxK4BAJLN5jAYxhC0N+jBAIx6nXLh/pXt7dOzs2wuf3Z6ury22e0P5ooR+FGz0Zhal6PRaJrEjqqUsqLjuffuvfrVr34VQWHLMkmSDMPg7bffdhwbAPju3Xu3bt3+N//23z14+JllWalYNZQknmujCJnLFimCEyV+OtFZlltZXOu0BmfnZxwtnp1ebGyuIjDYWF+fjCcsw71x/43z83MMwWVJUCb60f5pPluulheiJOp22u3LC5Akhqaurq62L86b9RoURxlJODk5+urSl23bKuTzjuWEUViv1yejiW4Ya5vrg+EwvUz3PX88HmMIOh6OEigJPB/HsEalmtuWB91+u7MTRdHbb79dqlSev3yxvLLy8ccftS8ubt56RZTFbrfn+f762hrDsZ8//oJnuThJYBh2XLdYyA/7A45lPdd9+OihxHLN5sJsOkNQtN6o7+/vj8fTfr8vSVKhUDBN8+rVq6qqvvLKK9/7y7+4/+Z9VVf2dl4eHh9vb20xDJPibgzLMgwtyzIGo0EUffbg0ziOWJqiSOLJ5496ndbq8rJhqJ1Od31jxTSdvb19FEPCyEFQ9u7dG/3eoN3p2DaSzWQwFDV1A4agTrcTegEAAMdxVNf1erVmWxbh+67jFAoFy7ENwxQzsqqoij5b31g7Ozt750vvBEFwdHiSz+VMwyiXypeX7Wa5eXPrimWaV7a3hxctQ1ElOVsolIKdfQRgksjOpuqnn36mTUcix5A46gXg9qucbQfZXFEz/fDk/PmzZ2jkjobjd95+u9c6hUOq3W4LLHtl+8rjJ89v3rz1b58+ffzkiySMslm5XK0ADPeDoNsfUFJ2eH7qAM1zHDlfcSwD5Tjbtn/v937/W7/xnSRJZFniODZVmz46OiqXy4VCZjgc0TTzne98R5Slv/yr7ymKYmgmL3BJgmAomsQoBBGSUFy7UltZWzg4OD47u3zy5Jnn2yuri51W9/qN7UajOhyOXr58kSRNnudarc7mhnR+fn7zxm0EQSaTKS9wjm2vrKweHx+hKCoIQiqKWa/XLy4u1ldXP/vsM0ESQ8+/cfXGYDDotNr1asMwhmdn50mSFHJZAsWno1G/203ihKIoP/BZiv700wff+uY3cRh99vyZIIrFUunZs2cARcvlcrfV6na7f/AHf0DS7MHh8Wg0sizbcRyR53meb9Ybnz14cP3GjXqtRlEkzVDdyzZBEGura6kMdL/Xa7daV69eq9eXnj1/IUmSJElPnz5N9b3y+fynDz7NZDL7e3uLS80nT57GcfzyxYsvf/UrFxcX773/HknTnufGYUzhZBiG2YzcbDafPXvGsiyKoq7jsAxTrzeiBPSHAwjyFxZqrXYnVyhCIHi58xjD8G99+6sfffrQcQ2YZnGCQCDI9zyaojECy4gZFCOI3f19lqKKm/nZfL6ysqLqWrFYzBfya5sb/+k//8dOt4siSKpY8pV33j09Pu33hhIvgxggCYijKCvLw37/8uJydXGZY4VaKcllcjevXT85a6NZand3Ly/zJ6cDmiIBgpXrzelsqijKYDggcNQ0zFvXr5mmhZVzcQJM3SAwOPL9QiHX7XYCP/j617/+2ScfNOr1i1bHsL1aozEeT1eWV47b3Xw221e95aVlH0JtQ5Nl+Stv3X/r7Xc2Njcc1ydIguPY1NUZQRCe58ajGUXS/+Hf/yeaofL5nCiKSZLouu66LknQjuvMZ+Z8dui7Ubt33m53Ai/44BefqOqcZHAEQm3bujxvDXpINicuNOtHhwfVcoWhCBLHVpeXK6XiixcvNE2HEYBi6P7+brlchmFwdnaKoohtWycnx/V6XRSFmTIp5ws4jvcGvU63l8tkVV2N4gjFsa3Nrdj3kigiEFRXVQCBi/OLxcXF1sXF/+V/+lfDweD45LhUqaQitOPJmOa4xaXFzx495Bim1WpVag2CIpeWl2az2Xvvvf/mG29cvbJNECQvihRFSZK0s7MHJ1CtVpNFOY4h03SOTk54jrv1yp3RcASjxOrqmigKL168qNfr7XZ7PB6vrKzAMLy/v3/zxvUffP+vKIZ+7fXXZ/P5+enFysraVFEsxykUyxAMgtBvNpoHBwe2bQoCF4ah4/i/8zt/r9Np7x/uup4PYMSybEGQsjmhXi9m88XNrbUvvvhi7+AFx1NJglAEEaOx5/nFUp4kKE3V5+ocxjCsWq14vv/ixYubN2/OZrNyuTyfzY4Oj378ox8HUago81y+8OTJ09FgRNP0xtpGo9bkGIEm6K2NDTiBDE375ONPkiR++fKFruuLiwsLjYVSPr+80HRtk6aJJInjJCIInOPZ4XjYbl9GUYChIPQdz7G63Y4kS47rZnI5RuCPT8+kTCafL7zx5pthEg0Gw7feeodlOMs0t69sz+cKQdEYgcmSBCDQ7fbSggUlSS6Xu3fv3u3btxAYEUQ+joJ02wtBYG1tDUVRSRIIgnznnXceP36cgsaaprEsmwq5RyFgaKFSadCU4LnxxVn3b3/+wWSsapoNxcigP719627oJ9lM4ezs3HWcWrUSBD6CgEIxd3FxenJydO3a9vraaj6b0TSF41iCwAWB5wVucXFRlqXJZLy7t+N57qA/mEwmk8k0DCNN1U5OT/r9/qcPHly5cqXf78/nc1M3MplMpVQuFYq5bLZeq5ULpWG/v9BowABOifQESSwsLt6+fdtxHJZhJFHqd7uDfv/5s+fZfN6xna997WvXrl29aF1yLFutVnvdHscJ21tXXMflOX55ecV2bMPQ4wTSNAOCgOv5GIodHBwMBgMAwOPHjwEA9Xrd87y9vb04jluXlzdv3AjDMPWDnM5m9UZdzmZJiiIoajabJ3HU63WvX79mGEbKTvR979mzp4ZhwABkshKKwfl8dmmpvn1103FN1zPD2F3fWN5YXzI0zTaNhUaDoSkcR33fS2UiwyhEHdehSGpxcVGbzjCSyOVy6QJqPJmwPGuoOssw2lx99c6rvXbv+OB4OpovNBYZks42V2VeNmeKoemVYqmSLxzt77e63bXrt+LA52hmY1WcTyfTyUhRJvmcvLy0cPXaJkpgJIUMRz2ShFEAqpVKo163Had7edqsFLL54vH+XhSFiqIUCoUoiR9+9EmzXtV04/adu74fVirV733/hwvLKzBGiRx3+/YtNl98tnPIUmQhl3vllVcwDDdMM5vPQgANQx/DMM9zCYIAAI7CWNe1zc1NScr8+Z/9eRjGGEaMRhPPCyiKJAlsNpvbtsOzAsEwumo6TgwlGEGwGEJbpnd4cEYzhK7bJEENh/1MRiQp4saN64ahRXEgiGySxCSF9fo9FEEWmk1d13mOo2m61+sVi8Vqteo6zt7e7pUrVwSep2nm8rLFMEyz2ZjNFVGSMAJnWXY+HLIUZRrGq3fuGobBc5yiqggM//hHP/rN3/zNSqVsnlrj2VTXdZplP3vwIAHQoD+QM7LACxCUxHE87A+CILAsk6ZpmqRHg+F4NIrjGEYAHVJbm9uqojmm61qu74dJlDAsF0aJIErT6RzD0KdPn6ZmIKVS6ejoyDCMTCaj6/ra+sYnn36yvrYJw2i31zcs6/DkUs4JCIIxHJcRRInhhoPB0dFxPl/guHBnZ4em6cXFJVmWP3v4aalaXFvfGA6Glm0GYdjutOaaCsPI1avX6rUajnOO7RMkkc1lXM/hONb3AgzDdMdAERQNwjBKYoKiJpNJ6Pkoii40msVi0bBMPw4XF5s0xcynymwy5RmRpVgQQiIj1ov18+MLCkZEltFxHMOwZnMBgYnIcZcWFvvjcaFURpG422sLHFcrl01Do2i0UCy0OheyzHheJHK0F4Qkjs2mUwCD3qCPRMEb999YWllRJtPeaCQJUrZQUBQtk80QJDmbz+uNhavXrl20OihJWz589fbrHsoDALa2tgzDUBRFzuQpnAzDCMVQDEV2d3fa7c6bb36JphkIgS4uLn7wgx8uryw//OJBGEVpIWu1uoEf0DRL01QQxIeHRygJEQQKJRgM8DBMXCe8c+cKLzKup43HquNqnuerql4ul5Ikms9njUajXq91Op16rf7pg495MRNFEQBwJpvt93qrq6t7e3u1Wu34+JggMALD5vP5F198EUXJtWs3EghyHOfGzRtBEPQH/e3VVYYg8/n8aDSCIEjXNAQAimVfuX271+uRDF2pVFqtVrlcTpGB6Wx29+7dp8+euo47mc2/+fWvC4KQlWVd005PTg1V0+dKIZfv9fu5bPblzsvbt25hKKbMFZ4X/CCo1xsPHz5MlRDH0xFNM1tbW+fn591u9+rVq51OJ1Xs7na7Dz//vFqrVSqVw5Nj07bffvfds8tLjEABDCAYWV9aPt07KJercRIriuo49mg0vnnzFoKgg8GoWqnzMnt2fraxvj4cjhRFYVm607nECXJhoXlwaNZq1U8+/nQ8mlZrTYIkJEm2TDdJ4Ew2iw7Ho6yc4XnhfDi2IEPiBYZmDE0jaErgeJKmwjACCXj57GVezlEYTSJks7q4WF+MwxiFMMewaYygSTqOYkmSAz/0HbPeqBA0mS/ml5fL+wd7hqriOIYgEc3gQWBBiV/IiYdHpyQOa6oxn03pcokgaZEh2qfHFMPats1yTJNqapopSZJhm0gSWbaNIMh7771/9/798VQR5GyiOqamz30r8PxqtfrmvVtRHMVxpCqKnJV0XUdR3PO9zc1NAIBte47txDEEQUDgBRwj293TKEqiKAEAwDAShgEMQ3EMjSdjDIcpigjCMI4jCIJcJxwOZpqqUTTmeg5BEcsLaziG66rV744SKMlmM9PJdDwaaapaKBRhGBkN+qVSqVzI7+/sFPM5kec7rUvbNFCEz+Vy/+b/+A84Dt999d5kPJnNZ7KUyWQymm5ESWLb9qg/uHX7tuu6j588mUwmHMetlsumaZ5fXpaIykRVsvl8Npfbvno1juN2ux1GEUMxcAKWajXLNA1NOz48xDA8EUISx1dWVsejkSSK56fnuUym3+0ZhsHxfKfTieP4088+q9Vq7/3y/XfefmdjY73VaruuWy6X19bWMAyTZTmTyRwfH9u2zYuiF0Xd0dALQsU0zi4uBqPhXFO//s1vdNrt0XgqyPLB/kE+n4cA4EVpdW1jOp+TNAMDmOY4DMWSGIIghKFZHCcphtUMnaLp0ahPENTlaefly+eSJFMUpmohiqJBGNiOrygK6vs+wzAPHz2qFgpZOTsfjqfjSaVa4TB8rirjyYQXJciHlheXBVoc9ycbN7bv3X2tfX7JktxibUmZjCWB9XTLc4NKsWyaJsLQORgWROHy8lw35pVCrhd6lu3IGdHzPAiKQ88+ujiDEYzA0TgMPc/jBMG19NF4kmpjW6Zl6HOKFhmGIYnq7ovntqHFcZTLFcbTyWgwKhRLw+GYILlnT546KFuvVr/z7W83q/lyOWcaFs1yMAA0RYVRlLpFzedKRs77fhBF8c7OLoBBo95wA4fnxF5vkMnIpmERBGHbVhCEGIYSBBZFiW25SRwTJOk64e7LI5KEaQav1krbV7a8QNM1naJIZWaVyiUYwrudvmnY49FUFIVKudzr9SzTnM9mmxvrOzs75XI5I8v5XO7ps2fFUvGP/ugf/PSnP8nn8q7nkzTFMFwYR5qu+4GfQAkEQefn5+PJxHXdZrOZJImiquPxOIkTlmM10zAMU6FUwzS73e5oNKpWq8p8fuXKlZW1tf/P//FvBZ5fW1u/vLjQFW02m9UqVdswPds2dF1Vgus3rs9msySOK5VyFMVBEGRz2Tv8XdO2zs8uUBhxXXd1dZWm6el0OpvNut2u53nVahXCECcM9o4PKYrKFYtSPntyeR4EYb8/YFnuwYPPkihs1BqlSnVn56WiqlEYXbmyrRsGgqK5QjEKvbXVwnAwiuKYF/lAmb/55pda7dZ4PMnIiKrMEQBQBE6SUJaEyWQMw5jru3GSoAiCtNotHMfWNzbOjk8hCFLmiiAKlUqVKBC27WlzbeoFlWJlNp7/7m/9flbMIDECh8i4N5EFPi8XoCRs1hcsXZnP57lcFoEiVhZsRcXgBCSRMp2MB0OAoBlJ9l1/0O3SJIEjQJDEICI6rR6KwjACF4ulw90XLhT2+v2syNA0Q5Akw7Ivnz05Oz0TOHZ9fXU8mS6vrO7s7C6urtq2beluGIa2a99/96v3Xn3VdzQEwLwowhjh+QFJwI7rsAzz+PHjfL7Yafe/+93/XKnUGIZ7/uLZ+tYqgVPZbPbi4jKKIhgGBEmEYei4dhInYeBjGEZgRBTFgRvBFGqbLkgIU58TGDXoKBgeN5qb4/GglF8oZHOdzqVhqEHgEyQRRjEEkjAKIT8ZDPsETuA41h/0bt++jSCopmtLi4ubaxvHx4ftdjuTy/f7/QQCJMWUymXLtqaz6ebaRiaXffr8met7nMA/e/ZMlmWGYxsLTSmTiQCkKmqUxFlJmkwm6aEfTdPtTpthuWqligK4c9lyTCtOkkGvf35yShHkQmNhe2Or0++6rl+rNTAMMwxdEIR8nut2exRFoSgSx7EgyZPJRFVVTdMuL1utVntzc/3WrVtPnz3DeYbE0UypkMvlRVHY3d1tLC50u91Wq3Vle7u5uNC5aAVhTJAUTtIE4YdotLq20ev35/M5RbG67pMkTZI0TpAYgcpydnl5NZcr/OIXv3Acd2GxSZJkFCe2bRumG8ex41myLDMMB7e73Xw+D0HQeDRGEUQUhIWFBZZlT89OOZZdXlwqZAscw7um89brb9XL1X67b6l2QS4yGINAKM2wfDYPI2gUxYqqGIYRWFbs2oHnAChOokhXtTiKfdfrd7qOZeMoxlKMLEorS8uVconjWNu2HcdZWFxCMdz3g9FkQpKEZVmD4eDy8lLT9eXlZY7nSqWy4ziNep3lucl0SpKkbdqVUjkKo82NTZLEJTkDAQAgKAhDBEFSRwueZ/f29j744IOTk5MHDz770Q9/xDIcgOA4SiqV6u7uXi6Xy2QyFE3BcIJhCEURjmv7vhcGIQwADGAAAQTggRv5bsxzsqHZT77Yf/L54dMvDuYTJw7xvZdn44E6n1m+B+3vHjMkb+iGrmuSLEVR9NHHH7mem/LMZ7Op6zqGrn/40YcoggqCACAIAGDZ9sHhwdn5uWnZrVbn6Pj4b37yE5wgeEGwHQdBUdfzYASZzee8wCuKMpqMV1ZWojBkWXZ7e5tl2UajYeiGpmlXNjbjJLFMk8QJSRCubG5pisqz7KDXA0mSz+WVueK6LkmSGIYfHh5FUSyIkqbrlmWvra0tLi4uLCykyssAQAsLTcdxarXa1vZWZ9BHSNyJgrEye/T4cX84pChKFEWKpvKFvO241XqT5YX00kHKZjXD7A5GgpSp1Bo8L/KcYBg2gFDHdrvtLoLgX3zxRNN0x/FQFMtkZEHkIQjyXXc+m+AEBgEwm02DMEBd1zUtq1avG7rO0YzE8qPRqN3qAAC1223Pi8qlakbI5uVcs7YwG81CNw5tXypUIg9yTQMnWBQkdgInCYTAcOB7CIm5ho4jMArDOIwRKAFDIE6gOEpsyyRwjGVYmRehKBEFXhD4maL4fmDaFs0wjXKBQqPjkwtZoDudweLyqiiJkeOGvkuRJE0zl5eXuXx+OJ7wgoBNjTiO5Iy8sbGOYtCoN6JIlGZJBEF1Q+92h4uLi7qhi6Lw8ccPCvny8vLy8dHZw4cPcZxotdr5Yh6BkfREi+c513UcxwIwwHGUYzjfC33PTxKYICgoQSiKw3EsCEAmI8VROJkprYsv6o0qyw39wDGtebVSunXzZiFfpghG1yf1Wi2OosloLPLCeDRabC5cXlxMJhPHdqaTCc0w2Vxe0TQ/CFdWVrr9AYCRy8vLV1+9J1N0t9VSNe3tt98O2m3bse/cvfPw4aNcPjccDo+Pjnu9Xj6ff/Hihee4rutOJpNyuUwSRL1a8x038EJDVXEEBQlEoDhBYQuNBgIjx4dHK4tLmqpJgqiZOgRBqdJsulh+6623jg4PXdcdOS5JkvP53Pf97e1tRVH29/ctyy4Wio3FRZQkjs/PMBQrF4sETU3n84WFhfPzc03VLlvtV++8RuA4RdOTmVIo5IMo7vYHCIYncfLFk6fafFoplz3fBzAUJ4muGePZ5OnTp/V6PZfLnZ4eIwgm8BwEkHa3b1kWTpC+H84VBV7f3BgOR0vLSxCAFpcWLlvnURxkMtLdV+8ACIicENoBAWO1Ym3cHxqawVB0FMYYiguyLJXKOM2GtsNxQrlSy+RyoiQFgR9F0WQyhmKIwHCapHAUwxA09INhv2+omsjxgetPRyOaJOM44FjWdd1nz57jOLm4tBzFcb/XYxmWYfg4jOM4UTQ1gUBvMFhoLiQAiqJI4HnXcZcWF+Mwuvfq3ZWV5flcRVAYQBGMwCiKIgiMosh8PudYbnllOYqj/f19nhcajbrnupZlZXM5VVFphpFl2fd9TdNgGLiuq+sahiFJHAdBAGAYQRAIggSBhyAIxwhDtxzLtyxfloswRA37853nR6ri8GyOoWXbjHGUPz/rDocTjhWVmWYa5s2bN3mOPzs7YxkWgZHl5eVKuSLLMo7jYRAuLCzYjoOiKM0wFMNgBJaAuFQpFor5k9NjFEMIkqBoanN7czafCaKoqCpDM6qi2JY1mUw817Vty/fc4aCvaQoCYAQAHEWV+dx1bZLA5YyMEbiqa1/5ypf90JdlWVHVwWCo6/rLFy96vd50OoEgQFFUtVqFoERRFFVVAQQJghDHCYZhKIL+9V//+PNHj4ql4kWnpRn6xub65tZmNpeN44RmWAzFdd0olSsszzEcDxBke3s7SaDf+I3fJHDi6PBQ0ZTJdFIpVRiKWVtZ42kuiWKGYlAYxVAcJ6jLi5YsySxDm6aZJMnS0hLN0LP5fK5qpmXC+Vy5Xm9quqY7RgyH/UmXz7C5oowTKIYiNEy6c2ulsUwkMImgIsdBSYDThO0ZOEtyeSmKPS8JEQLDaVrOFiAU01UdRhCSYbL5PEYQURI36tVshivmxWox4zuaSJP1YjGwrDDwEBhkZJGlGASgs6lydHgyHk4zsuy7vmM7gR/1ekOGFxXNOj697A3HgihDEOTYNkXgCIQEflCrVTNZQVW1BMQ4ifU7l3EYoAhcLBTjOLy4uDg9Pc3n8ilDJ5PJLC8v0wy9f7BfbzQQFGU5rlarUxQNQTBFcxCEJhBiu14YRziBEyQeQ2EY+TEU+6GPEZiiqRAMa4YBUNRyfM9PEJiCEkoUS5OxPR7bs6nP0sXRwNA01zS9y4uWLMvplTdFkQxD37lzJ73TffXeq+PpyAt8mmN0y+AErtVu2Y5JEEg2Kw6H3VxeEkTWto18LgPD0HDYKxULuUzWsSwQJxiKcCxDkQQCINPUMAxeWKhnRe7q1vrN69u5vBxErh+5552zuTljs7xcykUgQTF8Op1ftlocL+A4yXHC9vaVTz99gGJ4FCXjyaTebARRxLDMcNSfziacwGq6Mp6OBv3O6fEBz9JZWQYJKOWLMITomrm0uCrwGdfzvNBjRT4Ko2KusNpcvrqxtbm6xjKkYcwRELE0U6vUoCDS51qGkxzD9myvUWtKomxa9vraBoKgBEkCgMznGkFSLMN7YURQHIpAGIRGtuMABDq9PBYzvO2a+VxWN404jHVVr2aqjcrixcE+SZCJ71EULhXlOIGDJMDjKEl8PwkJgAMUpUR50u+GQcLAiCxnHMeRMxlJlkHikyQQWEbm8JPj0NaUcj7fHwwBFHIcEwZBEkcswyeMHwYRCmMkSV9cXPZ648CPdc0s5Au66diO63h+oVjIZbOu65AoYbvJa6/e29raTKAIJ1EIRK5j2pahziY4RQEU9Tz//fff7/dHvhdVq1UEwTCGoGmWE/nTn550+z2WZSVZnk2nJEVblonjJE3HcRwHsUfROIqjURRTDBklAc1SSZJgKObYDgRD08mUJEkMxzEC13Rb1axcoQpBUBxFKC4SaMY2HRiiaUrAcRrHYcdxFEXFUOLivKUomiCJHM0ACLiumy2WYQwbT6ccz4dxxLBUHIcUjecK2dlsQhDUbDajKTqXy1mWZRkWTdK3b97udLpxGI9HI2U2t3SD4xkERpIogOM4dN1iPmcY+sJS03AcgAHNND/6/FNJyGCAqjUWGE5AYHhxaWln56VtO6VS5ez0TFWMyA9z+UKzuTgeT+eK2lho9rrdBEBvbb+1u7fXvjy/f/cOzdDHBwcSL1fKNcd2cIzMyLlHDz9neJbiyPOLU9/0tInye7/z9y+OTjvdiyTyTXPOsLRlGC+fP9c1TRalbqvr+F42n6M4hsAJmmbG43Gn3S1XaglAHaeHUSHPS8UIFeQcCuKo025vba3MJr1uu52TZUVRa0UIQ0g7CDiKu37ztqnppm6gPCBQTBLEKPRdL4zDOCNJEAziJEYQBIAkThIUxZMkhgFsm1bg+9lSiWJpx5gjaGIqs2xOhgGiTjXHdQqFwtjzoyjSdQuGh6USsr62HnomjeZjT08CDwD44PDwxvXrAMYAjLAClyTx+cWlJEuFYvFw57C+sPnlr3xZXGj6QYTheBQ6qqGQBO75nu25oiyenJweHR31+yNVMXLZ4mQye+ONtziWv2hdXNm+enJ8VCgUp5NJr9cDAARBmN5rp5aBFEWhKBpGLoYhOE6EYZgkUBiGruuOhiOKohAEcV0XgiAPAqIoPnv6guf4KI5KpeyQgBmGoGjuxrUlDIfOLo5MI1heXmYYznOdi8uTxcXly3bH9eOlpfXeaLR97drG2pYfRYHvMTTXa11CAPCc1O8NJUk6PT3P54vNJsWx0v7eSaVcWVhoUgQb0cnYdBCYyOeKNEPquokCnCLBwd6j5fUVUcjYtk/THECQmWayBDOZKrWiSJNcdbthO04cxZOxks/nDd3GUDqTyY/7g+3Na4P+GIExKHGTGEEQYm2lTlHUysq6ebTr2s7xTsv2tEFnOByMy6WyLMvnF+dn52e/8/u/rZnz4+MDBmNG7cHl5fnRwUGpmidZjPeo+UyZTEayKMdRWCoWMAxNYACjCARAq9XiOV7TNcdxppPZeKbAKDafz10v4aVsGIUoikAiz/TarawkDVoXi40FBCLOTtoSnxUYuVZoAhgZdXumboI4TuIIw3AsihMAe24QcQyC4yzLkhwTOE7seRiOIjAJQZDn+wBKPMcmcZjiWDiUAIhxBHbdSBSz56fnKEGMu/0oisIwCsPI9/1Wq0Vi0MLV9YOdDgRB+WIxgmAEQ23bxnAsny+0uy3bcV683Ll9+7YoiqqquoHv++F4MrMdIyvQrhto6qRcX7RdV7lUer3+bDZrtztJDKAECcLo/PzsN77zm5qhRiBkuOvj8SQ9ik01MFIHNN/3aYr8VZiSlGXZQRDCf9ePphEsSZLrulEUYRhGUVQ6c8RJHEVRt9tD8SoM0ChOoIQc9AeBh9YqaxmpTJE0LEGVas22LMvwKDqGYsxzYl2xq5Wm43q2ZY1GauBDEATGhuq5iWvH2UyFwGhdc03DLRcbmmrs7526rhPH8erq9tnZWa225Ptu4IPzs26z1lhZ3cYwbGt77a9++AOMJFAch1EEgSlZ5H03Hhgzywp0TaNo2tC9N+5fieMYwxgMoXGMPjq6UNV5AiXXrl45OzsjSFqS8l988TmGY8pMf/j4i1ppRcyw2Wx2Op1GUXhxcaGqSqGU73Ra3X4LRRFeYGt3bh8c7AsCt7K6MpoO1dZcEKS5NUMxhCBwwzRWV1dG0/HR6WkMQzTPiZKkTsaiKAIEtixLlPOlckHVnWy+fHZxiWIo1KxVZrPR5r07L548hhNYYCRSEOYT/cbWOo9yDz99ZGnKaNDLy2IcBflCsVgql6p1BEdc24RJKo7j8WDIcizFMo6lwxhqW5ZpmjiOzUZDgyYrCzWCZXI4Mp9OcJqEEoTgmXlvYDq2nMnadsCyzGQymScJhSUo5KNJEoeRJMkMK4wn4ySJGZb1g1AS5VKx1Gq3gjAgKMp0EhQnSIo6anWm09Frd66JUsbz/DiKCoXCX/3gLy8vW5bllEvl6XRO0zQEgeGwf3p6YttWoVBgWMY0P8/lcp1OR9O0OI4BACRJIggCQYlt2xAEybKc2rERBJEGou/7OI6ngmyyLDuO47oujuNbW1vtdts0zTBMTMOXRMR3oudPD4qlHEvlS4WKMlUcEjs52V9cKkRJkM+UDdPluSQrFh49eJrJZTPZ3Fifa7Z5dWP97Ow8juFsphpHSaOWD4IoSZIkCqvVhiQ4pmUo85ahm6/cboKEhBKo3+2jKPLo0YtSfuG1e+88ePjZsK/mc/XeoA9jYbVWTGJc1eyinDm7OI6Tvud52Ww2CpDz0y6CICAhXj4/JDF0Pp+hODKZTL71zcVOZyjw4tPHOxjGnJ6cUih1bfPGa6+/NhgOJUkSBOmDDz7geO611+/L2UyrdaJqMxSgIIpvvHn15bOXhqnv7u4YjoERRKNazwv5Tz76ZLHRHA6HjuPAGDoajUiWLpTLURh5nh9HMc9TK8vLqm7mslmK8i3HrtXKqDIbLy8uwIm492InCWPX9HAEW15pGrOz0ENe7u23T08RKGYoxLFsmsS16RSFEpFlWF7wPS+BEE1TDVWFoQKGoTiGJ1Cszm3TNHmWZlk6CMPpeIwzZOy6CUDEXLbb7ZMcC3A0BgAncJrhIAAMQ2+Uy56ttzudm1fWHVMnSJrlcMM0wzBIoNhxXYqieIEvlcLnz3c82//y135rZW1j6se+H+IEMZvNkST0gtA0zeFk8uTJ02fPn4ME5nkxjiMURXlegCCws/tyOBotrCzSDJ3eubuua5pmFEVJkqTuQUkcpWqrnueRJOn7fupxnQpjpJorSZKkjJtisZimc0EQGo3G9vb2aDiaTCfVarnXb6MwF0ZBHBBQzHgOSuKyZye6ZbIcn89kZxOdkwQUUDQhZqTSbGzgKOu7CE1mcBynKMY0rTDAfC8hSQpFQ88DHJvj+XwUYEgVWEYk8iVZlqdTM/D9Sml5NrUFwSYwodudCnxhPDZyubznJIo6twwnNPDhQPV9z3O9+dQKg/Anf/2e7/sYiuULORiK8rks7MaTkXZ81Ap8eG/3FICkXCo1G6sAiUMoHHYmzYWFo+MjnCajKMYJnOHo84sLSRJn8+Fg0J0TzF42d3hyCCXJb/7Wb6IWmi/koATKZLM3bt1CkmQynnA8P55OBUGEcTSVC23WKhcXlxiGAwA9f/ny4rxD89JwPHv3y19BI8/xbLPf7Qx6g3KxAsUISTJnJ22Wkvd2Ti+Pj/AkZmkcQ/AkDpI48nzPVBFtOuYZmiQJmCJpmqZIMorC+WCYzUhJHKUyB45jF/MZDMdbl+cogeEkCQEITQDAcFM3CZbRTVvXLZpkbMdmWUY39KzIN+vF5y9eZmWpWOI1wzJMM4piAIM8x3V7fc/3SZLQdD2XyV+/fYtgKByOEwjO5ov5QuHxZ58oyuzmzds//dnPLy4uRsMxxwqDwajRaAIYunPnzsnJKcfxGI61Wi3HdXAcT83p0hAMggCCoJR1S1HUbDZLhf4BAHEcO46T8vfS1pNlWcuyrl692mw2q9Wqoig4ji8vL3/7W99utdrvv/8+isGZTD6OQ0EURUGolSnNMF9/7Q3XGz159pjhWBRFNcVlSfnGlexlp90+HzSqy+poFEcETcoQgPd3T3Ec810k8MPp9BLFcAIRD3Z2OY4rlUvKfPby+QnHsUlySVKcaows3f30k8cXlwOKpgECjydjVXE7nX0Ux4+PDwmcEtkMDCOCIGiK6ruQZVlhGDEMP56M4xCO42A+06EkKRZLH334qFotu3Yky9JopLAsPZ2NITiEUWRGK5EfEwJ58+bNrStbmUL2k88+vX/v7njcSTwZR0le5POFHIqiEAx1Ot1Wp9OoNxrVRr6Q73e7C4vNwPMD3yuVChhFARQAGGIYKpfLIQg2n2uiIPR6E1HOYAg87HVRHIPPTo+zmczd33hFV81BbyZzROtysrZUvjg9s20/QiBJ5B3bTXwndAGOwGYcTYaDerVq6CqFkxTDOaamG2Yc+rLIwzAgSRKKY9tQDV23LTOKY5BAEQQ5rk/BmJckCYpojq2blmHZYQgxJJ0qZRqmOZvNEwgSM/J4MtV1e6ZoNE2FYYRi5FxVWZ5HUPTe66932z2UwHq9nlhfZQUBgMiynHKltry8RNEMwzBBEJZLFcdxkiTGMGw0Hv7N3/y4WCzNZlPHcziOcz03NUqjaTr1iE6jM/WmxnEcAIAgiGVZqV6DaZpBEGQymdTARZKkIAh4ng+C8J133m7Uarv7BxiGEQS+sbkiCMLjJ1+Uy+UwCAVR5HnOtnzHcQqFbBCINCsoc+X84qLZWKFoBkFxTXV6/X5WLDQb6zzLffTRR/lcAUqIyVi/OBtJUkZRFJKkOhcPB4PRQrNxdtIJohAG0Olp23VsDMMQFNFVlSIoXbvwoyBKEgADgiInY41m2UpxcTKeOVZAUziGUHEIj4dziqRAgkIRytOypTsQiFwnJElyOtFI07UMlxf409P20tKC7yU3rr6yf/DCtMz2eYegSRKnWYbjOCEjZRabC4LA375x88XT54Igl0qlhebCgwefffzxRxeXl+VqxbKsJ188zmeyFEnmcxlTd0uVkuO7OIlhJMGwDI4TNEVquum4brlcKhSqkpSFoJPpZIz6tu1YZmZxqVauduNB92J0cX4ZB7Rl+Z4XoCiRy0lB4EqiMBnoPMOV89lyqRhFkW2ZuhezxSqKY4YyZVkaTmhN0xiawjDMSRLHdaMAsh0rhCAQhkVR8mKY4SXDD4qC8OjZC9N2EAxXdZ3ASd+2cQSpN5ZPj/c3VhZ2Dw5Mw2NpTpZzKI70+z1FVQVRhgCYzpVCsQzj2NnlRZWSIU0X5SyOQA8+/uXrr97kGGpnb79SqbAsZxojHMdXV9eSBKJIqt1uDwYjjuMaC03TsuM4TgV706BMPYBhGE6SxHGcMAxTK2nbtpMkgWHY932CIFAUpSjKMIwkSdILzySBbt++uba82Gg0JEkMwsDz42xWunnzBstwURTNZnMERlAUbTabvmeL2RLLiR2siyEsL/AYQYyn87u3S7btkCRpG5Zruxtr1z745Qcsx0WBhWM8x8qBDxiWdTGv1510O+MwDCiaIknCcf1stqDrGoqSKMpmsgVlrhAEpeqaLEudTkfIZCzTCmMPhvDASyamWirVCYzxkRhKUAxFVdXCcZwkWRSFVU1haXI202VJMvSZZXlB4D0aP5FlSeSkXmtEseTqxipKoBzHvXj5sj8cffVrX8FQ8rNPHr7x6q18rmDZ7qNHDyVJ9oOAIPDrN26wLCtJ0i9+/nNVVVaXlg+OjjZW17q9npzNtLudcrX67MWz2zdv4RgOQcnmxvpgMEZQwg+SyPMa9TrMsZzvuuPR8NnTp3/94x/HcdLt9C4vW+cX574XCJK8trHFS/JUUWOABH6kGWan27VMW1V1kqYcywwdRxRFSZIJkvQ8z/M83/cdx0Ex1PU9VTfmipoAdDiaDcfT807HDaMYQfwEzHV9PJvHEKQoSupINJ1OiqWSahgxBMcQMG17PJ1OZ3M/iBIIwCim6gYvSq1OJ18sHRwf5fN5jMTb3f6Hn3yGYFipUjUta3V1RRREGKAoijMM12gs1GoNiqJWV9cyGTmfzxmaZpiGbujZbDb1BUxxpVReVZKkVOMKgqB0bZ22pwAAlmXTyT2OY9u2U89gURTee+/981YnisIgiBRlZjsGBEXFQh5F4TiJwzAcjaZJEnmeSzGkrlsUztYrC/devZ/Llgq56uriRiFTqVcWS/mayGcwjJyO1Wy2FAZA02wCpw3DTSJ00JuKfEbgMzTNS1Letn3TcCiS67T6SYxoqun78WA4DROgaZbnhtOpCgPcNnzHDgI3BgB1nACB8dlUMU03SeAognw/ggEKIARDSQyjBU4OwySOYAhCowh4bkRTAklynpe894sPoAidDFUco0mCefbkhWsFkQ9lMnmel/ud4YfvfXx1+zpN0V7gxyDBSbxQKd977Z4kyZZtbV/dljNylES+782VOQLDlmUKojCbTd+4f//48BCGYZKkSBwPfE8WRdcyRYGTBR69fu2GyAuDwaDdbm9sbBAof3rU73YG85ldKS1wLNPpDUiCGE/nFALhcGLbZq1auX592QtD3TDMCDTqNSgGAEA0TXu24bpuFAYUQ8mycH5xrJqmpluDmTaezBIM98LAcp3ta9uqbpE061guSdMyw3m+HwTeaDzK5zLj8aBSrWxtVw92DwfDXr3eiKIYoNidO3cN0zg6PGQ5Zmdvb2XrOoSiimofn5yOhoP/9h///WdPXiwv1jACl2SZJKl8Pu84jqZpGIYLgtDr9nXD8H2/2+tmi0UERoIgSHV+CYLQdT2KolSammEYz/N+nTvDMCRJEgCQGp27rksQRBAEjuNkMplyuVwulxmGFUURABAnceC7QUTCUUKS+GyuLC0t2bZtmoZlG2GEizwPwxgCJ74XAYCqcy0MwslM2d3dqVQqjWaTZUNNs5IYdp2A5yQIQgRB6qgd23K73f7NG7fCKLq8vKhQtGFopmHBMJJaWFM07TgeGkZxlMQxiMI4ihLHswGAMByPoxhFMQRB+r0BgIFlWTRF4zgeJ4nvB4EfAhgKw4DnGZhEdMMMA5/AyTCIgyBWFBUDkK72GI65OO20epcwBscggeDAmNuXx63F+jIGhV88fPL6m28EUYDi6OHh4Ww2e/7iOYgBzdK1eh1BMRrHMRjBcByGEQzH9o4OUAy7dfuWYRj9fq9cqXa67ZXlJdtyURhsbazv7O6gzVrD1A3LsEVJKhUrk7ExU2dzTYVhcqZMYATu9trlrDiaTNXJoJgRV5cWr99+xY6TMIpZToApxjJNlqH8wI+DAMUw23VxDHNsazTo94ZDlKRcxRh0u4PJ1PbC7qCPkfhFtxeFMUAxikEgAOfyuV67BUExQVKKqq6sr6uq6jieH4QUzfb6/UqlQhD0eDJXVQXF8DgBFEWhBK47zkyzpzN1Y317b++0dbK7tbmawBBNM7dvv/L97/+AJEmSpPb39y3LWlxcJEh8Pp8zLB0GIUEQEASl1pEAANM0WZZFEMQwDFkScRwPgsDzPNd1UysjCIIAABiGWZaViqiTJLmysvLVr3wlThJRFHEchwGUkTMkibhuYFmOq3jdbnc+U2q1GsMyfuBRJBlHUBCHjuOyLFvI5gf+QDHdWrmqK9pcUeysrczVtbU1wzAYZpDPl05PzqMoFAQpjCBJynz7299ptdooggIY+vDDX2IYms8XYRhW56qm6ThBuK4fxbHveSRJyHJmPp/DMByFURxFAsejCKLHRhLHFEFiKIqhKARBMABhFOEkruu+Zbk4jgIYJkkKw7AkgWCAQAlsWCZB4Ipqvni+Zzo6QCEISb7+ra/+8mcfFkrlG1e3LHX28ScfQDG8tr7x53/xX2AUJRh6NBot1BcYhvGjECfx7e0rR7sHckYGAMznc47jSpXKy5c7S0tL3VYbALC5vjUZzw+Pjjc3t2EYq1cr6KMvntq2tbS83Ol2u70+AHitUen155qpTKaz6XR29/YrTuDMdWMynV29up0rlQbjGUCQXDZDMSxGMwBACIomnqtrGoHCAIDj4+Mo8OWshNP0/uGJ7fiWEyia7fqBablkAtzeGMUw3XQCLxBoWlHVMAwWmw1NmcuCzHECiuEH+0embgo8b1mWZbvHx6fD4ej+G68jiLu0vJLNZ/bPO47rkrTYaC6RJH1ydlTJ5yEI0BR1edkejyccxy0vLwMAyuVyEASj0ZBlOc/zEASGYCjFiWiaTtFNGIZTif9f33ylWsCpsnqKQ6UlPo7j1Ls7n88nSfLmm2+QFO26LoABTeBBEOmaQ5J0RhIvW73dnQOapqvVCkkxs9nY9xyeFnieBQAiCDQOIZ7ns5m863h3b9/90Y9/PJlMVldXVleXAIDG4/npaatSrjx58mRza2s+UzAMFQT+rXe+NBoPfvazn8EwHMfxbDYBMExSpO3YEEjCKEBghONYFEUAgDAMhaAkCMIkTjzX8WGAwMCwbIIkMBRBYAAAwHAMi2MUx2iaiuM4SSAEAAzDfd9PFxMEQdiWLWcLk/FI1x2UICmS6PRa/+d//PPNjfVee3h+cJoVmHKx3m73bd/Z3d/HcfzGzRu6gi40mwkMsSJv21YQBrqhHZ2YC43GxeUFgmHD4aDZbO6+eClnMrPZXDc0WRaXlxZNQ59OlfX1NdT1ostWF0FRjheTBKo3lq5eu723f3p4cEbiHE2Jmm6q8yGMoChJJTAm5kua4+XyhRAmXD+KES+Tz0W+i8BIGIWt80uKJFiGmc+cbn8AYRhAUTdwBtOZ5YYARllGdANPEgTPDwgS2LbCMKxpmoVi0TTN8Xj81a9+pTvoa6YJIYjr+VQYNhcWDUN3XPv3/+B3Pn3wmec5giTqtpEAxDRMDycdx5MEQRIlhiFIimpdXpyfn++83N3Z2RmPx6VSieM4nucJAut2u0tLC2fnFwCCPM+LokgQBBRFUz3UdPThOM79uyEJx/E0raabpNQPHYZhx3FwHH/ttdc2NzcJknRdl6ZJ3/f1IGQZejZXFNWslcskyShzA8NIFCUwFA+CEACIylCaahiGKYoCwzDZLK/OLZoifD/5R3/4hyESe4E9Go8s057NdNNUmwsNDEd/+csPWIY1Tf/k9Dg6CiVJ3NhY/eijj8LIg6AEw3AYhmmalHKZ6XTmOTYUxo4TaroKwzACYCiJYAA810rXZjSFIwgcR34QBzAMEzgCwZDj2ASBwzASBD6AkzD0fT9mGNrzPIIgaJbFcbJcqSEI2u1eAghbaKy125euFRMkAkJk1J8JcoalhMePnyEItrC4eHZ2vrG6/vDhw9WN9XKzAoG4d9mK4kgQ+dFoyNJUCCW6ZQShB8NQ+rddWFg4PjxxHWc4HPM877kOms3kx+OxKMqe57Q77b/+yU9/5+/9wT/6R//g//5/+19d171oXw56YxTEhawgsXyYQKbjvnbvHkHRQRCFoQ9geD4eQ1EQJzFJkDAM7+zu5LNyRpLag+7u3rFpu5OJNhzPMJQKfV/TzQQk08mcYhjTdFzPG0/GGZaVeJan6S9/+cuT6VTKSC92XpA4yXM8imEYjq9vbPzy/fd39w+LpaJlWd1eD6fwTL2paOrM9+uNhqlr6xurRYmPkySKE89zHcdZWV4ZjUfPnj1bX19/8eJFo1m/cuXK3t5esViyXN92nCiKUkRJ13VRFB3HMQwDQRAURdL8iiAIz/NpOBIEkQ7yhmG0W637b7xx7do1WZYpkjg5OSmVyqViDoKg8WSua9ZoOMNRYTTSCvlKtVoCEOp7AcNwEBRHkW9ZJgBQkoAgiBAExlCsddE1dAPB4Yk6P29dSJLk+8HG2uY779xvtQY4jm1tba6sLOfzOV01Xr58MZmMoyisVEujUR+G4TiJHdvCKSwIvDDybMdCETSJ4wRKSIKM4yiOQwBBKAbDSBJFviByjuN4ng8AhME4BMIkhgAEARiEoZ9AMc9xvu8hCMIwNARBJEkQJJUkcD5fFAR2MhkbmhnFUVbM+VawubIxHHQyciYJYU2zDMO5dfuVKPJZhnFdGwJAUebdfk+WJIKiSJrs9Xoiy6Moura68slnDy7OLqA4CQK/0Wicn51hGIoicK1awQnS0HV0MBgVC5XhcNIbtHiOq9YrYRwRLH3l5taH7z1JQt1NAp6hzi4uv/O1r2xcueJHIYSgAMMhEIaB6zrudDKGkpCmSEPVYARZX9+Yjgeu6xRL5dZ01O6N3CBcWV1T5ma70zEMG8VR13MxnOIFniLxyLHzhUJGznRb5+3LC4Ji5ZywurI26o1LxUqv1x1PZvVmY2Vtxfbj49PDZrNsex7J0ZZp/eD737/3td8LfH9luXF1rXS6f0oS8GQ6/elP/+toNCsXK5Ik8xynqioEQacnJ7qqIjCiqirJcAzDQBBkWXbaUKZ5IsWYOI6FAUgdTlOsNE2oruumcsmLS0vb29vb29uTyURRtLW1NZLA56pBU2Sn3dvZOSAJenMdGQ5GOE43m0ueF+qGBcOwY9uKqsUJxDBUkkTz6VQUJcuwTEP7d//+333w0Ydchq816gxD53IFnucd175yZZPnxRs3rruOncvJ52G70ajvHexNpqPFxaZlaaZpmJbJMKznOpPpBIJBFEUMS+MI5rgOAkNBGEEggSCAILBh6KmZYBD8SjcAgCT9NRGURFAkigIUQTAMwzCUpinXdRMoRlEUQUmcYFw/wL2Q50WCoAgC0xQtisLOZb+QywaBe7B/XKrnkwR89tkjOSOKAte5uNzc2MQJYj5Tjg4Oe632t7/2zfFgcHx4hOM4RdEkQRZKxc7ZRbvVHo3G9+6+CgDMc8zZ2YWqateu3kCfP3l2+5Wby0vLSyuLjmORna6qzdqd3avX187ap7aCRQ6SRBHLS5lcxTDCpaUFgNKD6XyuTjmacmwLJLHvuQmM0Bw3Hlth4GAUTQuCHQaTucZL2e7wtDfUx+MZRdEUw5qmvrDYjJPYh4AdRAiMBUECYITluOXF5hdPH1cbJWWuapr26q07Z2enCIKcnZ3dfuXV9977BUkRtu3pprW5tcnJmYCQQOg0quLKcq7Tm8EY4AQ+DINGo66pxurqoqIqqeye57rD4RDDsFxOHI1GjmtTFI0gcBj6vu/XatXjo+M4iXEcS0kh6c7Ttm1d1yVJSvHRtAdNkqTZbDIMs7S0AAD0wYcf3nv1XrVaZigmikJdN3TNMBGn1W4NBj3HcXzPHY8tAOJarYAjcJJAO7s7lmmVimWW4R03Mg3jFx986Pr+2sbaSJnt7h1kM5nHj59fu3qj2VhQFINhWAAFnXZnOp1+97vfXVxckiXpZz89urw8j6KQJIkwCpMktmyb57k4ji3DNHUjnQLdMIzjGMdxAsdJHNMNjaZJ3TBwHPd9H4LQOEZ833U9DwMohWE8RcZhaFkWQeBxnKiq7rkOjpE8yfEcr8xmlm6gCL55dWM6nbiWAwPccz0Ao73WyI891/e/9OXX16I1miU+/uhDkckjEbVQW70YtDXFWV3dGk3mnW5fyuXjOJTz2Zu3b+mGXq3XLdOeTaepqt7p5BQn8CiMLy8v4bt3XpF5YdDtX5y0+r0xw3Brm2vNpepI7V+9ue7HWoJ5KImVa42llavF4vJgYJy2+7TIcznBDL0gAa3BIAKInwAfRhXLHk5VNpMBJHFwcuF6UAxwgJGjuaI5bgAAwLEgTjzPR1EsCNzA9wmMsu3AslzP8z5+8BFBIjzH6poucGy7deZ7zsbmWjaT6/eHJMVomqGo9pVrtzXFwBJw8PQRnViBMTncPwSwj5HYZfvCNK1et2Nb+hefP/Bd2zENxzLiKISSqFmv3LxxlaGpyXDQaV9GYbC+tsoyVOB71WqZYxnPtaEk9lw3desiCCKXy6X2USnRiSSpMAwAgP7oj/4Qw3BBEAv5Yr8/NE1H0/QkSa5eu9Eb9HECtz3z6fMvvvrVt3JZ0TKU0HdEnoljoBrmTFGu3bxVKNeHU3U0U/78+z/84d/89cujPS8KAEJQtGC7IUEyf/Znf/Hd73735z//uarMSZJeXVn++JNPSYqZzuZBGF65dp1iGIphTNu2HNdxPQzD4zCiCDIjyygMIzAMIOjXdBZRkmIYkTJZRTeCKA7jBCVIBCcAhnthxPICimOqps0V1bBcN4gM0+73RwRBCbwMxTCFUgxOy6LUvmyDBGpdXqrzKU2RCAJ83+20uyigoADtnAx/+dcPWnvDL97bOXrcwgOWhoRhS2mdDjXFm83s6dy0gyQEcLZUev+Tj9qDToIkpmngOFqplC8uLp4/fy5IYmNhAacoKZuBJ6NhPp/3XO/pk6cYThyfnOzt76EEurK6eO/1V27c2Q4gGyGT3/jtb1ue1R8OCYro9vvD0VBR1Ze7e5phr25csf3wrNXqDUfVRmN1e6u+tHTZ6ffHE4rhKrWmYXpeECMYxgoiQVEwjNi2G4bBfD4lCCIIQhiCR8MxQ9Obm+uB7z979nRtddWxzP5gwHPcs6dP84X8fK6wLI+gGEbg0+kMiqHW+UVGFHqtM9eaV4oZAEO5Qu6i1fp//ev/p6rMZZGfzybVSimblWEABZ4j8Fy71WpfXvZ6XUkWKYqCYdDtdhzH9n1PUeYwDGRZtiwzZTN5njefzxVFEQQhbQOiKHJdRxTF1157DcNw13WrldLi4pLvB6qqG4Y9mym9Xq9YKuXzOcMwWJYOo2A47P7V9//C81wYBp7nzmYzkmKKxRxBUdVqs9cf9vqDmaLQDG25jqYZUZxgOBEE0WQy/eKLxwxNS6J4uLv34x/9EAEwx3FpG53L5sajiWEYvu/DAGAYBsMg8H3f84IgQP6OQiCKIk3TSZLgOC4KAsuyqezPr7TjUBSB4fS0w/Fc07IYlmV5liRIjuUlUZYEiaYZhmGTOIaiKHC9WzeuZ2UJBpAfBBSFUxRp25ZpWoqiOZZHk9xkMP/5X//yZO8cTYjnn++899Nf9i6HSYhkxLxnRbrmqKo1mSjtbn86nWuaORqMDMMqF6scK3S7/YWFRc8LEBjlOO7zzz9HURQ1LUsQBNuxkzheXVs9PDq4/9abnz54cO/ea1/+ytulQvXlk93HTz/xdH99ZSOMi2++/WYmLz99/oXIijAEPX70uaaqyytNgsAt22k0art7u5989lmvPwIIWfITkqSiMEwg4Hmu7/oQgKIoYhm2XCiqM42lJSiOK9XSxdnO1atrSbV+edH7xd/+rcAwjmlqhiFJ0mg4CEMfJ4h8LksxLIYgnMBnMnJ7NK1Uq41GHQCoWMh5rlupVK5uX9l58dx1nHy+8PDhQ0EQJEmKoigFMlM7sxhGKZE1DEOW5clkwvM8giDpJOR5HgSBIPDTgT1JEs/zUqJTtVqtVquiyN+6eaNWq3Y6bUO3WIZ1XRfDwJ/92fffeefdbC6Xyge12+13332XZuhu+zKKIihJdM2uVqsIji8sruA4YeiTZ89eBoHPC1wmk9E1neEYjmODMHIdNwzDKEKHo+HPfvazO6+8EkaRZVvPX+z+j//yf0IQ5NNPPz0+PqJoyjQNAJIUYYiiMAxDx3F+vRtLCVkMw+A4PhwO0yVfCpMlScIwTGoKAyDIQzwQJ3EUEQQRh5Hv+7ZpEjgRhSEMwziC+r5vu9a911790Y9+RJIEDCdRFNI0EwQBSVH5bIHAScsyFWXmgYRhKNfz4jhKoMQwrYODQw9JwsibKzMAJ6VSjiSRMJAYGi8VKoVc1soYvV43my2Ypv3FF0+bjWbgh0tLC6VSAWU5djqbwgiyvrFhOfbBi4PmQuP8/Pzx46enp2f//L//lwiKWYbevzhbX1ibq93ZrDdTBgiGy9ksR7PPnjwjCULOyKPhZIaClaXmBx98fHC0C1DsD/7BP3z2Yu/w+LTfHwRByAmioqih60EQFMWhY9vty0ua5LqtdqNUPTk8SmL/5OgIQZDbt289ffy8kM+fnZzcuHXrlVde+cl//RkEg6PDo1fvveqHcbffY0gsCIJX770+mc9YjrMDP0kSAKDW5eVgOOQFAUPRO3funJ2diaJ4enq6tLTU7/ctyzo6OkoAvLS++XJ3r1go2LYtimIcxzzPe54XhqEkSdPpPH2Eoih6npcam6TWcrqu//Zv/9ZX3n1nPFNxnOI5jqPxJIm++90/z+XyURSdnJyOxqMvvfkmDMOj8Xh9bbVWq/3zf/7fra4saIpu2TbHMwiM9vtTTdOGg77n+51Oh2FoQWS6vR7HZRAEceMotRJkaNo0TcM0stnsH/7hH37rO1acQL/7u79r23a73ZpOxxiOJUkEAAiCII5+9S8FyAAAaRJNm5NU2jflVmMYln4x5WpBEOR5Hk7QAEEDP/Bc1zAMx7IIDLcIgmXZOAgwDJdlOYrCOA45Tq5Uyy9fvnAdL1/IRmEYhjFB4J6HxnFMkiSG5WfzsWlamYyIosjR0TEny6VKicxRijr1rUBkeRDCnhnoc5MAJA5hcQRLQrYFdb/9rW+4rvPw4WfT6fT27VvoZbtdq9Xa7fY3vv2tzqCbwAlJk7sHuyvLi5lcbjga5IpytsgGLvPo8fsZPr+2vOX7NuRFQ2cEF2AKJQ3diLwgX84zHDWeKppurW9evXvnlW63T5FMq9WJogQA2PcCL/Bj3+doEoqTIPRu3bqx+3wvn82pyvy1V67VKrKpT4+Ojk6PjwPP39vdURUNRZAoCg/2d5vNhelsnECx7zkSz/f6/dffuP/DH/7o//Gv/9+nJ6fXbt+JAh8FoFgs9vo9lqJpmr64uBgMBo7jSJK0u7ubjjjFYhEnKdu267WaYRjFYrHT6QAAstlsGIYpXA8AhKKoqqrZbDZ9finZKl1vJkkMJcnh4SFN0xlZfr5zpKq6ruv7+4eSJIVRtLm5RVHE9vbWycnJdDZdWVx88NknGIo0qlUqgZzAPztrJwkYDIa2a//ohz+uVkuKogahK4qSabkQABiKQgjkuC6KwJ1O5/NHX/yL/+6fmKbN8+R4ogdBmJ7dcRwXxWGSwOmuIU7idDGbbhPSGwGGYTRNcxwnFexMS0F6GpAuxgiCAAD4fgBgwNOMbRlRFKEwVCuXYBQhcTIry77v97p9DIH/8s+/FyXhZDxGEVAulgCADM20bVvXzNl0hmEYzwthFIxG8yiKaJr2/RBAEE1wrh0M+5PJZMzxFE3S56ctUeRZlha4jIF6ljoRxRxN87du3tnd3ZvPZ7KcWVhoJlCEvvPuu71e76133/niyeNCpeR6/nQ+xVCMYdgnT55MNZ0i6Xt3XwGJT5PAN6LT832OyuczdYoQB+E4k+FEXoyTmON40zIgGMqXylJGsrzgP/zHPz0/aflBGAYhw7BzVQMwhCEQy9EECnued3l+Vi4VkQiTiqXxcITEtiBQHMsahteoN6A4KL5ewHEk8L3l5WWO4zKSmMaQIPAszz5/uavquulYt2/ftH0Hx+nd/T2Woavlymg4TKKw3W6//fbbtm0fHx+XSqUUNkp5n34MYTixuLj48uXLdEUUBAGKojRNTyYThmEhCEpVX9KcpKoqwzAMw1Qq1Vqttnt4HIZhuVx2XUtV1el0OhwOc7nczs6OJGdOzh7gKPq9733Pc537r782Hgw63fbG+gaA0W77AsGxhw8f1WqNdvuy3b4slQqO68Aw4Dne87wkgeI4DgMfQzEMRUkSj+P4s4cPNtZWNzZXDcvtdnu7u7scx0FQQpCEaXoQ9KsSDyAohqC0LUkrQIqa/XqjaxhGyiFMiYWpvdjfcbHDIAhIgkx93nmWtU0rsqOA8DOSFEVRLpfJZKXmYp1l2cvLi1arVa1WGYZOfbcUZQ7DSKFQSHewFEV5nothSBgFMIIBFPHdKMvncmJ2Oh0Zc7NSrcZxMOnP1KmOIGBrfTOXLV9e9GmG+PK7X/tPf/Lvj46O77xyCwIQ+r2/+svVtdXLbtu0LFbk87nclatbZ5fnL1682NjY2LhybTQZsxy9trV8gQLgAd+JWYIlMQYDtGeHHauHYgiKIflSHkbQIPQfPX6MoMiTJ0+SMKFpVhkMgjBCACIKgm5qLMNRJEngSBh6CBKZhiZSchT6WVleX1969uQzXdVyuUoQgOl0cnF5eeXq9rNnT3XT5gSBF4VMRoIAfHZ2Np6pDCfgBGVZtjJXIAyNong2Gf/4k0+ePX9ezOddN+B5/smTJ5Ik5XI513Wn02mxWOx2uxTD4jgJAXh/fx9BkGw2G8cxiqJhGKbpBIZhDMM4jkvrY/pEU39zmqZWV1b+9f/2v2EYsba2GkWQZVmlUmk2mx0eHv+Tf/JPvnj8WFU113WvXLlycLDvB34YhpubmziGzZU5gmCzqeb7/nw+0zRNUZR8IUvT9OkpdHFxLmezOIFbtu06EQIjKQ81SeLNjc1KpXxx0f7lBx8Px+MgCE5OTgaDIY6jYRRCUAQAAaU/IgBpb5C+iimNNV2Gqaqa4k3pB9Iq73ner/a9AIrC0DRNGAAMQSiCJHECRzEYgnLZbBRF5+fnFxfnGxsbnU67UMj3et3T0xMcxzc3N5MkubxoMQwbx7Hne0kSEQQBwyAIQ89zoyiKQqhYrve7IxQBEAyLIu+YQRyHtuED4AMY2Ib//s8/XFpqgpj/+Jef3rn56tn50Ww61XUVvnL9WqVWe+3+fV4SLy8vP//i8/3Dgw8//DBtuf73//3/a1r24dHRz9/7W9PWaY755re+USpVPDeOAwTHSFVVeU7AMSIK4ziGTs8vO53+D37444PDY9txp9MpBMG5bD4MQwBDoihIMo+gUBB6tm3EcZDNSLqu4hg6Gg0++eRBuzPAMOz8/DwIgv5wQjFsHEdfeuttGIGXl1fq9XqqcZfNZuuNxkW7ffuVO7VqTZYlCieCwHvrzTdM3SiVStvbW5lMRlVVlmVd1zUMY3t7u1QqpXTj2WzW7/dT8QxJkizLQhAkHY9SIohhGK7rSpKEIEgK0WcyGZIkeZ6/cuWK63mGYTQaDQiCMjJfKpWePn2aPunvfe97R0fHOI4/+vzRw4ePkjj+9JNPnz17tri4VChkSZKgKbpcqV67do0giG63GwR+t9udzWZpHxIEQbrK4gUewzBNUw3DiKL4/V/+8i/+4i+m0+lcmadmbZqm8xwHYPB3V4dh+HdafGmMpo72KTMrZRSk4G5a5cMwTAmEURSlmwgMRREY2LadBne6M8MJPE6S+Xze6bQZhioUctPp2DCM9LsgCOI4bjAY+L6/urqahn6z2eR5wbadfL5YrdRRBHccF0WxXrePQBgK4zRO0wS3trS+sbpVKdYZkicQcnfnCEMpkmRfuf3azZuvjEYTBEZRBK/V6uhcVW3XTWCwtbX1yacfN5oNXder1aqmaRAE8YKsKVYS+CzLLa+uBkak6oaqGqYOjQ3LDwyKi3f3XiAo1uq2AQrOW5edXtc0bU4QddNiUcoLHIZhliVhPBtbttnvd3KyWCzIHEvMpxPXdRAYJElUrVVH/YtarTSfzZeXlmla5ASq22tftlulai1OQKfTMS1rbXMrjMFFq+OFyZtfeucP/+E/UlVVzGUBAk+m45fPnleqpW6vOx5PMplMkiRpdbMsazAYnJ+fQxAkimKn18+VqxAEpWGKIEh6CpdO8blcrtXqZDIZgiA+++yzVLjKNM1arabr+te+9rWUhtdsNjmOD8KoVCrJslwsFnu9ga7r7U6HYthnT57wPO+6YrNe+9KXXidJ3LQcy7RgFH/x/EWUQCzL5vNZnmcXFxd93//pT6erK2sffPQhy/GO40iiMDdmJEn6vkcQhGWax8fHjusgMPzk6VPLsoLA13QNQWAEgdOkiSCI57m+56Eomkbh3zWXfpIkqVhV2ncKgpDSdh3HKRaL6ZsMQVDg+5LA8Txvm5auOySBYTC0vrZimmYSRwgC9lJCYL3W6/V4jltoNofDIcWyge932m3P9ymKnM1mMAx4QdA1zTQNFMVICLAMzzKo5wYsLQgcC8XJ0cFpNisRGBX4M5KgYRjptHoUQT1EPv/K196ulKvz+TgIHRLHYVEUJEn6/PPP/8///F3bcVInFxRFb9y4AUPw1vrm+to6y/JRBIVxsnd0SLEMTuK+57MMc+36NQSFj09OJVmeqcrO7p6qqSiKRlGEo1gURkvLy/1+X9MUCEoQGNY05bXXXy2WczCcTGcjzdCiJEYQxPVcyzLiJKApKpvNxlA8mU4SCGxfu37rzt2llZXF5eXbd+6+9e6XpUy2XK08+vyx54einBmMhqIk9TpdBAYLzQXD0Pv9fj6fazSbpmkOBoMwDOfzOQRBqqqSJJkkiee6i0uLKIqmOSDtyabTaVruMQzb39/Xda3b7RqGwXFcesOZKhaVSiVVUXiOu3//fqVS0XUdghBVVa9evXp8fPwv/sW/WFlZiaJY1/UgCACA93Z319bW6vUFgiARGC5X8p7nkSTNc1yhUPjH//gf/7N/9s++8Y1vZDKZtbW107PTQqEQxcmv2VUp8hUEwd1X737nO9/JZrLT2Ww4HKqq6nkeRdEoikIQ+FXHCUEIjKQLsPQmLM2j6f/+XYqN0+SXgk0MwyAIEgRB+nmCIFzXbbdaFEVRFO06DkVR6WS5srJsmnqzWRcEXtOUer0uCOLy8vLNmzcLhUK9Xs/mcunulKIoAMO5bC6Xy4uijCCY63q27UIQAmBY1VRV03CMAAAejWYnx+ev33ujWCgLvHj71p0kgXXd+k//8U9/9IO/ef7sZafd73b68M7+3vOdF67vCZIYJvHq+katVr+8vHz+/JksS5qqddvdV++8trl1bTicf/kr3/C8wDD1XDFDMMhUHSVokivlhpNBEPqKqkzGkziOaYo2DNO2rP393Wq1ouna2dnJeDz6rd/+zte+/uVqtcjy1FyZ0wzJ8SwjMDAG8wKfLzYePd29cmW71xtqujlTtXKl2u8P/ua//pThBMNxTy8uVFX7y7/64db29j//H/6Hr3/jm/l8SZQkTZtfXJwN+t1bN2+ORqN+rz+ZTGq1GsMw4/H46tWroihubW3RNP38+fPZfB6GUUoATYeGbDbbbDZhGJ7P5/1+v1arkSTFsiyO44IgWJYly3J6kcxxHEXTNMNubW2zLBvHIYJAaT9369YtFEX8wI+iaDqdWpbVal2yHOc4ThRGKAoGg6GuOyzLbmxsXFxcdjsdjmOXlmsLzcLrr7/KMIwoSo7jAQBjGOr5PophAIAg8CmK2t3Z7ff7N2/d0jW9WCyyLAsASJI4iiMY/lWAQkmSvmAwDEMQlFaPtI7/GoggCCKdltJyn0b/fD5P8dEoCgkcq9drMAJ4jsnKMgzAyfHRQrOxf7BP4BgKQ1AcacqMIrA3Xnv18ux0f2d3MhpfnF1kM9n0TQ7D0LFdx/Y8NwjDqFZtNBqLCIIEgc+yNIogEAQRBEEQJEVRpVLpJz/5Kc+LMAQfH546lqvM1PFwggB0PJxFflIu1uFqrTaeTFACr9Zq1WrVMHQUQ+/ceQUA+PHjxwxBgTDe3d2dTeeffvbg6PQkXy0sri/ozkzIEF5knrdaCIm/2NvtDwcJlKTIMIqgUJxIoqQoimFovu+xHMNy5IcfvHd4uPcHf/C7w2G7VJYQHHi+Z7uOYVqGZdE09uV3Xjs6O71y7UqhWPSC6L/+7S/EXL5QqpxeXGxuXWk0l1GSWtlY123ng48++d5ffv/TTx/s7R3k8nlD023b+uCD9w1dGwwGOy9fSpLEsizP8+12G4KgZ8+eFQqFYrHYaDRsy+I4LvVsVhTl4uKi1+ulBs/D4dAwDAxDURTN5XIplJPihSzLLi4uVqsVGCSprfRwONZ1u1QqNpvNUqk0HI56vR4Cw4V8QZIkDMM2NzfiOKYZJkkAx3EkiQEAHj38/L/8lz/z/ADHMQgCrh/jOHX79u16rZ7N5hiaRhA0ieO0IjMM2+12s9lsoVA4ONiPkzhNn2l+/btwTNJwTGMxvdlPkaa0PqQJMm1A03Pq9FIgxc5M0/R9P634fhCkwsrNRuN3f/d3q9Wqbdt7e3sYhiVJbNtWHAdhGPb7/V6vd3FxWa1WBZ73Pa/ZbFYqFQiCFEVJ+34EQRaaiyiKmYaF40SxmGs267Is2bZlGAbLsNPpJAiCYqG4v7/PcaJpWizLxXEiy1nTtHO5QhyD05NzdDqfbW5tipL0xRdfuK4zGPQ0XQUQhCGINle67WG92VxYKr9+79VGrebarmmrw2mrUOUiX9esyUyZWK5JULimqzCMCAKvaRqCopVSKfD9er3meC5OkgCDLBdqt+dvvHn/53/7NzgBwzBsO24QBwiGQRHket5UsRxbq9ebnz95UszV7t9/40//7C/u3suMxqNcsfRyf3+uaLP5nKKo1998q7m06vohxTAwDHAUSyK/XMjXqlWGYTIZAAPguu6tW7cuLi6WlpYmk0mz2XzvvfcYhtF1nWXZtIZms1lFUcbjsed5qdplLpfr9Xo8L8IwcnFxIcuypmkpW9Q0zXv37qEICoNEEgU/iJ48eYIgyO3rVxAkb1nWT37yE8/1dMMgadp3vTiOHz95gqOorn+dFznHcY6PxlImb5qm6zp/8id/srq6fEVagyAEQeD19fVWq0PS7CeffhzHUZwkvw61SqXC8/zVq1c/+OADGIZTC7bUHAJF0RBKYBhOCz0EoF/ny7Sa/3pmSsMxZbqkizEYhlPLyV9/PpvJxEk8nUz+4T/4w431jVwuVywWAQT1O10/CJIoAiDBcQyGwWDQa7dai4uLrusahlkul09OTsrlciorXigUMAxrtdqqqlEUJcsZRVFUXaNZBiNwkiYcz55fTldWV45PjnEcxTB8MBiGYXBxfsELjO2aMIhnQJsmwcrKErq0vPzFF19gKAoDIAiCqqqv3Lnd6bQljkcQBEWInb2Dg73dVuuisbiIYKhuKoWyLJD8D/7iB63uzPbiGIY4hsFwDEAgfbMlnicwDAojDMNKlVJ/NBiOBgmSlGvS06ePPN/5wz/8/b/43vdsL0QJlGUF2IdIGrcMlyDYOIlr9RqGsQ8ePnQ8azKbWrbT6fZe7h2VqxVJlC/brdfvf2muas2F5SiKAJQMh8NsNvfL9987Ob1wLDuOo9F48vw5WFlZwXF8NBolSfJv/s2/uX79eq/XCwKfE0RWkoxOF8fxbDZLUZTneSnMVCwWZVnGMGI+n5um6XleLpdLmzYMwyRJ6vZ6osjnSNK2Hd/3Pde1vYiikDD0hsPh+fl5pVJ2PJ+h6CAIkjgaDAY8R6alTVFV0/afP39B4CSCwB9+9EG9USZJolQQNc3I5wuHh2ckSVuODQCIwhBBEJLEkySRZXk2m62tr42m87miOo7jeV4UhRhGIAicJGiSQFEUQdCv8mJa3NNMmQZ6eoP6a/gpDc10QEwDF4bhVCq1VCqtrKxcu3rVcZw90wx8XxTFXq8bRYGqeiRJWpbpev725pUXL3YgCMAwoqpqsVyy/q4ujcdj13XTrXK1Wq3VagAGe/u7QeBQFIXhKM9zEIgd1ykW84PBAMMw09R5XojikOMEhmHm83Gj3hyNB6PRFIYx9PX792mGUTQNRuC7r746nU45lvnww8dLS8sLjUqlIEWBA0C8s/Pc8x2MRJ7vfv7Fi4/vv32TEdAgChAcHc8mUeITFE4QKMdQAseZuiHLUhyFu3u7KWykKvPxeFBv1FZWFy9b5wSBkjTlBYHlWoZjmraNYkA1ZlNFwUgijCIEJ0ql8lzTv/K1r9cazX/5r/4VguA7e/t//N/8U4YXstl8rlDwg6Db7Q4GfUWZp55u/X7f87y1tTWWZRcWFrrdLoqi/X7/j/7oj7LZLMMwsiyvra2tr68zDGMYxmQycRzHcZz01UqShOPYQqFQLpfTxGNZVj6fR1G00WiEYWjZtu95fuB7nnf9+nWeF5Mksm2vUCizLJvNZl3XMwwzFSkWRJEgiTCCPvnkk9OTE9MwW63LhcVFnuf7/f6PfvTDjz/5GMPQMIoLhTwCwwkEXb12lWVZiqSiOMYwzHEcWZZrtVqtVhNFURRF3/dTIguBE2mJRxA0jbM4jpMk/nUS/XX6TBNkeoMKAEBRNF2E+r4fhiEAcBAEMAwXi4V3337r//o//8+rq8sQiGmaePDZp0+fPu71urzA8Tyjqcp8NnVsC4XRdqslCkK9WmNp5u6du7IkW/avOKaTyaTT6WQy2ZWVlcFgeHR0wnF8NpeBQGw75nQ2ubg8q1YrAMRJEpMkPpvNUPRXU9p0OrVtK5PNTqcz1/ZIkkEt20rCuNVqeZ43nc1Ojo+Hw0GlWs6XxU67zTMkDEMnJyd377/erDcePXxYKhRW15Zj35+p4zuv3t4/6M2m08WVpjKdSxLHUtx4NLIckyDw8WRsOTaCoZlMRjVUkqY9x/rwgw9XV6vbVzY4iT066Zwf9yzVQwLAcAWaREzbjBM4iiHDsnXLxilOlDPf+6u/Ojw6VnQtDOO33v6SbpjXbyzbTlBv1P3AdTz7yuqGYRgsy9+4dfvssuP74XQ6LRdyTx5/cWV7ez6fraysdDvts7Ozfn+wvLQ0n83OL9ue44IkMVQNRhGCJOfzOcsykiRzXJ7n+dFoRNN0LpczDENV1VKp1Gg0isUiiiDFUjGOoWxWwtBV3TA/+/TR1tY2DCOT8WQ+nScAJnEcgiCe53Vd+/a3vuG6fi6b+/DDDxAUffXua8dnH9AkyTCMLArT0cTQTJzA4zjKZjN//3d+67zdPjk91jXVNHQUpRlGnExGURzKORkj4CSJ19fWj4+PxpMJjCFRFMIwDMVwDENQEMZRFMYRjhNpcwnDcErKTjkGacMQBEEURTiOR1GIAIDCAMMw34s5mmYYplqt1uu1MAx/+IMfEDi+trw8HQyn04ljWZLIiBwPRQlDUr4XxkEAQTAMJQxJwXEcx6Ek8vsHR67rLi4uxnGsKHPLtgCAAEhGwx4MxziOIgiK+nAYhqoyCwKPZTkEJCSOBJ7bqNcBgDRN8X0n9DzD0HAC8R0Lnk+nMAxxPGuYhmEYUibreP7p2cUf//F/Q7O85fpyNn/z5u2clDs+PLl+7YYsyNX64jtf/abpRZlC7tatK4JIT6cDliPGs8Fo1idpPJuXRZnTTFV3HdsPB5MZjtFwhDIUc/PGTYIkVUMbTXsQ7HmRxfB0BEHDiWpYIYzQ3d7EciM/Aj6E1RZXwgTGaKLarBiOkcAhTiKmpYWhj1EoTiFh7DO8gFMsgtMBhBwcntI0p5t2qVwOfW806HdalzRJPvjow/Oz0+tXr9bKZYrEh71us1mPQ9+17bXVFZDEOIrxHI+ipGFY6QFxqVQaDocpAyh1Y0mBVYIkYQBgKAFxzDOswLK+54VBbGrmte2r9WodR3EogZIoQQDsWO7+3kGlVuZESc4V/CDEcOzOrVsYgsIxpCsGSOAkjI8PjzqX55sbS6/evfHqnVvrq2tra2tLy0t+5OMUIeWknb2XZxdniq4tLNSDwI2iQBT4tPVEERzGyTCGUIKkGY4kqfQYVZblUqnkOE56yJ/y61zXTpIIQWHfczEEJggEAXHoOySJ2pamzEb9Qffg4KDT6qAwigLs5ODYMa1CJkPhiG1apUKZwEjHcmRJlCWhUi4FnsOxZLdzORp04yislIth4B4fHXmuCwPIc23TUFxXi0IbjV1DGUOxj6GQ79mz2RiGYmXUF2mcw1EQR7PJZD4ZebaOJWFo6TKDFXiagUPUNAwcRbudDgLDum7svHzJcbymqb/85Yc3b9++OD3Bccy2nfForM1VZouOMHIymc6m6saVa/fvvWko5tJydW93v9/pyRLr2D5FYhgKHR8fdwczVpSCKCQpyrLdIPAazeL5ZfvdL9+ZTNt+4NEcceXaBgmye89PIR+QNLeysnJ4eITAhKKrJMt4gdfq9MbjfjYnRGFYXWlOZuNCsVgoFDhZ4gVm68qWaVqG5fCCuHdwFMXQs+cvRVE82t+nUbher+EEwdLUP/qHf/RyZ8exzIwstjsdkqT2dnY4lvE9L/A8AsfjKBqNJ8VyeXlxqd3qmKbZarXSMTmt7ykWk8/lEgDZlsNzDJRACQJBDFcsFp49eVKu1ERBqpQr87kSOAGCI4ZhLC0t1Wp1y/4VSSqbyZTKRShCNzfWYZDAMHT96jWaoniWG42GNk0WC3IhL+eL+fF0BMMgk5UZhrp2/dqtmzfkfOb0+Ojs7BRHUALFZpYS+AFJUWEYeVEQRjGO43EURlGU8kgsy0qH/V/jTWn3CQCAAYAxGIaS2WRMM1QukwEALlcqX//GN1bWNgq5vG24s+mcJikcQaMg0FSH5xlZLpiGCcVxtVIJfD8KAoRJwsDzPSBLHBUQg/kkjhOGYX0/SBLgug4MYhSDwtBjacq2TJLAETgKooRlcN93Qh/1XdOGvND1MYQNXDsj8zhG+q5pWRoKkQLNZLMSyhBkt9O9OO+9cvvqvXv3Hn72EEPQUr7Y7XTOTk5uXL+CIPDy8qIkZaqV2mefPXzjjTdGozEA4eLiQqd7qc/Ua9c3kjioVYsYisdRvLK48tOf/qzbw1geZlkMiiHfixMkgRFU0ZWZOv/wk4+XFosbm9v98bi2uXr0ssMyfIJG2Xz+5c5esVjw/PhqpTHV1b2j3Y2NFQj4QejIGXE2m9Zqi77vx2E4HY9293du3XplOOhn5QyCgCtbm58/fOTa1sixGQJ/5d7d6XTS63YP9/ff/fKXSYIYDAZQkmQzmf5gyMmZtfU13w+eP3uZJAnD0I7ri4KA4RhJkoqizOfztD6mJCaapkulEkGStuPSFBkFoef5NM16nksQZBD6uqbhOG4Yumka2ULh+Pgol8sJAv/tb38rDKNMJjMej4LAD8OA49hGo05RBATiSqVMUUSxkMtlJZzAOp1OAgiawDiauHH1/sHB3o2bN165fbtWrwIAlctlcAsrZEuapjmeq4dRGnlhEEIASpIEQVCYIFJAPi3rKTb569BMW9UkSQicjCM/k8mEgZ9eVDeadc/zSBxvNhoIwJIw+uLR5xRFlUvFMPTKxbxt23EYEhgWRSFF4ILAc7yQkYT5bG6YZgIlQeBHUUKRRBxHEARc1wEAEARuGgYEkSSJG6ZBcWwQBLbt8BwfBB6OIY5lQjFAsBABARS7NMFYuonBke/qSUSwdA5FYXSx3vy93xYVdW7pJkWQ2lzdWF+XZOmjDz+0LBNB+MePn0RRXK81stlso9EwTCvwfYZhL85PCBQZjjrVev5gfz6dT7/+la+iCFauZhFkW/3Fh7PJmCB4hsZ9PymWiv/jv/pv52rv9t3tTz75he0ac1VDgRBGSQKgq9evKbPJ9ZvXyuXyaKx0uoMbt7YPzp63OmejQe/NN+6jGNrr9HEMBQAMhiM5nynksiLHEijaaV8MR0OaZHIZeX1txXGdyWB0fn6+urrcbDZd1+33+5eXlysrK67rjsZjWZY5OTPo91VNd1ynWCy6ng+jsKIo0+m0WCjphp5izgzDwDAsiuL9+/d/8ze+gyCIwDOebWMkESfx2dn5o0ef37lzN5fLjYaTu3dfOTw8ECVpMp5UKhVRFCmKwgmU56k4jkWRPzw47DJMrVTb3t40zArL0qLIh2EgilycJKZpsAzzcv8ol5UKX3ojjqNqtVyrVoqFAoERjmuzFCdy7gTHozhGMYzned/3AQxwHI+SOI5jFIEhCHEcJ+XUpTP7/98ID5IETvFRBEF8L/RcF0riJInffffd3/md38nmCwROTifThebCtetXO5dtZTaWs1ISBVEcApB4nu26LoHjOI5almFZZgp8ZjIyBpOmJ8UJ5Ng+TdMIgnieAyMgimIITsIwWFhsjKdTmuGyOWo4HKIIHMahyNFG5KEwgsIRjkW+o42sCYbDGYmnKaxUypYKIrq+trLzcqdULJRLBQhADE0yFPHs2ZN8Lv/tb38LQYDrOVEQ/P+4+q8nS880Pwx83eft8Se9rcwsA1PVMI0G2vcMSU03xRG5iqVCGl3sRuysgsvY2I1YKfZSodh/QBdUbHBDohRaUjuiSIqc5vT0NLobjUY3UEABKG/Sm+Pd583r9uIDSiOdQCASqMzKqjzv97zP83t+Rtf1x48eqYo6GY81Qhp+LQwWz549tkyl0Xq7oMXG5tLJSTGc9Ib94Xe/982HDx51ltr/87/4i6OjMZCapptBMPr9xx/evnOjoOXSykpBMwl7mm5qOhwM+mvdVcMwAEZXg/7Tp4fnl1fHvaeaAc4vDr/33e94Dff5s+fLq6uc81ajGcwXWIEIg/tf3DNNazqZDXtXiqJlafzo4YPt7e39/WtffPop5+zWrVu9Xm8ymVSIZhzHBwcHT5+98BBilEZhtLK8LCFQVJaXbDaf1/xanueVFrkCX3RdT9O0Vqs1W83JZAoAVDD66MOPtre3VVUhhBiGvljMX3n1lqFb//6///f+3//4H2dF7rpuGC1ebb5SlqVpKr3eeGVldTKZBkG43GFra8t5Ufd9CwDEOF0EIYTStu0sy0xDs0ytXqvV6zXKuOu6jm0bhkEwDoPIsqwbN2585zvf+eWvf4UJefr0KVGIpmklo2VZlmXByqLabH09ocPqOCqKQgimtKyqKRecMY4xRhDHcaQoysrKysH1G0LC0XDMOR8PJ5cXZ6cnx6qC1pe7mq5wTqM4VDNMKQvCeeWGLjiXQK6vr4ZFIYVAACEIOu02oyxLY0oLRnPftQFgAIqbNw+u+sN6w7U9e3g1YEVq2TotFUGZbSqOrSRxBAFVIFaJMHVk6VjQlFycnNY9N0+Si8sLx3au7+0ZuhEFQd33njx8uLy61Gg1FUWJoqjf7/3oR3/42quv/fSnP9U0ndLCMFS/7owmfc9y4yTWDVKytN2t50X83rffvrwYmor69NnJx59+cXw8+z/9n//3qqX3Rv3msp+WRVkWW9vbGvQuj5+Np7P+YPD97777Fz/78zgKy1IKKGZBMJpd/tGP/50f/uBH9z691+m0XMd1rHqaJKbu2KZFRb6YTYs821xfMXTl9Phs2Ltq1nxRloDz69cPBoMBY0xRlJ2dHSHEbDbzff/+/ftr65uarteazZ2tnfl80R8OhOBAyooZWbmEIoQqyQQAYHV1tVarFUXhu3Z/OAnybGVlBQDY6w0eP378xhtvbG5uuK7j2Pa1vd13v/WtD377UVWnbdtcWekWRcU01fb2dy4vekKwLEtUTcuLQkqRZVnFVkEIWpaxstTuthuEqHES1zxX03RTNySXKlE8x+1fDY6PT03T3NzcBABMJpPpbIaIrHAlhDHGREr+0m63IjR9bTxBOGfVX62KKYMYe65Tr9dUVa3X64SQxSLs9fs60aQQCEHOSqios/k0CGaYQMM0PK99dnaWJOHy8kpR5BAiznmUBLNFhCEqSlbzvFajPhqNTUNPJeUKbjXraR7M5hPLsyTgV71es9V0PItTxXIsAMoiTiydIEDrnoGRoRBoamrdcxxDA4ySxXSqqtru7s7m2trR0fHTh49/9KMfOYb57tvfrNXrv/34o/ff/4VlWa+++rrrus+ePVleXiqKYjwebW5u/uCHPzg9PTw5Pr5+/Uar207TZD6f7u/vHx8eXfbOO81lw8S711YPbl776PdfuL5RazUNR8tp0V1dPjs9nk7nLAufPXv6zXfeqdneo6ePEYGlKEsgSsqay/bf/vf/41dvvRpHMSTSMDS/5mJAer3e3rUbpqH3+qO11fV+v6cqeGtjo+7V7n78cbtV7/f63373nQ8++M3y8nK1Wz85Oel0OlmWWZbFGcvzbB4nWFXbzXav11taWZ5MpwLAdrebJIlju+cXZ0VRLC0tFUVhmuZbb71VrzeSJGs1fAjhxflVu9koSwoAWF5eSpJ4ZWVlOp1zTm3beu/b7z178WJnd7vdbi0vL5mmFUVJreZIAOr1GoJEw4gQLCSlOTNNwzSNfr8fReHq6kqz2arqnKroUaT1eoM8L/kqRxCrqnZ4eDgcT4qi4Iw1Gg1MiO/7jLMwjgWQEEJVU4mmVJr3ipxV+Z5Wd70QvBqYFEWpZilGSyFFu9mpAArOuWU53VaryIuKRCeEwJgIwaaToaIqaaL6fs2xrSCYEwylgvOiEFwkUaEqpNZq0oLW601FURQMFYygEKau6aqKickAmM0mjlcbnZ6Lqax5nu/XbNs0NJjqKspKIJiiKrahqwo0dIKkKLIUSoBMzcAAsoIqiOiKapvW/S++2FzfoAUd9Hq6pn772+91OkuPHj3VdT3Ps9FoVMHF9+593u8PXdczDOvevXuEKLu71xzXHQ7HhChRFEfRrFa3HVd7/c6N7373jmVr129ci+PgxdGLJM2LklqWjRVFQsg51UytPxkEaRiXsddw3/rWG2+/e2djq1uw+MXR08l0FERBEAQASNu28yKbTMf713Y5L1UVZ2mCIHAdu+Z7tMhdxxqNRru7u7u7u1EUXV5eqqqqKMpkMqGUrqyunp2dUUoJxscnxwBCxrmUUFU1x3EwxhXB3vf9Smo3n8+v7e40mg3XNsM48T1P0zTGeKfTWlpa8jzfsgzbtnVdu7i4YKyUgP9Hf/Inr7/+2vr6+ubmBoR4NBrLr9bf2LYt27Es2yyKnBBMKWWM67qq61pl3AwhyNIUQlAUOaMUSFkUxcX5xWK+uPvJ3UF/sL21fePGjf39fdd1r1271mw0q7ZSSkmL4isep6pWwg/DMCqaZqVAqj6NECI4I4rSbDY547quf+Mb39B1PU1zQrDv+YxxCGDN98bj4enpcUlzAIFlGY1GnbGy37+Ko3A6HXPBar7n+24cR4vZTHJu2xZBqH91xVkJgaBlbmhKlsacUwG4qitUFI5nJWkYxoFqKhJxwzZd38UIGZrGGUviuFGrO5YNBUAS1z0fZWnSbjXv3H79xfNncRR22y1T1xWM67735NEjBGGt5vu+SzAwdeM//A/+A8+xnzx+BAEIw4BRwRhcXd0kxHz69DCIkp2dvVarMxxNLcvlQsyDse9buqE0mv7p2eGz54/vP/gCE8S5SNK8VvcOru/v7u2WnJ5dnM4Wk/7oUjXx3/rJHx68ctBZqo2mvfPemaopS0sdTdNazWaWZu1227HMMstMQ9dVZXtry9QMVhQX56fvvfuuaRi+554cH66trTUajU6nUw2wFU3k6uqqgtBHo6GiKIvFoub7WZpyzlZWlqWU3//+96uVEmPs9PR0Y2NjOp0maVr3PU1Ti4I+evRISlmr1TiXnue/9947rVZHVRWMkWHqlm10u+1br9y8efMmADLPcwi557kSAgihlEBVlbLMiyKbz6e//e2HcRzrum4YJoR4OBwvFvNKBDwcDiqSh+v6eZrZtt3r9Y6Oj7/84ktVU9fX11977bXt7e1bt24tr6xUuyLP8yq2JGPsJSnkpfao+kBVVdd1bdv2XO/GjRvf+9733nzzjZ2dnYr5hbEyHU/CIIzjMI6C2XR65/XXGc0H/Z6qYE0hgpXTybDI05rnSEHD+ZSWeZEljm1qqjIdjRGEk/GwyDPOSk7LTrsRhYtG3e0utd98+839G/uKqmRZ2l3qeL5br9ds287LTNMUz/MZFRgqBGtZWnbbq2urm55blxKjosgBkA8e3K/Xa2VZOI7d7XZ+9KMfYoyWut3Ts5OiyDmjS0udLMuOjg5938MY1Wq1g/1936/NZuGgP11d2Vgs4jwXT58+J0T1a3XGhGU75xen49mwVrPdmmW5+mXvTAi2ubmJENzc3FQ0ZTjqJ1ncH/XHs5EE/J1333rn3beGswFUxTSapHlkWXqt4U2mE6IoECHd1A1D1zRVVZXpZBwEc8GFpmmNdttxnPl81u12IUQ3b96sRvJardbv98MwfPjwYZXUsbS0tLm5adv22dlZZWVTlqWm6aZpHR4eZlmWJEll01ChS77vlyU1TKOg3DStKI4//PA3n3/++WKxsG1jfX3V9SwheV6kURROp5N6vY6RKMvy8vICY3xxcYkwRoggBCAEFdOoKApCcGUFxTlL0yxJM4hwFCVFUQoJbNsuS9bpdF3HBRBmWQoRFFyenZ9fXFwAACzLun37tud59Xr9a/adNE3z5VSkqmq1ua3o1ZV8pSKa+L7/3ne+/c4736xg2so3RVEUIGWe5kVWnBwdffbp3bOzE0pL0zRKWtRrXpJEl5fncRQhKJeXu57rqApRFaxp6vJSe21ttdVqRoswDEMEwVJ3qdtpNxq1Ws3VVLJ3bUcztMveVZplju++8vorzU7z+OQ4K3KJYFEWGBMJMMaaYVhBkJydX+Y5q9Vbnc4qchzb89zFYr6xsb6zsy2l6Pd7Fxfns9mk2Wo0G/X+VS/Psv7V1fnZiUqUt++83WrWDV37znvvAgldp9bprlDKi4IKAe4/fEKZaLeX1jc2Xc9FCj6/Oj86PXz+4qnrmkWR6oY6Ho+iKOx2O2meRnH08NHDMJrHWXTj1Rvf/v57OwfbreWGxNRydcVQgihQVEVRlE6nLaRUVZULlmVJyYooSbO8fPT48Wg8UhRleW3t6Pi43++vra9BCKMo8jwvy7Ld3d3l5eXz8/OKVHZ5eZnnueO4AIK9vb1FEFQcXkrpZDL55JNPqvTl6k0dDocbGxvVeywEIARfu3at3+9fXV5V1GAhgQQyyzLf9+p1/9Gj+48fP2Kcc04hhGkaU8ouLy+r5g9BQBklBGuavrS0/I1vvKGq2vn5RVGUrOS6akiBTs+uioIXpciyknJZMlZvtlzfj+I0L4qNzY1Wq1VhnJUIrhLvG7pR8bL/er2sgPpqvJNSVn6fN2/efPfdd3/y4598+9vf2d3d3dhYb7fbpmkihAxd92u1MAzyouh2u7quf/CbX0XBHAh+ePh8e3vr1q1btZpfPWCmaW5tb3c6HU1TKmajZZoACCAkwSRcLDinmkq6nbZC0HQ8Go1HRCGqrn3n+9+lnD8/OnQ8lwtumgZlDGLcaDYNyySqlhXlZLqYzsMkLYqSkZWV5aLIVVVxHNuyzOfPn0+nU9u21tbWGKPNRmMeBgRhhRCzXsMI3b378ebGhuf4gvPpdMaE7HaXqizK4+OT11+/Y1n2ZDS+uDgrixgSsr2+MV8sbNcenpy2O83JbK4QrCpKWeTPnj7JExmnIZba+sbKq3dump42XIS1ViOKYwDB2vrak0eHnJHu8nIaUoRQnuZhGO5sb6MCxElSq9UIUbI8H/QHhmlubmxeXl6dnZ11uysIIdM0Z7OZbdvVYrpWqxFCqjdVBFHVq1UWtWGU2K5Xr9d7vb5lWoZhVFy1KtsUAFAUpaZpFXXjjTfe7DRbhmGUJROSYYwJQapqYwyOjl5cXV3sHdxwHOfb337XsiwA5fPnZ6+8cgMCBAiCEEynE8tyq0U/Y4JSxhnnDCqKOpsF82B2ftnrdpeyNH9xdBoE4Xvvvvfs8OjJoyembX33u98tiuL45OTNt9+6/+ABY8z3fdu2PYUEYUDLUnJeFdGqMa2IS5qmYYwZo51O50c/+tG1a9c8z11d6kIgm41aEARVfS2LrMzzi8vL6XhiqJrrOK7tsDKJaNxo1FZWVi4uLiiluq6ZpqmqSjVvUcqCIChKwAVp1GqaouqaPhoPHVcPgznCvFFv267lOsRvNII4ZYxNJtN6vb66tlamyWwyUghWNc3AWlHkglGJYaPVhooynExVBZOLi8s7d27P5/Nnz55VWjDTNCsvCl3Xuqib5GmSpFKKW7duHR8fn5OLH3zvB+PxJIzCkpaabjx5+nh5qUsZPTp+cfPWfq3uPXkaHx49X99YqTVbK+vruqYHcVw8f6pqyvbWZrPuW44Xx6GiKRjhesM/P+mbjjaa9EbzXLfUWTDx6zXO2OHRUVmWoohFkSnSCMrQs/yiyGaTyfLKcpxE9Xqj2e5kaVbkpWGYy6ur1/b3L9/vjcYTy7QODw+TJAnDsNlsep43mUwq+LpCXoJxkKU5grDf7wsJF4tFrVYbDAYYY1WzVFU1DGN9ff2NN97Y2NhAEHHGEIJhFN+5c0dXtaq1lUICIAkhlJaMsdW15cFwOplMXNep1z0I4GwxK4oCSAEAqt7R6XSepmWr1VJVlVEeBrGqqp7nR1GCEMkL8fTpYV4IVdGePj8si4LxD8aTKQdi72C/0+30e/3BYBCnyWg0yvIcItRut2eLuWmarMgEAqqiVGw6AEDFXLYsyzAMXddu3rx569YtKaXneVJKTVNXVlYq4YeUoHd5dXF2GUdRGATStgAACsF5xuq+0+10Pvvs00F/iDFhVERhvLK8nBd5GESqonHGTd2eBdmwP3QcZxJGi9lUVRp5mmKFI8lPT0+trgcw0Sw7jOJmu12r1/KyrNfrs+mYS5HSnDMGgSx5rts6R5xKqhEFawTV6/UwDHVdf/r06drqmu/5KysraZouFouiLCmltVqt0agTQmo1vyyLg/394Wj46PHDMAyDYKGoRNfJ0+dPijLf2l6jZXr37u+ms9Hute1mu2lY1tVwcHJ+9sWXX8zns7PTs9PTk8lkbOl6nqZLy13NULtLbYwBF/zF0dMkj4iO2kuNUpSKpoRR3OsN4iTVDXNldbWaSYs8n87GYRR2ukuWbadp3uosN5otQsjq2vrFxVW7u1SNR2maNhqNKh2hYqlVbnWj0UhRFQCBQhTbtsMwzPMsSRNFVbvdLgBgNptblqUoSqfTuXbt2urqqqYpaZphTCr4ybbN6XRW/dyqCCWEoKYplm14nhsGEVEIIYRxappmp9vBGCMEheAKVjzPK8sSE6IQdTyeHh0d53mRpcWndz87Pbl49vw4y/nnnz88Pb9SNOP07OI3v/3ddDZLs5xJ9uz5M4xxEASXV1eu656dnX388e/ni3mv15NCcCEUQqreozqjFX24Oqnf/OY7BwcHjUajsuICEOZ5XnWfnHNCiOd5RVmGQVDt6xkthRDtdsv3vV7v6v6X95MocR1X1/QszTgXruMFi2A2mZYF1VTdtV0IIKNsMh4xRkfDIWNlvVYbjgbz+XQ8nVLOy5KaphWG4XQ2M0xzOBq5rtfutDlgi2SRsTQtE6iiIFmEaUglLXiJOt3Wi8MXg+GAcerVvCfPHo8nI8Yp46wo8mfPnqZpUvNrQvCLiwvP864uL7/4/HNaluPRsFZzL65Ob7/x2iKYGqZy65XrtmsE8cy2dcpSIflwPJkHYZxltmPPFwus4LIssjT7q5//3NC1drt1dn42ngwglqZt3rh1XdPJYHQVJ4tnLx4PBn1FVfcPDizbwVihXHieFywWmqY2mw0hBcJ4NJ5eXFzEcYwVJS/pfL5wHA9hpdNe2tjYqIxAKlIPpbRer1fy4spjw7JtiGCapu12O8vy+WzOKHVdNwzDJIkrt+UKQczznHMhgQzDiJaF73tpkpyfn5+eno7H4wrEybJU0zUEYJIkaRqHQTAcDiCCCMHt7S3GWdUacsHr9YbgMktyIcRiERQFPT09H40m83n4wQcffvzxpyenV0cnF7/7+JMwjE/PL5+/eHH/4YPP7n12dHw0nc0+++yzXq+HETo6Pp5MJg8fPqzaa0VRKKVSiIpTV3U1VW6OqqqWZWmaVgmsCSGVqpMQggmpbpXKteHg4MD3/e3tbV3Xar6vGzpGSAKpaUqj3jBMi3Pheb7juOPxxHW9ra1tXTfyvBgMhhih/f19y7J0XXddR9WUNEuKIkcYvvbaq6Ztn55dQYSGw2Ga5UmSQYggwiVlSZZppkp0CIgARHJZCsQLnkdpEBcR+fL+/fX1dSFEq93+4ovPHdfljM0Xi9duvz4YDCzTLLMiU9O67ydJXK/Vz8/OKaW26y8WC69Zm0yH0+lIU3FRJHmZLsIMK2h3e+vp08dYQZphmabhupZlmo8ePwZA7GxvX55fjYaj7lJ7f+lACH7r1VeOj85LljQatfPeJE5ioiIIJQCgVqutdDbHvTANWb83aPttjEmr1VoEC1UzJtO5pmkIk/l80Wy3JYDHp6em4yjTGZeCEJJl2dXVVafTxVjRdSOKojRNCUaNZmMwndf9WhwnYRA5nru+sZ5kOYSQUUYwuXHjZlmWiqpquiaEwBjlRW6a5tHxyeGLF+16s2TCcWxMcJ7nUgJVVYNgBhFwXDfPj88vHu/t7VUejkvLS416LVgsms0mxjDLc4yJQrSrqz4mqq7rn376mabp21s7AICzs7NJEKPpQlWVOA4XiwVEKMnSRbgQgknAecnTKImTOIwjRVezPBVCICEQhEJKXdOk5PLrV4U0TSaTqszfvXt3e2vj0cOHtVptbXWVUUYJRVAxDJ1xHoahKGXN92/fvl1mWVnk97IYQrCYz+p1r9Fo0nICIKGUMcZd10vT5PKq59h2s9UOgjAv2Gg8yrJM03VV07I8zvNEU9WL8/NXX70OpFAwEZxLISijaZoVedHv9Ro1fxoEk9Gk0/CJTjAEvuXTPEMQQAAkFAABxJgwdKvVaB/sHowHk2tb11ZXNizL4QIcn54VaenoNhbw2vbezuZuvdZ4/Rvf2NnfLwRbpPFsPvcdJw6Cb9y+HcdxksScs5OT48FoeG1/P4jCN99+c2Nz4+T0bDSe3Lx5K46Tfr8/Hg9v334tTWMhWWepefuNmwe3ri3i6cOnjzTD2t3bdxyvUaulSfLarVefPHpalmJre58yIIGiGXZB2enpaa8/UFRV103DNMaTUZnntMg6ncbF2TGj2WI+efLkCWMMAHh12VcVrV5vJEmiKISxMgjmXIggDBljjVZjNB75vu95ngQgLwvXd9dW1znjjVrtlZs32q26QoAUXFUUVpaj/mg0Htca/urG6u7ujm1bTDBEsO26WV5keSElKIv86uLCdeyjwyMFK2VOg3nIKWcllxxIgLGiaLpGmeASjqfTWbD43d2PHzx9VAgGiSyKJIxmJU17vcvZbFoF4gghT88u7n1xDxKQZMloMtR1NQhmCAOMACvzLAkreXwFi1bXesWfT9N0Mpn0Li8no8EXn32WJzFnpUJwEASzyTRLc4KI5AIjWBb55vambVtFnl1eXXqu32h2soKNp2GWFoJxKaRlWqpCFIKvLi6ePXs8GQ+B5I26n2bR5dVlnKZpWUCiFpQLgRSs5HGGOHA1Y39nKwkiQ9NXl5c0VaGM9nsX9bq3srzEEQSqAlWdAqiaFlY0hIgUUDCJarWGZTmCSUHFjYMbnuMTRNbXNo5OzseTOeAwXSQ1ty45KPJSNy23Vqu1W7V2s9ZpNlqN5U4HS3D7tddbzdby0gpjzLCs+w8fpnlBOd/Y3AjiyHZdREi73ZUC5nlhWtZ0Pms06xLw3f3tn/7sX62sN9IynixmcZbV6+3ZdIEAAIw/e/gkmC0IUoFUZot4HiZY1UaTia4bAEOAcBhFo8l4MhnHYYCQXF9bMQ1S5PHh4dP797+glFqWXRSloqg1v+Y43mIxxxhxTqWUg8FgMpuVjAEAR6MxhKgsyziOKed5XmhEvXX9xvWDPc5yyVmRJ3mapnEqBeCcu54jgEiLBKuEKIQLQVRNUfWCcsb42spKq9mwTDNcBE8fPQmDUHIZBiGjzNB0BAkAeGl5OU6zkvObr77i1f2rYf/x4TOOBMSCsZTzIi9SxsvqlqziYCjjSZocnxyNp6PJdPSrX70/Gg0hEJIzVcEEQc4o/FpwXA3ylbb4K/2xFLPxZDIczMYjJAQCEkmwmM0Pnx8+e/IsSzMpOC1yxmiax0cnL4qy0AzTdnzT9sIwc92aQrQszYGEwSIAEjQb9fW1VdM0BKeaShq+2+40AUZIUXLG/WY7zUvbdJGAiEqeFDwtkBCSsddefXVlueu6tqoqzZpX83230QKqIYhCBUBEV1QTYlUICCRChm5atqMqGiHK7s61z+99ziknRN3a2lpeXllfWwcASiHCMBqORpPpOEnjeqPebDVX11eHoz7n/NGjR4eHh47j+L5vmBbCyPG8OE0pY4tFcHV5WQ3RSZIkSZJltNKnjifjk5MTKXmSxsNxHyI0HI0opbPpTNf08WjsWvaTR48BgLbtjqez4XBydnbh2LaiaRIAwzBHo3GaZuPRuFarOa4DIXQc27GsLEts26zVfAhhq9mklCqKNhyObMemlCGMHMeWAFSJclEUdZe6TLAwihRFoYwZpkFLura28a1vfatKlLNMk3NRlmW/33/x4jAvCwiBZZlXvZ6QsvqHUmZa9tLS6t7eXqvZunnjpkrU/b294XAghVAVNUtzwSGjDABZr/tZXsxm8+l0WhRFo9nUTD0IFotgnmeZhBJCwCiltMQYVZBkWZYQyDxLgzCYz2dhGFarUUVRIIIQQqIoikIq9ufLdPsKMa26TFXTJqPR8dEhkBJIiSHSVFU3jKIoPvvss88//7zIc8bKy5OTz+7etSxreWXFsExFVS3LrtcbECHHsS3LmkzGYRgqipJmKQCyVvPzIo/j0DD0xXxelkWr0yk5V3VdUVUpgWmYw/6gTJOaba+vrDZqtcePHjJOTV1/9ZVXqpQVRdUAwiXjtXqDA4AwRqoKFZVJiLrdbr/Xi6JQVdXpdHr307uKqmiaputGt9tlnGECkyTu969UlUjBy7KkrKw3at1OxzQtLoXlOiWjiyC4uLxsNpt7+/uu709mM8bY4eHhysrKo0ePKKUQQcuywjDxfb/damdpJrlIo+SNO9/YXN8QnKdRNBqMltqdJE6eP3v2+MlT1/c9v7a6unZxfl4UpZAyCALbslRFydIUIVw5KPl+DSI0nc56vd4rr77q+14URUEQnJ6eSilN0zg8fCGEyLP8+vXri0UwnU6lFKqqTiZjy7J835/P5pPRqOKnKURZBAvBmV+rWZZdq9WLklqWqWmK6zpxHIVBGCdxFZpYmedU/ltlWQrB252O7/tpmpa03NzcfOWVV4QQw9GQcz4Y9LKsRAgzWi4WkZD897///dOnTx88eDAaDm3brgLsOOMvFcNVVHiaZoqiVNZglcJd07QqXJTzl8ZM4qV0ruLXVR9XvmjV/zRM07Ydy7LiOF4sFnEcO47T7Xa73e5gMFjMF9UDXEH6eZYlUVyZ43muV32jymvE8xwheJ7nw+EoDEOE0MXFxVWvpyhKFMd5lrfbbSkFAABIoGqaqqoYIYKRZRqmrmuqWhZlxWhmnJVluVgsLNNECGZFnuU5FZxJUQqWFDlSVaVeq937/N7nn38upfzJT36MMUqS+PGjh81W0zT0119//W/84R+22+3KjQ1C8MGvfx0GwdXVlWEZzXarXq+3lzqvvPoKJuT88uL47LwoikUYlJzNZtNK2V2WpWEYtZq/v7f+/PnzvMiTJIEAFQVdW1vvdpc0Td29du3588MoSvIs393dy/PCMMyDgxu9fn82nc3nsyLPhZTj8Xhjc7O6tqql+Xw+v3fvszTPZ7PZ6urqysqK47hpmvm+d3l1VZbl4eGL2Ww26A903ajVanleUEpbrZbregBCRVFsx9ENI8syCMBkOllZWdk72BuNh6ZljsbT2WKeZXkYRTdu3tzd3Z1MJlEUh2E4ny8AAJyLr9O9ZFlShZDFYlEUZbvdrgSWeZ4/f/788ePH5+fnnudQWkxn86urqyzNOOcXFxf3798virLKoK/Uz5RSQjAhGCE4m00pLSswqCiLSmZUrXNebtuFEBCAan0Pvv7gZZB4hUVwzl3XqZiBnLOiyBmjCKE8z9fWVm/dutnutKuHpNNpz+fzytBhNpvnea7pmqIo1bNdlgUhxPO9RqMRBIGUotNpV7uApeVlz3PDOKrVaoxxzrmEQNW0drMJhRSMjYdDjJAQouZ54/H4L//yLw8Pj4Ig6PcHRV4ghAGAHMhSCIkQh7gEEg2GPYikYeiWZViWAaSEEGCMdna3G43acDyaTqdMcMM0gJSKonDG2+12kiR3P/kEQlSU5fa13bwse8NBEEdMisPjo2an1Wg1q72cYRivvfZav983dKPVajWbrWr3uL+/PxqOz88vBoNhGEZLS0tvvvnm6urKJ5/c1TSj013K03w2WxQl/dWvf11vNCbTWZZnSZoyRoWUtUZjNptWtGLG2HQyrdVrCKGzs7NOt7u83P3GG69vbW0BIPM829raRAi7rjMYDEzTKstyOBhKKbe3t6SUvl+r9jEVdQNjfO3atfXNTc0wGBcI4/FklpdstggRUW6+esswTUqpqqiz2YxzWZYUABTHqaKoqqYTQlqtRlkWjmNVroX3798XQgwGA0IUysrRaOZ77tHR0cOHD696vTiOd3d3fd8DAKRpapo6QoBz+hVuqhCMka6rZZmXZVF5S1X1tdJnvnS5qWh1VRF9qTZ+aWT3tWktRwhwzkzTMAwdIaiqpNVq1Ou169cPKk8RSmm1p6WUCikUheR5Xon0XddGCKRpCgDQNAVCWRlJVBdIGEb9waB60qIw1HRdUVSiEl3Xd3Z3LdNAQLqWHcxnhq5hgtfW1999992lpa6iqp7rlnmJEVY1TdN0iDFWNaRrxLSIYRiO49y+/fpvfvVBq93SdZ0QwrLEMPTLy8tr+3uOYV72en6tVjCa03I2nd44OKCSM0oty/r5z362t79/cHDAOScquTru7e1f6w+HqqYlw6Gxap6cnFQEtjRLkyQBQpqmeXV15ddr7XbXtFxF0Yqcttutfq/39ttvY4xu3NgfjUb5q9GL58fuydnS0goCZGVtVWKYZZllGuPZeHl5wzCMxWLRajfyLHMcp8yy1dVVwThl5XA4ODi4efjiiHPa7XYdxy1Lapp6XqSTycg0LZTSfr+v6SYty/F4jDFGGBVFwYVAGAMEDcOo15tFQXXD1IuyKEoAYJoka+trk/FISqDpRq1Wj6L42rW9JEkURalW3iUT7XaLMVEUVNM0z/OePHlS4f/r6+vj1fEvYAAA2RRJREFU0cxxrPPzXpalJ6dnFR45mUy2d3dOz84opQjjir9cdZAvqcdJkhCCVVWFQKK/5lZXVdNKws85RxXaynn17+qAVlmGklEhRRiGRZEThUAApCTz+azbXZpOJ3met/zmaDQq8mJzc+vFi8Ozs3NVwZZpYoIuLi44LVeW2oahz2ZTKWW/3y+KorKzjOPYcX3LysoozbIMqWqWZ45tWo5tmUTX9Zpf21pff3r8wrDt0WC4bjumbgwGfQJAEs4RBBtr63lRMEaDKNZUBQBAAUAAqLqGtre3nj9/6nnOyurS5ua6ohLd0BQF53nW7rQePnq4trnW7jan07GQbGtrwzT1e/c+Gw4GS93OdDJ56+23Ly8vf/u7jxRda7bbjWbzZ3/588vLy+FoOBqPLMva3Nw8OT3RdR1IaVnWkydPBoPBnTt3IISO5fqe7zp2niRAiN7V5YMvv+y027wUg6uBqmntVnups8Q5z4vihz/80fraumVZs9lMVVUpRa1Wq4yKsixrt9sV7V9Kuba6dv3G9bPz0zBaOI5lO9ZoNEyS6Pz8PI5jKWWe57pm5Hl+eXkxXywePnyQJHG1AEySJMuysiy7y0thFKVZMRpNdN3iAnAhIcFJmgkgXdeP49TzasPhaDZbUMowJmXJer3B8+fPLy/73W632g7UarWVlRVN0zY2NhqNBiEkSfIPPvj1L3/5q8FwyCjlnM9ms6dPn1a3ZBRGFYpZtZVVdaxY9xiTl/Z0FRT/8hOq2eilAolSWsXoVIWz8mUQQui6ignSdI0xyjhTVGU0Hh0evej1e1mWlrTUNA0TNJlMMcbtdgujr7yYuRBxHC8WQRAsOGdfZ+zqvu/V6zUIZRRHRFVt1+FSZHkRxnHVsFqWrWqqqWvbm2vXtrayOLl543qaRK1ms9Nul5T6tTpESAoeRRHjgguZlZRKmRRlzhkgKonjeDKZGKq+s73zySeffO9733t+eOjW/WCx6JhLhqk/fvK40267nvv5/S+TLOuPhmmWjsaj23fu7OzsvHjxYn19HSvkk7t3m63GwcHBD3/4A9f3Do8Odza2f/Phh0vd7mg0WlteHQ0G+3v7EAAgwXg8TpJkMBr6jbqhG81mU9O1Rr2OEFrMZv/df/ff2pZt6ZqmmE+ePuVM393ZV4m1s7F9dvRCSlkWhaZrcZwoihKG0Z3br1cW1lJK1/N83/3BD37w2WefQgDbraWzs0tdNy3LEoLPZrOtrfX5s8Xl5cC2HYxRSRnGpHfVMyx7eXklLwr0tbkm5zwMQ0Uhw+Go0agLkYVBOBgMHjz4ond19c477ywvLwMAgmBhWdZisUAIzReL85OTIs01Taucb4UQrut6nnfz5k2Mca2mTmfnw+HQtu2j42PHdbe2tk7OzhjjAADX9YL5jNJSyurkSVXVhKjYQwalTEihYFy1nvhryLNiFyCEZEWa/1rGWTFFKqp81RGqyld80CiKKs6oZVmTyaQsS6IQLHEcxfPZlHPWarWuX7/+8P79yXioG5pt2Zaulnk6n89c11VUYhi2YehJkjQaNULwZW8IsUF0s9lsZoxTSuMksTRIFCKE5IKqCNm65jl2ECwmg2GWF4qmmIbu+TXBWJGXz188X1peaTYbjAusKIqmQawUTJAgCF5//XVBuec4SZp8+eWXiyDwmvWTk5OsKAhRirIoGXUcW9e1wbCfZtn1mzeeH7744vN7u9f2Op3O4eHh+cXFm2+/eXj0ot/v2bZ9fnYeBEEcxc1msygKTvknn3zCKSvyolGvQwBfvHjx/MVzKkSn0/nJT34SzOcXZ2dJkqytroVRvLm2kSSpbVlhkHz+7Pkf/c3/HQDgtVdfPTs+VVSl2+2OxiOENddrAiDH47FjO0WeXV6cW5bpex4h+Pr161tb68vLKz/7i/cxxr7vPnnybHd3Z76YvXhxWBkpci40TZegxBipmsYZXywWnu/HaSoEIwTXavUgCI+Onq+vbyRJrmv6+fmLVqtxcnxy+Pz57u5u5XZ7fn6OEFosFoQQDOHl5RUvmeu6y8vLeZ5bltVqtSqvL8/zsyxnrIzj+Pz83HXdNMuCIKhGlnq9PhgMdE3Ji0RIrigK42UUB4QQTVe4YABJjDCEsOq8q9pWEV+qRlwKgRGqxqOXbvzVijXPc0NXMMGV7+RoNKp0SJW/H+fi9PR0b2uPYHLV6zXqtTAMHzx82Lu6UgjKskx3vShOoeT1et20dEJwnmeNRj3LkqOjo1rdX15emQVJUuQpExJhQhQJpBSwZDSMwtl8sbeznJdFmBUPnj1NOQcKcRWPMZ6mCcJYAkAUZTAYMMb3Dg4gBG7Nj5Lk4cOHaHV19dGjh3fv3n3+/PmPf/zjVqv1J3/yJ3mWmpZpWoZhaP1+/5O7dzEh7Xb7xz/58Z07d46Pjl+59Uqz2ey0W1dXV6enp4cvXjx++PDg4CCOo8PDw/lstr29/ezZs+lkghDaP9jf29+r/K0hgIPBwHXdt9/+puRodXXj8ePHS0vLKysrl5dXs/n84aPHb7/1Tp4Vw+EEYnLr5iu2415d9q76fcqFkKB6B+I0jpPENK319bVFEMzm82r4DcPw2dOnl1fn/X7vzp3Xbt95TddVACRRyOXlxWQyAQAghAnGhBDHcTRdI4QwShVFCcPQ0PXt7W0JIaV0OBzGcfz88PDJk2eLxSIIo8vLy36/P5/Px5PJkydPwjCMo7jKA9F1XdO04XCU5ZmmqpzzIAhGo9Hp6WmFZBGC8jybTCZSoldeeQVIYJrm2tpaWZaWZQMAK2/iosgxxrquIYRUVaskvFWjKYWAX5vRvayaVRGtNkYQIfm1CWN14790aMIYIYjiOImiaDAYWJY5m01ns9nG5satWze73c6NGzdmsylCqKJRb25uMsoAAK1WS9f1y6vLosh1XW+324ZhVtZOnmdLKTRNRQhNZ5OSMghRWZSNRuPg+r7ruq12y9ANgFEURaNejwC50u2sLHUJxo5pra2tYYw73aXJbNobDPf397e3t716/fTsbDiZHL44fvL4mev5KMsSiOD6xkqrWT85PtrYWP3s3t0oCg1De/Dg/pdffhlGEQRgMpmsb2xghF977bWV1ZWry0sowccff7y+uvrd73xnd/cao+y3v/lwd3eXM5al6eGzF4yxlZWVzc3NKr3grbfezLKsCiU6PT2FEP74xz/RNcO2nF6vd3Z29oMffJ9z9sd/599Nkmw6nb/2+u3V1fVms/3Fl/dtz+v1+6ZpGIYxnY3jOIIQVSh6nueLxaLdahVFWUV2WI5z795nV70Lxtg37txuNBsSiF7vMi/ytbU1TdOzLLcdh1I6n89pUSiKgjBWFKWyuTMMo91tLaIwK3PDclZWNq76Ay7R+eXF69+4oxra3/pbf+v263dMwyJYmc3mnusTrHAmFKJ2Ot1bN19ZXV2tesEqw6BCmubzsCwphPDFi+fPnz9vNBqVFylESFXVyj0LY1yUhRBcCEFpSWmpKKRyPIQQIARfrjFfntGXnLqX1vR/3d3upUsoAEDXNFUlqoqFYIvFvChyw9Bczw2CReWr2G63+/1+ZURFCFleWV5ZWUYIQ4Rs21YU4tfcy6szRSHNZkNK+eWX94Xgnu/2+z3dMHRdN22z3qhPp7MvHzzQLDPOkpJRCCBBSJalreu0yFVMNlZXa7VaFEWVM2tRFGmSBmGMiJKlKSGKFCDLsqXu0pu330RCis2Njdl0trq2dnJ6MhyNwjDUNO3y6uqb73zzzptveL4HEWq0mx/97qNf/epXn929e31/v9Vq+b5fZPmHv/lNmRcb62sr3aX5dHp2fHrrxk0Vk/ls5rmuQpTj42Pf99//xfudbte27fF43O1233vvvWAR/NN/+k97V4M8KxuNxmuvvbaxscG5eP8Xv0ySpNXqPHr0+OTkdDSZBUGEiYKhcn5xmWW5X6/7vo8xRhBlWRaGYRzHVQ/XbDYvLi6uLi8913v+/CmlRZrFQjDOebvdLopCVdV2q+15nkIIxjjLUqIoXAggZZKmRVFSxqIoIpgYhiEFnM+DlZVVx/F++9Hv0rQYjyftdruz1H3nnW/VarUoiquJStd1xhghyubm5p3btze3tqodo23bFRc4DMPqOKZpOp1OFUWZLxaVtBICkKYJY7xKO0D/awfaahL6ypkWgIoL8nIYegmCfuVV+7UnbdX+Vmf36+EJSCAwRlX+e1kWa2trnud9ce9eECzu3/9ysVhwwTc3N7/5zW8ahpGmqW1ZiqKGYcAZazaarusSQsqSapoahqGqKlKKLM+qn21Z5P1Rv3Ja7XS7y0vLSRyHQdhutw3T+Iuf/vn56YmC4FKr5dq2kFzTtWC+wBgdHx9DhB3fVzTt4uKiXq8rqjLsD2t+PZxH7//VL1FJi82tTYjgRx/91ve93Z0djJEQvFbzf/3rX62urkIMdUt/8fxZGCx6vcvLq4tPP7sbBnMg+Bt33jB1w3fdGwfXnz15euv6jclodGP/YHd755tvvnnrxs2tra0syxzXbTQaDx8+XFtbC8LQNM0syz7++GPX8V5/7TVd0z789W+yNAWS33n99g+/94OdrV3HclRVnc8DhNG/80d/xIUAEERRhDD+GvmTlbeb4zhFUUAIdnd36/W6X6t961vfCqPQMIx/+xd/YZqWruunp6dhGJVlWbktDwb9KI5t267+YFLKbrfTaNR1Xdvf27t16xZAsNaombb1m9/+5umzF36t8eprrzmeU282siL3fR9ChLGSphkhapaVaZoLAaQEGCuO61bnssKJMMamaVqWWTnAV6E2H330ESFYUdU8z7M0jaK4OrtVimF1QKsjXlmTVmfx60P7FbRUFcuvk8fgS/17JeCsfvWvH+Usy6rvfnV10em0FQWH4WIw6J2enkRRSGkxmUyKotR1/eTk+NGjR8+fPx8Oh1WbGycxRCjP8729PU3TqibBNM0kSUajAaWF53mtZqu7vFwyenl5SSmN4siteQ8fPVosFju7O4vZvH91STCu+V6ZF7PpzLLtW6+8ouoawkTRtDRPHdft9fqD3rDT7sZhQpBy4+AmevH8RbPR+I//5E8cy7p///7R0VGV7zEcDiGEqkqePXt2dHSkKMrm1uZrr722ubnJGDs6Onpx+OKze5/Wa/XJePL5Z/euXbt2fHhUSc4IIUVWEIyfPX9GKVUI+Q//o//QcZw0TfMsRQj923/7b7vd7s0bN7M0y/P8xs1bf/b/+5+ePHncajXni0VR5G984835PNB1XdeNLx/cT5O00Wj0e/3BcIggzMuiKhJpmhqGYej68cnJ48ePx+Px1eXlX/zFX4yHozRNHdu6urpQFGwYuqKQ2Wym6/rh0WFZUghAWZZlUQIINUWZLxbVdnsyna6srGxtbZUF1TTDsbyPPvrdxcUFkNAw7MFgmKVZmubVORiNRhDCyWRclmWe50mSVE7hjLFq/kjTtNLfNRqN5eXlVqvFGHvw4IHv++PReNDvTyaTKI4VRakaFfCVFVTx9fn76ir/er35v2wvxdcxSPjrF0IIfm0F+vJmf2kUCoCsJJ1xHJumWRRFZZDmed5oNHIch3O+vrbmOM7y8nKn0z0/P68CcRzHqYikURhVFNLFYtHptKtE01qt9jK1pyqfvu+7rlvScj6b53m+v78nITQNs9NqAiHDYE7LghXleDiQnBdFoRtGmmdlWdTr9TRNAUSmaTabzUaj+e63vtW/6qMf/OAHvV7vp//23+7s7rbb7UajcXBwcHF5IblYWlr6/PPP3/3Wt9IsRQRHUbSysjKbTrfWN15//fVarXbz+o0yy6GQeZIKzv/4j//4rbfeRhBhCJfanX/1L//1eDzb3NxAGP+zf/bPEEKNRuP27TvPn78QArRare9897tra2tCiMvL8//b//0fJmn6/vvvh2H4X/2j/+ov//Ivz8+uzs8vpZDrq2vvffvbpmXOZrOnT58Ypun5fkkpxrikNIoiCeR8NovjqMLnGGUIY9/3hqOhlNK2nWa72el2qiWnruuvv/46UUgVELiYzyUANb9WGd52Op0bN25sbW4WRVGW9O1vvo0xGY+m8/ncMHSCCSak8jeM43gynVZpdIQQSulisai+e7VdrJjClNHRaKQoque5rmtvbGysrq4mSXL9xvV6o5GmCSFY01QAZOUlyxiFCEIkS5pRViAMIJJCMgk4xhDhr0ail4dPfo0rUUoZpS9/tTqVCiEv/b9VVbUsU9cNy7IGg+F8Ptd1PQiC5eVlKaVhGGEUOY4FIBgMBi9evMAYW7alqGr1eFDKyqIIwyBJEs/zMEHX9rZXV1c7nU673eact1qtyXjS6/csx8IIr62tKYRc9fsnJ8emafius7m2vtxdMnQjLwpN1+aL+aNHjxhlQAJN15MkvXHzhmmZ169fd2xneDVcTBembqLnT55CCK/v7//u97+/du3ab3/721//5oM7d+5QRoP5YhGEiqY1W621tbVarf5P/sk/+fzzz3/zm990Oh3TNKezKdaIgPLWq7c2Ntf+2//uv8EY//KXH1xdDi4v+3/7x//uH/zwB1EQR4uwUWsoivrgwcPPPrsHITy4frC6un73k48nkzEt6cH+QZaWn939otVZ0U137+DW5vbON964fW1v7+T4rN1cGg/GS53uH/6NH6ysdX/9m1/2h728LEpGTduKkiRKkqqVLMpiY2PDMIyt7S3dtFZWVy+urtI8AwAE4aLVatAyq/t+EkaMlhBJz3WyLEvTtNVsaqrmuu6d27drvp9luaarioLCMPzBj75f8gJBVBRFvV6bjMd5nmJVkRAYpmk7nqIZFYUjTdOL8/Pz01OEUBxHAEHLdTRDn85nAkgAoJSAEPLOt97Z3dvtD/q7O9uu5yqqwjjjjGGEWFlCCE3T1DRNCFld6GVZVh7QeV5IIf/6/F6dywpjopRSxqSQLzFRwAVBSEGQQKBAwBnLs9J1vShK87yglFuWIyUsS7a6ut5qd1qd1mw+/eUv3+/3e1ubG0WRh0GQpikTQkBg2XZBmaYbnucNh8O11bU8zyFCJeW9/igvqWFaq2trqqJxxvI8uTw/zZNEx3hnfX0+GjV9L44CKMTG6trmxsZSdwUhkmeFqhkA4TCMsiyHEDWbrcFgaDvuN96886sPfnV5dUG2N7c2NzaCRfDqq68urSxP5rOsyHu9nq5qNcdDmhLGiW5YT58fMS7f+uY3EUaHh4fj8fDx44eHxxcrq0uEYKxAhZA4jZ88eyoRDKL04mq0vX39y88fPPjiwcHBgabqabS4c/uNjz76SFEUTFTX8x49erSYj13X58zo9Sb/h//j/+VXv/lw/+Dmg2cf5FnqOsrqykat1v7pv/6rrY2dnc2dwfDSrRlhSIez4XD4/Dvv/iEGgEs1SmKCcJpltbqvGdViUmt2lqMoFihSdLa0vrq1u/2zn/6FqSvJYl4yjiGEADBa6KraaLaLotjZ2a7XGrqqE4iTLHFr/k9/+rNvf/v7bs0DEIRxYAQqQo4UgkP0xYMvut3lWqN179Gj7a0tzbSGg3Gr6RMIfc/L85RLluYFwGCRhITgRTTX9HYax1lWBHGACJRQHJ8eVTONqqqGpmRF6lg25zSPc0ppddSEEBhhgogQgmAiOef8qwoNgRBCACkgAApBGEPBKGOigp4EZxJCIKGCCaOl7dgGIbbrpXkZx7GmaUsra1lBmQAAkZzyk5OzYDbd3tq0bf3kcO65Ns19LnmUJNEsEkDUlpf5QiRZwVmhKvjhowdhGO3u7U9mc6wZnMEozhdxDCDM8sQ01UyRnqW2HNNGECE4uDq36/USYau9XHObJ8OxlEQznGa74/jePIgQwp3u8q9//cH+3v6Dxw9Mw9y9vjcajdDJ0fGjh49+/vOfB2Hwu9/97tmL5wDCwWBw5/bt7lL3z//8p5/c/dS0rCSJfd8bjcYAgGvXrgkhW+3Wm2/d/tt/528nWbK9s721s3Vw44AQoqv6xdl4bXnzd7/9/YtnLxzbu3P7Ddf1TNMhRH311ddXVtam0/nvfvfx7ddvL6bzLM3OTs8FB19+8fD46Pz0+MKxvf/0P/t/drpLCOLhYIwgfv7sUFPVLEsXi8n9B18WNP/xj3/CgYAYzYJFkqZRHMVpCgBQNW15edkwrPlsUZT09OIiydNGq+7XPdMyHNcVkkMIm62GaRqWZTJGIZBAgrXV1YPr1xuNhkIUx7Ivzs7bndann90dTcaaqVNGx5PB+elZHEa9qyuv5qd5Np0v2kvdL768/+GHv+0PB4yJRr2uEEwIeXF4+Ffv/2IeBN3lJcOyFmEoAfB9jxBcluXK6oqmqRUdhHPGOZNSIAAY+8q3rBK+vUQxv+oipawa05cA0//mVdXOyoapWjVJzoFgCoZSsKLINKKYpvX667cNw0yStPoKXTcs04II50Xe718FixkEwrbM6WwyGAzCMOSCI0JOTs+okF6t7tiuoZuNRnN7e8u0TClhEEbD0aSkzLZsohBCkGUajuO0arU0Cif9vqGQPEsMTfNdvyho5Wk6Gk24BJSJNC2yNM+y/Gc/+3lZUsM0641GmmeKRurNGgmCQAjx6muvXVxePHz86M43vjEYDtud9kcfffRHP/nJG2+8EcRRmmZFUfziF7/AGI/Hk6LMNzbWnz55cv3mrU9+/8k37tyxTHM6nawtr19eXEGIf/TDbx++OPnmW28Phv0oCv/sz/7s2rVr77777p/92Z/V6/XFYtHtduMo/sf/+L+5dm0nOjldLCJ8eLy1tbuxtq4SRZTsn/x//huIskUZrK9cV7Df3O7+7re/PTk6yovFnTt3yoL+/K9+vrN1Y6nTbdTrJaWmptWr1XyanZwcabq+trkpBW03OwWlp+eX7UbrBz/6gzLNr84vT8/OqyTS+XzRqFK4MVIUteI0pWnquNbe3t4XDx7M51FOmeu6juPkWZzlmWOaRCEcwFq9UVCZJOnK6spiMo2iqOJKAikQBqqqaaoaRzHEaDadllnebjS1RtNxnJXVlYePH3U6nYuLi0oT/NJPjzFGyFcTTzXL//XzJ4SE4KvZ6OV5/evAJ6y0PEAACRGCBEPOhBBCVRXGqKaanu9XDcNkMoEQrq+vh2HIObcsuyxzhFCtXrc0QyXq5599phAipMSqghWi6nocBKwsLy8u2w3f9dz5fAohRES1LEszbTmcFbSEUlJazGY5QUAIcXFxsdGuN2qeqkNChACg4LRg3PNr+37datQv+pfPnz+HEOxfv3F+fi6lfPvtt4uiGI/HL81dSJ7nYRjqhg4g/NEf/EE1gn38ySetVuvnP//5Ioqu37p59+7d9957dzgc5nl++/ZtSmkQLAzD3t7cvvvp3TiMfN+t1Wqff3bPdWtnJ+dPHx394R/8rf5g2Gw2MMbPn794551v/dmf/Y9Pnz7b29sDAFRNervdDsPYcVzLtG/cupVltH81VpG63OoMR8Mwnd+589ZKe+/ep8/e/MY3Gw33L3/+r2oNyzDU46PHtdpyvVaDECqKgiFSVXUyGrZbzXazVa/5S0tdRdc/vfep4zo1RQ3DWEhZbzY0rKRJFqUpSgwSxhAgwcV4PL62fz0Mg9Fw2Gw08zyHSM4vzhVMVFURjM/ncyC5RrCghWfpeZ7llGuaEUZJnOWu7QAIEUIXF2ec5jtbm3mRrqysdJeXLge96WzGhdB0HQBAGbNM/frBQX8w+PWvfrW6unp5eVlZKVVDFaUUAPwS3Xx5+KrqKKUUggPwVXhcNemDv0a3e3leEcYQSAAhRNVpllJIy7IQRpzz8/Pz6jevhnSM8WIx//zze61GLYkCDPHZ8cl0PM7yXFFVKWWSpRzIPM81gh3XNU376uqqLPO1jfWiKJMsT4uSKIpumWGS1Wo1ysrZdEoks2rtJEk6ntPuNEQ6BhAJDgDGWZ59cv+hYpoQwHqtVm/Wnj19yjjf2NioUNWKoFiWZafTIXt7+8enJ6dn50EYzhaLP/wbf4Mxsbe3L6QEELi1WrfbjeN4e3tnPJ5cXl4Oh6PpdGqaxr/37/3dJEm/cfutJA4Rgk+fPZkMp0vtlduv3cZIm4zHb7755uHJYVEwQ7c++PWHuqFTyldX17e3tkfjUafd/q//639y8+ZN13HPTs7vfvzZ66/dKdJslJaNWnPcH1x/defxw8d9JxoPs8vzCwyXv/+97/f7J3kWX9vd63Y3Tk5OvnH7DiEESJEkSafTybN0Pp+Hi3mWZUtLK4qilUwgiFdWV6fTmabqZ1f9pfV1qGqkf3Vxdbm6unL//iNNN1ZWljVNm06nQRDU63XOeb/fJ4QIwYWkUoA8TWvLS5xiTEhZ0pLS09OTsuS2V6tMZoo0ef2VG7u7uwjKPMgRwbbtBXHEOK+MdPI8j3FMKQuSrOb71eK3ihR7iWhWh+xlFsfXhbNqK5GUkksBpKwgJPG1sfdXpxOAqiUlhBCCOGNSCoK/mqUMXTctM8/z7tIS57xWq1X4cRzHFWcZQjQajZdfe7XdaAIOjl8cE6IgSKjkYZgUBXMty9LVNElmk6HrmFzKfr9PFK1qXbJMzII4z3PN0kzDVAhQJIuT0HIty3HOLy4aDlZ03XTsJGfT6XxpaSnKMi65ruuXF5f7+/uCC8dxzs7OPMdt1huVZBxDRM7OzgaDwZ/+6Z/+1fu/UDX14cOH/X6/ZGW93igp/dVvPtBMY3V19cMPP1QU5Z133vnww99++9vfHQwGz569uDi7cG3vW+++c3JydHx4Xq/XEMDj4XRtbTMPk95lv93slOVVp9OtIqn/0//Hf0aIkiTx3U8+u3XrlhCy01n+6Z//uULUpc7yr9//FUJYQ2rTaxCJCFZt2yFEC4PhrVuvTGf999//peOo0+lIU42yQBCqjPOa75ZFWbIsSRLHthzbVgkGABwfHeuWoRuKAFACYFpmnhV+vV7zfNN1ltZWKOeapidJWmu0Wq2W7bizeTSfLzY3JaXF9vb2i7/8eWVEqOuaZRjtVkMyihFc7nTPrq6yNMlyKgD0XHc6mz55dN80lM31VSCFpuuIkOl0yjhjnFVr/aZXIwiVRRkm6WQyuXXr1i9/+cu/nrv1Elr/ivnx9X9Wd3p1zio57stPfgnCf1U/gQRSVspOAbmUAisqRhAA7Nd80zJtx6lWABjjrx0r8oq8Z5pmp7VWgZrT2XR9Y2M6mUgMFYAIxkRV5vNA2tb21rpK4NnJISGo2WzFWTadTGZBmOasZEBCOBmPLdsAnJqOeWt/79n9eyenR3sbS0SheV6CoojjLCuLQgD81Y4BIAgePXgIEVpdXa38iCr5hqqqvV4PAYj/1t/8o3kQHRzc5Bw+f354bW/v1VdvT2eL4WjyD/7BP2i322+++dbOzh4A6KOPfi8lZFR8+cUDy3T/xt/4o9Pj8//hn/6PDx88Odjb/3f+5h9xyg9fHD168HhlecVzvcl0dn52ASFutTplSf+L/+L/9ed//uf/4l/8q/X1jdPTc90wf/n+r8MwARLRktVrNUCloZnD/nB3aydPy/l08eTx0+XuynA42tnadixrMZsLBnTFyLL8YP+gyPM0Tas1IJCg4vkyxkzDWF9dgwIiiJeWlmq1WpwVRNUdz5MIqZrWajUPDvZms4mqqpzTet2v1xuGoUnA8yJPong8Hnq+7zhurVarwuLTJJVSpknCRIkxUlQlz/MszzhnOzs7b7755rOnz758cL/ZrAEpLcskhCRJcnF+IYRQCCEKyZJsPB4TQkzTrNfr3/3ud6uLrNoSVauHarf5vzm4X23eEUIYoa+Hp5dMkZcV9CsEFHIJvpqlKn69bujtdstxHM/34yRehME8WGRFzqXoLHXb3U4QhU+fPVV1o9NesixbVfWr/qDkIo7SPCsBQCVljueWjJ6enGia1mw0hZCz2TxLM1U1LMsxTdOwDNPUIQJASoWQvChGo4Ftm4ZhUMaxqi/iZL4IrnoDQghnnHNRFsXl+XkWJxDA3WvXKlJYpZdK07SyNCNFUVDOTNP88DcfpkUGEfrLn/9Vq92+fedOURYlY5Uy8Gc/+/m733oXAvy3f/LjR4+eliVHSF1Mw9uvv5kXie97g2EfQjIYjHZ39na2r52fXZ6dX04W09XVtcePH6+ure7tXdvY2Pr83ue6rrdanfFoKiX+5jvvPHvy1LXt+XSxmAVxFK90VxBAjusc3L7+6RcPFj6djmLG2Nn5+YMHD//+3/+7H3zwAecCQPnrD3797/2dPzYMYzKeDK6u1ldWVJVwzrM8h1IWpFQVVQAYx0kQR1tbW5cXl67XSOK0212aToYbGxtCSC7k6uq649biJNM01XEcxkrD1Ioyr/meUbIkjhzHcSwrihaG6kMg4iBsNuqGbqiKUau36o3G2elJu9MxTe2qdxlE8SIIiKbW6rWj05PBYKAoykp3KU3Ti9OzKIzqnaVFsIBfZ21Vl/hLNSbnAiH4MqHwr8s5KsipoiZXO6T/1RQlJUQIIiiEEJBXuh0AgJRC1zXP8xHGRZFLAAjGCKFK0jQej+M4tmz7e9//vud5k+lkPBxdXFwWReG6bkkpURSbOBzIosht3WC0oIwLAD3P0wx9Ml9QyhbRLC85UrSyKBRdA0KUlBEFZllmaVrJCgntJM8t3XQMqz98InV7fW395PKs1W5lic45LYU8Oz3N89z3/eFwGEWREGI4HFJK0ebO9pOnT//7/+9/7/huGIavvvrqrVu3/uAP//D09PS3H30kJTw7O79//8HuzrWnT5+/++63P/nkMynBH//x3z06Oo6iZDSalYX48MOPHz548vvf3W02OqZpKYpW5OV0On9w/9FHH/0eAHR12f/VLz9wbM/364ZhBotoeXnVNOxHDx+XJX3x4hgh0m62Nzd3Ly/n+/vXHz18/M//+f/0i5/99vjwNM/zy7Nz13TeeuutD3/zUZ7kk9Fs0B8e7O+3221Kqes41c5NSum47u7Oju/7W1vbhqm12y3KSgBAEkedTnuxWBCMF4s5pSWldG9vb3193TStbrf74vCFYeiz2WSxWHiuW2kBiqLotNtJFAnJMUaMsfliAaRMo7jVanW7Hd3Q8jxbWV4WQhwfHWVlkRX5/v4+BHA+mzuOc/3GDULIYNCfzWaNeqPZam5vbw0Gg9PT0+l0WonUNE17qcmsKl/F0pJfSzuq+koIYZxV+FFVbmXlR8l5xbBGGBEFSSkRBKqqYowgBKqqep6LkHRdByAkpAQQlpQGYciFaLXb1/b2bNu+efOmYRglY5eXl41mkyhKXhQQwiIvSkaFlAgrlPEqJTYIw6Isz87OGWOtVtO2PcMyAYKabUnBCMaSUwVjICVRSLX50wxDM4ySs/2Dm4ZpHh4eRkE4n0yXO13JOBRgZWnZtR0oQRLF4SKwTUvBhBYlOjk5uXbtmuO4FfN0MpsyIR7cvw8hvHXrZlkWm5tbu7t7nIulpRVN07Os+NEP/+DJ4yfHRydC4J3ta/e/fLSxvvmnf/qfLC+vXlz0jo9PP/zNb696fYzI7u7e2tpGHKez2bws+XQ6WyzC3d29H/7wR/fufT6fhbNZREvpuTUEyelZ7+z0XNPAP/+X/8KvNxjlBzd3HceZTKa6oZ+fn2OIVVVNknRpaTlLs5OT00oJaVomxrhSLIyGw36/b5jGeNTL0pSxstvusLL0PRcI7tiWpimaqhiGRgiWEui6XpbFYjGv4j01TZcAcMZWljpxFGqaenF27rqOYRjBfMFooSvkyy8+l1yEiwUhWNe1OI6iNKKssCzz8ZPHmqrlWZZm2XQ6HU8mQEpd13XDDBYBo6xRbxiG0e12fd+fTqez2awqpVVPWVVEIUTF/atkRtWrkhZV57VyNH8pS6q48VJK+BUU+vWyEwIppPwaNxWSM0allFVTgRCqTOwXi0Wz2QyjqKAlAMCv1x49fhTHMReCSyExRBgTQsqyTNOMcakoqus6nufbrhsG0VV/ACAAEGZ5hiDUVE1XVckFoyzPMgAh5SzJMtP1bK+WZcWjp48lgGmaLS+v1Pza1eWFbdsIoSdPnlROl1JK3/eraDxVVVGcZmlevP32N//0T/+TzY3dxTw4PDze3N5xPD/PqV+rXVxcnJ6c+L4fhmGaphjjf/Ev/uckKQhR5vOg2Vr+9nd/YDv+f/lf/qNfvP+RaTmYKGGc1OutXq9PKW82mxubm//wH/5fVVX7/e8/9lz/wcNH/+Zf/7lCNAQVwQQtuaZb09mi3my2uh3NML7xxptIVfKM9a4Gi3nw6q1XEYA3blw3DGM6mmKAnj89tCxHAkkpdVxXStDpdGp+bTQaTadTIUW9Vndsy3HtMk9NQ2s165KxIk1FWUTzGadFHMeLxTwM57qmQgiDICAESSBWV5cs08yyHCHkeZ4Q3HGsq8tzTstWs1mluwrOS5pBCHVNlZIBIKSUmq67NW//+kGv30vSVEqRZtlwMIiiqCgKRulsPouSiFJ6fn4RBIFhGBsbG9/5zncQQpWy/uUBrbREiqL8da5d1ZJihKuqqShKVV+llNWuXFZXPJBfjR5QVmMTgqBikjBGS8YgxkwKrCqGbRm2leY5k8LxPcoogmhjc1NVdcfzm60WgJAxLoUUQlLKMFGIoiAIAYJCAsqY53qO40ophZSMcYAAQgBhlBc5RBJIhjAsyxxhXDBKiFJyHqWpppuvvPLqe++9ByFazBdSCE4Zo3Tv2rUvv/hiMZsJxuq+v7uz0242V5eX0d7e3nQ67Q/6/+gf/aNf//pXy8vLr7x66+T0dDweJ3FyenJ6fHzs1/yPP/5EAvj+L36pEO3atf3FPEBQuX3nzX/5r/7N8xcnL16c3Lz1iqKSm7deq9dbmCin5+ff/u73r13bD4Pks7uf//wv/yqKEiAx53I+DQaDEcYKBEhRjDynaZJNZ/MwSRRNm0fh5aD38PGj4XhSFkwIsL62vr9/UKvVhoPht9/7tuPUEFSazdbJ8cm9e/cYpVIIxth0NtN1vdlspmk6Ho9My1haape0GI/7hqZIVvq2zbI8j6I8iYPFfD6fB0FQliXGyLKMRqMhBR8MBkkcxlHIGZecNWr1vMiLshyPxoyWV5cXiqL84Ac/OD89MzRVCpFEMcLo2fPnSRJpmoYQ7A/6i/mCEOI6DlFIxVbOi7wCO696vY8//v3JyUm1cD88PKwua/i1gP0l2EQpLcuyItG9fFViuuqTKylcdeNXEnhcDVIIQSQBAFV8fGXigBCilKVpChAEoGoA8MXFxdn5WeVwMZpMFmF4dn5xdHwcRiEXIssyrBCAIOciLwtN00zDhBgxLvK8jJOUC+76ruXYFWqrKqoQQgrByhIjtLa6CiRQFMU0NNt1FMMMwvjiqhcl8b17X8RRtNTtLmazKAgvLy4W8zkEcKnb1XW9evxcx7Ft23VdpBC121l68uT5a6/f2dzeObu4IkQbDicIK3Ga1huNVrv95ZcPh8MRkMA07bOz83uf3v/9bx/duXN7PJ4qqnF5Ndi+tichwYp6dHKCiOrX6//5f/5fKJpxcXGVpvl7730nipLDFycIKfv71//O3/m7um6NhrPJaJ6nRZJkUZQirLQ7y/3xGCpKfzwBiqKomm3aZVHQotzZ2Xn/F7/gjP3uo9+FYVjz6wgg0zSnkwmlzLIsIUQYBLu7u4QQwUWWJRDK4XBQq3n93lWaREWaYMkX00k8n529eEEwwQRRSqfTCWWUcw4hQAi3Wi1KSyH5eDKczWacs+lslmXZfDEXnGVpIqV0bDOO4oooXZTlaDTa29vVTcPxvI2tTYTgYjGnJfV8b2lpyXVdRVFURTUMA0EEAGi12hUyUMmvq+6zMkB8qWqvpvvq7v7rm0zwtZj45VCFvo6Tq6B+hCDGFX0JQAARgrqha5oCIRCcJ0nCGavwqcoyxLZtz/OqIPGtzW1V1RVVa9ZbGBHbdAlWMVYxJhBAJjiTAgBQdRC6bqRpEUZJnheMcc3QAAYlKzHBlmX6nj+ZThilw9FoupiHUTSdzwHGS8sr62ub4+n0yfPns+nse9/7frvd1lTl+vXrEILj4+P19fX9/f3hcPj06dPFYhGGIfr0088AgAf7Bzs7Oxtb2+PxuNFoNZsNTMj2zo5pWitLK1ma/sEf/IHv1RhjtVqzP+hd21/t9Ya27RqWwwUYT2aHRyeEaADhnWvXllZWf/fJx3fv3g2CoCjK6XR6dna+ubmp6/qjR4+++OKLer2+srLCuZjPAk5lUZRFSS97V16jLgmeR6HXqDebrWAe0pL6fj0v8ldfeXU2nXEuHNurPDZUVZ0vFg8fPTy/uCjLUlEVIUQQBLVarV6vU8mIimlZICDWVpY5LaJgXiRRkSRHz59FcYQxlpLPZrMsTYejga7rpmWurq5W2M7ZySkti8vzs06rNZ/PJOeqqnQ73TgKP//881deubGYzytBuqKovV6fca4o5Kp3gQiCECVJIrgwdOMr7iaE0+l0MBy4juN5LoRwPB5Pp9NGowG+Fm9UpfGrpSWEEELLsir5W/WqjmZVR6uvqs5ldVgxwRABBCHGCEIoJYAIKCqxTEvTtGq9RBQCANB1HQBQkTir5tL3fcZYXhQYISllkqaGYTLOGGWMcy4EgJhzISVAmAgAAcS6bgggKedSAsoZURTLtAghmqopRLEMs9vuNFutzY1N13Vtx6aMlyWN4ujZ82dhFIZhOBwOJ+PRzvb2Urtbxdx/85vfTNP0xYsXSZocHR3lec45R7dv3643Gi8ODz/66KMHD+6/+957aRI7jjsej/O8mE2nRVn8vb/39958803Xc7M8K4pisZgH4QIj9fJqgAjJy9K0nZzSII4uLnu/+e1H9x886o/G49Hk5PgsDGNGxcryGi15lubj8SyOEsGhEMLULQyQZZp5VjLGy5JLQNI83zm4bnv+ZDa3LKvTXmKMYwkPDw9fe+1VQoihG4LJ87MLTVM1TeOM+Z5nGAaltN8fWJZtmtZoMnZcu9GoRXEAoaz5jqYQLGXD81QETU09Pz0VQiCMpARFUZRlubyyoqrqZ5/dWwRBGAREUebzuRASAbnU7ioKmUwnnDFd18qyXOouMcYUQiCAruMYhm7bNmO02WpW4EiSJNXPN03TsizzLBsOh8Ph0HHdTqezubm5ublZ3eAvYXnwtZlP1XdWp/YlJv+/tKEYVye1Mmb6CjGF8KsvRABhXJ3zasiwbVNRFCmFqhLHtoWQ1aEMggBjXKvVLMuqIklPTk4AQkVRVr5O1ZNQZTABACGAqqqqqgYAEFIUtFSI4tiObdsYY8aZqmm6pum6RiljtJxNp1malGUeRlEQRSWllPM8L03LuXHjZrvVMU3zs88+Ozk+WVtdHfaHy92l0+OTPM0kF67lYIigBLZpkV7/6vTidLqY2p79+p3XDEP/+JNPOBe3br1yfn6GsHz48H6z0dnf5ePBuO41ev3R+vq243j3HzyYR6WuO+ubm8fHx996971PP72LoJzP5pZlHx0eu75fTa+VWNZxXN3Q8yyfzubzeRBFsam69Xrd9b3ReGxYpqqp0+l4OB7HSQqENDSjTGmeLI6OnjP+N588eVJJGMbjiWm6nu84jmXoOoQwyzJT164f7Pd7l+3NzdWVbn9w1e/1l9fW0ixbhOGHH/5WMKFCAhHoD3qu674Yj7b39hDChPCiKBzP/zf/5l+rql6Uha5qYRRurG+cX15BhK56V75boyX13BqTAhHS7nYfPXnMAARQlrQAGNcbdYRRksaM5jynw9Gw3mharqtpmqKoQAJWlkRRiaLYjuvV6w8ePlRVNUmSNE2r6liVPc6ZppnValRKUBmWYExewvJSSoTgVxM9IWVR6roKESAIEgTLkhKCMQAcCAAEkEDByDB1QogEUiEKIkoUx6qqxHE8Ho8rxxdFUc7Pz6tnaTgctNvtw2fPkAJrtVqSJQWjVHIAACtKAKSqYCCkpiDBKtyNU84UTQ/TkHKmYkXXtSAOILAwhkmauJ4OJBAQCYg9z+/PY8PQOC9fuXWdKKTumUBQ23Nfe+01LkElMHRd13VcAMB8PjdNi5SQjuaj7/zw2z//+ftYJ0JKRFC9WXv24ikAYNVu131vqd0+enGcpvTyYnh61nvrnRWiWkg1J9OZELOizLIs/vWvPjANXQKQBGndqRtYuRxNl9fW4iRFWOFCuK5XlkUYx4qi9vp9x3I1XcuyDMVoY32dch6HAYZws7uCEO6020VWPn74TNMU2zHvP3zQaHUuzk++8/0f/tVf/VXGUts10zxljBKMdU0TjBKkNuteu+mU+QJKVvOX+ldj328TzTo9PlZV1daMNIzWN7cAwi+m00UYm4bpOK4QUlUVzoVKyGDWs0wLAJFmGVYJEKAosv4oW1ldyRk1DCNLKcKYIZSVeW/QY0Lajo0gLzJmGnoYRodPX5yfXO4fHFzDyLZtKQBjvNcfloyvLLcgUc4vLur1ZlEU9XojCCIhQJIkjAnOv3KFVhUipaCcqgohBJdlQYgCgUQQqJpSFGWF3bOy0DWlLFJVVTktAMGQU8sgCEouAYMSIQClxAhAKDVN44ATYpqmSSmtAnMty5JSVqIAAICm6EtLSw2/VvPcT3/3O0YZwggCKRmTQBKCi7IoCTRVIsocERyncSElBaiEnEuoAWRpWhaHS92WhiAELEm4W28iguKCr2x2j84vvnzwQNH0UgjLc2/euG5b+ngUzBfz1vJqEMeOZ+/u7N6/f1/VFMMy/JqnqJiohtpaas0Ws7ffeetnf/kX+3vXW50W53ww6G9v71iW+e63vvni6eliNnedlqCg1eyenlzu3/R13SEKefr0kZTy7Tff6l9dGpoxn89WllbDeWhqpkLUMIxXVjeiODYUEkZxEieUS91UD27cjIIoSVND18Mw9Fy3SNMiL1zT9gyn3+sdTuaY6DduvGLbdl7mv/nwg52dLUXTdvb2P/zdh7PZRMQlRqhea/T6vZWlbqfZEIKZhnp+drS2ulSvub2rYcm57TpBkgiEs5Lqqp5kWThf7FzbtyyrKAvORUlps9meTieLRaBrhqFrnFPLsq6GfcuysrywLCNOcwmhADJOsyQrVJU0Oq0gCBbhgnMhJK3X60BKw3A4F6qu90ajUgiBUL1eZ4xTyvOiHI5Gnl9bhAEhapWj0Gq1p9NZRciCEC4WC4RwWWSqSqpKidFXoCZCEADJGEUYAQgkBNUljhGEQEIpIABCUCSEAiQEAiIAAcAYYigFY5wzIRXOBJaywhd1Xa9wVk3TqmkMQdioNQlR7j38FAlgmRYtS4hgQUvBKeUCESyriDCFICkxQSUjnPOMcQ4BIQRB5JhmlgRAsFm4qLnO6uYaJMR0HNdz+9O56fp+vY4JEgBEcdy7vJjNZ5XHeX86j7P0nXfemUwmnu8lafL666/neX52doYueueOa0/n06xI//5/8Pc1Q4vT8Kp31Wg2Hdc+PDycTGeVNkgKKAHsdru0oMPhaDQaW7ZdqzUY5YdHx1Ga66ZFSw4hLihPswJjEgTBIgjDMAyCEEKECVFVrYKTF4tFlmdpmgIIL6+u4jiWXJSUBsGClqWh6xXLxvP8WzdvmqaZpClRFM4ZhND1XMu2IcKc8+l0yhkHAEwmE4xRp9tinH76yd3Dw0ND1ypTUsbZ0lK3s9RtdzoQIYihaeimaSgEj0aDYDGntGBl2WzUOaNSitFomEQRhFAhuFaraZqaxBGCKM+zsiivLq96gyFEWNcNAGBR0GqAyLI8zwvK2HA8+uzevffff//Ro0cnJ8eUUs9zGaPVWsVxnCrpdW1tbXl5uVIJV21lJW+qmk5N0wCELxl3L+cnhBCWoAKVhBAqUaUURCGCc4SABECCihuFCSEII0ppScuv6VGiOvEVc68sC8ao6zqNRt00Tc/zpBCz6XQ8HpqmWdnfISgVleiGqqoKxpgouCwLyqrARQUAUBaFEJwQLHjlxQejMMzTFABAy5IoiufXICIAIwHE2saagDDJ0kaz+frt17d3d9pLXUXXKqeTfr//7Nmzvb29t956S9d13/dXVlbIdDqL4mh/72A8neRlaVjGxfnleDJuNFv3Pr8HBJuMp3sHB9Nh8PTx8WIR+PX23v5+fzzWDWO+CBDChmEGQagq2unZebPZNHSjZMwwbZklOWOOY6dp0mw25/N5FSpVGcG1O53h1SAIgso8oyxLyzBNy4QA2I5TUoqJMZvNHGcEJJzP54Nhv9msHx0dx3Gs62qRF5zzNEsgl2EU1TzHcZyrq6sidySnlNEgzL788suV9VVA8OrqsmQiTRMuuef7z549bba7nDEupBSi3+9FYdjpLjNGp9OJrhvD0XjbtOI40nVD1w1D05gQAABFUYIg6veHuqGtra0ahjmfLxjnqqpXbE4pIaccAlCWxWDQa7dbYRhU0bSe5xmGTlTiug7n/OzsrFarmaZZAfJf52YTVSWMlS8B0Ze64arQcsGlBFIKhACCUAhOCGJUKoQwSgkhEAAhJYIIYUgIQdWalLIKxgdfaz4pLatDP5/Pm82mruvT6TSKI13Rbty40bs4n49nRV5wQYUQEEFVIUIAzqSUMk5TAjlCQCJU0pJzLgDUFF2ygjGGEEFSuq5Tq9ct22g2m4auU86zPI/TRFXVRrOpxFq92TBsa7ZY/PCHPzg6PhaIMM4BAEtLS7PZzHXd+Xx+fn6+traGuivd7vLydDFfWV/lkjMh/Lq/tbtVb9Zeu/0aRBhjLcuK2WyRZrlClMl4Uj3fS0vd/lUviGKiap2l5Vq9Pp3N4zQLwphSnmSZblqY4DRN9/f3K7ik8ocZj8eDwWA2n2GMhRRCCNu2dV3XDSNN0+FoZLvO0tJSmqUIQdd1Dw8PZ7OZqqjtdotS2ul0EIJ5Ufi+v7GxZZhmlmdxHFephMEirJjqnu+WZS44G4/6o8HQNA1OqaIqXs1jnDXq9SSJhv0elCIJQwhkq15/8eyp77qc0qWlTlEUrCylFJwzTdNsy0IIEowZY3EUAQk5E4ILgtVwEUZhxBnHENu24zhuVeryvPjyyy/Pzs6LooAQEkKOT44/v3cvCIKyLITgpmk4jl3p8Sv5ByH4peVYZU/3cp/51d4PQiCFkAJ9xVlmEEgEESGYYFTZgQMAIIYV+4kQIgAQUgAEiULY1x4ktm23Wi3TNNlXOJIoyzKO4igKVU01DCNJIi44xhgTXFk4U0qF4EJKiJCmaQgRISWEyLYsjRBNUVRN45zqhm6Zpus4mqr4nt9qtiq4XtP1yvcKEVwZcD98+Iio6pNnz5iUG5ub/X6fMWZZVhiGFxcX0+l0b2+v2+2SVrt1bW//V7/6FeN0c2vzk48/3dreOjs7tx1nOl9s7+wGs2g2D6Mo8fyaY9cfPHxcPH+uGEbByjzLddOM4ljTsiSONze3OeOLMDQMQwAYxglGGCFUmRxVpmqcc8/zKtgvCWKUY4RxmqaObRMFK4qJMfZ8P5wH3aWlJM6E4GEYMiYODvbTNB1PhpTS+TwyLK0oyyRJF4vF5WVvudMZTyaaArM8I0SZjCeej6Vk/f7V/s0bp2dnCELKKBAySiJN1+M40lVtIQSUQCHIdhxdVTRFCYO5oqiMMce0TNOoBpQkSSzb5owxxm3b1DVN13SFqGmSEkw45b2rXppkhmFYtl05MZVlKSUQQjiOE8dxFVM0Go6ePXuuYqVyL0vTtNVqVtm4lTKJMcZZUT3M1ea9AoDyPH9ZShGUXIiK8ESpkEIqBEMIFKXqAyGsimXVuiIEIOCMCSkxwRUhDyH0leWTEKZpCiHSLKsaD87YycmxTki1gEWQQACF4IJJCSAhWEpJFIWomAApioJAoGgazzIpuIIQZxRrBAgJIaQl5YwrmBRZMYsCqCuW65i27foewgQgeHxyROPoajCglHEhO51O5Z5pmuZ4PK4AUdM0SV7kR8fHs9lsPp+vrW64nvvg4eON9fXj4+M8L7vNztvf/NZ0tFjpbj59cpynharpaZaLIkuy1PPrcZIQrPhejZfctr2yLISQcZpymjQadQxgHMebm5uEkNlsVq3vNjY2Ki/jJIhNyyryQiGEUpoXBSFYU1RalgBB3/eBxLPZHGP8xhtvtVrNjz/5aDwZcl5ABOr1+nQ+Pz4+QQDMFwvGeDCbbqwvnV2e1X3Hce3ZdGT7fpLEp8dHcZpOEEzSFEk4mU6zrECLmW173U67KArOOS1Lztm1vd3zswvDtM6v+r5fUxQlSVLVVeMoCMPA9Wu6aVimcXD9AGOlEpVPp1OMMSFKFEWUUlVVEcb1eg0TWLmAK4rCOKW0bDYbhCDLtsMgiOOIMRaGQZZlqqoahl4ZK+R5RktBKXuJw1dFtPq4qLo9jIDkGFdVE0MgNE2tOEQAAIQx46LacgohAYQAwKwozaLUDampBEAoJedMQCClEJqmYQQREPVajSCFlWUUhnq97rrOaDhMM4owxARLCABEpq4zShEQWcZUTRESCAEQ50BKzqmh6oyxMs8VJCAgrutubm6VBU3iVAJ4cXXh1euu46hl2RucEkVVdL3WbDSajTIvz84vNE0LgkBRlG63Sym9du2aEOLo6IiUJX3x4ovV1VUI8d27d+v1xmAwqrxhLcvuD8erK4vZPIjm6WIRDgfjNMmxppVFsb29jZC6eHG0sbYZheHBwQ0AQK93laQ5BEjVDMaZ45iqplb0nJdo88XFRUXFsB0njmPDMlqN5mI6KxmDDEgFTGczz/OGg4Hj+FIIhFDlzw0k6HY6YTTDBE5mM03TEUQ0q+xc+XwR1GuOompJmrqOYzuWaWpcyvlsKiQ4X8wVzcAIl5xLBAzDiOOoavMxxqqiDEfDml+r1+uT2WxlZen0+GR7dwdIySizbefJ4ydZVqxtrIdJurqyyoWsCB+cc4SRYRjj8bikpet5tmXVGrWNzTUhpATAMs2iKACUuqHVcR1jLLiYTMfHx8c7OztSCkKwEKJyngcAaJrBWFxRlirfm2qJjzFmjGIkCcFSMKJgBWNOEAJSV5S8yBHBQnCMdQiZBBCCr9j4AoC8KPK80EuKcKlUhA8JEASarlFKTc/1fR8hxJjM0xQTkuW549ic0UWwEJJrml7SnHJKFDsrclNTBZdCwJIxzhgXgiCo6IrveeFiVhSFV3cbjYZlmpqm5UHs2E4RBxJCyuh0Nj06PUnzTDeNVqvNBZ/MZo5lV4YlVesYBMF4PM7zfHt7u9PpkFazo2smhNDUzcvzy0F/2F1amownjDLPrfX703/1P/+05tQJ0ErKr676RNGWfF/HuqLgPCsll5LxJIoVoqRZKoQMw3B1dVXXjSiaJ0lsGEa/3/c8TwhRWVAsFovKR666+xhjlFHNMCzHKbLMsqzxaAwgxFgviqLZbKVp/vjx48ViRgiyHcP3a3mRSsEBAJ7nM53OprP+cMilDKPI0PXJpE9pCQDOaa4oSpLmACCikCxLFUWhrORc5iUlijKdziUAjUajLGgUJ3GS1vw6YxwIkeVpGscCAACgrime7yZJzBnTNV1wnqa5aRiqogAhx5MxBAACCITMkrTmu+1Ws5oFqz5SSkEIStMEQkgwLmmZ50UQBMfHx91u13VdIUSe59VwTcuimper+JjKxaQa4VVVY2UKEFRVpSLTEYKkEBJICCUtS01RKONMCB1jCYCQkFJGKWNcxEliWDbGBACpfGWlhxAEuqYaht6o1xaLoJrrDcNIowhLQQg2DC3LMwQB4xwAmeUpRJALAQEUlYulAgSQVXdeloWmqZAjgonnur7vE4QNXRcAFdNxo9UGEBRFGacpJoRRLgE8PTsvKfVcl0C8WCy2traqoA4hhGEYmqZ1Oh0y7A063W6e57SkrWb79ORs2Bvpurm5voUQoVSkWYllWnONkvGtre15EBimsYjmSRwRYioIDQd9jMl8Ojm7vJAS2LY9m80qWdb5+VGj0VAUZTablWU5n88dx6nX63mez+dzScWCUkVRyrKEEviupyiKZVmBFsRJbOhQEmiZ1taWfXp6MZvNVteWB4PB2vry5GqiKJoQgFGmatpiOhuPx7tbqwjKKk4EABlHUVlSTMhoONZ1Y3VtnZZlXuRJnilED6M4TpI8LznjBaW26SiqxhhnQhBF6fV6tmMJKYqihBBpur6ysjyfLzRV9f2ahLgsCk1VIYDdbldKqRDVsa00TcMgMHTV9WzOWZLEqqoGwaIK0izL0jQNIGUwj4QQtVrt8vLSdd1ms7m2tlaRQsbjcVnklQVkJf+oamdF+lRUpcwF41JRFMEZAwBCgAiSkhOMGOMQqmVRSggh/Mp9hHJBKQMQciFxtQKVQgiuExVjRAhSVa0ssrIsMP6K7NftdKYQllkyDRaMMykFZRQhBDEqWWlphuACIwQgUhVNIsEEpZSyskgpcy1D11Vd1wgmuq4ncUKZzJOMYAUgWHCa5TktWRCEEKFmuy2E9Gt1jCBgYn19fbFYVFaBEMKdnZ1arRaGITk/Oc/TYmd3t3fVVzVVJWq4iEKQtFqtOI1oyVvt5XAejkYTCAiBxPP9Tqczno5M3Wg02+PeqKKTsbLotJqD4cixbcZFr3e1srL0zjvfurq6PD8/D8OwXq8nSVI5V33VYEGoaVoUhqqqViGZvuvmReHX/MV0kWVZe30pSZKDg5uTydyy7EajUdJ8EQRSyjTNdNOK05zTqKAlhKDVak9HAyi5bbt5kWi6kmVxnqWclZSi2XQqEZmFi6ygpuUgRX9xeLS6snp11ecXlyvLq7puWJatGyKKYqIoAID5fMYYJ4riKA5lrNFsaJpKaaEouq6pRZ4xxjA0PNfmXKoKuZrNpAQKgZZtVF52lX9+GIbV0rLdbpdlmWaZaVjNZtOyLVVVDMNoNOqLYB4EISbIMPRK8PCVoa5h6LpOKa2wOYgRQRJBCYFEAEIEMYYYQwkxQkBIISVSNU1KACFUNE1IKSSQEvz/qfqvYFuu9L4TXGvlSm+2t2fv4/31uBfXwAMFU57lWDTSSOoRKdM9o1a0CcX0hKQYRasfJmYkUYqYCPVoqBpRRZZIliWLxTIACh64/p5rjrf7bO8yd3q31jwkqrrnPCDwgDfkzlzr+/7/3w9jFjOYxDHDcZQQzLAIQkmUeEFgMaaEaqqKGN533UIx70yMwHUgghgykOH9MOB5DgAQUwghghglVW9IIMMAFAOSfAMlAQLAsWw+n2MQw7O8lkrzgtxqd0OMes4YIxwFkapq1eqU7TqdThdCBAilFIyGI03TGIZZX1/XdX1/f397ezuBlqHPvfHF6fqsY3os5rKpfPOkXcyXMcSD7jCXyQchhQwnSirmRcxyJ6cNhBjbtufm5hjMqKLkuw6iRFNkVZUzmjY7XWcxoypSFHrDQS+5mmGMa7UahHBtbS15T/A8n8vlPD8olcuJ1QUiSACVZNmYTGRFRQzK5fIIoX6/f3R4mM1mk/9DcRwD+mnYEbMshNDzfBZzgiARClmOwyw3Ma3A98PAg5QAGgNK4jB0XWc0HjiOYzv28elJq93JZPKY403bppA5Ojk9bjS7/aFhWmGU0OFiz3Vd1x70+6enpwiAOApdx7Yss9NpURIiSOMoaJ4eTww98G1R4BgEaRy4rqPr416vZ9t2ErsMw7Ddbrfbbdd1KQWpVEpLqZlsenq6ls1lPN8lNBZFYTLRCYld103244krG/xvjXhiWzbHYlESRIHnBY7nWBYzGCEEIIMRz2IIIcOyPCdAyBD6aTE+iuIwiFzPtyw78IME1kUJJTFxbIdnuXKpzLNcGEaKLCew3CAMTHOiKEo6k06n0xzH8jzPcpjFmFJKYhKGURwTBBkEGQYxDIKQgmTvxSCYyBcVSV5dWavVavl8QeB4XdcpoZ7r8yyvKJrAi7bleG4QBtFwOM7lskdHR4kTLEkbNptNy7LCMMSQosgnsqRQAvrdYTaTX1lcGeeMXq93sHcEIe72BmklHUYhQ9HM9IxpmQTEa+trB0d7qqrk0+lkZ9httSBCU7WpKPAYjJcWFxzXfu+9d6IoymQymUzm6OhIFMXEs/Fpz7VcajQa2UzGZllAaRgEURxxPBeGYURIHMf9fp9SuL29NTu3gFk8Ho8BpYmVEGKOYRiWYeMwSskKQkyv3xdYwGLsGR7PQc93McsghDwXM5jlWdbyXC2ddofDcc+wbTpVrQ9HBmDYMKJhFBPXjfsDClFGSw/7bZ5jtVRK4IXhaBT1++l0KgpCh9gsx49Go0yGsCzrula3106G6nNzc5VKIY5jlucMQzeMCaVE01RZljiOdV1H1/16vZbP50ROpJTats1xbFJqY1msqoqiyKIoOpYNPoV2//8RHAAFcRwxjMAwgEGQkKQ+CRmEACQMQhhhCgCDWYgggxgIaBRHDGJIHAdhEE4ijuMqxTwhsSzLENLk1DEej0RR8H3fD8J0OosQQyhRNcUxZQRpHMdJBxVz2Au8BP1MYhJTQgjlGIYQQmnEYoYSTCnFDEIIREGYT6cBAPp47Ickn8tvbD1xLEcURduywjAIwjAIA0BIoZCvVip37txJvFmffPLJzs4O/NS5g8MwzOVy+P13PxAlUVGU0XB8sH+wunZmopsc5hvHjaOjBtZythfLnAoBCsMoVyz5gZ/JZCiNdX0UeC6GIFMs5nP5mzdvsgIXlwqaKjuuX8hlHVdodjuyJB0cHCQCtfF4HEXRzMzMaDTy/YDjBUqpMZnwPC+LYqfVPmk0IKCu4xaKxdCL4yjI53JxRHu9HoTIMiflSsG09EKhEFLkhxHPsnFMwyg8aZywGDAg4jBgMaKAsiyGFMQ0YjEWZSmfz2NRoBy/3ziOKbEcZ//oSBCEMIhM3+EFwQ+9/tCYWM7c9GwURcNBrz/oF4tlQeAsy55MJrKsBHEUh0Ech8NRX1XUmEQsh/XxeDKZpNOaqmlxHBNKPD+0LKPd7nAcOzMzo6qKLEuu6xASybKEYeKS86MowJhRFHk4ZFzXYVnMcZjjOd/7dLBPf4Va/nVRCVAaRyFATJIxZSBgEKSAIAgwZgilEMEwikRRRAzjhX4UxwACQikJQ9dxKKUAUEHgIIQ8zyWaDl0fcRzPcexgOAAAxHEkigIAIIpiP/AwZniOpwyFIInwIQZjkDSgMUNjHyMkiorPBl4QYMzwvIAQTKfSQeD3BwNBkGem5wGFuWwWAsBinM1kVE3r9XscyxZyOU1VS8Viu90uFAoLCwu9Xk8QhAT8CyGcTCa4Vp3iOK7fH3RaPYzYtJrutHq+50/Gk5n6zGajo2QKru8X0gXfdliWvXDx0vbOE2Oi+0Ggj0aaoqwsLa6fWfd913Ydz3Ur1crh4X2GKZuWpanqZDLRNM31vHw+32w2kzs+pZTnOdtx05mMbduObSMAkoBj4PsOdSGEpXw1DIiiKJjhTPMEY4ZQMhqNFVUYG6NMvoj9KLEDTUzLd50zayuONY6DQCtlCfEkSfC9IAwIz2GWYWzHYjATkCgmcTabNSfE82MvCG3LFkXFC6IoihzXB8g2HVdA1DJNQikAMJvNAQqazebs7GwQRY7j+qE/1nVQLguioCii59qUymHoMwgEfhDTRGnATiaT/f2DfD6vqurU1BSEUJJkgRei4NNCZmI/kmWZ47gko9nrdQM/YlmWEJIUwyGEQRAAAP3AZ1kWQZQ04zCDEIQMAgxmSPwpjjTZOiZrJ1bgwjgKwpBCkEznozhyPS95XyY7JPQpGpeTZRlh5vGTLUmUaBSRKA7DUOA5QuOYxAhS/1eUZ4QZjDCliGc5kWejAPIsTKdkx3XJZMIwjCxLmqZCCH3Pj6Kxhd3paW9lednaeeiHfrlUjuPYtmyMcLGQ2zs8IAScWT/zyScfvf322wno7+LFi8lma319fXd3F5kTa9AdSoIMCJVEOQqiUr4osMLq8ppre6qSCoPIsizbdnhBNC1LluTZmdmjo8N8vshgZn1txXPd999/L4qCZ597JptNT0/XV1cXx8MBxzKURKIoTNfrrm1zLCfwAolJv9fjWJbBjKJILMcmwdjJZII5LMuyJMtBFLZardPTRhAEpmUSSrL5HGKgKIkRiXZ2dibGJMlgA/rppzCMYtf3JFlSUxqhlOdFiFACfkk2hIledmJMJEniBQkgLEgSg1nE8hBhCgCAiJckiLBhmu1OJwqCtKaFYdDtdhLCfOO0YYz10+Zp4Afj4fBgf7/ZOGUAVGS5Ui5TQuIoBpRyLMswSJLEcqUsy6LvexDBQiFfqVYkSaKUMgxKUAOmabqum3BADcOwbRtCxHP8r0MhCCGO5yilGCMSxyLPY4ySET2LGZbFDMYsw2CU3McTvC5GCMaAAgARwyQwJkppMh6KoxAxyLIsnuPDMHQcJ+lqe57n2A6hJAj9mESIQZmMxrI42UVDQAEhmGEABAyDIGIoSXZaECGEGYbFDMexiiwnyAZZlsPQ53k+YWqYlvX0lSulQtm1PZblTcsej/QoIjGhPC/s7+1zLCcIYqVSkSSpWq1ihjl79uylS5cc14UI4mw2OxrpDx899AOPo8LGowfnz12sVGt7ewe+T3v9Aa9qi/X52It2t3aKufzdW3fe+PzrR8d7hVz26Oh4y3R2dnaWV1Y8z3UCb7pe9xynVqmeHB0FritpEiHg+OAwlcrQCMzPLAgs3x90VFWa6MNiscLzojEaYQbGFABKbdvEGPM8K6XTlj7hsxIhNKZgfnH+7v1bEQj9wFEUGUEU+pHrOq4XhHHIYCaKo0fbm1cvnecx41gTTpMA4BACPA9D6DMMUjh5NHG9MKKA6XaHYYgx5khMeJazHZvFmGUximkQBINBn4kcnkGEgpgQQRDCKPQ8r9Nu53I5x7JURQmjqNdoSIMhgFCWJMdxKaAYswBACTEQEo5HszM1WZYFgfVcGzEAAkpJHAS+KssAxr4fMQwDKBz0h4ZhJk8khIAXBN0wGAQlSY6jgEGsqogkjgkCAo8ZFFESMpBJ+kYIQgAJYhCDUUQiBjMEIBAzlNA4igEFDGQoCQmJEYMoIkHgQUohAgzLAB+oqlqpVEzT9INAluVz584FYWCOdce0MM9NTCuOIgaiOIgYAliepYQCgDBCESSx51EWgTiOw9hzHI7nqMAFnisJAi8IruMSQg1jkk7lhr1eKpOenqp/+NEnFBCKYCqbS6VTmUKWMigIAgJBEvJSVVWSpOF4HEWRKEn3Nu6nUmnMYI5hmc9+4bP3799zHGd2Zo5BPMK41R4Qguv1mVyp0j45pS4JHB9oRFSFcr5ULlZ39jZTSrpYq/GK4vuels04rvPRJx/5rvt3f+/3Lj91aTjqq2m13emGvm/q1qhvenbACwyJIgjjciFjjEcTiGpT5XazJXBsGEYAUlWTKYghAwSRhxC0210lnXcD3w5sPzQVTdQHfhwj33bTadX3B5wkRDSOAtjodp8CKAwphpypO4IqSKoaBI7nWpbj+gGBGMMII8BRgsIg5jAKwiCZeQk8Jwi86/quYyGGgZQShGRVi2PCspgJwzgKo9B3rAmitNfr+UHEYM5xvQcPHq6srHqel0ppE8tmEAoiH3MQAcLxnKqIAADf813XGw0G9mTCskwcaUHgWqaTSuUDL8pks81mezyesCwXBEEQhxzPkijyfRuQmMUgnUoP+wMWozgOJJ4Lw4ASAiBAEDEMiOKY41iIGNt1JDHjeTGhEEImCmNKAIIMAogAAAiElJqG4WbtXLFg2WYSzhJE0Qv9xEAXxSCOKUMRRoyuj2JKeEGgYRj4EaQQxVATZNf1WYgUUXIcGyMKKCFhFAagVC6MJ4brmJIsCoLAIIbDuNvpb209qVUqqWxqZXX9mevPtLvtg5Oj/mjoU3LSaTmue+7cGTfwi4X8YDhIzjy12Rk/DEZtvVgqR1GIYwoIBbwgnDt//vGjx7dv33355Vf39g6y2TzDOitPXej2B6aseLGrKgqD0FS18ujRw2w6XSqWAj8yrUm1Xh0N+oEX8QKT0maKhcI7v3x7qlZ57bVXnmw/6XUhAEBVVM+LB71hJqeIogBI5Lr2YDhWVa1xcjI9PV0qlXzfT4iphJBKpXB6eLq1/WRmdhUz2DANx7VliZ9YRjabIRHu93uOZ8WAalpKt00/ChGJ9g8O58pFHMW+Z0eQpLRyGPmCJOumiVkeY971PcdyWYb1YOA4TlI/T8yWyTjMdV3CYZllfM/L5/NBECRq0MQRY1m2bdu6aUPMJWcy3/cPDg4STaimaTzP8wIWZZbnBI6DlmV6nq9qqSiOFEV6/PgRJ+CFhXkaU5ZloyhMfiHFYvHBxj2OYxzHliUZ0BgCwDAIMkASBUpiiGgcBSwDISCSKDiOm9z9E6Y4AJAQihAGAAEQ8zyXnEc/TejFcbLzxCzmeByT2PVcXhBEUWRZ9snmk2q1KgiC4zgQsb7vM5jJZjMTY8whxppMbMPIpDO+44YkQgCCmLquI2RSqqIQEjq2zTBEUQVB4HNsdqKPdd2oTdWllJTWUhIvnzZPoyhwLLusapfOX9TfGevjEeRYtoAHIytfyEOE9vf2aOgjhknUurbner6fhGQpBOjOvQfD0Xh372Bv/+DwpHHl6vXhePLxJ7e293b9IPzlW2/df3BXFoVcNrO2vtJsnc7M1Bsnx4LAS5JkGDpE4PHjh7ls6uSkkc1mFpfmZU2UFNF17e2dzSgKt7a3s9l0pVqpVEuzc3VR5F3XiWNyeHgkSWImk5FkqVqtiqL40ksvPn31aYRguVw+PjqSZSmdTgeBX6mWu90OAHQ0Gk4Mw7IsxMBcLstzvOcFFNCUphVyOUWUDMNQZIUXeS2VCvxga2vLsmzX9URRTG7EmWxWEETbtpPxZII8QAiNx+PJZMJxXDL5Yxhcr9ctywIAJAaPRN4axzHDYF4QZEW2LCtxjPi+b9u2aZrj8bjVau3t7R0fNTqdnmU5vh8yDPY9j+OYXD6zsrrs+04UBRChsT7S9REFse2YQejOzU1TSmbnZgAgkBLMABYjnsNh6Du2LfKsyHMcy0AGiKKgKJIgJMtUluN4CJkoJHEMAIQMYjiOQ7/6+98nnQEADOZCQoIgTEJ9nu8KAp9KpcIwRIghUdxtd2xzIklyuVA4u7Yui2IhXwg9PwgCQRQRw6iaKoiCKMuSLH+6sWKSshQQOL5en0YIGYbBsRyNQbVaTcmK67ix749OTpZXV86trxbSmVIuZ43HU+XydL3aaTd5Hrc7nV6vJ4pisuOVJKlUKi0sLERhiF584QUK0MbGo3y+DAAulSrjsf7ss8+Vy5XEy2NPJqNBf39vO5VSFxZm79y9PRz2f/6Ln2EGjUZDVRHnZuv5Qu7LX/mM4xqbW48AIKomOa5178Hdt95+e35+PpXSjo4O0umUqmqe5yeX1rW1VULiQb9vTiaHB/vbW5t/8Af/ptNqFQp5lmUEkR8OB+lUWlakVqsZRWEUhZ7nMZgZ6zrP8bVarT5dF0XBMPRep2tOJgzD9AeDsWEEfmC7bkQoy3KSKIuilElnJUnsdruEkGwuyzCYSdyACCagDk1Ty+WSLEs8zwVBMDs7l8/nk4RKEgBLWpoMQqIo5vP5lKYl3stkxRJFEaUkJrHjOP3+oHnaPj462d87bDabrusmSuYg8DNZTdPU8XiIMPB91/Vsz3Nt24QQCAKvanI+nw0DDwKaoL8wZqIojEJPFgWWYyhNpLCRoiqSLGHMSpLE8SKDWQowIAzDYI7nkwFNkg1P7ukJ1oFSGsdREjH+teBrbnauWCjIsszz3ETXTw6PJmNdk8TF+UXHtlOKihkkCkImkyYxieJYEERJlhmGwSwWBUGRFUWWMcNEUWhZlqpqsiz3+/1GozGZGKZhZDLZ05OG77o8g6ltP3PjmdWlRRD4i3OzM1Pl25981O91giDgeZ7EcbFYnJ6eLpfLcRyPRiNJEtfW1tBJo7m3t18oliUp3WwOv/f9H2VzRc8PMMu2u20QhylFXlyYUxRpd2c7k03t7e7KilCvTw0G/cWFmZOjXRaDIHT29nbq9anDw72f/+JNzDLTs1P9fmeqNnV6ejqZGOtn1xuNo8dPHlq2ceHCOdM0gyDQVEUU+XRKM/RRSlMX5+f18UgfDf/+3/v9//F/+O/Pnj2rpZR0Jp1KaZVKWRCEVEplMQaAOI61t7fTajdZzAhcEoSELMubpnV0fOR4nmVbCRTptHnqOA7GrKZpruuOx7osKYVCkVLCYBjFYRB6ABLXczDHEBpn8+l6vba4MD9VrWKMRVFMpVLJojyO4wRnSCnxA1cUeVHiJ6bh+rYfup7vxnHI8VgUpTgmtu2enjZ3tndbrVY+nz083J9M9CDwVU1GDPQ8K53RGAYFgQcAse2JILKERJ12i2MZCCiEFAIKAJVFjscMpIREEYIUY+SFHoAUMYjBrKykWJYXBFnRNEVNSZKa1IKT86Uoityv/pIQk+O6vucnocfkh6eqCgC0XquqslzIZvPZTFpTEQUkCgWOIyRiIIyiaGKMYxIFYWi5dhAGtm0DCGVV5UWB53nMsYSAwI9sy4kiYttOp9kejUZRFPmum9JSt2/e3HxwP7Rsfzz+/f/6H/3ub/12KZO+d/NWtVj0HMt17ampqfmFBUqpIAhJUgRjvL217fs+wpjt94eNk9bbb7/9wvM3dH1iTiyMcbPZ1DStkM2EnrP1+BEDAcsyHM9N1ap7e/vrayuzM1OEeGvrK+vry2fOrKysLtqOMVWbqtWz9ekigNE3vvF1faz3+73ReHywv5vPZ+fmpuv1qbn5uXPnzpimZZoTRZaKxZznuYREuVzmwsXzi0uL3/72Hx0fHvw//x//99nZmaTFEMXRhYvnOJ6fqlVzudz09PTq6grLYFmSGIYBlCqywrEsoGA40ieOo8gaoNAyrTgijZPG6ekppaBcrnAcz7Isy2Lf9yBESVA8IRdoqgohZDGHMQMAZXnecV2MMYOxbdtJKg9+mraILcsOwzBJIbGYhQCGYeh5bhSFgiAInCxwIgAoCMLDw0NRFDkOnzZPBoNuOqOeObM2GPQZBkVREIS+41pB6EMIBJFzPVNTFZZlWBZiDDECHMcAGHueC2CcyWYy2TTHcxBDlmNFWRFlmcGcJKuZTDGVzguijFkmJnFCd2I+TYiixK5EKA3DwA+CKI4TGlQcx7ZtDwaDOIoLuVyhkFucnZutT3MsG3j+/OwMAtDQDdM0giDkOJ5hGMdxPN/zfQ8AwPFcwiVlGByGkSAIEDLD4TAJILOI8Rw3n83PzkwHjmPqo+PtJ0EUTY52L165dOncGUXgj/b3F2anq+XS8tLC+XPnEIIYY8uy9vb2MMamNRmNRkiSNIRwr9e3bXd//xhC3O8N+r2+pqnzc7PmxMinU6cnxywDXc/a3n28f7xTKGUkibXtCceifC7l2JO11cUockrlLGbj+mxt/2gvJH5Igl6v5/sBAGQ06vf6HUkWHMd+/733eEGoTVUVSRB5rEpipVz0HGt/b/vjD96/fvWy59j37t7+v/2Lf/7yyy/WpqbCKGg1m3Nzc6PxYDgcVCrFg8O9J5tPgtAjlKiKOjc9PV2r25bFcmwUx73BgECAMS4US5cuXdJSadt2KQFT1Vo2mxdFyXWcBMmEEMSY8X2v1+v2ej1JEjNpTdVUAkByQrVs2/N8BmOIEC8IFADP94Mg8H3PdZ0EvZlYK1kWU0omEyOOYoZhozhmECNJchzH3//+969du24Y+qNHDwmNXc8ZjQat9qntmINhr9VqKoo8GPbK5UKxmOdFLpWSFUmSJVGWRMwwmEUQEYFlU4rMcqyiKbwoioqMMBMTyvIiy0uipCLMJkjwmBCAIECQAAoZhBgGMQyFEEDI8SJCzKdcEsj0+/393b1hr9fvdkSe92yHZZAiyxzDpFOa67hT1UpMwnQ6Xa/VgsCHCbMEQgqh53thGAEGMpiJ4tjxvAhABnNhEMcREQQxiet7vjdTr6uyfHJwuLO9dfrkiTUYDnd352dmb1y58vSli77j9LqdjY2Nh482er3u8fFhs9nALAKQVKsVz3PQh++/x2J2fm6ew7w+MpaXlhPqEMuyKVUGUVjMpRfmFnO5FKWRpimUEEMfNY5PJIFTFVmUOEUVHz9+KAicaRphCF5//ZWJOYpizw88TVNqtQqEIJ3WBIHtdlu5fBYA0mw2eZ4rFvOmZbQ7rWw2LSsiy2KOZzY3H8/M1J997ka73f4P/+E/FEvFZrO5sDi3tfUkn8udP39GlMQrVy6XSkUWMyxCEJDxaOz7Hsfx+VxBUVNRTMMoFiWRxaxhTGamZ5aWl0RRZDGLEOQ5Pibk15dcjuMIIYlfWhAEXTeOjo4m5mRlZWUymbAsK8sSZllREgVRTMR247EeBEHS2WUYJjFwsiyLMRvHhFASxbHn+UGYMOsQIWRj4/6rr77K8ezB/t6bb/5sMpm02y3Hsfv9rjEZ9wedVEp1XTedScuyqKkJMVdUFJnneVEQBIHjWDYmkeM6DGYFQWQYNgxjx/Uw5gBEECESgzgivw7hAwjiX4X0WI4TBJ7leF6QGIZFn8KboG3bBwf7nucGYeB4jiwKiqyQKDIMw5pMfN/TUtqNG9c1TRvpQ9O2E/ttsoN1bMfzPRazPM9HURRGsWHYtufyokgB0CcTFnOJanY0GimqLPB8IZfFGLZbzUGnG3neubNnmo2Gpio8h09OjsfjsaZpEKHFxYVarXZ0dKQoiiiKiMRRHET6yAAEeo7ba3Z811Nl2XedKPTKpZw+6P9f/sn/uZjLzc/PPv/Cs9Mz1TiO3/zFLxfm6l/76hc/eO/dlaWF2lQ5iNypWuV3fvdLf/pnf3z9mauYww8ePAjCaGFhIZNJl8pFzCJJ5kejXqlUKuTzjdPGU09dmJ6u8zzLMOiNN16PIj+dTvmB12w2bt78ZHdn2/Wdre0nmqYuLi3s7GyXysWHDx9QGu3t7+wf7A5Hw9F4TAmJo4DGRBJFy7QMw+gNBp4fEAJGSbiExCQmUUwQg1mWG43HrhN4njcajQCAGGNBEJI5eaJomZ2dRQzz8PFDludc39MnhjExGIwjElNAEfvpBCeZ3fi+n/Asfd83TZPjOASRZVmlUlmRlaSryXHchx9+iBCUJWVnZyeTyewf7BuGcXh4aNu2ruvJBCCB1CmyrKZTWlqlEGSL+XQmRSkVJZGXeYghQMjzA0VNTyxbVpVEt2fZdhQTJZVWUynMsSzPyaqCGMbzPX1ieL7v+R4vCmEYuoHveF4cAy8I9IlRKOTPnj0jCEIcBtbECP2AAYBBKJPJaCnNCzzLsgigtempUrmsqgrDoGKpxPN8TCnDYoSQKEmSqgqiCBAEmJG1tBOEpuPajt3p9aI4jkmIMDM7P1csF5qtZrfd8T1/ouu9ZjOjqumU5rkuj3GpVAKAtNpNwxhblhUE/vLykpbSRuMhYhHKZbIix1uTiSKpqiJjiM6fPVvMZ3gOF3Ppl1967v/zv/77bnc8MfRiMXf+/JlcXvvil17e2NjotJrf/MbX4ijodlufff31r33tK6lM6vNf+PzENPL57IcfbnCsVK4Uz5xdFQSO0igMfc9zG6dHWip18eLFRqPR6bZefOl5Ssn3vveDpy5fOnf+7MHBXhSHb731jqJKtamyoY8lid/cfHLm7PrhwX7SCojj6MyZdcuyC/mMPhpRQrY3N62JHRMSExpEpNvvp9MZ1/Ha7e5oqHtukBzIJhPTcz0IQaFQEEUxDP0wDHmep5QqigIAUFRlMpkcnxyPx/qzzz3b7/eTbKhpmbZlAQB4nqcIJC2UBAYbBIFlW+l0OpfLQQgty1IVSddH7Xbb931Fkfv9fq0+8yd/8qfpdFqSZEVRKaGWZSUshiiK+v1eEt6BEKTSaZZjE2YsAIDj+WK5pKQ0x3ONySQMI1HS+sMxAIzteJgTKIUcL8QUGsbEcVxBELRUKgzD5AubDIM+BeAjRChAiInjGDM4+T3kcjmex/p4PBoO8oWCqqksy3Y6rV6vxzCIIqCl1EKxoGoqwsiYTIbDYXIY9YOAF4RkGiBJou+HEaFHx8cTxwlCwvGCqEiWaQII0+kU5jheFkuVCifyY318cnysGxNVUWdq0+PROCYxhKDZPE08sZcuXcrn84ZhvPmLX4iiiPu9zmjkZVJqOp1+9rnnf/iDH/7Lf/k/P9l88vqrr/ieG/v2TG2qUiwvr679v/79vyckcl2nXi1DEO1sHw77g0o1q2UyX/7yF7773e9mcmlBElKZ1JUrTz189Ojy0wuBwz56+OiVz7zy7W//iSAIMzOzmWxqa2vTsiaUUoHFxXxOH404Fvme+Whjw5qdzNTrjx8/nputqErONM1cccowdC90cyXt0lMXNu7ftW0rjqMw8q9cubS/f5zPF3lOFDlxYWGx1Tp9/Ghjfn5OVjRRlFgW+4HDYCCJIov5II7DIPSDgON4igCENDFqYIwhJEHgYYwwy7CYIRjvHuwP9bFhW5briKIYhGEmnTYMo9vpQoxKpVLCiItJ6HmeKIoMhv1+X5IkjkWiKHi+l0ql/MBJxD/dbiedTgdBNBwOGGbP9VyOE1mO8zw7isLxmIiioCgyL3ACJ/phSOI4JLFpO5oqcwxiGFSXZMPQ/YiEMTH1iSTKBEAGMUN9RAEjiwGllBNlPwiTax//aVqZ2q7r+z6FkFAah1HAMJbtaJoaBAFmsCTw40HvqUsXzImlj8c8y7m+QygJAl+WJTb0RFmO4sANfcQwSUwiaavGcWQ5duA5AHAhhzDLyalUp92WFSX2vHQ+P7ewwAJgDAdeGAAEx5blOk6tWpVV1fHcwHEG3X4+l5+dmenr42eeufFgY6NSKR0eHe0d7ubyhWw2PRz2HcdElmF+46ufD7xIkaTYD9eWV37+05/ubD750Q++x2LKInrzw/ct02AY+A//4d+vTpUXl+Y+9/k3vvSlL//Ob3/hpZeunT93tt9pdzvdp566qCjK8cnJj378409u3bx59/ZTT11+9TOvaikNIbi6ulwoZK9cueC6djab8X0/8Lx/8Pd+DwCSSim1elUSeUUVHz3a0FLyU5cv5rIZBoHrN65nMhnTsp5sPjk42A+C4MrlywcHR1EU27Y9HA2mpsoIAdM0U1rq7t27w+HwqctXur3+caPhul46lVFVlWU5QRQRQskEmBDKsti2LUJi+CuosShKCZuEEmK7ThAEgFLbtp979llN02RZhgAkdZmZ2ZlqueJ5nu97SZMzl8slBwZZln3f50U2iDxCo0IxJ0mCruvj8RhQyGJ2ZWV9dXU9jkg2k2MxDwGiFCTHjHa7a1mWY7uGObFdJ6IkjElirrI9D3Msx3OyomKOsyw3DIkfxGEUGxPLsh3PdT3fDaLADwLTNIfDYXK0ME3TsizXdX89V2IwSwlwXDcKI0rJaDC0bEsQ+Du3b3MsY5oTzLFRHGeyWYSR47oAwSCOIkoiSlzPS9JV4/GYUpoUBjGLOY6jhBIGnna7hmXrE3M8MQfDUbPVjikBDBJFkZdEVpa6o9HW7s7e/sHR0fHe3gHGbPO0tbe3b1vWxx99FMXRL37xi3K5TCkIw7Df7yuqqigqUiRxcX5OldlzZ87s7e4okvjOW2+pivD5z702O1Obna5l0qmbH31YKhYYDDFmCIkfP95oNk8wQjNTtc999nMXLl7Y293e2tqKovDFF1+JIqZYKHAs5gSu2+26rru1vdVuN4ulQuP0ZHV1eWqqenh0eNo8/YM/+NfVcun2zU+yKVWRRdeypmtVfTi8eO7M7/z2N+v1ei6XCUN/dWUpnU5BCEzLePXV1/7pP/snvV4LITiZTIIgmOjGRDeiMMQMJoQOx+NqvVauVHu9nihJLMtjjAVBDMMgWfy4jhtHseM6fugBSBADGAzzhWwY+aLEd7qtMPRN02Q5TlXV09NThJDruglgFiEU+IEki5IkRFEYBB7HYcMYy7JYKOQAIByHbdv0PNe2LcuaMCwjSZIgSKlUttcb/cUP/vprX/16p9PxPD9pGjm2K/Aii7k4JpblEAIMy3b8AGIWMigiZKxPLNdzvKDbH/pBFIRkOJ4QgAzLsRyvNxhgnuNlgTLUC7zxeJisu1zXtW07wd38GtQIABAlieFYQmlMCMMw2Ww2CiNd16uVytHRMYAUcQhzLCfwBIDeqOeHgeVYAKJypUIB9XzP9bwgClmeAxD6vh+FUURiL/Asx3F8X82kYwjzpYIT+Jt7O41OC/FsEEf7jaOJ7xGMd4+PH20+sVyX43nEYErBxDAphd1ut9VqXb58Oel2ViuVGzduqIoyHo/RpfPnpsrFteXFD997n2Mwhuhv/u7vbD58+PEHH7CANhonn/viF3/nd37ryZPHjx8/un371q3bnxSLhTPraxsP77/51pv/y//8P0d+8PLLL3/+s5+dm5t/862f/bf/7e/v7O8LklgsFTmOUxTl4cONxaUFy5oMh0PbtVZWlp9/7rn/w9/8mzs7O/fu3X3++ecODg6+8Y2vz8/POY5dLpeiKPrpT/86m0v3+r1k0vbUpUsAkDAI/+2//QPP82ZmZnRdh4j2+32GwfV67fj42LHt0WispdIzc/NvvvkeQiiBqQqCKEliFMVRFBFCLcuyHTup/yYDbZZlk55rcuMZjUaiIJim+fDhw62tLcMwEtQvhDCTyQyHQ103khY1xrhcLheLxQR/IAgCQigMA15g8oVsEPq+57Msm+wbq9Wp9bOr/+pf/ZvXXntDFOVGo2UYlihKhFDTtFks6OOJ7XpjfTKxHNOyLNeLKJFkaawbnV6/Uqt5vj/WzV5v6Dh+HMUsyyW/mX6/3+12AaRBFDqOk9iGOp3Op3EQQZAkCQJAAA2jOAzCMIpt13Fsp9vtUErOnz3TbrdLpWI2lx0NR4hBpm1+WhhhYERigFG2kK9Wq5IoIgQlSQIA+L4HIYyiMIwiAECr0262OxPHnVg2gKg/GgZxzGDWcd2hPhqMRq1Bz4p8LEmpbC6dzSqqtrW1vbC4eGb9PAUgldLqtfru7q7rOKuraw82NprNpihJCwsLqFws/PLtt2VJWl9dXVladizznbffvvzUxWeuP81AIHFcr3Uax1Exn//MK68888y13//9v1sul7/znT+5cf1GPp//8pe/PBgOf/DDH0GEoiisVqs//enP8rn85ctPa2rasi1RFM6eOXN8fLS4uLC8vLi9tfXjH/84iuK33npLELlKtSyI/Fe++hs//dlfZ3MZURIYjDrd9o0b19fW15579lkI4cHB3uMnjxBizpxdX1tb+au/+qtvfvObtm0PB8MzZ85omtbttFOqWiwWs9nsZGI0GieLKzPJrk9RVU3TRFFUVUVT1SDwwyhKGK0cxyXLX9M0E8wsQsi2bQhhMqKXJOnatWvpdFqWZQCAYRgIodW1VY5jB4OB4ziWZcVxvL6+DgA4OTlZXFzUdZ3neZZlZFkURR4hoOsjWZb18cS23L29gzimP/rRTwaD0dRURVWV8Vh3Hc/zPEpJEATj0diYmBNz0un1h8NRTAEWxBjQiWWyPB8DYFo2gnhiWDwnJsuIKIoMQx8OB1EcRlE0mUxc1w2CIPmxJdsECCGhlBBi6LrjeZQSy7SSh7jZbDabzbnZ2SgMHM/1Ax9AEMWRIAqKqoRxjFjsh2EQB5XaVK5Q1FJplmUdx+F4XkuneCm5iSmalhIVRVaVucV5QZYYFo/GI8OcdDodx3FT2SwryTFEHM9Dhml1ug8fP2m32zwvTswJZrjjo2MA6LVr1zzPffvtT1wn3N/fi6Mok8ngV15+od3u/smf/FmrOVAUKZfL/M5vf31nd/va9WsPHtwb9Lrj8XCoT+YmRrT1sFgptVrNOPJfevHF/d3tleVlRVJz2VwqndJH4/FotLO9k85mHm08eumll/rtjmmMn7l+w/Odg8MTz/MJCTkW/+bXv/L++x/mcpnV5eXDw/0HknB4fLC0urSzsxMDUi6XhsNhp932gt6162VFlWgnqpTzv/u73whD+4ff/74xtL7/g+++9PJzzz/3/B/9p+8EPplM7MXl5c2dbcu2crQw1McgiCLAAIQUUWAZwBCQy+RjKAwmpwghCimgsSAIqioHgTceD4vFYqIGBID4vpsrpXzXQwgcHx8Oh0OE8PT0dK/X63X7pm6yIquqKQCA43QJoY8fP758+TLP8zs7OzzPC4Jg27ZlmTwvZbPZRqNhGMbU1NRgMMhmco5j/Xf/3T968803Nze3HcfLZtNBEImiGIaRKMqW6SAOU0h9z4vCqFQqDkejTDZvm5N3fvluoVAkhE5N1ZrNZqJHcj0Xs4VCoWCapqEbcfKZiGNFVRgGAwgnponQp3F6DFnf8yRJ4jghJjQkJJ9KSaoCGWaoj1OqhhDI5bMQAlmWHIcAAIyxrqkKieMEjStwjCLx+rBPYsIyQB8Pg8AHMPIDl2FxaNqe5+Tnpx/fv6+pauQ5W3t7mBLDnJh+4DEYAmiYtmsaLEIT23KjgEAakjCMPIZlh/p4oI+vXLnCb26yv7IhHuzto6E+evj44blzq//j//Df/C//8p/9vd//O/1Ba6pe2T85CgCFHN7d3202Twq5DIiD2HPn6/VyvlCv1UVR6bYGf/6dPzvcOXBdF0BAAXjx+ee77Z4qqNOlGeJFRr8zO11+9OieqkDbGT989GB+vv5f/uQ/tU4Oa6V84NnPP/9cTKJMIfvxnZte5HuB94u3fn7t6pXLT106bXZv3r1HSKTJnDns/fBPv/PmX/1k9/FmFAZf+eqXt55s+M7Ese1ioTy/vPJkZ0tUxfnVeU4SZDVj2H53NHHdgIkJT2LfNI2hHkbAsOyQxums9vVvfCWd0Ubjfi6fXltfItRPpaXnX7jOcoAXEEEhxDEvMYiltXq1VMiP+gOBFXjMlQrl0IsVWfPcIJcr7u0enJ62Hj58XCiUVFXlWC6KI04UEMtarhnRmJdEQZIYDomKZHsuZNBf/fQvlZTECkwQeyH1GQ4xHEMRoAhBhgn9gEQRA5GmqO1mRx8ZjePTZqsNGHzSbPpB0B90bXsSxUGv33FdZ2JMbNvx/SAhDimaGpJoZOgRiYf6KKYklclAjEISe57HYdb3/NFobHuunNKGhkEgogy2PF83zXa7Nez3eBYzELAMK3B8HEaBG7CAoX7kWSYAQRQ6PKYCjGPf5jFKpVWfhJyqBCRQZA6CII69+sxUd9h1Q39o6DHLxphheYEjjN4bjvWRG4UdfeiAYPf0oD3qhLF/fHq4sLLc7ffHun7n7t1PcSyet7e7K4kivvjUJT8IAKXdTuve/Vvf+MY3dn+yc+XG1R/9+C/+9t/+2yc0Hg/7r129qmny/qE56Pf29vbqM9OYZV944cVes/PaK696ob+1v3l4eFCsVr77ve9ePHeexPD2J3c+fO89UeR6vfaF82fXz603W62TkyibTf/zf/5PQ8/f3dmJo/Dk6MAOvGeeuVapVX74w7949bXPdE6b3/nOn1y/cr0+Pes4gcDzL7/4XL9zKitiuVAcDcbb24f/7t/8qzdef8VxzPXVlZu3HhOIJUVhWKob43yuNF1fDNyQF8VMNoWdMUOifKFERe3h0SmAlBMYz3N/9vOfLMzPm+ao12spippOa91u23Xt5G1q2UYYhBzD2vYkU03debyhSDLLCqViqdvtWa5lHTiFQj4Mw1ptmtCQUprNZkejgSiJEIGYxoKgqqpKKZBlmcS02+3q+iSdztbqpUxW3HjwcHfzNFMQeZ6P44AhDCE0iuKklExIlDgYEEKmaX6anIM4ly3wvDge69lcNtkUZDKZJE2XNFskUXRcl1CKGIYAKoii7/uD0TAIgpgQieNJECMGYSzEhJi2w7NIlBUKIKGgWq1lNS0Mgn6/L8sygxjLNEM/AIQ6lj3RjSDyc9kMQ6ijj2U1nctlIwi293fdOFo7f7YicO1+N5PR4jDodNqSLNIotlyHDEgQhTAGrhMgyKRTmRhEgAWdYf+p+UuHJweSIl64dLE30lPpdBSG/X4/CILFhQXLNHPpDMIM/M6f/gtAqSzJvXZ3NBwsLS+5gW87bmvYq1TKvWbjeH9vZnqm0TpdXFpKZzKbTzZP2818oUApvXrpqoAFTuIIJkEcVKenvvf97x8dnrz84mfm6wvf+tYfQhQ//8IL777/Xq5UdHy/3Wp++QtfdC370oWL+9u7osBHhExc+xdvv12sVM+eOdM8bQqYaxwev/Liy4YrtPv6yeGugOm9Ox8LHCuKkhd6E9P5W3/rv8pm1T/+k2/ro/DzX/jm7Tt3270OgFFMI03OSFK6WCidX50tSjDFRFlZCCk87htGjFKlcq5U+N53/7zVardaXYy5+fna4eGh63rlcvm1119rnjbv33sAWQgIZRAThYTnRFO3Qj92bDefK/C8EAMiKOJkMonjyLGdVDrl+24QBGfOnLl7506ukDPMSS6XdV0vISYAACgB47GuKGp1qhSEBgD02rVn/uJHf9np9CVJFQU5QeACACmNEYJxHCcpaQBAUh4KgoDjuHK5Oh6Pfd9XVTVZPPI8n/TH0+n0r4t4AABJkhKRXLLFjaIIEooIZDCWFAlikM6mFElYW14u5bKZlLY4M9dtNyulcsJBSRpFd+/eTfYXuq4TQErlgt4fPXzwIJVKdzodLZMSVQWyuG/og8kgnUlLgujatmmYuUxGH44Cz8cIFQsFjhWG/VEqlUIM1K1xSIJ0RuuPBhcvnWt1Wo12M1esbO/s5vP5bDZ7eHh4/vx5VVU/+eST2dlZnM9nm80WBKRUzrMsYjlMGcBKvJiWD0+OWMz+X//ZP/3xj39ses7SyrIoy+99+IEfBgvLi5lM9vzaeRFzY3PcHnSfbG1u7+8Oh8NSqWgaxtv7b964cb3dbezsbZerlRCQs+fW9/Z33v/oA4YABEGr2Xr5+Rc3t7YkVT575ow+MX/+05/6nv97f+fvaoLU6XQ5qd5utudmZsxx/43XX//en/9wZSXzwpVnCUBT1cpo3NU0pVwsfvjh+8VCud1q8AJjGDYWU1987TXMMmEw4nlYzafzmupGsUmI2dO3tx58+K2PHc8WRLlQ1GZn5+7dvfcbv/HVmzdvHh83vvfdH1arpSAIFueX7t6+V69VbNucqc8Usvn79zYQYlIprVqt7R/v6/poMBioqiqIfKGQS9rchmGsrq0Nhn1JEgeDgSzLDIMhhAgiSZEpBY7j6mN9eq7w7i8/6DR109U5jk3EXfBTkRdMVvxRFLmua1lWJpNJ1lcQQkkSw/B/E4MwDJMgx3zfTxoByX+WFN6TKtyvYc0Y48gPEgIjBTSKYtuy89m0PjFoFDi26ZpWRlV5ni+Xy61Wy7ZtVVXr9Xqr1ZJlOZVKRXEU+hHEmBPEiBBJVTlR2trbgxxWM5m1tbMbG/eKhcLVq9fu3b5j6AYAAGOMQDLoRaIkiqIUUR8AmklnMhktldYgBSIvcJAZDQbFXB4QevXpp997771er3flypXpmZmVtTVUrpUBJMNBP5fPCBJXKOabzQbH48dPHo5GI8TC//d/+A8T05yemfnDb32LIjA7P3fl2tV0JgMZZLuu5bphFBnmBEI4HI17vUG31x0Nh6+99lqukF1eWb524/q1Z68tLS9ubj8RRUFW5VKl7IeeKPDf/uM/AoA+evT40aNH+7t7Ai8InPQf//D/u7d3cHx8eu36DUogiajrutP12j/+R3/vzPqqZVuUgnv376azmfWzZxGLAtf2HSfyfA4AhecWZmoZRfJNfTLo1Kv5UjGjqUK5lF9dmS8U1Ht3bzJMuLI8E0eerg8+/viDixfPu47Vbrey2czK8qLr+Aihhxtbqirfv7eZTmuWbfX7vXRay+YyU7Xq7dsfAxAjCOr12mRiKIrUbDYgpEHgHRzsmRODZVlJFhOVdD6fgxBEcTQxJ67rxHEckyjwg//j3/3bT1+7MDMzm6wiKSCIAQnTM1nxJ2SlZNefdCNlWeY4PgmCSJKUzMwTpgPGOLkzJTf3X3/0k32S4zgJjiDZ6MZxHCRBQd8fjIYMYuI4NoxJUrDu9QaGYabTWUlSBEEqFEqpVIZhWIbBiqoizKbSGUlWMcfzssxJkpJKBWFk2na73Y7i6Ojo6O6dO2+88YYsyYBSjuMgQo7juK4rSAJFhFCSSacr5fLBwcHB/v6w3/dsJ5vO5DO5XCY7HAx3trZff/31mdlZRVUlWeoNevjtX/6ikM2Px/7W1uNKpYIYWp+ZyuXTn/nMS4+3NpvHjWqpEpFYTWlf/drXtra3C5XyYDC4/2DjxjM3Pvrkw0vnLhwcHXTH3fFEZxjm2Rs3MMueHJ48efJkMhkb9ihbLGSy2YllXLhwfjQabmzcf/H5FyRFap22CCGWaS3MzW/vbo/HExLEDGYXFxZymewLz7384N4GJEDgxK995Wvj4enEHFWr5V5/GHjuxoP7TjDZ2dsdD7wzixefPN6qFrOmMTi3svwbb7x+fNhOaYLIpkjgxT5kBSVfKlDLCzf8tbWFvb0dVRbW1pd2dg9efOlFWVLeffd9SRZ83x+NR43Tk6WlZTWtnDZOn3/hKseyTx5vXTh3Ydgfu64/GvUNc6xbuiALFy9dApBUyiXXS1NCOp2OoiiO4+QK2YjEtukIgkBI7Psey/LJo5NY4brd7je/+ZuFQrHZagVBwGKWEMJxGFAIAHBdP3HPKYryKV3WcZLwkWmaPC/6vi/L8q8kNRyllON4QuKklAL/d0KwxKKUIDOCICBxTEMSkTgGMSdwkIBur1fM52vFQiadzuQyo/GYgXA4xNPTM6IoJkv2ubm54+OjICDFTJYX+DiKHzKPHNdRNQ1zLMNyE8fBcfTUladUVWqenj548GA0HHEYh1HEIIbFOEmmshwOo8B17XRaU2SJ4zg/iC9euPj40UOW572IZIuFfCa7ubMd0DiTzQIIDk6O4zjCYRhUqqXRsL+1s+UHXrPV3Dvcn1mYr8/OpDOp1mmD43EcRPXZGubYx5ubjZPG4fHR8srKw8cblXzlpHlarlQBBx482vhv/tH/6dbtW7l0vtPsFArZQjHzaHNCSMQJbDaT+vDmR4oqf+k3vqhJcjaVSWe1lcXFen3m3/27f6el0rblSYIcRpGqqNvbO64be74sCQqL8Z/92Z8WcuLFC+vjyPN9uzo181LmJcMbe74tCPzJ6XExl9X7nZX52euXLj3/zPWnLxFZZDcefuSMmwEP+XyGRGFOS6+urty6f+/s+mqhVPmzH/6iWsn81m9+/Q//47fiMBAEWeTh8X4zk85NjHFlqoIxf3B4iCCIotBxLM93PM8dj+n1a1ePT08ARpRGiiJtPHwwPT1zetpSVdl2rCiMxuMx5rCsimEQtNsGxmzyahQlIQrjIAgy2dQvfvGmLCuVSnV3d58QAkAIAGYwisI4nU4n584kTcxxXPKyVBQljmPX9QAgLMtEUcTzHMexYRgl4mNCouRE4Xle8uIkhCSgvISDEIYRCxkGMXFM4jjGLFJV1fM8z/MIiScTIy2ny8WSLCuu4+FEZRtDCBjLdEVRoBQJgqTrehiR7mBoOK6aTomKyomi4/vNdms87AuC8OJLLwFCHj98lBwmJFFUFEWWpIgkqgnKYtZ1HFWSz6wutxrN8XCMGHjS6s6tLO/sbM/Nz0MWW67T6XTnFxZ+8dabaHFx4datW8Vi8Qtf+HwqnRIVyfFdXuD//Lt/vr27jVhcnqqOxuOHjx9tPHo0Oze3f3SYymY6ve7O/t4ntz4e6eNqvXxyejK3MPev/82/zufzg0G/VqveuXsXQsAL/O3bt+7cuXP33t1abSqXz7KYKZdLiIGSJB4eHd2/f48QokjyV7/81atXnkYQBWH8ld/42qA/goBVlBTDsBcuXnBd57133/7gw/eWlhZOGkePHz18/4N3//F//49/92/+bi6Tsif6b3zhc5999aWvf/GzxDYau1tqJq2JUiVXSssaizgsyJykKLKSzWSymWwuk3rlpauiJAyGvc++8cbZc+uplNJqnV64tHL56fOUkuGgnc0qgoDX1lZqtepoOEinVZZjFFWcmGM1JSGG1KerDKbZbKrVOiEk1HUdAOR6PgCkUCgkhG/f9zOZTBRF4/HIcRyMsSxLuq6PRqOZmZnT09PLl68ghBJLNgCE0Mh13IRlJwhC8owmQb7EXNjv9yCEw+FwOBzyPAchTPzyyfxVUZRfuRyoYRjJoN6yrAStraiKpMiiJCLMxCT2fb/X64VhaDm26/ulcjUKo+3tHd/3XdejhI5HY9u2Dw4Out2uIIjtdqfd7hwdHQOGMYzJ0fHJZGJyPA8RliS52+sndhFD1yFE2WwWMziB+1FKAKCAEoHnFUXW0pqiKtevXzs8PDptNCghgMJXX33Vse3p+rRlWY2Tk263SwEVRXF1dRVlc5nesPdk+7GaVikkksSn0pqsyqtrK4LADQb9dq+NOdwb9PP5nG6MOZ7lBS6MQ5Zjs/l8r9d79OQxpXR6ZuaZZ2+4js1y+Pbt26IkEULm5+drtZqmKlEU+q5bLBTeeefmd77zJ3/xox8FQXDjmRvj8fiVV16RJfno6PDRxobACpEfbW3trKyuQob1vMB1Pcww0zN1Akg2lz1pHIZREMfR3PxCKpvK5VNf+9qXZqenqqX8/EztzZ/9xA+8p689FRpjFFOJFWGMACvGAbXHVrc1fPaZFxbnVyI/jALv61/5yscffvCXP/qByLHt5mkhl93afFTMZTRVMoxRf9BWFOmkceQHDqFRPp8DlDROj6LYF0V2YWFGVaXRaMjx7PRMLZ/PyLLYbJ5omixJsud75XJRVeV6vZaUSvL5XBAEmGUymXQmkz05OQ3DSFVVSmNFlUSJVxQ5lUohBBkWCoKYXGsSknyCyBsMBpZlaSkVQAIgBZB4vut5TvLvrmeHkZ/skJI1bILGTR7c5NZlWdZkMokT+BcAMaUsyzq2HRNCKel2u9VqNZ/PJxOA4+PjRL0eRVGn04mjuJgvNE+bum7s7x8sLq88feN6CEiz0/HDgOW4OI5ZjCVJOj45SZjRANBkCjEcjoLABxCkVLVaKRXzeYHnet3u2trq01evSrK8u7+/+eRJrTq1v78vSVK9Xr9y5crKykqxWLx67RrSjfH1a9cc10lcs7woyrLc6rQESZxfXEynUzs7O6Zt+77/h//xP3a7XQahOIqvXbtmO/ZTl5+SFLHd7+SLRciAubnZSrUi8Hy9NkXCYDwYdVudfrd3986dTrsDKPAcj+PBZ9/4/G//9m8jALvdbhRF9Vr9b/7u37h7c3N359Cx7NPTVrvdmZqq53NFL4g4QcAsvvHMDUWVtbScyWUUTV5ZX67USu1Os9fv1qplBEKRY3aePAQ03Nt6dPeTDzlAc6kcAowgKGIqDxleypeXltdUJX14cDToD13HPTo6unb1ahD4nW6nVM6bpskgWq0Wzp9fNyaGYzuZTHo0Gq+fWZuqVe8/uHN0fDg7U8MYLC0vvPDisz/92Y/D0FUUSZZlAAkASUXBnZqqAkANw1hYXIzj2DTNxGaZz+d4nj88PGIY1O12AACOY7dazTiORFHqdNu9Xofj2IQvknh5LMtKEgLJtT3pCgMAJElUFBkAKoiCKArJc5n0pZIF76/dHb+qSjMJ/ycmhEIAISKUUEoYjC3XHYxHhml6gec4znA4fPDgvq6P0+k0IWQ0Gs3Ozlar1ZiSlKJEfvDLt98ClLTazQ8+/GCgj0bGeH5h3nFs27Z13eh2uylNu3v3XhzFGLNJ1pbjWNd1fdsicej7XhQFd+/cPTw4XFxYfPToUUzAhfPnHc87PjnWUtpkMjk8Prp//346nW632512G33/Bz9KZ7LTtZm7d+9//MktFnNzs/MfffhJTAiAqNlsTlWqc/VpEsdXn37acRzbcViW3bj/4PKlS6Ik8QLPsmy2kBNl8ej49PS03e/1MpmsbduGrm9tbimSEoXUMvzFhWVJkM6fOWebjj7Ui/lyKpWam5978vjx/s7eVCX7ta98eWFuAQHkOp7vByN9glmuVKlAFn986+Mvf+3L+XKOIjKxDDdwAALVqfJo2P8vf/qdv/G7vzM/V2cQGQ46sshJEg4wyhdKGS0ri0owMiEWGVZwbO/g4Gi6PmM7LkTIdf2f/OQnZ86s/k//0z+5fPlKt6evn13u9Zv3H9xWVfn8+bOSJCwvzTcaRyeNo+pU+QtfegNhsLa+lM1pP/zhD+I44DjG8+3p+lQ+n2M5HAQeg9Ht27f6ve7h4WGxWHBci5CIZdlUSvM81/OcWm1KllWeF/7oj/7IsqyvfvWrkiQOBt1MRmNZhtA4KVT8Wj0DAHBdNwF9JTjwJM+fmECSggcAQFVVRVF+ZfyCCV49sdkmmsNkGgoRSgB3SQSHAhAEfuLPcF1vMBi02x3H8R892tze3h2Pdd8PWZZfWFgSeMFznWduXC0VC3Nz04Vi/vLVpxCCFJBWq+nY1mg8dBw7DEM/CBYWFjDGhJIoihiEGAbzLDtVKimSoAoCJMRxJsVivtlsjvTxxDZjAPKlopZOFQoFnufNiXn+/HkG4dFwuL+/j5aWln/y059ijnvllVcWFhYQw+wfHnzpS1+q1aZv37mzvLyi60atVrt29VpaSzEQBb4/VZ169bVXNzePNh48AAhKsmJM9Ew6xXIonVFkWS6XS4VC4eS0ASkc9kbFXGFxfu706OSj9z/eerx9enJqTayF+QVCiaaqmEGj4eja05cDL5ifnf+v/8E/fO21Nzwv4AVR0VK9/nBnb6fb74wnI9dz5uZnFpbmU5lUJpsaDHs8x0JKVpcXKYkmhp5KKQcH29mMerD5iMVMpljodTq9TidyXBLHELN7+3sQAY5j45iWy+VavX5ycvLxxx9msuq//bf/Yma29uDhveeev8FxuN/vt9udfKGQSqVu3LgaRf7p6bGuD69cuayq8knjRJKVL3zpc9lsCjIJWQZUq7XlxUVB4HV97Pv+xsaDGzduUAASVgrHcf1+X9fHgiAuLy8n86Pvf/+HR0cnc3NzgiBwPJvNZkRRhL+SHPM8n0qlks998s8kG5XE+AGAnueZpul5fvKiDaMwjj8VJyd/ySOelFfDKIIMjBKWGIQMy4ZRmMjsJpY1HI0kWUmnM+l0mmHQ9PR0Op3hOM4wjHQ6raqqyPH1Urmcz7uuY1qT/qBHKRFFXhJ5RZEyqkYp1fUxpXRvb9c0Tc91eZ5POviappULBRjHpq6HgR9F0UnjuN3rrJ89c+3GDUGR/CgM49jxPE7gn7pyeXd394//+NujwQBDiDc2NmZn5hDGm9tbqqx+dPOm47n5Uum42ZQl2XNcgWf18RBASEikyLLAsQcHuwxDR8PWqH/62utv3H/wYGah7riO6zr9fowxbrVa/UF3aX4+l89PJpNULhuRuFQuf/GzX9rZ3pqM9NnaLMuwlmlZE3NleXXz4aYipbqd7qA/Ho4m88sr5XL18e52Nl8dGr2XXn65cfLwl+/+0vNsiJlWd8wLijU0lLTkOJYiCz//+U9eeeaaJIuIIUHoopTE+yGNfGPQsV173G3ZEKlB+LOf//X+wT7GUS6XGVtuvVZ/9sYzf/Bv//Vbb765vLK0sjw3OzOV0sRnn3v2xz/5aafb+Hu/919dvHTh/XffrZTKo+HANE3PtR3XBpCsrMwNBqONjftPP/307OyCbTmHh8e6fvDZN14fjPq16VoYhp1Od3sbsyzjOq5pYkWRLcvCmB2Px43G6czMXBj6QRD+rb/1N959990oigAggsBDQC1TT+46SWTTtu0kzQkh5AU2jkPP839VfscYY9t2LMvUNE2SJN8LEUIJ1iZ51yYv1OSNm3x2KaCIY1mW9f0AIEgBcBxnOBh2O91yudLtdrPZTC6XZxim2Wwmb3RREEQGiLJ89cqV//U/f8sMvFypyPG4VKkc7h/wHKePR1OVolQV4yDMpNL7u7uaJGOWZRASJUEWJWM4AiQ09ZEo8jQiuVzetKzeaFgsl9fOnf3Db/2n3/iNL1uWncln//y7311dXSVx3Gicapk0yufyLIvv3b23f3B4eHhw6eJFjuU+/PijKI4PDg4ww5yeNDrdDkJI4Lhut6NKyvHBydtvfijwqN0ZnLbaxUrx7Nmzh0dHmqbef3A/ikJREoaDgSRJz914TuTE9mlr8/HmyVFj2B8qorK+sn7/zv0f/eCHsiw7jttonDx6tNk4OXn+2efMiRnH8b1799udHuYFx/NrMzOPN5+IijS3MKeklI9u3ipVS7V6TU2pH330AcNACuJsJp3NZa5fv8ILbL6cZ2C8u7ezu7dl2xPIgIOj/Wa7cXR8EJLQ9ax27/Sd9955+OjhrZu3//APv7W8tHLp0qXxaPDOO28eHu5OJsMgsL/whc/X69WbN28jBPf393/8V3/JCxxioCgKx8eHr732Sn26OjVVOj1t/PwXP//Wt/7zyUnj3LlziiJt72yvr68XCoXj42OMcb/fA4CyHJsMfaanp8+ePYsx1jQ1lVIJIZqm3rp1M3FmCoIgScLJybHvu8lH+dc9vqTGnnBQEGIkSWRZhlJCCOF5PpNJK4qc0BIp/ZQPmsyYCCHJ8BUAgDFLKSWUAoSSST6EMAxD13U933M9t93uKIqSz+c1LRVFkaIo5XJZVVVJllnMZvN53/dXVldeeu65menaYNBjADw8PJAkkdB4dnaaELK0tDQ9M33t2rXFxUVeEOIoUhRluj4DAdVHQxiTenUKUooREwahbhgAoYdbT9794P2F5cVGqymp8tu//GWCb1hcXExp2uryClo/e97zg067M12fyRVKjx49CcJI4CXX89KpTL1WK+TzgFASR91ud2lhIcmxLy/Nl0uVz33+jcFwkMmk7z+4L6vq0dFRFEX9flcQhCuXrxwfHrWbbUGQTo4agIClxaVHDx91O7293f1r124okjIYDRVVHY6Gly8/lc1knzx+/MxzL7TbnTiKx2M9jgGFaDAccaL4znvvKppqe/ZLr76YSqU83yWEyLJ8fHw4Gg1VVQkDf3PzkeNYIQmbjaOTxuHHH79XKKQPj3Zz+dQntz46PtnPFdJf/c0vyzJnO0Y2nbt3d8Nx3GKh5Lg2ofHCwtzZs2sMRt/+9h9fvnLp9dc/s3+w+8tfvjU7N8uxmJD4pZdeFER+NBooinx8fPrBB5uzszOLiwtHR/uuay8tLRISd7vdBxsP2+2OLMuvv/56HMdRlLz8aCqdkkTx8OhQFCVCyOHhoeu6QeDVarVsNhNG4fLy0mDYhxAkL60kSZ2sYRLIQjJvpzR55iiEKPncx3HMsqzruoZu0MTtHkUJgvTXqNHkhEApYBDDchwFNAiDZKofxTGCECGmP+x/+OGH7XZ7f38/GZ3m83mW5VRVpYB2Wi0GAjmlUUo8z4viMIoDFiOGgaYx7ve7cRydnp7qun5ycpyY9aIwSh41SRQYAHzXLZdKhXxBkSWE0fqZ9ZX11c9+/vPLK6uLy0uLK8udXq8+Pf2b3/zm7OysPh6bhnF8eIhNy7py5WkMmb29/TNnzgiCqKRS2/t72LKz2Swh9PzZc0EQWpZ1Zv0sgFSWJcdz0hk5nZH3D46Ggx6Nye1bt6dnp0kY1aam4ygOw1BWFEEQ3/nlLxVNvXL58sjQf/bTn8qStLO5pSpKpVBIqcra0oqqaq3S1KONJ67nsZjX9VEqrS0sr+qWxyAUhIHjehnCeYFvGBN9bPR7fdM8TWfyiqx4rj2OdAlLdx/em4y6XhAsrCx/fPsOn8r4JCgXygfH+4fHB6+89poDmTd/+XaqUqnMVGJIzl08j1A6isDcbN0LPEWWU+qcYzvLy0snjUan0/zLv/iL45POxYvnZmamD/f2EQT5XLbdarUarcbxyV/9+K84lrl4celgf39+fnFpaU5V0ttbT9Lp1Pz8/M1bt017gln2408+iuNQllXbds+cPUNiOjHMKAoYBo7HI1XVXNeJ4+Dq00+PxoP19VXIAMdxpqamAMW6MXYd99cWU0VVAQWERAl1P45DEsc8z6+trVIKHj9+nGyMgsBPNu/J/QkhiDGbtAIFnnd9nwKKWcwLvOvHjuNwLGYwEjhBkCTIQEpJt9eJ4tA0repUhWFmeZ7LpDUaE3M4kBnE0kiT+Gq1HN67WSzmh+OhJEq2NclmUrquB74nCmI6lWp12jIvBWEAGUhpXC4VNY55MuyqisIgePbMmaPm6Um/+9TU1GGz8cGtWzduPGt7DqW0WqkEYTgaDm/fuT3sDZYWFxcXl9Dc1JRv25VSsVatOK6tKJIkCbIs1mtTlVK5XKyaI/v8mYtrK2f3dvefPNnM5rILS/NhHLIiS+OQh+B494ADnCamBV4jEVKUdH16ZjDuZwuZg4N9z3Nc115dXRIFLo6Dqani6595cX/nCYa0ni/e+fDm/Tsb47EJWSxllfnV6ep0uVgusqxACWIA5DDj2M5k7O7vHZOIXV+5EPjRxDA8y3Ft3wt9RsYnw2bXGrGK6hLgQ7hw7uzsmRUjdLrGeGZxOZUpLMwuTJcq3UZjPDZqCyvNkbF3sq+bA1HmtrY2A8+3Jvbu1sH9e4/OrJ+7dvUZe2Ja5rhazruWmU2nysWiMRqf7B1Rn1TzFZmXPvPSSwxw52dnOq3moNNeW1l86flnzq0v25MhwxDLnWAWt7ttQRK1lCqr8tbOnu1Ylm2qqiqrIgWEkIjFjMgLd27diqNYS6vbu5u8jCtT5TAKKI2zucz0bJ0Cmi/kGBYREAMEgjCECEGGiWkURS4vMLZjxHGgSEI+m2Uxy3FCHMeOY0dRiDFimE/xZsbE9H0fQoJZBCiNIqIoGkJMGIYExAzDSIoIMY2oj1h69ZnLjIAMe+R5poChKrAyg4hjwjhiIZyemlpeXK5WayvLq81WU1YkUeREQWAglmTJDQLEsSNLByz0I992LMc2GYzWLpwRFNF1nXw2O7+4mC9XPrh1+61335+amvXd0Le9j97/iGd5geUlQVqcXVheXDrcP+I5AW09fry7uZXLZtbW1zRNbZw2Tk9P5+ZmZUmicdxv9yVBCz2STeWKxXKhUAAQ5vL5dDZ1cHSgKGJaVW88ffWVF1+erc+LnJLJFI6OT3f3dhEDDVPnBCxKwtT0lCBy8/PTB4eN0WhI4sD37YO9bVs37PHEc3wAEScLHvEv37i83zgYG7rIywzCPMtNxvqdmzcxYmRBK+Vrh/un2XSO0jitpSvF2sajI0ZiGY3fOtqLGUQgy2upjj5qDnsT32ZkuVirxxS5lre2uDjq9bc3twniY8xV6tVMPp3NZ588frRx78HxwbHvhTwWjw6a8/Mrv/HlLz118ZyqiIcHe57rpNNpx3TWllcrpdIbr73ebJx+8tGdJ492RYFHhPiOzTMoDr1hr+071u//3t9JZTWA49p0pVIrNttNz/Mq1cJoPPB8Nwg8zKL5hVlZEkb9calQXFtb++wbry0uzQ/Guh+77XYDIaqqiiBwM7PTiiYREFNARvooiEIAESGQ4zhZkViO8QNneroyVStREBuGLvB8wroXBF4UOEJjCuIEI0IIEXhekSUGQt9zXceJwhhQCAD0gpBSygscyyHEUMe3ssX01HQZIgJoiFkYOpbR6zy8e/twazO07en69OLSUq/XPzg41NKa6zqu57iOLQiC7Tiz83MT23J8h+GwllIxRo2TI9ez0oWsklYd2yFxvLa+VqnVeFl5+tqz+Xx5f+8o9AISRPfv3rv58U2BE77+ta+/9OLLa2vrsiijjz/62LHtXrc/Mc1qtQohrFTK586dMyeTBF0+Va394udvbm3tRGF09+59UZIBgHfu3k28n+VKOZfPcQK3s3vkuf7EmEzXp62JORwMfc996eUXk9nb0fExgCCbTS0vLd2+dbtSqWKG+eU7v1Q1tVQpdfu9rd2ddq+ztbvDi6LtuL3+kMQxhCClpTBmPv+5N0qFEqSIQfj6tesIwMP9fWM4LuQyvX6/3e7ok0l9ZrZWrzdOm2+98w5gkCCJh40GI/BHp6dj0/zw5q1CsaAoSqfdSSaC+UI+CANd10fDIS8Ix0fHnuN7jo8Qs3ewt7KyOBj2D472HdfOF3Kfee0zcwvzv/W7vzU29Af3H4gS95u/+dW7d+5OTVUWF+dPT48H/a7AsaeN048+/Mj3J09dPnP9xpX+YKBPRhR6HEfOnFuSFMb1J6apj8cDz7FzuRTPszEJZVnodtsvvPhMvpA/bZ4GoRvFAWaROdFlWXRdOwz8UqnAcWzgh2EYQQjVVEpVlePjo2KpsLyy3B/0/cBzXLvTaSmKnMmkAQQIQQhpFAcMgyRJEEUBQpCM9BVJ5jFHY8KxHIiBwPMcw2qaqmnqYNA/OT5OFv22bTGYabeaDx89PDo+6vV6EFBFVk5PG47rcAI3Nzcny7Lnuq7rxHE0Ho+73bbve6IkUUBjEgEATXOS0rSYxEdHB9WpqqipvV5P1/ViqYgZZtDvYYQ67XYQ+I2TBiXEMk3bsg8ODl544YXhaIguXrwIEWo2mxsP7lNKz547d+7cuZSqOo5z7+5dluUsyxrreqfb63a7luVwLF8qlaaqdUXRmu3OufPnj05OisVSHIdaSvMct5DJ5DK5xvFJLldod7q3bt+6dft2EAazc7Pnz60tLi1kc7nhaPzq669HJIQYDscjThRESXL94Kc/f7NUrlLI2G6Q0OcKhfz6+hqJ4wcPNlRVXV5aajROz507zzKsb9u/+82vPHfj2WK+iCD6+ONPPvjgw4lhdnv9anVqPB5nclnLc/dPjyMM+sboG7/9W2fPnj3ZPzy/uo4xc//Bg729vc997nOf/8IXMGZXVlZOW6eyKtuOM57otZk6xOj1N9649sx1L/A2dzZ//vYvxpNxp9dePbPyla98fjLxU6kUz7N+4I7GQ8iAmenaP/j7v59Ky2+88fz1axco8Ch0SmVtYaEiSnB1bfa1N54rVzOmqYeRhzk4O1frdFs3b9789rf/+Pjk6MWXbtRrVVFio8ibqpV0fZhKKRzHsCwOAh9BSOIoiqIgDMMwRBARCqrVqm3bMzPTLIejyJ+aKs/M1oPQD6MAs1gUJQAgoQQAAgCJosD3PN/z4iiCAMRRRClFAIk8pyqKwPGqrHIsCyjttjv6cBxHsaEbJAhs27IsC2GMMKYQ6vp4a2s7n8sXCgUSx5lMhhCCGGZhYYHjuN29XYwZCEEYBuPx2A/8dDajplIxIZSCXC53fHQ8Gg491xkNBo8ebaiypMkSQCibzS0sLMzPz29vb7/77ruHh4ePHj3a39/H2WxWkqST0wbLc0EQ1Gq1bqd75+5dBsKV5eU4JoZpzs7PjSc6xtzC0qJpmWk/YxgmpcQy7fHEGAz1bLk8Nz/davYBQPfu3r10/uzywuL2ky0Wc8vLS61ut1QpmqZ98+btwPP1wTB0A8d1ZxfnIoKcg0Z9biYGdPdg7/CoweKUY9lpte4HnKKJfmBPJvqDu+/2ep16ffrNX/yiUqtIPs8h7uKlCxGksiAqggzFADOs43qzc/P7nebWzq7v+4Iid0ZDOZe583BDyqinnVYcxTSMMrLa67SPj44WpmfqUzVFlJaWltKZ9N7BwUgfO6HX7XcfPNq4cOm8oZuPnjwcjcbHh0cz9bmHm480TS2Ucs1mo9NtXbt+2TLNiWkACqLAdy13qlritYsfPrh3cHgQxvr587M8L7qOzzDMeNJZXV3pDk7jEI1Gfce084XMYNhDDDk63n/62a+Nx0M/sDAbz81OpdPSyUlkWTrDgEq5aFlOvz8QBFHMqo7jxlEc+kFM4sTpfenSJY7HURimM5rvk/39I0URoigOw4DjOAgBRDSMgyD0OMRghqEx8cMg8H1REkFMM5mMKsqQgjgIA9fLpNK2ZbWbTU1WeQZ7jiuKUq1eVyVcLBcd1z1uNPr9fjQeqtmU7ZgzMzVCSErTPN/1fVdVFU1RHMeOwkjTVMQAlmMxh1PpVLlUcWyHiynDMP1+bxIGCELHtnutliALqUyq3+/zfJHnuTt3bl24cLHf7zWbp+j27TvGxJibm+NZ7tGjR4N+P1n7Ttenz6yfmZjm2DA4QbBdF2EWAabT6dmW02g0ozCem19o9wesIPzVT/663el4nmsY48ZJAwGYTWeq5bKsqaVKpT5df/Jky3bcazeuD4bGO+984ofh4dGJbhuiJvEKP7s41xn2IcapbFZSUhynAIQnkwmJI0MfDwZ913ODIPzko08c2w58n0GIhjEIyObGk92tndPGqSQqDMIg8QfExLTsqXqtN+wbnh2x6HTU7+ijD299ks/ns6q2t7mdSqVeevllUZYfbGy4vjc9PR0T8sILLyyvrLRbbV4QTltNAuibb781sSb9kT403BhE5Vq5Oj1178HdRvPkd/7GF1kWKpqSL+YwRubEMCajra3HGxt3H27c2dzakERmZqZcny4KMmQFsrlz/5Nb7waR7fu2rAiXLl3Qx6NyOZ9Oy2vri5lsqt09zRezX/rSZ1/+zLP5QmqqVmA5yHHIMEaERKoiIwjiKOQwG0fEsd0oDHd3dx49etjtts+eXXM9e2d3s9U61TQpCePValOExCyLMWYgoHEckTgWOE6SRFVRZEniMIYApLW0gHnf9fThmISxwHKqKJ2eNAbdLo3jdrsNESyVS9lCnhX4br/3ZHMzIfa7jptOp/XhWOCFcqXUaJycP3/+8qWLYeCHvs9ihuM4z/f39vfavW5MiKxpoiRpqZSmqQvzC8P+4Oza2njQtyaGZU2Go8HMzHQqpfV6XULI6WljZmZGFAU0Nz+HWTaTyYzH4/t37x3sHzi2nU1lSsXivdt3ojgSJPHmrXu242xtbc/MzCmyijEuF8sXLlyq16cnlg0QPDw+sh2zVi8WculzZ88c7R/qQ/2ll142JjrHc1eeflqUpXa3m85mGJZNZTKWbQuypFv61t7O0DC7g75hmdlCwfZ8XlQKxcp4bEEIASGaqlXK5acuXZqu1arV6o3rNxzLymVzqiwfHx5Nlapzc/PXr13neX40HHW7fT8M/DAACDiue9g42dzf/fDerXSlqOYzBALD0Ef9waDb1VKpcxfOu64HAPA870/+y3f+47e+9eFHH87NzxVLxUq1UigWt3Z2vMB74/OfxTy2Pefm3VsHJ4cjcxzTSNWUKA5ZjhUF1rEd13NSaeXM+nqr2Wq3TqtVVZbhzu6hKPGNxlG1WkxpSqVaHBkDReFZjjl37sylpy6k0jIFMIr8OA46ndNm87haLUzVS7reFUQ0PVPBLND1YRT5E2OcTqsChz3XISSKoyDwPc/zEGKGw+GHH71/7sL6+QtnypWC59kQ0sQil4ziE3MSYgDLMQACQmJACYIgjmIEoMDyqiwrsowoCP2AZRjfdnPpTPPopN1sDfqDg4MDfWLEgExsy/TcRqu5f7ivKEomnXZth0Rxr9tlWRxFcTaboSQGlHqed+nSBY5jDGNsWub+4d7d+3cfPn4sSmJtut7tdlmWFUX+4oXzgsDROM5lMtlsNpfNJgffk5Pj0Wh47/7dg8N9Sgk+e+6MLKt/8Rd/OTVVXl9b63Y6hq5PLBMhmFK1s+eeGo8mQRhaA1sUOT/wS6Wy63o0JpqqKaoiiEJ/OJAVsTpViaLAceyl+fnOcWO2Pn3aaJTKJZbFDx8+jCn54MMPWJb7zIsvL3/zK4ETPHzygHDek619w4LHnS7ixLoig7E1MR0RS4FPZEXkeCwIPIJA05QvffHzvh9BiOr16c0nT1x9Yo4mbzx10Q79+szs6d6RrGpnzp374P7dg6NGrVqOdN31Ayvw949PMrlCqVC2dfvd9z6gMdEHw2azmcllDWsSx3Gn1T4+Oen2eh988GG1NsVy3JtvvffZz3/m6MHRzOxMEIVXr11kMCUEdDrtkTF69ZXnd7e3KYK1+lTj+Ni27cW52Uw6tbq08sf/+Y/n1qdCGi4vLt+5+yjh7fR6fQDo4tKi7ThREOcyCgPZMHQLxaznh9MzNUHmIYxVTXJde/fJlsTLx8eD2ZmpMPIW5qc5Vt7a3J2pTfl+IHD9VruLMWIwjggBEHI81x/2O73OmQtnPCv0vQ1dn6S0rGVZ3W43nU4jBHw/iOMg2ePbjpVKpRRFcxwvDkJZVUROyGWyoSdYFBjjIQWARPFoOEQASILAYjalaTEAoqrolnl4cqyoKuc4rcP9dC7TbbdFgXccZzAYXrhw8b333p2erosCL4k8w6BKtey7DsLopHFCo1DAHERopI8VJjsajRRF6nc7DASZVLpYL208efRg4/7nPve5p69e/u53vzc3N7e/v4dZjO/cuQMAdBz38LDxyisv7u7sAABOTxopVb3y1NOlcune/QfXn7380ce3L1664HjOWNdlRSqVyltbW7Xp6SuXr9y9fz+Xy3c6nW6rzULEc1w+n+d5fmToV56+8t6HH7Q6PWMymZ2ZvXDhksQLlVJVFeXtva3yQjUAaGv7hABWSaWbrc7yyppnhhyCmOVITACghEYkDjmWNyaTzSfbS8srhqlLkrx8Ye4//+Ef3bp1qzJdM4bjdrsduT4rcEdHx5lsNpfPecMhQ2lKFasxoYjZOz4sZ0qu49ZKpd6wV61WEYMcxynmstVqTRBFQRTK1apl26PROCaE5XhCwdqZ9c3tzVKpXJ6q6LpRF2d4jlVT2mg0CMMZVVOnalPPPnu1UiwrkuwH9rlzq+XZEpVQ46R14fy650Wu67O8n8lmu71+oViwiTvsD0IvrFWm9vZ3BZ6v12cYDhm2fm79LKGxZ1sYcnkXHhzsrqyssZDXx2bou5m0dnLSWJifPWk0REEmIOI4LpVRMznt+OSw3W47np1LF+cXZh9uPMYsU0qXRsMRz3ExiREGDACea5GIPn31er8/DCOayaaM3kCWRFEUIKWZdDqy7Z7nT01NRUGQSaU0TZuenj5tnDI8K6dUCvyTo9OQxKqmSZbJcRyJSK1ai0kYBJ4sg8lEz+UymIHmRP/B9763MD+3vr7GYmZzc3Ns6KVi3rDMT27eHE+MSeiHUbj54EmlXOU4fNo4inHUarVmZmY2NjYghE8//fT8/Pze3t7U1BQihIZhePnyxcFgiBBiGKaQL8zPzimiTKJ4Z2fHcsxOt3Ph4urtu7cEkW80Ggghw5iosooZxjStOI4poPt7e1EUfu5zn+MFvtvtHewfEkqPTxt+GD7z3LMXn7q0vLpGAYAQPXj4qN3rZ7P5YrU6v7h49vyFazeunT27fnJyOhzplELfDxBC6YwmCBzP4dX1Vdd13nzzF612S5bl4+NjQMFUrXbu/HnHdS9cuKCoMqXEtM0/+/M/F2Xu/MUzU9P1MI60TOrgoFmuVLK5bDqdtuxJvpCdmGatPl0sFvf39xMxDS/w6+vrDMMQEo/Hei6XO3t+rTcYLK+tUYj8MOz0upjnbM+mkF6+evm03UpnMxsbD7r9Hi/wuVzm4GAPQWhNJpVytdu2auXpOATTtQVNzjCIT6eyqVTeMOy9vUNKoOvYtm3dv38vCHyIIES02WxYlklpLCtSNpfeO9j+wheftW1jNOidNA4dewJo3Ot2tp9sYgzOnl1dXJwt5HM8zyEGZTIZhmGMiaEokh+4QeiwHBJFTpYlTdNs1+Z4rGlKFPmiwt949lp9ZioC0Vgf9nodzDHFYkGRJcMYIwgZjIqFwtzMbDqVvnD+wqWLF+cXFgzLtDwXcrjZ7eqmqZuT/cODMAw1RdXH46lqxTZNVZGnp6cPjw7C0PddxzR0SRQkUXBdR1Zl27XGpjEw9N6gv3O47wW+buo7u9vlSgkAAmh82mj0+8P5+fkEUK+q6qVLlzKZzPz8vCzL+Nr16zzP3b1z97Of/QyL2d3d3a995as3rl//5OOPQ983LFNJKd1Od2q6kivk7t69XavVEm/x7OxMpVz+65/9HHNYEkVxqoIRo2naO2+9nRIUxGItnf7JL38WRGG+VM7m87bn/OSnP/3al746HI9Df3dzZ2+7s1WtzeRyxVSu8v6HH7MsF4Vxfa5uDAiVRYHnWUwnxng46DdPjnK5LAJYVVUAgKHr77737tziHKfKkioPxyNREUPXO3f+TGG6xmdSgij2hv3rKyvWxw/HoxFETKVYLmbzh9v7bhDUZurNZnNnZyelqMfHx6okHxwePH7yZKxb5WqhXK0uL67cvH2rOlWVeMl1/Warlc3mBEFCGO3tH3Sbp4ooTKkpBuPjo5PT45NKsdxutQ/3jj3X3Tzong4bv/nN3+x3hhGgxULF0G1Jyciy2ul1J/ruZKTXq9Oh5y8tLUxN1YLAnZ6uBTTCGLVap4gAVVUxZldWlz0nWFiYH3aH+XwWQTAzPTXot65cvjwYjmv16u27tw3DuP9glC9kW53mjeeuN45OHj14UsxXLMsaDsfpdFYQhDgOIxLxPH7qqfMLC0vf+c6fIYgZzHmux6fVmZkahwCHIKQkk8lMlcuZTDYMglwuVyiXDg4Pbc/tDgc+jTe2HlMa37l/V5RTsprCGGcymdFgaJqmLIkA0Xw+f3JyFHry/Nzc3NxsHEa2bb39y7ejKOAlYWDovu08feEyRIiTxVzn1PHc2fp08+D4wsXzMcs0Oi1REJaXl3K53Gg0arfb586d29/fxwgzGxsbU1NTlXLl5Ph4uj49Ho2mypVsJrt/sI9VWbctzDF7B3sXn7rw4P79qanq7t7e0tK8bVu7W7v7O/vLq0uFXMG0jQd37/EM9nx/tjazMrfESRyh8fTMTLvT5g1DVTVK4be//ac3nr6CZIbjBd3sKIoWU344GO7s7KpqqlKZyqTT9thwHVuRRZZl+z3zow/fev21Z4e9/qOHW3EUSaJYrVQPdndMyxyYenPYaZ42MYm/+dvfhAhuHh1kamXLsYa6fnB4WJ9KpxRFEpV2q/u5V1774J0P0mpKUOSJrfu+LxVLhWw+lUnfvXfPth3L9lIpzQt8kZcG3cH9uw9eeukFwzIJiKdn5h49ejK3NNdstWbqtXq50jhuLC4sCJhtn7ZWV9frlaprRnHkxAzq6OMffO+HC4tLFNFWp7W0umyaZi6fRzzXO215nscwcGqqUqvWNC3z0UcfhCRYXFuM49i2LMd0EcIfvP9Bdara6wyjMDD0URjYKU0o5hZOO+2jw10KWV7gRJETVSmKguFoFAThzu5uIZvDDFI1xba9arVCCFAUeW9vixXg5z77KoD0L3/8Q0IDQRTGup5S0lO1ipqSYBQVszmeQb4DMtkcAyEjCIVCIZPN+js7DM91hv2BPZk4dkpTeEkklA5HQ0kS05l0t9NhEON6ruWZ5WppaWEeUqrI0qDbj+IgXyoIIucH1KexoMiKqDqhH4WRNei1O+2RaQa+R2z/4tlzb374nmFO5mbP93rdvb2d6emZQiG/v78bhhE6PDzs9foMxk+ePJEk6caNG7Ztv/XW2/WpKRazlUrJD93T9okb2Ldv3yxXinfu3lEUuVKtVCrlfq9fLVWq5XIcRr1OL2nucjzHYBYy7OHxie04nu9ncrmxPppMzFKlcnLaJgAGUbiwuDS/sNxsdcOQtFqdYqF07eo1Y6yLgshzXBRFcRRMdP3unTuapnQ6bUVVAaC9brdx0iBxvLC8KKjS0vqq5dtnL54lkAoi5wee59kPH21QQNR0SlGUhbmFUae3/fCJb1obd++pquqEQcyg2fm5i09dmpufH+lj27a/+tWvzC3Mvfb681evX+/3+zdv3p6dXchm84PBaGF2YXlxZTQcTs9MT4zJl3/jKy+//BktlXqwsfH2L3+5sfFoMBx12p133vng+edvQACH/f78/Fwmk6cUKIqaSqW6vd5kMrl3/z6J46evPX316lWMMcbsJ5/cdBxb1VRRFCmNp6frqqYRAtLpzGg0Oj4+YRCama4HQWDo416vfXJy4HtWFDuahh3HgAhiBjuux/Hi5ctXbNulgC4szj14cHc0GtTrtXQ6vb+/y3Hs/NzMU5cvchwjqfzUbDVTTE3P1RVNqs/WIhopmlKtlVMZTdU0nucpAJIkMZgxTZMXBcCg3ni8fbDrBL5umYBhIIM4ntN1IzGIYIbJ5/OIQY8fP6rXarIsH+ztHx8dNFvNjYcPpupT9dlp3RgzAhcBunNwsLW7bVhGROOl1SXXdx3Pebz1WJbFOIpu3bqVy+XK5fLm5mav19ve3sFJafq5F57vdjqVaiX0g363JwoSjcigP6iWKwSSlbWl2vRUr9OzTHM8Hj377PVut4cxMxqNCvn8jadvTGw9k04Vi7nDg73RaKwp6t7+3vHRyez8zPr6+v7RseMHMaW5fN51g4Xl6aPj4wY5+fpvfg0NwPjg+Pioub1zUCyXS8Vi5/SRJIqj4SCtqVEUFEtFx7UvXFie6D3Hsl588aUwiOr1uh8EtXJ1aOmL60v7B/shCZ5/+YWdvZ39vT0fxu/evbOzu40oNU3zqbPnH968Pzc1gzE76g+fe+65hzvbgGMoggsLC/pgNB6NUpeeOm02S8Xi7MJCOpN+9dVXT047w+Ho+tUbtmMdHR2fv3hhdma+VCnef/xguj7t2ZYXBKqqTk/PeparD410JvvWT3/0zlvvqJK4vra2dXK4dvbMxJpAC1SnplgBszx7+95d33f3Dw95inRDz6ayxWLpZz/7WXWqHoSebTscL6RS2qAzphTOTM9bpn3h7Llhd8CxPIuZlCpVK9XN7S2eQ/fu3llaWdP18craWdu1AQOnZ+YQQzvtU1kWIQTz83NRFB0d7WuazPFYVRVJEq9ce+rJ3pPKVN0wrDiC2XQ+V8jwPFso5SSZBzzGkInCOIpjgOBoPGZFgZcEw7Zs3220WwiEU6UiBQCzOKVlXMezJ1an01leWcSYAQDMzMxIsqSPR8ViUZb4TD6zd3AwGAwy+cz0/Ny9hxtZWVNZIXBdJHNzS/PHp6c8xvW5GRKEMSGSLGmq2mic5HK5s2fPtNvtOI6Oj49QUrh2HPfOnTurq6t7u7vLS4u5XPb46Agh+Pa7bzdOjzAL15dX8rmsMRkjBFRVOT4+tMzJs88+AwF4751333/vvfv37ymK5IUuy3MQw7FhtNrtqXodIFqfqYdhNByNRuPx3Ow8gPDpq9fv3Lm7u7s3HIxURclkcnFEj4+Oivm8bVocy/3/Wrrv3zgPPL/jT6/TZ57pQw6nsHdRLCIlqthyXe+dLduL28Wtt6QAQS655HCHwwEJbhHklyDB4S7YJJfNbpB1tnht70qyLatTImmKYhPrkJzKGQ6n95mnzVPyg/IHfP+Czxevt6LIEAQUSwW/35fJZHqCQUWRvZ2d/X29I8PDl+cvh46Pamz92dqzaqsWSUQWl55EYuGhkYFiqTg+Oqiq8tDQkCiKy08WCRhpFMtvvPKqUa8PdnfXmg0QgUvl8ief/E4QhJGRERiGq5XKg0ePUBTlBQGEoIDPPzw41Ncz0OnpokgKR1GnzWU2WjQUvbW1lUqd6nV6m8OuqGpHZ0dvb28sEvP5PB98cOPy/NVvf/uPnU77YWivWi2VSnmNjhREvljK6w0aoc2RBJrNZqrV2osXO52dnfl8IZlMS5JEU5pKuZLJ5DiWX1vdqFRq3cHujg5vMpmcmhq/eHG2Xq867DaCQqu1kl5HCjxrs1kVRSFISlGA5eWV9FmmVqv19fX09HbbbDatVpPN5hqNZl9fPwRBOI5qtfTo+XEAUkmaaCtiNp8RRB7DEIxAWa6JoAhJURhB0DSNYVhblnGSwEiCE3lJVQRZMjEWm9NhtJj8gYDBYBAEHsNxK8OEw+FsNodhyPTMtN1qtVmYZr0qyzLHsmNjowRFPnz8UFJkAEUABG5yLbONgXEURlHGyiAYWqqWEQx2Op00Sfb19aXT6UgkguN4X1+f3W4fHR1FYBjOZrJGo8FiMhXyea1W+5tf//rHP/xRFI4+WXzaP9Ln6fEW88WVjW9GRkf1Jh0vcNFImBcEFEEe3rtfr7ZAVYVASKPVdncHbTaHx9UZ2j/0dgZFic/mcn19faIovsQZNRoNTWsGegbtFtvQ8EA8F3v46OnI8EguV93e2Q34vCYDU6lWdVptmWONBqNWD/T2dt+/+4Ix0e+8/a3l5ecT56c+/eTTSCwSP4uNzYw7Oj3H4TDHc41Syedyn5s497vbN3EDrdFpd/f2+33djNXlmrQhCnJ8cFgsFIqlYlfAb3e7IkeHNpttZWXF3+Vr1OqKJE1NTxcKhUQylS8XaEx3cpLs8vu/+OoLo0m3vr4+NTd98dLFbCZXLBVrlZJFbwz6/bVqXU/pBwaHIvtHd27f6fYHe7p7tjY3z9LpQK8/X8wrqrS1uU7SJONg+vq7796/X6/WSICwMvZWvbmw8ARB0Knp8Vu3/tA71Le3ty+rit3uKhebGIaTFH0YChEYcXJycm5krFoq5rOZfDZzfnpKkiEIwUuVViSW9HR6y9WyzWldXXumodBSpXTp4sVPf3db4BW9Xk9RpKLI3d1BgsAoHdk3EGyyTTZfUUEFJ7DT9InINmWRN2o0KiMTqMZgMCAwjEAQjGIwhoBsk6SpbL1M0qTD6Xzw4MHIyDhFUbZOKwyBOIEvPEl1+XwAqBgsulKx+OXSkiSIgS5fT3dvJHr07NlKKpvt6e+ORCO4Rq+o6kkiAUHQSKc7kT6tNqoDvX2Jo+NyteoxmhEUu3XrVmdnJ8uyBwcHgwMDOp3OZDIhqdSZzWor5otOmy0SjlgsFhRFcpWSgqJjM9Mlobi1seXz+kWhvbO9Ozd74WDvAMcJs8WSiCcikWO2KRZLOU6U3//OO5FEvK+vf/Hpcjx2wra2AVCdmp1WVNXhMJcqjWw253K4XA5XvpjLZE45jhsc7NXidLNcq+YKXqeHMdp1WrPIQ/FErMsTNBp0MNxKxhN9PT2pk0SzVhd5IR6J2BlL7PjQ6XXVSrVWi8dIHIJQvYUBSfLh0jJG04nkKc+3X7/2+oVz5ztsThrBVUl9tPDE2elGcMRmYSAAEMX2lfnLf/PXf9OsN3sDfoEX7A7HwuKTUCj6T//ZD4/2w2fZ7PjkZFtWqvXWQF/f4d5x+jQjAYrNYWUYByTLFhPTG+i3WRmB5UJ7B72DvalsipeEew8fG+1MOpVDcBhBEZvNVKqWDkNHnCCCABCNRCcGzjFma4oTcAKXVTUcjmq0Bo6T3G7v06UlWcr4g34HY9vb3kEBEAUhLUEBiqrXG46Ojx12pyqrrWYDQtuUhjRbDblCGqOonp7ek2SSwMBMrkzTjC/Yvb8ToghcbAuHh6FOv1Noi0JDJEmN3eFoNFi2xTWa9Wa9USxk8/lMV4dHVNsm0ojZEIrSNRtNs4au1Oscx7YlEQBkjZZqVsvnhoZTqeTRXuhPvvtdBZBhFHI4bb6AD4HBje0Ng0Hn9XoRCDHo9I8WFnr7e3P7IY+r08a4m6xUYVsoSVrt9hbHKQrY19P/YmdrfXVd4oVXLl/NFPLNZv2NN17HcQKGIb7FmozGgb6+ZrMJtVpctVIbGhje39vLZNIkRSAUkSmXqrLI+Lzps4KG0iEwotPozAaTJCokSb3y6nUSp4YGhianJmVFhBAUpxylUtWoN2+/2FNVYPbiLELACEVu7x/hpJbU6E+SpzCKyHKbonGr3VxrVYxmbataT8cS6Viit6sLbMuVXK1W4vLZKowQmWIhkzkVBa6/t/dbb771o49+SGD4hcnzEs+9cuXStctzyWgM5OVLEzN2vdVssNJ6Y77Z8g8PgyTdNzAyOnxufOi8yWD7x5/94vMvbz/f34plTsYmx5PJ5Nb6c6HebFaqIAhptVqz2WI0WSEUDkeP5y/NTU4Nf/7ZZ0ajjtbQxVqtygsiCIIYAYFoh6fL6nDEz9Lbu3sEQi88WopGYusbm9u7O8VaeebK3CtvX6+L9SrXlBUcAMgOj48kKJqi3C5Hs8auPdu4fuXVYFfQoDHoab3f7/f6/JcuXZIUdWLqwujoJIHrK6UmrdeLqpQtZIx6nY6ir8xdshmtG883uCbncLolXoFVtFZtEASeKaStbrOB0cmyEI/H3A5PInG2fRBmReXy5WsvDWiDwcCJbDgWbsmCKEtyG3BYHYCiyJKIkyhGwoIqpIrpw1T0OB3jpJbQboGomi/nC+VCPBXfO9h7sb1hs5mtFoPMsR6rxaKjB/t6ztLJ9Y3VhScPKQ3htFtXny0Bitys1c4yGRhFKK3G5nYbTMz4+KReYxY4WWJll8leyBYUBdDq9Jl0Zm/jRW9Xj5NxmgxM4iQltqVrVy877TaDTuO0Wbu8nalEfPHJwt72C2hmZvbK5ctff30nGOyu12r5YhFBkFyxmDhLp7M5k8Wq0xkymfzA4DCK4oLQnpiY3N3dTafTgihmc4VXXn31X/7Zvzg35rJZ7aIg1mv13r5eQRS6e7sJkkBQ3GxhwuFoIBCEQBBFEZvdygrNbCFdrhRVWfG6O3UaTSwWJzCiXmmiKN5q8SzPEySJ4xjLt9qSEI3GIAg6PUkeHYRmp2fYZrNerVyanWXMzJe3vtjfjuayNa1OR2o0sVTy4vwlUWpfmruUS+ce3HuQPsskUqnl1WeYhvrpP/73SqVktTAGnd7KWNfX1lAUPT85cffe4ivXrquA+j9/9otiIa/V05SWHh4fPiueOb3OkfPn0tmMmWGazaYotRUIhFHs0cNHCIycZTIff/x/X2y/kFX5+eba3/6HnyytrhgsprNs1mAw2qx2m9XaajSbtSYEtCfGh7OZnMvpymSysiILbSmeSMAoSms0sVhMUdTD/cPr118nCMJitcqKqsgy12QfPXhYLpWMesPa+vrq6mqt1kinMlyLiycTtJYCQdVitczNX4xGo6HDQ6PJIory0vLKwUHIZDSyjZqWJgFVrjdrIAwiKKaqqtFoOn9+0mwxi6KgAIoKAwiJiqBcZeuCLLTVdiQeIygilU6dJJNrG2sohm5ublUqJYrAwkdHwUAgkzldWlo0M2acwLzezmQqUatUHDZrOBy2Wa2dHZ0YRkAgvL6+KQpSq8npKD3X4AgEAxVAVdR6vSkIYluUauUqoADTU9OqCpymUnfv3n344MHy8vLz1eeJeHx3d3d3Z+c0mYKCgUAoFJqbm9vY3NQbDGvrawRNafQ6URBUVaEo8vDwUFEVBEM5jmPZVrFYbNTqng5PvdHgOLZarVUrdQzFT09TyWSyy+czmS3pdFqW5e7uoNvjikaju7vbL8tRoVDo+doznudsNnuwu/vLO1/l8rmNjY2tzQNvlw9BEQiCaIpCEURsi7zAt5qtSrnC81w6nb59+zbP89F4PJ5InJ1l8/kSRdIESUejuwYDDkHw7t7u08WniVgMRZBf/epX+VxWq9MqgGp3OkZGhgBQ4Tluc3MLJ/ByuazT6XZ3d10u1/Lyss4Afvr5b41m49zFqXe+/W0Igm5+eQsmYJTCHB1ub6DL6XF5A36tyVBuVGvNJorik+fPRaLhXC43Pz8/OjaG46TNarM67KLU1ut1Xq9HlNpra2utZrM7EERhxO8LWhk7QVAjo6MnJ4lsPhOLp6ZnZtwd7nK1fGn+IoZjHb4uURAoipKkNqCqiURCkiVZVnL5PMtx/kBAp9dhGF6r1fwBfyqZtFoYjmWjkYjZZPrgww8Zi6VWq2m1NNuoIxA40BM06g1cs8mYTBAANmo1BIYIAmdZVqPRmEwms9kMw/D/b8fLMq3R5Ip5QREBBEplz1QEyufzfp9fq9FevXKlVq0hKHp+cvIkEU+lUhqNdnRk5OXt9PR0X39/MpFUZcXn7aJJKnx0nMvkkvHE3s6uyWh0WG0up5OmaQBQCYIQBOHk5ARCkVw+n8vlVlZWKIoiSRKAIAUEREE4OzvbPzgoFosESfYO9CNbW1v1er1WKVkYpi0Js3NzZpMZ4bhwOGy2MEaD5sqVyzab47e//Y3VbFFVYH1t3aDT1yo1u9V254uve7v7crlch9eztb2NoWg2k/n8D7fmr1wqFLIsywIQFo/HJyfPMwxzsL9XLpWsVmsuk90/2F9/tjkU7JPbak/vIKnRC1IbhlBFUmEYQWBEVRUUIzxOz8ZmVGqLvd3nOrze5eVvFBDs7+8XJa7B8qdnmeNwhCSpfD5vsdtsNlu9VlUUpV6v+QNd4Ujk4tycw2FDEKgttXd2d0xmE8PYJUmSFWV7e1ur1YaPwz/84Q/W1p53eDw0TRyHj7d3doNBv9XlmJg+f+vuXY/XXSjlu4JdZ2fpTP5s6PywV/UZASJ7lHA6HPF4dGioT6vVAoDqdDkVVUYxZHBgeH1tz2ZjMExbLpW3XzTNjEGj173Y2vIFu58sPEUQ2OFw+P3Bs7NMvljCcTwajWr1hngshpN4MpkURavS5F6aSl1+r4bW/Oznv2grCoIibqfZ5XQn0ie+Lu+9e/emZ2cvzEySJL63c4jhKAyDQqsFA/Bgbw9Xa2U7PPPzs6+8fpWV2ZNcstlo0hp9vV7Hcdxms0EQdHZ2Nj8/f/v2bQAEOY7Hzba9w322JfCsWMlXcJLCIFlsi7Fo2Gw2qyqAYigAgr5AgKDp5ZWV+fl5ttWIx+MwDDMWC0GSyXhi4eFCoVAcGR7RUBQIwof7B0f7h32DfeVSyWQy0TSdzWZNJtP29jaB4R1uj6qq5ycnB0X24aP79Wr93Nj4i83N9fUXr12/mkqllpaWoGar5fV6R0ZGFEA9PTvjRYFvi5Pjk+Pj47SGLhSKy9+sbu/sjgyPwQh2cpLs6PQeR6JbG1s3f3/T5XSxLbZarZ4kUgzDpM/SvMD39gWGh/vjJ/FSuQTBMAiqMIycplIjI8M6gz4Wjen0uh//6Efvvfett956s79/oLe3DwARWVK9Xn+z2arV6i95NwAEdvf2zo2PCyIfOjgolUoTU1M//vGPeV7I5/JrGxuZs2ww0K3TG0ZGRrPZjNNh51nO4XQEg36zwRgI+L/5ZhlBURUEdkL7Foax2+1mi2Vr6wVJYjzL1yo1K8NEI9FypXzz9h2hrS4vb01NXdRoNJ1dHfFUDMLhTr/XaDE0WvVaozoxOWE0mxAMK1cqpVKR47mPPvroe9/7XrPV0JuMAAhyvDA5OZXL50EU5ATu6OioUqk0mw0QhHt7+l0uTzgcUUHQ6nBZbRaWbxrNRsZqQTF4Z287mTpptZqFYlFRFRInHA4nAABHh+Gd7V2bzXb9+qtvvf0m47CFY7He/j6ny9VuSxaz6fj4sF5vkASp1Wp7+3oMBj1NkBqSCO3ubKw+6w/4Xr162awzQIpcyRcAWZGlNkmSGo3GaDQajUaGYR4+fPjmm2++TI8arCZMTwM4xEuizmLQm/Qvg1KNZgsAAIqm9vb3evv7P/ro+++9d8NiNj9ZXKS1mmg0lsvlaJomcNzlcAb9fqPOEDoIaWgNiiBTE5M+rzcUOsBQdHR0NJFIOJ1Oo9Fos9m0eh2IwpRWs76xnj7L+H3dgUC3CkKB7p6urk69wdTR4U2fZqDw8XGhUEifnfX29sxfvlyqVErl0tOVxXwubzaZtTqtwWBoNVubm5uyJCmKwnPchZmZn/zkJ11dXcVCsbe3z2K2DA0NYhg2Pj4uSVIul7t1+9aVq1d9fh8v8MViqVwpkxTBsazNZu3s6DTpjffu3bM5nKfpdFuRDGYTjpP7eyEFAFUVBFQAQVFVUSVZFCTx2fNn586NB4Pd1165BoHox7/8Ta1WPzcxUa7U/f4gCMIYhtOkxqA3KIrSYps3b37eaNRXVla2X7x46603AkH/4spSuVR57Y03KJp69OhBMOhrtVij0W4wWG7ceO/5+hoIwX/2r/751Wvz4+f7lpYfGk2mx48fgYBq0GkWF58oUjt7lhYE9jSZEFpNHIYYs1FR5NPTVCqVbLaaCIo+fvwomT71Bfy5fL7WaAiiQFC43khrtVpIhZw2R+Ys6/F0vHfjxkB/f2+v/9nK6vj4GIahv/715zAM2R0OnMCtNsuDB/cZxhKJRDe3Nnme9wd8GIktLi9Z7fabt29V6zUERf7bT/9HPJHAMBzHcI5lHXbb0tJTEFQgGLCYDcVCTk9R1VKxVilgCIiDYLGQkTgBVNS2IEAQjOP4S5PRaDQODQ11dnaur6+TBLG6vvrg6WNOEUEMbrY5UZF293dfTkGS1LaYzYlEore/j7Fad/f3b3/5xeHRUa1aCx8fJ5MnoyMj9WoVheCDvf0Ot9tqsXicLpPBSBOkhqYO9ve97g6GYZaXl6enp2EYjsfjqqpiGJbNZnmepzWa27dvRyIRDMN4npcVZXBw0Ov1tiXp6pUrkCJKoiBsbm0dRyJtWcrmcy+/DC/OzUmSFIvH86UCiqNeX9fG5mZHR4fb6RofGb13927A7wdByGg0fvDBh1OT094u77vvvksQ+PzlS6Mjo9FouN6oVavl8fExh8MmK4ooCvV6LZPLsCJH0SRjtdA6zeDQ4P/5+ONKtdLV5TeZLCRJISiKYxiB4yaTmSRJu92+vrn+i//981K57PV1UBoqnkjiBDU1OQWCsMFg9nb5i+VSoVCIx2IEgb12/dV89oyxmhkLE43GNjc3pqamZUjz2e9vx5KJi5fnBVEUWb6YPykVzxKJk7HR0dN0evdg79/97X/513/+bxmbrdlqXb18yaSlVElgjLoX6+skhvLNlszxoAQAbVmnoYeG+ikK39hce/jo4cbW5vyVS3fvPm2xQugo/PDxsgLKx+EDp9M5NDREUVShWCrmi2yD3d3ZLRYLKIrQWmpxaTEWj8xcGB4eGQIhVZbFL7/6AgQBmtaYTMaJiQme5589XxV4IRQKsSw7NnHO7fHY7HadSY+iqJWxtgXR7XJVqxUVUNtKu8m3vvXOW2+/+QZNETaL+Z/84PuXZy80a+VMMhmJhHmWI0nyJYDDsmwulwNBMJlM6nS6lyKz0+kyWAyn+TRK4wazUVTa6VzG6XE5HA4IhnqCwe7u7hfb24tLizOzF05PT5vN5ptvvpFOZ77zwYcvxZRKufzqtWsQAE5OTLhdrlQiMTYy2uH2/MmH38nn80sLi6NDwztbL0BFBRXVYrHYbDYEQbK5HATDLperXClzPG8xm31+f5NtLS4t+Xy+hcWn0Gn6NNjd/e6N9wAI3A8dTE1PReMxjU734OGDhw8fdHg8OIZ/+dVXuVwOxbBMJqvVas/S6Q8//HBqaurN1193O9wLjxYOQ0fZ09xvfvNbnCAeLzxu8a2L8xeD3YFEIiFJcrFYgiGoVC4FAgGDUTc2OuZxex49etRstT757FMMRY+OIsMjoxiKkxTVbLZUVTWZTQCoBHsCjxYeMlZrd29PPB57/Pibw8PYX/3VX7rdHlGSh0fPFYqldluemDx/5cqVWq0iSeK9+18PDPb/xb/58z/6o2/VGtWpmZnESQKCmyxfc3uc1Uo5FovV643B/kG303UQOjDbXB3eXpbj33z7wuc3P0NQ/PAw0RsMakh8buq8niRGBgbOj44RAHK4vUuA4LmBgWIut7m1FewO+v2+7Z2deq1mMJo++sF3Vla/kVV5dn4seXqGk7go8jiK2qzuUq4Bw7AotDW0rlQuYzhGkKTH45mamXrv/fc8HW6NhoonEtVqzdvlcTjs3cFgpVJRVKVSrcxcvPAXf/mX9VbT4/EQJDk4NCQrithu2+w2r7ezv7cvHol4Oz2yJBn02t2dXYNO8+4fvcNxjc9/99v/+nf/+ebnn0ptUUPTGIK2hbYkSS/jlC/FvGKxSJKkwWB4+623a7UaQiIwDudKBVpP+7v9MxdnvF1d1VqVY9mFhccADFZqtXA0+rOf/y+dQS/L8tHREU1TlXLl6zt3lp4sOu2O5ElSare//PLLYCDQ2dnZara+WV7+9a9+bdBoBJ774vZtrVar0+mcTme5XOZ53mgyURT16aefRSIRhrFWqpWni4vLy8uKqkpSm+O4qakpZHZ2dvX5c5LCOzo6FFDNlUv5cpHlWbfbU2802pJiYph6vfHs2erU5JTNZkNRTOLbf/93f9/Z2bm9uaelDcmTVItjcRLjeV5n0g8ND4Eg+Gx1xWBkursD8ZMIBEJDgwPXrl2TRGFvb/enP/0HrU4rsGKHq3P83Ll47PT1t986Pzm98HilUKi1220YxkSRNxmpfCH8x+/+8c6LJQICqrUapGLRaObe/QfTM5Mul+fz3//B6XZlc6UBSTkOh1+7/trwUP+tm59XS4V4PEYAmmjkdD907Oy0XJi4kEymFFkFIeh73/sTxsiEdkMet0fHtu7evR3s65ZV4Ks796ZnJiORo6OjEA6/isjq1vrm7MT5w73jO5/dqpfYK5dmJ4dGHq8sCizrcdsJHLly5fLq2trY+Eg4EjlJJmuNGs8LNgSyuDS0hioWi3Nzl56vPF9d/UabNzRFXseYSAo/CO1fu3r1/oMHI6OjCIaTFGW2mGEEvXz1ogqCqqpqtbpo7Wigf8ButN78w00QuO32euPJxIVLl05iqVarJUrC+vM1o9lgtTKkhpKkNkHhkqQQFA6rQDGf9TissMXs83Q8X1+HAbVcyBnNxmZb5DgOgmGe5yEI2traeu211xqNBgiCd76+Q1IEJ3IIAuk0+marjoFwqVQqFYtaSjM+Pr6xsYbDEAhBNz54Pxw70ekNfFs8PT3V0MSjRw+LhfzE6BiB46FQyG6zd7g8Oy+23W630+Xc3d5DYNhgNHnkjtOz0zYvvvHee7/79FODwZDNZnGCYGxWSVXy+Ww6kyFwXOB5mtZ0+fyFfD50eHSWTkMYihmNRgzHdAY9QZNnmYwKgpFwhOc4l8ulNxryuXzfwMDwyEhXV9f6+rrD7vj666/r9TpN0zfefc+gNb5+/fX0aZrjuWgkmslm9Hq9pEpn2bOd3W2v1zvQP1AsFoeHh09PU8vLy7Isdfl8gwODF2Yv3Lp9e31jvdpoulyeUrHicLpQDKdprV6v5zmO5VgbY93eeVEulwmKvHzlWi5fUgFw/yD0+1s3O7xdjUYrdZr+wQ++f+/ePRAEEyexcqU0OzsDgkAkfHSwv/f+B+9MzowNjQ5v7+3KgKJAgCgJv/zlr6x6RqMxHh1FAECltVoYRU2MaWxivFwua/V6RZXbHJeKx7Q4cbC9s7H6fLR/4B/+03+0m6wrjxb3nm+FQ6EPPriBIDDHtcbGRvOFQqFYCMciLZ6nNXQg6Pd0uFmx1dMTPDtLb+9sK22lUW+IoigK7Uq50tfXq9VpZEU+y2QgGNrZ2TlJnkAwODM763Q4G43GnTt3/AH//sH+0dFROp1meU6n1+lNxvXN9VgsNnfx0rvvvsswDAgApUI+n80CqgKACoSAGIYoisQLrEGvhVTZqKdtjBFS5enJ6ZfhJRAAQ4eHX3311cnJydzcnF6vfxm1cblcg4ODGI4iGAwACq2hSA2Vy2dYli1Xytls1mwyuT0eUkMfHIb2QwePnzwpFUuBYNDpdDqdToaxEgTZaDZZls1mc06X89q1azRNf/zLj8fGx4LB4IvNrXqtVsjnWY49PU0nThKn6XS5WsVIAoJhSZYRBLHZbHq9XqvVSpK0sPBkd3cXAIDp6WkoEY9zHBdLxDO5XJNlO31eSZGPI2GXy7W4uHj/wQNXR8fc3KXjozCBkxwrfvLJp++//yEEwDiMb65vrj1/vrS06HA4FEW5cGHm5CQRPg4fHBz4fH6nyxmNRkVR+NM//d4333yzurp6fHxEkmSHx223M0PDA52+LgUEFAUwmsycKNbrTQiEKYISOJ4gUASBdvd2Ws3W97///Xe+/e39/b3+wT6b1Vat1HK5wl//9b8fPzfZ1eU7DocD/u5sNjc2NhaPRp8/WxkdHeJazYmJiXAkrAAq3xa7e3tImnr69CnDWEFQypbPvvvdG5cvzrIt9saNG0az+eT01Ol25QsFo8l4ce5io1Y36wwiz1eKpXq5srK49OlvPoHaaiqe0lHa1169TtOUy+XEcFQQuYnz4+cnJwYGBl5/7bX3v/OdCxcvyKpQLBd8wUAuk2tU6kF/0GSwGPUmiiBhBGlyreWVJV5gEQx+8OB+pVYeHx9ty+1ms14oFYwGg9ls8rjcNE2XKuXB4WHGai1VyjhJmBmrxWpdWFh49OjRtatXA4HA5sZmuVwEQBVQVRWQUQKBEUhV2i4HQ5GoXqfhWrWtjTUAkAWRV1Tl8cLj0MHBlStXhoaG7t+/bzab3W630WhUZCUcjggCjyKw2Ba0GgrDkO7u7sHBAZPZJEiCDKhtWVJAtVAqWa1Wn9/nDwRIijrYP6g3Gm+99ebly5er1WpbkkqVcmeXt95sPH6y0Jak43A4dHTYPzTAMEwwEKQpqtFoeNyekZGRnu7uQCCggkA2lxXakkarwwkKRvFSuepyub1dfhQnmi3u/wFhAbwlecfJugAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "image, label = ds[0]\n",
- "print(label)\n",
- "tensor_to_image(image).resize((224,224))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Create Trainer\n",
- "\n",
- "Train imagenet pretrained MobileNetV2 model with cyclic learning rate and SGD optimizer."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
- ]
- }
- ],
- "source": [
- "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"functional_1\"\n",
- "__________________________________________________________________________________________________\n",
- "Layer (type) Output Shape Param # Connected to \n",
- "==================================================================================================\n",
- "input_1 (InputLayer) [(None, None, None, 0 \n",
- "__________________________________________________________________________________________________\n",
- "Conv1_pad (ZeroPadding2D) (None, None, None, 3 0 input_1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv1 (Conv2D) (None, None, None, 3 864 Conv1_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "bn_Conv1 (BatchNormalization) (None, None, None, 3 128 Conv1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv1_relu (ReLU) (None, None, None, 3 0 bn_Conv1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_depthwise (Depthw (None, None, None, 3 288 Conv1_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_depthwise_BN (Bat (None, None, None, 3 128 expanded_conv_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_depthwise_relu (R (None, None, None, 3 0 expanded_conv_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_project (Conv2D) (None, None, None, 1 512 expanded_conv_depthwise_relu[0][0\n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_project_BN (Batch (None, None, None, 1 64 expanded_conv_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_expand (Conv2D) (None, None, None, 9 1536 expanded_conv_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_expand_BN (BatchNormali (None, None, None, 9 384 block_1_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_expand_relu (ReLU) (None, None, None, 9 0 block_1_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_pad (ZeroPadding2D) (None, None, None, 9 0 block_1_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_depthwise (DepthwiseCon (None, None, None, 9 864 block_1_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_depthwise_BN (BatchNorm (None, None, None, 9 384 block_1_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_depthwise_relu (ReLU) (None, None, None, 9 0 block_1_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_project (Conv2D) (None, None, None, 2 2304 block_1_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_project_BN (BatchNormal (None, None, None, 2 96 block_1_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_expand (Conv2D) (None, None, None, 1 3456 block_1_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_expand_BN (BatchNormali (None, None, None, 1 576 block_2_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_expand_relu (ReLU) (None, None, None, 1 0 block_2_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_depthwise (DepthwiseCon (None, None, None, 1 1296 block_2_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_depthwise_BN (BatchNorm (None, None, None, 1 576 block_2_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_depthwise_relu (ReLU) (None, None, None, 1 0 block_2_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_project (Conv2D) (None, None, None, 2 3456 block_2_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_project_BN (BatchNormal (None, None, None, 2 96 block_2_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_add (Add) (None, None, None, 2 0 block_1_project_BN[0][0] \n",
- " block_2_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_expand (Conv2D) (None, None, None, 1 3456 block_2_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_expand_BN (BatchNormali (None, None, None, 1 576 block_3_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_expand_relu (ReLU) (None, None, None, 1 0 block_3_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_pad (ZeroPadding2D) (None, None, None, 1 0 block_3_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_depthwise (DepthwiseCon (None, None, None, 1 1296 block_3_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_depthwise_BN (BatchNorm (None, None, None, 1 576 block_3_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_depthwise_relu (ReLU) (None, None, None, 1 0 block_3_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_project (Conv2D) (None, None, None, 3 4608 block_3_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_project_BN (BatchNormal (None, None, None, 3 128 block_3_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_expand (Conv2D) (None, None, None, 1 6144 block_3_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_expand_BN (BatchNormali (None, None, None, 1 768 block_4_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_expand_relu (ReLU) (None, None, None, 1 0 block_4_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_depthwise (DepthwiseCon (None, None, None, 1 1728 block_4_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_depthwise_BN (BatchNorm (None, None, None, 1 768 block_4_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_depthwise_relu (ReLU) (None, None, None, 1 0 block_4_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_project (Conv2D) (None, None, None, 3 6144 block_4_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_project_BN (BatchNormal (None, None, None, 3 128 block_4_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_add (Add) (None, None, None, 3 0 block_3_project_BN[0][0] \n",
- " block_4_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_expand (Conv2D) (None, None, None, 1 6144 block_4_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_expand_BN (BatchNormali (None, None, None, 1 768 block_5_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_expand_relu (ReLU) (None, None, None, 1 0 block_5_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_depthwise (DepthwiseCon (None, None, None, 1 1728 block_5_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_depthwise_BN (BatchNorm (None, None, None, 1 768 block_5_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_depthwise_relu (ReLU) (None, None, None, 1 0 block_5_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_project (Conv2D) (None, None, None, 3 6144 block_5_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_project_BN (BatchNormal (None, None, None, 3 128 block_5_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_add (Add) (None, None, None, 3 0 block_4_add[0][0] \n",
- " block_5_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_expand (Conv2D) (None, None, None, 1 6144 block_5_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_expand_BN (BatchNormali (None, None, None, 1 768 block_6_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_expand_relu (ReLU) (None, None, None, 1 0 block_6_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_pad (ZeroPadding2D) (None, None, None, 1 0 block_6_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_depthwise (DepthwiseCon (None, None, None, 1 1728 block_6_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_depthwise_BN (BatchNorm (None, None, None, 1 768 block_6_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_depthwise_relu (ReLU) (None, None, None, 1 0 block_6_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_project (Conv2D) (None, None, None, 6 12288 block_6_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_project_BN (BatchNormal (None, None, None, 6 256 block_6_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_expand (Conv2D) (None, None, None, 3 24576 block_6_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_expand_BN (BatchNormali (None, None, None, 3 1536 block_7_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_expand_relu (ReLU) (None, None, None, 3 0 block_7_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_depthwise (DepthwiseCon (None, None, None, 3 3456 block_7_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_7_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_depthwise_relu (ReLU) (None, None, None, 3 0 block_7_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_project (Conv2D) (None, None, None, 6 24576 block_7_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_project_BN (BatchNormal (None, None, None, 6 256 block_7_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_add (Add) (None, None, None, 6 0 block_6_project_BN[0][0] \n",
- " block_7_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_expand (Conv2D) (None, None, None, 3 24576 block_7_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_expand_BN (BatchNormali (None, None, None, 3 1536 block_8_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_expand_relu (ReLU) (None, None, None, 3 0 block_8_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_depthwise (DepthwiseCon (None, None, None, 3 3456 block_8_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_8_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_depthwise_relu (ReLU) (None, None, None, 3 0 block_8_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_project (Conv2D) (None, None, None, 6 24576 block_8_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_project_BN (BatchNormal (None, None, None, 6 256 block_8_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_add (Add) (None, None, None, 6 0 block_7_add[0][0] \n",
- " block_8_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_expand (Conv2D) (None, None, None, 3 24576 block_8_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_expand_BN (BatchNormali (None, None, None, 3 1536 block_9_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_expand_relu (ReLU) (None, None, None, 3 0 block_9_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_depthwise (DepthwiseCon (None, None, None, 3 3456 block_9_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_9_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_depthwise_relu (ReLU) (None, None, None, 3 0 block_9_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_project (Conv2D) (None, None, None, 6 24576 block_9_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_project_BN (BatchNormal (None, None, None, 6 256 block_9_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_add (Add) (None, None, None, 6 0 block_8_add[0][0] \n",
- " block_9_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_expand (Conv2D) (None, None, None, 3 24576 block_9_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_expand_BN (BatchNormal (None, None, None, 3 1536 block_10_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_expand_relu (ReLU) (None, None, None, 3 0 block_10_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_depthwise (DepthwiseCo (None, None, None, 3 3456 block_10_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_depthwise_BN (BatchNor (None, None, None, 3 1536 block_10_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_depthwise_relu (ReLU) (None, None, None, 3 0 block_10_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_project (Conv2D) (None, None, None, 9 36864 block_10_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_project_BN (BatchNorma (None, None, None, 9 384 block_10_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_expand (Conv2D) (None, None, None, 5 55296 block_10_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_expand_BN (BatchNormal (None, None, None, 5 2304 block_11_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_expand_relu (ReLU) (None, None, None, 5 0 block_11_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_depthwise (DepthwiseCo (None, None, None, 5 5184 block_11_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_depthwise_BN (BatchNor (None, None, None, 5 2304 block_11_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_depthwise_relu (ReLU) (None, None, None, 5 0 block_11_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_project (Conv2D) (None, None, None, 9 55296 block_11_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_project_BN (BatchNorma (None, None, None, 9 384 block_11_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_add (Add) (None, None, None, 9 0 block_10_project_BN[0][0] \n",
- " block_11_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_expand (Conv2D) (None, None, None, 5 55296 block_11_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_expand_BN (BatchNormal (None, None, None, 5 2304 block_12_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_expand_relu (ReLU) (None, None, None, 5 0 block_12_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_depthwise (DepthwiseCo (None, None, None, 5 5184 block_12_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_depthwise_BN (BatchNor (None, None, None, 5 2304 block_12_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_depthwise_relu (ReLU) (None, None, None, 5 0 block_12_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_project (Conv2D) (None, None, None, 9 55296 block_12_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_project_BN (BatchNorma (None, None, None, 9 384 block_12_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_add (Add) (None, None, None, 9 0 block_11_add[0][0] \n",
- " block_12_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_expand (Conv2D) (None, None, None, 5 55296 block_12_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_expand_BN (BatchNormal (None, None, None, 5 2304 block_13_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_expand_relu (ReLU) (None, None, None, 5 0 block_13_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_pad (ZeroPadding2D) (None, None, None, 5 0 block_13_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_depthwise (DepthwiseCo (None, None, None, 5 5184 block_13_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_depthwise_BN (BatchNor (None, None, None, 5 2304 block_13_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_depthwise_relu (ReLU) (None, None, None, 5 0 block_13_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_project (Conv2D) (None, None, None, 1 92160 block_13_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_project_BN (BatchNorma (None, None, None, 1 640 block_13_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_expand (Conv2D) (None, None, None, 9 153600 block_13_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_expand_BN (BatchNormal (None, None, None, 9 3840 block_14_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_expand_relu (ReLU) (None, None, None, 9 0 block_14_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_depthwise (DepthwiseCo (None, None, None, 9 8640 block_14_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_depthwise_BN (BatchNor (None, None, None, 9 3840 block_14_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_depthwise_relu (ReLU) (None, None, None, 9 0 block_14_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_project (Conv2D) (None, None, None, 1 153600 block_14_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_project_BN (BatchNorma (None, None, None, 1 640 block_14_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_add (Add) (None, None, None, 1 0 block_13_project_BN[0][0] \n",
- " block_14_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_expand (Conv2D) (None, None, None, 9 153600 block_14_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_expand_BN (BatchNormal (None, None, None, 9 3840 block_15_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_expand_relu (ReLU) (None, None, None, 9 0 block_15_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_depthwise (DepthwiseCo (None, None, None, 9 8640 block_15_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_depthwise_BN (BatchNor (None, None, None, 9 3840 block_15_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_depthwise_relu (ReLU) (None, None, None, 9 0 block_15_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_project (Conv2D) (None, None, None, 1 153600 block_15_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_project_BN (BatchNorma (None, None, None, 1 640 block_15_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_add (Add) (None, None, None, 1 0 block_14_add[0][0] \n",
- " block_15_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_expand (Conv2D) (None, None, None, 9 153600 block_15_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_expand_BN (BatchNormal (None, None, None, 9 3840 block_16_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_expand_relu (ReLU) (None, None, None, 9 0 block_16_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_depthwise (DepthwiseCo (None, None, None, 9 8640 block_16_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_depthwise_BN (BatchNor (None, None, None, 9 3840 block_16_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_depthwise_relu (ReLU) (None, None, None, 9 0 block_16_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_project (Conv2D) (None, None, None, 3 307200 block_16_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_project_BN (BatchNorma (None, None, None, 3 1280 block_16_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv_1 (Conv2D) (None, None, None, 1 409600 block_16_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv_1_bn (BatchNormalization) (None, None, None, 1 5120 Conv_1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "out_relu (ReLU) (None, None, None, 1 0 Conv_1_bn[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "global_average_pooling2d (Globa (None, 1280) 0 out_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "dropout (Dropout) (None, 1280) 0 global_average_pooling2d[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "output (Dense) (None, 1) 1281 dropout[0][0] \n",
- "==================================================================================================\n",
- "Total params: 2,259,265\n",
- "Trainable params: 2,225,153\n",
- "Non-trainable params: 34,112\n",
- "__________________________________________________________________________________________________\n"
- ]
- }
- ],
- "source": [
- "trainer.summary()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model compiled!\n"
- ]
- }
- ],
- "source": [
- "trainer.compile2(batch_size=BS,\n",
- " optimizer='sgd',\n",
- " lr_range=(1e-4, 1e-2),\n",
- " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
- " metrics=['binary_accuracy'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "cyclic learning rate already set!\n",
- "Epoch 1/10\n",
- "500/500 [==============================] - 40s 80ms/step - loss: 0.4258 - binary_accuracy: 0.7878\n",
- "Epoch 2/10\n",
- "500/500 [==============================] - 50s 101ms/step - loss: 0.1384 - binary_accuracy: 0.9438\n",
- "Epoch 3/10\n",
- "500/500 [==============================] - 79s 159ms/step - loss: 0.0587 - binary_accuracy: 0.9771\n",
- "Epoch 4/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0385 - binary_accuracy: 0.9841\n",
- "Epoch 5/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0257 - binary_accuracy: 0.9911\n",
- "Epoch 6/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0302 - binary_accuracy: 0.9901\n",
- "Epoch 7/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0212 - binary_accuracy: 0.9931\n",
- "Epoch 8/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 157ms/step - loss: 0.0207 - binary_accuracy: 0.9935\n",
- "Epoch 9/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0177 - binary_accuracy: 0.9951\n",
- "Epoch 10/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 159ms/step - loss: 0.0172 - binary_accuracy: 0.9940\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainer.cyclic_fit(10, batch_size=BS)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Trainer also supports the regular keras `model.fit` api using `trainer.fit`\n",
- "\n",
- "Train the same model **without cyclic learning rate**:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
- ]
- }
- ],
- "source": [
- "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))\n",
- "trainer.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),\n",
- " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
- " metrics=['binary_accuracy'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/10\n",
- "500/500 [==============================] - 38s 77ms/step - loss: 0.4070 - binary_accuracy: 0.8026\n",
- "Epoch 2/10\n",
- "500/500 [==============================] - 50s 99ms/step - loss: 0.1800 - binary_accuracy: 0.9239\n",
- "Epoch 3/10\n",
- "500/500 [==============================] - 78s 155ms/step - loss: 0.1197 - binary_accuracy: 0.9553\n",
- "Epoch 4/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0952 - binary_accuracy: 0.9626\n",
- "Epoch 5/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 157ms/step - loss: 0.0809 - binary_accuracy: 0.9664\n",
- "Epoch 6/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 77s 154ms/step - loss: 0.0693 - binary_accuracy: 0.9735\n",
- "Epoch 7/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 156ms/step - loss: 0.0610 - binary_accuracy: 0.9759\n",
- "Epoch 8/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 157ms/step - loss: 0.0530 - binary_accuracy: 0.9797\n",
- "Epoch 9/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0505 - binary_accuracy: 0.9821\n",
- "Epoch 10/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 156ms/step - loss: 0.0452 - binary_accuracy: 0.9829\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data = ds.get_tf_dataset().map((lambda x,y: (x/127.5-1.0, y)), AUTOTUNE).batch(BS).prefetch(AUTOTUNE)\n",
- "\n",
- "trainer.fit(data,\n",
- " epochs=10)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# What does model focus on while making a prediction?\n",
- "`chitra.trainer.InterpretModel` class creates GradCAM and GradCAM++ visualization in no additional code!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from chitra.trainer import InterpretModel\n",
- "import random\n",
- "model_interpret = InterpretModel(True, trainer)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAD8CAYAAAD+D4bnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9Sa9kW3Kl99luzjnufruIeJGvy4bJRiRVBdZAgKQ/IEAzTaUaCzXSD9BvqYHGmmmkAjTTSBBAqQoogk2yyGQyXxcZ7Y17vTnn7L3NNLDt/l4KlSkOlFVJIDbwEO9GuPs9zT5my9ZaZi5mxof1YX1YH9aH9etX+I99AB/Wh/VhfVj/GNaHYPlhfVgf1of1D1gfguWH9WF9WB/WP2B9CJYf1of1YX1Y/4D1IVh+WB/Wh/Vh/QPWh2D5YX1YH9aH9Q9Yv7FgKSL/tYj8RET+RkT+x9/U7/mwPqwP68P6D7HkN+GzFJEI/DXwXwFfAn8K/Hdm9hf/v/+yD+vD+rA+rP8A6zeFLP9z4G/M7KdmtgL/M/Df/IZ+14f1YX1YH9ZvfKXf0Od+DnzxnZ+/BP6LX/XiELaW8x0CICAYIkKMkRAirTYMUFUQobWGagMD+msxI4SAmRFj9NcCgv8bgIi/RUJADdQECYLItzkjxYAArRaC4J/b3wdCM6PZ+UAFCQEQgggxBAKG1tLPwS7vMzNCjKgamBJE8KO/nAYS/Hebqf95frcIaudr5cdq5tfJzPp1k8tniQQ/b/q/9c8xM+x8LCH066b0F4H1awmomZ9Xv6aXl3C5SZgahhFDvLz/8goBM39drUpK8XI852rGgHHa8H5/QIEYE6VUfzMgv1T0GIgQY8BU/Vy+c+7n4z7f65gSrTX/XXa+Xd/uhfN1lRCw88WV83FDEL9OquZ7BEG1sd1siDFyPB3RpoQYCDEyDgOlFDbTRIzhcizn4zxfbwP2+z2lNsz8uC/H3q9dTonNZqIsC2lIxBj94LDvvLYfMHA6nRhyJqb47dX6zr0083Od55kYIzkn7Jc+5Zd//7quIELO+Tv/In4/zm8slVYKqg01pWEQhM12689Ev34iAVVlnmfGcfyla3M5hb5PMJiXmRD8GOW8z/pe/O5lqrVSS2Wcxl9+nYEEuVx7EOZlZhgGYox+P3ocuWyMvhfWdeXtu799bWbP+fes31Sw/P9cIvIvgH8BEOMNn3z83xPFyFkIKEGMq92OJ3dPub9/xBBO80oz2B/3HPYPmDasNcYcabUyDAMpZe5u77i/f+8BVwUxJQbDTLEQGHbXvJ8bK5GQR3KeCOIwe5MTd1cb7l9/Q9aVKQpiDRPQmNkX43FttDQgIRPTSCCwnSbutls2oXF8+5KoJ1JQEEODsDZlmq5ppUIrBKoHxZiwmFlLYxhGAkZbZ1IwVNce3DMWIkokxgyAtUrAEG3EGGgYKpGqQh42DDlDq0QaopWYAlWhGByXle20IadIrSs5CWYN00aMCQmBdW0YgXHcoLWSemBWESxEiJG1FLQp0zCCNjAjhYBpQQI0IsTM+4c9T25vEa0IlRCEhh/LD3/vD/nf/+8/5/60cvP0Gd+8eouZYE0YQiRJwFDUGibG3e01VlYOhwO1VlJK5Jw9aEm4BInb21tev36NtgZAkEBMkSCBED1AhhiYpol1XXsyC4j4A5RTZlkW1nn1fRUDx8OBP/mTf8o0Dvy7v/5rDsc9eZrYbbd89ukn3N+/48c//CFXV1u2U/YHtlWOhz0fffQRJkIz4f/4P/+Ur1+8hpBJecIIBIEoEET56OkT/ukf/yd8/cVP+ezzj7m5u4UgNK3kPKAIphAkggp/9m//jO//4DPunlwjePBVVVS5BIgQAn/2b/+MTz75hOff+x4qhpoS1IiXlGpYDPz0Zz8lhMAPP/8+ASEQadVIISNrZXlzz9uff8Hju3eYGPfHB+4+ec7z3/0hN8/uIGaQiMSISOBwPPGXf/WX/NEf/SG77QYz7YDB71XT4ElZjZ/85K+4vb3lex9/7PcofHtPEbDqQOLVy5fsH/f8zo9/DBiqeklIrbWeYGAtlb/4i7/gj/7oj5imgVpLB12AQWtKSpkQIn/1Vz/hf/lf//nf/6qY9ZsKll8BP/jOz9/vf3dZZvYvgX8JMAyfmjlUIoRAFKGWlXUpnE4zpRRiGhhy5jAvpJQRx3AIgpkQQqJVxa9RoDXFs1EgChf0oQKltY4ooKoSrb82OKJKeSDFRFtPxGFEayWEiIkQggAN1CCckYihTSm1kqOiQA4RtYaI3xDfvM03SASaolahH4Oq0aoQUuyB24jBM7pa7egA5LyBaEQxJBgpOAprKGogWrEG0hohKAEl4teAEMhBiAHEjCiBJKEjSUNrQ/rnYeavASIdAHR0hEE0f8DCBbWBmF5+lhAwCaQQwNQDUTsjNYhiaCvEFDvS75/fEVcI0T9X6ShdL5WBBEd0oaMYrw6E2ioxREKM5JwpQOg3Si437NvjBQ+kJuZ7CXNUyRmRetUQQmBdF9Z1ZRoyKSdUlSFlRP261XVlPh1ZlwPHITHkzG67ZbvdMZeVYRgv+7+1RgwZ8ErItDoS7vDN95n/WwzBjydGRPxeqBgxCCYQo1/j8J0qCt+eBPCErI2yFmKIiBpWC9aq3/d+PTUIpRWWsnK13RJEKKeFQRKxAtaY373j5Rdf8fjuHWVdKdb49Iff55Mf/4B0tcXEP+t4miEIMSbWMvvWE1BraKvIuaIR8DDkwbDU6oGuJ68ggqo5glXF1IghMM8n8pixHijPVUYIAdT3SQgeB2oHUtqvTUrJ90mv9M5/Ho/HXxvUflPB8k+BPxCRH+NB8r8F/vmverGZl56qYBohBlQNMzgcjpRSEImkYcROCzkPQEAsdiAdAKXWRozWs8UIWN9AFRMjBL8Jy7IQN9fY0mja/EGK0TdU7ZvWYC2F1pKX5a3RTIBeBtLOBw7WHy7xzXHes+cbCz3r0dFta44KgdYqJslRApBCQEOAjvRCCCgC2jyAxEAw8+MOHpzsnBhCRMwQlGCKiCJmjsCroebwJUrAKv39YLWhPRvn6I9Ys0ZthlVHFtAQCQQCJtLTVCQYWPNIJ5zLpUBTTxRq2kvYju5RTx6ASqDUxjBsCaEhYcBIqEGK2c+7gak6opWAagANmCUPkBJx8CgXNOHZKGEkzJQQo5dmfnROhUBHLYGeCno56uhECMSYGJJcEOs0bni4v2c+Hthtt0zDwJAdrYh5AMop0erCPC8cD0dqLTx//pyU8y/RIOd9r6qEeOYJekLsgdLsW7RkZkSJfcsZKF61VEdpgtM7mKCt0dQRkzYlIGjz8jPFiBhkBCOgpmhTp5fUKKYs88qT6ztsVWRV0BU9zBzfvufVy1+wzDMxBU5Fef7Zx3z+e79DGyKlFualIjFDSIhBbcqyFFpTzKCshVoKghI7ig8RpDk11crKkBOYB8aGX6NaKyJCipEQhNM8c3t3i+FB90JxqZKHTK1+DUotTieIYKa+RwSks3jhXJqb/45ft34jwdLMqoj8D8D/1nfi/2Rmf/7r3iNy3iAe1II4hK/VH9JSK3kYe8DI0APkBYkQ6ACGdXUkuC4LIafLhTpTU4qRYwTxG6iYo88gWFPfaDlTQqC2xtTLfDrqiFGwEDzrx+hB/hzwzQO9ij/kof8sIfSH2/pz4Q+3NYXQA5A2VCOqDdHmm0eVEAe0h9cYUw/MAc5/ijh/2J8hR+mdk6QfnASnacQTjFkEyQRRlIaakMPg9w9BJKPWqBpJIj2Q+ANmGtAeqGJS/ztTYnDkLaGhdUFIqAUICSNDgBgSqtWzvhqtCcO4xTg6x9k1xyARMXE02veDoogkR6ZhBUtIiHBGpRYvaNMsohpQ9Xsl5ujM0aoH8RASIgk13wcSA06pGUIgxYGAegAzZZomHh8Pfp9a4endHdd3VxyPBw6Pj2htlHVlHDIvX73g5vqa43HPMH6KaYMQ0NporRCj3xuzRq1rL8O9UhAaqpVWC1ivOlSJIWKqfs7Bz7mUTudcEDMXjjOI798gzr06mOtpuj8MEoQYEhJ65VBW1tPCGDOJ4KDj8cjDly94+/oVacgca2Fp0KJw9dFTmEbWZSaOAylGqkKMmePpxLKsvHn7lqZGiOm8uy7PqyA0bbRa/b2tkVK6oMXW2qUqjJfEAcflxJP4hKbqn3nmh1U9wfbEPc8nttutV3bm3Ll24OHleqKU4te4Uza/av3GOEsz+1fAv/oHvrpfHKVWIcfovJW6WBFicH5MPfs4CvOH91x+uaAjPSsL4zhRq5/8+QJrq1iIjv7gImw0VaKql4v973IemENkXVfGNF3KbUMd6WiFUBGJHiyi79SQEiElxBqKOPndFFNIsSH0jWvOZ15KWwFtDbMG4qWqIaylkfpGLrVhwcvwM8ol4NxYcC5RW6ORKBaIGKoQLIJ4Md4sUNRAMklGEEFbpdmKhQ3ruiIhYhIxUUxGTKDZ2o8zOCJBOvpsTMOAREMN1lZJkrCYUDLVYNVG0oSokGNGpWIiFKssFVIcadVoFWLoooK4sOcor2d/rCfGSGuhB4czEgRTD7TVwIjENKLNRQYzp1hCLxMDRgiJGAbMqicbCU4cmgGJlAIqnYuNgSAjrRVSDOQU+cHnn3Jzdc1hP/Lm7RuGnCnLyqcfP+f586f87O9+ikjkxTdfc319zXZ37feneSLUvtc8yTeqNkJ/+ENwuiGE6Bwr2p+V2PecYc3L1lodCDR1SiT2hNGaeiBMCdEKdHTeE4OLn6ABR5ZNGdKEqDDFEWZFH/bc//xLjq9fE0zZPzyQtht+5w9+l/vTgWOtXIkw3twyryshejI7roW//+Jr9ocDDw8PfPTsGU2lU2Kdow2BEMSpHxpqPQ7gVV0M0Sm4TqmYGbVWF+9qJQ/Dheail+GeQFan0lJinmc2m+kSeENPlDlnbHXUua6FqkpKvz4c/kcTeP7fS00JZy6pI6hSnMB3pdmzznmFECjFSeKmjRhcdUsx+UME/b1G7A8TklARqkRiTthpJUgk9Mxl5qiyNiOn2BGa9M+PlKpYLwXW4jfIyyhHLa1nrxAjy7EwJC/tc8o0k47YvFiNOaGtePbXBjFjIp2j7AjODEkjleiIMAqtv6ZJpGljDJm1rsQhoZKoBlgEDaQhU5bZOckmWMw0iVhIrJoIOrjSbwGVSLEBCxmTiCIUrQS2jhY1EyRiIVCaXwdioJYTFraOnDBCMFYrhBSoKoRhQGeQfEXVgrbm/LIaKpmqmZwjQRJBElhECGg1Qv9/L90LkiKYizTaxBV2C13UcAQ/DqPfLxkRy+QceoLtzoWzih6EECMpT+Rqff80co4IRoy+74guKAw54rhdiQG2m4lxnDgdj9zc3PDpp5/w53/+Z9xcX7N/fGCaBm5urrm9veZ0OvLmzStyHp0iioFaV+IQMfPr4ejWMGtIMNa6MAweIA6HI4RITE4hhODVVquN2tQDVE9ipSmlVWIPlmZG1E5NDSNBol97jBCFVhuooGaIeCm7Hbe0VVnnPW/+/kuOr9+QUI7Libib+PwPfp/Ns6e8+mYmDANh3HIqBUkjzYTX797xi1dv2O9PvHz5ms1mYimNb16+4tPvPffq4CLqC1hjmiYO+wNDzqQQiTmDKZtpc1G5z+6QWnpJnrxqPAt9akbtDggJFREo68pud4XEQLDg5XwQaikYUEthHEceXr9mHL/llP9967ciWDrHHAhAa0ZrjgDOlp1Lia7OOUgMPHlyRy0LYsqQIphSi6uFiHjQFMHa2i0o+ku2kWWeLzdAm6KhEXpJu6wLwxCIKUFr1Fq77SH6jTSFtRPVITsBb0bVhpIJKXlpjV2Qr99v56W080PaqapqitVKUy97z0S1quMJVaWpB1DUEYl2G0dRpaqhrZf3cXCEKZG1GGaRizXEEhYGQobISEgDpg2JEIMiIbmNRgIhZvJohDRiKMM4OQKPCRlcWVeM2BIxb503M3WgS0EiCIk0TlQdyMNApJKiOccn/gAcZyXFkR98/iOG3Zbd9RNUAzlmpDoHFYKgKEUd1aUg3FzfXgKkl1S9XBZhXQsxjlxfP/EzN09iMTh3qU07pyqYRoZh5wkBUF1prVFLuSTRKEIQ55olKCrGvu6xVqnLSozC1dWWw+HAmzevOZ32iCg5RV6++JrtdsPxuOflL17RLHA47GmtkgVKq9QqjlazOx0eH+/5yU/+kuV0crSZMk0dOdJLcRc5oZbGmzdv+z0Tcj4/0kJrzrW7OFXYH0789O+/cK46QUyCVecGPdEMLMeF4/sD7+QVrx9OlPcHMDjUhc3NFTUFvnnzBjkd+PnLl6Tthi/e3FPVOB5ndlfXXn6XyjyfIGaWory9f2ReVr78+VfcXG1JorSyklOktcI4DuwPR1qt/O3f/i21VcY89PBoF5WfLrIej0e+/vKr71iy7HK/6IHUVHn79h0xRn7x4gXjmF0z6FqD9GdsM2057Q8Mw/Br49RvRbCMMTCNk6tYXRk+p55WCrVUqroAEVLmeNhT1+LcFzCriyGCIOGEGYzjxLKsDDGQxHB+060vKlC1IgSH82kg4CVPa9VLgO3O1dxqtNpoKTmaso5UolyUUvCgrqrU5uXEOchL5/lScktOzBEYiShoxQQ244hyRkbJVWxxlIZ4yV0aKMFRBAKWibjCaMPgRHiIvUx2qkI7R3UJ2JzpjUhp5gR6c67RVFnWFVVFJCKhUaqSqhJEObXFUXR28r6ZB/JlWfyBxDdgFDAtmBgWMhwKx9PMkFdyhCgKVEL2Y6Y2dBDevHpH2i8clxVVoZVGlghNSV3uL3om+Tth1+0fIpHW2rciihnr4sF4XRffZP1B6m/BzNxvaMXvnyk5BUT8eogMXYltLKWARbab8WKz2m5Gnn/0hNPhyPPnT2l15auvvuBHP/wRr159TY7w9OlTWl3YbEbmZeHN/QN3H33EN794SR5cJR7GiZQcaZ6ORzZj5geff8wn33vO3/307/j8+z/oHGVif5h7ovVn5OndHff379gfj3z6/R+AwDgOzPMCIuQ0Ukphu92x3+/51//63/Dx59d8/tlnWGiIGKJGDtk5eRP2j3v+7vBTvnn1hkk7HywwPrnl8z/8fdLNLbVVakp88bDn8x//Pn/11/+O07xyc3PLyzfvqU1pNJalsMwLKUa+99Ezpu0V63xge3XFzW7DZsi0uhKCEkPg5z//ghYDn3z8nJQy8zxfkqHHQNcJTvOJaRi5vb0hp+z3aFm9WuhiXIiB+XRC1YHO4XCk1cyyzKg6L1pr61zla968ecs0bX5tnPqtCJaqyuPjY7eTBHJMpBiI/eKEKKTQlVUxNybHwDyvoI0cO/eijRAiKWWmaXTVulYvOaRbFYJf+DFnxCLLcSaG4OQx3QakuHLeOR0TuZi01Zw3O5f6Z6XyXCTUVmm10mojRSN0njNF4eFwYNpMiDaSuHdQEbQtnYMEbQUtK6KVHHv2w0nzqq7vxxAJQAri1p7gPGSTQNNE08Bm6xYRmjsJ3PrU0JAcWVUlDIlgTlNY8CAQs3PEilFphFEZcoAmXj7lRBMh05H7oZBHV9hFlSj9/wELA0sxtCaGnNgMGbQACWJkrpWURsarO9bl54zbxHzaE8IAzUvKYOpFgYCFwLSZ3EL2+EipTo8MQySnjIsagkQhBadxWnNzdUzplxCFJ8kJCcK6LF0kSZiu7qGIQgiZGAyxyHa7ISchuH0AulDy7KOP2B8eCWJM04SnNOFqt2UaMxoNaw1rlVZX8pABdf6cQK0Fw1FokAFoqK7E1Pn3ENifTrx89ZaYBr7+5hdeVgp89fU31FJotfLq7VuO88xut2UaJ1Ie+OYXX3N//57r62vmeaGo8ertPZurK54/u0PU7U4xQyvw/uE9r16/4dSD3O3Hn/H25Wt217f87j/9faarLRUhpS3zUrA8sp8X9yqTeDzMlAbDZgutMIRMaf4YFYWixmZ7TW3GMG5I2Q33KRoxGOOYaS3y7KOPOB72DMN1F12k8/zWOcaFEAI31zfdkqcMw9jV7gT9dYeY+FpfsNvtuL29QwIsy4lhGGitEkNygcj8858+ffZr49RvRbB08rW6cTh4l8Y4jtS1kFKitQIYrRaay5aM08i6zpSlcpoXpiET41kt03PheVEyz0twQXpdCzIkULdOmLpBnG7tMCBIwiRhuniZe0GT4WJBcaGmBzpVzCJ5yNgcUP0WtSzLjFk3Cff3NjWaNUwSzTxAS4CUPYgFXUArQSKpewTVlCEFxITUGe2cIlb8d3UHElNOeKuRuG+zn4vGRAiRpa0MXURKEUISrAcaC27ZyBVSVuIAojiajrjyKOoChCoytO7f82BJq16yJ/fMjiJuE5FCkOrXWmEIATFjiIkxj4x5wzQsHI8rwYQsyaOkCoQu9WvAqos8Y0eSHkyNdZ0dHSikwR0MZ1OzmV44LzkHTFWGNHQeMGIWSGnjt9MUIRMChGCYuS83pEhMkZQirRn744lxGHn54hskCF999RW7zcCyLBweDdNCAK6utzweB06HAzkHmJuLDOLCZGuK9OoHnG9H4P7hPY/7I6VVrm7uMODxcODm5oY3r17RauX6+ppvfvGCqvDi5St2uytubm74+usXvHt7z2YzIRLYbDZ8+fU37A8H/rM/+SfcbTaYClaUw/0Df/s3f8P+NNOATz7/nE9/9GPerwuvD+/50ZCwKJyWwvt37xzpzif2P/+SPGxQMx72B549+4iGEscJEWF3dcP927e8f9yz3WyZj3u0VrbTxEdP70hpYDk9sN1NlOqld1nXLrg1zFx4icGBSs6JVryiHFKmtUrD/bUi4aJdAJRSmKaJEDwmlMVFo1oKiFcd47SlrCutudvl163fimAJjijDRWRpvY3M+a+mCylFpiESsmerVtUDRczQtLfeNTdQ4faAFAOtdTRhuLHZAPGsEiMMyTtOau2GhhBoBqUFwjC5JYLYkWIiidAEQgzU5ig09QilnYRMIbF2P1zqLWjqR4VQ/SdrpGBkEUzMlW4arTjyVa2M/SZ7wHTzeDXpYop3g6CN6JZLkoAFccuNdQU+ZOcRVbqp3kWElAJpcnO7REWS21biIDTTbtoXQgaJbl43FImViFC1YhKIO39PEIEKMQrBIqbu6bQm6GK0UshpIMtAXVcQZSCytpkpC0FX1uMDgwiWIzl4wqCBiPaYaeQA05CoxQPtudqYNqP7IgfnN0NWRBubnLp4cfY2mqM2/P0pQYzGkLr/MLrnEjpvChRdyHFgGjPQMF1RNXJMzPOBzbDl2dNbHu5f0krhft5ztRsY0zWmhWEaGYbE1W5DpVHKiomythM5j6QYWOYTIQgxGEqjWONxXXl5/47TXHj67GPeH07kzY4XL16iZJolTmshrcZAYHd7TT0cOCqc7h948fodY8icHle3nLWVUoWvXrzmdz++5+bTET2uNFbKwyNhmYllYVkL929e8X+9fUMFTrXyb/7yr12A7Nz7vCzsjwu7qxtMAvvDgauba/KQWY57NrsNh/3+bDjm2dOnlLLy/u1b1tPIP/njP0Ridr5yswEz9o97nvzgczCnoVJ0i1roomgArBaWeebm+howlnl2/rZXloTIucPBOp0luFA0zy7+uGsgkHJmPh7JeaAsK8M/BjVcDGgN6ZYHVbfQqLnaF4MRrPYSyBuwpnHgGCLrWskxY1pIIdC0utG0WwHqcuq2C3FekjP/oWhbSMloVkFy9y9GalNWhZC3FH3v5ZqtJBH/LO29Hqa99Ha/lqkT7mMWF4LEPX2mBRFhiBDwDhlt1YGqdfXOKWqaQUoDrSOhb72S9Vv+0SN/942FnhX9nMH7mlutpDChDfcYWrh0toRo3s6YjJgiJpWQXbAhK4YShoiWRpwyFrqBWpp3sokgTb+14uTeHVVBcvAWQwOzhg2RopUUExKDUxwS+z2uSIA8Vq6vE2mI1MeFFhpaVxfuuqppQbAYUDu55Sc3yrKwu9pQS6G0lTQE5nJk2m4ZtkLp9XvoHPjZnHzhks3I0bi+mRjywBCT27eav89LYwEd2W12jGMiBCWlK6DSSiOJoK0g3RhuVskp8uzpE66utgjKu3dvKG9XqoIMkyf04AkvxLM9qrmJu7rv9mE+UWNgkcD7+US7f8fpuFJWZXfzlDhM3O5umZaV/eOezfUVJpm0uWZzfcWbV6958uxTloeDI3g10OiI1QIDGTtWmAuPD/cc3r1mrCutrdRW+MUXPyPf3LEizNXbe6+ub9yOczpwWhohZmprDKOAGNvtyLQdMJkIEZZ57ybxBNsp8vh+j+kKZF69ec3VdsNuM/X+bnUvMN3KVmbEktNj3SJmuDdyXWc204S2js61izsxeu/5xWReGHMCLZTl6CDDIMdECK6Mjzl7wI1e1f669VsRLBEuSvR3N3LXj4GeNcSZIjMvm2OI374nuDHa7TyevcdeCrj19Vty/7t841meUVU00Mn9cCnNJCTUCqi6iXUcHfHoeUhAg+r2D6Jn3oty19Es4q2UqJuQpRudMTcfWzdF09v7QnBTu+rZiu4PohvOQVBCymi3ULinriuGwY3Yqv3/m0HwchLAgiLZBR1Gg+xsq2UjdF9hyIEwBFgFm9wLamYu2gyOOqMFgkTqERqNlCPREop6+W9czN5+MkASrBlShWiRppW2FqarxO/90e/w8vV7vveDHzBNG7bTCLWyzCfGMaNiSEz84tUbYgx88sl/SqsriDGMmdM8k7I3MjSMn3/5JX/4J/+MnDO1uHCVcyalxLIslFJ5+/oNZS0II8f9gYpbuVpzzrmWQI4DWguHxz3rnIjRiBGur7eYGNvdFVCY10KIkSdPn7IuR65vb5nnA0N2m9q8nBimrV9rdQuS93BXmjlnqa06BRMjL1/+gpASeUhM0+bCmR86Eqq18vTJU0Rg2kxc393yi9cvub655fR4gupe4XyXCWosx6MH9dK4y5knMbP/8hseH96x3793W1IpNFVun97xz/74v+QvfvZzvnn9lo8++YQnT5+Th8yrl7+AENhutzw8PJDNmMaBTz/5mO12x2Y7MebA23dvuL2+4s3r11xtt9zd3nL/5jWb3hv+7t1bxuFj3ty/I6WgMlcAACAASURBVD97QkDZ7/dsNltiiKTt1jUHtUs3WIiZHAJlLdze3Hgy7g6X89AQ+U5SLGtlHAZEgg8H4Ww3Onsz/VmvvWsv/2NAlnTDMZ0rPCt+MUVaWTw4dF/Y2eZQ1AcynO1Alyk0XTk7E8PnCOl6uP8OPXMcNvT39RK6W3lE3MCaev+x1gXUWIubWLFzP4sf+8X0rj0YBw9xpoYFNxn7X3uLkd9kb5kUsd5REFBr9KgKfXhE6MfjJ+kI2fCgfv5kCeKcYohIzG4lUp+qdFHP6YExGzUqMgktKZJBkkAGonqP9ChoNiwZbPzzz7SvJnX+EO/gOTcSWXLAa2ZIPzBt6kEb/1ki2GpYaI7wTSAIJz0QJyjMyKBM1wPTNHLaL5RlRqiUqkzDFhma83ypcH2zodZC1UILM7vdNUXVha+xsblJDFMkxh3njg1V5Wq49mMeFrQqT++e8Orla8pcmPczdREiE5FItMD7tyvfe/6UIeUuShjjGEEq++N7bm+viTnx4tULNldX7K63NATJiTgmRtugomy3Ww6LT+px36/z2RLiJXmDUWphvz9i0R/6zWbD48ORWhvjmBnHiRgim83I4+N7dlfXvH3/mnf7B37/D/6QhzfvqYcVCYlnn35EjMK7ly84vn3DdUhcSeT4zQvKwwO1zCSUx8c9dx9/xMdPn/J2nqkhMjfl9vlz1qLMy8qyrszL4iZvVdZlIafI8fDIzfU1gcpyfCTHzGYYaDHy9O6O0/HAPJ/47PPP0Fp5fHjP8XTiq2++4eZ6x/44crPbIsETy1JWBwly3vL+LEl3Q6zryrRx/2WrtdMvnkDWZSXGyDAOvfvHKKU4/RLzxXsaxLvvUs4X//avZyx/S4KlB0hFvjMOq7VGHhPL3LxfJIaOCt1OY2q/3InTjas+cs15wvP0FTr56+jV/1RV4nfQ6zkYWFfdaq1MYyLERFu9iNemtKIQkqPa1rNah+9Nu2UoBOiEtJq5rUaNkCLeAdRc5JA+dAI7R5pL+arqE4PsEsO/Y33pGdXN2o0UXAm2cwBy2b+bf/24LSoxOmKU2LwUzooNQhgFSYYG8+bUwdDUIINs5ZJzQCAaKnrxYxL92Ijm/eU4z2hdNDbMRaNq3uUUDIpfF8FtY5Z9+s14lbHcaKFQAFIjDpCmfg6pEUbvUgmj8v70jpwj4zYzSqDKTJgS47Rh0T0tzsg4sdbVE0lyRJ23mRAj8X2jzSvbu8Sn01NowulhZj4sBAskEpHAuh65e7Lj9uqGIXuCPezvSdPIaV368IhEM5+mlIfMYZl59vSW0+mR43Li6uaa7bTjWN53oelyVy8WJZ96IZcWP21GTgNYYz695vHxSEoD282GVlfm5UAIxun4yFErhjGfTjx78gypuNOiNtZ55vj4nqsU+Gx3xXBaKPfvKPOMRKNZ4XuffsKnv/c7vJ1PvH3zmtc/+3v288xh2RPziNp7ht46/Pjw6EmqrJyO6iWzel/87e0Nm3GLbrbM84maIkdV7m5v2W03zPPM6XTk1RuvEB4fN6zHAx89feL+ZOlltLgtLYRITgNmPqZQtXqVkHJ/VvVCrdiZw1YXzJZl4fr6imnc+CwFvOsrxHPLryf00/HENG0Zx38E1iE4z2mUy7zGc6A5DzZwxby3gXEeQHCe7diDUugzL62S09inxfj0HzhbW+nsoI+FChJQC5ey37k0o7YKMhJCpKq3E57nNuYYSQqhNSSee7Tp6BBHCn1KEb18PZf6Z8JbOid7QZD0NHqGYZc81zcEPigjik8pas37ht2IHxHJaDcu+xzJQOtDKEIwNDTnHKPB1HnbEZjABqNFJSTQZDAYlvDznbpgIj7Eg4RTEme71Or3yhIE7QNAqvch0zrdMQi2eJDNSWCIPrzDFEtK3EBOgVVmdlmpYUVGH2BiValxRSKsMiOj33cZ3GKTNhOrHtBcyNOIJGVhz+7pxO6Zc2emPrlJ1SmEkheGPBC3AA0dK5vNiK7KsLki3kM5FaLBbphIE1SZkXhFaytBArvdFRrg+cefcX//0tFKyozTljQIjw9HXr55hYhxdXPb+c4I4lXUOVmEIJdpOgAheWvmui7OQcbA4fFICG5Hynn0oDVklvmI6krOE9thJA4jx+OB+1fv2I07rBSW44H921eMZeZHH33EjSmtVE7LiTBkZi189P3PeP57PyJsJt7/7J7388yT2yc8fPOSeW3c3E5M04b94z2tFubTCegujFbYz3sOD+8Q4ObmhtubO96+e9+n+Bi7qx37x0ee3N3y8PjAdrdjs9twPB7ZjhNLqfzsZ3/vHWJdQIoxstkkHzTTgUDoXOMwjpw75iT4/IR5cT9tSplaK7osNG2k7J7gWtulygwdl5x7wx/3B652V90u+KvXb02w1H7i57l056ESnH2MnR/sg0q8tTGkC3qULtyYcRmxJUFIObG2tbe6+fsU6a1znRjuqM362LUQupUjJLcTSexBrg/6oCtz2tBaUSKBSE4+HKI2JaRI/U75bD1UuyhCRxd6ZiK7oKVAwFvgfFalx0zt+PfMurq4wncyagiA+VARSJiKWzhiJAwCKWKDYtkguz2IEWQCjUoYwZIHPZkEepLX3IjJnQkO6fpgZgsYkXYobvqPnoCsNShueD+3IupJ6b54rEGobgfSalg1lrAQt1vCJMSNIBMwGilGKEoTJWafkyMKVVc0eyPCse3darYbaFoZto6mS1zYlwd3S0QPUOepMuepSGsslFDQpFiCtaw0LcjoXWFSoNqKpoKFCrm595dIJHBcCyEnbu+ecn//khAza/He5dsnT8BW1vXEWgsmDRmj99n3ctL6rAOt3iteawWNHOcT9/f35HHHV19+ybpWylqZJufx5vlIkMDrN6+YTzO/8+Mfk2MmEzkd91hz3vv+zWvq456dKk+Ggd2p0uY9ZZ6pKTJTufvkOc9+98fYdmQVWILw/nDgxU/+mphGhpR5envHcjpxPBzAWm9iaIzDiKmxHAvn0dPv799y//YtqsKTp0+dnzXj9auXzKcju6srTvNMCMJms708U6fTzO2NB6yAC5Sh6w0p+bxXzO1A0Ks38cEspXqlNAyDt7r23vFSqs+IDYGUBheQxONAa5WUB7eMIYybTR/r+KvXb02wdCbxHNkFF3adC2yGDyiVc7827ncM3iKmfYSbdQQpXemqvZxprZHO09CFLgZZ5y98k/pk5i76hEitHuBCV5CtOREf2rcTgcToCME3fmuKxuQzMnsngc9J9AAn4m2ZQYR2Dn+dYz2XZl7IJUSs9zR3kUu/85pOO4QQkJQufCmdJ/Ve425ZCgZBvcd5EBiAobcqjmCjB8u4ESzjyvaEB5hgaGwM2wQ0JIHS/Yrd0gHq1U1w76WuDXK3apkA0bnZ1KuG4gESBalC0ECRQhiNdJXRQZEJVlZi8oCu1lw8S5EoAVpAB+tVSKNI9eyVhRILGkB2gTUVLMrFC1ukettj9NFqJTZmKZxYGKYJ0Yjq4km7OH9Lq1g2bPD/Uk6sh5XTobA0YzPcEMPAdnNNTiPDMDLPR7IJORmb7YYQfIzaUhYeHt97pdkaIUZaXRmTT/su577lWlhrIQ3GF1/8HMG7sbabEyFmbm9vWcvCOI4ECSzLDFYZp53fGxVeffMl5e0DH6WRH17fMdZGvX/AtLCK8hgiN599DLstj9qoxyPjbsOL128wcdP+OESOhxMvvvyCZo3NdkQb1HXBtDHd3pDTgJbFTfZmbDdbF2Ly6HTF4eAJy4x3796yP+wvz+b1zTVDSnzv9o6gxnYzOPhpSi2F7WbDui4cDgfWtTKME4fDnmV1K9S5CpXe5UPwzi9Phg4mkMCyrMR4nvpulC6Mnvvn19X7w+M/CoEHOA+toKNC/Y7Z+3zyQ06+oXIv1XtZ1bSR4jnw9CDV1Wsf53VGZL9sDRARhuxowM6jnrq3UdWH+caUfOKzxT4GynnNFNym0Plnnwmj57mA/WsjQnCbSA+M7Ywee4DEDNN6+ZwYxbuNgk8YEvMWTp9T6PYx62jUE0O48LXnQQpn3Bsk+si5oM4VJhd3JANjn+AzGbL1wbe2gTDIJShIt4NIUmSzgK6EpIToflD/PYXcp/KENLlxe1BCM8S8j/18nVlBoiCLYUWhGjKIj7AbDZkE2UC6SsQxspSVZIZMPspLxY3zaczUpaETRMmUqtSmyKDkaaBFp0zYBZZUYej8dYDZvN9bN1BCo47G6bCypkYdunBYlHEaKIelT6eJtNFo2ahBWaksujJMA3KsHB6OlHpkXh5pVd3XOoxMU0CoGC7otFoc5aR42QdyoUsK2pwCiikwbCY228mdE2IeiBSOxwN3t0+52m57gmy8u3/Pcpq5u37CFCLHeeZw/8CTcUOMwg+vd+TDiWBGXQuPdSE9uebpj3+IXm1oMcDuiiDw5vGRN/fvKaUhatRlQbSxzke2V1vGlFibD0mJ0Y3ita4I8OTuCdM0uvJc3OZ2e3eHmbLZbrm5veH+3T2n+eQj0Vrj5uqa3WZiSIlaCzG6cKRdma6lgPl0oiFnogTKsrLZXuFeT+/jH8cN55kAErxbTdf1EjBLbThoDO7JDA66XFjrjg0Cx+Pp18ao35Jgee6t6EvObYX9hLR1BThSz0Nwu3J4HmJh3aZzmeSNk7c5x8scvfP4J1VHTa0WwpC9bNfO/0VXsiXgU31SAoLPPrTvqO74gIXVvB9c+oCPs+l1CKGr33TFvvfs4cE/hHOEPfOT6gFPtVMQrQ9HhfOX0bgX7TyKynlP9432MWXeE4iPPDYfdZmFkAUGRZOi0fzvUvCfs3OKbAQb1DnMrI70woIkYxojoS0IxX2WwbnRqithI5S6splcfW/NEBUfH1bMzelqEJ375DwpvnOaps6h2iSUUNEBZBeROZBzpOxnSq2QA5vtBiShDzNram53SUKQjIwJhoikSMyR8JDRDdiGPgkquM/TlHDt9hPZCcyQ7zI6GkUbJ1mYdhswnwYVg2FjoEQlXY0EEld5REog5MbhcSaNG1o5IiZo9aEddVVKOYBUxlHcD6uVmDzADON04eDdfO0UUG2VeT4yL7PP55RO1nQv4XY79VFiwnzyJP/syTNQ4fj4yMPrN7TDEdns+HR3TTodKfOMTRMHMU5j5tnHHzN+9Jz3ZfFydKnsdjsO+9fMh9VLOVXaWoiCD/U97rG6UMri1M44UtbFJzBtXUB5eHgkxMizZx8RQuTd/TvmZWbaTJxOJ47Hg6vVKXFze8fD+/fcv37D9eSdTc/ublwkDO5jTimiLSApMi8rps09xfatwh36XFnr4k/sTQW1d2/F2AdAh3MF5n31/v1CwvFw7JrxeYbCr16/JcGyB6ELs+cBoRYnYGtrvYOko8zanA8TH1AR+jRyzxDfcnmtNfIQOsdpPbD0IaIpcayNGPUyPCKcW6XOinlT4ji6cNLUh0Tggfls8LbaaLX51zSII0Q1b6eLMUJXhDkjwU5XI/QSvavb6MUV0NrqpZp2FNo5y3OgtktS6EJKcDR5Fna8ndp5U8mCDMAoWDI092A5Rmpu6CjErZfelo24USSvDFNAdSZgbGMk2gxW/OsuJNAEH/c2JE7a2ORAVUdfIUaaZXQRSjOffN+DpSS3MIXWrVUVam6EXYRNIF4nZOoE5yCIBqJ6q90cVooqOgp1dH4ViYQkhBwpKHmKyJTQXcB2AZ2M2nwmYpx8Eg87kFEIRRgsU4eCXHnibUdDNwLaqRdAtomwS6TrgeWxMA6JVgtpTGzawJjGbqIfwWAaJx+KbAuC0epKa0YeR07zqU8BmhmnDUFgXRZPoNEHHLty600Vy1xYlpVx3PD0yVOePn0KCKfjkcPhxHJamDcLD+8esFNh25RPNjvuEK5rhaYc2sz9Wlm3G9Zpw2m7Q4gUjZSlUArkkHnz4jVSIahTTK2367a6YCa09URKkTwkUhAfaNMqu+1EzgPTZmJdC9+8eEGplefPn3cdwqsrcFHls88+4+bmhlK8FXTZPzCNIzfXV5chKXVdwHwEX0rB/75/S0HKqYMjIUYXdM5fjjYMI7UW7u/v8RbPbRdtw+UbEGL0JF2tst8fLvMk/pEIPHJBfCF0S0U3i26miVWNlKNzl8knG9OFEgndUiTS/YBnTtMHo04ycP4Gv3Mh7kpaQzopvFafdHO2HHX/L63bk741evR1no/W1/n7UnyOotC032c5T/2WTjG48OFm7f6VD/6BPQi7v7K1xpAz2kqfcdnLfwy1SiMwZp/+fR4wYGfnANF/R3AEZxE0GiQ3nls2ZMBR5AhsQEcjTEbaVIZxRWRhEwNqM4KysUCwlRSqB/3aIGQsJswyZoVtyFRrtOBeA0uNEBMV4ThHZtS/yGoV91o25zSjRj/WbcQmYHKUKyFQacSrRA6ZYo2lNdZ1RbdCvMqEBCaNapUwJUpTZDJkMurQCLf/D3VvzmvbmqVpPePr5pyr2fs0tzk3MiNbpzwchIUBQsLFKxcDqf4CZWPVX6A8HCRwSmCVQEj4mCCBBZmRRJv3nmbvteaa8+sGxvjWupFSZVRCKlHkCl3dc+Lcs0+z9xpzNO/7vJ7uO9orTTrOC8l7dK54EfpWCXg4QVsaEhxzWejedsCiwYrmLIRzQifhdsncbjuxRaJ2UjSv8b4VUEf0k3nD8wtBIjHFkSKqSEhGRsIegm1caC2Kwh6mqvb5r7UgHfa8E2Pkw7cfePf+G2M2loJznvfv3+MQarbLvRf47vyGDyEw3XZcybzuG3mKlONEOR64uYTWyi//8hc4hONh4eXjK+unV/76F98TXSTXexyJPZh98NDtHtBb43q9ADpGcWOCrreVXKp1hjFwOh25bTebkGIwVmVKhoHbdy6vr4gIUwi8e/uG32xXW5E0o9CDDBqYsOVC8BF84Hq9kuZ54Ng8KU0DEOweFC3nAoJjmRe8s6TX+x7UeyuMrXfuGU8pRWI0wMzvev1eFEtbGYRBFle7NYqNsT4YsLf0sbpTRcZToLdB5Qm2t/TqRqYGMEKvfJrQ2820gdwnYStsIUXECXFOXG/FLn0EgvPUaicYGfIkwUKkajWdpLSOlzCKY8f1jtM2Chg0BHXBvKpqRsvWxg5UBnFcHNoqIjaeOidIM96jS2mAfhlHKetLnQqt3/l+JtW5u3aceHoTog8mPA9Ck2YXbq92wAkKvuMWT4sdkuIXj6Qb81xJfsf1jRlFpeC0M3WH042IEsT2b9o3cAl1iaI7JzeRm51/qgqlZA5hIWtFYoQFgt/oLiDBKEY0IRAoTfCnQIuNGnaYF5qaRbJtQLAHl4jgo6PXij95astIMGEyi61J0jlSNMOh4g8F59XWFc6gvd414uzNcZU2YnBw7BRfEOdIbxMtt8euzDWHHAR/8rTYmM6Jta70aqSs2CJSbB2jfuLjy4VcPMsseIkEcWxlR6Vxef3Cx++/hwYpRYOpqLmf8I7SKiktVvwQs1LWxnd/9FPeffhAa0LH28GiA1smrxvHmHgXIh8OT8hW6NvOpkoGrjHhnt+wauf09j04zy9+89ekuLAkc+G4pzNVOz5FtGxmwNKxK9aOJTUOG7JYTG1XoY1DSa2NmAw1N02zGTdEKKVwZeN6NYzfPM28e/uG27pyW284gffffcsShDqORK1YvATeJrtcG1++vNBUefP2PSLC6bjYJR6zDQt2o7BbxY+yoMOy0Fs1IpUWpunItm1AJ3qHOGXbLqToCd5Oq7/r9XtRLMEEtHcP6P2SfN8vBJ+syPloLh7s+IKqvaEYjD/nCPhhjbJCqzgkRKMZiWDZUDZKdh9seS6BMgAeB0lDI9mHCHaQYGQUanePqOgIDm1GRxE1cEOnU1tA3YT6QMvD+ohd65B7V+sQ5+n9rvjuY6xwDyAHInQZonbgHiGq3YDE3hn1utlMD96PDrnTfae5jps8zMAB3OyQQ0cXkIPYfzN1pkNnioXZZ0K/MvkK9cYUPLfLK9PpRAoV33ciiguVrlCl0aWy6Y3UJ7hLn3xga4A4ggSiU3qp+MnTU0RbpGVPy3b5lNlRQiO9nfBnhy4WvdDDSHAMDmojxsC+ZepW2N2GROVwmvC9I6EyeyWddmYH8w8r82FF1YKxopMRiex4OkSqFqbpQsexnJ7HGy/SFNI8IRH6prgiTG8Sh3cL4iG5yO1mh8F5WqiXhmue3JXS4enN12i54h0jTVHR5qk0gk/EuDClmW27MU2zdd/dRNi1dw4hkmu1BEaUp9MTH777Kbfa2Ipd8rvAdrkydeXJBT4cz7xvEF8vlK5kJ7z2xhYScljwb95w/fiRb5+f+cXPfkaMgcNh4fn8jDYr4qY8M0p/085eysgpYnTHAw4tgHjidHjomufDkdPpNKyFRrC/Xq+8vF5wzvaTOWdev7zYqqMUYvR8/dVXHA5HkjSOhwPn04lpMhH+y8sLtVbO5yfSvHDbdnKubLmSpok9bwCDyaBs+8aUZgBiNBZm9N4UKpof09p9p9laQboj7zvv378n581MK7/j9XtRLL33HA4HHEIMwY4s7a7Md0zzRKkmKr4fdO4MSoDz+fxgKD4sL/cLdGv2Sewm6Hbj6t4UChbo5IPJhu6Hni465BomFg4xDc6h8fJqNzukehnAURNsixvXzXtipNzF7uMh4MdOkvHmFT+yqv1jX2tyzgGp8H6k3YitYtXhsLFURPAhggaEgJMJfMT7REXRJDAFeoIWGuIVN9murqeOW8QwRYeKnzuBjGcnucwcO53CEjqFG0tI+J5xfSNoNxanE2xQrkx+x/ULcXS7KhF1QlUlSkJpeC0EIhpM6ynBUwL0qrTmkQOkp8TGRnATLTRKEKLRR9CihEN4dNruCEqhxc6cFKQyT7DMgnMwuSuTrtyTLkMX40mGSOzQtszUr/hpYgorBDMJZOfRZtOBdx7JDk2KPwR7+Ar4xePayIVpQtAEl5WOssxP5N7Zt5XDcmK9fQHv8HGm1p3WhFyUrja+tnEcvENuwfz8rSrOdf7oT35K3jYkTIynNNvlhaP3vJsiXjPvQ6JfXyi9s6uyAT0FwnwgPp35tN2oKP/Xz35mYvxosbC//NUvqTlb1DPKPe+qD0tgCJHeK9u+D2ugf/jrBWGeDIIRvO36a628Xi7UUszj7SOXy4113YgxcTyeCDFyOp7orfL58xeur6/86R9+IGfDpt05B8vhaLpT8XStHE9POBe4jnE/TXfFisW2dDXqfBBhDmZhnI9H4jRzXS+UXMilPu4SKSau65U6LuZ7LmMN9re/fi+KpWIiUefDiBU1ck2rjW3fLPMXY17W5kaTJlQt5G3nDnXVgWYyuIR1qvbEiZTthlM70jg3UG/qaeJxPiFqkoXuOl3sMl1HRGhMiZzdw1rF2C8ORsbjymYXtbv7aMAvutKwMdDUC79FVx9ie8tKhru7w/B0jlrvt/IfSdGCg+5GTg9Du+npWFep4qhUNAotgCSHBhu3SYKbDY5RYkeOkI6Klx1pG05uONmgZhKZnjtLaPh+JVJJseGpCNV0rgSKVpbYidzGEc7RtZJctNEIxUtnCoqTfQifGt17XPL4BG0XSAWZO7d6Y/IHdDaavY9CF3Mf9blCyTiX8fMN1R0fhMMciEEQrczSEFW+OnlmbkQPNWfLVqexRGXuKyVfOLidKQV8/gw6E+LCfDqxbjdUIn2zcTk8RWpqaIReO4d3B9zuyZ8LmUKtyrXcODwd+fLlheM0c1uvBKc4mahtp0snpQPBz3Q1T31t0NUhHTugdGXfMyUb0OPp9IbgIuu6EWahbztOPF8fD5zV89TB+4Z7vVD2nSKOl7pTvGd5eoaU2L3gDzP76wvJOYL3HA8nG6fDRK+Vv/71L1lvN4L/m4cOS0K01E9lROa6jnM2ha23G+u6siwLIQSmaaKNpmZeZtbbjfP5TAiB19cXwqCBnQ8H/BTZVkvMvK434jSTayM2ZZ4XyqXhQzS2gbfdfW6FmBLL8WDNiPd4b1ZfHxLiPSnN7LmQS2M5nMilWkFNM/c9a+vt0UVv+/4Icav/KHaWqtxuN1o0Lp1MCRmyAHva3JlBBl613aHttMLBsW8718vFiiQDzqtufN+xTDN937B4U/tIvdqTxEcLsU/e08UNgTgPR0WpbQRCmYuntXFIGQQJd6+W92PNQ/TOoHgnfCvm7nF2yhm33mFFjMzxYMFr2ugdzGgihBhx2oZyUkACKglpAZWZECYLUJMZlYnaIxKS0YtOHlmcXbkPghw6cgB3AHfy1EMnLMqcKgcas+8s0jl4xffC5JrtYB0svhBozL4NCZE98ZvrlO5JkwdXAIeKp2qnewitUZ0jqu1MXWw016naCKpE6RYpHDy5/sDze8+XayaelLba2GWdekEClL4SpxshFnr/hOuZ2AP5UgnJU7LtpqcYCPkL/bqSDjOhbfhuRZMe2S4GRz6yIvuOY6dlj0wn1vyZrQeaW7jcOtG/Yfc7a1/ZXjf0qrBBfa34LSDdQ/NcyoU0RdZ9o6w7bW+8fv7CNAufX39gPkW661yvOyHYgcKmmjQewhaKtiwHUprhKByXE+u2E2Ni//LCeVro1xvvnieW2jjjqLnQtsx136jTDMeFMGRCW8tc1ithOZBOR/qAn+Scqd2mgFIK5/Mbvnr3ntt6Yd82vv3wLff00VIyMaWh8BjHqG5AkuCNCemdo9RiESNdqaWRs9kUQwjEmPjmm2+NMdkNuxh84nA4MaUw8sYz15vlrWvvzPM0utWrJTV64bZlEDcOPsPiLO1R3FtVfGi8vrzgY0SBPWdyqWxbppRCSpb6qKqElFCENLzj/yi84e7ekQ3S9p3OI4jxFtVILCZZtOzf4C1aQZ0Rs1d4FCHb6ynqzB/N6Pw8QDf9ZJpmSzy0X9jo2fTRDXXwI2dGjX9nCVzW7bpRsE1AOxznYp88vQdElUzvBemduu/mWkmOPWfoBja1eIJKDJ3aMr1XYpypTSnFotXf1AAAIABJREFUdISiDac6bJ4BlUauHvFK9opWIXkb/2t3+OjIoeJKoK0DojxI59I6MnSQSKPmV0otJuh2maArkl/x3GjtxjJPrC+fkeNM8MC+o22zb3vTnzb1uOZo6nAu2uEEh4aZ2oQQMVjuWpDWkDDjXaIPQHB3BaFyWp4JTfn8+gUlEScMCix1BFoFqmakb2zbhelwIgXlnBxeK09LwI+MHI/y8ecvfPPVB6bQIQgpOPa1E4JdbNPk8LVTezYS93TETUI9TFx2pQfP26cTpSU+feycP5xIdeL116+kY6KEgl6EdJggOz59itS18uabN9TPOw2HBsdeLjw/f81WXpmXI639hlKUlIKFvw3NbesW9dyKsm2bFZTpyLZeKJcb7JkWJn7y5h3nW8XtVgTqbcc7x9Y74bjAlPh0XcneswEaIlve2PfKN+/fIIjtfbutfVIIOOB6vbJvG68vL9S607WRJqOWizfZTQiBEK07nJeZZV5Yb6/2fhwFqFWjKH3/1z9wWVeCD6zrZrvDVplTYp4Sh3lmW6+8f/eG9fIZcHz69AXtnRQDnz5/GTv5znI80tort22ndfj8+WVoK40exLiix5h4eXnly5cXeu/88le/ejwQ7png3vtHyuc9Vvfnv/j5I53hd71+P4qlmP/zbgEzyrntEUupTJM9DZoaOUdQwpAJiUBFDVnW2uOY0pUfI1AFUkjUvFkndo9E7ZZG6ESYYuRWLNVvXiZqrSQfyaWQgl3qzUr4o0NIB9bNnAAyRgPLpS61MgVPVzgsR6RvqIcWTdozxYQ2QbvgfcNo4NYNmzXTmRyiKWH8OboGOp7kJ0p1BJ9sn1o93iW8RBvzp0T3SloSbnG0UIhzQKeGm6HFQoqVOQpHYG4bR1c5ukbUSsLyfxIbcxIOrjG5jqMweXBUO4D5xF47mwjq4tjZQsdR+kZ0icbO5Cc0NNQVcOGxz6ziKJrZXeDg7WD3fHAsPoP3eIRWMkhjCqY/1anjc2VhY/bCQTrRNU6honXj4BNeOkfZOMmNhO02ZxeYYiZ6j0RHShVfGqV1np/f8LqtHNJC7hXfOs1nqvPokjg9VdKps/jJyPnZM6cJDsLtY+FwmFnezqx6NedTgnZteDdxPk0QKo079SYhmvB+MmWtmJ3Tu0irO94Faq7gAzpMDhOCL8pX3vOBwLwVtusVdY7ci2UvLYks2Fg5T8RpAnF059lzY5oTX33zNWV0b/PhSG12PMyDEv6C8vrywu22o1rZ992MDc5wZtalCcs8m2i/WvT0vu28lotpTGfbYx6eDtTBeYgx4r0S/MI3X33FV+/emlutFt4+P/NXP/sLSt75kz/9M8wOPDrYdp/sLEPpr/7q59y2nT/86R8PeVUbWmtvDqlpYkozpf0F+6dPfPjuJ5RSLIivNVsT9G66aO/4/ofv6aq8ff+OdV1tf/k7Xr8XxdJ2b4M3iXWB6vpYeo+lb7WOwK52dxcNNqZzh2fAHXl1/3G7quvYJ8pjXL7vH3uv3GMbdMQpAOYzVYt7kGm2hD2x9L/7ryPjwmpRGBXp9ol7oNl8sJ+nZRydLOf8Lka/KzfvLpw7b1N0SNT1R22nDrePG3Di5kbKJJb+6AZjU52plZq/E4yMJoRrhElwqRPmxhQqU9tYfGXRnVR25piZdGeSTNRM7B11mYMWkipeN6J03EDHdTWdoldBpeGIKKYuyFrIagmRzSuZQu/OHEbaqVqp6igkyxgqV0LvxL4yYZ28tE4SRaQR1KGusu+vxHphAg7iCHVjDp2Td2jP+LaRvOPkd3z5wiSeXjeOaSHrjYQn+Ej0gN/YtfMmFvq2ElskuIqLgSKOItB9YHZXpsMN1USfK6XYXj24CDPsdWeXDRkuqHD0RI5wM0G8NpinJ9QrwS14N1Fta8GcJgMA10rwCenw9vyG19tKvq7oVljUcQoTX8eZc/fU20q5bZTJc/OCLhPXYvt9ovneJSSbmMSDGhJwu23QlBgn1nWjYwSeFO2o1dpgxDKsta0TxI0YEzieTgbK7eZaK9UcRDFGYpjY951aOy5XbuuGD9HoXTjmOZkUy1usr2ofh0qPiH1OvPPk3MAN66IIp+MTLgTWm3Wn5/MTISRUM2ZEGVHW3aSgth4IvHl+fjidUpweoJ5tuyHeMy8Th+WAd47np2f7tv9HIUq3o0Y3KIx5abuNuSb/Gf9TfVyKe2tDe/6jK+fu074XzjvRpI8rl+rg98igGxHYa8HVivP2xeW8OQ6cT7TasbWZWSZ7GRKgUdQfu0e9H3zuPD3MBz2gHFp0INgUJ4Mz1BuPXHTuhyIDe6AMAtLojLFdz32h2kdBta7WIiwe0beuo16MAuSV7jo+OlQqPgaInRgbk2uEujO5xuwaoW1MWlikECkkMlFMazkpzE5wfSf0ind3C16z6Azn6Ax7pnhDweHxamT7BixaDf95L5Z4Kn5kzjh8uzBJILSVxGzWzWb2NafNLtpR6P0GrjBLZnEe1zOyZ3yByZtTSkph1pWDLDxPM7Vn3kyJvVWCVEQqXouh3Wrh7N8hixIWuJWd5JVbg+Kgu0jSV0L/gl8i07PykjO+B1xIBuLNAX80NcbGjZI3ZqJdaYvpFEs1ytK+dZwkYvSoKLX0h+squIBTx/GwkLeML4rLlXNc+PbpzEkddVsNw+cdLUSyE15yocaJdDjTxZlhQBkkrInmOr1kWmmoCvu+4kLkcDhC78xT4uN64+Xl9WF+eDjq7ov4EaNs7iRLZfR+AGuGjC1NsylUxDHP82Pfmkults6b8xOlVI6HE5fLC6cRpHZbR0xEdyMGZZDEBEq54ENgL4Xr9cbpfKTkYn++oTYRZHSZlRAit9vOYVksB1x3FIwwJMZ98M6ZVrTXh6rGpfQY1f+21+9JsWSkto0Ux97wfcAyWqVV2+v4O79y+LhlyB28WL5MAVsiO9vx6V0+1C2mwT79v1WYnD4Aom50YciwNgZDpbVm4nTnA3W4hvTu9R6g0oeOcug9ZewQbacyxvfg6NhOVqSjrRq7UBhpg+atNjn72KMysGS/ZRi6/3lEh13Q1vaADmiGoB7w4CaByeFmoUWF2CEWfNhJvhAkE6Wx+ErqmSg7UTYm2Ym6MQmo7IQxCjrZcX3HD2tZw9voj9DwBGfFsnQQIsEb4b7g2MhjAnAWbaEeweOkG2epT8T5wMyN2d1sN4wSCYgYADq5QPOF7DKpQeqBRKXlF+rrRvBKDEJ0cPaFWD5zdk/0mK17PJj7pbXK5GYk7EjeOPsNfMNzJYVEpuPaThHTsJ7dxru508LGOlWqX4nn9xzTQnsRXn79hRoL4eg5vz+RvUe/NNwOba/QPM7NtLLTiuBlopYR3+EtTiL6mV4LXgL5Vkjd8dQDcTrzflp49oG23riWTBfPVRwbwuoDH69XWoWIJ8UJ3zBPvoImpe4FQch7MSj1/euoVW7XlbwHbutqu/Y+covcAFUP6ZtznlosZ/vgI97HEdUxPyzDrRdqs+PM6Xyi80LvSkoT4hwxLVyvN37+i18xTwnOnsPxTC2dtx/esSwH5jSZHXn0JJfrBXGeOUW0w2E+ok3w0brROoTxy+QJMdBrJ2+ZN0/P5M20ooybh3M2rneBUnbW6/URfOacmTp+1+v3pli6kaGjuCH/4VEg2uBV3oufSW7GD+qPo/q9MDEsjw8CkdruxHkPvY7L3hiEnR2UdLR3ZpccXdu4eDc1v/Nv/6ZMyjM0lpj6/29YImEchwwCfNdKOq9oU9vN4AZLw6J7ZdCF3KiOXhx0Kxrqfsz3uftkxT6MdcxueKUTFh8RlOobfnI01x4xEiFVnC94ycTQcGSCVKKvBN1GAc143YkOkB1pFd8doRck73hRXAg4aYgbfFAcyVkHYrAP88vfSVmTq1QneBfp4tARwObptnPuN5KfiLqS9ECumYAwYXSb4BXRzDEUnGwkbaTuOU1mFTz5jNaNumWcdI5+5xw8obziKUzNPMG3fUVECb3SJVN0ZdErTY20E2TBa0ZdoAhsrTLrBdk+4rTxNC2U97ZXfL1+wbtEeo7Ep0C/Vq7tYui7VNizEs+RvsPnHy5crze2tRL9kb2uxp0cO27T3StOInXbmDTw3CJP00QUyNtOLhmJgU2Vz7lwWSt9ObAWg044oLROqwWvzjSV3eGaElI0oX9TltPJxtZhfsh7Ztt2Qxb2H5sMxJQlHWsgRDrTPJsN2Hnevn1Hq5XbtnG9Xh9JBHcEWs6Fn/zkD5mmib/+/ge2LXM8nHh5vfL89Mz5/AbBU0rnsJwIfqJrHbxMe98ej88459hLoZbO6XRmmmbTWnubqCxDp9Kq5Yffc7z62EGWku0OMvJ3Yghcrq/s2w3/5pnbehlFPf3OGvX3KpYi8hfAK9CAqqr/roi8A/4b4E+AvwD+qap++p0faIydvffHPk8Gecg/ZAHNgLdOcKMFd849tHwmDndjkW6FzolQuuGwYvC4EOjFPo6/U4vE246PPtw5Vizvbh3BXCbeWxjWfQ9o9kRjWGgbvu5Hl8ljfPE+UOWeIT4OQNJpdyr6+LV+FNP/Vrl1Y18klkrZf7z3j0LuTJDukjmVvJquMgk1VKoWxCe674TkaL4yRzuI+L4TpeLajqcRXYW+E1whUAjk8cWRoWX8Hohd6bv9OV1SxCm4NqIzbPfVXXh8Dqs6wkDSpdDxFMTd/e6A2p52EoG+MWFWy6ibUdBxJO3M3hOjUPKKSKa2ldQTvpi4uOmK7iAt8+aQaPvKbf9CXBqhRA7JE7sSRMn5hXlOJPMLcsmfke0TU3ck59l6Q3rA+YUdQVtl1hsHl8EX8s3shN0Vdqn0lpjSgizKft0Mf9c6Oqn5rF8LeW+cn49MceZXv/oNuTRElkEist1cb40gE0kDc1w4OOXrsOBbZ88bFdicpwp8yTsvtbE7zxQSphaLlGLcUjce+BI90zSxbhvOeY7HM12EMCV6Na/0fVcuzhNiouRqqxJ7jFshF4cPySyaTYfLDF5eXkkxscwHRDwxmoPHyEnNPONb4eWyse+N1oR5Fr766ltK7Rjr1HgGISREPKXudBH2fbMLd0q2PsKahSkZpHe73ZiX+ZHuiLd9ZcmWlxVisIbE2aG0NVsX2E5TOJ9OAwrsmabZiOz/P4jS/0NV/f63vv/Pgf9JVf+FiPzz8f3//N/2QVQtArbkQrxb/lSGzxuDd2qnDxW+9pGl4Y1C5Lyn28KSO55CtROjI5cbUzpTuuJcAprtPL2CVnrNaLyDOAx11obnFDEo6ySOECfqfjXIj3Razzgxl03vDi/+wXC0ZbORyJwP0BrBC7XtiAtUqfQg1GZsTNWR6Y3FLzjsAu/c9PgL6g3bdelwC+FRCSgLaDdYrhe6F3wKaGpI9ITZ4m6RivSN0DLJVWYaSRqOimixuOGWmaSQXMPXTNCG7pUlRNpecc0jokhXo6eb2ZLSG0vsVF+wfPYKrqEyIepIqlRA1GQpzkWkmzRLO/TiWPyZY+xE3QgRXLcDjysdp8IijSSVqhtTqzwfJ+r1ew5J6PvKm9PELDfCrKz1Bb9Vok8kAqfpCK2hbKRWmVBKuzLXK4vemPxEy6/MLpDSka0LPRee0pmD7Cx9JfoTO42zr6y64s8TVxyXTxdu7UpzmSobpWZDmUbh1lfSssDeeZpOxJDI5YrGiYJDJBFcQ+pOapmzTpyCY3Gd2Iy635xnVeVFTA70sXV2EcK8jLVMxytENyR13uNDpHj4tF7YAecCpVnQX1Kza6aYoCu5q0nsMIeUcRc60Qe7G3hL5ewVwhQJksh7IwQ4LHZ1j1G4Xq/cbhs+BOblQGmB661TuzAvb3n75g0fvv2aQOd//9/+V969ec/z6YBia6/r9WKmlFEPXEhsubH4SC6WzpjSRC0ZwdiWfpDPe+ukFPny5ZOtWWJEe8Wum/5hUe69k3N9aLdTnIaqZbAWfsfrH2IM/0+A/2B8+78C/mf+LcXy/gmS0S2aJWkkGLZO9CYdKnVEv4oz+spdKiRWkCwNsv/Wfk/QWm3Yax3vAlobdkO2xbAbMiAbwRy5D0DuIMOIs8KJNxujjq7yceQZB6U7WOhxhOmDFHTPFGLQ3u3zYtow1REza79bg/nakeeObKtdx4gbDeKrjnYvwiKIBFBvZ01niZF4b8xIN67jQZDkCBPWVWol0Qh0vDbcKJSBSqTieyZKwfeCr5D3Bl1JREq19DwBWq6IH8T0qujWcR5SArxSnUcoiAQreiKIVMpwN0XnwDdohdpvTLrj60piIaREUHv7ejpOOl5MfnTTnYNXFhFu9cpxSXS3c3AwO5BWOLpMKp2lHIm1cJqP3K47c4HUhaSdZe8spZJuV5gaMiuXtuK6ZdWrGMZs6leOrjCFxqtuTG2n0YlpIafGPgdqKizvZqoUbrLiZYBmjw4tndaVS7lRUsfNEcUAK15g0kZUOPrAcziSesGVnaqdvStra5QYuPXC522jSrBnsph8R1tnv20oSoqTHW+8jafzcuS2v6Laubx+MTlRKBQfRgb4jX3PlhYQgikTfLD3lJiSRHtDJNFrQ70F2YFScuHzpy989dXX1FY5Hc+8ffOO2kx4ftsb83xkz40QZmpVYpgJonz34Q+opY8mIZDSRM55aHU98zyz7yYb6wrruo3joHWQ0zSPycxZbl6wFqmr3T9iitRi78MQIsH78V5ueC9cr2ZiCTFQm0VYzP/AOksF/gexrNb/UlX/JfCtqv5y/PivgG//TT9RRP4Z8M8AvH8aRVLQESKmA8pgOLMxFv+W31oZQNQhpXFjDK96jyUbkqNeTZrTMd1ktgLr5U4+N8ah8xDFk7Xb7wM1J9AYKyRMg6Y+ru0i4yLdxwhuuSQykG4WTjbWCchv/Z5kMC88gq0ZpFXuOeNwF9a7R37ZfUo3hJx9LMvYGesEMVjxMGig0lE3PrveRhS8Uc4DjaDjFq0F33d8HxdwZ51m0EzQTCyNnoV+q2Nn5UwFNSAPrSs+WEHuudO2hgYhioA28GXYG4UoJmz23aGEgZDz4BzSGrl3FiksZM5RSQm0VKQ1UhArXnWj6cYpNCbZWZzw/qszPV+o7MiemeaA5syxNpbm0bIT5gW3Qtwd9dap18x0CvgbxJsjXKyL9s4RJyH3Fdca6w4xFKZ+ZdErs6wsbBwlj276gi4nDseFH743d9DhfGA5LtQvFbd55hhxOcDBc7sp5aj0TUnqiT3gmhIbvJnOnL0SSqPvph+8toqbEhI8tRf2XAyuHPzQGhvLNS5HdHAwU0qU2ixnp42DYq8kb7s67nxJ9bRxyV6miZZ3rq+viDY8Bo8ROik5uvpRUCKtZFrwbNtOCIFbW5lCYDkcePP0zLIcuKwrPkTW9ecs08zxEGlDW/zx+x/49qt3/Nmf/hmezvXyQi3dVgjqOJ3O7Htm3xu1/hgBsV6zKVSawoDltFbHLtIPuG+zpigknLhB+DLmbevVMrOs9qBq0dbXywWAaYo83oB/y+vvWyz/fVX9uYh8A/yPIvJ//PYPqqrKI/T6b75GYf2XAGn6iTKKU5dxyHlQxUdnJ7Y/ue8R3V1kKUaXnnwae8XRvWl/YMscztiJzviKMoqYJb+aR5QuQwhfHrvHO3W9d2P6iXOIepBBCHIC6gkO2j1LXEZZHCtIGVIKIwwVy7ARu3DXZq4i05oNeIfcA9T0EcJE7Y8xwftIkEDt3kZ9cVZIvA5mIqZRFZAgj++rK3bN1kKQhtc84Bg2akeppDHmJq2EVpAddBf63uk0SquIQtmq7WvDQzyFZiCD1iGub42IZfhogISjdAgk05oCVT2tNiZNaK/MurNIYeo3YlcOh5n19cKEJ4pSZUddpsrOgkdy5g+/+wlfvn8BcRyj5+wT62vhslnHm1Jkv240V1i/XM3/7G3Xza74VXAXcFWRllnODtxGmCrVOYgz76fGkQuzXlj6jbNXqI01dxP5p8jxjbm1NlaueWOKiaQTXgKlW9dGdMhzhA36dSf0zpObOYeFcwhMUiFf2HalB+gp8fTVe37zf/+M17KRlgNTLVz33TiN2fB+vSlKM3KRjsz7Sfjm3TtKbWTtXD59JKZECOkhWD+cziyTMSPbvtFi5M//yT+h5A1aYb2+UMvOesvsRcnFeKZLDOzXKyEGnp+f+fLDD7x8+sjH3/yG5XAkpAnE4xT265WvvvkJ18uV65dXVjrHlJido/bKfsu8efOeFA/cbrfHbhOEfa+2nvOefa848Wy3Apio3HqVxm1dUZQYA5frDYuyHk2PjqRW7CBkxcg0p8/Pz7z/6it6q+ScyXn/ncXu71UsVfXn49+/EZF/Bfx7wK9F5DtV/aWIfAf85u/ysVq7QyqGdCeafco5/xCQizOtmvP2ZOl6303qj8V0HHa4H35EBqZpXNide4zSOnSQdjnrRtx29w5xBH49MnPGTkNkUNetw7zLMO6ZP75ZxnkfEiiL2b3P6PAQog8XkTg73fz4Y/dcHQtAU1PhDxE40BTxwbpvMc96pxv92UNn0JCCRRV0Zz/mQie4RsDyyO2f+7cLrhdEMk52vFRCVVoFtVWndegN6EpXAxH4KAbC6Iqr4KtDpYHv0BUvEH0dOkzD4EUyTQ1/5zGfuPcRamHqO0ffmZ1d5hfnqX0ndIejWsfrle4LB9+JreLKlW/OM+vHFV53iir1pdKvijrQrBziQnnJLMyU687eC/7gkazICu3SRniaPah9qMy+Unqj1kCqLxy4MXFjaq9MDaom1IHEI5f2mfNSqFjGTyyB1Gf2HzKzBIIEXBH2stF8xkdlTsJzTHwTTyxZ0H2ntWKTztjXPX/7np3Ku+9+wrsY2Hthb5XX64r3gU8fPxF8YMsbrVcOpwMKLNNkhaFktvVG23emaUZaIQRPckbjWi8XtCnHw8GcTdr45v07glMOy0zLxn5c143XtfD6euH1cgXg+O1MU+XDtx9oHz5wuV755S9/ibTGYZr5+S9/xXI48vH777lebnhnh5QpRaiNKSZK7nz6+BknAZHINNnUmJKlDHiXWG/X4cKpLMuJaVporTwicmOciGmitmIxvVsmpkAeF/IQRgMlyjQUAaXshngEXl9fOJ2OzIeFUP6BAstE5Ag4VX0d3/6Pgf8C+O+B/xT4F+Pf/93f5eO1sTewp8WPhfOuYbyL02utBOeGlIgHIBjuOkrj7jlnkpOundKaXWWdozsTDzfuoWIydoQynDS2MA+ojbNq+8GHtMhaTRSjtiNmtXT3iJ07+7LbmNrVxtB7kVXkUWx0iLqN5TkOWqLj92N55r2P/arzOPW0AUAQFxGNOB9NahUc6owaLj7hJ08JBXEdFxwxQRi+aa+VQCc4xcsonFqRlhFX8DSkYCFjRXDNE7pn8pFcdgK28tCsOGX4zcHlEdkxXEMCxABeLBky10pqmSamURXv6A72suFLRfKFg+/MFDyK7K/MrnBaJrQZAizQ6a4i+cY8CetvfsF3b9+jNfD6stFypW9Kv3aaNoME3yq92DJkdot9pawKWeAK9UtFsiMNRJmTSvCwaKa7GwdupH5h6hcWvbL0jvgj2qGVACVyDMDhxHyMfHKOmCN0YdGFmAP7S+FIIoaGhMZXb575miPT1nDVct1b62y9IsuR9PbM+dsPVOksrVDplFbBw/ti4/Zfyl/wzfuvDWTRdtIceb1eWWaLeWi98+nzZ37969/w9HTk48cvvKwr+vkzGha+/vYDp8OB4MDRmGMkhUCQYbH1brhzEsej8JMPH/j4w0c+fvrMn//5n1PH+7TWTi6FP/7Dn6KqzMczy3xEEf7oj/+YT59e+fLyYu/zUgaLAZ5OTwQfOZ+fkZHc2gfr9bZmEGFZzkypgf6GmCIhTDgfiDTuEdCtFWjVqE25cDydiHGyFR6MK3gdemqbRl9fX3l6eiIEi63Z1+s/KCn9W+BfjaIWgP9aVf+1iPwvwH8rIv8Z8JfAP/27fLA7BeS23kZEZbOd4YiN6M2I4D4E2tgdev8jL7K2xjzP3NbVCm+IdgTSDjFQtDFPkXy7EEd77p2N6+23PN08utWOwwABNWdqbYQYKflmxYq7xAnzmvdqRQseHvLWOyJh5BjvOJyJe0fHaJJtB6L0YWdUdXbNF4bF0hbTtXRD1XUBiSCBrtZZttDprlmCY3AmgxKFIDRRW367Br3ixYqk9ErwHa0ZFzspOkJRJu/wu0JzOHWAJ4xwMR89qUd6t9gDiwi29Ql7pflCmJM5e/CQh5JSgN6JJTNpo4vQ+45BnAXXA5OzULRTAmk3TssZbRmRyiEkmjaqqwRtbGXl6ZCIpVDWzLUm6rXiNqHdlGM68Xn/guueLsocE7L74bkX0M48LdyuO/2q+LNJU3YtzJi/vomNcdE3lr6xyEZsr7ydbX/+aV9pAlv1pBbRW+Z4OjMvFb5dyF+so2RVQgpo7TwfFt4eE/XWeOMiZ0nUeoOo7GWnz46QnphPR9a2U3zkut2o3c59hixzHKJjSrMdc1zg6Xy2iUIah8NxHDEs+P3p/Mznj1/4k5/+Ed99k8k5U1on4/FxNp90cKSQuKmZQFw0KDZA3jP3fJLoLXohhvCIaZimmcOSmOcF7725lsSRwl+Tppn3b98yxcSf/PQPbMJoZr0M40iY9x33/EQpA/jch2bU68OqDJ6uwun8Bu+n8XVhO0oRxXubEGOyv49lOdCHumbfb9xH8D1nYrQUhD3vzIsdidpgUoQYf2eN+v9cLFX1/wT+nX/D//8D8B/9v/lYIhBjIsbIsswmxB7jtIE1Ric3yCByP/gMQTn4h7D7cBjB7dXoPyEmCKbnUgfpMOO0k1wiyOAJqqA+2CFE+0OM3rWNXaTShgh27wYfsKdWtlFeAsE72t23raaIVEwk7FTxw8OtKnZNEszp4wK9VussxQTdOiRLSjRpkAo4NWYl97E+oXgz/0fM4hgcLjmI9o9EofmGJI9IY0oedxfEO7NeiodeM85b+/cNAAAgAElEQVR3ohcLXuvekhebQDdvsXRP3brdbXy0cTFXSwJ0DmkerQ7NtgJwI9bXZKt24ElNSdroWHKiddwmVlVVWwdoMQmMVFQr2nd88yRnu8+gyqqFk8yUa6PlbjCJW6VeGomJUAOxJihmy2xFLWbDO4Izt1f0iVASbJ7YJtqtQxezBgaovVG9PSX085Wl3XDtgpTKV+d3lJ4JvvPmMPM2vuHL9ZdouTJLZpOKhoV4Opk44lqYj576wwtv5oB7cyRuyr5d0NTZ9kydhbXs/MFPfsJWK62Cnxe0FA6H48iJ6tzWlcMys++V1kCwUK51u9K1W5TCI9Z5ZEBh2sjjYebN85OBcjG75u22EbzHd6XtG+fjyVwualOPD549F2RcqXMuHJYj5/OTBanNM12xIpwr1+vK4Xji9fWFb5cF6Y0g0Eq2uImRUxW8Y993Xi8XfvpHPzWBubunBBgBHWAfvNrWlHlaxlrLvr60mWPO7gNmW8zZUGshGHFdnJj0CSX1Ru913BGEkOJYxQlTvKdm/u2v3xMHjzz+spbDgZbzgxjkvH9cxAXbKbZaH9pt+8uyqzhqoF5ROyx456jaxuXcuqEQAi1vqJqS3qJnR8hY7WMPOdbAvdOk4jGb3OLtyfM47tDBeVTc4FH+KCm/L5nbgGto9yOuwnaPrXXzcxuBc0iPht1lSCJ6C3QbeocdMoCLIBGVZNDiECzre2qoazQPMnlkjpAazTfw0HoGLI+GEaPbayE9bECNXrMFohWFDDULWpSyKROO3DplL8TgRzc8jmMi1Ca4kQ3e+71Qiu0m7hPCLkhuuMmOUr13xNTEeBeh3Zi8Q7RAXknO0doOu2lIPRXJhTkrXBp6Uyi2atFNcbuj7pWVlfJScc1AyYUGUlGnFIpFKiel79BX6BfYSubwtBjTNNlDzc8JWR39oqRNWZ6ULXZ+8f1fsV4qxT9TLjeu8gm5bfQubJ/PhPBEqSv7vqGbx92UuDrmCm/OkUZDfadopfROOQulCnt2fN9XCInSlV0ry/HI5XrlfH6itcbz23fst5uh1BrgAutm3Z8Pnm0rhBiptXA+H7leLszLkdPhDGJFDeB0PNh1PW8cn56py8w1RkI02o9245I6UWoXDtM0HpJ38LTnsm7suTJNk+HmnLncnLOcpHdvn4ddORNj4rZeOByO9iBVy3mPKZLmRG31UfjabnCOPtJNnThqqfSuXF4vhBRtOhtj+AMWghHPQ0z0EQwozlII9n0jBDd+nhlVUkrcrc/APw5vuAC1FPOnAmXfh+ZLBjXcSD6+NWLwwww/khi7SSakYUFatdFqvZtjTDozLtLNR8vsKYUi3fZiEnBisoEuxpms1eRA+oiF6OSaOS2LLYy77Sl1HIZU+kNCJCJEH60YtUpTI7/k1ghiP0cxzabEaMgywaQ2DFmDADj62FsKDi+Bpg510a7IfVDJB8TCOUG9ozuDkkhwdN8heIzcJtBNaB+DKQFEzc0Qhu6U3o272RzS3eguHa0LWWFyCRfEfPbdABFgus9clCaV5oJd4L0gzdEFelETqktAm7f9rpeR5Nn/H+reZEmS7DjT/c5oZj5E5FAjAIJodrfw/R+Du143eS95mwBqyiEi3N3Mzqi90OORuAtiRYoUHFJSACorMyPDXU31H5l8xAKt7IQ4Y01Xh03J2LbT9wxeE576WmDr1Fzpe8cUQwiBlDpBooZFVMFmi6kW6y2tKMnVgHsfe/ewp6xneInY0qi34Vop+uD0KO5ndgs3oT3fyNszD9MRF48Uf+LDrWEdHEyh2sZiCs/bM++Wt1wkIbJAtyzeY/dEmIT9ulNNZ7eV7IVuPbkYLrXweJy0dqIbtpo4H06kzwUuVx4f34BxxOnA49vIH//4Z/w0Y/0EpoHp5Kp/nmUEV9/WjZQLl+uNZVlwLuCMoSTdKM+nE9F7Pu0JEYb2UZPc4Uu9Se1A0QKx5Xgm56ohIt6rHbI2alMccd8T+75Ra2Hb71ZS8NGxlRsUrbDdr4mn67Pi7DK2YGcpWUM/GM/xkgvbpi4kjCXnrKYRixJGRkM3FFLQTFWtlBbNsLWakB5jxLnCul6HssRr1cuIkvubGJYyTgbvPdEHWhl9GHdt3tg6NWQ0UEseZMsI3JXRyRMnbBRul+soPdNzuDW1/Wnn9ThL0Kvb3E9qaUg3BD+zlQ26e62J0M2pgJk1Oy9rn7IbfnZnNaTYyrBgGvVKi+g3UJzqRbWbzGB9GBpMPwIPvjgHOrp5drFo2G9Q+bwJ9GZeiR1nJkQCxjtsBD97zMHhTkKfLCZ44sETTsJyaCz+QOyF0CzRWibrWIgsdOamrqmDCfi1D+2mbsvGBGKwuB7AWKTeWxb1jd1EPezRBmz0TMuC2IKLAtFquWU0uMWDRK1VFe0gsuEuqdLvCcFQTcGI4JqiCcYJsVditgRx7DsECZCE0NRVZCaDyYb9shN6oG4NVx2mGGQ3SDF0q+aq3sYHcm9st4SVQFs1RFm66hJshbxXahFaaIQaKS+VaZ7olxVz7lhTCSZysBMhKClVJXHyI7EnNJbHmYstlKpZlR9ffiJ6o9bIWsiLML154Pl5Y70Vsu8we0pNWv1shNQyh9OBtGVeLi9cLjfevXvL8XDE+YnaDd0qFm6NEILVzpsYEbH4MOOcOmpqq6OLXAdPDJF4mGgDfzwcjl+sqMZijaPkTAgT1nhag3VLvHnjhudf8b9c6muDgbarNpWa9UIQjwt6GaWWhroFBIOLjrhM1K6p/ABxikQzDTWxSvoEYTksxKjp52ZIBlUW1FVaKI19v2GMwgZuMP6lNqzVh/W6bohUXl4utNbYtnUQRHWc/f+1Osv/lJdBWdSaEyZoiKwxMuRBOsj0T0frOb2/y3p0wzNo9JIRFKSVrh5y1AImpao1rzecCSOgor7KebT5UYXt1Y3E9Naw3kPXwddGDShO3RNd7vQ33BMtWstQ0nijKbt+x2BUKlSBhhWDlU7NmikYR+McoDZC9M1Uqr7pDI46zl7JlY4C4LUnqsnYaJEimKwbdikdSQa7BPZtw18rIa7UfqVzo/mdVF/wNmHbDakXYshMfcPdCj0BG5SbQPW0Vah5JRiP7ULpCsZbO4TxbmKrGbwjbYluCjZAOE2Ih3CKTM4yLxOdzrbeyNdEd4J4g58WqnXYXqgCx8PCYTJM1vAwBSYTaHtlu+5sH1+QW+V2zQQJ5Gvmlw8Z2yzr80aUibJV9kvGdUc2O3VvmrtpVCbmnSPEyL7vtN75c/4za1o5vjlggmBnQw0Nd7D4o+YJPP3picvLM8mu1NsV9+aRl8uOWb4ilcbkGjFUXn75N5IsdHuh1ok5PGJq4HIpZEmsBm4k5DRTomGthTQ7rilx+PqB53phmieCOJpt/PL0UTXEU+C2rrTW+PTpievLlRAjt9uOdK1P1toHy229cTwc6O2i526caR2en6/My6xGid54ebmMpB1LrY1pCqQ9jw1Lk4dut43lMCAnFKJuAq2rTtjYIV2zXntyatbh9viIjZE63G3OgHhHA0LUzfdyveKXSDjOupCUwlYTtTec8QTvKa1ySytu9lrpjJYZhjCpuP6uoBHLnhrBT4joJem8IeWNXApmbJ/eq3vjdHrEeSUrrR0Qwt/CsJS7E6a31yi21oY4fNTHStfNT7p7lebctzraPY2oj3NWf7xzFivgRw95KwU7L+oBb0OCIwbTRX3Mren2Z5pKdoa+UZx7TfbuA6M0A7PU8I0+snNApGDdrIEDuNcN2VqL62qTtL0yO0dtqv2Skd1n9SdQLGYw4s7Ia9WG9xMlqxNDn+CZajo+TtqP7QXrwU7Qo0BozBMcJsskjSUYYuvDraMidG8awQmHyWNvoulCMhRQQ+tpZdQIt04wjlIL3nmcD+Q7K140uX0KM+JmwiEwnSfECeEciaeInS1+thj/HhOgmYpY8KcTxqvWKLdKTYmy34jG4UVzMSmNxzhzfjfRD42bvfL00xNLt8QOdS+c3UxEE8w/Xj4jFQ4hqvwmLOx7IvjINC2cz2c+tc9cLy989+Y7rvsF5w14zTQNp6gtmNHy9PSJozswxYnzcsYcwD8unJznc9NO+B8/P3OIb3g8HrhuqmLIu+Hp4y/YzTP1GbM4rqXSHw88PyckTGy1IcEix4nSO/PDTHpZmecDYfJYd6CmxocPHzBimPxoK3SBfdt5+/CANCGlAhb2vXFbV56eX3h8eOByeaZ14edfPiocnjRb4R6isW47MU48PT0zz0rS7HsavTbasfP0fKUNTfDL9cr89Mx13dB2UqeSJsy4noTWC0WEP/3yM8vhQH/tth/BFt6puqFW7Oz46fMHzcR0aiCptep23oTgA58/fqbR+PnzR3rtqsCQoZhxBmcd1sK2ZzqWl8uK9wZDGxbgPrzlnVYzLy9PhOApTTMinFNbdRsKgP/o9asYlveoM00eaq/6bVUl3vWW95MYeu1f/h1R62Af57r3gRiC1mgyJEJ3pg35IklyXkM/USbtjsPdT/ovSevq4DGoPAkzrIxWhbNV9P+LIVCtxrmpnUy933dBvHVOiZoR7mvMPSFdT4r712dE31T00eQo+ns1uEFwWT3drTLZxmtWgIsWMwGu6cbmZBDNDSN1aOe6Zj5awYvgXSciRAPeiuoMpSNFsUvTDU5UAtWLEEyg1ab4UlO9aC8dY2GOM4fTA36e2POObY7b84YJ8PnyjF8c8RiIp8jp8ch3v/uWvaxU6ZStUCQhRui10kthdo5oHBbHvibFuWxgv2788scPpEuCJKyfboQeWOyBbd2Q9MLD8Q1v4oOSTMUQm9dwXWZqUfYzTw7LQs1XHBM23aipcnyc2NdECKoDxIFsgqsOWxyH00KYvcJGB8cpHrjIgY8fnliCcDgEVuf5/LLz8uFnfNPis63O9NMDucJ2TZQFSm40DG3rmMmyrzund0dohYfzifeP71mfVyyO88MDecvUvfLmzSPRBa6XC/OycFwOPPbGut0Y9jUE4Xw6ktPObb3xD//tD8ORJqy3FWc9XWC63jifz1yvGpv23fffs22JkivLsuhglf6aYfDp0yf+7ve/Y5oXjS0EDUgYWQfOO54un/mXf/sXfv+H32vIh1e7JEZGpW6gtsKPP/2Ei46vvnn/SjwZDHlXr7odemqe1PHWaaSS8FZP5loz6ZaZYiTlxIcPP3M8znz+9EStCWs7W1o1oEYaIpV5jpRayCnx5z/9AIhyHHZI4P7K61czLIXhyBHwPmh0v+5qo2tnTMpx+r76xVE7VB9D0FpLiHFELg3pyjiHjbNf8FGjg7LXihgN8ggh0EdnSE112CwVV1TssxN9IA1ip5s7XGBf9ZXmtTJCl/omau2zzkHTAdvli7OoDgb+tTZiYEXKsgdg+F67sszqi1Xb1qud0aEEyF8E/xoHJhjdNHvBuq6J471hTcUOMXpwooEaXeEB0zWFXdskHU0MtaGkSfCUkhQG6dC7wbtIDAsNQ83C9XZRMDgXKpWtbzxtT3TXOb878/DuRE6ZeZo5PhzorSC1YK0mKqWSydedME0Y7yn7jq2GXuGHn/7En/71B14+3zjYA4td8BKQBLd0g2G5vG4XfA/MbsF2S3BHnq8rxkfsPLF3g6RM7XBNjW3vlKzxKmY3HKYZ3yIua2d56BGTLb550nOmtMwkkwaQzJWWroTrZx5O74nrCy150i8vyNrBaV6ADYHTm4kfyo01VxoBcUPyhXr7TTOE2REPAfHC3nb84nCo88QTmOaZ2U9s143leODt27eU8eepA6Tw3bff4r2GzbRaKTlrstO4uLzTJPWcE8thoVQVxNfe2fZEiBFrVc+skj03jA3aaHQ6a/+3C/peFhgqD8F5JcOO5wOP7x4RhFwyzh9Ie1Iyx8PD+YGPnz+Si37t82F+tQofjgveB3LKGIEffviB4/nA+6/fkbaEw+KNBv22rHBaDIHb5cKbh0e+/fYrjO3kvIHtOK/1MdZCrYl/+Zd/5r/94fd4rxdib4178Pdfe/0qhiVoPuV9kKhGahu/+dGnY3TD68M10Npgy9AWxxi146PWqu6Zps6VuxOoy5eyMWNUfqQWSvvqA78nVtiB6RhpmhwD9NooJXNchgddudUxjEHJ5AZWMUfdFu+/tlY/lFo1MQpNXtcnngzRehtSCd06BZWvqKXTj4eEfdU44gTjBxhkZSQMCTijjLXXv5ugQbyWjum6ZdIK3mqXjkU7iKQ1TNcEG4tiuGLQ3M0OvRnVq3YLoqVrzntcDEQ/s1cNZ+0dYoxsaSP1zMeXJ9Z6g2gw3ilIL8Iv/gNT+I1KRmrFOEMrnZYKVKGj2YQtd6Qars8rP/7xR14+X7hdMnspfHP2uGIxCWyxSugk9cj31nhen0EicTaYeebT5cLRe7q1SO28XK88bRtZgDDRcyavjYOb6Htnf9kx2dC2Rr5kZdZDYbIT2Sac8fiW+Wo58zR7prTS6mfSp4Q8FWZ35ml/prsT3/zd37EtJ9KPP5NnT26GsETd2qpAafggNFupZGw84SZ1H0mvuMmzLJGyV27XlXmeKC1rD874fLThgdYrxeKMJgNNU2TfV6zRylrnPHvKhDjpdjlNdBGOxxMAORe9mmrV0rnetDhPOnEKSth4vWxURzHgMmtG+n8nxMB8mElp5xgPlFZYDjMNDbswBsLk+eb8NW+/eqPJR+W+TWqcWohKQnVpzMeZEAM5J/3nvao0yBlkRK/13vjmm28IQXMYjocTzuvC0HvBWmHfLMF5Tqcz2oRQ9EEjon1cf+X1qxmW87zQWiPnzDwNFwtmDCFNIDJonYQPo2NklNjkXJhiHOLVPvpBtGrUdl39G2ixeut4a2njyGec1EhXKVDTNrn7ALUjmMNYQ6kZ42aV5shwhY/Q3+A83hZKr+qCsKqP7PIFFDcDW7k7FfRE1wDbux1IiSCjbDhOh9Rg1sG+2sLEiPb8jPi1O71vgtEt0zMkE6qt9HZEnTWNHwtOlIHsHXrWr0e1zPoQakIrTXkw3Pg9KWNMt/SmDpd9zeSsieLGB8QZ8lZpTXi53tjWhARLsJ6ehe2WyClzmA+8fLoiphNnj3fKvLatsPiJ2c98/OUjNTU+f3xmvSS25w2p0LNgm+H505V38yNOPPmWmM2EVCHtCds8xkS23Hjan2HamM9nxAeSZnfRnMfPCx8vF3rOnKcZ2zrmWqjXxNJmAhMkgysOsxscDpst5SXRpZDMhjtvnGomlhsfP1xpL5WjP5HaysPDG37z93+gnh751+eNbFZKDHR7pmQNS/HB0skc5gnxGhHoo6WZgl8CUiClndoqzjgODwcun16w3lFqZnKRp6fPhKBnsX4WdIBs28r5dGIe/mmLwk0hToSgJWOlFGrVgkDnwqsyZZ4XLhclnKyzXNcrxhlKywQXKWkj14KPQdlwHLOf2bJ25WzrDRscTSrO6yKzLAu1FGqrbHnDRTe87Q3jDTF4rX9obfCmQpWqnTlS1SjSMrOfiEug5abGE9ELU7peZyFO9KZd4X4Qw8PQzDzNzHGm98rzetMgkX5/8//Hr1/NsLyLzmH4va0HvjQpKhQzYn3Nvb1RxdG1aS+wQoqqqfLeq/jADImPMZSBSWryjOolv/zaunka0V7x4N3IpFQYQNGM4Q036qLpXTWNrXdsMBoK3HSrcTbQR1Jz7ULwfhBA+i3RxkmHVN3GEF6ZST3HHZ0RAoBuCr1bdS8hdweauoAc4EV7d4JulbgOSt5j25fN0ruxjA4/kDOdYMD0rvbGjiZ9N6Nc2SiQMh16Hd07RYbbwb4+oKy416itjvYg1dKgG3oR6t4J0RDtRAj6ofrw4wesg9PjgVwS0JmnidYqTy+f2S4bNMPt+UbZO04cVG3RTKsGvz6vF95Oj9rVUwxtb5hqkW7VCeMja8rc1pVH7zlMUbviRXjeNlLvbKPW2NeKj4FUKt55JBv63ul7xxaLLYYwT/S1Eg4etsZxjhzCgU1uPH/6GVNmfFNt58P7E+c/fM91NryYhAuC9I3lFHm5qhStNfWw+2BoubCcJ15+KXTbFVJB6E3ws8d2B1VZ406jSUOskGvWimijD/u0J0rJwzig7+uUkkqHnJbvubiQcmGaJrY94UNgXg76/mwdvOG2roiIstbBsaWNEIMmqzvDvCxEidor3pvmGlhNqJqnibAEJSmdMubihU6jm46fVVIUJo9xOujc6B7PJSnHIKNuxnbevn/DYTkQoqfsiSlMWLFkl6HCfttfr04Rw3pbiZPXoV4TIYyQ4FGl4ZwjBKcieWvw8qXl4D96/SqG5b26QV0tdmyNlt6UlrXW/sUXYr7gl/xFlNpdb2nsKzGkgnLFBsXpem/Hm0rX/TEsGee8NBCrCUj/vyxNXq17d8JI43i0pF66srpuOHtUiP5lIDbAuGG5lDp+bwo99P7lT+He8idjCzWjQKl3g5Z7qYdZiR2rp3gwryG/mmmp/xsH1ukwtNLxRrB0vAGrkw9r9P8P3oIGzCBVaLljmsX0MTC7/v560zCKWirBed08W1ddaYhD2C7klGhWsTFvAzY45mXm4XzEiuO0nHn+9EyTynyIPOXMllYOx4UlzEiDy9NVg5wbRDdhXMPPkbY7drkpJNPGo9QbaPpXMIFaO2tulKHp20plq5XLTz/z1sD58ZF12/h8vZJz5qta8Qa21ui3QttW3pyOhMkjWfDdv5JJU/XEs2K3D/FIS53bnz9R1meMibRcke558/Z7zLsja73x/JLpj8qae1tpkpmWoF9fd5gKUioFoVCxkyXMHusteStgDPNxgQL7NakCY4Q6hylAEZydtavocGTbN7oo6ZZSGU6yrhUnreEQetE6ixCnUU0rakccn8fWGlOM+OORXDJihZf1pkTPUGoInVwLp8MJ29Utd9dXxiXigmK+XQQXtLlSABuH0cQI83HGTeo1Z7i6mlVrqguaPYCFMEdssBzjkTIFrBh66UQiZSsYZ4hT5Hg4EqfIw8OJnDf9XBshRg80TcgazQQAh8NpOHh0/vy1169iWOqcMCN84q7hc4N5HeG+g8nTAF5D8GGISTUsuA0c5A4YakhwG4OWMSjdGHSj4nNglBjzyjSr1MhSch/Yj4Zs0DulFt0inaMWTfoWGLZK9abT++sTXRlCxSz1gfb6G/zypRsdooBO7QFya3PkiKJrjMY7jW8z3gx8Uoa/XAmdbseT1cpgyxWXdKPr21vGf1f3kkM1pr4zBqMGXxhBFdxyVxxYaB3pKiOiCi1VdWwYM5o0CjhHy9qr3a0K5UVgnmaWaebx9MhlfWG/bdSWOT4c8Cbw+fNHujTocJy0y1mq4fayMoWFOS7slwtGhPPhkbo4tn2l7ZUpRmrqTBIxTUXMpUFujdQbqe1076i9stVCf37GzDNhmji9fcvL8zO3nKE2ivNk6Twcjny+3vDBwn6jXBP1mvnq+3dc12ditJziifq8k1n5nD9iZ6G7FR8954czpz98zzo/4O1E7pGP5YbrkSgNQwXXyFR684jTTYuawKsls0chzhFrKi0J+7bRkr73nHWEORCXqG+nkf/SBdZ9R8SMLVH0HMXw9HzlfD5xOp21+Mxo+EQuhZQV+zR3j77Xy0xEU8aNVyWJc46Hh0fevn3Hmjb6fRPPGZwQpkCTTioZN6kuspbRYmplwEwq9Sm1UKgc35zxsx/RafWVAKqi9sfWGt2DW/y4M1WbW6sO4OgtIUzc1g0XA8vxOFx1lst1J0SLj4HStEDv+eVC7Uo6UXQZizEobBf+Bs5wnVeKk9x7iO/ES+sd09Tn/aUPXIdrTW1siW4wWnyRGo1v/H0r7aJPLdroxBmDUqHCQfQ4i+uMcIy7pGm4anrXPmMZp2jTpB5E7rkYBOfYqxJPd+dRExmYpdZWiKikyYxqjDtG+UowjZNbB6gZ3lYz/K8q13HjqSyD1On36CkL3egTGofGs9FVZF+LZk1ScYpejMwjlWWYZpCqEKxumGiQxhhANI2ss9Zh0U73PtJanLGjJhVoes530T+vOc68f/eW+TiTtg2HZb3eeHg8c/n8Qu0FFxznNw9cLy+0s2r1ggtsa2KtCWcCrYhiwc1yiAt+VvG1xdGS4l29dGoSmqirZW+VvXeupSAhkHpnmSbi8aDMby083W588+23xMmS9x2plTlG4rLgwgRdN8tIYPt84/HNiXy5gYs8XT6Q3UabC1kabREef/uAf/cdV19p9cbeCz6+4e3xyPrcCb1ALzRTEJMozsEU6LXhoiEcA252uOhIbafURrABNylEY6qBqlARFj3hraNXJeNa0w0xRM++J1Kq/Pf//i3H02l03HSci8hIEq9DgC7oZyCMMInWNRKPsSxYa8m14kKgKYCOCx4fvQ5rI6+25G46YYl6/aDBKuLk9TPonadKI/eCjZZq20iVasPVZailEZwhpcR0nHSgFl2U4qLYdN0L67rjjSO3ytt377Syumb1xj880qlgGillTHCsm7qbukAuCRHVV95lVX/t9asYlqCDyXs/itv1BKg5K9PVBuNsLXTVSjo7koEGYcOd0R5D535mdxHs2B4HS/LqOTdGcyTF6Enf+z3Kl1e7lJ7ijMFrNNnbO+7RcBoUrFhiCAH2OjbLhhs/7r5d6pqInsqv+tFRFWG+FMYrXqNkjjVqB+SOSQ0cVOB1q2ymEaxHb2wdlFhRiRANg2islauYEQx3j5ijC6YJcu+abuiAFKub2khlsqD9RX5snk2TnfQJrz9j7/p9WeaZLJXSiz7kxJD3pPa3yTEtR2rK9FbVKhkmehGO84kf/vQT3333HdZ45njgZb2y5Q2awzSBLMxmIRjP7CasGKIL2K7lb7UJ3TqwalFtxtCMZVoWeq1UY6jAfDqB99jnF2SU3cVlUQzaGqbDgXA4Uq5aA7zYBSMV2Sr0xufrLxR2Ssx0K2Tb+M0//I7+9YlnSTQ3Y0xkNgqbBG+YpOLrjrETYtP6KAcAACAASURBVPVDbH2nROhJiAfF+Uy0EPWB5aId3w+D8QIdwuwpvWC9nqrBBH2AVkF6odTKlhI5acjtdd3owBSnV3twHWfv/TMzTRPTFCmljs8BY1iCN4FlPrKnzOG0cFtXfHS44KldF5Y4BQ1RKarICJNuvTooGXjmULRYoQ8IyUSLDQqku8lr/0/XX7vmymW7cno8YaPTzbKrs60WZez9HKDCy+3KHGZSzVhnqbWwxIlurNbr+oj1Wjf8/v1b5sMRV7x+NqSz7Sul/Bcmpf9nvaw1hBAHPqgaRh/8GIBu/GUGmdDIpbBM6nm9+8Pv2yF82VRVu9ZfSSHvFHAutRHt6O0Z2GcfYl69dHVwl64BGcaMrm5R+dBpPowKCyV/7thpDP5OauswG95xM7zWxnodWjI22dc4uAEy3nPXjcPgcMbTu6GUTvDgx8DUN+F4I/quYbr+/gTvX05wo/InO/ItFUKSV3LHiEqJpDZ1QXVe2y2tDI/7SD6+9yJJl1E/jP546Vq5G8J4GOn277w68OdlYo4zYjvBaEhtTRqwwAgmdjj2dVe7aW58+Pkjx8MBqUJwkRAVu2sNzYsw0PJ4QBSIfkKSMrkuqFCKrla8kjM4Q+6dw8OZDvzpp5+Y54UwTdr5FCPSO9Nh4mDPRPTPqQqczm/44d//lXzdOJ1n2AvXlxeu6YnpfSDXRHw4gnSm5cQqlSJCmB6xreFNp1FI6xXfIcjwQZtGp2J9pRiDmwKuO5ppVNPAG2Vyg2osjbH4aXxcO2xpo/ZK643UO1IgJ43MCz5irGPfM2IstQqXy0qKBR88yzxTUqL1TgiRWnXg9cEkW2c1DShGzUoxllwy+77zm7/7nnlZqDIgKe/Y00Y3XWsiakKs4CdPRQkoeR3K+vbuRnFNGTUoWQpdOt569ppUNhQCznquaWV5PFJpNKOVLALsNZOviX3dCTZy3W6KT6ed03LWCLmcqFXA6NcpaH3E4XgC9ErUa9UMUvi/KM/yP/NlxklAKcPHqQxyFaGbQfbcA3fNqP4Mo+0RbXm0zg6LY6TT9MQoo6v7/l0a7K10wUb1hfYuoxK046TTELzVGCpE7VA+BD1BxzdcRFlw5zVTz7uxaRqj8WV39lo6zoxAVfE4H6l5xxv147Q22vO8Mt9dNFhCS5k62uNgxymOuoWs1sw6Z3WrdIKJhmo7xmi7onVmEGM6GDFVNXFuWDtF9ZTOgRVNkXcKgVKLYMXp0OxKqouoMymnjJ80o6jXpsEhxtDQATsFT0V/D4KeUsYbTOl0Cj7qG3PbdmLwCFp8T+v0XBCrwvDttpK3TG9CTZXJzSxxpiOst42OJxjFIRENRvai4n3jDL1WUi10Ixg3HFyT591XX3NtnTVlPm8JWTe8dSynM+RM7ZUavG7RKWFL5zwtHPzC0Uy0y8bL9gm8es1fXlbsNwtfff9bXj79H2ruzDjOU+B5v2nXT5jZy6b1Bw6CE4T7xl/UHhsttVqacVQruMkznWaaqZBVpmUE0pawVXMbu3StpZ0CdSv44JC9EkPUrcs45mmit64s8hSGnKiybjfW28a8HLDGIa3hjFZK31sKStYMBh9GyRlohme0YFXW47zh/sbZy8bleqEbbRi1TnuBrLfseVd74dDTej9xXV+0lsRrnmlOjdo1oEaM0LoqEkrNLMtEaSoP7KVr9iud2gvWG2rJlJqY57c0qeS6Iy0M27SqSFSHZLHG423A4PB20uhCMcSgov6/9vpVDMvWGvu+qyA9hlcc8jQy/EBFqoKmKBuUZTZOhex0wRpotWK9UzzHmNHVoyykcfcOnVGWdWe+Bp6orC6vPlHEjDelSoEQ1YW3UfMJRv8uXfE+EcVHRDHEe12otQ56pddGNUKV0Sw5fn/RO1IV4qSJKneowRpLExS7tB5xQU/raLChYb1QjSYZSbA0b3Wbcx3jBOu0fsNbzSbTGl9l4A1KGKnvXLCtU0vDd4fxXqU3ome3VLUgqn7Va+lbziCKbxlrtRQrFwU8g2OykSIVJ/B4OGFHC+fl+cLxvGCiDhCscJgXStM/n9ZHGr5OW3rRPheHp24V2w2neUb2oYCwClO03OhZnUe5GnLrw32i/3l4PPHuN7/jWrVJsVcBnMqljKF2TVPvRbhsK2+PR+Y4MXdwYjB7pb6sXNcntn7DzYZkM8f3bwhfnZnOj5SfYVsTyxZwBo7zAWsM11Y07i02WklYSQS7gBdc6xQK1nuNrAsH/BLowXBNG1TBVIg2kltRUrM06jA/eO9Q/lnwVskTHzw1JfDqOPNOlQgi2hnuvCe6iPeaNnRYFn7+6WcN1QbmeR6JRaLSpK7nsy7rlRDVuWOMSnqsd9hmmeeZ+TTzfH3GRz/Cn/UCmeeoJoOUWK83Hs0bWi9YB6nubHtmWRbNmq1t5EFA6dprlJtKpT49fyKYoAV+VpgPd+xSl4GHN2fmacKhMW+++5E+5mm1UEoB8czTEQSVJwoI9XUJ+2uvX8Ww1Jewbyu9NUoptKpxUjnnLwJxa1/1ltu2D5+37o2taXBob51WqprtrXn95wxpUO9fQkO9+/LlaxeZ/joFJWG8cxQxtNGVoyp/hvsg0vP2ytKPX0RZ63aHisfHVdRXHsJILbKG3JvCB1ZjzozXXub2Kj8yiA0MMyLNOIyVcW47BcVdp1lDHfYva41uo04xW2t0WN7JISWSHKZb3RSkEa1itg2wIZB6UnfOwE6NA9vtYPwrvd0tmSor6qO73TsPzo9ADMvTp2fefPVGh2vJmGg4Hk4E76ilYI3DOMf1clPhJwqL9N5JuQwnkVNgQrrmebZGcJE6ZB4W/f4GH+h1+OmHtMVajaJbS2aaFjAOoRGC53g4cLmu1N6Ylpk//fHP/O7br5md5xQj+fmCa8LXj2+oa+JxPvP8y2f1r0+wbju//cffEX/7QH8X6d0Ol1aEbqkp0V1C3IQ1nUOcyTSt8jDaE0UrGHE4q7ZT4/Q8bVKxXrWza1qZZOa4TPQCplpy3TDOkntj8XFYDPWhFZdJIYlm8D6SS6O+pgMNOdrIdg0xaGCKda/FfXGaqa0iVV1VpVetEvHx9dLTWt7hnBkyMus9YlWGFOqsMjmrCpDgHQ2NSqsIb7/5muPpyP/353/Hz5HldBheOM2MraNIzFmnOZZ55/vvv8dGS6gBh8qOKhVnHVJFe6yMqgfiFPF4ipRByOrlaq3ndquDSI60ll6dTiLu1Tr9116/kmEpHI8H1vWm6v5atF5ChJIzxiqGKANDdNZSipIHqrVTD2y4h1UMfaK1lpaLhnWjjJ61d+G7+rrb0EiqhUoLxJ21OAYDPFKDNFmo07qe/c7qGzb6wZRbrVe11o7ysiEbap0R4o4LkVYSnXsthdoojYs0EUoXDRxGnTI2aCI6WMR6utVw1W6GbtM5xBu6U/ZXjCaUN1E9ZB+d6NGoRlN6GeILMH4MULTXvDShWMG4gFhRx5OgepS7AaArc+qsgvBmALS1d0LwxMMBEywfn5/IuXI+P1B6xnkNaBUzRP1i6E2IIeAcbCVRRh3pnS0NTnV5JWUgcJgmqje45rER1Q4WlZsEqxbU2oRS2rDAwe22YpzD+zhIw4nbbYPh4tjUVkUulU+fnnn/cOTsTjw+vif//IHyslFertgKe9q4lgvHb098+7vfcX7/nhQMOK9RegNbtoPwwlm604dQc4417VipeNNoUqAlrPFY0WHpg0rdtrxjvOH4cMQ2dQu13rUCoQuH0xHXPb134iES5wnbLRQlTUrv1KE3Nlb7vOO0kEtWjA4NvW1t2Gy7vPbftC7EadaFwtph+rCvJEkIkTjN6h6zVrFxa8agqxyWyF4y02EGZ1U1YQ25aAj2fJhJJWM2/ewcH040hOkw8fT0BEAIelmGObDuK6kmpoOe4QQoqWC6UajNqLDdWa8yq2BJNZNrhg6Tm2G0xoYwa4+WD4CWrJlBxPZeh3b7b+AMB9hHUdnpeGTfN7Z15Xw+vzoT3PCMmqG+7639xQBlkDODULGD8bZWvdID67x7uUU6wQf1gBs94a1FJTOip4tWRPThgR4n/XBGlqpyF1C4QHoZ7h/dRu3Qed1DBhRMhnXL5C0zeYu3EHwcwh6N63dubIJjsGJnjER9WMQJgmBjw4SCicBisQeHmQU7O/wMdqrYqBtU9B6PI5pAIOBMwuGx+EFuOWzXJ22PRgNwQTHdAQFYq/0ntVSmOBNspOSEvW/xXbDeE/0MYvnwy2d++viBb77/BmmDaIPRbKlVG84GWl1Ztx0xQpGmQ77rFt6aYFrDIgTjXzeI4AJSDaVk5rjo4E27wizWEKPn+PCOl5z4/OOPiAhv376jlIqpnct2oXRhPj/gSqfkwvPzC//z739P2zcMjnrbue2JN/HA+umJ9edfOCAE3zg/PvDtH37HzWc+7jdqtPSLxdmAoJUOB/sIbWe9vMBpIdeN5z1T3JmeG9IK1mp7ZLBQe0UkE5zXXNMRjNKk4WMAMUjWcOliyiA1DVvKvD0NKKh0fW96R8kdnBsh0qIwjnN4IsHGEdCrg67Wxul0YkuZ9+/fY5xnz7rZ+RjxDkqt5FopUrExaMarhW4FHyyNRpxmctM+qj0lvVK8p5tOqhkfFCMsvXA8nQkxsJXEV6evaVa43a7YoKc8QErpdUgup5kwB5Z54fp8ZT4t+K6ftZ47NMPTL0/gwE8eL55ehHRL5PWCN2EE63ReXlam6YBeMSpSN8bhvS5QfxMRbXcT+/Gw8PnTZxjSFvVca4dGb23YIHllxo3REF5n9Q2hm2ZVQNzdk4C6ssd8kUkwAgXmGHHOoFNSNZV3h4LhfsLrdtmbDlIT/GABJ00Sum9Lg1W3Q6KkpLWmRxv0fPchYOPC5A29JGSc67kkfNQEn1obvVTm2SGmklsn5Y5vBTcbvAFjKpIaYg3NWopVCUkLYELB5orkG4FE8IVcd6hXJrdx8IncNiwr3u7sdcNsQt0bbWuEPSC5YXbBJYNJGnPWm7DlTWtoq57pdxF9bxrYUEvh8nzBGBUKtyZUOga16123F3JL+MnRRspSo2tHzpBTeR9UCjasloIhholoIr47tpQ1aFZkuFIMS5xw0bHdilaetkYtGRsCy3LgVlWL6Exn8o6eC/N8YFtXgvf8+PPPfPf+K5bliN0SRgzPHz7RL1dcF25p56tvznz1m28IxxNxLvDG06Ja+7Z1Gyeu183WWjCdXhLWOJZJK4vnZHCouUFMwZp7mEmn1IQJjThsgHvNBDfR6ETn2LeMs469aOhxk46LajXsVSitIEWQCsFEau/k0jR71bi/2AI1J7J3CHEil9G/HSc6DLJULZE2WMRqzUkaTiJVOjhy3sEHNXd17YHHGkqrhBipvdHQa6IZAavfx/vlU1pV9YZRd45z9lU/fZyO1FLHANbNs/fOfJzpuZG7Wl576yxhZs/b62DGaoLYXf9Z9oapDeeEnAvLou9LGVeVnuVK9qaU/+qY+nUMSwBRksHaUXbf6j0mj5KziqFH0K403ZysMaN/W+s5X7t53N0jqoP03rNhRhjvPSCj96ZMuegbyYi+MYwxVGcxpWKt0d5xrxttKYVpmRWnHClH958LGdIbhFIyYgOIpRq1QlqxRD9poEUYw9c5Wq1E65inmbxlYpg1R1IaToTDFFSXRmeOqsProdMDNIdqeKymuBAMLoIPQoza2R0QTKvEyYxcS+HkI4sUDm7CbUXJAa/gPcVpkHAF4wVphmw7WTIWrYrwwzZSh0W1N6GIlkodlyNhmrQmJESqLazbTc89hJYyYmHf03AjGWKcSH3HGMc8LTjj2K8by3Qg+AjN4EPg4WGhL/D84ZneGmEKfPr0ka8fv2JeIs8vK8Y63r59y1obJWXWLeHnA8fjCY9hK4WWE8sUWS8XPaVT4s9/+jPucuPRB7ht2HVjMXBaJnr0/NtPP0D9yDZX6ifwD5FmG/O7iTUnfvnpIz9fPxAeA+ti4dC41shzCZjDe7YWmYJjy0UlW73gXcT1YUE1lefbMzZYtryxp4LJKiHaLhuznTFiqKmynBb2mphKwjT9MVTBiMPaTtkz120lhsjLywsheqyzbPumpM98IKVCCIF9z4Ch5Do2Liilst92FYl7w+V6GyQrbNvOfJy4rjfiIZJLAaeb7B0HVthg1FjUhH5cDLkWGh2cYT4qS2+HB77WSm2aPGSDpW6V6TDhJiXxvPVUUbacCt6oznMrO4fHo8Ivw27cUBegDZa0JU6nE58+PfGP//g/EFElyl0upVmXWlv9116/kmEprzik1XVQsQu029ugOXx9DKI28AWxSjwoVmiURbaGdt88GcsPStwYlBxSIqjBPZ6NuxddazpzV8+zntR6po9bX5lzVNvJwBfvNkRrDcFalcq0hrXhdQvuTXQY146xWoehGJJhjoqjlJTxxmI6mC5aJhY8657wITIvkd7ziFpruHF+dgfddZVr+KGxtA1jOtBwdlTfjkg2Z0RJky64Nk5uASuCHxIrIyrRsKJ/nnfCyI2wkXtssmN43I0SP9MUWc5ngo+6tbRCt8PdYyxGLFtKNJRAsN1iJz82eYd3friZIMYJHwIhzlqq1jTcxHnPN19/w9VfydeEscKPP//I7A/AzDwdOAJSKtu+s91udGc5W4uJE97Auq9grKbcjLbBaTlQ151///FHvjmdeXw88/vvv+eHf/t/+M3/+AdSKMijJc2dehLMbLARWmx8+uNnDocDh/cHNrtBNFxL5nx6REqgT5Eff7mS08Yyv8U4S5FOK0nxM3/AGgFT6VgOpyN7SWz7Rls7Hs/L7QK7UG6Vy/XC7GeeirA+3XB4WirktbJeNoKLtNLpTfj3P+rnQnFyZXylwzIfWNeVWgs//vgjT8/Pygo3lXxhhjMnWNa0gzP8v//2r7RewcF8nJEnFaE3dCu+3W6IhZ9++kkDqJ3ab5XAEkIMrGnFGEh55+ePO84aQtBRlHN+zV/48PQRrGpK93XHGz+yCxpeHN4ETssJvOH0cOL89kxLnZ41Tb3umn4V58i6rhyPR8AOF1NQnbTcddL2b0NnacfAE9HUmcHnvxImZmyPyAimHQPODF1jH6y4DAJHMbKONdqX84XVMK9J5UpU6L+rcfh2eM2DCreNisApZTAZymIqKFzp4hT7ET25RJr2kvQvSel3sfr9ZFRWzqkguWsVZx31GCJNGWWjG+c9pspZT4xOU8lbxYwN05i72Hd8cWIQzd1WOZDp+vdRZxru2C2Ct4Lp/dXFc09UMoMF16/11QQ3HiZ/kereNTNSTQQamfTa7T7cRbkUjFerfK4FnJD2jJvGr2pUCFxq0Ya+jor1dWziQ6DUotWmJIzXsjipijXOcSIEj8TO45sHPu4fqTVzPJyJ00QWIbXOL5+eqK3jSyHvG00FhASnpVuHeSJtG6VGTdw2YILn9O4NX795S+qV3XQ+rVeOXx/pTtPA4xQoNjPNEWaI3nM+ntSK1xtr2TA+YA08PJyID1/xw7VhRD32pe7YMBG9Y2saozcvAWiEKfL49pH16SeO5yPHN0fyS2Z6O1EuBfPG8Md//Xfevn2LE8fXb75ivaxI7VD09HxzfssPf/qRXoW//8Pv6dJJKdGl4b1qUlX8Hfmnf/onvv32G47HI4JQaqb2RlyiEqzBkn/+CeMiD6cTYQoqWHKAV6zQRUeqiZf/88zDuzNhcuAgVSVoS9NSM0zneruw540tb3hvNKhjXHy995FtWbhcrpSU+eOPf6TsBamCVOH2suLxOLGUvbJfNo7TibxnxTGLwTSN8qt7Y7YzeS/s+86nT59Z14i14zMk90IzM3iN//j1qxiWyk4VZCSjLNPMNE98/vRpaPvsq9r+NRx01DfIEJrzFwPU2qHLFHl1nvQueBSD6V0zJL0PSrAMdtuFsblhCS4MwqGh6eTooBiWQzEqF2q96ok+QjjEWnwVStNh3+3QbhnDZb3x/btH0nrRTSw4Zu9Y/MznpysmqD9bTxiDtZ6UC3XoSrHm9fyX145xMzRwIyrtXpCmtMfrX24kw7vxz4wZncvjPLqTCvrz6l93twTcZVXqhvhLjYVzRpnc+4C1hm1En02HSKVyTResgyKF2UfuxBgGeskqNJ6MMuDGDvzYIRStPU2dlZ1DPGgXeIZbveGDx8yw58q8TLRdffrOmmG51IFvpdNzouwbxEirBRsCxjrOh5myr0iv1FaI08Tpt7/lmnZ+8z//gecffyA7MHPATQFMpZVMWxtMHSOeVjveaALVMk2EYPHxQF0eqOHMKlEJESvj3O54q1heLYllOnPNjSk6zscjH3+44pzh3VdvqbdG3xvTcaKvncN5od4qx4cjfnaYqtjd6XTAdsPLpwsxeE6nA7UUpjANqdQL7969GQ9mIYSJ9XrDh4B3jjePD0zTpFZI0R7vMAXKHPDR83x5prbCV+/fspeEi6qrFAu57nQjlA7bdqW1Qs6J0+OJ+RCx0ZFKIs6BsEwQ4Lq98N13X6sm2inmfbdZGqtStH/+3//M8vU7vv3mW2iQ9wwN0psEFd6c3+Dx/K//S92bw1i2rmlazz+vtfYQEZlnureqpW6jPaRuISFcJBzAwUPCQgipHfDBw8XGQWoDQTsgPDBwUEsICwMHVA6qorqLe8+YY0TsNfwzxvdHnEsXnNvdpZZuhZQn8+yMjMjce+1/fcP7Pu//9r8Dnev9lS8fvqQelbQlbLdYHGnL/PTdO7797W/55ptvAM2+RzFx6E6tWQqc3/PxB3JYduYpcLtJMJJsz6RV9t79v1rtlx8v79iXM2OcoDIbUWLgb02cKS88TEGmvYA3Giml14VMrZXgLD6c2EbwUa8y86z9JeBCDo3af6eKGi14ayLBlcNa5q61Qx/kHuj4KZBawwTHPE1cLgtPz8/UWog1M5+v+GWC0sXB0mA5X1hzIrbEbNyAphfa+Id3LdnYykg1Kx6YJvD0Np6LJr9WWg4hxmxWHJY/AzlKF6CB/EvFQ97kNJWKlxdk3cuTLr8Wyot8/d4atTe2IgP63DOxHmA64eR/h3bPIKcHrLEiM1ECZ80pC+cxFyGBg4RLNcWkPMF4nm/P2G7osVJzIUxeZCjeYBQ4rQnGcp5ntsdH9m2lG811fktRiiPu+GkedtBOTYmUIs4Y1qdn/vibryklY4OjW7EjCmFno3JwPp9F43rEAbPQGKXotdJ14/565bHLzdl0QaqhpDPKKdFtoNeCwhL3DaVnqXJMZznN7GnjSAnvAk4Ftn1jmU9MakK5AeD1Vm5SVYTqthtxu0TpllywhODRSlQatRRSPvAusN6eyakMm67kVmkQyVNVA9abQUlURWui/6xN5vgpRUxSsoBavDjLzMSyLHz99ZfMl0XcPKrRehXCutWs6zOPj5/QVqENpJqhSSyyUUZujk2cP6UXTpcTYQni5NIiQg9hIq4HXXcen5/Y086/9Hf/FcpRuG03TJdAtBQTulmO20HXjWmeMcaw7zvLsuCcwVpNKXFkf/1yafmHcViO+VRrTzy8fWDyntt6Q9EwWsK0mqpozM9LFK0G+1E0lbLTbvSuRpTuIKx3BvBUhOuqiem/tbHZM0bsVaWgjOVX33zJ9z+9o8YKuWKsRuUhL+/i3q5NZpd2iHz7kCZppbHes9cMw4kwzhl6h1QKTXnmeQEyj0/PpFxItdC6Yt0Othbx1vHF269JsfHTuw8UDSoYMAY/WaqJNJPEvYMsufSY3yo9ZqlqwDaQb/7zxv6VQySHfH/Z44vL58Ujz/j9AaN/rTBfAMyCuFQje0VuHlrL/C9tiU/rDeVkUeQn+/p6pCxUIe9l5KAsUgW1whEl36d30MVQS2ffDmhScXud8Hhm7SF1vBKLnx2LO+cd8xzQRqjswVlxtihwRhP3nZoSflmEuN/hWFdxvKiCGpAWpSDFg2+/+5aHZSJMjlILx7GTaiTVgzl5dLA0JTpDNHJjtwbl5aZhneV2bOgp4Iyi1YKzhjjm6a1mlAlYI6+torNvG607/BSok4LYOZJoc3PN1Fx59+07uR4VhHkiN8mqUU1hrMWZIPbH8X0+f/5EmMShY7V9LQ6UUq+mj1IKRSEOoFIwXsZMPnjxfOfI/fletLC6E+Yg2TrOyNwTsR4qDc5biaGNgm5rSQ7UXCvawJF2pimwRzEGnE5njmOXg3v20jG2RlONPe58fvqExrAEARYbZZnPM6oqUo4DKDPAwl0Kmlgk2EwBYfa8//EdfrLc3V1Z5olaK51GLY1tiyMg7ZcPS/2Lvwsopf5LpdRPSqk/+Z3H3iil/iel1J+Onx/G40op9Z8rpf5MKfV/KKX+5d9/UsqbTmtL8BMtZ/KxcX+aOQWLV5VzMMym41TCUKj1wDklLbOq4+cm7fdop15aSu2MxLWO+FixQBrqqDJTjQLQdbDlZ6zPzEtHcWBMpff82no2pM1+deDo4fAtRSIjZBv1upl/mS2+tLzaWAGtYrBmxqgJzcTkL8z+guoOZ2dqVmxbIuXCsiyclhmjNdu24qcFv1xQdgLtMNbKYoABT1WQaSjnKEhErzYdpcUnEUsBI7q3Xvugoo95KeLweTlXRXgsxOquRIAda0P7QOmKiqFpQ0FJXPAAKwhAQVOqMC9TybxC+5XGhYA2Er6ljSG1ClZjvB3yD0Vu8udKa6xHYo2ZxzXy6bbx4+MjH9cbRymCh6IzBUetmX175rRMI+un4UMYBJtMiYn18RmVGx5DXndm7dC1o1tDdzEptFbZj4318yd0rczWYA1Yp/Gz5+Gbt7jrTHXQLLLhVwI00WMut67P1JrRRlFLopYErciMt0k1q7VENHfg2HfOpxOl5uFpbhRkCennCbRoGJXWnK9XURBM4RWbpp3FhQk3BWxwGGdFuO0EZtJbF5dTV0LxUoYwzewxoo3Fh0CYJnkNnWWPkdu6EXMm90aqFe0dbp7ItYr2slT2eLDtG3RE9tY7uWRKzSjdKS2T8Meq1gAAIABJREFUauJIO9opum4CH5kdNsjNv7WCcRrrpMqrNeO8ofXM3cOF5TwRJvGJT7NHa2FQtlZx3gBVZsd0nDPUmum9yiLVKrTulBaZgiU4hdMweYNVimWa0Mpyvd7x9Te//qsdlsB/Bfwb/8Rj/wnwD3vvfxv4h+P/Af5N4G+PH38P+C/+Kb4+IImO8yQJb7d15bY+80e//gZvLV9/8xW//qNfc7leOZ1mjO7Qx6zQQm8FoSDn102z9walGnaU+6LPFFhjKRGj4dhXtIZ1faK2xHHc+PT5A5fLQhovWhgvSq31dXMmC3UhB1nn8F4uND+WUy/Z5+Isqq8Wrtok3zklAUAY47HGcz3f42xgDgvn05VpPpGSHJbzcuL+4WEERdnXahIjbyI/BUrO5BRH5K4eANY8DieRNZUqAU92AA1QQpB/0dTVFxcSHW0kdP6FFC/QECub9y5t9osioLUXdYDMca2z+OAJ3mHdgBfTXpUIYggwr9vPl6WR814seM5KeuR4Hl/afNSgayP2PescSotY23uHNkKGSjmybbdXI4LVsvGmyVxRlUrZD4K2WBQlJmbncNpQcqK3ynmZcdqQ9oPPnz78bHQwCuMtqWZSK2A1YZ4w3tFR7PFANOCWmCIfPnwg50JMaTAF6pizv0x4+5iViQPKGs35skgcQrAE70dcSsEHN+C6VdrjMQJxzg6kn4yAjhiJMRFT5DiOUeWZsdTRQwnSJKlRa15ST6uC3MRnXnsbjIXOx0+f+eHHH0kpE7N0Q+LaqqOrEOuvNpbtOERLbKVw0CMTSKJfCrlkmburjpvkelZWE/OBtvJ4rpl1X9nTPpZCGhfcoMNLW6+tpnbxg+9xx09e8oWs4rbdyDWTcuLx+YmfPvxE043aC84bnm+PPD19JsUoB27vWGMxxlN/z9jy97bhvff/RSn1N/+Jh/9t4F8bv/6vgf8Z+I/H4/+gy6nyvyql7pVSv+q9f/97vgdawxGFRuO9Z9t3rHXsKbOUhraer765E0FsKXz/w/fUUojxYJoDOSe5IBQcJWK0wjhD8ML7895xHI2UIvtxIJvqDgFuT8/4YJiC4vnpxv3Dl/K9n3fCGJQbZ17hw602aqnYk+d6OaNbJsed/djQ1qF0lwPJaKG0vJB7asV4h3NOtsVdbhJ9tA6ik5XhtrAC5WKwSiATVnnWdUVNiuIaVjvCFPD5wAQBufYiSEuttZCnTcE6SyCQ8yEbTKUFkIAeLfvPzE7UGHEoNVr8l+XOzz+/HHraqL/UwiujmYJnT5kcI6g2XFdaDkgtkiylEAsbneC95K5nIcA4K3bKNOhK1mgBEI8spOU0sVjJYLHG4jCo3GkeyJrSMlmA9VitWLwnJfES0xpp3ymlYYOn1SKHqJYqY39aJS42GHJMPH6OPDyceffhPfb8NX4RWx1GdLClFvwkudUyj5Xq/nx3Ty0df7mjHAj0Y4yHZDQkC8GUDnAerToxHnLzqxLMBdJCskNRUjVZ7djUCshyMdiAUQbTNOvjyul0Ju1JNsxKrLm5lNdZvlLyWvSuxu9VXAis68aPP/2ItoZPnz+SShqcSQTuqxXf//gD3737HkbHFk4ePznefvmWt1+9Id+qwIFb5fPTI7llsBBLxM+eoMRKucedr6evUWYsA2PEBsfleubx+YlK4/H5iVQiHx8/yU05Nx6u9yKHQoILXXDsaWc+LyM5AMIs1wUV8LA+bbz7+I497fhFIk785F/5EkobwjRRW8f+stvxn3tm+fXvHIA/AF+PX/8R8Jvf+bzfjsf+0mGplPp7SPWJd/ccx4G1lvPpzDR5jmOXikAbMI7r/QN/8id/QuuV83lhOS3c39/z4cN7Ju+x9sy+b+SUmGfP6TRz7JFSjrFlbVwvMyHcM00TOSeOY6P3wq9//RXbthKPFW0cj0833r75Ah0K3S58fDpGhrjYpNRYIMWUWFvlNDnCPMk8JldOp5nlKGxxSJqUVJh6VHNGG9xwGKEMMWdKEcLx/XWmqARNo1XHdKFRO+UZaElZRl0mUOJ/Pr+5sLGBLfjJklSSqlc7tMqUFnGMma2x6GYpRWGCp+UyLJ1mfP2XpDte+aCtyxJBKamu9AuP9gWA/PLfNmjqCoyBefaCBjNSEfRRIS3zJBlBRQ5MZxzOOoHTjpGAstBL5zTPLEFjcKhm6Lnh0LhuMLUTgmO2E3lNFNsGlb4OX3yRLDcUusv3b0Vml+2I3Ls3BO/RVhYL2+2ZvB08PLxBtypxrgGU0fjJ8enpkUl7emikWLAnizeB+7cPXK93vPnyS2I6qBTC3RXdK49Pz3y4VTYiHz5+pCPV95YTpRucXdhrxjjPNAldXA2b4e22spgF1aTiL0UIRkrB/f0d3nvIMm831opZond88FD6KwvhSAfHukOXayClTOmKp9sq1uLj4PPjo3QeXuIbumqk9SDmA7Qi1oSfA2EJKAPBBj58+oT1hu/f/0j/PzvTKTCdJn76+IG7N2cuD9cR1ywLxKalIzDeCYhGd4y33J0nSin88P5HTncnQgiklPjNd7/lzVdvOM0n0p7Y8i7pmmYsLbUmlcR8nim9vM4p4xElkbJqQpj44bc/sB4rv/r6G7oR1KHVmhwztWXmRSyQ67b/4qH3V17w9N67ErHfP+uf+/vA3wc4LX+jxxg5X87SHiiY5wXrHKUrnteVb359YT7f8fz0mefnlX2P/PY333K5nGlzleWK1bx9+/Z3qM+ZT+8+cF0kD1m0i9KCLstMV5X1lpjnhRACJZ859pVtSxTliEekaljmmSMJxn8szym50iexjIlUqWKs4/5yR+mGHz8+UUpEaXH4mDE87kra8VYT8zRxd73jH/3mO7qSzKFchOlnnZNIA+9pBlRNModRgmKLR6JSMGeNSorp7sSeP3GeZuaz4YsvG2rXzF3DfggZRw3cWx9YNV0xtWHbiNcwZoS1yYcaFS/6ZZsr2315sUWC8JJ1LnOOwSG0RniVpWIGJck4J3EDzmGNpSrJu84pU6aKfs2Mlkx3AO8szmh6VSNWomKMJhiHzhKH0ZEWeT4vWOO5PW6kXii5jmWAwgDBGFJr44Lv0Bv7tuKqxA9czydarjQlKYuqyiy8ODMa5i5jlkHX0cGy14Pb540SpEK7PT3j7iU9MqaCtp5aYF5mjDkxTc+gBJprrcFiOHKWFrDLfHvdVpy54oPnctX0vRNTxGLHNSF/f/WiAx5Gh1ZkxBJvByUWcpTK6/H5ifrxEykmWpGOqCtIVSDYL8SsXAvW259HCdbgp0BTnT3vwxwgVaOx4pxpSAelnCYsjpgTaS2UnxLvH3/Cz55f/fE3fPmrL2G02aXLJN1NDowi14xFSOmX5cJxHCijeLo9v1oWH5+f2J43VFdcTxdaahKQ1gpHPpjDzJEP9nRwnS642bE9baQ1iRQvWKyX8cC7j+8J2mMnLzG9WSpv6wPb87+Yw/LHl/ZaKfUr4Kfx+LfA3/idz/vj8dgvfohoW9Bs+7YSvAdkISKHp+Ef/+ZblvN1xK7K3fV8upJLRmsvF/+eifEz3ju5SwP7kQi+s+8bACknrqUNYXmho9lSHXfgirESVeC05+5u4uPzJrOzYWfEiHZTZn5i98vA5bRgrWaLkTwicq0dfvXBdZPDWmaDy3TCKMW273z99TesW+Tjp0eMcThvyKninEcPslBVncf9keOIWO2wk2NaZvSiKEgUcIqZeCSO9BnjFHcepvlEcAWXFEd85MiVyTquD2+Z+zOhaXTciXui9EbpDavN0OM1QI/YYAbVaNCSxhtWGckuwiDMwCrP5eQdxiPzJLJcmEoE0bVXyrDChWkaYJT+s3ZWKakydRtwWkW3iu4VSrK+pGLpnZQSUTkmZ4glE0vBafGez5NjPwrUiumgq9hHWxdHGK2+Wmqds6Rc0E14tr1mWo1ocyKWhEOPBE1ZyPTesd7QtCXmiAuW3373Ldd+JdwF0q3i7r7kenfFq4VPu5B5hGL1ot99yaORZeA8BR5vK8Y1jnjQcieYAN5jtMFqO7a4CGBGK2KKPH54pGWosVKOSomFluUmdttu0pJ2XufKHQhTIO8HOSaMtRhEHK603BxTzbjhftGT8BmUFeujmx1HPnDOob3BTVZ0pKazXGcqWRw7dL774QfeP33k4Yt7TncnGWc5I19LK853F+E7dCitMp1n0IqCiOKV1TiteQgP1FzxNlCNZDGVYziJzjNdCe1pTzt3pzvJKcpCcbrdVjmktaRJznai5sp67PgwU+nkFEXG9Asf/7yH5f8A/HvAfzZ+/u9/5/H/SCn13wL/KvD4++aVLx+CsvdMwYt0REsJ/dXXX/Nnf/7n3D+84bvvv2ffIwaBlMZY6Q3WEpmmgNGeeZrwwXEcmxxSOvC0HUL46RIdEGujo8ipi8bx3SdpaXrF9EapldoPqrJC++5SiSgt2suOyJdSLngfMKphnSenQ9ppbTHmBSwqUhxJrmyvre1rlds7y3SmL5rPj89DR6rRpqOtG7EVsnEvtXFyi1xEjsEoVFzv7tnVIWh857meHtDmNhxF8HC6YF0lP3rmk+cUCsSM8TMnFzhPd9Rz5dv9O1QyLNOFp9tntNE0SZwQx40X+KwJHmM7T09PeOe5v7syLROfnx8puywIjNXkPJYYveOdFUDsMgmgoXaZaSnZthur0d2gtcFY+eGdE7hvltiM4xaptTH5ibLJhX3kSM2N5ArOBpTTHDEy+xPpkMWXt4adzuylgqu5Yn0geEfwXhZO1rKXjBvb68lraoH1WDlPohl0wUoWuzcUXV63+c2JHRGLoMaSRtWLhDWeOzUo5vPbwTcw4h7SClUbtILRfqgnOr2V1y6k1kqqwnhsW8NUw/HpIOXEfFr46d071seVHrvESmyZfGRaEokcVeRawQdoktVktCElEWHndKAUeG/Y9o15noRcVJLECjuDC4712GRMo7qMYZTitCyscYUx15YMc3FruaAH/LcLv7RXmUF22Xqfrxe54aqXiNxGHiwVZUSbettWptOC8Y4UJYCsd8jbjZpEc1lKYT1WlpPIiEwxxFvkw+NHzv6Em7xAWHzg9vmZ+TSjGnjlyKoQlpcbtWIOE9//+MMvnlG/97BUSv03yDLnC6XUb4H/dByS/51S6j8A/gL4d8an/4/AvwX8GbAB//4/zUEJEGMip8SXX7zFai3k9NbY1o2vvviSmDJ0iYCwSkuejnEw7gp0zTRP3N/fY4zkbFsrEoiUM3dv35LigQ/hdUlRS+bT50/Dd71IDEA6QEEqDe0C9elGV1VwYq3RdUerMTdB2i07i9PGaA3KYJ0T8rTexKI5oB6tdWJKAgL2nhzFSZGr6MPMoBgZY6Wl3BPaWNIemZcza965XK7Yk6VPnagOjuOgPFf02YAyGONYzgETKk5XMImj7Nz5gHKemDLVG95+/StuP/wZ/rwwO8U8T/z0m48c686v3lzQUZGfEuHk6BG22yEtbe7MpzOX05lBQBCdaIp88fXXpB+/o9RK6QWLJeWMDgL6XZaTRKRqeWOIWLsM+KwmOEGItVrIOeHmGWcsTkOMsv10L9bPXkeipGTOrPvGZXEoLQuemA4BBpeM0SJSr/3nxRu9DwCLGXEkmmPfeLAn0fW2IiATY0A3tmPjlBe6aWg1ExZP6pHlPLP1jckG2hSEAKQbR05sZWV7LvQp8uZXy4infRbWQK0sk6cmuRGerzM5HpyWmVYz6/bM+hRJz5m2NTgg3zI9dupeIXbimqhHpWyZGjuqKnTTpJQEBt2HBlgr9mMnuEBMkZgSDYUPMn/vNC7XM9ZJOuM0n6lUSWPWsKiJ0se174woD7zl5Ba67YTZEysUpPXvqgi9S4OymmmZ8IvHTpZGIywT7z994ME8cAontnWnd6ELlV7Jx8GRDh4eHkSs3kVeJsWPmCfMmFG++NIBlsvC5Cco0GMn1shXb76mo/BLIPfC5DzX6x01VUpukk/0uJJbYU/HX+2w7L3/u/8/v/Wv/398bgf+w9/3Nf/SX8IaTucTWim2/UDTxzym8fz0mXXbiTHxcL3ScpFEwrGdNdbSauGLL74QAGypWBu4XO7ED1sq5DLM83ZsciHnRAgBaxzTtBDCglFQu5j6dSn4aebIUmU6Z4lpiGW1GkN3gWH4MFHSJhY+5NA7nU6Yz8+D4C7iV2MCwQeO42DdHAZFqTtdWWrX5FqJ6Rhb8gltLCFMlChG/1La4BdWlFM47yUi1Qkc9uLuaBVKgdPdCVUje7xxXgxbLCgrM6ja4P3HR67TmR/efyAqWNrEfDnRd4gl4+aA646zP7F+2uh7oqPR3mGmwBYTYZFs6mmZMc7xvG8sl6vE21rNuw/vZJlqjWguR4yDMhqlGqp1nLdjENxoIBpMHDklzIgI0Vrm0dPkccpS90LsB6mmn8kzMVJSZ/aLeM0HUq/VRIo7OSe0C0zOoacAzmO9o5QsUNp4UEuhqihx0qpQycz+RNcNjObIG6Vndr1yN98Te4TY8RfJwjlUxDtHs6IzRWmMcWw584/+4h8zTVf+7t/5O6zFcDBzNEv3F5o9sWVDMQbfDKlp3n/4QNs1PXdujzcCgVoqLUoVG6bA+nmDPMj1VrOtm4CAOxz7ISoQ51n3lVqqZE0pqeJBYhSWRbbv1hl88GODXpjmiev1wm1f+fz0Gau0aEgtciDazh4zVllyTTC0j9po3DxReuL6cCHVJPPJ0d4vy8IaN5TRvPvwnjWutNZYTjPrtlJbY5omUbR4w3qsQguw8u8yRjNPgXiLxCzLnUrFOcfj0yOXcCHXTKuNy/2FSuXz7UlyjZbAd7/5nn0/+Ort13TTuT2vVNWZJs9tv/3yOfXPerD9i/gQG6ImxgNnDDEeKGCeJkoS0rbqlXzsvHm4EmNkmmSDVnKhWMXt9sSyLBKhW/JQ5EuwVquV7XbjeneW6FqlCG5wE3snx4S3ohVrbcBnleTQBO95um1YY0jIIklpPUDDYsN7wdPnUuhdquQXfWAtRRxEWlzaR4wEI174IyWkr3MoLVbA223lUAe1gPYTtX4Go/An4Wc+Pz9jm0OVTt4zLRRM1szmRNKZchTyc0f5ymUCqz3P6xNXI61nLYmmFa1pcgPvZ7SqxFui0TndXZj9idoSl9OZ2/tnLvd3XO7eYprh27/4FqxhWWbicZBzwYZAU3B984anp0dKKsynhWmfSTWTkTcfI8IApYYbSo1qWiDsfSzCJACuUVthnhZUl22sMhLZehSRj1hvCWYibhmlZYv/Mvu+LFfiGiX3vVeUEkePmybsPNOdx86BjBDb371/j7aKefGYVthj5nq/CAxEVQpVWJyzJeVILgkd4LbfuF6unC4XnHGorllvH0ThYDzNdFwINCbW2qA2rpcHfPdMTGxFs5ZKzpXWHfvW8H6CAb7oUeRYJYte1xpLrY097aQiN4taMy2LoqHnPpYwhpck0LhHjDEc+cBqyzRPbMeONYqUpZoK0yL5VlpRdslT6ggvNARPBami0w5K3FKT8thJoki0lqKnjQiJsARyEVvu49Mzd1/coY0m1cK8zIJpc4rbvnF3vWC85TRP1KFpbjTuHu7RSpOORDwiWmucc6yPN67XC/FINJpg2GJ8lRLZweLMJdEqkt1jDPdfPBCPyIef3svkvSqcnQiLdCaFXxZa/kEclkornp+fR8yA4Xz/IO2T0TjryCkP6lBl36K0Cy2hNCynQEq7gBpypJYk80JkH+OdJUdhOPacQHVpz4+daixWKXrJ9FyoDclz6R1jLGXMJHPJwzc6PM0ocUR0gZ6mlMkx8f79D6RcOd29YbneC3ZOBIziKa8ZbycZtLfO9XqVpYKdMHYi5YpG83D3AGhKFyq28ZZuoTtF0ZXzcsacNe5iMRdNdgl9MmxPP6Cr5Zsvv2G6y6j+Dt86Jh04Z1B149gbyszkCrcj8jBZ3n3+wKnKAfX+3XvynLBR8+7zT5iiqekDqjtqbOQtsm4bb64PPD8+CSHo2Cm9jjdDxjnhFoZlJq1lWFANfvaU3qhJmIYN0F1hncE6I9i6GkmliS/baMmjbmKfMqqMxEHDfJqZ3ILplvfHB6z3mCa8UfHqV2oRcXKtGcknLKQU6dZwd73y/vMndHDUeaLUxOwtCqHiNF3oauZyuXBLjwIc1l30l02cXwaNMYrSErVnOg3rjSQuHolCI/cqcQitYkzgth9EVmLP+POEBuJxoPXENE10bYhJxjbaGvZ6iCU3i+SIrmQ+WBq5FI4jcp0uUBvdNAyGksuw/Cq2fROuqPfjoBVtaAielOIraefTp/dcLhcu1wt9LD6VaoTJgVlkhFEz1ii0M5SSJWfbyTSm9EqpgmDTTotY3IgOE6f49PkTb9wbUk747mmqcbqcBNqcD24fVx7ePmCt5Ug7sSaaaiIaD45pmcixkLYDNwT6sQw4x+RQyEzbGunucsz0Ck6Npc/br3nanjhdT3jvyTHzws7Y8yHLntn/4jn1B3FYAjzc3XF7fmaeZjSwp414HHjnmOcZrRWn02lsv+UgzFmClZxz0mbMfswNFbVU9mPHWU8phRCuMmtUyJOoZXkQ/MS+H/ThoiglD/q6DMf9PEvokmw5ZElDExq70sSUxAJoPUcGlEVpy/l8JYQPxJgloqJ1vPeknHBG5nyhSi5MV4opWC5L4OnpRkwi9TlfHqSN2ze246CqQpg959OCXTSRREsj2e504ZZvFJUxOFrNeD/hVOfuZHD5Eauu3NaPzOcLV6UJdeKkI+5kmFMlf4zUW+Yyn/HVke3MJZwpeyUfkmL57rufUF1xuTujlEQT1Fa5O10IU+DIB7fnJ6Yp0FTjdiiC9XTN6xsuDxsfBtGgVonPHUwlcbNojVZyIzJdM88z3XdqbChrWa4XPJ605fE5L35rgQ/v2y5Q2tqYlcVPhu4th1b0oFh1Zu2JO+Mot2embcMqRXQHbx4uKAdusuQaOV/P4PqIaG0SmdA73lqms+V5e8ZGj5tk5tZGmBfasB+R2lbc6QtqB+8cW4w0a3m+PVOU3Cj3VKhHws8PdOWYF0/ZdpyTkUJDEkvX243LdCHFJJi4KlrV3gZOzygRya9Rqu0+oLmtDOnXiAY2isUvAKQUqV3JVj87zuMQ+/T4Wd4XU2BPkdIK03kit8xRDlJJ5C3jFid536Ux6xmrDMoqtv2Gcidprc8T67GireL5FpnPM8+3Z5bLAl2xbTv1U+VyPr/aZl3w42ZXKamInZLOPAe2HHnabtx/+ZbbseO0I3dJXs2tUUpBNQE9P94e+Vt/82+JlTZLbEXNldN0Zj+i7AsmLSOtX/j4gzgsFeKeyMdByRk/gpGslZM+l0ZrcjhK5k0n5cwUxB5Z9EuL4si5AHIwDc002lqOmDktjtYVJWcRPmuLcQpiJteGG5IkoxSlJFCalF7uVhljLR2NsY5SM7kU1j2yHIkpeJoO1FpZ98QXHay1w5kjRJ2Us4B+ABsCYZ6hVXKMpNbwRmEUTCEIIKRWSmtYo7FNLI41J1SvUnG3zuQDSSW8NlymE0880XOjZCVgWzdhnEb1gznc8emHPuRDnRojra/ce01sG51E6RFlmhgCkmyyKwUfLKYZRvYYyjTmsyenQmuGWg5yrsRjR+vOfJp53B7Z44a3E9Z5jnzQtcx0G+J2eSlttNK0VgchRzLFDYoUIyUW6tS5nK+0WjjKimmGmiPxSDhrBfg6vOC3baNXJW/wmCFXulNkGslpmq24RfPN3a/58c//At8d96kRtIaTwSiZv+WWQXuxcJ4dRRes92ClVSylQpL2N+WE0YHz5Y6mznz89kf2VDFmotTO7emGv7yRbXxtxJqISpNQVOdoiDri+emR3s8oLWT3tj+LO0XJ8+acE1OD8+zrJpHJWWDVqonuteZKrkkKiBFr64MXm2Nw1Frxk+DYQgjEzxFlNcYaHp8fWZZFtvtaDAlHjjTV2NJO2SvG6wHXOAg2kHKkdUmCzCVCseM1FsqRncSnb4yhdImTuO2r6Ja9frU0xhSxSQwCQiSKHDEKSDpF2shh2lLEG09WDbtMTG6mxIJbxnInCWg74CmxslzPwoiIZcj/FE4HlDPY7ugNnj5+5Hx/+sVz6g/isHyJZHixi8UYhdpirVjfkDngum5cLmdpV7oMgl+kNp8+fSLnPPBfaujZYNslze8lQzylhLeO1iTHWI3HlZK5h1GMVk4WETUL5VsbB0jbbbrCOqlil9PCvh/s+0GYZlqrr5DR4APwM7WnA/pF0v2CdqtFcpWruHxSOkB1phAoueN9kA1vr1zvJr77+B2tNvKRcZNl33b0oji2A42ipsocFrq3pLKxtcRMxRjZUho/Y6cTyzzRdYbY0L5yd5q4vnWUrZKPTLhM9KwwzeDdifXzSi4ZNzt66fiTpzxnplMg58xkA3f3d3z4+JF1veGDWDGNEVUCw8mkjOS90yXK1mgjCZuIFa+WJgFjrb2S7GutpBTJOZOLxAW00pnDTI3iTfcjXzzHKtHCKFKt7L1iZkeTlTh+cvTgSMfBH3/xJbx5g/54IxiNoRNzIuhpQCg0aKi9gBYSEFqCrY5yoBdwZsJ5Edz33mWLbA0+zJRtB6PoXZFLReVC7gJ2SRiq6TQt1XNThhgTqWtiXNFN4drEPM+UVkgxUZNoU2urYjUdPmuhPsmop4ykQuc9bcx2exOZ1gthK5eMiiI810VjvRDIwxLYPm88bU9czAXjxShxxCR5ObrLwqYL49J1hzKKVCLdwhQmtFeUJlZeZcQ0sB8byoNmlvd2kaC23DJrXPnyqy+YT4GnHz/RSHQ6D2+vpLwLVQjJ7Km5YifLlnaqbTzdnrle7jBKZGbLw0LeM7dPK41G1Q0TDKVlabFtx3TNsUVUk6WRakJeSi399agsAY5jp1bBJBltpFK0MmOx1uKcI+dM7+KhBXh6emSaJ6YglJmXDTcg2rTWuL9/IB4H+74z+SBC5pxeLX7DVb71AAAgAElEQVTee2432YJN08TrIEMpcm0SzWottivmSVG7po+cbmMUKSbisVNLZgpehtytsa03/Dg81YhK6L2N6rSzriveaJyBdV2x1uH9LEN2JRpKazWKjjWGOUz0F+1c6azPK4udxZ0w0g/P1wvfff6O29NNtpeLBKQ1fYD2lBbp2hFLI6OZwoImkcoza8tYKoXCPM2EOeDfBHTR9EN86C3Kguvp8xN+9mgjjptW29h2V+4e7jjyQZgm7t888OOn9yKNygXV9YA5NCpNoB+1DkeL8Epfoob1gEQ4M9GyyLVutxtxK/gwo9wIUTsiuTSsE5/x9nxgtUQq3Pad6gUZprXlermA9zzFA90S2/uP/OrNWz5+XvGTQ/VGdZZaC61IJWS13DS11VhvKKrQlYjhbdGoQ15To5zAHRAt5eVy5cPaaVhK6sScaamQlCVlTeyF5irFdFJrdK8otdOGp5+aqBl0lQXYNE9sUfSOqkg13ro8h25ypJYEoFvawD5LSw7CMjjSIcwBbSitUEa+j7UWay1maCrvHu54XqWaFR0sWGfIrb7CRPa4kVum6YbrTqrFLvG0Yv9BcG3WSJDeS2igkXFCKZVUs1xtuXC7PWHcmfkcePz8meU0c14WQbONcMHL6UK1luPY0U5zpIPT5UTrlZgjpWWKLtTUsJPlNMvBedwOTndnyXpqnZyKKDCayKm0NaKo6JnL5fqLZ9QfyGEpL6q1lm3bOS0LZmgt9SD7vkiF5nnidruJrCRL23Zbb5QRY9kGtl8pxTQFem+ESTyz4hDaOJ/OaKeHY6SNu7XAJLTS+BCk/qvSClYUW3wWsK/SIt+hUWvn2DbRdY6lQikyO0spMS8nnLO0LtWI6nKwVCMQCmsNteQBHnUDRmrHDeMl9EHEyVOY2FtENU1NleV+QXdBqlmtyamiGhgc+SjYS8DaGWU6R9nxFkzXYAJH7uypE5zH+AVdK+gIunO6O1FvFZzieD6oW2WxCwWxwyknSxwM+CmwrjdOpzOTkiXdEQ/ZLI4o1+V0IjVJ5DOMLXjvwrtScjhqY34GdyAzzN471jqpPo3BaEvcokiVwoRxhudPq8wrrSOVzLrtUvErw+Pnm4BFvEUvnskGAfs+36j7jvWBbjfW9ZA0IaMw1hMWgf1KCmGh4QQcYaRN7bbjtWdxQgeqXW7KVovmt2uxs+YimeYqnAjTxC1LREax4dUsUFWTGW7XNAqla4qutG6oudCSoh0R2yyLXgZ4WrSfumv85GlxZOqoDrpLAFgTcG7NBRdmrLUjtljmy0oJxDeEgPWWIx4orbiYi/y5XjnyIa07oq/svVF6YfYzpg6dsUH0tNbI52h5XY3TI1scGIQhIUSJ773VSqWgnRHKviqkHJmnwG9vn4UtqjoPD/csy5mcK0/rE9vzTq8Kbz1Pn26kktjjQUmVGos8F1XRc0cVRT0Kec9s+40//b/+FKft62O9wjzNAlSxTvLa91+GsP2BHJayoZ7nmXVdRxKjVHovB5RSsO+fhNajlbzASixaMaXXqu3FgtcZB2eXAfZxHFy/uuKcGz5uA03wZcYawUtZi1GIK6NJ8qLceSV2Yl03cgPQhCB4K+8drRRSymigIIl5KcWRq6NFUK80StmBTGuvi5HeK9e7q8xQUbRWiGkXvqebhR5UZQxhrOQlxy1yuluoqcodvFl0h2ONLJPMm3S3HJvAWXtRHL1RcmLLjVsszLrR1IZvOw9eM7thI1scLcPH50+kI/NwuoeuOLkLPTXsEbGz46gJqy3hNJObHBjaW87zhcfbE6lkugHjpG1vDbzzEq3aR9yqlTmdVlJhavUSiqboRQb6c5jEMKAt6Sjy5uqKXBrrbeU4Itvzjm5SwWgaT9vKcQg02GjNMgUWHShbZP/xvdRdobLlxkbn7fUOYzQxRdKeOc1n4SA6gcrWXoklSnhbLzSqjB965IibWFnPlsmeyK2hvSN4sC5wS4m9iyd/ixlFp4lvEpShNImRO45MopO6hn6m5EqwM3jQWaJT5lmAEcfzge0W552QmzoyDuo7eU+EcGKaJtanlVSS5K0r+XfQpV3ebivKKC73F3LL5Jp5fH4kzAFXHafLidKkwu6qCXzbCKH9iBtNNZRTKCsH+AtJnzECULbLjbVE7JivNyZKzRxxp/QiMr/W5UB3UOrO5TKzH8+0noAstmXVqTViHLz98gt6U3jr+Hb/ji+/fiuhd1XRchfpVCzU2JhM4C/+/P/m7u0dXz58Sd4S9s4QXBCddOvU3Kit8bg9cvfmr0Fl+XMkpdgczVj/l1IwWmYq3gesdcTjkJbBuVekmPce5xzbtjHP8+thG7zAUa1XcByUUnDOkkdkpx6bc+scHOLueWnD9YsmEDWwVoMcbcR3XJscoPK5IrYV5aCW4KuU5OAfekFjpUJpvYEaOLXemOeZQUcQSccU5E2v5eAERe8iiTGScUgrjRwLWWWWMA18mcJgiFtkfVoxF4ObZ7GH1sJy8szLBTudaKbRTUc7xd18ZlY78fhEPaIAk4PhzfUt6l6TblEkObFIheUVWPHjpiNRW5ZlnJbnqNaGmzzdKJSzKGsxdIJ31C4Kg9o7uoo9rrUGFZRuUMemVqtXhuhLLstLntJ8PnOaz3z46ROfHx9fs56V1njvSGtk33YZW1RwxjFXCLXhK9wbTy4F0xXkgp8CWzxk/GGlQtNaEZZAt2MD3gWZlmoSSEPcsN6iJ83d+crOQUw7uURq1+z7TioKHyZqStKlaOGIatcEIN0VqVQqVVwrFar+OYc7pYZ3Ga+Eaam6hO29jKV6HlTM/sLGFAlep8sBqUXCU/PP1SQacsqoosSy2QSSXakyG7QKpxxHOmBHPr9mci+vWTkKx3JeKF3wa27yPG9PYEQCxmjVl8tCrFEcRSVitJWtve7CnTUdlDAalGoEb+ko7u9PHN8/c2w3pmBp7aCUzjQZokLa7dTwk4w9wuzYb5L82F5GO+Pw3tNOqokv77/gdJ2JWqMq9CJMTJrsO1puKNMx4a9BZSktsmQXt7H2l3ZUZlySAdKYpoB1nk4V/WNO4rmuBe8dT0/5VRrRexfBuDZMzrPebqzrKnGYwkaTdpAx6B4XmhqPW2vlTa01fvAWrTHEJBa7XitNSfBXr5U//qNf03vj3bufeHp6ZF4W7u+v1FbZNtkQY35mdyr9AhApOOvFxKI6YQpiR2sCijUGjpSwdpJQNSyqiQXMeIPBUo5Co2NnacGc9gQjUGAXFvxcUC4LxcUGUj3oNpBaIdaOoaOaZtaeojS9bGQKwYnjR3lNy1msZ7Ml9QxOEYw4oGoRMHIqgobLVFKvkDtNK+w8UXMZ5PT2mlkjbh4Bazj184Uqh+QQ9Y9IYmMszslN0Y65734c5JhR1YwDUKyhvVTmc8Bpi2twbhoPpFS4KEtxlqY13QqJpmmFDhYfHHtc2Y8Ne5KgPMnDroKYQ6IL/ORRTlFVEnKP7a8HFU2MCuua2Y+CtQ633EPWuBxpRkz9Rges8nQ18bwWMH4YGjK9JdRQVigj3VMpBd9FSqOaQjUlbXUfsc3dSguutByUXaKljZW8KZDrq1FJJTIvUlQc6eDIhwAplmkAM0RG1FVnT7scQtYwzZMsg3SnV4ZfXA6e3DJHOgjWU1qmdS9dzSHg3SlM3G5PUpFqRcwHhUgIDnrDGGHp399fuN0+8fnTJ2K88f79j4JLVCLfO+KNnDtxyxgnsF+Q6JjcEpf5wnpb0UoR5onWyxCdy2PGGpZ5JifJ/qmpiMfddO4e/hpUlsLZk4qudwlbd3bID2qljkVLjFFS57yn1IhSsmXsvY9ALiPugWDHHNGMyAeZQ77kh7/YEl/iW0HmaPu+M4d5/JV+np+V8T2M0aS0obTBWj9SIi25yTJgWc7Ukvjxp5+GzEO2+d674VqR+VytTW4OQ+AeU4QghG1jFL1LuxlMoNYXIvskbzIsJVYoiqMclF5kO208zngmOxPXiOlWIBwdjD9R1UpVCuUX4pGw4QS1E9vO7E84DbpZzLKx3W5klUWIbTtVN1JLeCORBVU3jnKIMwRDCIFlXrBhUKKMohvFnhKxV7Qy/w91785jW5amaz3jOi9rrYi9d2bWratbbWFA2/wKJFwsDBDHQjhYYCEdF4SDhHSQEMLiByAkJKzjHAw8jo64t7pPZVdWZe5LrMucc1w/jG9EVAlBNpwGKYlSKbNix469K2LFN8f43vd9XqoBO0VMNfQKYi3inKriRr8u1gKi7oO3r1VXBqK1bhC5NWUSXlcudnSxC9SclZlpLa53Vu+5xIjLjbI/6HtW0pC1dDO+vwilV7xRws1kJy0LSzvP52fMZHiUB0c6WN4t3O931g+aEQ9zoLlCk4LRwhN9reDxPiqUOhmu285hZrXF90YxWqMhWFLRyhMR9d5i9LUpY5DNswqYualKXGrBdYcTXRXlnOlZe76j1TbNXLK2e3qrHsuiQkqngR+CVbDMcdZk2WEGti1jxJBbJk4R4wy99LF/1JMgThs0rQHn9WPFKCZPTMOMltAtbbz/5h2f75+oqAizPq1cH1dKO7g8n7BO2PY7y+pwTit4n54uvH//zO32gkjjsb2AdM6XJ0KcMDjCZFUIOq/EcUDopSt1KG1cnk84sdy+3NnLxrRGJhNoqbE/Drbc1fJWO/O8YAPEU+S2v/zomPpJDMsuwy5itMejlo0+ahysMWpGHY2ArfeB59cdZe968qjDi1lrA8lKsB5szC5/OKW01uimv/3ZghkpEj2xvAIynHPYAbAsTQ3B67Jwv+9qMkfrK/Ra5Ni2O7Ukni5P3O93vHfsDy2T7025gc45BC2Hymlgvgab0piJED3myJSSMUZfPK0xopDKRwze0+h46zn5lSqV8/nEQaalxhxmtqIZ4ZY7tjiQmWYz1Qh2OpH2K5VA9DOlFrZ80AScD4ib6dOETK+0abXvhDWyXfXzdivYqDWstTWeTjN72jHG4aaAWwLVinZu16LQYzPWGTEyRa+dREEBx0a0rri2hre61sA5QpxU1bf653jvVZQIfuA0R7tka9hukdoJ1jG5SMDgukAulD0p6LU2KqLXYG+pHmJwBFH9uJUhXE3qTdz2jSUuzOtMd6rozqdZr3pWVFU2BRMMy0n7bzLKCj1S40iG0gO1d4p0qoD1QelIMVKbx3TtUydOerupQs4J24x2gPtCIKjJWvTmZboZ3T0yaiYq9ISNFutG91Gtg1jF2wlULBgxaudJu5KUfNBmz1boRk+zGPnDLtJBjBFjdZiWQ+1j3TRq1xUFw3HTRJmv1htKzRw56W0E/fylZGovg3taSCVhXQcapSSsFXLeeX4+sSwarGgVXq6fAGGeT5xO7wamruG82rpyanz1/BWs8Pn7zzSxesjqlcvzmeU0k0byb5ojx3ZwvpxVlc9qsLfe8NU3X/3onPpJDEtnHZfL5W1YpuNgec15F0VxxagvmMe2czqftYrBGsowsWttQ6eWxjwtuOHPPNKuanSt5CPBGJx2ePi6aC79SAcpZYIblROjjwZjtLSpCC5EnAu0UtRQPUzsxmosc55nLVWaZ3LJPLb7GOAF56MuwGl6gjK6eihVYRG1FvWNOkOXVwuVXvOd1x2nMZ1pmrlvd0VSBa9XdXHMbgIxeHHaYGkjR9NscSkW6yaaMfj5wm4+slW1aDmr13HTHUXU6rI3gzufaI9CvEyQYXvZsJNlCQt+8YQ1MJ8W8pGwk6MXIU6Orex0K2zloFmN+6VjA+tY1pU4TzgrdNHIY6PjB5pMWgHriKOjJ4xunFY1MbXEBefVQvTp00ft9rFqbTGo2LDEicVEbAHTtHiMUvE+qkEbocfA0QrdWfwciT4QncN6aK4pSMNpPasPnuYbYoXPL5/58MsPxDWSyTRTWM8rB0oT346dz2knm4kmE8Z6BE8MK0e2dMnU1rVyuCeO3ijNaV7QWlqRcevR741xhnRoEicGVb5LUXapjyrwxBBVCZZhz2FAdgdMQtc5unvV9k83uAlo0diI/zYa2/FQ7+EYlKVpPNiMVUQTjeN2UbW9F1XIKzowXXNUKUxhVf7q7YuS850ZnTsWObTu13mj5WzWktKGNRHnLKXsPD8/8/XXH/if/8f/CYxhmhZarZzPCRGIcWXfbzx9c+F0WrjXB/M6cft8H61iI67c6/C9Gm6PG+f5pDHLp5OCRnwg2MDnl8/8+k9/zfK0/Oic+kkMS00nqOLnrB0MbpSaDG9lSyH4t+TENM1DCFCLSWuVGCZSTxoRQ8tOnHcIOkSlC6fzmXmaAd6sQ8ZZtm2ntsblfFF8F6iCbR3HaLrrqJjUuqq7U5ypVa9HRzr48OEdOSe++vCBv/72nyJVadQhxrEf1bicXrWV7mKMIYTwVigWgh+riITgKaUTjKdW6KK+uLwXaIaWheVyIm+FMJiFVjzpkdmvO/EStT95Lxodk0ZwM1kczc080oHxjuBnqmmkDnG6kMXzaJ1gK5dZv7bz04KpBm8DzTayKSwxsEwrtTTieVJ7Co3uhE+3LzSBe94xLjDPC+3Vuwco7VvorYJ0grWIKGTWOsvkdReK1Q51b//gtf3222/5zbe/wXRLcI7odI9tBBYX8VWtMSlnTG8Kg1hnwrLQWyUbsNWoxy4G7bAxhnWekFkTYXiws15Xu9UrdyZrCikLBwfZHViZCbNneVqp04TrjX2rZFFBaz8yJUZe7pluprFGUGRd62qcxzqqaEzPe4+xGtuMbgh6TaOmGtudKHuhtortTnF3zv5hh5l1neWCp7WsJ8rXZdM4INCF/diZ11mhM6I771wLzmj2Xq/sepBp6M7WOK2IeDulejPUZF1t2KD2Kj9pD3xv2iff0IBIaQlMI0wWb4StZmKcEGmEYHlsd2IItJr45c+/4du//iuu9xuvRQwvLw1wvHvnab3gg8N6w/uv3vPxyyesGE6XlXJUpAnddObTTCqJn//yZ6QtUaRo93lUr2YpjW7VmvSP/8l//6Nj6icxLK0xBKdVl+o5ZNSBKmDVGCGXBOjgNChUVDPcivdChCl69u2h1zKn1gDnVE2Zwsyxp+Ht62+NeNZqgieGSM73tyd7HVaW3hrLPFNqJWXtAscYSi8Eo+qls+rT7L2zzDMYw7IsXG839dS1V1I6dKm0bugEjlwwPuCNdjljLa0nei+jaD5oYZgzPG53LpeoqwcDJem1lG4VS9cN232nhk7NQitA7oQ1ctsSy1PkftyZmvDIIH6l90TqUJ1jCo7eHyCwd8+jWYII6fGFhcj5aeXx+cGyeJgdRSpLNORcdbeFZr9diFw+PPPy298rck4OpBXKobtmCtr86NQ25AxqcB7DIY44n2L0qu4221B8BfZt5+XTF2yzeHGsYUaOjrxe5XOlNa2mqKM3aJkn+jpRve5+U0osIWKco6dCOGlXde5qnD9fTvjF8/H2EaoQzoFpnTgtK/dyhyokOXBB6VHeeMRZmrWkVmkYKtBGJQdGv0fFDoNltFojIkJpndSbngS7Y3sc1OKZetABJJZj0wHtUfN4K41925ncpEZxbzFi9fQ3BEOxguSxphgtna+OAjxIUy6kWK2UsF7teX7SUERu6e2UZoeSLlZoqDf0TSS1XR0cqI1tOc0qJJmRz/YKAsZ1jUX2wrpGZFTTOtMxvHZ4F5qF1gqXy4nzZew4a8J5R+mVsN+w1vPNN18xzZFUD5x05mWCbsgPrVL2PtIGhIMAL48rzjhOzyfKUaBBpfG4vWA8LJeZ5+d3PzqnfhLDUlDTtrNOy9hzZt93Va7p4/So6nirajrPSWkszqghXGeYcg9B6whs0P2jDCHFGEMtmqsWgRgmai0YtGfndr3x2rSof6ZWQvTexw9wGd3gemLVE8Jo9BO1/sTg6dLHlQ9F5EvX63tTXJs+7b12Ym87lq4na8xI/BgalZJ2pBva8cA4SOOBoSAjgzeRYy8kW8i2wYoO3NTZbgeneaUdWl37+ePBfLbUDsVErqnz5Feid2QOJCf2XAk9s4vjejSel4VlXfiwXpB74WS0C2d5d9ImxWhGFt9oAqY7zf9+6UznmXy/seeNuEzs+aCKDnuMpxQDooOzN6208M6A1ShqlU50HoN9a4Tcjo2P3/9A3gtziJCEehRcNTgxlCYcWcUNMUYVeWNY1hmJgW6s4vMG7d6ZP+oNil4BH6Xycq08x2c+fPWB63HFOK1hNdYxrxNZMvNpQqIOiDBHJHiqGMQHtVRZh4xumW1PGBcoBfzscD5y1E6uHWO1w72LBbwyS3PDtKy+06aqds+6n3TjayxBBUFrtLyrZ82Eu6j73Na05tOOWG2t9U05b73p/9euEJroPSCDXaCrpdIzfqR9nDhtDAgaG24MYamJ7i6N8kutn9TQvu9kyRQpb6uTEDzNZFw3OGcovbIsHu8trWXysSGtIE1AGtYIv/rVL9iPB1++fKHUgyNXYlww2411eWI/bgOy8eD59Mzz+R2n+cTty53tupN7IU5qoQqrCkHff/7hjSkRlsD5/Zkv1y/My8T9cf3ROfWTGJaDEvU2mBT2+torrQPQez+6tDOILuGdd6TjQEStG9bqlfZVWX8FWXjnAcM8TVroPk6VrZWhjtvR3wwygLS9NYLTKGHKmRgC98eOs1YX6sZpUgg1WWu/cxsKeydGPxI67W2tIKJXTyMM3mWj1ox3BimVl2PHOcf9fmXfnqgVSumU0pmmE8YciGhlxg8fP2K+WBUYVoPfA9ln+iy00Pn4209cjzusYC7Qj8aUGx/ez5hw5uWRkVDpviO2MXWI4undE0/vSWLZq/YdfeJOrLo+MB2Wy0TuiWYaNmq07uXli8KVuxAXT71mum2cn1d++PxRrV4t4Z1n30FaJzhPioEpeiav4IbaCl0Mmt3R6yRo/cD95c7tetP2z5LUJJ0K0p2qtq/+WQPTonTvlDJHyczzqlDnUolT5POXL0x9wsfAkQ5mN5NzYn230KSypY1eO+EUeGwPvHE443n3s2fynglT5JAHpVSWcKZ04X4khJnz5T1pE16uG+70FWuYuV8T5+VMNhNH6gMTEii107reFugOhzonEMNxJGY3sywnmhlE9C7UrF1LdnKaj89C6o/xmtVTdWsNF9ybN1M9yVpzUrvWI3c6uR443OjlbpSmqzC1CwWoKsQFY2lGB6a3+n1uttOM7tiDD1hveex3xAmVRh8AkCaF0oVcdjAV7yLORdzwWnpv8N4SwuCY1kItma+/+sC2Pei9cb3e8M6ybVdO65l9vyMCNTZiWNjSg1oanqDd6SWrRWqZ2I67CnUh8tgspWvO3uIGGUlYLzPI/KNz6icxLHtXCID3nn3f9QRYK/M8jRihDtEYI+czXG/Xt/z0K4aqpjIGWUHQgWfdq1VId4QxevYt4719U9hjjDjnSKnqqagU1nmlO70ae2up1mphlHMK0hh0xN5f+7Z1x/TaseOtY5kXHZBdrzGvaR69CkHrRWsu4gdO64IfA1sEPn36SCmJ5+ev38jvvVu8mxECx5EwRnj39KxK5GKQSdjNjj8Hvr9/TySyhhPNNk6nlT4LxW1gCr//dOdpeUdAqPvB1u/EtuHLlZOvPD5dOR5wCZ2n2fJCZqbjUuESTzzqhhdP+fQd+2NX4ovVBxICj/2gtMKyBu47TJOjS8EYR5NCr6P8jUbdE9bOrPPlLStujMU4P5wPaojej51t37HeEt1EO9R4XJ1WGFT6uI4qwLlbg42eYIxaztaK71rBmo6kNwSr3dsOh3G8lanF6PHR0YYfcL5MMGmiJ86RQCSVAzs7CIZihFKF0h3NenIzuDjx/ut33Irjfs+0bjAm0LqegIsBsR7rGPFGZRHUKkgz2K6vne3YSZIx1WIq2oktI90mKgC11jDozjK4sacXoeWqt54RWTTj50CskKuyLEMMOK/VEtJkmMYrTSpiVJRxI+KaSgIx2Djija8QDwPzaWI5LaRyDJVe9/FKLdVgRggOY8JIcAkhaox1ikEL7lAHgrIWzlhn+fDhPU9PT/z2u+/4m+++4zgOXl4+YW1UAlTRNVvulV0S0U0EF/CTI7dE6ZnSHOVR2OzGh6/f6dqkCT98/5EihcvzBRsMOf9/U1j2//rba1LjdXhdr1eMOQ+FvKrB1mlHSK2Kwc85sR87l8tlHOebfuOljwHZ8S4M646i10ouakhFFXakU+uoaLWWmstbkVgrFbwb01CBFqUo9ioPhVaMwaA+0VZG7a1zLLN62F4bBBUUbJSmNNRbUESWc1b7fUZp1ddff9CenmDoXTu4e+8sa8C5hRgtpRw4q1DdUgp+CngJ+K7/dOLxzas5/VHZtp2nX17wtvHuwy+pdMwUmdeZi3/ibDOuXAntjrTCabV8dYnMJuP7gW8JCXeOXAjniOuWn331DelILGHl2HZNi9TGc+/81V/9U7oUbOiE2Y701Gi69JpnN+M/TVS1bFKVN+peWZdoX7UPXO93tv2BjwFJwno5UbZCSVVBG5NX0IiFXjpHy4iBMHnSrhliYyyXi9YOOG8prZBT4RwMrjlOTyviO2K1CM1Ew3xeKJKZpwUbDUdL4NSsPc2RbuDL44F3E9N6pslElRlbLJ8/PXhUR+mB89N7qjtRisMUQwwnugTytpGKkGqnVZBioWn9rxFLq5VeK8FE3ckdRUHI4rHeQxNEtJ5XmhJ+rAbvdaWDUceAcUNUbAoKGVFgqR0x7S3LHfxrTYRaheIcdNgaGQKPQYwq+rW3t8SOFo3pXtNHFSnd5HTYTg5j2lvaznl9TRujgOZqDTUEnFMrWRsdTEtY6a3yeGz8xV/8Bb/+sz/j0+crf/m//hW3+0M1jenE+fwO8PRioDoVPsPC+28+QG3Urt301+sLL1++8HR6Yn/semssx8AdFuzfMg1/EsPyVREupfzh6uz9YOCpCvpKEeqiQzXnNOgup6Gkt6Ek69Wrj4hXFyVHex/eCOr6RZ4HwMRzI8IAACAASURBVNcM7yXM86Kwg+H5BAZUVdcBc5w5jjLSQztNyRv6A9/0uvx6vVbKu9ddKror763hnb6Ia68UK1yvX/j5z75WG9ReCN7hveHzlysf3n8gRr2Gxui4319YVwjBsG0JTMfZgA8zzml7ol0sW35AFhY/v/UwX85nJAk9BbYD1qj7wUYnVSVgTwS8m2k2cj8S37xf2FLl/XqhH3B6v0DeaKazf7nhV4+bHC03/OqZ7UTaE58+f8ZGeH5+x5YfzCVQisYIc2pqyzK669V2RY/Qx57MY3rlXopWEhvP1199w3Fo0ZaLet2zxmFEqzo+f3pRAUJGBitYpOmtQ/F6liOrS8JYQ4jamePUPs60DluXFY0BGg1FvA4GN3m1zThPrhmC4fR0orqKmxzh6YkaFlI3+PlEZCIfB00ct/uBzBPGeIyfmfzEQeOWGkksWE30GLE4G3VnK4JUoWXtA6cqHNpYo+AKF6Doa1LhGB0j2nf7uoqSJqSm1bvW2ME7aLqvNcopVcybDjitkHDaQddFr8RWq3Br1/y+EfPG42w0uld6u7VaGpbSQUW1Bwb1SFBQRZeqMBkbFCITtCm19UYMDulVzfJGf7b37cE8K/zkw/t33K5X3j2948/+9M8pufG//eVfcXtc3woApTt6c8z+RE3q2w4mMDlPbp1931TInSJYmNaJ/bFjvCro1ukh68fefhLDUm0k5m1wvf67GRPLDPjEsizkUWS1H4dCSoMKAhiDgDYL9qZdN5Mi2cyYWMEH/WJhsE4X5wjDk2lxrlPKTu/jpOm1vpaRlmAIPxrDdG+xvBgDhvY27IPXveM6z/zw8QdcUGVOWscGvV4Gb8cOk9ELBDkfWDNRa6bWxPX6GYwlhIXz6QnnhON4aKWGEUIcZKZqOS2R7b4RbcSLpaeObYYP79/z4EGIgb3s2B7w9sxeHzCdaQ1ya8zWQjAYPPPlA7cfvoWwQitkgRAWjT1Kx53PPL584jAZZyGugZrVHE4QbAQ3GZ4+nPkqvWM7bogxYyjqg6uWinTACWJ0dyZoXXG3DiuGXhtPH555+uqZl5cX8Jbt2HhaLuqXNHqitMGRW0GAMEV66bQuuNfXjzWUWqi9kXKitPJGwmnStMOlJh6HujKaqUR3gaBDwFoLVkg1M9uJKhUX7XBAQDAe4yPIxFE6Ejy3R6IbT8VRm2C6wZtAHUZ+6yeinbC1qDHfeMohBNEIHkVdFqVmJjcrbKSrAb2LYLuhjxaA1hqOTpc6UmdFxdLoKaXSu4qazhhlS1oZHFj1ZJaW1bM5R3JVu5HzlmkOiOmEqK/pfgg17yOxY7BOr/42+JEx1w75PR100ykdTkGpR6WW8XOu7hda0xjrpPXXZQiMtSatzy2ZnHRVUEsmFV0pHCnRW+HpcmGaMjk3rtfPBL+Qs5B9oReD1AeTm4jWa5uAGAWKVMEbT/BBd5zBYWNgL4da1X7k7ScyLM2bOPLKrjTG8Hg8eP/+PSkp+NUYw/lyIdVMzplaG/f7A4wCOF6foKCpndrUxKFEbotIfUvkzKiyp4tvvbYYa9UM/poVVzmb1jJdDNu26clWXu1HanER9ARail7xzbBoGKP9yrV38qHXwt4Fgyqrr6DgEAPb/aYJpVaY5kjOh9LJXeDx2JDeiVH5mN4rht/ZxtNlIRehHYXTedV8cDT8zcvfEMRz3A6mp0DPwumyIqVDDZTquG4VXws/fz4hrnLflZj9w/XA2YlrEiTD/X5nonAsjojBmMi9wksr2N5gu+FE+3SC9yzvFuIWmM8Tv/j1z8B1ju2gVUF4IvjA/b6Rs0JiGcmqKpneLNbOiDW8++odf/rnf8r95cE3v/gZv/nrbzEO7vsDbwPGaW5/uaykelVoiWJf6Yj22xTNuDurdqct75pIGUkVRPPSxoGfVNjAGY6SiLP2eec9s0yLehvFEtdA85p+qcvEl9uO7TPNB5gjFcv5+T0ff/+CDRO4SDcesQ7jg17zj0oSKBWOQ0A0099Tx3RduxzHhsEirXHbr0Qb9Mp46P63vFYujMSOERUWW21a6jdNGKu9263rKVNenRzDXzzWzJqaGpafOAdctH/gqk6eVAt73sEbllWTY0dLiBXWdWG9rEoYCqrW73nn8nxhWgLWQkobcRqdRVUBHssUdGUgnZwPtQSGAKJBDkZXVc6JKc7kdPDYDrbHzq9//Suwjtt148vLncf9YPGBkkSRfaXx5frC5AIOTaO1csOg0UhrLMF5nHHcHndCjFwulx+dUj+RYfkqlqj5VGETRuNRVWOLr6e9fd+xxlFKZZ51yCo4Q0UX5wLGZB1iHQqaTQ5xQgScj+RSlVzNyIBrflEH6tCuX/9prXnLc0/zzP1Iw2Sunkw7rpOmD9J5SgSnBJznpyetHKiV33//PUdVlJweePQvuO8Ptu3OcexMUyClA+c91gjQuVxW5mkCHCFM1KoNd9fbjcd2pfdd919JmFynmkLzleO24dFiKdsMj+tDqwI6TGbm08tnfvbNM+IrWy5gG6ewkmWnmkgqhk+3g8kYZjvTbaAaQDRffXTLo8iA9AaCBSdCrxU7O6rvZArL88KfxD/BGqdAXe9ppfG777+nt846r0jRnbQRVYFj0Os8TYjrTMnqafVz4LjtiNF4a0udZeq4OeDi6Fw3qqJbo6cvEzxmuB/ojdILUlUANG6Ai6kUyRTRYq/pNCNBWY3GQFgi3QrrZaU70YKr9GB6f2JaVpBGmFdSsex7Zu8dv3ygmTsmqCWoGacwCAzdWDqiNq7WEVHyu+uGkhIOjzOGjtZqWMs4FXVK1sRaK/rasWIHQ0FbSrvRdZT3emiwBkJQILF20xu6NOZ1pklXdwkdF7RcrOeRq+rCvGolySudyEevMVc7hMsBHr68f9Iu99JpYgaMplFqInQVsE6nFWPqAN80pDd6txi0nC54i3eeUopWuXhPyYn1dMEYy7KeuN4fyDjpr+sJMQbrAuend7x8uTHPJz5/emCI7PfC3W+cl5VgPGk79NothtQTR8o8xiyZQiTWSDPCj739JIZlf+uGVjW8jVx3SgcpJc14oyJKfbsO6+/VX9P6VOeHobxqfFB7fMLI6paRe7WIUcbkK6LtdSdpjMLSSlM/ZesdpV0odOF0PnHddpb1xO8/ftRfEodIHYq3ni5rC/RSuZzPuk+1RsuptqbxSkRtR1afoEp+F263K7Vk4jxRaubTpx/IORHCjIjBuYneDemoHMeDY3/g3MItaT52yTPT80QLDTkaP3z7e/rcMTu4s+NgFDbJQUqdx71jqBRzcJODSXbeL0JY3/O4XnHTE608KFikZciN2UfmGCCcsdMTc7Ds9xfd9aYDpBFj4GEq167euHWZlRiTDxa3IoCfg/ZWP58wtdJbZ4oTwWmk9Pblxu9/+z1Hy+AtuVTef/2ebx8bW9rxJtAtUHW4EBRh5pxTMcN2pHRah86APFv13hpv2MuuaLixl8ShkIhguR8PlmkGbxAP69OCmy3ZFO7bnXD2NN9p3pK6UET5AqlDBl62TK8PXJxptdGM3kBePn2huRO5e1ITUq5IjyAWqSr+UfUh2Uun14ZF359rZrIazXy1vWB1VZEeB37cYpxTu1puRcWurkmxmkdVSwwa4Wy64/ReU2rGatXDelrAyBiQVV/fRo3rcVbYSLeCZ+w9va5mSi0qAhmUjGSH73i6aE2GHTFH6zHB44zHjuK/+/1K8PqQ6+MErKhGz+Nx57vvfseynjXp1FUketwfWO8xA534y1/+ki9f7lovYicet8Q3P/uGZVpwxqmQVYVaGo/bHSOG68tV0Xdj/ffldvvROfWTGJbmFf46eoFbq2zbA9ABue+7xrxK4Xx54siZaZqptTMNSpD3Tq/VXZimmX3flbTtvNpaRAhxppTKka/4ELX/GzBGUzz6eZQ7OM2qxPWm1CJQ9FaIEdHfRKmaltAIufaI51LeruTeaxIHDGH0OEtv+iKXjjFunKg7nz9/JKWEd5pTF2l6crCGeWqU0qkNRCylqIh0f7xgbcKaGecm9seDo+10rxiu/bZBhWPfCTlQbw3/7Mmh0EqjHh47zTQn2OAx3ZElYXvmenS+HB1XhdAb67Bb5SpkL1z3zi0Jey5ID0gXqnicsbiw0OJC9lG7wqUTgiO+u2hipWYkGhCHXTyT0epYEJJk2r7z5fFCNY3P98/YapCkQstyWbg33T32CqlnrFj64E7aZhj2Pr1mW1Sdbeqi2EtidlEHoemY1woEayGAWxyzmbQPG200nJhwccJ5fSA326nOKE2pCuIiFYdYx547Yh25CX4+YWsmuBPZBCrg44wnULc7+1F15dAMTnE9WDFI6zij+LMYFbdXjkw+tLzN4TBS9ck+Vh9+7OVzzkOg1JtZH0Qsjf0CqBfVeatgkaZcVuOUZF57odSMGOHyfMZHx/3Yx47SIg7mZSJ3q+Z5q9QsM8AiMsQfG6xiCWl6mLDaDIABZy3BWY79AdKYJjeu54ppNMZSS8YYwzIv/OIXvyCECeMCv/3d9zzuD4z1PL17B8Zyvz/4/vefqKVzvSaQwHZPrOuZXAumV45d2ydP88p6uVBTIS4z1jhd0eSMcf8/6OAREfWJYClFn3jTNLM9HrTWmadJ6x68egxr71jnOVLmdL6oQd258WTquBBonz/jxrB0RtXqECLWV+y2EeflbS+pw1L/HtOAB8/rShuWJR8CsQtNYG2dIxWenp74+OmF4AEUeNG7UEvHO08IZzCaDNrTzjxH5DrsQUZfuAI06ZphtoYQVJGbpokpBbUGoUoeGGJcsC7SWkKkktOu8UPTsFY09ZkVgFr2ovtJZ8DDdt1hEqot9Ek4joP75wMzF8pSYIXcOp9vX5hNormF332+c/LCyWuULhoD1uMwHOLY2+ioQZM4znpqTtyOzlagEDR2Zs1IaFnm06x1FFI5tg0WpwT6vI+Tocb83ORg77ioFp/SMpcPF37z7W84eqKOqg2aYb8deDTDnLsSexyDwNM7SBlpKqGZyl7HNbSqC8IahXB02znKQVgD1VSl1ZDILRGMZy8PxHfcrFDjvQk9VZLxuNwRvyiRKky05ijNgJuJy4naPDYY9tLIYjB+IsRIq5r/tjj2Y6fnjidwOV3Y+0Z6ZFI56LlrYqZpEAIxmhsveirHOeZlxXqn8Uh5tcbpPl8f+MMX2Yr2/YgKi9bpoK1dY4diwHqHGysMQUHR0zKRhiXLjOu0HRUSpWkKygVLrxXnLes6I1JH5FiYpld3iB4esrVE72k9Mc/6QEg5YTDYEJBeOZ/fsa6rAnSeLnx+ueHdjV/8/BvOT8889gPvA09PhlYt5/OGSOC73/5AiIFf/uJX/Pzrn3M8dq4vd07zSi2V7/7mO3IrGAxfvVfaUEqJv/yROfWTGJaaxTYc103L4L0DaVRfmf3E5HRn2UojrjPSBCsWKwYXZ/w0/yGh0Lp6+IzG6sRYfAz0rEQbPznEqsgTfXzrJ6OD9wHjPDkdYL2+KLwhFd2LTlGHtTMFK8qyPGpmnZSOJAg5NXLuTGO3U6rW5LoxMOwwtgNUVGAoXShdLU+XdabmxBR0Z9OCJ4aID5FctLLidJp4PB5gqsIJWqc3EPGj7Mthu+PT779gFsPGxuVnF2WBhgBAOxrpnvDGcheh1MRlghBPVAIHNw4CvWbCNGEVZw6l0o2hMPHDLSH1oNfMefY4I3g7ro09ctsb07rwst3x1uAFWtOY3qM2mjUcFg4aYfVI1+oLyY1mKo3CXh6qAJuGtIZbHf0ugB1lU0EDBqVjZNCvg6fVTqsd65wyIwedqNvKtM7YIHSqRiGNoZmu/+0H265KaquRZusYxJ4qGTt5tl4oLNTuKWIx80LunustUeyJgse4lWk6MZkO8YwcajDfe6U7z/Yo5BRoRZAktFyQLPSsFqa0HRyPRN4y67RqYiY1vPGYrsOy16YQE68PqpzK201pmtQql3MeoQ8tgEvHrisdb5HOcIpYmnQsjtpVIlvjjA0R4w2uT2zbnWhFI8K9DfpRx1ZtPMWggpFT10cIAe/0Yb/MXq1DteKD3q5ybuRjJ4ui1qagXezOaSovRr2x3W5XTueL9vz0xjwF3r1/4uuvP/DpywvHkcAGQphUwa8TJYPxws9++TV/9md/wn7fuTyflKS/JwyWDx+eefnyiafLmdNJQdmt/h13lsaY/xT4l4Dfi8hfjPf9e8C/AXw/PuzfFZH/avzavwP86ygN8d8Skf/6b/szugjdONzstdphILvicmLPGbFWn8KlkmqjG4f1EdvBTzNpSP56zVWkWZhW9iOxnE7UJlgf6AN95XwklYqPE11/7MbVGMK0cL3vHLkifVTfBh3WuVQ1gefCPE3ctgMjytj0ThXGlPLbtbyUpCqkUSr4q+pkrNUlOULtXV98rXF5uhAcBKfXkJwTMQaenp6w1uuOC622CNFTWyZMsw5TF4jhDHgqje26s4QVNzmeL++QCfzZce8PJj8R5IUgesVzywLuxt6u+Hiid0d1MxImfDxhJqj1oDfDp5crsxcOCWzNMscLLlS6B2MUztBaZm+erXk+3TMla20AIsReWNeZ7mdqh1vqiAmknpljxAfBTp0jv9Bso/uu9B+n1puwRszsOLmZ2c9IEXzxNKvsRYvCJ/ohb/W0znvCOFlhBDc7bads6hv0UX8M3OqpVmsU6GjcdfI0WykU4imSI/j5xN4c+BnjFrqb6SaAs2xZ2HvFzoZmLWE50cMZUzJiG7UZtkfhfi8EtxLMxDH6uHvuujYpB4/8INiJOcw4NHhgZXSqi4xkmMM7bW80un5/C3eo8On1VAcDf1aG9ajRqxkRYac7yta07MsI87rw9P4dueTRGNA1BSZCyYlpmUlN4dV9CDR+0sNBk4YPFowq3Jp5N/hgcFYRjN4KJedR/6IEr1qKJq2qBkIMWkkdp4lPH39AsFys53Z7IcZIrZl3zxeW04mX6w0QHvc7H95/w29+81uMFY688U/+h39My13B2GFWA0RTk75xcLmcWdYJy8w0x7/bsAT+M+A/Av7z/8P7/0MR+ff/+B3GmH8e+FeAfwH4FfDfGGP+ORH5cQOTMWQDvTYKSWXsgXWqVr0NqRQ6htl6RX6FwJYyKasdaJ5nNfP2jhhLnBe2VDg/R70ieEfOlWgcxga2PbGeVK1mwDOUzh0oTahNCCFSc8Ya7eOpreHCRKqdEGe6XN88oFhddOeSFUjgzVtZPALTPDGFSK6KiBIH1niCs2zbpkJP7ppeGfWhpVaOQxsLdadqqS2DDWORnohdh1PvlloNrVmc1xPLdjt4mp9wJpJTwq0B0yz5UWiH0PZODlVNyKeFafU0u2m9ARNMT7jFs9eNxWvhVvcnEo3Drjyqx4SINUFrHUynHFkztz0QiqMdgjET+14BoVzvTNed7bHjjBDVyokznhBWakmczh4vHdcr0/PC9rJRcsb1RraFsAbevXvH4maOR+LI6utz4pAiWrIVRuKkq+hgnHnbDxdXic4zn2b2fCh+7ciUWsi2IK7z/P4JCcLeds7vToRTwD1N3JLWCj929dRmPXOrUSme6LVzZCHgqaIDNYujW+2tpmsirRaHrUI+dijQUkOK4HC4sUOXqmuBrWx4q9CMmqqGIGqDEYk0YuhO89/Be9Z11qE4kjrW6L5QodK6z/XOkWqi1kaYRiuBdNbTyvnpPLylsB87+76xnFemZaLs9S3RM80TxhvmZcZFy5G3gU5T4pdW50LKGUYZHaJMAOcc1iiIpaZMr/ktjOK9H+yGRgwBAfY98/33v+f2cuWrr7+m5oTxXQMnzvK777/H2UjJO4iwLpFf/+oX/M233zFfFvJeqb3y5fMXvn7/Ndf7lft2V6uZjIOQMz8ypP5vDEsR+YfGmD//2z5uvP3LwH8hIgn4S2PM/wL8i8A/+rHf1AVuKataJ36oYcOsLSqsSNFBWEzGOzC5safGl5u26025jdpcxtXWUBqUbjhyI+IoRfDBMS9nbved2sAbS/8j65D3HusnjtqxwamxWAzg6KgAhA0jaaHWDBlAYd3VeB77hrI7DD54xHbtz1FGGxh9gesnUPXQO8enz5+5nBbuj4oBUslc7w9ybTgf8H7CWKf7SaMqZ+91PAw6rSVa9ZQq1KNTZMNGD3nDniwv+x13tkQb6Qn2a2Z2ugtOVFLtnM6RycHnHfj4oH/9zGwCqTWcPXF5/0TLD7YvD+rWad7xdDqTy4GVynQ+4Z2FYql+xp3OLMvEsd1BGma+6K+3QKkZlvfEuSC1UK2jIhgJHCZxN7B7Q3i3Mp0X2tGILxP3/YGZDGFRm4+fHOmRqEdlv2vdhUam9BTRpdOcwVunSa5oudcHK0JzDWYtqDPecjlNPPKDR31ollm95mTfwBmSeEqGvTkWN9OI7M1RRW1oR7McrWPMhIknCoHrVng5KqlZcoaSLa7PqjTngiRRsn1R07ntlmC8Jsp61gem80QfKa3QakWKKsmI1kMH5ylppxuDM368nLVywzpNgSksRofDkQ6tnRhtA9IEg8U5y7v37zjKgWmG28tVDee9DVFSwx/ee6aow9JHT5g9zSTyUbFNK0NqHZt504nxwjJ7Sjq0c/2PG1h7xxjdMe/bxrKugwym8O0QAs/PH7je7vzwww84azi2B35eqKXRauf5vOLjqo48KRi0D6tLJSXh+fkdj/vG09MTpZa32oyX24sGLYx96yr6v3r7u+ws/01jzL8K/HfAvy0in4E/Af7bP/qY34z3/eibIORBRqlFdxv2j/BS1D78WZ3cDoLTU5d1lsd+6BXidlczO68LZE9vwsePnznSoSp77cTtoLVK68L19njjV8ooJ9NUB9zvO72rAmhHeVZtjSAo5EFGZe4wzsqgrr/29mCU4t6kEOfAFCd0z61/jvujhfux73hnSCUzVY+hqXo/RfxYsofxhNWOcz0tqaG469DBjzbMdSSTDFLBdEfNFb96JjvqdosgBcrRiAnSvVJ9Zflq5Xa/czeV6lYOEb7sHdcSlynQU2IvmWgdB0rsqX7hy6EcyGAnSkPZmt2TtkbzjQud1jzeT3gviLOYRdhfPvNla1zWmW4stQrOrSCGYiYSEzWutJrwruv3LQh2dcgkEIUpTsQlcPt85/5yw4l7S2qUpFdXpXt3qtFcejeduHp6VKW4uIJbNcF0cDA9TTSjV8vpPCGLhdPKPXXuWdhbgelCtxO5e7J4ijhqgdQd3U1UE/B+JWU4WmdLQpeJ4yjUPFYFuSNFSFvCDcI9DZxxRBvJe8YKeKsZ8CaqNpdc6LVjRH3ABkMfNRJ+MEGLMeSclO0a9WZRqlY6GJQk7oOjtEJtndO6cn6+MC8z1+uVoxyU0cXjRlnbcRyI0UML6FU/BKW1l6pxVK38GDStENUSGFQAbSOX7qx7u5Ep4FtYlpllWfhhhE8EWNaFeZ653u7c7/e3Yf3u3TO1dT5//IHT+QnpnWWeuG8bxnhuL585nd9Riu5njTFc71duL3fKUZnj9AdoxlgdhKghhx97+2cdlv8x8PdRQffvA/8B8K/9P/kExpi/B/w9AOue2bd9DCw3stVmpFYmTScY3QN2pxWxrTW8sTzuj7dB0rq8YdPiQLUdY8Fda0cwlLa9Gdnv9we9q+OfUS/REbwLHCmPvu+3v6/+PutIuYzEEbx+gO5/dFG+HTtfuWeNsznteWkjcmbMobFAo0KUc7q4vt1vtFr48uUT8xRBBGs8JVdENqZpojZhPZ3pYmhNT7utd3LakMlSiz6de/OEMJFb1q5t72mpk0vhuO+s71dmt9J2gWyYTguWjEke8QvdCX75iqPd2SWyBE9xRgk7tlFr4tEnvJmYzUr0YGnkXmgIWyncSqDXRCaxV1VGAxYrqiBvCR7FcWaiHoZlumCkIuXAtY7zF+71B779eMebzhIsSCNNUGLHLAZ3Ho2G3RJPE5evLqQtkR6JvCc+fv+JfBQV6kToCH3YhNzq3hTeJqI+y2iIEjh6Qlzj+cNCdcIhHVsg9YBfL0gGiRce1dH9TLczlcg9CY8CTDPNzrTuuKVCEWVp7hvst4apWjhWcqEfHdcdtllabhrHC15jq1HY7zslFTqNil7NXy1GwY/eKFEfsDWKZ0v9DyckO6IX+fXmFjzOalAipaoWoctFyTvRsu2bgifmyPV65fLuSbtuTNdKkBjY0wFNDzm9dbZ9o6OGc+tVF5CeSSmBWKx7rX1p5JS1jrqrJuCdx3u14blSMMYyTdOIOhu9wjN6hBrklHUl4z3v372jDrW0FKWOheA5X86cTgvrulCr4fHYMWi3enyaKLmw7TvnpwvTPCuXYrQW/NjbP9OwFJHf/dHQ+0+A/3L8z2+BP/2jD/31eN//2ef4B8A/APDhV9KSLnw1LdNoRk9ue900J86A96KFZFhDLro/aU2zqsiwgWDG6dS+PcG6yIgvmjdP5/9O3Zvk2JadWXrfv6tzzi3MXuHudDKCysiQUu1EjiCnoKZGoIYGoVZ2NQN1JUBNDUNtVVBDCGaQQbr7K8zs3lPsWo1/m3kkoGAICQlwXsBB53v+7Flxzy7Wv9a3tOPGkmscUUlVyWtLejKjv/16GxpirPqDyjkOY2/DWaMTx0F3TyUzzTMvL1/JW2RZwlsR2mtrof5cVHtyVvt2wrJgB4mlt06qEZGEIOz7jhK3lbSeS6c24cvXZ4xMWPOMcwswE5OQku7C7sVjToYeujZIng1PL0/4q/56zonjj1GrXy+WFir+4ug2M82WI26cPcymYHvCUeg5Mk0PPB+JWCOzNzjTcSIEqzDabBdEAlEccS08HyvQCF5J9zV3Sg98umUmb9hSw9AwXd1OrURekkGS4Ryc9pZXiH6mn0/cbeE8NdrccWKYLhNyh+k6kXb1I97KneOLdtjIgESLFcRqEVi4eIqthFkrf3Edb9UtcE8bq2kcpdONhQhFLAdCItBlYoudx4cwiQAAIABJREFU3oRsDNl4bqmSzETKwoOdKc2y58KWhG3tHJtQD/Cvp8rYVadseqqstSJVr7Xa/36n5qonzuHRrQNv56xDGkgFRGtkqWosn+ZJT2FjILTe1rd+ntb0+l5KISw6QV6WWUk/x2BdBkcthcd37+ii7ZqnOdAGlb1sSla3wY6Empal+TATx/P6GqHsdOJxYA3Ms397loyMpoIxeMql0raNXAopV+bJsR8abwSVSWLVZ3DbFGLjwkwulbCcqLVzuVxY143jODidLoNUNjFNE8tyUTeNm5Bu2NYdI8LDw5WcC2a0iP6513/UYikiv+69/3H83/8C+F/Gv/9PwH8vIv8tOuD5V8D//M9+wN7po4ipwBt78ucI5OBSWh1y6OKoE+w66myt0UVN6SiK9LfWvn0M5xy19rcFtJZONUaTO+j1W6r+AF8N5hr8H/3Wo+catDdG6S5O+Zn958J7gFSyErutDhyOGDFjcdRsOWr3sIbeMilnQEV4aQ0/dtac9Gr12vsTkzbk9S4IKpDHuAMF70a9Z4v07hECgiNtByXqdPb88cLitanwuEd9CE0n26zE+GxovmI2oYZCWBrGJl4kYlvCm0LPO46KN43JdmZvOU9OdeRWMb1Ar5jeWaaJ2gwlKlkGwOSK0PTUnAv5njG94KSzzJ6H84lgIbfK/PAtdnJseSdtOy0npAqtB6RZ3oVAOjnCkFyCn3QRCp2yVh6/fyShGLbW1EDdXQdvwAnZKeovmoSbHd127nGj2E6/LHxNleXynkIgFgdhJjHRw5lEIIklV8tRhGJgb5ZqAlUm9mIo3VBlolVL3Co9Cq47aqzYYumpI1WgKFbOdX3PxzWSj0zaEr12TtOCs16JR6XrNVZxnrpoDRZqKrpoNqdaXyuqa6sJQ9FpretQhBFZbK3z9PVpeCS1i753fbbkDRorb42qJVVSSlDg5E8DBqP82Yo6C2pN0DvzPGNtVw3R2BHLtJQU8c7oc//KVuiwbSO3LzIOJMp1qMNX3VH9ct12Ui7YkKi1835aMM4zLwutm9eWGe7rinOVWjvrttNyZ5lOGLE8PX/l8eHdcMHocxuP488uU/9vrEP/A/BvgW9E5PfAfwP8WxH51+jX+XfAf6VrXv9fReR/BP43oAD/9T87CWfkV61oyVHrOtApoMugHo07+qZ6dfjT0DfE0DFqE3Jq4/o6Fjj0dNpBaS9jV371cyl5xWnG+7XMCb3u00fzo/AfEJBqfWVlDhvQiEJ2xkRd4IiRl9sL59M8cu06mVxOC3KzpBENmybtoqFphwytM0+Lehu9o+VK7nVMMYVlnjBGNcuiFYRYa3BmwpiJ3hxCoDVHbZZaDd5Y/OWMTHpyOZ42mEECpJdIKYn5ccZ6fXidcYN4I9hiMTZgbMbNuiCTd2YvlGOlGY38JasJGrEVJzB7Qz52nmNk6g5jFmKuWlNQEjkmpBdqTSxB2zKDFew98fs/fcVJw0oj2M5p8gQLsztxfrhieuHrpx/prfFSPWRL9w5jK8vkKPagSCXnwunbEz4G0k070KfJo1OfznQOinrzllQLbRIijV089yNjrMdNV7Y2cTsaPXjKIWwlMz04ml9gWmjdYd2JPRnWEsFY7HxlK5aYO62esAR6jNy/vHAOV6zTmob92LHdQoH1tiJVq3Cp6FW7CjTBdoupYJvB2oARTQ8Z0Zilxvi0pMs7j3Q9rR1DpwyzdgzV3NQ1YDwhaOWFGGFbNyZ0aIjVybzGJfXXXAoYbxTnlxPd6IHAOstyXpimmSqZ0uMA+xomf2FeHDnvpJQxBzj3pmqNKpafDxgxRn22BnVs33dKVeSexo418ppKY913pnnhiAnE8vnLVz588x2fPn/F2YmUC7f7Su+OzsFpubDvkV51A2kNdT6kxA8//KCdTNPy1rDwH71Y9t7/y/+HX/7v/sx//++Af/fPfdx//Jqmib/5m99Sql6ptaJzJA/GztZaf2t2bKW+DVNKaz/rhSMTbsaPpOby1hVurBkpITWHi/hBAFKCy4jwvOmmeuIcXdfWqk0kpzeAgE7d+uhhHlxLAbruiilnpqr1FIyhTqPTRZFw1r2CjCs1Rz6+f0fc7xzbwfWiePuckoJatTtXAQq10BpjEdYdvTTBGVGGpje0ZshZBvnIEIwSr5trWiOB5t9Py4J1Bi+eXiFYT+0VwWgFsQFjJqwLlHwgRgEUTIZaoTW1z1RvgUYvUU/VWUvTrHgME8YoNuzIBWtnZJkxVFrc6cExLw84A9IS0iveCJZKiSvFWpwXknStMi6NLDOlFT5vnWqB4BR82wXvZ8Q6mgiGjt1PlLbRaPhFGaPOO/AOO024eaKkSqydly2xFYiiXesPy3u2DDV4MoHuFrqbSDKTm6OaQLMT1SwcvdGcIzXPw3ylsLA+DWhHGxtPNpQ8Or1zR4oMXiWK1OtKx6FBL2AaSBfKkSldr9EyNnHrxwbfoGSteW610UeJXBt+3nlaOJ1OpJzUYkXDTwHvPBilqL/CLVrUBkcj9u3gUlqlScQ2RxXN2J9OF8zog9LZgQ4O+8AQLsuMMV2HMi0Pv6dl3/Q6/lrr8tqe6qx6kr3ztC4spzMxJfb1hgtB8+TGUg49oTZEkW2d0TXfyKXh/cTtZcOHCTEBI4aY6qCPaa1x78qT3fadbz5+i7OOFBXYY/4S4o4igvN2tMlp14vzjnlZ9Eo8PJCtdmgN83q6fLuGax2uVuM2BZy2cRY3hjhQVjHmN6H5lfOnr4F1a1Up6k2nzK86ZxGIMAZNMtBsHUalKdIHnVpPw73pgj8FT8kJZ2CeA8vphBijArW3WFEknDML+77z29/8hqfPP/G3f/Of8Pz0lV99+y3btuGc4+nlRk6Z3huXhyv7nlj3jd71elNrplVIsdK7AwIw6S6aI3IYNXcvhmYb1VVsd+TUKC1jF00olSNjiiH1iMzQ9o47KW0mR60xjVGtMTTBNId0hzND2+sZo45u/dlUg+sdY90gUVe9EvdKdRo2uO0r3grBLoQgpFbUf1g99EBHcL3RG4NOf0Z6oq4NgsUuAalwT5mH84I1HXOeySUjj4X4smtVgRhmHzidT5hppoWJrQvJddac2MWySyUZxdCtbSJ16P7MUYVcAkkc+y1DCDTfkWDpeL6uK4kJM1/IfSZFT8sWDkPKmXpUHpZH8lbIMVNjxXflesYtanqn6cIpr0xLhGWa1Qokqm8f+4E1FoMulE2aItiy2m/0f4UwTyynhWmZNcudEz99/ok9DqmGznyeaE1Po6XlseEb3PBAYtApfdDiMn1G9Nl67chaTifm08SRd45tpY8ZgnIeAtumbFYxAe9U2zfejl4gSCnjveXVlDnNAWPV4jUtyzi4CB2rPmfnOFLBecNxJKzzvNyfKdXw/a//mvu6IUb5DtsaeW3WNDi8VQu3dM2c964Les6Z4zjgzwd4fhmLZevtLQeei2p4IhBHgVd/9cnAYB92nPd46zUJ09FmuCaYt6v5a3k8BPGITExTxRj3dgUfN4Bh+FbfYxnWBZ2g/1xC9srUfPV+1VrpImzx0Ou4C6p7tjaw+PpmFzHkkjG54pzBGjBGT81dtHel5cj7h7Pi2azw6cc/aUohJ263G7/97W/57le/5nK98PT8gvcL93Xnd//+79n2iLUL59MVN8zfpYDIRCmWNOpQqaJpl8VhnKHaUVXahX7oteTL8QWZBX/yVFtx3aEtvZ2aAG/I2ZBMY1oCxi5kLYamxUjwei2taacVg0GYjGO2CtOQptfr1vT02MRj8fjLCaQTayaVhBWHm2fScce7ga1D8HbB+UDpB941nvY7c5sx0XKarkBGqsPRmYOjmwInocx31uMLtU6E7Fh3y9UvuBLYjkTOnVgc4q/EllhLAQIxGsQt5OzodqbaGQln4pox7gHcCePPfL5lPt8r4TxB8rSbgeIot6ha/Fpx1bPfDuqudqF0SwQbCBIGRk+HPtJ02EdX7b3EQioJZ71KS02UAZpGYVipA9irCSorhmmamaYZYwOtGVJuiPUgjtI0/FHqpk2oRr3GtXe8VcAFfZT5eZ0uixu1J61TSmZdbwpeqTIwaovKCc0iZhwwaqPkTM4F54y2lDaNzzQ34kbjua6t4/2E956Hq8IxOuC9avVqOlFs4rScmOYFEB7eBUppLLmxrjt/+oc/cV93erdcHy5cr+/VcVDRdsox72hN4dCIxbmAtepLfd0A/qnXL2KxpKsFIafE88uLwiuCx3urzYxjMm6t1VKlplflaQr/oc44PI5qarfksSA1GZR0r815veuCK2icodUxSOpo50lrQ79Qa08Y/s0pqG/sFRkn3vKnTz+wrneMAWEMkKymgkrR/HnuIMax3p+pOUEfH18s1jl6c9zXlWAbpkT+8NM/8O233/Lx2+9ptfHyol3JHz58xLvAn374E/uRqQP48d23v6EkEGWWsSxXYOLLlxun08zl8khMETtZ5seZLIUsmTWtuJMjkbCT5R7vWl1AAy96cpdKPtSn6Ranmo/AFjvi4KVGnO+IqSwnlTasXcB4So7c7oXJQ/AKWhUqtXScAaohduE0OXrN0Ib+2gtOGjE73HLCTRPWdMRqaknMQqWSs7AzY2ugFstkPbXBbA21CtIdNQjmsrK/JHI1TM2zR8v9uTIvwhEt6545csW4TMGBXbB+ITWPRRM4vXm6neg9kKxnWd5xVMu+dr6ujb168mE5zWfIMySB2HHNsd83ehLN46+JtGXdwJtwrDt5y7SoiRxvPLYZpHd6q1ixeOcUOzio7K8tmspPTZRasFPQLvIqtFELXKIWndlscJNecVOqWp/RocREWCZ1oDR9n7fhFKErPNka0Y9vjdbiGo0meoNuXCmTowIwWu0YrN4mJu3uqcdGrxUpGYdoXcWQt1JWKpcY/Zp8CJpTr50j6oS8qx5HrZnaX2PLenR61TsFOJ9ObGskx8zpPKl/NidaRe1+JY8JPGzbQR8aqDXKmHCvra1/5vWLWCw74PxEx2LsjtSOMQ4xjlTGtc1UNX/3jhuVDi931T9q1V4X90o+B0ANu847ROAll4F10wmb904n3WOwo1pGo1ftKbFOS8UKvFVIeOcVFFGTaptYJmvYa6OlpMMWOtO8cDktzM4jovFL0zrbfcUZ+za2ElRXrEMfOvZIoHA+nxXSsW1YgZIi/+f/8b/zh9//gX/9b/4Np1nRUsu88PR847ws/PjyhXhU5vlKTInb7QVjZlJWQg/dkI5CRgczdnaU1DEWpmXBGkcka+d27TTTMckQxpQ0pUMTQ6bpnx+tfx/ef0eTxrrf+emPLzS0S9t6g/cztWZetoIPWnlacsYKeGdYpitrzHy6rUzeMgeHN6iHr2Um98CnrVJzxlE5TV4DArURjGDtA396aXwQxwlLcIbZW44MrnacNdjpTFsS0W9sOeGzJwSP6zOpzqzpIGOpTjhKp2Dx5sRpeqR0A3ia86xHZVmuxOaRZeGWHdVM3HJhzRbkjLQrPQZa6pS9QIQcE7boJlPWTNkyvhm8caQ9EW/qWfSveLtuka5hAmMc1jhaqfT0mnLR2t9XC5B04bxc8MtMrpWUM+XQYY/xGuowztA3rUuxokDo3ArJCsZZJj8xhRknlhg1uWO8XvP7qF7oIqSqmW37asVCD4fbunJb7xQK06JldvtxUErCGp1iq0XOolqbGWQjTzAGY3RwGo/E46PKb/dtZ912jHH6d2cNktzvG8YHHc5KwRgFWr9uEq0JvSsMvJZKPBK2W1ph9D4BGJwNpJS1eqQ2kgwV8M+8fhGLZWudr8/3oV2O6wOdME1qEXo126ZELQWMUqdzUROrcfaNnsKIHuY87CJ7UzBFVa1TWwY96ThG3YQuWjCuGlVBvj54PbJXjRq22jhgXPM7vQ8IMWA7eDF4sQovzYW8Rw4MdrTVrTnSq+LXyrZp1LGpIB5cIB+ReVqI94PT5UQ8El8+PwHCLWdojeAMn374ga+ffuL773/Dp89fWZ+feT59wlvH87Hy9enOPJ0J05mcI8vySM6Jh8f3PD8/U1OjSOG2rjSnhVGmWHz1LNOJIx3YyWGaDiBqU9F/DvMoy7K4yYGFXBOLLLz7+A4XHD/++AM/fPqBl9tKFNF6Ar9QeybFinWCmICYzst28PGbB479GcfCljPmqASru7w0y2UJLLMnZYOhEWNhDmfENL6uzzycZs0UJ0dxEx5h7+CMqAbaNfkU3SPRPrKnldA9i1kw3bNlSxGrtp9YyLXTbMDLCWsfOHKlZIOdZrI3xGg5mhBOge4XqjnRTWPfnrHMzGHGFKvvlecDitBTwxXLelsp94QpooO0PXO87Piup0Q3uIq6UWiM0XZLT42S1awuqN0H9D1bUx3VHAbQqX6n0632KvWo/VNhVtM1Skobw0kopWlbaRuBj9qpRWsttHoCelFgsBjL7CetnW4FK3rrq6UR085+HBhvaF3U7J4zIVglyB+rSlFWtc4OlKTD2uCdAixGQi7Xhm+dlAtH1D8jxlJbx4WJ3Bqud7yboQsiVn+/VkQcPgi1dm4vK7V27HiuW0Oz8q1TUhl4PxA7Dku1MPx9/+TrF7FY6g14HM+tGYKv0pndGKiIEcJkYdKvSU97ZYTv1YJTx4CmtobxWQECAs6gOqdz9B7xfqJWJbL3rtGvVx1xCosOxpvGy159la+eNLGGVutbeZSxDkollUIR0TAy0EuAUgjBaetk68zzgu1Fd0ej138jCj01KOjjfL5SSmIJTn2Kw1O6TBO9FO7Pzxjg6ctnTDec5gnTGp3Gr371Dfue2bbCaZ44KCyz51ff/YZtz+QU9epjCkfLSBCkwmIX0v2ABH7WGt24HeABp55HM2utbKuVkrVkLNfMc/kKR+Px/SPfXb9FktD2H0i1YcswW5eOYCnScF4N4MfeyOeFEiu5HUyTYC3kroMG4xrRWFKsGHOBmjFUbred0zJxfv9XbHHHTxf+/tMz3//qzHkOODq+g0ORcAHPbq4k/8i2C6kZWj/hjNaMGO/IrXPbV8R5chOCnDB94mijJqFM4CYyHpnPJHsCOfPylOhlIvBIj520a/Nn7526FqQaKGpX2Z42TNXoaSyHNjfuhSZguz6wposObaogTdM6pVRardpkOSSkV2eId57lchrE9OHMeB1gDlJ6H5nwNsA0MMhM4kCUHxtTVjtlYzRmMhZKlVqkdjCd4Dy5qBd0ckE395I4hu2n0uj7Tpi9wjQQatGq6XGPwtrBPaUiYnF+UmlsxDYRS8cg1mvlRml0sqbzSJQOxkZOS4FuoXX9fo0/F4/CvOgJvKQC4qgpU4tuDq3CcUTSFlVa88O+9880O8IvZLF8xZ8xpt7O6fE+1/pW//Bq/DZWEyCg2U4tmD8U7TYM7HYAf521BGvpJRMmP3Yhr6w9P71N5LSvRMG7dix2pRQus1LYj2NXPXP0MDfgNM+krKVp4tGWRRGCVy4jAjFHUj64Xq+EyWOCw9Ss6QtjdbF1nlQbk3PcbnfMaWLyhsfHD+S4sd7vpJw5n87EmLic1FRbaqOkyPbywmk+Y9xM6wknsATLd9+85/l5ZV1feP4aeH5eMb0zOUMXz/m8kHqiSiUMx0FOiWmeucwXPj9ppcfp4YQ3jrgfWkomhvPDmdorT/evlJQoRH73h/+L8/XMfDrxTXjPGpVMbazBV81mT2Mq2+m0XIg/RcByPr/nPJ04X85gG2I6Ma3E/IIxndYjKa+cJoc7XYkGPn74hs8//pHrx/dEfuCPT4nzyfFwXghOMLVhrSHgKMaS/HtWUSLRFgMXrx0uZRDo773TssHNZ5pMpOjIFYyfaN3RssPNDyBn8mbpzbE/VYJYfArENdJa1Qe0g0mWXoDcSVsi3ZJ6KAvqWlij2oW809rdCi0V+uijr6UNO5uopQi1x1H1at96wzQdHqaSlCnpX29YQO+qd05a/tdNJ5eMs5ZW9BTVKpRRoeK8wQUl/lgnb44QU7XgS7Wy4VPMlV47zniahV53rHXkWkhJT7C1QM4K0RAxWO8ppROPNE56A81WOqfLieenF3W1+IBYdVL4MCFiFFIyerOW5axfc1TakHYP6RCndf17nZ3wXtNQxho10XeLE0d3QiazhEV9qkZvMhatyP5zr1/EYqmmcQVpaLlUVn6f1V6c2tpIEwjUymu/76veaIwZdQ5aiNXGACXnTLEOWsM2QVDP1ZGbnvZEvWptXK2lG3xQkbtV5QVOs5Ku08io9tbwAx3lcyLlpNUP57N2H6NXdectNY9qUgNdhOM4iCOtY8VQxw8r+IneEiHMKObAcFt3vDU8vPvIp0+fQCyldW737U3LaQ3O5yutNPb9Tml3Uqxcro/ktOEdfHx/JaadD++vLPOFPFrv7scd71TznbqStH0Dmxv1fnCyQU9mzXI87dReOMmM8YI7jF6V185iZj74D1hjuP94Y2NluZyxqUKrPDw+EM4PlNGVflT9MT4ss3r8nOE6X0lb5OvXr/hZBwOpRJpxnK4nHh5O9EvC2M433zyQ0s7f/fH30BfsYQgPv+Yf/v53fN0Pvukz1/OksGEUolGrIYX3RDfoOTbQqko8pTVqh+wnDTbIRDELvQqlCy1Zarc4NzPlhf1J7VDBCL6oPhmfI6YqHKMPgKwrll7VAnT/fCfdkl6xh+ncFjOGOVZrM0qnj9/vFSx2RAY1JfZKEWpNp+ky0mCl5eHz1RSP9a+eYXWZ5JboRrtyOjrENN3QSqXqtkXaM+CxTm8AWhzXxylTBi1RP6ZKAUDtSNfBqTWWRsVZpwzR0sHpjcIYAaunZW8NxiqsWUQI4USYAusaEWO5nM84P+P8xHK68vRyDCuTDuysVRITUQvelByvtCR6Ryp445AK275ijQfpWkjY67BfFd0sRpdXr5p7R/5CFkt6p5as38S3NsVKG3Du1hR1Dz87DnTMbxXb1lWEsc4pabt3rDE479UigFHzr6g2KSLsSeEczg6BeACEY066kDW4rSv9ZR2xLR0GvYrTa9QeZOMVJeUmi4gfmpK+q7wPqvE57Vfurb6lBNo4pakHTNmW0+yZnOpt8/nKtt7Y404Vx54b4mbuR8K4wLarnBDmM7l2wjzTj8Svvv9Gr7w58e7dR+63jZfnL4SgBJpcwBlDEDfgq41ZtCo2dtUm5zCz54PgHJfTlef7M9Y7vVLmysvzjdNp4eP0kfN8wR2Wb+ZvmMrE08tXjn2ltsLl4YLcK/G+spwWypH5eHnUK2KDI+7s6aD2Gecc535ifz5U3wqvZJqutiwbEA/b80TMHTHfAYkfPj9zvsxw+o4j7fzD18w5OS7nhdMccMaC6XCZ6Bus9zuxWo6iOlzvUEZlSDOWKVzABY6kU/uSwZoZaRdSDvjmMd2xft4gdSaZSM+JyehNhYDq3akhBfJa2J426qanMbJ2iBvjtYysd+7HXW1E1tOKkLZjWG48Pqj8s8zacrlvx5ggiy6oAy9YcqGOkIQuqlULxKwOa17fd910uungUe6n6AGg1U7NihLsoyGzdU3wiAPqCGw0nR7X0jR15IwurnUsyK1Texs3sKY6dVOXyDSfsVaIx0oIYZDA1Jzu3ETvln1LeutrDC+0pveOOBpbhw5trSe4gDRDOjKpqU2J3sDq9b31/NbuWmvFCKPsbVCaXhd/0bXzn7uK/yIWy9Yq+3ZTf5kIJfVhe9S4oXXmH8UU9TRQ0qEWihFdBKijyB2gGjvKxpw2/A3RXLvBX/WfThLVNhE9jo8UpWZZfXjbtUvryDDjykCdqVVomHCtaqe9K59SdTdHHZ+PWM8pqOH2SGkYbF/N7cL1+sD1ctJBxr7xvB6U3GhdkLBwOwphmt86oK+XB2rtagVBJ90xFvLXJ37zm98yTSd++OkTMRY+fvcrnJuIsYyTrWVaztrRHhyxJmoCb2e2p8jteUOcUHvh6fON5XJSarl0jbd1S9+F9Vj59IcnYjpA4N37d9rYeF4Is6NHhURM08T+tGO74Ti2AV/Q/PDjdOXL7z4jzigtZjmRasI1xxY3LtMVcxeN6c2efU1Krt8CJkyY5lnCe0p6QubI588/8HVNnE7Cw9Uwn4Nq4EyYqyPHn9hLwWTV1HqXYWWxdBz3m8VbR80O6XYkajxZoLbM9XSCKuSnTJCg8IVdJ60U9UVyFtg7rcDLD8/EFzWdqzUoMLmgkcQ9kfaDyU9IM8Q9ayVDDzgXKLWwPW+01jiHEzXWEYXUU+ORjrf3UR0pspZ/1iuNNdTScDi6URygnzyM6XSj0W2jGaGZSmqDWwBvi51BqLbTalZ2pXMsZqECt9sdrNZ4KPpvdLGLRhkbFcFhLLQMcc9kC7VoH49I0KqIReWu18XQiIemyDvo+uzhMdaSospP86Lc2BwLp7Cw+In0EpUMnyuzOGJKSujqmTJM+8rYFCp5JPCU1i6vn8Cfef0iFksAaqYNgVqrAOw4+ned4FbVC/HujdxTs2LonXP/yG+p1/KcElnU36g/BEVHGav6nKCnPYa26ZzT3O2oEn2t0wXRkqXB1qy1Dx/m6P8WBYdaY4cGo8K1MSPB0hrdCiK6qBnnNT7YjmFdEqYpsFwuGGfJ6QDrwA7a+7YDECZPTBk7n6EpN1GsZXmYELEc+8G7h4/sx7DC5M6aGojldkSMaYBjL43T6YwZmC6qpVUtCautqfQweV62F87XB0KoOO/Y9k0fvmhwTutFz1NgcoXD7mN6qhFDyRZjHff1zvVhoTZDTw66fg/FOzxONTQ382FxrNudequkPbGcF/KakSQUyYpTc8JsZ7a4kyWPoVTGy0L63DhN76lU+nnm69MXnn7auX09mM/Cu28/MM+Bxkysmpd+3TxfrSzSDL0bpulETaJ9N11oqQxvZ+c0aYQuHwVfPItbyC8Zm4YfuIA0YYurwjLEk26JfM84UftQlUqSrA2NRQhmIg+Kj3Sgmjf02ku6sd925nnmpz994nq5st9sLRIJAAAgAElEQVR2fPA/a/gYWtbyMePt0BPbIMNXaq96FTaqT/beEGu0Ktjqtbx0rZ99vcJ30/Gi4YXWVKM0QaOz2gTpSK3QYxx+z0TplW5R2rh0GurTNQjSjc49m+C8V+pTqhgK8zJRywBge0tKlW3L2sm1Z40E14Z2ajXlJNCJexyRUKHthSUseGuZvH/7nPK+05o+s3VAkFvTOGdMFTFgX59v+MtYLIXO5A1hvBk1xxp5PScr3FYz1TWXgXJTLUcJ0qqD5BR1wjkYkUoKMkOe0OhMGwkfa+z4mJbeDCl1yqE2hDau7n2g3WoybwuyduskWteIJUNlTGMhRuRtwGNGrlxMJ6WIsUIYcS7vA967AU9VOMbTy42aM+fTQhPDFit+uVJrZcsFN53oKDxDp4wK0jXG4s+P5Aqndw8874XaNvx8RoynieW+Rp2qP7wjF6jN0LpXM7sEbLX6YDnDsTeseSAnSzcwzTNzCKQSSXvHBUtvOhQLdkH8xH7oQ+yDwzbheDmw/US+C7EXfJhJ8eDh3YPisawjbZn7pyce3515cA/cbjc+fPeR+9MNBCaZoI1psTda0VobxllO1xN73umm8/SHr5yuZ0ovzNOZK42y63T2dkscz0+cL2ceHh84y6/4ev/6ltQSFLpSqw5/GhGp0EtlcWEsgCrPuNlTL5V6VMxuyD1Tj0LfdBE0Xbt90pZow3jvmkOSjKFWHzcOi+l2sCkbPYFgmKdJ7yG948Tz/uEdvXZSytSS2daNd4/vmOeZeERu97u+h63her1iveXl/qIT5KaLlljRKopx0jRNy8pSaW/NAq036qBhidGK4A64rqDkWiquW1y3+v4LniUs0CHVzBYPSsnY4MY1Xkadh8HiFFBsoFdD3LJ2S80O52atJEmJGCsinlottQjBnShFKLXplmB0M5OuxXg9d0osTG7iej4jFfKxY+2klHXjuEwL2xG5rwc1ab00TWjDb6k3SpRn2vsYHP/Tr1/GYinC9TwRpkm7dGrj5f6iR/neiYf6HkUUEhCmiVYbKRke373jcrnw5csXbknZhdYaci2K9LKahhAM1gwxunV6S6rh5ZEEGPll5B9f7V+n8EJJr5N61fpaa/Th+NcrPTA0UCUQ6T9KNhJySTRplFq05XHABNooOVMDrVqKQg3cXm406zFRc+zTpDSV1rRb2bmA94HcBOmduB9jxzd0DIgll9ca2MrpeqU3Q6xNRfZamZcTeVxP2rBv0ZX+bqzqUs479lX9acZNqoF1Q1wz1ukArlTDZC/jaueUjo3FB8/z0xM+eGz3+O6IL2CYsd3w/nwlux1iRGLjaq6054Yk/Xm7yesgYTf0vXH0jHg73Ac7L/dnsHCaT1z6hUalxsrkP1J64en2rFf+NdKeGu258fDwwLldeFlf3jp5VBjXKGHwQatM9khuGWpnsp4gHlalase7ks1LynjjyUfS6oVcOY5Ds9ypUqnMZmaSiRIrk3iCBDxeTeqH8imDndRK5ATo2iBaEn72A5jScE7z0t99+y0d4fFRIbmlKMj6cr1QeqXkwuV0oUsnlshyWbivd2I68DaoPp/0VtRzY1g06XRy1J4aW0cHTrNv2nEZcI6eE6FUTtcLc5jxPbx1AdF1Y7Pe6SLdstqRmg5jZzeNgUujlU7eC3WCWjRtlWKj1cg8XajFkFMn5zZmD/p3WGOpKdFr5XK68M37j1C6Fphd3+mpunb2dcNZz+QDNUBcI6811HqK1OdGT+ca+XT+LwCkYcfo3vRGsJbcG5d5HnGoxuXdex4fHzifz9zud1LSyfe6bTycTwidyxyY3Xt9UJ3l6emZ28sLdO0LD2EmBLUNhRBY142vX7+8Xaf1lNERo1FJK4aUtfxIjME5T86JijIyjXGUpGxJY8wbCi5XPQW31t60VgRqK0DDtGnQknQ6V4zgrCF2zWpfzmcFgZRKPLI+yEBLiZIL8zyrX8xl1nLTLnRjqF3oxrF3Xbi9nxReIQ5jHLfnNBZ0h7NB4cLxQMSOrm4/Pu8hfFcZG4YK9hirYrwB40Dw2popgg+n0TYILVeaMUhv3LfE5B6wYom3iPeegm44JTYyRcvgKhwpcn24UkvjurxjmibWY8UFR0kF4xy9qSfU43l5vuGrQpUnN5G/JqUGj5j/o3vHFjeNFjpHqYXn56/s8z42Kb2eMSSdXvVKW6XgjEUOyKlg0bqJboRUCuu6UmLGNKM5bivYYshHpuZGyF4fuqwDvJkZW7QZvDf1NaZaRjRQN/COMM0z799/gN74/R/+nmNL2KIR3l//+lcKZ9l27vdnSml8eP+Rd48PxJjY951tvWGsZbKOv/rrv9KNxAixRizQLmft/S6R+7aCMax553RZ2NOum8brFbo3Wq/45vF4HEqVlzEVz0diZ+V8veCdo4ZCbY1YInRRCtGQqKR3asz0KmRnBvFcXSIZS4mN03KmS2c/dqRZnExkAapBusV0pzHnOtiWXbASOIUzLcHkJ00cdeHr82fdLKpi5Ey3lCLk4SAw0tAiGaB1jIE5BKYw4d1fwmJpDR8+vMdZR0yRtB9KRQkTOSeulwvff/ednvhEuN3vuhgZQ9x31Stb51/89reICL/73d/Ra+Hx4YF51qFIjJHUGtLBiuHhcqEVracIQdFny/lMylnx+caw71p1IWKY52nANQr39Y4Ala7piqa7aGvtDaOGgDQ3vJyqwRoR4rbSu/53xgolaw2ujCvBl+2TsiwB5Ocu5S4ajdxvN60SsAbbK3m/64DC6BWJAS4ux65dQCi2zBhLCLMOhbpaOFobmp3YESUV5vn0RlXqHYWOjI2gDRze2z8iWGeJkt6+Rh8Gon/s2akXrNX4KtXQSqYHpwkVY5kXTyoVh4VDtd6SG3U9wFhK7Ih1YEVrRH7cECtaBZwE40ciRksj1A4jnXM4caon2Dcl5oy8/+F21azlNXAq4/fBOIc1Qu9Vr8bVYMTSDihUvHF0aZDGG7d2as9KKz867SikEPGzdgBZb6h7wfUBOs4FXZ+7EpukUZvh8XrBe88eV67XM+/eX1m3G9jG999/z+PDI58/f2E/1Po0z4HOz4X359OZ2jLPL08cR6Tl7/lP/8Xf8oc//QPbuvL+4T3nxwvbsdHujetyoZjKx+8+sh6rDoh60QSOVb2z9kresl7BJ4OxnbAE3OxVuiqNdCS6dL75+BF3e+LppZJiVnB31eCCHbKUNCGuG9ZavNNETo2VfFQcRTmnrXA6zzg8k1GJhxIpRxsLmw7BzvOJv/2bvyH4QImJmvPYiAqn5Yp3ASYd2pVmiPuNkpTCL1a/VtshOMfkAg5D2RPxL8I6hHAckXlWTfB8uXAcx2BIZp6fngd7UvXIr09fCSGMq4mjtco8T+z7RoyJEALLsvDw8Djc+WoyP45jJB8sp3mCxwceHx9G70/jiJHbuuKt9pd/8/Ebnp6elD84wALXy4XHhwddNO8r27ZjxHC5XHBe2XgxaeVEGdAMGeY05zwifSxEjePIbzan3ptaTsrw0JXCclLfpfo+VU+MKdFy4dg2Pn74qHSelFn3g9dyOj3t2jeeZUs7uXbyvmKtp2OoTbA+wEhzdKDVzstxV8uKD28dQ3ZID29ZeiNvsTvVbVX3+hmgPGSM9mqh8q+jTpx3HGWjtsY0BfocEJTIRNGDtBihDIisC+4te269xXqt5Ch7IbigGlRvg82on5OxBlMtdrP45Ilr1JNHbm9MRmO0EsG+Jj06VFMxVui1qq2m6+CkCNSmscHWGzXp1dc09SCWXDULXiC4gMmG474rimyrg1s5GkAHak5Q2cd7i3Gd68NCjDsxbZyvE010ITLW8MOPP7DvO6fzgoij5Mx9vY2yPcM33zwSY2I9dj5crvz46RO3dSWmxLt339DpfP38rEBfjBq0u3CZ1aP73cfvOMqhNjVTdYrtDH72iIMqFZwm2m5PK2H2nC5nLFYHSxiccZzmhXas5EMlGhv0htZ7xTS98VljyEmTbyIW2w3BBdIRdehVDXFLNPR7eZ7PHNvBuu/QhMlOnKaZ63LVn3UV9qiwl+evT/zn/9m/UnnNZ5Z54UidTz89Y7tR5oOx9FpopWktdSojAvrn9Ur4hSyWHUXTG6upFmtVJ6nj9BiWBe/cm/n8crmOwnjNgDunLn3t2liIMTFNiyLfjjgSOhptkskzzzPOWeYpsMwK2nXOcb/f+NV331GHJrne7zg7qC+5EILXhbU3ugjnZeE0vxKWO60U7dOZJ06nE8YI27ax7xvTPPNwvdLR66+CUQPLST/Guq0cR2SZZt69eySlhHW66Gu52p11XWk5MoWZaZr48OE9JRfkfOK8LORS2PdD4a9Nc/O1VMRYvAujw0U7nK0NLD6AdPb1puYJEf7q+7/ifr+zbbpBKajAjhO2VfLLSFSpXubeyFBNROEOg4sIw8ea1edGh+vlSotJe4YQuhjcmATbpn7A17a9SqPGQjdwsidabkhVyLL1lmPbEWsIJ6/WnVEtXFqGAKEEpKEw6SiYqiT7NuJ73TTwYMpgQ/ZGs1qp7PH6vWsqGzjjkCjkQyk7zTRabgMdp/5LEGRAl00VjqQ1CSklSk4qvVjBBTsgvlmLutyJ6+NMez4QqZRaMA78pJDjJp3L4/XNheHmifms1/f7feNlvSvkRKA0oWF4WXfePb4nJ0i1EHPBTQHvDVIz8+yoR+XkTxz3gyadh9Mj3XXu641cCkH0/dccFMk06ZSqMd10ZMQchNlze3pmXiZk7vRWeL7fsZcTwQasCKUnaNCyQnCsgBVPKYXttiFNmyPneabnRjkyy+mM74771zvHEZmWRUE5tvHN+2/x1vPjDz+QYuLrpy/EI/JwuTD5GWwnmEpvKApweF4Vkt+012gMj0VkDHu14+jPvX4Ri6UxFuMcKemUOTjHMghC7nIZHD2NQ27bxvlyIYTAtm26+zeYppmcK/f7E/O8sK6r8idLxkgfpxs9tXhrNW9L59NPP7IsC8455imwbxulVE6nE7TO+8dHPn3+DDB6mpXsPvmgHTq9a4sdUGrh2I8BVFVb0PV8ouTIvt4xvb8Nqt49PCJGW+m8d1wvF8KYjnvnuJzOOOfVXNw719OCN8Lj5UwphXfv3nE6nUGEh+sDT08vrNtGf3xAjCWlxL69WieGl60rO3CeZ87XRzqCcxN/+P3vNfbpPe8vnuv8wLb7t6tjzpkwTZRcOWLEidVGPFPpvehVNqv04N3PZm/vPNZ2rG28+/iokod3HEHz5c41ejugG1oVrbIw5q298LWZsvdOM+plDCFQaqZIYfIzvXZyLmzHpv7TxwekG8qWKXetSz71E/t60LLGLyc7UWodkJCCt0r8MWJIa1TJw5m3alrjNR0T+zCWF1S9GLbebocehk66pev1Psad02nmepnZj46tqv+2FmmjW2lZZjqJ59tnjBEe310xRqWmdT/YY8V6jRIaY8dmUNljxPmJ0+VMKZUjJ+bzBe8mzWTXTmq8MVidP1FK1doQdDItVmk+WIOxQtwyeDjNF7pR/3PaK2ax5NoRLzg70yjkmKh1o/eZGBuaDyq8O1+IMdGznsBNUPmljo5zM6mGXkZkUqwOnEw3OHGUmDn6jhfPse6kLeKc57Jc9SQq4N3Mdj/IR+Xr52eOPTP5ieAWfvrxC9fzhclP1Fa5f73Tk0KVHe7tFmGNU+R3hfKaCJT/f6pw/z99GWN49+49RzxY7yv3dcNawzLNiBi2/c48zVhj+fD+A+fLhU+fPw+tsWKMZVkWnURaXXAeHtRyI61ybHduLxthnDxL1UFKG2mb/ThY1zvTNHPETKuNP/3xj/zLf/m3OGv5+OEDx6HB+xgjJSsbL3jHvm/0VpmmieAd0l+tHoX12LUPeZ5otbCuN+Y6a5phmljGYGTfN+1QoeOd4/bywru//mtCCNxeXti3jfP5QveqF9EhHRHp8Otf/5pSCv83de/uauue7nl9ftf3NsaYc6619qWqzlUwMDQyMBGMNOmsM7FF6EQDwcDGv6AjoSPhQAc2CCooaGAigoGBBjaCQQfdcC516uy9115rXsblvfyuBs/vHXufpmtXYYPUGVBU1VzzMsY73vH8nuf7fC/vHk9Yq4QorCqdN2jdUwpcr1esFT7pugWMqQze4LueFBOGxNc//5rbbeZ2/swwjlgi6MTh1KH0IHHDLbvEOeEBzvPcIkiNZJUr6PsepQ0xJoZhpPOe8+VMCme874CMs5mxdxhjWFehnYisb6PvR6yFEGacM+QccE40wqZtc22xP4zD1lCp1LlJZW+lGTNX9KoJcaM3HbUU0pZEXeIUOmvJPqKge0XnO6Zx5HV5FTMW1bqMUqW7LRWNwrUMb4WYXZArxTSTCi0u+boZPEMkhBsPDxOpLFjdNd10bnJehbUVYytbWKAW6lsghBXnu5aEWO/qm5Dy3ZNxmAZCSDJaK0U/DnfZcC6VcTySUsE1s+sQYtNrGIGmVBWOsRM5YixRbAqTxE7Y5o6ea6ZE0MY3ez2HNY4SCmnbWFkYJk/aItYqSsgMrmNNmbQmnPF0diDmIPzGOTapo1jlpS2xFdlUZ9NC5VSmRsFWdRX+s1WebQsY56Bq3l4uXM43tjXhrUxn03CUrfqaef30Ce8833/8jCoGg1AM11iwSmzwhn7EWbkHY4y0PfmvffxOFMtaC93Qs8XA4XRkvt6Ypkk8K9/OjONI18kWeZ4Xlm27t+3GyOZt126bNsp3ned0PPH86SMpZ5z3gv21uIlPnz+Lian3jONI33U471m3hDKaD+/fE7YVvKfverTSvL29oVr31HViACxLHSfjJpW+69CqUY6a96I1lndPT4QQGvndCOk9Bg7TxDzPqKqbUYdkBcnJu5KjGLxOYyXH1BIdN0KIdN4RtpVxGDHe4ZLHRU8plS0kck1S+PyjLI1K5fX6hrGK6/WFIydSykyjo3MKNUo36W0l6kSKG73vRct96iXvxA6klHh7eyOFhcM0YYxh2wQc9z5TayZus5zcJXAcRQCwbS8456FUwlpafIDFWshZNvPiZF3vY79StRUfKaZiqCzplxpFWCXM7dAd5Geiku17CPR1INw2trzSeU+uhcvtRlIRbQ0lJDrfoauWMDBt+DB94GV9vrv9aJS4X1kRN2QlWKbkkCJsCQWpChykVEeMN0rZGEePUrIp7jtDppBK5uHdoR2SiyyTSpX418Hz6dM3aKNJbxljB4x11KrEKAZFVppaFes6C50Gga1Qu+dqh7WGNawoLIhMQKAX7URLrTRZl8Y5FP23doItWitfo2owUphKEZjMOUdnQZvCNI58/P5XknXuCqGuuEOP1gpTFKRmTqw2pocjMYgRhlKy0C3NKy6sG9Zb+TylxhpRDlLh3fGJtH2WGAlbcabHaMs3v/qI0QpnB8a+QU3Kczg8CS91DSxL4vq2MvgD7mEQDm3O9HZkHCeu5zOXyxXvPEM30jkJefupx+9Escyl8PL6Kgod4PHdE7fLlc5Ljkjf92LyW4rEaVI5nU6AXPhtC61olsbF3CSithlwfPjwgWVZGIaR2/XK9TZjjeHLL78SSdm8UHImxMzhcCCEgHOO6XBgmRe0llH0drvRdRIDIDePuVvR5yLBZKVthWspPDYOaEqJ23zFdx1Pj0/UWnh7O5Nz5nq9MowjJ9+xbUKv6bpOtpo50fcd79+/Z9s2jscjKEUIgaenR7Q2fP/9J6Zpwg09b9cr19sVYwzDIC4+MSZSWKkp03UDj+8eMUpjtSFsM7VC3xnW+cK6roQY0RzIaWUcPIrI8XAkpRlQXM6vfPr0SWhY1mJ0pJZA55uVnpKo1MdTT4wLVFkAxbAy9J4Qb/cDw3vTUvzE/UnrFqOK0JZ2WpYsxCzGSGxIrbPkRTvh7TnXs6ybHDRFqFMGAfR1VuhNOvGaCyd3kEjhOWGLpabKWhbsqCn0DNPIwR1Y89a8KmfJakpVJgcrZOaYIjkFrFHkLMsL5xylLKxrAaTov3v3nufnT8S00A89KlWu5xdiTDhneHh4JITAfLtyvW08PT42IYbQ0dZ1ox8GtuVGLoXU6DPe96Rccd4zL7IkTClLYJtqcbaI4MJYj7C/tPAbU0XZikqiFVdGSQSuRsjkqVBLFlMMLfez0RJ7UXLBeUkLsDjiOrOUFeelNPdTjynCqbytC8ttpYUOiPerUdQCIQWhFWWBBpRVlK2FudkOWzSD7Tn1J7zN5Kq5LSv9w0TnJ5Z5RlnNMDyIGi8m/uLPvuGP/vCPMdpgTcJ2cLlcoFSscc2BvWJU5vHxS6yRvYbzvqn7/gZsw7XSnB4eWoB8baHrcuG2dSWnzPFwwCjJBMlF4mh3ueD1egPkxNzTGLtOguPFMr/ifE8/jFyuV6HRdD3zsmKdvRN7tTas2woobreZpW3kxTK/3LtXrUWBU6uMnefzmWk6cLtdxRWFKp1wlSySw/FE1/dsW8D5jtvtSi6FYRzR7SZf1g3vHYfjiZxTu4kM67owTgdyUQzTQdL1ivAbbZNOVmUIMd35oKXshgDqHhwFMM83ckoMxxMlJioS3HS9nHHHI+NhIL4G5uXGMAytUGVeX5+JSZygHp8e+P0/+Dnz7SZddWeIIeA739Ioq1Bi0oJShXWdcc4zjU6koUa3jXcFFTC23GkwSgkpVXBo0+zzPKVEShGlUkpShLquZ9vOdN3At9/9Ge/ff0GMuX1/wRjHbb5RcsA5sTbLWfBVdglfw0cpFWdEE26QDtNohXGOsAkPWFgMkRQDXWfpO8VaZRnU9xKWBxFjDL13XK9naoVlubCFG0PvUCQeTyMxJtZtY1kWzq/PWOd4//6RLawoVQlxo1bF8fhA7x3jNPH58wteO+ZlRWvFslxIubJtBtcN1CLJkapWaN6oEpXs0SkKr7OxPqpCvEqNBJ6hK9oLHqqdRjlF1YWihP5kvUNFiaNQupBjpaRm3VbEMUkbzXpZJebYe4bjUbwyU2S+LBhnBc+1wh2tFKF1okhrplqZCq0xeGWpsdDbDsvMYD2xarqHY+M7WLruIMmXUYjq3kkcyfffv+G0pWQ5OHt/IOcmSe47VPXEnMnF4vwRrxTTMIrRzb9sbvj/Hw+lNVuIbJtc7JzEydgaw+lwIoTA9XqTjmnssUqJltQati0yDLIdzjnfeZNKCS5YUmRdFrq+4/XtzOEoo+cyzxwOB3w3UM7Cm3TNbNd7T+kKMSVySpKw6BzHh5OERmnNsi5YJyFSp9MjKSVOp0dutxvvP3zg5fm5LaMm3BZksdD1LaZUMQyHH/iSFqBijcgth65HIcl3eV55u9ywxhGTOND0w9QkekW63KrEMaZqno6PoqNXolN22lKNdOS9daAgbPIz1lm2sPLH/8of8/zyTMqZx6dHluWGsc3rr1nemaz44st3vH//jlorZ294O78ifJ/Mut7QGo7Hicv1QkmZEDbevXtHTInz5RMA0+HANm/0Q0+MFec7cg6twGus9c2JL+OcQ2uBTlIqbFuGtpSqdQUil8uVp6cBpVYgEcJMCIm+H3E2YibNuqxolTkeByGEF1FSySdPiX8jiRBuOK+AQNfJQTz0EqlRmnx2V2WVmlEqYa1BqcieAYWKLcslMwwdy3ohxQ2tKqUkvJPAsan3dFZRKu2+L3z5xXu++/gdvXd88cUXrGvk4XTCWsfv/fxf48//4pdczi8Y5/AWpmkg5UqzV8d2mqHvAM3ndWHbZkoGtEMri7NdM62WxYv2WqSNGtSKjMamipOQQ5ZYVqGaZtx6A2SULhyPAyWK6zhWoa2HIhvonCXPKK8yMZTm/l63QtSycPVWo62VBZkulK1QKIxDj62WcN2oytCZnufzlVQMfnBsMVJxTZ4obN51iWxUvHFcbhvjYKA41mWVXKEUyW2p45zF6ErY5FAppXJOW3Na/xuw4CmlcJtvsk1sONbteqPvempbJuxZ4MZY1m1tXaRkdxhjWZZV6EC9YGpal2a4YdliwveSeGedZRgd6yZ0hFwK0+FITIm387nRhvKdRxhjZJomjJHiKwohS9ftoUgSo1krlBg5nk4sy4rS4oVpjOi+tRE+4G1fihiL0iLlijHivQDYlRVrnRhixIh1XhgCXUduetsQxU9TaYPWIsfUiC7dKHGZzymhrYytfbOKu95u0pFqcQKal5UUA5+fP9P1HTpFti0wHY4NJ1TcbmJR57zheruwhYUQQtOzJ0oURYYxiofHR15eXikpksJG13nW9QpKMU29yEFtJcRCzhsVKdxif1fb5l/0/SllYmwwQT82+lemFEUpCzFKp/TwMHE+X9r3yM0uyZ0rWhfGgyOFC8vSCmGNQMDo2ExYxOrLmoRWgRDesM2OL5dI1yu2bQWqhF8Z4ZF6L5SpbV2Z55lxHPHeUYsEaxlTUapIllBvoRY6b8lxBTQF1TbyWf6eqfSdpfOG23zju28iMSROpwe+/Pprag784e//nM+fv2deVlzXoWrm3eMDJVeOJ5nMti2xroHTcSB2YnWWs4R0SUyyKKDzVsix6cANaCuaaWWbg5KRQlmFlgnWoAygMsPgsQdDb3pQiZojac0YK276KCfRvqGKz6wWDF5p1WIORPAgBQ/QEJdI2SIOybmvVK7Ljen4hEqaFDPz7RXjOwrCWY4pEzexXNMoli3itGe9SZNjrSNuRbDbCtsahaVhnMRx6GaA00LSfhPT8neiWMp2zLPOsjBYloXT6SQjeM4ohC5hjGGaJqFRKDEDfXh44HI+t25SArFkEWHatnVhnEZicyeqKG7zTIiRz88v9H3P4XDAhE10q7WyLgu+l9F1mj7QtSwg4WFJjk+MG0q3AuDELEDs84VwLrQiI69rXYBeNqBaN6qSu5O4vfcoLUYiCliWlRh/2AJLN2MoIUgofQuuqs3DU8jnsgCiUXY0qo2GEiUq23s5eLZNPCO7rjmmx4BSUqyUKtQa8X4gpUjXWdZtJqXEOA68vKsMDOgAACAASURBVH7m6fGJt7cXwRpLYTqMlALeOyDjvWYcDtLFBjFHNsaKxC2ujKPjfLnQ+a75lBqsNfdkTtWKainiQA+yES1NIiruTive9yxLou8t23bBua7dTy1Z03lSnjGuYD3kspBTuLvZlxzRqlBKIkRZqFg1MAwDOSdKTByPPTF45vkmru/OUkpgWxekNU3tOmdiKhQkdfTl5Y0vvvgCbRTDOLKtG0ardjhUORhFTi3XrlG4lFF4axHfnszHj9/y+vbCz372c0JM9N7Rd47zVTDM6+WFaTxQ0ibS0ZIwuvJHf/h7gOHbbz8Stoy34rizroFtk2hdkec2Z6yiUAaZUmoCA6ZalJGMrNIYBs5pzCBLoZqKhIGVLK5CSlGzJq2JsCVSTqTQkidLoYmwZXxOGbR8TlJKMEI1mtwVVC+pqjprzs9nTFGUJTLfFowPSOajupsSl5b4apSh2GYQUmCZZWGjlWpWlULpWsqK0Za4Jaip+dQKrfCnHr8TxZIqoHJnHXELOGOFGOwcuTSmfc7EnHh5e+N6uzH0PXkVfqO4ClVyK6hDJzd7WGVrvC88SilcrxdqrUzT1BYN9q6eUc1i/uHY1AHa3EdR0aM35+cqLuolJzFljZqUIs6I3dM49BKVEQI1J6ahFw064J1rUaZyk8qWUxQvxrhWXMQun1IlDkPLSN73vVjWFcFglJFFg9Eyzhnv7tzSvu+JSTbFKWeul4VplAhZ4w3ey0hWa+FwGLDO0PWWl9dXtrBwnc+cTkfQlZw3QtjIOXB6OBDCzPE4MS83kUc21c73n77Be0OtmYz4hFYl2OiyLpRaGMeRGFeG3pGSsAO0Vq07FVhFcFbZzI9jR4wLOe9epRrnxCg2560ldm44pzAmEWOm6/qGQcNtW9uSomKMdK5OF0LdsDqyLjf6YZLNsnKgE7msaKshRbRxOK9hTtQqzlIC/wjRXKkm/tCSFrptG6VIdtPL60ubCMRjcl5jO0QBIxMKVULjSkm7jQAp5WZdlhimjlLg2+++wVoPyjDPC4dxFLHC7UZcNeewcTw9Ml/fiKnwPfCL3/sDfvb1Fzw/vzKOVYqmM+RpEMMJJRtgMd0I2N6SamL0nqKK5JEnSfJUVSzelLbkZaWGCVMkcrfkSlgTtbO4wVJzYVs2lrhRmzVcoS1noyitnLesMdF5J7DW28y7pyfyVqlBYXpxkX/5/Mzh9MSoFPMWICRR4KDEQ6EqcRkqlZQr3VhFfx+CJFlmkfHWIsbIencia/nhYier24H304/fiWIpNBElFlXNzxKl0K3gOP9DPnipQjDfNdM730+1ZYXIDGVbvayCNT0+PjIMA7fbVUjfTuR8xuim3S532WFKbQmgwFlFaBdeN6mfs+7+7zllzpcznfes60ophS8+fCna6lLajZ/a5te33BExKlDaCqesFhSanCoxbk36yN3pHSoxSCLlHY/NEo9htZVlhNFQMsuy8HY+U2vhnXlHSqJqKrUyjD25ymFCFds7eW6a55czXdfx1Vdf4L0FMtZJVnPfd2yb4tgdsEYODzcI585ZgzVKPnBUas0kMiUnchE87+66aGSxUmtCqfbBKZWcQzNkhVrtffzftrlt18Fa1WgtTopUkijjWgsxLhjjpIAcDvS9xZjaMFRDPzpS1OS0sm0LWmW5tlaYC66AMQVUJOeNXDTjNBFD5PHxSOc9JW9cL88YW9BanrMxAgnlFNHaYI0cmCkFMdewmpQ2us6xbavEJNv+jsdaLcU8ZzG0FiWaIwahvYUQME70zlKRRc8u0QeV1JRrfecFU62wbht9P6GNJC7+xV/8Ke/efcHXX3/J0I98fn7ju+++F+eufmRdNsZxQGvDh7EjpI3LfMV6h+3EMDjkQNzf1+JQuuK1owSRhKZVii0oioGSQFXJHzr2Jy7LVbwkrSaFKDaMWpMXwQjTVnBO4ZQnLpnOCOlfF82hO/ApPvP8zfdMxxNP04Hnlzfiuko3WKTrTTrtalpC1s2uMVKbf2Vt5jLUKgF07N3yTkZXdybOTz1+Z4rlsixszddszySuwOnhAa0kkF1rzTzPlFoZnWx9Y4u27bue6+XCnrPR9T2HwyQSybDRdV3bYN+4XK68f/8Oa8XoYqd9KKUlEB7VrNQyt/lGipLlrc2OiWkxu9UKq0RlM4xjI2cHjBG6jCwoJIUybAGUZP2U3IK8tBMOmxGZ4LqudzVRNwwS58vduOj+2mJKOCvdqZhlyOivjeZwmNg3yrv6pe971nXBORnBZSkhxODr9cIXX3wghE0yoxUMQ9dwVMs8X3HW0PUdLy8vaKX48ssPbNuC74Tjap0hpdBiKhTWaUi6dVGZnEVFAuVOu9LaYq1o4sG0zCRhG/R93+CAinOG2+0mWOp0aAekIsZVCkrrIL/44kkSBnPm9fWNrus4HifBkgtQAq+v38t7lwRLLDkChZIDFUMIlePDwDR1RCca+BRWPnx45Pn5W8EulZhtxJioNVNqkunSabS2lCpW5opKjIGuF5aAUvB2fqXve8GA2/1birlbsDnn7j4E6yaa677vyFnysq3zcm8A4zhyuVzb9WxE9WGX2G5437FtC7/85Z9T6y9bNy7P0RqJX8mNd2xsxQRD2CKd62WRJXRknPaSjkqh6x3WG5wzXC5vbNsmuUMotJax3WHRXjiPnz5/4jScmNdZXM6LyEipldiWnlVVtHLiqzBvZNdRosQw97Zn8iMvn/6K6+uNYTrw7vjI9/P3EhODbOILUdIkjCXFVYrlFigtpwqxIG6GO63mFOmI5QOtZNH0G1DL31gslVK/D/wj4Kv2uf2TWus/UEq9A/5b4I+APwP+dq31RUkL+A+AfxeYgb9Ta/3HP/U3tBY87e4juRvoIp1ZaY4xtmnGXTPirU38Xhtp9sOHD9RGPXp7e2McH4TSsK1cLheOxyNPT4+NWiLMfTHgtcJ37AeRQWrdcE/L49PT/W/9OCCt5Cyuz1qJH1/DFmMQs4I9klQrofPY3hBji4gqpeGeImHbtnAn3msjUsUtBEyzfjPG3An0uxlIbFr4FCPrkrDetm2tbMn7fpIiHaSD3DuS9p6iFCzLzOkkVKUYA8MgkMCPbeuslVC3dV05Hqf2vCOHaeT19RXnJSfbWCMk+UazUi3VT7bXos23Vl5bjEHMFdq4vY9De7FLSQ4lYzTLcqOUhNY0DwDJg7fW8vAgnNhSEjGuLMvafj4yDJ5tu1GrahnyQiE6TCMlF+FaxoWKIiVJKsxZIAdtZGwPIfDdx4/CMSwRSRTLooO/PyfRFNea8d4QolCUrHV0nSPFjdvtxuF45PHxkRgjy7LcmRuxTUHjOFKrUM6u1yvj2FOBeV6wxvHhwwescayrFLnXl1eZiKDBSEJh++qrn2G0LPZcN3CJN+EQ19Bw3B7fGYy1DNpIwW3PYxxHthRwTj5nsUhSgDUGVXNzZC/UKrikyuJaVZHPjNcerwUiCbeNwQ0sYaU3PaXC6eGE8451Wbhuoq1HKUqbP2pR5DUzv86E68bXX/+Md8d3vLg3Lpcbc5wxSTOaTvLtjaEqoZjlkiULiIpJ4KpGJfGphFYMS5bxu3WUdwONVkT3IMT/z8USUcL+p7XWf6yUOgL/l1LqfwH+DvC/1lr/vlLq7wF/D/jPgH8H+Ffbf/4N4L9s//2Tjz1Hp0JTRUiXucezdt7fu8i7rldr7I820t4J5uesbWTwjG4OM2KUcRWNbytO0vnJ8mFXCHnvCVHoRt57fNuAp2b0u1uubduGLeJCY42h1ITRmmGcyFGMNXxzjpYOQort9XZFa804jOQih8Fu5pFzFmOFlkW0HxIVoV4QhFYlhsGb+Bd2nXxfSpJrA0zTRK3lrhjatqWRvHfSvnRkzlnO57emPBFlUN93nM9nlKosi+CEJcv4XloXLv+20nXSVTtn7z6IStGMNFwbM4UTW0r5kbRR3/+mMUK5Uao2CMC2blwiBMRZyhNjbu5SrnV1hZwDtRbBcimMY8e2xVboS+t2q3RdY0ffW0LYhJ5iZSlDRXi4yoDKlBKJYbk7A51OB7ZVWANKSw6PXEdZNhmtiTURw4q1Y+OKSlepjLj+11oI23q/3/ret21/aL9L37H0fYH48PBASAFjRe0lBfYGyMGpGiQkDkq66e4d27oxHSbWJZCyMBIkUkWyo5wVD4WaxZP1dHoAtS/S4OH4wLKt5FqEq0xhXVaxyKuCs5ZYRS5aDaWKAYmyBt38KXMtzMvK04f3hDXSdT3aGg7TQYygi2Y9twVZhZoqIUWh+ayVqAJLTDwd3vEwnHh3eEe4RZF7ZoXHgHay0GkQQNZGiPdaUw1U3d1DCPdkSmF3FoENKk3uTJtipYlZfqJG/cZiWWv9Bvim/e+LUuqfAL8A/hbwb7Vv+6+A/w0pln8L+EdV3vn/Qyn1qJT6Wfs9/8KHdDBCNs9xV8c4QuumdpJ1LUU0ynB3JrJN3lhyaQqbjvPlwjSO1LY4CSlwu90IYSPGxNPTU6P/9FyvZ7ZtbYuCBFU+zLtZh+Bi6d4J1FrpvKfrOuFZGhm9baMhbNuG0RZtDL7xGkvYIQTx3tyx1RBS25Su98KXm7fltq4trVJ8MvtBfkZpzTLPPD48SBcaI13fU6rEoKaUpJDq7u7TKbSklXEcWwHJvL29olS9dzT7ljwl08bmwuFwYF0X+r4jbJuMKVXoTsYa3t5eeHt9pes8XS+6e200Jad7jLEsr+y9MOpGG8k5iY4554ZRStiUwCEicTSty9Zai444RbRWeG+53RZCiEzTASgMw4BShmHoeX09t2450vUD5IoxcDhMPH/+TCmCMapW4MXLc+fZVdZ1wRrDp8/P1FLpux7nDNu2EIPYAUJlawWwVogx0Nde7hki18uF8XBoHGDPPC+kNd0zo5xz9H137zRrrTw+PrXRWKSZ+/IhyapZ1CbOyjLPqFYkJV87b4ESM1vYGLQGVRmHgVqFl5piajxduR8oisvlxuFwIkSh4qSU+fjxI9539GMvhsYtQlZpkYQSxcUpJ+EjV1UgKxwWlTXzeSFXoTK9fXptzIJM3/WoJJ9rUy0667bATUz9yDxfIWnWS0AlYbV8/uYTj49PfP3uK4jw7XcfMVljssEakSBvUVgFXncUqkiNtUybseGQYu0oVh9VFbSTA0gWRNKYVSUuVC//MsXynytqfwT868D/CXz1owL4LTKmgxTSX/7ox/6yfe2vFUul1N8F/i6Ad09cLhdci8dMMQrfspT7+Gsbuz9lGd9iFLMKvbP+vcc3zuLhcJBtc62EGFowlr0XP+fkw3s+nwlhZVlmPnz4IMsd58lJ5I4xCa2g/9F2W/h3laHv6PsBZTSP3SNhC8zzDM29J0XhbZbWLXrnGIaB3Y5OKYXzQk9y96Ib7xDBfngopei67v6mK+B0PFJqJSyy1FiWRQD0JPEP+8LAOSHnpySMgGVZ6DoxsHh6eodSe/46rYuVD7M8P8Pnz5+bvFOgEd3O4OfnZ6iVSsZYy/F4JOVE2DagNBqVjP2lxf8KPJBRqrLHCsshlMgZhqFvI7bgr6W99r1r2vHlvhdIQKlK33fcbhdeXp7R2vD4+MTxeORwGKkV3t7ObNtC56W4jWPP+SxLqq5zjRYldKxakhh1UAhh5fU2t2nAcL2eZfHUMNhSUvtPJieaagtCEI5sLflu9tx1nnVZxfm9HealFBEsNF2997L0uFxECdb3XXNzb87gjSkxHXqJnDCWaZrYwgatsagorKstjGsjbGLce3p4opbEPDfmglZitNJLJMU8XzGmI7aDR2nN29tZIB2tQGus0wx+IOVAXCJ5S+gW8qaUOKM77SArtlmw+VVvWG1Zzguu98xvN/phYOontuuGUw6SLHM+vX3CeZGSKlW5xRvH45H5bWa9bjw9vuerp68gKp4/fZK7MNeWKaQJ24YbHKoqnHGsyyZWdto0p7DSfEobm8JY0f0rwZitcaQqZi4/9fiti6VS6gD898B/Ums979tpgFprVTJ//NaPWuufAH8CMI2/X4dRqD27RdnWRkVVRdki8IIUTpTkZ5TGwbRWQOu926R9n9GGmGKTzUkB2ouB1oZxFCKzb0VrHOUGDDFK13KY2muXzqbr+vuHeBh6+mGQcCbAZqHFLPPC9XqVm8hZTN+RzhfWbeVwONDprmF0suhRzkEbga2R5xS27Qf8USm2EEiNuD414w1tTIuYSHf9tPdetqfUttjY/fl2D8py53pKhyPPPYR47+53yzuoPDw8sJsVUyuuEzMS1+z0djec3f9Tnv+RmDZyTq3zkltsx+Z2HHO/jsbYhjP+8DpSSo3jOdzfm90zdNu2+/MUatFI1wks8fz8mW+++YZf/OLnPD68YxwHLpcLe9RI1aoldnYSHudd01sXyakOG8sySzxGKYzDAe870SG3JVpM4f58U8pNCtmYGrmQSBKFXGndumCWShuolWEQB6fL5SLKsHZPHo/H+2E3zzPKaN7OV0ot/PxnvwdK4AhjXOOZxpZRVQgxMAwTb29n1rgxjBPv3h2oVTH0HdfrfF/udZ3CKEXJok0vxaGNZjIDzhmWbRXaUk4cxweOpyPDNHC9XglowrKBQJlkRALp+07s1UKit73AX1m1IpR5+/4V13eQ4bW8QgSvJdpElcjT8R2Vwny7cphGtnVhravQ8kri4/wdj4/v6JRn9GOjZwkh3XrXOtJVbAiV5vH4JAW/KrzT5CT8Y6UNy7ygssYpxxdffMkyz9zmmdH7u9Xir3v8VsVSKeWQQvlf11r/h/bl7/bxWin1M+Bj+/qvgN//0Y//Xvvar33otkAZh6GdbG/SOje8z7TCCEg3ljM0m7MKLLNseod2wiskCbK2FEexg/J3b0ZjZENda71voGut3G43nHc8NnODvYCIWkfjvJduVrdNeCt0zjquOfPp8+c7RLAHne2mEF3f3T9EAMM4EEK+/93DNJGy0JR2w5C0exG2Q6CUIry6KBxGM01QKylLXrPS4Jxt5h61YZPtGhrd6DrSmQttSrA/24yVoWKtZCuLKmVoEMhukqEpNTVNuKfzh7s7vdEy/ry+vmKMYhh7QhD54t4p2vtirjTaksX7ruGP+e7fuffQuxfj/tq974lRSNW5mW8cDieMQeKEh5FlWe5YrWvdPBRiCM2lSrVC3LdDQyKYu15cp/q+a6+7NkWOwAS5pDtDQjVoYe+axZ5OYa3cn9INJ2FwtAPwNi90fU+tcm13mz5xyBJc/HCQZdswHMQZXCnG4UBuhP/j4UitQsKeDhPOWW63Gecc54tg4X3vCNsm3Ww/MC9ru5a5Xb+NbQtQFtmQl0oqEtqWN5FoHo9fCgG+79i2QNgi7x6fiDEQbkvrwpDMohSpoaKMaLFDDMSQOPQnDJZDf8Rpz+V64fPbM+Eh8vT4SCGJvHEcWONGKeLcvl0XMaoOpWUDVWlKQianSloSNQtFqSZFVYquJU3qaolrIm8LP//q9/j48Xvmy5VpbBj+GtDV3X/u+28+ywSAJSwRa7ufrIO/zTZcAf8Q+Ce11v/iR//0PwH/PvD323//jz/6+n+slPpvkMXO20/hle2PSEeRM6KsMjjv72Npah2H4gdOZrl3j5qtroQtiNWU1rgWgxBjlOC+xm/UWkaWtbmnKyUj3rIsHI+HxrUU3G8YhrYEsn/Nvd15j7MW9m6ijUpvbxfeXt84PTzIZu1OQ1Dou8pG3XHP3CzAYpBl047L7vCCmybBBo1QS/K6ipzRyHZaaxmKc6Od7Ol9El1Bo924O+63d9P7CDzPt4YRSmEViLneNdqyjGicz4anzrdr+/+ixglBHK3TJdF1PagqruQ0/8S2rNjt1nb/UKX296SwLCu7rV5K5X6tdwqVdJTSgf4wGexmGsN9my4E68Q4Cgvgm2+/FQJ80/cr5NDQ7T0vRTwoFapxIPW9qO8b/JxSC4RTUEXpY1uI236tdtaDad1uSglrxA5PtfdTd4axSWuB+zXZX08plcvlhnOOh4cHrBV4QCCFE9sWeX155fx2QSnN8fhA2GLrxg2/+tWvEFMZ0wjxkv5Z7nZ3klqpFULmrlWiohuuE2Og8z3GGqyTpaVIT1tz0t4rVRXedFRX5PAIQa6EhrwJS6C3A45MTZWYI67zdKZDT5reiclM2TLeeJSTxYvvewkyi4F+8FyvZ0qKshfQBhXh9eML1nkGNxJVQnkROUqNoLFSCp0bhLpXNO8e3pPWxHyRe0xh0RRqkghs5xzbIomwnR/FL+AnHr9NZ/lvAv8e8P8opf7v9rX/HCmS/51S6j8E/hz42+3f/meENvTPEOrQf/Cb/sA+XoskStP1/f2DYrRuLxRSblGjrWBQxWy167v7ImQvEqU5E5VGB5APSJb42Cg3qLWKaZrudJxSMv1wusv0js5SFaxt5DxME8fTUcatnEEp+mEkpcT79++JMbKtm3y4W4G31jKZiXWZJf+juWrf4YDdEd4YTCum1lop4Acp4EPfc5gmoRS1MfQHjbnBGNUUO5HbTf697zvpsNu4fieYIbxEMeIt7LG+xojsUizvBHv7sb/fNB1YlpW0LfSt004pcrvNpFTITmhSwzDy+vqCD4IRx0YR6joxyIhR3Iu2LbRu9oeuVQjall3SKIa/ij14bXcT6vuxFZwda5UlnDFWZIna4L3l+VkcfaiirEopCcY7z3chg3VW1DtVIlpBSPHCCND0ndBNjscTyyLJkDnFdq2ku/zxIZbb0mDHrkupjfc7NGaGpu975nlh24Rm1nXd/dCY55l1la4wp8K6BM7nS+NQGm63K5fLjXVdqJSGSyuGobuzCHbYaXfGSkmWVyL4yHdF2+Fw4vtPn+k7kXM657nernT9wOn0iFJyqN9uM/P1xvt375nGibAupC01zwLP2I/EGgW3jpJpU03Fek+NUsh6M2B9c2eqSBTwLNhiqRK5rBGpbg5FYnaVlXjhZQWlsQdR6njXizdnaamjNXO7LQx9z+nwyLZGluvGu6d3bMfI7SL56vNNmqIYE8ttpni5z+IS2ObI+w8ffrJO/Tbb8P8dfi29/d/+F3x/Bf6j3/R7/7mfkbiHhk+VGIVsS+MEQhudc+sSoG/b65yEf+mHvcOQp5ob1QctEkMUxJAxWlzNrbWtGAhvc/+QWmtZ1kWoONtGypn5dkMpzeYcU5GMmcH30j1USYssDQcUF3EJjk8pNQmlZduMWEOljO/k1K+1iLlrqWwh0vVd2w5rrLNcGvYpqhzBu/aN+d1EOEvhj2Gj1B+62f337N35Tt8pbazsmtyxlETfD200luKXU2AYB0pRxLBxaTp1uWbign6bA6nJKruuF7/Akun7gWEIQGlEaKF4ZWk8kLzzjr4bxeQ2JtAK3bqyPU1Tzk1DypFaNTFlOr9v6mNbXCVxKWoyyGVZG780NxxWiNbWWsZx4nI5y99DOtmY0t0lJzeuKIhKLGwbfS/dbayxxYWA0tzx3z0BM2xbOxhFGVYbRuyca9OOadJPze224L1IXrWWKWldtzvktGOhy+sbyjhCEN8DrSpGw/F45Px2xnt7nxacs2I6bSzrurYJwjAdJsIWGMeJ2+2G+IW2MBpVeHn9RNfJ/a505np94XR6opbIulwbhqexxvHw9IFSE7mlmIK4+htlCEugKGkMjJXsIl0MxEJaszivdxqruyZ+2Bj6nt4MxBIxzskibhjY1oVODWy3FdVpxnEiahF16GJQaFJIZC33y26ioZOE2NW+MLqel+dnvnlbeHh85Ly+UoHedAx2INzeGP2IbYve7tRzPr9xe73+ZJ36nVDw3AnmijuuFkNAGwkLuy9ytCYBzthmPKt/oBU1uaJp3y8GBSKqL61wiC45UpIYcThj2EJqioKNVAqXv/rV3XRYKzEVnW+zYI7rRkmi1tlB4x1X/LM//dM2vk93nqhWmloqmXynUKScSUkwyZwiqo29tA+NUmq3CZCOpXW3OwezNDpUKpmqpNvWSiIVapLf7313x2eV1o3E3bTIzYZq12CnXPBOJGFaSVzu0jLLZYk0MYwT58u1EdTN3a0npdS8RTVVKTGyUDBNx7u2vzQn8JyzqFuq0J1KERceZTw//8UvqLWwzAvfffyOiiIjzyVmIaenXMlVs26BcRhJuVDRKNXcjyoMw4TvOvpu4OXlpU0iM9ZI1K2zHaXlSXvXsQXJZVdKwtfyzu+tSFCc9SzzyhYCrjEUtrDSeXefYkqbhnIqzZRBVFuul+4NFC/Pz614iedAjPuSURRpOyb7w/JL/DpNg3tkyiptxIbDoW8Efrn3+75vsMjKOA7iY0Dh/PbK11//7E7anhu2v4VATCu7EEBRCNtCSpHX10/0wwi1tO7Yi6Ipz+I7WSqoTC6i+b/drhhr8Z0nBMUwDljlyCGTqRzaa1YRef9DZdA9ushnI8yBafS46ilrRSWNxfN2OVOCQiPXqiRYbxvH44PsLxJ4JbRCheLUHVmXhZfvPnM6njj6iW3buDy/YtDyWS6FwXfMxrTJqpJSZL6eUXsK6088fmeKpW04Y2pSvu5wEBONLdB3nWBsbYO9Kz32n9315NaKAUehLYeqjMud9+zKntwI1tfLpVEydFvYaLw1d4XK+iIk3evlek9WfPfuHZfLlXkWf8y+67hdr3x+Fj6eNVYWLi28q+tkqbM/1901aS/wvuGyKec2jguXNLWN8zhNXK8Xtm2T702ScyMj4L70SQzTyPV6Y5wmUuPtPT6eWoGS56UU4iBtraQHmr2jEsxVyrOmltTGN+lSQ0zCFfQA+8b9SjcM+GawbLTmNksXnFLCW1E2pWZWkNoGPueMNrl1uVWwY2f5iz//JbdlbomVX6CV4nq7klJBKXGDP55OaO3ohwMoxbIswsUNkWE8oNeNl5cXhkEsyvbkydPpEWqVLWin6bueGFJjOPQonSjbKnKORtpXyjBNR1IudGNPfXvjj/7g9/mn/+yfsm0re5SxfYPTNwAAIABJREFUUqbhnaLRF/xS7s2+pXI653l8fCQ3CGl3uJEtv6LrfohsWJoQQviUwjPe1pVkDNY4bO/vAoeuEx255KxHQkqSqZQiSisxmraOz5+FqzhNcsDHmJmmkZrkEBceLPS9x1rNugbCtogrUxN0KFXwXU8tsK0rl8srKWXGYWQcBznUrRzqErPiCVtuDA/bYpXLfToqpXC7XBtnuef2KkbSXd9xPJ5gqNzONyhgsFCqdKFbwEwGouD+6IozlqFJg2Nb/C3zfF/wqrbM3OWOl8v5TsXjzmONYgL+NyFWgraQ2OWOSokW/O6y02SD+yLEWu7fq5Vi3Tbmef5RgJmcJClL0SqNb1mbikZrTddLpon5EWBvrWU6TELgjQKqOy8GFufLmY8fP9L1HYfpwPF05Hg4iedm+72liPxsL/zGCHXpBzwr3zuKHbPcNea1SkSrNgartbjRpHS3npPFlPD1+q5jXRdKqc2dJzYsVqCLvu9/oBa165FTbGqSSkxRjBiMaeOsjOe7BZqxDtu26NkYoXi0jnJdN5z1jdB8EJMEb+i7iRA2UeHs42nId+gkhMDxdMS1LmTfCm9bQhkL1XA8PGKNvIcpVq7Xc3t+lZwqxVSGfiTFSN8JhWS+vaHfriJ/fHxqQWkHYniDltiYUuTh8YltaTk/SaSJ8iEWey+MaQVPeK3Pn5/52c9+zu0mnd/L62tb5lVKEW37jv8ZbShVfo+uhdoWUuu6SWHeqUtYZDMdiLHcc6Tu0IuVwmKtdLpUCdVSO6+4YdSgyDE3FoksaoZ+EIywyuLtME3t5xKvr693T4Kdd6ua2gXkcFBKcE5pWDI5h6aUEj5jjJtgolHycKyxeK/RRiSoWhus94QQmdt4LCYdct+L8UltwpDIMOy4867Akj3B68sr2khaqFaKpcEWqk2dIcbGm3aNCteKuhFF0+Pjo1g7FskjWsN2ZycoBbf5Qt/3eO/4+quveTu/cbuK9Hechp8sU78TxVKhGIaREAO3643dgeh2mykpSzeWyx3b2TeQ3nvqj7DCw+HA7Xa7SyedF/zIdx7diqJQBkWFIv+7GZHSNtFtY2qsqHEmP3E4HqRLDEG2do3iI7rk0rif0PX9HeDfu6y9k/3BduwH4nltDkTeSddYSmoLG8u2BUoo9ENHKfsGV2gqn2aJ0RA6kLvffOfLhXEYKLXw8vLKOIhhg264rzj3WDEt0ELmDzE0HE94aFpBik1DW4u46eQsiYZtCWeMbSbLGW0cKRWBS+rG4Lq7xLGWQnUVxSDZQNqRcoFtP9AcygjFqvM9Cs3z55d792S0HBQfPnzVunFDjIVti+KFWQUD3TaxalMYcpIIYOu8SBlzYRwPaK0Z+okcI/BGLhUx0xTYwxmD85240+dC1w8obXh9PeOd4/n5FZr7vrOtiyzSXabWTWplKIXGtJCilnKh7D6jvmNd1/ukIDn3kmC6rhvOyZJGa8Pl8tzGQhE0OCsUODlUYztsafeuau+DiDRU4+Zq0X2CEox1d4d3rfMXqakc1CL7LTh3JKXcOnMpMqUE1i2ilWlLvK59djLOOnw3Nq5tRJuKKrtevvlWoshZEg1ylsYkpSASZS8GxTudTTfYSA4wydOSlM/S/q7ATrspi1x3mZ+NNSyz3LeSghlRqkIJsv3XqkWebLzOZ56eHvjyyw98NohPZ8Osf93jd6NYKsUWtnuh1A3DEdnhJLEQvmtjV7hTNHai8959LcvCro7Zu7hUEraKpduu7661Nl9Jfbd621MTnRMLs73o7htUGSeTEM21XNSdu7kuInv75q++EZzVifHBj80+du5fKSKvK0o4oPtr30dkpRUpBVIKLTxtuxdd7x1975AtdpbFTnPqqa0z1loTmtlCqZXafvbuD9pkm2KMm5pPZ26Lmq6d0qnhv0I7ylGc0DvfU4ocFF3fMzfLO6Mlg8C7nlIVfT+ICYiWkLmcM0clz03pFkLW+JT79V/XlbfXC9M0sZt57Hnxqop3odKusRIEYnBeuolxate0iOv9vtR4fXsTLLhF2fa+UtpCLG+xFRbdMlw83ovZ8rYJD/PTp88SXDeJgch8vjTMVzw7veta8RKbPbn+hpxriyLxjXUhDlFpkYWJKIUksO18vnE6nfC+u1OBShH+oVYSY5yTHMQ0WEobyQiS+2HgfL6Sc2S+ii48hMBu6aa1JhTpCsde4nJDiCLJbXCIQFiGWkXlJdOdaYYaRhglCnISEwp5nSJMKDXSO0ve0l1xhqLR9H5oZLrOM01Dk6JuLEuQu7ZGrPFo7ZoVXyTngLWC0QrVSyCxdY08Pb0X+ERptq1AFdPsGJvfrJGlKxS0qgyD4XLNWIt0rFmKpiLz7bd/SQzvOJ2OPDyM4gz2E4/fiWIpHEp1p/wI6JwpNd4B3N3GbXfTlvNJtt65UYKGxmXLKd1xwH0RITf0D9Zl1sr2NsUfur9cpHt13uEakb22MW1Pcex8dx/pxcOyMowDt9tC1/Wi+qnidVlquTvyGC2Fx3sv8RI3ic3wnXRAd74e5j6SbW3LKpI418YYcR7/ISa2mXxU2U7u2uNe9fffI2mEqXVD0s3GtuQ6TIc7GwHk4Cp5t3wTrAxfWbeV8+Uq3Uyp1LoRU2FeLozjCFWs4HLJKGVb7Gkz+IhBJGnO3pd4O13MOd9gAPlwb5vAE0Kol2xp8R51dy7lFiKX84W+HygFvPPclpts+DOUKpSQw+EESJb68XAkrKs4VmmDau7s2pjGxcwUVzhMJ5QyLPPaOKVOcp76gau94HaP0Sijcue9bH81OOdbPG0lZ0g5tMVeFey90X/2Q9hah/fC85V7UlgZKW1C0M+yiJLPgGDr0zSRS+Z8lsYghmtb8AgNLaXU0gbW+2E6DKM8t7vLkbhmYe1dQy/cTKH2eC+BZzIdRXLJjOPINUgy5/v3j8y3ReKPK+S0oVTBWd38DHKDYsRdal03QlgoJaJU4XDouF5jw3BFMRaj+Hgao+l7y9tZ7h9jFMbURmXb0Frw/5IDtQjPM4Y9skI8BWiS4pwTNSUeHiautxsikZXXWLKCGvj2u79kXk6NH/s3oLPco3C9863La3hKkZOPKjfmDhIro++GnaUZDpRS2GKQG4EqvK2mWpFoWylSQikSnHMniFsk0xm45/TsRXbvCuZ5Fn7cIhEL0zi1gpY4n6XD8t43ioa+S9l2d6OSC5fmt7lL22wLbEop4X5UDJ13wjcrMgoty0K628BJt+C9x1rTbN6kkx7HkXlZSDEyDiO1Zt7e3vDtuSmtySEQU+Iw9uQsh9EOSaxBFEaqsZW1tqxhxbkOkzMlxBaxIW5Qznmm6SAdtxcHm48fP1KLyAYfHh7a+yejYIiyFADYwkqtiWUOTIcDw3CUuItYmieouat6YpTuXJSuFqMtKVfmZW3dd5QxvlGiSq4Y48hRuJjH02NbgmThYzrPfL3JSNo5Tocj58uFFBO1KsZROsnr5Yb3ssRKIdxH6x0qud2uCIdd03eduPQUwfiGfsA4x+fPz008Ydm2SAgSlLfLFqWzo7k4SYytbNEry3yj7w3jJFnXry8vzMssk5GXtFAZ5QdCTIyHiZfXV9Z1aZQiQ0oi90vNXFjkmbrxLgtipiJYXc77Rh5EIx/bvdlRaub9u0e2beN8fqEW8F6YK9sm8lvVirX3ojVf17UtZKWI5byybaER6EUt5pzCWc31ekNrwV/FmcmyzGJ+I1/P0nWmDef7trsQzLaURElibyeFPtx3AvOy0DNgjWzjS5FIjWH0LPMsCqQS6Tt3nwJ/3eN3olgqaCPNDkIrlmWVvJ0Y71w1pTSVFuVJU0LQ0vaQDJp9s26sxXmxwkLpewaPMkI5yjmQWtSDavnftYqJ7S6z6/u+UYMEGwPNPK/3kzxGKUYAKQre2He9YCZawt9fXl5QWjo47/1dN94c/O5F9b6wMppt3ZgXMRPQWvBB2f6qv6aV3uMYHh8fud1mbrcbAOM0NZA7MY3j3cqutK56jxnO5QePztw4oOL6oxoHUmhI1mjUMLEqIasba6CqtuU3QBF8OVf2HJyhn9jWiLG23fCuxQ7v23eh4Sjg7e0qjuRNDVWrjKpD398VONKRi41bpTJNJ1lGacc8zzjvKDFTi6YiaaGliEu7dY5cIsNwoHOW775d79GwRhmUszgv0MKyblwuV1G8aHGnUahm8iHFzTQsTeudwSCO58uykUvhy6++attXw9CPLKsYmISQ7ofAj5VHpfFTdwhp27b7Iai05ny58Vd/9R2liuzRWiddkBLK1MePn1BGM6QRZywPp0c+f/4szwGRIIqkUjWmhpgAC7zTnIyKKHkEGxcneq2FtiV2dxvnsLAtm0RXn07oqqCKuU1VP2SlX64LD8cTXTdKbjf78shSa2oqsx0mqIQgh4JumTzeO+a5gBLXfaX+X+repdW2LVsT+vprvOdca78i4tz0ppKgBa1oxUr+AMGKWNOCFiykBQUFS1oSkqxpWhRSLCoiaEHEioIVwQcqCZo3ERPMyHsj4sbZe6/HnOPdXxa+1vvaBzLOvUlqcu6EIM45e+215hpzjNZb+9r3cMjZQ+sEH1ak/Ea9AgjL+hCwrif2XdgJlpJmaxW7XmewbTucVYBidlTTGFwuA05/4DhWxOql8Hd//SSKJSkULQ4xkLDGVOfwJNG0hYtG6ypRSSgxAtaaprLniUZSF5NQNQCFw5+IIYo2mJSipm0Z9iUKoSKBc46hYT54WcDwoYop4jxOWCNYjeSIO+vgxaMRCixqjUgFhZw8SD64MUZAZs1Q+8wOOIa3LbnRBl3fQWuFZV7Qdg26rofWquJZBQej8ijh+fmZpHpZfm1SgF1Dsvl5HCja7LIhV0qjEypKKQhFjZQk+2ddFgzDgNt9Qds21A/HLKc5+O8hoW17pAyEkDGMPc7jFM4oMLoWfU+6lBGYIEdPM4TI1Mq+6xF8gLMOYd/Q2Ab7dlQn60Ln8Tt9FlNO+MUvvsO6rnh5fpEiBmKnSgtVjImFGRrbdiJnze/hqTF/8c/USENBaTDvWmnYdoD3Efs287DdT4zjiLbrsSwrjsPLUkWj7RzWZYWSh7brOi5WNAnyEAfzrh0EzuAGnuYenmN8S6zUuUZ07aHei6cnrh1iQtuP6NoOBJ+om7euwYP4GKzbitvrKxMAjKn+B23b0lZP3PGto9m0EumvMfmb8ZwUIu8DzpOmEsVsxFqHGDLarkEvuUdFLddag5gJ7zC1oAUNmZmxrhQZAGU5m5Kvo3/f94BTsmAClMqIcUfOJ1I6AURonaB1koVWgFIsWzGFCmE1jUHjuNwsXS0ATlPJ41gXNI2DVvQY5d4ho20tYiJWafBnYAwnBqfqyOtPj6ahyes0DXV5471H07YIKaBtmko5qB6BQuJNifwqnbN8fXyTGGpHMwxFTLE67cgNpYHqccjUQ1KQdnHh5gICVdc7TRM7s0ReGTKqA1JOGdlkWXTEin2e/hR8jUWyH3p+rWi0k/D9+qGvypumacVHUaG4xy9LoUuRCL5uGxQISczLwk0r3k7g8zyhAPRdJzI8whA0U4hIZ5KOitGp1jZY1h3I7KKdawXbDcjgcqhpGmzbLiRfYL4vsqgi/29Zd2Yrgd+zbVs0TsP7iKGfYJ3Dcp9FRZQxyDjed7zOhYu6rcQwjZha5KxkEdPXpdtxHEzxMxoxkUsZUkQ/TojniXHocawrfv6zXyCcHq+vT1BKsQD0vZjLAta2cI733DiM2I8Tx3ZU3ifzzY1kEp2VZ3meAfO8ou9XdP0gpiq5mob0A2lCl8tVtPkGISTRhVvkjNpxsTnIgMow1n0z5ZCrCK2hA7s64xxssHDNhBAjvj59ldiJO5wr1oQkYBfsHWBHSyhKI4Sz4sjTNOLlxct9RgqZ96lOZPvORqRrW8Rwir8p3/+yznRRGi/IOeA4vLh7KYRwCEe0FfoVDZiNgWCbO5wz8gx4NI2RzfwOrVupEw7IQSzsktDaFBAi9uRRFHzWUMrqQ5QiXPT5kYYz1uH19QW327MkpBZ/hN/9+kkUy5QS9uMgLVrp6k6epHsE3jZ7VK/Q5SVKF5WEqlNGzbKB4+KCF4lcsILFvckAY4hMPDTM+W6dRfABpzmxH28mD65p8ND3WNalaoqnaQIATNOEdVuRYsJwHXCcb51coSNM41tRzTuTKJumobzN09GmbMSRUTXtOQO3243E72WpN0OhImmlJG/lQNe2gCxHupa4kbUWXd9za54TDjHVoIUY7fCQucCJITI/XGts60aIQ2kxFfYV4+VNqpAikLM8dAm0b3M8BPp+hBkNXl5eMPsNMUVM44TgSRu6Xt+RIpIzun6kYYUiBt0qXrPzOLDvbz+370cC+nvEH//xZ/RdJ0uIjDOxS8wpwVgFauCNsABaTOMFfdtg7EbRj1t4n+AahX07RYKosW4bYsq4Xq7seAODuSLF6ihenUoDx3Kg8FSHK/PLr9cH5AySwgUyWdcVpzkxKc0RX+Chgqcb6QSLwqyYh0BzQjoEH87gNnfbdxT9fKEmGU1YgyYoDYqH6XHQbelNIQQUo98Cwbwt2xyWZQbH6cAus9DjjMUyL2RCuJYFUBYibdciKwUVA0bTACjdrELXDbJA5aPMlE4DayHUpLMyCYrXAZRCzgFAAH9E4VZz6QMVYRT1/lnkpzTSoHKPUJWWSVHh9AdSTni9HXLoBG7cna5Ckfk+w4e/fyON//9fSjF5r9BNJMu3sQ77sRbxH7LKSDmKaWyCLeYZKQvRlEscZx2sc9h3LjtypIOMlQ4nhliLQLlhy6LoPi88QYVP2LRtvblSBkzN++Y2NYQgo62Y5sqyJaUMVSSGALZ9R7EoK+O0knweQIYrkWTlDOli+N/IwXM/IKgX3FPJFlRrg/04arxu4XRGwSeNNnCdq/SOnAB/ngC0FAqHfnBiupCEhM6RU2eOwcZITpLWsF2D8wzYVh4ox3bANQ1jHQA8fHiQrp3QxH4csomXTqtp4IQukzKlhoc/0bUdNLgdNdZiP3Z0bYdTFnIhRhjrcJyMZYXEeQA0L44pc3sttnvnccKHG37+85/hdl9wbCv2dcUZIoxtoJWV62zQugYZjPkIPuC7X3yHz5+/wDiLEAiXwJQCo9C0HVYxwDgDx+brwwAjuv2cmaGjFak2Smma9u5HLaiAqEhCFBaIhtb8/TPIowU0uqbDvCwSd0Fp6hFYaKeBjvZG86DNKUMrRbWS99jLwSdNQtu2YlBMD4IYI3JSABKmsUffd8hJeJxWQ8WMcDKpkknQCRkRRiAkbUAjYnB7XiCVXHnNfN6c09C6QfA0Lfaez0TX9jj9Aa0zXGOwnwejH8QVKecIICGnAH9u0B2fw3LwWqdF4smf58NJji8ylDGASrCafNqcApTOopHntV+WO7ShJ9GPvX4axTJnjJdB8JnIUSskQDPCddt2oVbQGGGaSBLf950bt3Hkxlp4llopLOuKnBKssRiHAV3bUpftA8bLhLZrcZcN6KdPn0i78B5/7ve+w3meuL3e8Ktf/xqYF0ZU5AzXNGjQSFHKgl1GfHn6CicuSbfbjcVLuqTzjIIRKrjohHrCu6BwHmsXakzlipau8zgODMNYR+mu6+nIjiyqHWJtbdui7zpxEVc1kyjIht0a2m/lVEKu2KU4ZNngU8URglhzObr7MO6Bbt7BB0o9BZMaxwuQ3+hLRNM0gvf49a9/I1tajupaDIO10nANoxEO6XyVpqGdNg5fvj5hmkbpGCMAjeM4cZk4urq2BZRGP0xY1x1KqC5N27GD8ye0ykhpQ9HZf/78BZ8/f0b0HpdxQuOMWJVxQ981DZxp4RoHaHbl4zDi+z/+XvTgxGCRFZxriONFdtNR8m1iAoxzXJplksTpPn6RDu/Avh3clPeD3COFhJ1ElECYprUOXctQNa2ZRX6/3/lehP60brR0Q2bnGiM5iUZbMFUzC8GeQgQ63gcu/mRTHPyJGEhOb4QSte87DsXAQyBjHHp4H7BuNEBuGiuwUsC60sqwOFCVkMESl8FukRNN1oqjtylFU4svQ8RxzIBSCNHj5fUr9uOUvC0rNLYMbQhvkUQZkGKWpVFESlpy7TPavoUVtVBGEvlpgHaW+wV5X84xf/30Scxv6HD1Y6+fRLFUQoVhu67RuAZHZkFSRouBqxhjiEJhWRa0XYcOQnUpfEOAKhbhW7ZNg12yUowxgIzF1+sV18sFMaWqu44yCiilKknbn2cd87dtg1ZvY3zp8o7jgBdFD5dIXBiV3+s8yTMknaEEuhc/xIhiQktX8gjvBcvse9mieimsAcexEZkQ2RzHcuJRmbwfPD4+4vvvv0dMkt0jGGcxGMmJnWPbcjs/TRM3rNIpz/MMwFb+H/0/LXJigYbS0iVziXWcDJvyIUAbBxUzOtfgy5eveHz3DtY1yCGga8mzjCnV3zHnSI6gdOVt13O2UvzntDIP5zwDmqavcQtQCiFQKnceATGSr5ezQi+53zEmKKNxma7ouw45RpGRSgIndP17HNvolk/3dsnA0QZ912NdmGNel0Iqw8cSd5GAzA136YYpTe0A4fYe+8HMJq1xiLBCW34Gy7LA1sP2jrZtcL0+MPvoPOtC09pWMpO4NS5hccdxSoEsXpmm3ptUv8SKV16vF2F7oI7hZXla4KvjoIadCrWIXfKRTlnSWEu4p/AwT8+uUwHYj12WPwmNaxGF7tVIFnpRtxVbQuY6EStsnIUS3ut+MHc+iXItBM/RW5RH27aTSRATun7EONK7tFDSrGVkRIlOZndK5oZSWVRfTq6rFqWQ+9E69ZMolilFbBu3p2V8iSFCy9hKQi+twLaVDtLO0QatmEfsYglfTDOsoYGsMxZ0TicncV4W+BjR9R2cpbLABw9nHaZxxPPXJ2bzeE8VS9dV95592+h+rRSmywWj4DZfn57QtbyRleYpfXpP6y4xJICiDjzniPOMQskgb4+8QiuySANjikZeJJhR3NlVgQA4sn2bPx0FBsjIeHl5oTPSN2YjSmvBIBVgLfZtl2Lc4d3jO2p8j1OWNR2apmVxSgkpkYxf7Pwb12Bd1+r0XSIvqszTexjd4OPHn5Hov50IBDjF1JnLta7tRKceqvpoHC/EoX0gx3CgVh9SJI1zCKKGulyKkqfldDJecBzMP39+fsbD4yNKJMg4Dginx7rMKB6e9Fak6bQPEWcIeOh7wjH3BZfLA30tobDtB4rBLoslD7jiRxpzhLWdYK80P27bXgpEMS+mNVtKXHYV5dK27RQBiBlHiXIme6GvyqCy2CudfrGFozgCAmMpwQZF160VinM+vVAd+n4Q5RepZ8VwueuokKNhyltAnDUatuFhaiyfp33foMQ/4NiZiVgWk8UM5zg2KVpgOqbASvws6e6PJDSqnHF6j3CciNELh9MjgznsOQUkgT9yjug7ymqzyJjfaE+cRqxViImNhBOowftD3h8tBI1RpLwlJwuwPwMLHupNmd2x77ssH2iZb7TB4+NjVSd0EmyllKo3W1loFC5eSqliViF4DMOIJM7QMcaaI2NF/+3aBp+/fAFyhpERvnEOw0hvxDKij+OIERAnH+KOt2WpXWvOGSpnfPn6FSU2oDi6F+fx0iGWWAQ6lfOkLZJGoBGCtq9/93K5YF03fPnyGdY6vH//HttGA+DLZcJ5JhzHhulyxXmclQRBYwwLJ90DgEocjjHier3gD//oD/H+/UcZ7wkBrOuGx8dH3G43cU/yQn3SNYb4OBjV2rYc1WJIyBroB0pUleJ42bRt5a5a6zAOIw5PbbCWJUFMLP4vLy+SIQ/hNib0XVc5oPO60AM0EwdGBlql8Xp7rZiwcw4fPn4ihGAV/OFxv82MrQ0B/jjhTy9ad3Ing0Ai+77jcr2iFXeicRxxv9/rkqnrGmExyOeNNxcoSj8tfI6IKeP5+YVmKr7ADREh0oWpaTvc7yvevXuHpokVevHi46qNrvQWax2enr7+APM+jh2fPn1CyWQvRjQpQfTcb1EiLLbUgHt/1i6K8s4sX0+GQVESlfsOYKNRmcGZ922hwLVdy/esgHBG+NNLPAcz7jNI5SruWk4wfGM1slgOZuSqQivPzF7D7zRClMRSaaaOY8c4Tszp0hYpehrYOIu2H0WVxOIcxMGJnfdbmB4DCA/0EkZYFmE/9vpJFEuooh5QFcMhpaOFNgb3eeaCRkY/JYsgbm1XtE3DEUdOtZBp+lDCzvquw32+o2kaKivkBvv1r3+DdVvx7v17+PPEum0wcvLprsP9dqujQ1HNlJNftS1aKdbOOei2lfGBGzf7DXfTCv6Yc8FHHEoAlzEWObNrKT+r/JyCa+bMRMUQoth9pTrmHQfdppu2AX1AfbmktYMqkARALDLECAVd1S+Pj+/JC4Sq/E2tNb58+QKlFEf1caQRxHEghoSuG6SjjXSpzxmXy4UdteCm83zHIFQrQhPssI/zRKjqHC8uRwZKGy4poOpBZYSCZDSXIOM4YZMFiXONhNsdcJbBWzFQu/74+AjvPc7jxLkfsFqjsVaWhUqgBGYqxcCEyZgAL87g+37gen1EYx2MJr7oI5cj3pNWgySjpIyR5cCL5TDuuZDT54GH6wO+ddWalxlNS9UZNDXyXgyJrbVAAo59wzSNaFuH6/WKeZ5xuUzSZXpJDdA1K4fj+Zv+n11WrlgoJzdbYSIWSU45xbegOCCxoLIjtaoE/+VvntEI11hYq6E0i3iMAe1EC8Xi6F98WI3QuYzVvEcVmG8k+Kgx5CmnRI7neXKUV5lORVpltI2VQ97DGC2Fl0vRtu0BKGGiRFGsATqzKJb3V0IRmVGv4JzBvgcMQ/eDZIC/2+snUSxzZsj79XIl3y6R0+Wcw75uUGLZdJ9nXC9XBO/lA2B3hxiB86zacOsciraaYPhK4u66Eh6JwPfff67YZNe2ErTFaAcAUqxpwOpF0+29f6NtbBuQs6hDEpalRZf3AAAgAElEQVR1hQKqGa4W2ojMHuKIclARY5Xc2AWgTjUnJwj3sfgbcsHDaNdxHOsHD2Qsy1zHs5wZqJZicdsu6iZdR80sJ3cOAdZqLMsMuvbsdXx6fX2Vgm7rRp3dUYBzGd9m4ZQl1L5t6IfhBzSYQo/RmlphbSxMo8QpvAG0ovOPjLZZ3G9Kx5sTQGdv0mhCoEM9RJJXoBout3pauKUk3NwRy0w103meaFuHGAOWNVS6El3buc3NSuEM1CbzQScckdMr2q7FPC8Ce/R4M/0VzFXI9qWQpJSkgPKwos9Ag9cblV6lc1OKxs5aHKlCjGWrQsaAP+EsD+OmvaJpW0xQWLcFbdOg7ztQQhhkeinTCdM9yxKKjlQdjOGyxVpKNQH+nWXZMAxDPSDJHR5RrN+SbNazRCynGHEEFmnvT2iFupxUw4BtW6s5Ss4RWSC2VqCSfedo3rgGe36774pA5FUWWR/GEV+/fkEJ1eP1JhSQMr0LILEXxtJpncwVhZwNcg5QsPIsWTnQxP7xpEvXssxidZgwTZe6G/ldr59EsUSmLdi6brJYYULevhHPSZmyRGpvOUpawU6yKmPjivs8V8zSNQ2QM26ypCCPbaSc8GQYVEy0IqNpLIt0TomY43FwJNAa2hgsomZ5eHiossJt25jKKMYdAEcya4zkrnR187jtTEFM6S6qDapn5nmpeFXhUHofqhFs27ZSEIwUdFrtbxu16kUWl3NGOD20seSnCk5arlUnBwsdaRgja63F7XZD1/U1E71tW0zTRDVV7SJI7udYa6tCar7fcble0Q9DpVuxqLZVwqfFoGQYR5wHM6+L8uk8mM9etpTHzsOtxCGXuN1CHSu7AKMNmq7F7XZDOoj3lsJtLYnZxhgEGa28J5XEWiaAnvuBrufvfJwnSnhd4egNw4Dz9LjPM9Zt45bZWLRNKwXEy1KHh7hzTf3sU0pyMAHHuWHUE1KKsM7h+ekJfd/jcrmgOF/lnKlsihHruuJ6vUIBWMIiU8Ab/7bal+WIvu/Q9z3248Cx74KnkopGp6qCixfcW1RvJM8hxojj2ND3fXXYYmeVK9uiUNVKtxmir2mXOSXssrgkbtxgGge0TSMHeqZjUIr0fBWamz89O8sesjRdEU5mFI3ThGHo8fjuPbz3mJc79i3CiWNVJ9lcp2C6XUvMPqZc338Sx3PuAfjsFlf5nCEHuca2rbhcrtj3HSHw+w3D8KNl6idRLLXEzO7HUW9Y8rIahOaNXlMe0iLBapxDBmpHVDrLRvBBgv4jrLFyA3NZEULA09NTxRrrySjLCUBuKbE2G8dRtq6UeF0uFwG296q31lpX8Dslkph7WaZ4zyVG2W6+vKyVLtS2HToBqxnkdYglXMQ8z1UZU7oCGtbSNIPdnatLnnVboZSHNY4SPOl8Cn0EQA18a5oWu4yzAGMUylKhKKKqr6QhUT+DN0yhJ2mtsQpmu6wr/BlwuV5RcnS6joqJ03ssy4Li+ERJq4XqFAbxMVWxRIsUnXpZOhCv9FI4RykQVNcw+nYVZsRxnmibBo8Pj/j46SP+6I9+xeXffmDoembNyOdDCMQIpzALW4CfAfX6Bp8+fgSgmFipGED25mgj2/IkfpBK8WccxAO3g7zTdV3R9T0OWUbmnKmXlqmmTCw5ZwTvcb/f8enTJ7x//x5PX79CKYXvv/8e7969I2ba9zhPXv/zG+d/6q2LqTSdewrbonhKNlLItu1A1zUIQSzg5KDf9x3TNArv9g1G4qGb0LUNn6P0FuXimkYgrAXbOrPYa47a02USipXEWDuHznTY9w37vtZmQEOh7zscx47HxwfknHC73TAOA6axR4oBt9fXes8pleuBm1KGNlQ43e93aGvkQEu1oVAiZnHO/uD38n5H29JRfZre6Hm/6/WTKJalcJQbJoh92O124ygjf1ZwlnxQibIqRVcfcffpxXU6poQsY6IX55lCV8hSdMvIcfqTuT2CSxZqkJYHO0YWLQW8LWmkW+y6DknwId4g1BErrbHvO2ahhIQQ0AtfjQWaYxBArKa4s6SUuJ2Xgk36UCeQQqGskOvHD56cukJZKmMgDEc5BdKyTKGIAGhapj6ep4cxzIspp2ojmddACeXKKG7aXiysooyh0zQhty2en59xv88oxrgx8GEq9JOsQIcmZ5EBbOuKviPBmg7cHl3bwRpbCzqM4QOplHx9Dwgp//Bn5T4WXq2zFqewISBj3W9+/RtyX4PHgzy018sF3tPVKSVm0efMJUDOCU21TrNC++ECrglcVszz/M1ISH5ljRIJNKM9pNPazxOP794h5YaftHq716mf7uAah+BJ1WraBv04IAaas1wu7LJeXp5hrcHr7RXfffcL3F5vKO7+9BNtJN2Uz8YpzuAlL/5tmcj7LYgPQYGprGUsQ6Gq7fuG40i1eSgxyDFHzPMdJee8xE3Ts0Dh4YHpl8u64Pd//8/jfrszDfOb582fh1gfcpIof17YA7wnHLTwUsdxgLMGx77VBVbteGGQQY9Zk4BDIo6z8EPpfXtU3X45kMr0VPLly4HStl29Rr/r9ZMolkZT2ZBzxr7tdN1Z1m90zapalhVPyss0YV4WcWhhcVm3DQ8PDzXHxnsPo9hh0uE81UUNN3hKIAAC99u64jJNlBcaCUvLWZYIJ0zOaJ0Tn0yLl+fnWnwhX5e+GeULraR0lnywgJw9mO5nhF+pBJMcyAAwjFS9Xtu6oWVuiK7JlBxRA7atcO2OWui+DW0r3XEW3LIcGqVYl45vXde3ULUQZIPLjel5HEAm9SRuG9qmwSEYVy98VOdaGG3w5esXGPkZVboGusIoSBGXP7OOt1/ZhvrgoYT/F2XZ0bUt8WMRIWSFapk39DSzbcS0eByGulDatg0hhqrUKPZ5ZBgwJTKIXV/xIcgpY7pO9RoFH+o1TSlJ2qeHtUaWeBZWW2SxbSO+B2RjMF0uXKw0dEUaheJ2ig3euq54cFz69EOPbd0wjAP9IVPE1y9fcb1MeP/uPe7znf6p284cJmRE4auaFLFvG7b9gJZMIABir3bWQ7VMLSV/ZlkWsfmzWJal5tg8Pj5UfP/bBY11b27/IYR6mAEkoRff2b7reZ+kCGssoqKble0sGtdVHBWCwaeUsG8H7rc7psuFSjPptkkbO+v7LpLImBimpoFKwD+OvUp9nbPy9Q/VfFrJnxVs1lqLd+/eVdFFmbh+7PXjfec/oFfKGa+vr1gXjjsZvDmVYHHHSayMkQhvvnNJTsx9I8+r73smOcqpCKER7RIyVWSCSS42FDhiAfjNb36Dfd/x5csX3G43Loe+oTyUsXQTBcSrLIT6vkcr4xSUkrRFhW3fcUqA0vVyEfzJwzlSTGraoYIUpxNQqHhtkTdmgJigYRb46+sLlnWRot/i4eGK2+1eZZ9Fg56ki963jbQYKeJlk1sWEIOokwrlCoqE/7KtL9QpJ1Sqsv1dVvp60iDYYl0W+MAusSy1SECPuM93cgFlbAvxzQqubJoBWuwZ6S6LjZn3Abf7DYt4AJSiOo5DHamQ395nlAeZ+KxHI0mdhe5URvByjdn582G6TBNomBvqou0Qb0QAsjh09XDLAKzgela60jKeF0XX68sLlFK43+/itJTknqcB9LqxKI3TWJ+H8zjx8vqCX/6dv4N5nmsMxFG655y/YYcoiUJRgkMesihzdXqSv1TH7ePYv7m+nqOzdJvrutVusnb6mRQ8f54wWsEIZ7fcC2SXZIb4yTjcuKZOYkUCPC9LXWSW91LuoXKv0BqQ78lYg34YoIWjWqB45xyajt6hp4QDauElF2tF+nm6OpGGQOOXYn7sXCPpBfyaP2m5A/xEOksa0Noamaq0graGG9OYYBuH3R8yItOjb11WXCaqEVw/4OHh+s0HkRC9x/X6gH3b0HQDXFNoKpZbcfDCDv2I/TjQuBb7tkMh48P798Q0pKN6uF7hPUOgUuJCiBppLgYYgEWOp5fOoXBFmafDzldrLWFLFiGynlDSxc0jcsZ+bLV7XvdCp1JvXaHcVIcntrntOy7XqQa8HQdvACNZLiS+Z1jjYJq38QNKwYv9nbE8icvotR879uOQ4mCgMknp277DWN6Ex76zwHuIA3yL85B8mY7fKwNotIYW/fz9fkc/9Bw/Q6ATVAxQXOAihoBNOK6lW9xke6oNqUPWMQP+OE9knfHwSF7psq045H2Ua900LZq+R9s1COmGsO+wbUOerTZYCy1MKRjLhzqlTC/VacJ+7sxvsrqqXYr7fQgRTdvjjAwk2/2JbKgXjznV+9g5K8FwVJZtssS83W+432/yezFBk3zaCdu64fnpCSkmvLy+4vHhUQyP6V7knMW+raJ6MmiMZeaMqHDOc4f3B4J0odowIkRrhX1f5ZApixwIEZ2vUlxKU0FoqIXS7N544JNXervdAADWXuCD2JxZDRvIjdQyGpfFF6C4gEzEWZO48aecYJzFGQK0IbHeugmvry/48P49ub05wwfmCE2uAbKS2A4mEbTifdq0DhR+0A1pHIj/7/uBFBeEkKGgkWLGsXtYKyyGqKD+LFi0ASTzu4bLi2J+6pzDMND55dh3dPIQ+kyAl3iewbqu2PcG4zhKV5SktWbHSTI4N2JBMJzrwwOen5/Rti0eHx9hjMaXz59/MNqVRQJyxjBQJz3LJryQkAuVhBjg22nW94OQ44s9Fk+3RopjkZOVfJIMmhHklCpRuxFlQ8FQS6dgvhmHUoxivabEh/CsHVUh5Ru5QcnhpM3bccrhI1hmcZYGgK5pZcTiA2K0gT9PKE1H8P04uFA5jpq1Q+chHnpa0xrNOVdzTY5v5GTBhxoq1bgG0XtJ7Qt4uF4rTzHI6A4Ar7cbXZ4U8N3vfYfPnz/j9eWV4+lBQ2aOgGdd2J3eIymg6RtcH69oWivGEgu5l84xXkFc8vdtR9PRX3KRxVUpQOX3yltGEIuw03Mkz5kPuVI0pkhyGJ37LpEjC6AU+o5RH9u2wYvuu21I6l7mBdNlwsP1AZ8+foICcL/d0LWdmAe3wjvVOI+9co1TjNVVaFkWfPz4Eaf32LdNcGyxExRcXck95CVOpQTxFbkxaVmc3ApJO8YAo4wUPR7shV9shd6ktRH5YEI/DDj2ExkZXcuoEVs4ropGIEqoYkppaKOgU8K+b/j++9+SwymTFZNLSaNTxqBvW3T9IH4HSrbd5JRao5FUWeBBYoSjPGOsHecZBBoLomSi8IBF/c8AKd1omv2ekbiB0Qa2tbIljthX4WbZhgRlayQpjsuVYRhFP83oVHIEe8QYoARpIJhtoJOuGMW3mvOUEj5++iQ8SxoKrOuKx8fHijv2orNumga32w0xRlymq2iJC+/Q1xFnXRfM872qLvq+x74Rv9pkqVOkmUVFULbqVJvw4Sj46/Vy4Y0vGOu60E39qxDWj4O+kACdYeZ5lW4x4TwLGK/lfZeRM+LDhw8/CHsrBb9Y2HXyQPkQ4GWB8nC9wojJQ8oZVt53ipESRhn/jOVnS7K8gPQK9WccosAqhdta0oAOwZdSSojniffv32OeZ6Qt4m/933Mdh19vr7he+Bkw8Euh+Ix+mkY8vTzBSdbOfL8JF9SCtL8Ef2Zo00IrRbbDkRnvEGgSEcJbTlNOiQ++Y7dOAnXEdKFVnzE8uAuVjB34gfM40XRtxUDpXN6Qs+os0pagDL0HfvnLX+JnP/8Z/sJf+Av4g7/xB5jnGR8/fQTAjfvr6zO0MWhl/N/3vY6R7sMH7GL0nAGR6apKT1IAtCzxyIZgZ7ltWy0mQJFKproUgdwXw0CoIIYTSgX584QSsxEj+Z1Zur1xYNJB2AJi5gaaNEDKRZGJr5+ei55GxCXzPDOjquuxbTuGcUDbcQEzz3O9j7XsCpRSAgfxOfIy2sd9l9yujGEYYS19VMu9c7/f0fc0pvmWEvi7Xj+JYplSgpGRotiKGWuxrRs7FwCtcO+8dDPkvPBG2PcdHz9+rCA2QOD39fUGZ0mDoIUa82P6vkeQE5mYJHmNztJ8uGsbXK9XPtApYdtocfV6u+HD+/e1M9Wy9Q7BixvQgmKUcb/faBuVM96/fycnn4U2NCQtZrckkEc04qYTi7+lLEaQ8w+MRg5xENr3naOH9zTXbYDXl1c0TXHi1nj37rFuZxmxqqSbaAQeWGuRKeTg8r/yudC9hR0qiycL3X2eK2blBdcjj7GDPw7kFLFva10QXS5XujwpERNESlJVy89jvhPgLzr8IklzMsK9vrzg4fERWmvMy4zj2DkOikb7FKDeOgdjgOAPeO/Q9+R6lsOvFD0Fdv/DMOLz5+8l9ZHGG1DAdJlwn2cuz/xBI1l/IqYAK6mOyOz+s/D8yoFcOKv+pKfl5XLBsiy4+VuNbR1HenPGQAf+JONqVAG//Nu/xLEf+PnPfoY//KM/xDIvsqhRFccuXV+SLvCQIglwkqJbua1GFVpYEaWILsvCA3edqbySUbx8jrRye0tJ7aYJ0zTh6fkJ5xlxHCeGYcAyz7BDUyebthXKWvB0/pJD11guRQu3uSQR6Bgwyc8/Jal0HAZc5ADat13I70rSDbgAot8Dn9dz37lwkuUVww8bKGXQuDeJr9bi+CT31+PjY6XBretar9/vev2JCx6l1O8rpf57pdQfKKX+hlLq35D//u8qpX6llPrr8r9/9pu/828rpf6WUur/Ukr9M3/Sz8gpsSjkzMLYtBj7Hh/evcOH9x9wmS4smsJnO08qLEq6IkDuWlG3aFFCFN1nyllkaidxSbk427bJFjBgLIuRVDKAtorvkfepapF4fX2VEeiNIqPUW/ZxoUG9EYm5bPCiMio6YKM1CcjLwoIsN1bpGPZtI9H7m4zyXkau19dX3F5f8Zvf/EbI4B7v3r3Dsix4eHjEOI5Y17We+jRY0EJbohSRI7YS7NRhGAZM41hll+M4onFONL65qjZy5uKowBSlIz3l370kUHYt83tIj1rlYbfkyR0b/HnAyvc8zgO311dRLe04jwPncWCaRhjB9WLwuEwDnNXo2gbIka5MxyYkaHp0htPj5fkZn7//vm5/7/c7tp3j+vV65eeCzI4FWTLV3vKIxnFAP/RSuL3ojSUhsxCcZSIq3Xjbkpw+jVOV5pYl2uVyqeyKoqyKYsHnBKO9XK8YxhHGGDw9PeG33/8WjXMkbkf/gyVXMcze9x23+x232+0br8oSvseOeRgGXC+Xen/3fS/uSuTtFkpNYTAUKbHWprpvFdbE7333HaN4jfhJCmuE33Mg6dyTZeBsg7bpQPML2uUZbesW3YgYYFtXaM33SSxTVGzWYrqQ/5iR6cGptTRFp9i0NWjaDvRapRtwzkq8CqLAKIWEf2BZljpJlucsSUNUMNzf9frTdJYBwL+Vc/7flVIXAP+bUuq/lT/7D3LO/963X6yU+scB/AsA/gkAvwfgv1NK/WOZHkl/15fSqm6Ou67juPHyinVd8eH9B2ilsJ8eUXA/Ukka4Y+lWqy6jsRqY95SEKl/JkdRi764eAMaUeZQAqYRhGvmQ0AStQr3LrmS3rXWuD48IApWyJtOV5x0miaxNhN8LngsC8mx+77AB4aIzfNM2zAADzLqy/VD2zEXOStU2g8AUZuQr9g27H4fHh+xzDSJyDlxxN82zHOoxPOyeWYOCk2Lm6YRvC5DgZhqsQrTStFy7aRBAeViBp08NPTZ3KENVRXl1FbCGCja9hQjvD/Rdz3x4a7Fvm/IiRiwVsDr67N8FgrbseN6nXD6E9ZqGNvCOSOO3QeWdcay3BFTlBE5ENPbVgS/Cv1qEjkcr9nT0xO6oUf09FssrIiu70Q22GM/dlijSTuLNKCY55lc32VB03bIEkFSnJ2QgaZtoDIP+6LY0lpjmRdY56CgMF0v8HL4WOeq+QiEbtQKLFK6v2PfMQiNRyvQxi2TqlVwSghmX1RWowgUhmEgUT1RgrntdDMqSabf0stYKCi/Pc+9qnWKGTYxeJFm6gxtSAubxgmNawDRVZHlkRHWreKjyMy9CjFi6Hu8//ChOnaxGGbkhDe+a6brkxYBRNvyOWMOuIH31P7nLMmmrpXPAbSP07R6I45pK/Sg5Zkohy3k/ZbO3xiLX/zi9/D09IS+//+AlJ5z/g2A38g/35VSfxPAn/uRv/LPAfjPcs4HgP9HKfW3APzTAP7H3/kzREFRsL5ycmqlK3m1pCiO44AgwLS1Wro0J2PWlze6gmInVYi3RRlk5Ia/z3M9Qa2zb13VcWBdZpTKXopz39MqaxxHhBiZg900UAoy0nSIMeF+n4V4bLFteyXBkjg+CHGZI8i6bpimC4ojOS2xLJaZxTXmWL0oc864XK94enqCNdz+BTHucNZKkJqvOG/bNrVQFjMFmgV7pKTelishwjQG1rATLHw7GpsASAnnfgIaVSyg1Df5QDkSC9YaORPzKqom1zjcbrcq3cyJDIKkaATC7pob+KFnV2GsgU2W8RJti2MnrDKKIbD3Hk66q9LBd11HqaRsR7eNeufgA3yYZUN84MO7d3h+eca63NG1DRpnJTZWVblc4xrxA/AYxoEjqSzvdCH7F5GDpGNS8lqUNBbmgWN/1w1STDNaUfNM48jkwXKPGw0lyjSVizs+MPStGEhzKprvdzm4XOXednJ4JxmVi2DACpYXY0LftUiZvNSqFtp3TOMEJ0urtu0Rwg9t9soBu++76LYVhqHH16cntG1L3utGKKTwn+kMRI/LnNitU7orB6KmUi8L7ypG8pF9ZA7X/s10VUbkwvUtHOZhGIV14oW9kOqy9HK54PV2q8o8pRV0VrC2gTEUIACQpRx/PhCFt+z/RJ7l3xNmqZT6RwD8UwD+ZwB/EcC/rpT6lwH8r2D3+QwW0v/pm7/2R/jx4lo/IOCHNIbzPPHlyxficgLwrusGbTQeHq518cJOs6sKFOpjadFUomN98DhPLkpc21RCbAGu7/cZLy/Pgkvkil9q+YCVfjNKLVESx3Hypsh0G6eJrsF5JgmWP4UMe1RuHvAWQEZVAnC73WtRTSnier3iPA+OYMJHG2Q8ZmFghOxxHGibBlFI+CRbl3jVjK5jJAZVPl6uxxv3rOu6esqySy6FsmTtvIWtpcDRruBepeOmFtpXHmfJnQmBLi9WFnbZaFr4r0slHtPAQyOdb4qRIjAoRTDFhKfnJ8rnpgmdRLqyYBx1Q5tLN5sS2sZhFyoR1SA7Uo64vbwgZy5pVqPx8vyMpmkwjWMdO5XSWDcmA1rbwLmGhG+BLwj7kGPomgYpRLRNC2MCUoiM+/WhLgSBLK5ab4uyop9umwbLykWGbizH/eDh7Nuhw0MmCReTuOEyz29OXDKJWecQ5DmJkRJT5Izb7YaPnz5W7N01jeDflLKmxAnJ+xPj2FfjlDJFlcKzbBtCzNDKwJ8Bt9udGncAfT/gfrvXXYCxDk4zx2nfuIBisB9jNrJ4DQDEbKHoIOQNaXWbwGtWDnOtNVJWUNriPHltm6ZBI5BDUVN5H9G4VnwaMoa+w3ysSIm+nHRfMvL7kq9Gg5QWLy+vFUb5Xa8/dbFUSk0A/gsA/2bO+aaU+g8B/GXeDfjLAP59AP/K38P3+0sA/hIANO4dRhmXaeg7QGniDikEPL7jKQNStVDyt7n1bqrqpVCESmCT1gbL8grGvIqDeSIt5XK9YhDN7n2+4/vvfwujNaaHKyMopGjs+145jA/XK+7zTC6hY352TsT2tOZo+/z8XOlP79+/B5dQvDGLZpoqBnYW88wN9izfV2sGKCnFwLa+65gnJJhK25L4e4q/5jJLAFZMaJuOiyRrZLnEonO/H7hcpqrSsdZB2VzHwxJf8bYgUAg+oe3aN3OLxlXnIoCjZ1kulL+nRBmRIiWBvuSyZFKkss5opVhrTcwvZ5LEqYyx9T3tx45ZeJnD0GMXbPU4Dgx9K646Aes6o3EOznUC0zBMjWMWc9hvQjtSxiCEjLZht3VILMg0jhKPysXAKXry337/W3YwhUStUA1TAJpopBjYlbXsnBMyx1FjsG8rPnz8QMzae6ic4WyHmOjsU352wQob6eaWeWZ4npiXlC50XRacEhfdyuKrOPWn+GaVVwjyyCSKf/3yBdbR/ahtWzncZ5l83mwR6RqfYW1RJKWaqjpeLlTVKS7A2qZD8FGiSvgMpJyBEJHBzi/EgE4w+n0/hLnCyXByYnUXPdqugQ8RbTcIVajF7bawBpwe/dBX6KiYPvN5OetBAclf18bAyr1YYqnn+1I9RzfJTCrYbM6Ept6/f/9G+v8drz9VsVRKObBQ/ic55/8SAHLOv/3mz/8jAP+1/OuvAPz+N3/9H5L/9oNXzvmvAfhrADANfz5bZ7EdzIV+fnmh0kN88G73u7T+DVzjqqVYFDuy4ppTEvpiDGISwbEvphLTMEDvxKOi8NK2bcMq7f/1eiUHTRVbNcsFgMjriMdkXMVIo5c8nLLIOc+jdrfFDJgUjFDHmqKU4Aemsa60G3OOZscfPz5QlinFP+dEjNUYwSWzLCAI0I/ThGJGS0rUAWtVddIpX7ssa7XiahuGjrUt7ceUfXNC5whm0TQkngNAyhH7HqQbSTVjSGldx/JRstH340AQN3ly9kgVIc7F2F3rxLQE6Y2XmMlg6NoO2miMccCyLHh8eMDrjQs177ls2/ddNvD09/z48SOWZYX3AU9PzzKik16jtcb7d++RYkTrGnZ5IQBK4g0Eb4wh1q5GaY2mbXAvS5Oug3FaML2ChyukFKAVsG0L/1lG+bZpkCSzexbTDCu8T4Bb3O9/+1s4cahiWiQ/2+JIVDwS9m2Dda6O3CXNdBRXfurwj3pP5ZTQyKJkl8PXWsZE08mL3aXWGuNI6tpxnBXjd4IHMvYD9XDO8jk3TYPjoKvRMBbpbUBJOGhb6suNtWhzhxiSxEy7apZzHvRQKBSzXg9IKaBrOtxeZ1yvF7HoM9DKYujHWnBnP2MYh4pXA6AzWUq4Xi5vXalW8CGid5SMNgUAACAASURBVB2GYYLWSmhEEdY2pW7hen3E/X5D3/eYpsvfX7FUnI//YwB/M+f8V7/5798JngkA/zyA/1P++b8C8J8qpf4quOD5RwH8Lz/+Q1BNEYokLueMYaDFf/mAjDOYLiNenrkBL50TY1xDpVO8vLwg54yHh0d0EmSVEr30cpE5Cq0BYKFyznJU3w9ooALe1hhYMamwxsCICH/oe3z9+sS0PjH8BThuFYyOnE86iheMrlhndV0PrYGm6TDP93raEUMz6HqSef151viGT58+YV3XGnt7u92IY9mmdiUkkh8y1kbBZoi7Pj098fS9PmA7TymYXWUXXC4Tt6z7UV2Nuo4u6dpoQCXE6JFygDUNsmShG0P1CxR1wieUjEpWLOTYuRjZjBPKYAImBH8uCzOAS4LLdIHSqrpkT+MEZRS6rsUaKdcsxe3p6Qneh7rZVCJ7Q6a3qRdIJifCME3bAJl0NS2KoLFnkT5lvHeNwzj2SKlFRpZlGABkuIYySZUywnnCucsPFifFGT0KuRpAtVIrwW9Dz0JVlkGDKJYu0wSrDeZlrnhhK/e/1hqjxC+fsoAEgIfrlX6qWhNjlo65wFRa0fQlA1jWFf0wIOuMZVnF77NF2w6yBMk4Dt4vDw+PyDnJ1EECOaAwTVMltieVRJ7MEReAmDhrwCq5YjwkedhYvP9wwbpswpNU2LYTUFQVXS4PYB6SQomrPo4g0xujbVPMLKSGOOh5eqwLo6gfH0mXg1AR53mGE6oXn1GFfd++we+z7ElihYB+1+tP01n+RQD/EoD/Qyn11+W//TsA/kWl1D8JjuF/G8C/CgA557+hlPrPAfwBuEn/135sE15e50kKxOPDYx0NCkYXo4drLOZ5hj9PPD4+YJ4X3G6vHP2cw6NIFO/LAqUNxp4bzHWlu40Tn8cQGMNAxyHPQCTZqBfjU2ttPYGLObBzjhZm0j3cbzdcHx6qPvmNHNzV958zR5uua8Urj0RY7wPWlQTYwv0qJPlhGCp1SQmdopyI67ph3w+hljxLXEaqXNMiQ6MkjsVznmcZvzvpvHt2wLK4sJZbwq6jUQVA3fJx7EKLKvG+oXbKSAra5YrPbfuKnNj1K2jZivL3z5kkYPI02bF575GRMF540GzbCuscOzL5XYLnxt0YbuHnZa4EYm3onXkcO7095RDU1qAXUnOKxPleb894uFywbStc2yL4hEPswZiPLXJAGWehNabLRbisNITQSmMY+RmpJO5Vci2U4Sa2ZE5zGmnx/PQMI/hYOUjLAsoYg+OkOcQ4jRIEx8XN89MzMfqe+uYMFgZrLD+T/cA4joAcSDxoSCk7zwOm+nrywF3FqxKKipbpMlZivnVUdvEeoheD1szZ2bcd9/nO6+gsHh4e8fnzZxhj8fT0KvDICO8PdE2LYlBz+hNZDi16DbwxPJB5nY6Dm/IkERRAxjjQF9aJYcrjwwNiiDjOg5i8p5emlYbi3bv35GoqjY8fPmHsJ4QYaLAhh3PwHlAaGQk5034xCxHeNQ2uHWG1aZywH/ufyLP802zD/wdUg6kfvP6bH/k7fwXAX/mTvvc3X0/QPnic5y7mqwdK0hwXOC3Goa/4UdNwNOmGHkppKBm/qRNtqTsOfMD7pqvcrW1bqyuzEt1sIye0P7O0961sunmBVxHij7JkUUpVZU/OqToYGZH9lUVKyrlyHZd1oS+jdFqDuEq/FTqHGHny8npwjD+PgMZ12MLGeOBM/hqyxr4dMtpDLKbI56QaQ4sMrRRuyGaxQYwGOYqJK3jtT8/o0VL0j4PyUhYmUrQyMhQ5x+w0UfTtTpYYAY1roMAlC8dcmtU6VxzdSSfiKOVhrX5bhEDBH9yA0tnnQQ6iDdaQVsONaE8VjWrpli0PPOlWEdbpirk1rcN+bizsgfjYsR/CNxywbhvG6UI8Vml8/PARwziK85SVz+WtEIbgoTTYYccEZywiMi7TBcsy8144GYlSjGqdcFWNNozw3VbklOvSirJVUq62lThb0Z8DwHnQX7OXfJnjOMVA5YaggyxlCIl0jcOBjBADo33lyu7Hif080IAE8pgizamL5wBY1IoRTNtxUdL1HVKmoUiJvChb9FWMtblYFP11zjDG1d+562SRE+mpSbI4IZrhgRLiEOmc5IRuRUknP6NGOnOtlHTL3EmUxZGxDk9fXmrD488gfgakGMWUsR2nRM80sM7iPE6EmPB6mxFiwrLtwvT4cerQT8J1qCxmPnz4iIfrA07Jkbnf7rK84SbSB+aleB+glEHbdui7AVobzPOCl9cid3RwTctgK2Q8vTzxQ7RGDDRS7aK4Vd6x71sdWYqKpcgpqS7wmO930QmzCyjOOwALflOCvYpD0brKmHDi9fUVxa+yqHGoTfXVCYiLqzuKpptQwxu/j9SgTkYHW7/XMJScbRoykG6119Gj64SXJrKTMvL7EJgZbkzVvldC8jfOTcXOrXAD+XmI/Zsh9lkCsYo3aRlLu66r5slZNMWqFHD5ruS5Mha22PtH4WgW/mzbdhKPoLEsq1DETH0fSXLci0SPBHweOK5pMK8zD5/zrEYeJHIHzMta+a4P797Dugb7eSKmhNMHbPuBVWhgMQPWNfAxVlndzz59wibRJftx4Ha/4zxPfH16Yu7TMOD9hw/I4OGplRYtuRLDZn52m7hnFWYAs2jO6gJf7MiaxuF2u8v1zuT1GoNPnz4hiqTQ+1AFGIX72rbFTs9i6HtAMNJG2B5luirMlOKFkDMzoI7jgBcpZ1FvOeewSfBcznS6Knh6IfCP4yQsAiVNAA/uYj7dOMJT80w3rcvlCqU4cQVpMBgo1lcPUe4FnGDgDXTJburZdVtRDE3TiMs01QYgynMNQAq7rhS/srD8Xa+fhNwRmQmP+7Zj33ZAQUwHDKZhqJy5kAOWdUfjIn72858jzhEvLy+Igk2VZDhA0QMwZyDxRLvf74iB2zhuoLtqURXFSRrCnysmCsXHMqf0RrORbnNeFjw8PNTcmUXY/9YYPD8/4/e++w7uG+lh2UKWTvM4DvT9IONgySXfSVoWvlfx8sw1YtQjpVa4eOykGS4fflAcSpaMc+SPkXdacqAZAKWEtNuIWcQpSpIaSSGjZggBWYnGO0XBrkrejReqlnk7NFKCghgOy6Kr0Lsa1+D5hREer7cbLhfG3k7TBfu+4/X1FdfrQ1XMGEMYhLhTU2M1yiEGoH6GSkxftbb18KGCi1vsfhiQI8fAQr6G0MLOEKCMRivvi9rkFSEy7Grbdwx9h5DY1TAeBCKXHGoy6PsPH96KRAjQt1u1CTSaphnlgHGNQ5Q00xPnmx2aFrxVOnbS0SxyHvH161dM0yj38yz0HoXr9VpH1W2jxdr1esW2b/K5ZSmyJJNzox/Rtb1MRfrNECXTN5OsEd4bSWKX6/tXCq+3G4ZvIimqA7/Y3t3v9ES43++YpgmPj4/VT7QcDuVQKCIRAPjy5csb4+MsOeW2Nhg0BfHo2h77TrZFMWPm7kDeo7Y4PbthJYd7yrla9TEjvcG27dUwJca/zzH8H8Sr5Oo4oQZopQXnYNzpum50GBLzhW3b8PLKbGzbNDiDJ260BvjzwLpvuIyTbCUjltqtBWyiqVZK1VGH2dLEkw5xAio64xACtJDak1zopmnwvm2p2mhbxEQ3d3+eSMZgHLjJjSlVHmQSzJHLnxbFLT3KOMzujAYQ5aYo401RyBQXmZKESTJ4J+qgAldwsfTy8gwawb51WQBkyWLRWGb6xBjx8PAAABVQ/1b+VjiwWilkpaA16laYwVBvEk1CEcTX9n1HignXB8YMFLPZrmfSJn9fDdc2tcCUDJiyFCkd5ilyTyX4FyMIjmqc8S2Ruu97HIeuxbQYD1+uFyzLilbG1RAinLFo+x7HnVZj53ni+eUV3oeqNDHGYhhGlJwkY60sEGh0UhZoWjq44prkJSKCzkuHJH/ulVoFBbERoxtPygnFECPFNw/WfT/Q92RyTELMj5Fc3GLcOww9tnXHH//xH6Pv+7rR10ojSWQCg/VidWVKkYugEGO1tVsldE8bK5vtDvtxQCkhzSuNjIgkSinIEq0U0XGgemw/5spHNcbi+fkFwzBIMVKY56UqjigT7X6g/PLeY54XWTwR7/35z3+Bbdvw/Mxl3jg5WOGKlkA0bQw/Ewh2jI5mNDKZmSgxvkpjXTcx/mDBJJvgz0CshAKwbrtI4Ay2jcRzBYhdPo0mHDSm6UKOX+TW9svTVzQtC1Lbd+hbJiE2XYdlWaGQYJyrQny6lnt0skxpRP5UHg4rwWX3+12I3lqsuKh/TZnb5qZpxLSUhWQYRzw/P0M+jRrPy3Gb35PRDa3wvSiJZBdEWIAbcy/GraYuA2aJ8S3jC+ArRle6KMahHihpfuM4yfdzoo0NKHZjfd8hei/Y8ImbqB6obBDfQV2Mct8I6MXVJeUkDvESzSEyTPpuei4aNG3/n5+f4ITse/ijYrpKK9xnUnOiaH0bIWZfLhO8PypLoGmcpFz27BQBOMcDjw9cg8+fP+N+f8W6zsSwFbAfG6yjBPU+38XjE3wPWgEqY9sXuNZhGHtSW75xzL5crgCoygJMLeKMIN7Rtg2J/DL+I2d8/vK5SuratgUUcLvdMPQ0h2AWU8cO0PIwbOVe8oKHQyYHpZJwYE/GEQsu2vcDlGJEhHOODj1tg5yJkZb7IkYWjhBeubSyZYo4kROw5Z22d8CbEEFoST4ECWsjrl0mJwUKJIw2gmE6Bg32PR4f32EYJ3z//feYxGt2GIzEcQDX64NMVra6ljMaxeJyGWpHau0b5skkxh4vL8yHstZhWTf0/VF/trVOKFKNRDpzuWTFJT7FhHXbKw91HCfB9Tm6U30XYYz70Tr1kyiWxhi8e3yPEmfgXCNelQ4hfK2wmdZGDHJ32MZV2olrGxxyk8SUK26VcoKzBufBLufDhw9YlpkPQ6ZMEZmGG0UdVOgDbddVG6xomF39fL9Xsf9xnhgLb7FtYazF5UKeVpFo9iL6d44REylmtK2VEbyvFle0SsuVdlLIxuX/Id5/xmjZEFuRSGZRAnE8LGMErd7IlyzXtPDoCt2qhNuXuADvPdIZquIpCXE8hAgoK9+PnbbfuVWkrRo1vMVkwsjID6Wgja5mvQD/T2tqsIuV2DAOaF2LEGKNKt62De/evata9mVZUPT/nBBYMAvB/q3DfLuf2pbk8pQSlk0WJG3PIiULBmUM5mXBJEqUEt41jlMteCUlkBj2t58NJwLGgmS4xuL19oLLNCEEj6evX+ghsAd0bYOUI+73BUM/4HZ/FWqWh+sKg8HAn5m2aRmymCuZ5CT5v74+1yJUCjeNW3ggGq0RfMTD4wPv2/zmGE//yixRDQEJkgd+njgzg9DalnG167pWx61+mrDKaA+QUtcKXzJJI1D05H/7l7+ssM630bq8J0n4LlNSgQrudyqBijtW+foifU4p4eHhAbcb7fWu1wvGYcDT8zMuFxqiQBnRnVP6XNgbxM+l20wJ0+UiBz9oAJxSXZaVxeuPvX4SxbIYXgCozHpjSCouY1h1QxEaQhZHa2i6mRQ3Zc22BdpaKQjkfeWY8PXr1zqyZSFYG83lhtEafQ/s+1aJ48u6InhuLIvefJ5n5rzIWF9lijnTCVu2ySWSt/gkuoaJlS8vzxjHEfM849OnjziOYogAGNPUjq5Irzh2NbUY5AyRT5IEXx4G6sCtEGvfOHRlrC3ZM2VpolSm6apy2MUUQyt6UnrvSW1pWmhb1A6mFsS266AlSTDEAGOdYE5ZLNBy7VBDCGhk1I4pQQM0sxV7OQhfsjAIxpExtL/61a/ws599kqjeVnT0E5qmxf1+w+Pjo4xlz5imUXCu9pt4Uyq1tKVrt5Oi2or6K2cRHmiDVaSRISaM44DHhytc0+LXv/4Vjr0oPug+tO97Nb6IYijy7X17eo+h7yVVlFjuJrrlXe6ZUlwAAJmH63mc2A9qtgGaJRtj0fcDig9oofj0PbFHXm/JDE9KPBUyFyVGox8GWtF1PUIkDMDohx7ncaLtOry+vgoVSfwvgeoylHLGfZ6pl2+MmIOgEu9DCDgKN1b06Pu+fyN5DXXBVxZNRc9fJMKdmI+UPULFbqUuHMeBp6cnlFjk253QykWco5Z5pfNQ0b3nBKdNTeLMCqLe02gloZWTE2BMW5dnlRb3I6+fRLEkbYEYWfARUBFKkYrQdUM1HT3Pk3pYY5F0Qmc7hJxwiCfldeT2zLVaSO5AgoLVBtYpOGMQ5JTZ9hW95A77QzaoWlFLbQ3DyHLGIIXtPM/Kz1qWhVJJWYoUjmSSsbBgSQX/U1oDwm1juPuClDKenvigj/K+eRoyupRLhFiL+3nGWpDKz+W/0+CAbuhJCPjxBxhQCEGwr14WMycyksj8CEnklHC737FuK6ZpqhnKymg+bD5AaRnLFZdh1ilw82hRcn2sdcJnowHE6SXCotiRNY4RuYLrlcJBfPaQ057wQTFfLuqrGCPud9lgz4scXnd0XftNEToqJ1SLXI7ihlzJ2o2jOcN9Jo6alcJt5nb5z//+P1wNlFtr0V4mWPeW8plC4Dbf0HwlBTIoyhKwFBCGbzGjHlIo2P1HiXjQ0E6L6mmHVhrvHt/hLmo1rZgPH4IXPqUsq8BiWBRaxVGLBxTw+PjIpYZWiCHJNRbNvtZUeBlCStu21amCWT/E5qdpQp9JxG9bxon4k/dJEt25EW38Ie5ZZZrLABxYcJ+enioezXv4rGKN8rzzd/Do+6GavpAhEpDSiYeHx0rXU0qL3l8jHjsa11K8ETLWbQNEapo9ISKo/7e9bwu1bEvP+sZlXtda+1JV55xukqAdCUgQiUmUCCEPiprkJQp5yJN5EAQvqA+CCQGJgg8KKghiUIyJF0w0KuZFMGrAJxMT00k6xiStCZjuts+pqr33us3buPjw/f9Y+7SnTh/sVO3dsAYUtS9Ve48115z/+C/fJcNmj4xYhLaPA7np77zzMQAGd3fbkql/yTjLN7IykCIngJAHMeUkMlgcpKScUFWNTOjYtE3IWGJAbw32xyOcr7AEQjqmZcGzp09hUgISxWOr1YqT20WUpX0FJ1nsPE0Ic4D1jr4vIkwwHI8FLqHSaPqAVxV9y1XR6HA8CrRpoWyWPJjaB9NTcxhoTKbMHr5RKivGjEEHCnwjPey9QMWe2SRDFkhgJN6SZluhDDx0SKR6nhQm3qMViFGSYdIiQwOAmV5OZGYYgfDM84K+I2B+u9sW21u+Z4Aq6LRtiyjBhX0g/n5jbcH1WUv5uU29ERiNKxNP5xyurq5FEdtiGI5gJmCgNsI01mJp/c4772C327NPKsZWygFmr7smRTAlNFUDgP3uaRgRF8LQxnmC9Q5Xl9e4u7nBUBMN4QWqk0LAbrulEpJY+jrnYA04IRdWV8q5TIOXeUa0dL8cxfLVOwfrqlLRKL306dOnuLm5gbGGqkuVLwMgbdewjcLKgH1fL8M+SvHVbUP9U7nmy7IgiYtoBops3TzNCC4UgzMV93hyfU1Q/O0tdtstCRqbDV0yBSK13fJ910OYQx3SLrXnWolVB/G6kIRHud2tMNxGmQGsoFKGiotlO2YiUmIYJGgC3jfo+xrjPAqbzAD51HqJIcE66tTSbZI96aurDds7UlG0TVN0GbSl8fw5h0l6/79qPY5gCemRGTGGutfkUkJ+LeyUlJgZBoF7aNaScqIgsIjxth2FW6dxwHg8UktxmrDqerRNS8tVgQEFEQqFwIacPym2t12HXtgdQW4ClcM6HA64vr7GerUijlLK7iAn1X0PF2bPZB8QPyZiCinLQ2MFb+hL0KRTn6iquJOQcJbJaQgUzVArXOecKA05TNNMIYGqQtvyBrm9PaBpamw2F2iaCi9vbvDs6VOe1tLTXCT7gnxupAeZUuKQRA4KhT/p9Jvuliq3lwuGsu06ZvngVLppmalcXl6WdkVc+DoIL9ljmg7o+5UcMvw5GjAIJdqVsvfFixeSsdMCQkUzOH0NFGaR6Tmpo8zQ6qoRSwMqJllRIQpLwGazKQMzBfYnoYxCZOtg+T6rzYf6L2nPWwHcq9Wq9D+zcM6V1eITJ+HzPBf/qLZhabxZbzAVFIDBNDH4rFa9CPZywKeTZCAX2uj27g7XT67hhPWj5AhtrQAscX1Fb5t+tcLzFy/Yf1SspbVi4eKxWq3vyewlqpQ7xwGovH4VJTbGCUMLBWbV91ZaOEt5HniQe4EITZgmxZSKs0EgMkThaWQExVKd1OITRXUiTsavr0nPvLu7RYh0AG3aDtvdgX1KwfYuIVDq0FccGGf2VN99970PjVGPIljqo5VEGMPI4GAJCww4KEg5IcziVwyWzJxg027dCSbSixq1sRY3L29QO4vKV1Rs9mw8m7ZFCmL0lUFvG8eM0ggtTPFdYVlQr3rYhaZhNMKayd6oqgJA3+/3pCo6V6hdMNQDVCtZVdTJOclggAKozjdF/JUq7xy+qB2psmqWhSWXUjKzCBQQY8gHOUiPN+dc7FW1HdD3HTPqirzlpmnx/OXLooiu/VYVZAgSgLu2xUZUZwAUj3eF9sAAla8wzVNRn08hyeuncEJGRtdLuyFEHA9HdH0HthF6IEuvzTrUdVMGK6SZMqMZhrFM3lXBxlpXAvfJ/pUlocqCMTukV1OKtI09HA9FhWeSFguFdROOhx3maeR9BhQPHuvI9a+7pmRvzjU4iodNEl72EgIqqSK0JFcFeQpzUJR5mkbUYslqjMUyU09Tr/XTZ88wDOS+M/PZlMEJBy7MuGOk2Zdz1FC9vr4Svv8WrRwUTUvu+yieR6tVj7albsIkQ0rVkZ2FRjmMo7DWRJTGGESwF1nVNRAjbm9ucHFxgeP+yKm0c5hFd0GN8gCcsMtVjba1UB2D29tbukcK7I2sqZr01KoqmOKu65BzQr3UcHUlEm+GEKAQUDcNbm5v4SuP9cWm9Cb3u71k8apmtENOBk3fgXoRE25ubt+nFfGq9SiCpVKckAEr4PCMjKZSC00gR9KZrCckJeaMcZoRTUZICaNkUm3H4c80j+jaBjYnpGXBoG+Wo09MVVXY3m050eupun0YDqcyKlBZO8aI/W5H/w+hNnrnAMeeUVAJ/arG3ZbqQF3XEZOYyT5ZRC7LGMBXDs5bNKYufOD7rBg2xWukpP48GU1bYxa4UohB+LIRznLqO4wDXOVpBeorWAFBRxGdJde4RlX78pCzBCOjY7PZ8CZfXhLCJCo2xljAWkxLALsiJ79tcrcndH2P4/GAxS+CD+X3jOGDOU0Th20poU0n3OLd3R2n2huD3XYHyJRZp5gM8MDxeFuCpvfqpQTUTSUspyRlGgNmK6K587zQEz5nIFs6Ai4LweEt359hGOCqCnVVMeMdRvi+l74xXwMAUPCkQl1XwlgZCkIjJ3r5VGITkkFgvqsqDCPxmG3bIMMgyAFknMPddgtnLKuNaZYBY495mtF2Hbxf8Pz5cwAGmw0ZKLX0PCl462CEzNC2xENmA1hvscSAuq0RUsQSZtRNhWke4Z1nawHsLW+3NH6LKSEjwTuPpvXca4zo2q7gbVV5/eS1zsy5X60wzfRNGsR+hOpWDLBVVfPIMQYpA9Oihx3bVfNCEV9ATOyQBUZGHO4SFpAuy+85X8EaL0pJtiAGWFYTwD8MR8SYpF1SCRvNYp4WIJsiqMF+ZSj7VFrrq9ajCJYA3gfMLV+zBDpnQd5nmUJmJFjvETOD5GEai/cw1b8DxnmBycC6X6ER+SorabuaRl2KJNt9L21rLVZdh5hiUYQpikKBFqhJQObKHaaeYEJd1ZLxgUBhwXzllODrloMBYY+M08hsUsp2VYpXlaGUSRWrK4OUDNR0rZLSUbX91MwJ1hav7bppAJmaT/Nc2gKWEt8SSBNqz8yYWDdmxCrFRT44UDcUG46GLYhhGLBarVHXFbq+g1pq5LwIK4oOnOM0l4GPl/J0GMZiB/Hs2Vu4u7vD5z77OXiRo1O/nLqqkU1Elp4jKYRbrPqeuomRFg7LPCMlU4SX1fAqSFumcaf+ck5sLUxhwRQ4UHBhQVAnSkOITkziPmhPg6tlof3w/jDj7bffZj82MavXHmxYFti6wdX1k6I6tIjlbzYGvq5QCRA8poz15oJ44UTUQL9a4Xg4CpaVh0pVs0yexgld30ngIJB6Fok6dbMkh5tMKxiq7scU4KwrGFPVinXOk/vuOXAcjkfReSRiwle+WDWEQLfOpMmKBM/K++IFn7MiNQhN4nvZCrWUSI7Ly0scjhzC1KLT6esKrvKoPDnhvI0trI0Yp4lGZssCa6mWRLppQsqm4Fg109aJu8LvnPO4uqRQxvZuJ4gWV4I98bs1muZk0bFeP8GvffrVMepRBEsdkiRpGhtLX+Gw0A8bBsVn2nkVZMgF7R9DKDAhBXL3fS90MNV1TAj3gNVZeqTeV2iqBl2X0C0zljALzCGj7XpUIuowjCOcq9B4lhbKotE+ay2eQCnSIXAYBjkAxDs58qYDUIZLxtK0ylhblEqKYooMqogrnQSwb1CJPYG6AU7ThKurKxyHCbDqsFcXrnkMtKZgj4+/o65r7Hc7HBbJDtYrHI7H4tWScka/6mXP5CQbA/SrnmXdOMIYZljeObzzzlu4vb0lhtV7VI7lkxrG6QTTe1fsRpdAz+3rJ9dFgSnmxJ5nngqe0TmHVSWsF8f3/3gk7nIcR/iqwkbMuLqu43jMe9h7Q64lBEyCWPCWPzMLpMoYU1op1pGhMws7SA9YNayL0yQA8w7T4YDNxUWZQquIcZFGCwyY94kQOp0OIeD6+hq3t7dY9aS8jsJPruoaH/vYx/Dee+9hniesVusyCDocjkUQGID0Lb30SjmEUTGXnDJFPlJEXTFg1bVUMyGJ2O3JVZIZ2QDI/eqdK/hKnZjrc6dYXAbHHoCFmoINIq6h8LtZgp4xwO3dHemlEug0sFHysJf7eS5B7/nz90ogUVKnFQAAIABJREFUBAiOn4cZTePKoavPu+5PURmEJlG2bbVaFbxxsWgRJ9FRTOwAFOuaV61HESy1R6eTVeXG6immvE3jmWVO04Q5LsiGeoeQUkQFAFKiS+Q4jrB1g9qypLQG8M7LMIcPS84ZcVETtFayuoS27eGFYTHPMy42DU9XpxzpJIR+U1gRs77RMIhLLBaoMUTh2tZC8K+wOw6AoWiuetaMw0CP6brBarUuRmdte8LaMQPwJfuwNlD4NkYquoBZek48DJKhojlLUEI6ur7jYGzhNP7m7pYMmRV9nhcxWdMe6jJP8DDwzgqOkRmCF6X4aZpgrOHrPR7YQqkr8of7Hn3XFuuLqiKAuOv6ImphBlOClrPMjJZlIX860nzLOmYA+/0eFsBOICuKZ1XM6yJBDoLj06CrEK40z9SVlGFIFFEI2JNVrHo1Ofl53lDx5vLyktNhKYVjiGIvMpWHMC2LonthZIKviIq26bBarym6ocEHAHImsWIY8fGPfxz7w4GtFcF2KpxGmTn6ehnkKswz6ZSNdczQYJAtLUBstOgacri99VSuAhBFNEan2sYYOgis1xhGqvCo4PThqP7z5n0oB01Y2lbUjbLSh1HUhWhDTIEQhTXpM9WIIlHdNBjniSX4PCtqnJVJVZes0ks2q5bZmumqiZ5CtxS2pgFZyRRapRpjxLbayHsXCw34w9YjCZbifywXF0Apx9U61OiA3LLZa4PHHANsjgjLDJ8qOTUDckxo61omtRViymWAEkTmLMaE4zJStURBx3MkUFsYMiGwL2LA7FRvECqcJEyjSKSBAerpk6dFuMI7h1s5qVJa5AZmP0Z7nOM0Yr8noyh4D+c9Li4vkVLC7d0dvKtwOFCJXSfQqvQSwiw/CxJ0mjKpNECh1OkJf7LImDGHpYgXNG2LuqEc1yIP+rIQp+cshwg5Zwxyw6u1xOF4KLAWZQrNM+1rvfNYrXpYb0vfNyZmqNZ5VLXHskxU0HbUjwwxSvl+CmTjxL5XHGN5HXVdI8eISXqru90O19fX7wOF55QElAwBm3PIoA6JSkMtmZEcJkEgYqr+Xjjn3iNJALYytOPBIoO++qRZEOX/sLftcZNuSubmvCtqQ0BG27UYpxFtQ2HebID94YDPfPYzxXfHe4e6abDf0T4kJnr+GGMwTqNkVAv6fsV9RgnaOZUWweFwYHa1ULYtLAHb/Q7OURE/RZIgWimdca8CSwIvKpx4oARNHbYxCzcAvNBrifd98uSJGKtRFGeYRtqxyH08jgyQ3npcXV1hs9ng5uZGSAO5QM20nWFAC4mMWNhB2rNViJoGfu99gZ/pvwtBjOdENd1ai2fPniClWJSHPmw9kmB5ElTV06IAurWHlnM5lZynfmVa2O+pvDoYssyZhxFpWdDWLRAyLCi+QDtNBk7n1OaWb0JK4gcNEe0NAtnxDtEAyLYEnfLG2AgnQcV5VYcmLTPlhM2Kat+jnNQpJRGJpRAF2wBe8IFOpKgmYZEQ+kGQci16lVQUmuelMA9SMgWCkQQbOUmZk3NGiDzpYchkarqOZk/KQwYFFGZpeaScCpjaAFJKzfDWYLPeyE0LxAiMw1iYE0Ym4s1FAyBjf9gVXUhjjDBzZsn8PNquwzSN2O62GOcZlefwahxHTMssgxPu1cRQ4GRJMsHVei3GX5RSswLnyikhSGlm7Mmq13mPaRwxjyMzSXntTjL6GCNiZvZai4KV0lq1i65BVzn13vlyf+o9bAwpd03TUOk90BoCoP7BarXCEiOGacLFZoN5mstevPf4zOc+y0AtAXcJC6rEfryxBt5WRInIcxJTRLdalftXFawsbGlftQ2N30ipZGbatZ0MerxgFQ2Uhz+OVOFSWcBsgHzvftHgU6yBSyISZOBCzK4iFpZwoscq4qIXGxIt3Z1zuLvblmxZ9S/ViyqKmDPZSSzDV6sVKIp9LBllJe8dcdBO0BBJpvoUluF72OFwOGK324ruQI8vCwZPyglLPCm95ERVlijqLF56L4MIQ9iKhmJLWGArh8pWTOPTRN5rCDB1A2ctJ5iuKj8bOYuFaYLK5BdlHeGe05/YSdkTBeSasCwRJ91GSnTldLIhDZHsIsjNqnzttuWNaL1FyrGc+JvNybzs/b7OLAkUAkOJskqUkRgwT9RNBoT9bkdwt/OiJj2W/tI40Z5AyzedPmZk6fuxZ1f5CibzeszjCGsMurbDerXCcDhgt9vh8vKSh0aIqFSXs21p5Ca4wKdPn2A4DqjrUEpga0l3VLaEdw4TABigbdriuaTq31aMsaq6QoVK8JsRyVp4Y0qmrMpQWeio0IzQWtHihJjfLUUxSh/wricN0DqHtqZPelOzlRHvHdZR+Mp1XQMVp8faItKfnUWlJ0RSDp0/Gbl5GQJmwx62qzwOwxHDyCFfZSqKVy+poBxYvpKuOowUmaESvRFs8YKma8U7qIKFxTgOxblxmiehD1Yl21IiBXnugbJ1mTqvSdpgxjnAWPia1MaYRw4E5aCgb9MeKoCtwxGFBpHBtuDu7g7r9UqeFQY6B4sl5KLG1ItgRys20oRCOazXGzx//rzMBdbrTdm7MZbKVbv9+/QC6pp9csrAZbFIyaLD0ErCwpnBxcUFjkd6UpHjb8VNoP/QOPUogqUON5LwiZ1AAozLZPNQWYDTuRhhAzMQBaVWdYX1xYa+wykhTAsuNxus2o4eMcaVByTFWOSmvPRhdDquJyRAaSmqplA3T3Ub1YSLTfxYSEcwFkQ/2cKNTpl9Iyf9G7UocM7I3+RcAwZ13fBnpyRZAm9w7ZMRoA7BFLJvOY4jVisq4Oz3B8QQcHFxgYvLS7JfRlpDqGL3arUi7EiwkUGM1KKIMHC6zCytb6lAH6a5eMfEEFiuyOAji6Dr/kBB26ura9zd3mEcxjKp9CI6sd/voNnLYX/ASqaTjfc4DCOWiRniquuxWq+xCOfY4uSHXRpZMnQ5Ho8ES99T0648IVTaxgkhIBSYVVMwsupjrnYCq35F6twiWF5zEjXRvqTeI8WPx5DDTdWbU3U0zxMwGfiKbKNWemfTwql1CAFPnjzh4M06uMpjv9vDGoOr62sKUQxD0VwdxV5Df76xBogn/Oe8BKz71fvEVNjLXOC9zAMyy+cgMmUxpSKNCOnJbkWDUjM+xXNq5qWQLs3WD4dDwWfqIXR7e4v1egNrqaNwfX2NcbfDOB5RNTW6rkEIC6aJwYumbRVU8m8YjnxOrCniGqvVqmTqHMZQkGae+d51XQtjsqgx8R5TURa9D1arvli6KFVWval4Lw1fJnRHGGQDofxFpGzhcLKOVUktXx7YoQh57vYHUZ/x9NseJ+SqFjkuvukhhtLTcsIQCmFBNCjCG+Q7s5GuPS3F7unplTMKFqtpalqpShmvajv0MqERE18Xv6Ysi1iyHWbOUW5epfNZy2BbidWrUhX1ZmVWcDKhr6oK777LfpZRAYNlgXH0Ys4hl6HYxeUFTGAp0jYNgvOo7wXLcRphHJ0Au64TseCEGRY5AVXVIEYq/BgB+nZdi2nkoGhZonC4BW7jPJWW6gbTTEsHlxKapkMICq+JQAZtdycyOayUVSpeotzrnLMgH8BSWYY7utT2Y55nZKPYviyZrIcK2SqtUh/wu+0dJ7JyjTm04IQUOQsSQuXpcvmdxlj0Xc8ho7RyBnFjVPm4IFzqGOknEwRhkCXLfnL9hPAosUlQ5R3nPd5++y0OLsa2yO+p1ukyL7AN+eP7/QEH4Tyv19SZHA4HsnFSKi0F7z1ub29Lb9bIYC6I3gJl6wytMAxQyXReS35tPymKYBiGkiWqSLOK+ap6k0q7bTYbthUW6h94T2+caRqxnXbYXFAA5fr6Gvv9TvrVCcdhQIgLLi4uoXx/upyivCbVH40xYr1e4fOf/3zhoV9eXuLFi5dFEYyvw5bWgzqv3kcZvGo9jmBpSOdLOSEsSXqTSQJcPsF0nIU1BCMP40hFkVbFIUQWrW4wHI4IvoIRcLb3FYwFkKnFSL8ONtlToq+Mlb6jyZo5JowjlU6urq6gArd0JVSiPkGvKl/Fh8jKAwVYx5sPxsD5CkgJyzIBGXBi+r6IEg453RFN45FAaFJOzBBO/VwOrNqmFRtUXr6PvfMxaC+GFEVSQDOA1vMhmJdFZK02fPDDgq4hj1etfduGBldt3aCpalTinrdqOwoci96jlqDTNGG3O2C/3+NSBlNVVeNic4EYqYeo1gExJux3R5HDWtC2K4S4IIMivLWvEOYFKQQMB5qSdas1mVYhIKaIvuvh2w5hmcuNrRYYMQS8FD1RNbsz1payfA6E7/iKJe8cFrZuci6ZkAaiuuIkP0XqqDZNQ6yp3KtG/s45YbvblvaIcrnpWTMV1X8N+n3fY7ffE9wvWfYwDjgcDzgOR5p0xYi77Rbr9apgZIdpRE4J1jsYgQCRpebgqgrrzVpwjYsweRz61UpaAqn0PlvboReldV9RSfx4IJPp2bNneP78OaFOgdYpzjvc3Nyi8h71ai1CuUNRC3r69Cnee+89ijpL9q2BNEZmnl78epZ7BziwKgmE9R5NQ2pyiAHb3ZYZtcDiqppumLXA4aZpglkUqgUAVN8CgN1uh7fffgvGsAVW5BMdNTWHYcDHPsZnJcaIZ8+e4e7uFi9fvoTqx35omPpiFJ83sTabT+Rv+Ia/+r5msWaFDJTsexwOh1ICjdOIbAzavoOTcienRBOorsem6wVCI01vLfa1bwmWJTmlcuNmUPLKWIOu73F7c1uGPDrEQaZ4LA8mU0Dc/NHSDy1mXvx6jCzXvbOIywIInAE5l9JGe2qt3KxQtz1zGnYRcspDQ+0wtMdnoN46DNYpJyTZ4xJ4o6p6e84ZV5sLNBVbDXVVIwiVEpkUP81wrWRn+rNyzjKlZaaWhWnkhZ/OPZFON06jMJiYUUA40XVdF1X84+EgU+V7UnySMWSh3mm21dS1AOyp/mTk2sIYClckMbiS93URWp4RPUo1wFL+tkJ31A8eYNl/KVkO5cmIslBtTD24Ukpy6DnpIzFA+KrCar3C/nDAMi9wFXvFy7JgkUFN3TQFhaGiG0nA8DqoBAAvh9LxeCwBSbn3qmepPGz2puf3aRLo87QsC6UIV325f5q2we3dHd+vwBbNYU/Ylw76qqpiBbLwAFOUhfYvr6+vAaDQMe/Tfruux4sXL9iTVlUimT9kqH5AFiIFcHNzi6urKzLLRPlfp/iqoMWE6AjvvAxoDtBhKecLs1RiLfVLu07EgX3ZA722gqguHRFCxGrVCxTP4ec++ed+Nuf8jR8Upx5FZql9Bg2OWfor2lyvxClwHEakGAWqAXR9h67rS2lkMnB9eQVvOcwxOcPcD5Q4/dykk3ahWbKspzxaLRlU17diF3vPvMuYAq9p2g4RuTT8rbWIUB9lPlhOeqAxRvpUS59Uv++9B2KETaepPMDJdc5s+GfkYhGgf3SIoXYYOgXVCWjOBHlr62GeT8K1Td1gmRZEMUBb5pmwE6HRzdNU5MMIQ8nIxiIFxSyyX8ZeF/vMy7Sg8jUqp0DljJX3QAaWvGC9WuNuu2VrIUSs1xuo1FvlPKYllOBT+wqbiw2G44hlIhOrssRgzomiIzmSGQMAcblXskuGoPjJGCNMZs8uhog5Q/Q4WS4CPIAUulRXFUKMeOutt7Bar3Hz8mWBVQFioyrBNQOCraXOKjKz3MOR7o1Ny6zmcDgWFEYlalaVP7VZJlHh4YBLDi1krCQweUcvJee8uEHGoj2pmEKoxGEIRVNARX+d82iaBrd3vP4XFxdoulZaAsspg0tsx8AAdc0h6nEYqJw+U/TDWAOTLbquxfWTa+R0YhTFGAvYWwcragtT33N1JNqEAjlM1hzdMUV8ebfdoZGhqg6HFMvqLEkpR8GuqmFaU9dFk4GShIv0eRN85TAMBzlUJJaMQwn8RY/CfhkopeeUgXTiiBtjkAKb8pXzcNkgzAEO1JtMKaNvO6xF4kmzUWMMTDbMFK1DjAFhJuDUi5oPfVUcnJWBi2UJF5YF1jvEDBwnejpX3sNVlRhViexYCCWo18LYUJWUbE8WrJXAjIglpOiFqifNy0wMqMA2kvRmVcJNS/2q9oVdQhyqtgiAlFGAukF47NLKJ8yiquAtp7DOOwa1SBuFAQf0bU/8nHHSL7YyhMqwVQVYOmHGRM8VgBmzGlYlCOhZUQQulwBujeWRkZilp5gRloC+7bEIN/iwPeBw2MN7j82qRy0cXkUA2Gz5ADx5iphOFcbFesOHTaihCRZtz/7iNE0go9PCOGaYKTCoIwFhDhjjhLAQ2nJ1eY3j8Yjj4Yi2awFnEEPE9m4Haywur65gLC1ANhcXxOYOBIsvogMaQYphThl2AYIIR+TMUjvHhMo5eOcwH/aYRJS5F3HgGNkSoiizkYFWphBE1AxWWgXGYjgOaOoGfdvRGRI8sGKmbGFOCX3X4zgcYQ0k06bgMvuTCfvhiGEa0TYnBaIUaW+hjJj7PcolRjx9523M04zNZs3M7zhiDqQfO+9psGsoETjNByrQr9foraN8mjhxKnPLVE3pGS9zgPMWF+rCKIIjTHRY6VDSkPq2x+MRg2BwjXOoxK73ZnuHrmlgwYNjv9ujbjz2uy2U324qD1+5cg9RZJvSbpoxv2o9imAJZe0AYlbGYY8xhrSr45EWm/2KkKLEQULbtjiJgaGcfNYqxiyfvm5OvjIqpeYdJ6cwBnXbSuCzhSOeQRB8LZg9ZMEtWotKppMxRQm67BWWnmgWgKuIgqiSTwZL9QT+O82uaNN7v4w/sVJ0EqqllWaxgF43UyaSuj8V11XVorAEJAFzG2Ow7tb3gi6DqXoLAQyGOtQqtriQgw0Ui0DJ5gwMVMwVCDGhloGNCqMsksV63wslzqDvVzzpQbEK5EzoFVgi6+sz4H2gB2ISVEHlq5KtAJk2qd6V/59SgnGeZfiylEyzqtgf7boOV5dXaCoxyjILQmAv8ngcYKwrbJ15TuXeIqTNIsSI9cUG+/2B1MKYxNohiIyaCo8wCK26FSKAvl/jcDhgSpz4a7UzzzOtcgWziKSSbGQyXbQcZPqqwnq1wiYQy/jee++hbhpYwYyO00hUQCIs6HA8om4btF2Hd188Z+ul74vT6Ha7xbNnz1BVFXb7PRaxiYZUfBebDUHvVYXLq6uisXAQweC+aXFMnCZP0yjSdoP02L2EO94/tYhnz/Mo8oLUXM2R4iPOe8HbhqK1OQvWVTNNALi8vMBxGNH17MNu72g6x0zastc9TViCR9M1pW1B3DGNBwtiQ9SSnNw7r1qPIlhq+WjyiTmRcyoTwLAsIm8G9OsVau/Li9eHiY3+9wcoZBRsWhAojpWgF2PEIAwEJwMC5z2aype+aKGwGcNhkXOlJ6aBU4OH9dKnhCmB08KWN/g+PEl7dzllZJNlUORKH7IA8+X00zJBvVrSPZwfAOGmNwJsXwo7BTh5npCXLWIXnqwNeAY/2qEaysWJYAcTWUvcJU6HF2l8KIIgWvqVwCAsm0Eeei3x1Op2vdlwCACcaGg5U/BWsn7tV2sQud9XP2FiT2wLvR6KJgByOWRm6UveF60tLRWwH51E47Hv+pLF8nfx9TpHY6ws+3TOYR5HzMsIax0sLDnNAqJWSJiCrZHZWxznmcO2ecHF5qKwSGah7pnGFiO83XaL2tP5kCLIg1QcpLyqLuV6tcZ+tyfmMmccDwds7+7w7OkzZM+h03E44jgc8VUXF+jatuCNVUPTGIPtdovVeo2+6wkvC6G0l2DUa0gsbGWiXIms3W9+9rO4kgGfDju9r8TBk1CxaE99x5Si2ACzFL64uMSyBAzHgcpJzhYMZ21dgcCpCAZRE9S+9M4XWNRK6LpKG6aodUAYqF/adW3RUwAMDsORFYKxBP1/Obg7ZsF9GWPg5AQy1sI7PpAvxbBK8XSKuco4ZSLK1dVA5K1H3dTISzz9EvB7SeAbOnix0ku0MpFbZNBQVVXJnkpJIiK0RoKVBmkNfvRpTqeUXmFHsgdmSRKgUwTS6d/o/8s4BQT9WwcL+hq078kfe/I00UPkVKKH8tCuV9TBZN+S/Rod0jiZtMYUy0CgKMHnXLJLHf4gnUp+Bgy+b8sSkRFhCrYV0gOrsVmT0aTQKGb5iR7bAkKX9iJgTLknrPSV9doQH4uy/xOLRt7flBECpducdYgpF2C5kwk/YToJFg5tTfYTLY0d6sqUA3zRQ1TEZvf7PaZ5kkDhMA5UAq+cxzhOqKsG2Wc4YxHFZpktGMJa9HVN08TBTUNJuVb7bVGELZwrg0edJqt9yXa7LUZhOmx78fwFEkCh53nBu59/F1dXV/De4/rqGr6qsN9RfSgJ7W8ap4KCsNZie3eHpm7gPGFVKTKbvr25wRJoXXvzkoiDw34PgMD0a1FZTynh+csXSCljtV5TNWheULcEkSdkobw6GGex6emjY8Chnx4U8zyLFTDjwmrV81nOSj+tYL0j4mC6Qz0xQ3SeWNq+6zGNA4bjgHEZ4bJFEry2srSqqkYIlGekxuVJ//VV61EES11GhicwEMHOmX2pnEn8txarNT1RAPCpKsHoBChHPrEnAJQSTiWx5mUpCH6dygLi4+xP5Z4GOMX4AShMmJP964kGqYEaBuzBiszXaa+mTLi1JaD7D6Krp587CQiKyQNQJp0xvR/ikKT8VWte7XPqUEJVhpRHqxg/Zx2yOWWWbU1aXOXZ5ypljzFwXnCLiVJ55C5X5RDJORVOtfqo7w/EwMYQxD+JvVTnHHw2mKZF2i4OSa6XgWFGlwXcb+61V5xmmcq6ckXgQZdzFYxhoDQGyImtHVc1BX0QZrJ2dOhDW19ad5A6act75Z0G3FSyzs36Qq7vjGSdtAMqWOPE9oQHAMHqtvSkYQ2Ow4C2JUPJGovdbkeOuOAkYUDPKKHjMvDPIoi8lHbL7e0dS9EjtRtjolPmNIwwoI8Op+gUyt3utqhk8LPkjNubW6QUcXFxiXmeiu7pNE1wwZWhqLekNCJljANpu7ov77n/w+GAt996q5S0MXFwdLe9E5pihdVqJZ5CZCVxIh5gjRMePT2XNJvlQcts1FgLm5JYO9eoG+6163rsD3t+vWmKNoRSYPv1CvGYYBz76jEnRN4QWGS4hcmgERHrfO8++qD1SIIloS45CqVNcJVhIQC6rmsgU2m7rqtiQZEyQdopshfo/UmHT1dKEVGrLpk+d11XuNRa1lI5vClYOy21ca8UDCKZppJqqsoOYQrongDJ/qQkz4m9Te90+JFK9ggDpJBK2akZ1n2GgZfXr1lJyVRlbxZAyjTCmsSLWRVgtFe32WzQNi2Wha5+KZ04vqrDqQrryi6i2CqhPClnmdFCEAGnNsX97HcRaFSMEX3Xla8pNtFL6T6NYzHIco4HGbKRgZD0lct7k4SFZWFwgu7oQ1Uy5Kzf499VxRKNcBuV5aOISQzEd1rrECCeNJlZv7Y/TNKDSKoGy+ubUsJms0bfX8E7SpsxsFYndR65tlq6cnBx8pYh1CjinbffwXE4lkNVv9f3HW5vbos3zG63xTCMuLq6wDhORYaPYikWV5eXGMYRFxcXuL29FaUsWsy+fPEC2bBfp7Ti9XqNqmI/m2Ii9JdSHCexpVNxeewEz9y3LfvY9gSL6/set3e3dDqQe7aqKdIbwlQSj3EaxIIioe87BummQZhDwVD6+v6gDzgepSra0GJiniYJ1glpoR3HtLCnGYIar1Vl6t31PYwjztjAIBngOI4l+x2niTYvKcGkL4cBD8Cb2giHOJLupbAdZ6m8UtVVEWeNiTL/JhvA4kQHQybfN51K2JMZGEHgpa/lToHJgqbxxmgplwoAWR9clfDSLJVWA67cIBrwS8CW6HI/mAj6sajDcGgsGaZg7O5LiukprL0gAAVvWUpzA6g7pNXyHhDWyIwsQGFVXaF9Ryz9tSlM8MaXLOL+sC1D+eS2BI7ToEzgTlktiCV4O1eCqTGmqAjpzzbST7SaqYIsKsgkmC+JytoK/EpJcaacMqtCtlIulemVRJrOOINiaGUMLJilQn6WFRZHEMEGVdaGZRboZEDoxftoGPaS1TUyfLIwouPYVA2PP7k+fN22DJ6o6G3Q9+xlOkuzsVXfw4iLo/aZu1b42tbi2bNnBWO42Vyg61bSm/MIIcK5Cjmbon5UJMlER/LonMCIKiQkzAIrct4V1pYVRXsv5IVe+NHjMPLzvpdDFeIzvpTett4LKucXRCTGWIt5mrEsQ0lKVMFIn7cQYvEsCksUuqlichd4wafmRajDia9vAu9155ntJ6lwtBLqV3ot+Vz5qoJvfBlYklvelQqssUxAXOUxflkweEC6Y5b+mcrNM6tsymCDmcWHpMr3vqXg2iB9SUBKZMli75du+n/LV+TBLx/j1BfUX6OeLR8E6S/thAxmkcL1tgYMCkayHXGwnEVqTbM53TvDu1b1EjYEAJ2B8vDrCjEiRfb/nKUtbIoUnzBVVTBqthJmC049UH1hJSvXAaZ+ev/a5hNMyFgLyEDEADDa8pD+W5Dhlk6ieYJTHai0TSwDpZFeqLZQZBZXrkHOidjZe8MdPTg+aGUJVKwSUF6M4hNzeX1ZSrDTEKu8r/JatVWidFcjP84kXhwjyAH+8HLHyT74MwmzYouh7N1ygJQiFY54IGfEENG0DHQ6pFuvlSZase0hiUAIS5nkOmthMsSDhp+z925Q1QweKdOKhSIYowRw3huhWoquozUWruZQM0vCEe4degpxgzWAJSso5YR5mcVuRa69IFiMXIMMBrIUMsKyAImQIiu0Y1XvjzGUvrkx1EsNIeCw3xNTaYCUeXCTqsnrabM97VESJ70nfUXlfg4AmVkfp4H3aPXhOMtHweAxxrwH4ADg+UPv5d56hvN+vth6bHs67+eLr8e2p8e2n9+Wc37rg77xKIIlABhjfuZVNKOHWOf9fPH12PZ03s8XX49tT49tPx+2PhxsxEY9AAAFN0lEQVRYdF7ndV7ndV4AzsHyvM7rvM7rI63HFCz//kNv4AvWeT9ffD22PZ3388XXY9vTY9vPK9ej6Vme13md13k95vWYMsvzOq/zOq9Hux48WBpjvtUY8yvGmE8bY77ngfbwG8aYXzTGfNIY8zPytSfGmJ8wxvya/H39mvfwg8aYd40xn7r3tQ/cg+H6O3LNfsEY8/VvaD/fb4z5jFynTxpjvv3e975X9vMrxpg/8hr281XGmJ80xvx3Y8wvGWP+vHz9Ia/Rq/b0INfJGNMaY37aGPPzsp+/Il//hDHmp+T3/qgxppavN/L5p+X7v/0N7eeHjDG/fu/6fJ18/bW/Z1/SyvdAt2/6DwAH4H8C+GoANYCfB/C1D7CP3wDw7Au+9jcAfI98/D0A/vpr3sO3APh6AJ/6YnsA8O0A/h2Iev4mAD/1hvbz/QD+4gf826+V964B8Al5T91v8X4+DuDr5eMNgF+V3/uQ1+hVe3qQ6ySvdS0fVwB+Sl77vwDwXfL1HwDwp+TjPw3gB+Tj7wLwo7/F1+dV+/khAN/5Af/+tb9nX8qfh84sfx+AT+ec/1fOeQbwIwC+44H3pOs7APywfPzDAP7o6/xlOef/DODlR9zDdwD4x5nrvwC4MsZ8/A3s51XrOwD8SM55yjn/OoBPg+/tb+V+Ppdz/m/y8Q7ALwP4CjzsNXrVnl61Xut1kte6l08r+ZMB/AEAPyZf/8JrpNfuxwD8QfP/UNtey35etV77e/alrIcOll8B4H/f+/w38eE32+taGcC/N8b8rDHmT8rX3sk5f04+/j8A3nmAfb1qDw953f6slEg/eK818Ub3I+Xi7wEzlUdxjb5gT8ADXSdjjDPGfBLAuwB+Asxeb3PO4QN+Z9mPfP8OwNPXuZ+cs16fvybX528bY5ov3M8H7PXB10MHy8eyvjnn/PUAvg3AnzHGfMv9b2bWCA8KG3gMewDw9wD8DgBfB+BzAP7mm96AMWYN4F8B+As55+397z3UNfqAPT3Ydco5x5zz1wH4SjBr/Z1v6nd/lP0YY34XgO+Vff1eAE8A/KUH3OJHXg8dLD8D4Kvuff6V8rU3unLOn5G/3wXwb8Cb7PNaAsjf777pfX3IHh7kuuWcPy83fwLwD3AqId/IfowxFRiU/lnO+V/Llx/0Gn3Qnh76OskebgH8JIDfD5azKppz/3eW/cj3LwG8eM37+VZpX+Sc8wTgH+EBrs//z3roYPlfAXyNTOtqsMn8429yA8aYlTFmox8D+MMAPiX7+G75Z98N4N++yX3JetUefhzAH5fp4TcBuLtXir629QX9oz8GXifdz3fJdPUTAL4GwE//Fv9uA+AfAvjlnPPfuvetB7tGr9rTQ10nY8xbxpgr+bgD8IfAPupPAvhO+WdfeI302n0ngP8k2fnr3M//uHe4GbB/ev/6vPH7+iOvh54wgROwXwV7K9/3AL//q8EJ5c8D+CXdA9i7+Y8Afg3AfwDw5DXv45+DJdsC9mr+xKv2AE4L/65cs18E8I1vaD//RH7fL4A39sfv/fvvk/38CoBvew37+WawxP4FAJ+UP9/+wNfoVXt6kOsE4HcD+Dn5vZ8C8Jfv3eM/DQ6U/iWARr7eyueflu9/9Rvaz3+S6/MpAP8Up4n5a3/PvpQ/ZwbPeZ3XeZ3XR1gPXYaf13md13l9WaxzsDyv8zqv8/oI6xwsz+u8zuu8PsI6B8vzOq/zOq+PsM7B8rzO67zO6yOsc7A8r/M6r/P6COscLM/rvM7rvD7COgfL8zqv8zqvj7D+Lww1Vkx9VdN1AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "image_tensor = random.choice(ds)[0]\n",
- "image = tensor_to_image(image_tensor)\n",
- "model_interpret(image, auto_resize=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/nbs/image-classification-example.ipynb b/nbs/image-classification-example.ipynb
deleted file mode 100644
index 1f419548..00000000
--- a/nbs/image-classification-example.ipynb
+++ /dev/null
@@ -1,748 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- " "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Image classification with Chitra - Example 01\n",
- "Training Image classification model for Cats vs Dogs Kaggle dataset.\n",
- "\n",
- "To install chitra\n",
- "`pip install --upgrade chitra==0.0.20`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[K |████████████████████████████████| 1.1MB 18.1MB/s eta 0:00:01\n",
- "\u001b[?25h"
- ]
- }
- ],
- "source": [
- "!pip install chitra -q"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## import functions and classes\n",
- "### Dataset Class\n",
- "Dataset class has API for loading `tf.data`, image augmentation and progressive resizing.\n",
- "\n",
- "### Trainer\n",
- "The Trainer class inherits from tf.keras.Model, it contains everything that is required for training. It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import tensorflow as tf\n",
- "from chitra.datagenerator import Dataset\n",
- "from chitra.trainer import Trainer, create_cnn\n",
- "\n",
- "from PIL import Image"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "BS = 16\n",
- "IMG_SIZE_LST = [(128,128), (160, 160), (224,224)]\n",
- "AUTOTUNE = tf.data.experimental.AUTOTUNE"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def tensor_to_image(tensor):\n",
- " return Image.fromarray(tensor.numpy().astype('uint8'))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "copy your kaggle key to `/root/.kaggle/kaggle.json` for downloading the dataset."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 /root/.kaggle/kaggle.json'\n",
- "Downloading dogs-cats-images.zip to /content\n",
- " 98% 427M/435M [00:02<00:00, 161MB/s]\n",
- "100% 435M/435M [00:02<00:00, 153MB/s]\n"
- ]
- }
- ],
- "source": [
- "!kaggle datasets download -d chetankv/dogs-cats-images\n",
- "!unzip -q dogs-cats-images.zip"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "ds = Dataset('dog vs cat/dataset/training_set', image_size=IMG_SIZE_LST)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dogs\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOAAAADgCAIAAACVT/22AAEAAElEQVR4nDT9V7BtW3rfh80x5pg5z5XT3mvnffbJ5+buey+6LzsA3QCBBgEBlGhRomW6ypbtssqlsh/lB5fLZavKLy7RostiNkk3QJkCCICd+957bjz57BxXjjPnMKYfFrQe9uuae9Wsb4zv//3+/w/8p/+7729vbwEATk9PtrY3CAKWStp4PDSMpaIoGS7SLCOKAkFSkiQSwEqlgkikyPJ0Ou0NxqKo3rl9W+D4y8sLURLUkmb6th+FNMscHR3dv3tvNBxinC0Wi/ff/0avf3V0dLhcLh48uH/Tu1bkkms7URgCACRRZBCV5znDMJ7trm+ue2kYZalterf2b19fXYssX2QZhUCjUUMUtOzA8eJyubxYLDDGm5ubeZ5TFGUYBk3TURCFbogodHZx+ubbby6Wc4alZsuZ4zqiLIICcDTL0JQfeINBn2EYSZRFUaEpnqLYXm9o2NNKTcuyPMsySRTTOJEEQZZk13Vtx15vdwVOsIxlSVWIAgeBn+PM9V2GZ1qd5qvXx5ggiwKzLCtJYprG88WM53lRFOI4zjKs6tWCgCzLDAaDfr9frVar1WqapovFotFs5CR1PehZplWrNYbDAUPzzWYrTTNJkpZLA6QJKDLPc1VVlWVZkkRVlR3HPT45UhRlu7stMHJRANM0McaaVvJcv9frKYoqy0qaxlkeCQInyfz1zWUYBc1Gs9/rr611X78+sW3P9Nz9g4ODW7dfvHh1dnpJUUwcZ47lp2neaDbjLKNZDlGIJMnJZMJxnOd5JEnyPB9FEccwoe9yHE9RVBzHSZKQJOl5HkVRaZpWK3UcgfliSRAFRVGCIJAk6fs+y7IEQeQ4t+wgwzlFUbIsF0Xh+74gCEmScBwHi6KYz+dxHKuqdn5+YduWaZoQwvX1dU3TVFXVdb1UKm1vb3Mcx7Ds1dXV2fmZbdt5nm9vb3//+9+vVCrlcolhaI7nTk5PcJb5nocxrtfr4/Hkrbfemk4ntVrl1x//0jDMcrm0v7/nB56qqjc314Hv37p1S1PVdru9vb0timLgB3ESDwZDx7WPjo7qjXoQ+IqizhfzJEkkSTo9PpmMJ3EcaZoiCPzm5kajUY+iUJalLEtJEtI01Wq1VE0NAv+tt96yLFMURUmSIIQbGxtEQbiea7vOeDLxg6BWr+/fuoUo2nGdVqcNIGw266IsCIIIAHj48KEsyxsbXdO0oigqlUocy03n0zCOSITyAq+trTEMk2apIApRHKd5jkGhaRqEkKIox3F2d3cBAJ7n5Tn2fZ9EiETI89xnz54lSfLBBx+kaer7PkmSFEWdnp4tjcXv/e6Poiiq1apra+sQAowxw7Cj8di2rCiOR6Oxqqp7e3uDwSDLspubHkVRBAEsy1osl9c31wRBJEmCMW42m7VaTdNUy7IWi8XLFy8ZhrcsxzK9O7fvbW/uUYgVRc22go3u9oP7D7/5zfdLevnFi1ez6YxhGACgKEjdjY1KpaLICkki27Hn8/lkMmEYJsuyJEkQQhBCjHGWZlmGPc93HJcgQJblnucXBZFluSTJo+EkimOOY+v1Os/zvu+7rhuG4eo5AQAsyyKEsizzfd8wjKIoKIoiCCIIAvB/+e/+C57n+/0+xpllmfV6vd1unV+cLZdLVZVlUSYK4oMPPnj9+rUgCPPZjKbod955pyiKyWRimg6AKEvS2XS6s7NNUZQbuJwkpEV2cn7mul6n2dza2vzpT3/ieV6lWi6KvNVslMraP/x//cP333+/Xm9enJ0jknRd99befv/6xjAMTdVqtartujkqAInm0+U7b71nWY7vuGVdAwS2rOVap725vXPVGweB36g3Li4vSnoJQnhxcVEqlRRF8Rx/PJiIosgJ3N6tPcs2x5Nhb9DDBAYk8FyvwMSd2weO64yGAwLgooC7u/uBn2ZpEUUxJ6IsTwAARY7jKKrVar7n5WnWqNVrtdonn3zaXe/Kghj6fhKHjm3du3eHF/k/+e//hJfFzvrmcmG6ngMAuHfv7nw+G4/HGGe2Y+/v77mOR5CUqmirwo8xTtNUluVOp/P69aHjupBlLq+uoijqtNeyLNf1iud5PC+JEm8sjZpeajbqL1++ZBhGFPkg8Le3dz7++BOGobrdddfyKnrt+qrXaDTmswXH8R9++OHe3v7PfvaL0WicpKkoijzP7+3vXFycWpaRZhnLcMPhpMBEo9WO82g6m6QpdmxP08osw9m2l8TpYmEwLEeQMIoiURQhhK7rFkWBEIrjePWCMgwThSHOCwIQDMPQND2fzUgSdTe6o+EIEBDkMAjCSqUSx3H2P344jkMIAQhyTMZpEscxAGD1V1EU3/fTNAX/4E//qyiK5vPZcDg6ONi/urrUS1oQ+J1OR5KEYX+oKure3t5gOBj0B9947xvPnz3b29tbLBZvvPHG5XVvMpxSFCrynESo3qifnB2RNGm4zv7tW+cX51W9fHZ21mw1eJ67vLzQNHU4GlIUpGlqNBo+ePBoOp5SCKVJ5nsuS9NpkpYr5Y217uX1ValZncyXgR/pSkkUJAIXw35/f3erXNEZmjJtFwPI85zreiSJ4jiqVqumaR4fH+Oi6Ha65tzheW5hLApYEADLsqRo6ldPviqIQpZlVdHiJOr3ezSNVFVhGK6kVz0v7PWGLMOnOKzVy57rZUnaajYNwwiDgGe4JI4PDg7Gk2m5XPEtm6GRLEmTyXhtvZ1l6fXgprOx5jjB6enF3bu3h8Oh67o8z4VhQFHkw0cPHz/+VFE0WdV0rZRmqW3ZtuPcXF9vb2+zLHtychxGCeI4huM++OCDL774giBggQmW5YIgwhhXKpXQ9WRRCIJgVXg2NzfOzs7eeOPRyckZy9EcxR+9Oh4ORgzNPHr4xmw+VxS1VKqMRmNd16Mw8fyk1+9119t+4GiaqqiqYzthmHTXtp4+f5Fg33JMlhV6vT5Ncc1W21xacZxqepkoiKVpkhRst9uu48znc1wUkiTZts3QdEEQBAZFgUmSWlXWosBJkoZhKIoiy7K+54McBEFUKulJkjAMgzHOsowkSYIgcFEASEGKSuKYIAgIoed5AIA0TUmSRJPxDFGQ5/ludx0h6v79BwAQWZ7N59Pz8/Ot7obIC1998WWj2eAYdj6fJ1kKSTJOk8+++JwggKTJURBijAe9a4yTzc1ugrMteWdhLoPAez4YKoqo6ypN0xhnSRpTFEzTFIDiBz/4wc1Nz3VtEkII4Np6O0/SAhdxHFmWkaVJFEUCz8uSitMiCkKGYb717W/7ng0AHE8mtutW6o0kSTDOPc8hSfT1119JkvTw4YNSqXRxdgFJwnbMRqsuiqIfemHom6bR7Xans6njOHGccDyn6pqiSHEUFYDARJHm2db2NsvyYWg/efrVt7/9bQTJ09PTaqWy8fDR86dPJUUGEIRxmBGZ4dsKIdb4WmutzUsSzdCcLo8mk96g98ajNzqdzs72Li7y6XT62Wef8jz36tUrnBfj0Sgv8OnpCcdxkiQRRFEqazlOZaWSpImqSl6cWLb105/+BGNcEMRiZtTrdcfx9FJJ1zUjy6IoabU6n3/xRa1Wmy+Mg9t3vn7yXBCETqc7uB56Xigr2tbW1lWvXy7pg9HYdoJPP/0UIbS1uUdgJgkJUSgZS2fgzXs3U4bmKYr+y7/4ebVez1KCwORsskjCfDmfkQSdZpiESOSk6WRmGaaqqa7tDgdDWVb8wHdMR5blcqlsmqbtODTN0TQNYRZFCUEQkiRnGQ7DiGU5mmbTMCmXS5IkrY4OkiQhhFmWYYxzjAGEPMtmEGZZxjAMz/NxHFMUJYoi+K//yf++u7F+dHSo65phGBsbGxRFJkn8i1/+fHNjI/R9TdFevnz51ltvea7XaDX9wGcYBkL48tWru/fvp0kmctxkMlIlhWGpi6tzPww4WRJkIUlS27K3tjbTNJ3NJjvbOzf9K4yx49gbG12M8fHxca1SLfI8imJRFMzFUtd1jDGNqDiOI6Ko1puuG5AE6na60+k0zzNjORc4ptmsvzo5vHXrNkEQk8l0Mh7XarXBYPjw0cPDw8OiIEpqiSYZnuMM25JVeTAcNBq14XiMCYwoFMcxxbCNZuPq6sLzHEkSiQJUa/XDV8d/6w/+9qDXXxrTN954OJ1Or88vISK3N7cm47HveRBCEkACwVKl4nteEkSaKvd7NwRBrG103dD1fK9Rb1MALRaLra2tL7/6QhB4SRJns+n6euf6+np7Z2c8ndi2neeYolC1Wi2KAgDY6bRvbm5ms5mXpKpWkiTZ8zyGYfOMSJPEsu319S7Lsr/86S9u7d+ybTvLsjfffHMwGGBc2LbN80Kz2ehd9WfTeb3aoCjq4vwyjMIkySzTUmSF5XgacRJfmc3ngsA7rrW21los5pbl0hRbFJAXuBxElm1lWY5xkSaZIMgUxcRRyvP8cmlQNJnjFCGKJEmEkB/4FEXxPF8qlQzDCKMEkogoCAhhFEUcx0EIkyShadp27LJeDlyP5/ksy0zTFAQBQkiS5OoFxUSR54BiGN/3kyShKIpl2SiKCILgeR78Nz/+Pyqq8uTrJwWRMwzzjW+8NxoNJEnq9/vNZuPw5avQ82VZKQBxa3//8PhIUVWWZRRNz7JsPBnFcSTw/O7m9sX5WbvTpBn6/PpS0ZSzq4sc56uiGwRBtVau1+pxEpdKJUEQnj9/LgiC77uyKJqGqev6/t7e6dHx7u4uItFoOPR9PyEKXlKiKNMkNc8KAADLMgTAiASGMW932v1Bf3t758c//vHBwUEcx0kc1+qNMAzCMNzdvjUbzXZ2dsbTyXXvWhCFUqnECfxf/eQngiDs37r18WePf+NbH7quc3T0uiAyjhOSOCUA2W6ueW5QrepB6HMsiyCZJokkSmEYWKal6zoJQEFCXBRJHCMC1qrV0PdkVbnu3eREsXew/8mvPwmcgOf5MApbrdZsNvYDv9lsUBSlKLJj22mWYoyn0ynLsvV6neO46XR679698XhsmIakliaz2Xy++OD9DwmCWC4NEqLZbN7v9+M4TeP0m9/4YDDoP3r0xk9/+tP9/f3trd3j48PJZLq9vV2t1F48ezUeT6qVKkXR5UoljpMnXz/xXB8XhWX4klCGELqetbnVnc/nNE1nGS4wEfhRuVzBREwAIssy1/MhQCzDMQyLEEXTHEFgkgSjYR9RVLvd7vf6Oc4lWfJdHyGUJAkniGGcpFnGcVxRFGma0DSNceG6rqZpYRiILLfq64uiUFU1jmOGYeI4LooCQJhjmOZZkiSrsrrqkFYf8H/4r/+neZ7P5/Od3Z3JZNhqtWmaqterNzc3DE3XS5Wz0zOWYyu1KkmSfhjEcdxZ69iOK8vyde86ikPbtMqq6tpWs9VUVMUwlm7oMQJXAPDq5ctbtw4gKPzQ53leFMXBoL+7u5ckycXFBYQAFFhVVMMwWIbJkvThgwd5lp0cn9A0bfpevdHGaZFjIgxjXdM3NjeSJBz2e4a1iNNoc2NzMBgcHx8/fPjw4vIyS9PpdPb222+bptFd2/RsHwIoKtLxycnB7YONjY2Lq6skS+fzeQGIAqI4DTHOJFkgCGxZNsfyEKKjo5M7B/dc1+Q4XlWVIst9z6tWq57r2pa9ubl5c3VNIBIDol6tljRtPBhRiMxxJsgSpJEfBAInuaZt23ZRYEVRXr16dffuged5QeTvbG+Hgf/1kye7u7sMw5TL5V6vx/P8dDrd3t4OgiBNM8sLcgKPR5N6rbFYLKrV2uXlVb3WUBSFRHSREYevD9fX1oIwfOvNt/v9YUkvBWFYqVQWi8X52QWCVJqmlUotjuP9/YPnz5+PRuOdrV2Kpj/99HMGya7rQogpmlQUeTQaZVlWKTfWOt3joxPDWZTK5cAPFVlJklTXS5ZlNxqtPMMXl+ccQ1E0SSGK4znHdoqiSLM0z7IkSeM41koV2/eLopBlKUnSLEsxLgiiAAASBAEBiAO/VqtBCPM8xxg7jrNq5/M8JxHJ8bLr+wghTdM8z1vJTBBC3/dhGqccw8miFPmBpmgUiUSel3jp4YNHmqZBiFiaNQ07jTOW4VmaQ4j+y7/8iarpYRxX67XpdLq3t9ftdnf3d1mWWS6WR8dHX371pee6h69fIQpmecwJgsBLFGIuL67KpSpNsc+evvBcjyRR4EeKom5ubjm2t9ZZj6LYdf1arUEAcq2zVuQ5gJBhGKIgZFm2LSsIgiD0y5WyLMmfffYpTaM33niUJBFNoWq1/OabD0ejgarKJILX11fjyfD6+qrZbHAc+/nnn7948dxx7MlkcnNzg0iy1+sHQWBZ5nwxDwIPFzmEsFqtsDzteG6G00azfnhyiIs8yxJc5LzAXl1dttdavMSVKvp8ORuNBixLLxZzCjH9/ghj4Dgey7I0w8ZJYlp2nKbf/f73/DCazuccx+OCuLi6OTi4nWV4uTRpmnEcbzSakCSV59i23dF4kiYxkRYIkJPRSJPVq4urLEkBLoa94bg/sCwryXJBVgiInjx/eXRyOhhPEM2Op4vxdGHaLsuLEFELw0AUc35xTTN8s7XmBmGYJJpe4gTGD5xbd/a3djZs1+IE9uDOLUHmXh6+SIu0pJY7zTWO5h3bDf3w9Ogs9GLHcm6ubnBa5HkhiUoQRJcX13mOswxHYZxlBU2zLMtTNAUhKgoAAMKYcBwvDGMASJblwjAOgmClnk4mE9/3AQCiKKZpWiqVyuUyQhTP86qm8Ty/EsJ1XU/TdCVxgv/T/+N/w7Kspqmz+dSyzWazkWWZ57pxkiAEKlq5UqrYjt1stxzPRTT99NkzThQIQOzt7T9/9Zwg8gd3707Hk+HNNcYZQhRFo9FkRPPMcDTavbV7+/bti4vLq8vrZrMVBGGtVk3TNIqiJEn0klqrVAI/GI1GtUqVRsgwDEAQ9+/d++KLL5eWsba+oWrlPMMYg05n7aZ3TcKi1qxFcWAa83KpBCF8+fKlLMv9ft/zvEajwTAMQihPMQUpy3K0kj5fLrvdbppmlutAEjIM2+v3bT+4e//OcjG1XYuhySAIKIoCgBqPpvv7t2gGpWkynUw7nQ6DKJZmyuXKeDR0HVcUxYkxF2SZhkiXlcj3DcPkeZGkqRRn9WYTEpBBTL/f8zy30WhMpuMsyzDOeJ73PKcoCgoh07RYht3Y3DAN0/d9AhQAwN2dneFo3B8M79675/s+xoRpmhCiwA95XoiiiGE4ApCeH7Asy7L8bDqPohQhSlO1KIpt23Vdr1KpXF1epknGczzHC7quZ2lOUbReKmVxOhqO6406z9Oj0aBWq/l+EAQhy3E4IyaTBYFJCEjDWKqqVhR4NJpCAEul8mg8LpdKAGJFlYuicB2HAIDnuCzLVmd0nmNAIoCoKI44jqtUKi9fvmw0Gp7nua6LMa6US5Hv8Tzn+z7DMKvmPYoiXdcRSXqBjwskqwrGeKV95nkehmGtVovjGMmiMpmNB/1+u9O6c3An8IOr4QXDMBzDtFpNz/FMw1waS16U+sNBrV6v1xuvjg4VRYEkmaYZgMSLl6+atdr2zh5R5Fma+qG/ub3lBl6cpnlezKZzx3YRorMsQ4gCgPz66y9qtdqDBw+OTw4d00nShKYoTdNVWcnzolwquW6wmBs/+tHvPv7yCwjA1s7uxeW167pJkuREZp2eqprMc/x8PldVlSTJOI5lWV4J1Iqi2LadJqkmqZqm5nma56lhLFRVFwWBE4TLy8vlYiHrpd7VtapKFV0PAi/wvDCKaIpRFYko8sFgAkBBMcj1nPU7t49fHwWh73tetVIFgKBpqlbWh/0BTzO1el2Wlclkvt3dmBnLLMsFgSMwwBirqk6S5HQ6k2VJkoQkSRRFi6IQZzkJKUEQKcRsbm6dn1/0+z1dLxUFyLJClpQkSSFJbWysn56cXV1dI8Rg7COEGo1mQYDxdJHE8dV1L/ADimLoAkxmcwhRlmOW5YsCMCwvK5xj20xBxGnm2h7LsX4QqaqKKHI+nwkCQ5LkeDKqViuOY12cjyiKLuk1CnJFTiCAwjD0A79SKmuKOpnOup1OGEa1RsN27SiOSIphGSZOEtO08hxDCLMsJ2kKwESWZV3XkyTRdT0IAoIgRFHMssxxHEUURFHM85wkyaIoVjKT7/sIoThOZEUiCGI8Huu6LsuyIAiGYTiOk2UZypNkrdGSJClNE2O2mE4naZw0KlWGYca94Xq369iOpmosw5T0UkEUGOc7u7s3/d755SXLcYIkHL18lSVpu96IwzBNk8Gob9suL3GtRnsyn1wFUa3WWFvbCIJoOBjMpov9vdu1Ws33IgrRECJA5CRAruMnUdJd33AdB5Fks9m+ur6+f/eu60XD4ZCEMIpCAhDG0hiPh1s7G7IshZ6fxIkgiHEcp2nGcZyul6IoRghxLJfneZwkBQHSNC2IYjweMxx3dXPTarU0TZsb5uHrV3fuHYShx3G0oiiqogAIJ6OZLMnr6x1cYNu2CUAQBCEIQpqmEEJcYMd2Wo2GKIob6916tbGYzSzTFHiu3+/TLDvs9xmak0Q5y/J2u3Zzc9VsNPSSfnFxsbe3M5lM4jjJU5wk6Wy2IEmqWq1qWslx3Pv3H0wmU8d2bMclKTZNs8uLm0a9WSpXBV6cTmcQUr4XjCbTIIpVVV0ul6Io5zn2/SCOU5piKYpOktS0hlEUI4oJwijHIMuLKEpolvODEAAyCsI0iZOEYll2uVxCAH0/jKIoz4swDG/GI4mXaJoOgkDg//oKGEcRzvMkTd1LT1JkSVFpih6NhkkcK6qOEOIFPgyj3qAvSQJBEFEUpmmm6zqEIAiCNE0lSbJMk6dRGIY0TUMIEUJRFJEkmed5URRJkgSBL5CQ4ziCIGzbvri4EEVRlmUIIWQQTWRFEsZnJ6ehF0BM3Ll1q1Gtba530ySxDTMMwlqtFoZhEsf9fp9ESFPVarV6fHyMKAoh+tEbb17f9E+OzxaL5fn5RbVUrdcbRU6kSarIaqVS43k+z3ASpywrjMdTVS2TkH369DlBAJpmCkwYhjWbLRZzY7EwXNfX1NLa2nq1VptMpkkcG4bRbDYlWd7Z3X3jjTcUTWUYlqZpnuMXS2M4HJMkBQAslSqSJJMk5ftRGEYcx3Ac7fteHIdpksVxfH1zUyqVPM+/deuApZlWs0lBMnC9KAhVSZYEXuT4bndtPp3M5rNWu83xvCIrWZpxAu94Li6Kv55tEEXouwWBF/NZq9HornUXi8V4OEqT9Oz0wjQtggCtVocTeEDCIIo8P9B0/fDoeHt3j+P4SqXaarZ1vZznRUEAggACL1YqtUF/GPhhqVRZzoyKXl3vdJMokUVlNpkXuKiVG1mSx3Hied5wONnfv4UQFYZJmhZZVnheGIYxgCTFsGmeLw0TIBqQlB/GSZZnmCAgms2XpulQDJ8kOAgTRNGLpem6QZrlAFAcJ7ZbnTTJLNPyXB8AsJqSl8o6JAFFIQjJJMvn8+VsPs+LAlJ0mKZuEARRbLuuY9sUhRzHnE4nlmVAWNRq1UqlFMdRHEc8z61+vZVEtXpHeZ5nGIaiqNX43vf91cV0Op1WKpVSqbRS8lEaJ7quW7a51mpzHOewXOyHRZaJvPDw3v3FcolI5LquHwae7zMMQ9E0IACJULfb5Th+Pp9rsvrwwRudZnPU6wm8mKYJCUhZVgFCNM8EYXB5cSUIUr8/8LyQJFEUxsbSfvTwLcc1RIFnaC7Psnt371qGeX11tb+/7/thlmaqotA0TUIqvLiO49hz3QznF5enb7/11tnFaeB7vuvhPE/TNAyj+/cfzudzhCgA4Hy+0FSFZ+hqtXp13SNJcjVU3Nra8oOAYdgXL16V9FJJ18LIW1/vuJ5jmss8y1rtTrPRKvICIzKMIkEQZEl6/PhxqVRSNS2JItd1gyBQNYUkoWM7G53ubDI9Pjq5d+/+aDpdGubtg9vzxQIhJIjifD4rl8thGAiCkGWZoqhff/WVKIg8L0Zhqqn6bD53LFcQhA8//Pbjx59ube1YlnV2fpnnhSDIFxfna2vr0+mEhIjI88vLK9Myc6KoNRpxnJydnUdRKks6BIimWN8LC0ykaV4QBEXRQRBynAgRggDgKA3DmGZo348Elg/8mKJggUnLcglAsLRQYNLzwihMHMMzDCNJEsdxJFmM41gQRYQQTSPDNDlZ9n2/XKlEYegHoa7rcRTHcYQQKgiiUqumaeI4FkUxcRytpF/btooCO45V5BhBiBACABRF4bouz/MQwjRNkySJ41gQlVVHH4YhQRAIodVo3jRNGPmBxPO2YQmcgABZLZcRRLPJjCYRkeF2q80wzGAwMAyDAESj0UiSRFFlCCFFU0vTbDTbgiBBSBIEQdHM5ubmgwcPZEV1XV+SlAIX19c93w9omuF5caO7dXDrzt7egeN4iKQgQJKkIER7XqhrZdtyCQJOJ3PX9TEGs9ns/Oys3+vPptPr62tN1RbLhapp88V8d2/X87xGvYUQ026t1WqNPMNBEC0XFoXoje6mpmkIkbPZTFEkiqZa7YYgCrIskwjRNE3TVLPRrFdqFEnSiJJ4MQmjTrudJ+liNldkSRJFQRAs2/Z9b219PYwigihEUazUqju7u0VRDAYDCEC/359NZ48ePNRUraSXihyzDAsK4AeBbduDwQhCUpLki4uL5XIhy7IkSeVyBedFURAkSVGIEUU5TfHNTc/zwuvrnmU5LCtUKrXpdFat1hCihsMJRbGiqCwWJkNzpVL58vp6tphnGIuiuDCWQRhGSZZk2A9jx/WiKFEUrVyu8jyfZ5nrBgQBioIQeFGSVYGXVaWMEGvbHoX4PIVFAbe39tut9aOjM0AQt/b3d3Z2OJbN04ymKAQITZGLHNdqVY7nCgi9wHd8H9EUxdBxnkIKZQWmGKZcLrEsA0kQJ4Eki1EcOK51dPS6KDJREgSJT9OUpuk8z4Mg8DwPQkgQRBiGge8HgW/bzgqXAQBAkgzD0DAM23HSLEUcw/iupytKHIQkggSgCQK0Wm3P9zzfN12ngKDV6QxHw1Kp5DrO6fnZTa/HiLwgCLIk+65Xq9S6rc7xq5fdtbUg8CeTHiChZTrt9bWbw36Bwbvvvue6Xr3eDILYMq3ZfEoAQlFVRIGL86tqtdKoN+aLpR+ECDGO68uKggt8fd1zXBvj5e7enmk58+WsUi67vjMfT8M4kGWNQjTOi3K5QlFUnmOcYYIgeF5oNBqOa8ahN73piZKsVyqiIPAcW+S5ruoMw2ia7rsuBEQapwyD5vaURLRp2mEYdtclCIGiyMvFPE9ShmKSJK1WKnmSEiQKgyAiwm53TeS5PCuIvLCWFsswAADHcQBR+J4XxeFiMRN5nmO5m5ubRrPB83xR4MD3AUEs5ktdrdTrzSiKarXa9vauaZqQJJvN1mQyWSyXqqrxvLi5uRlFUb8/5Dkhy7IcF6Ioyopi+46sqkkcwwxHSYIQcjyXQjRCdJYXOMviOKIQmWU4jiJIIppCmiZjTISBH/geYIjQD2iGxHmBKIQxEfjRdDrPUqyqquM4BC44nqtUy5Ik+b5LImSaput5QoF9nJOIDOOYgASJkOU4BFEIkhyFoR8EpfWW6xqapq4qYp7Ti8WMYWle4IPAY2iWZdg8z/M8tyyLoqgVx5RlGctxFEPHcc5QtG1aBEE0a/UgCHKMeYZFiIQ7e9sUg0oVvQA4TqO8yCgWNTqtpWmqJV3UVV6VKZ6heJYVhWq9zvG87/slVcuSNPL9OAh0RYr9gEXM4GaA8wLjYmlZQZKOpgua5ur1huv6lu14vj9fzmVVms7HvEgDVKRJRNP0eDwzHe+q37d9nxJYQZed0Jsac4rjIEWXqmVZVzmR64/6rm9ZtimJoqqom5ubFMO0Op1ytRqnKc0ygizEWVzAghNZmqG8wJdkhWPYVrVR0ytJkEicMOoNeJafz2YkLKbTUams2a6XZHmOcX8wBIjCJKmWy51mK/PDzU4HEUTsutPB0LUdRVQ4mu+02gggElBZkpmGNV8sn758MV8uppNx6HuL2aRWLYsiH6cRANhznclwxDGsJIij4YgogG3ZNE3NZtPXr14SBEFAguEY27GCKGi0mpVahSAyCPKLi+OryzPXMRv1qigKRZ7TFCUJ4mw64xnGtR1JEHmWxVmaxnGeJWHg0yQsl9QsjR3LikM/z5I8i4ki8VwTFIllzTiWZHlEIJziJMVpvdlQNFWv6LZnRamfZGGpqgdREEQ+xVBe4EmKkmZ5luG1tS4kkSRJ21sbFAlJQHiu45hGmsRpHOZpInDsfD5d0Y+qKquKzNAUz3Pd7jrGGUEUEAJB5JMk8X1fkiSM8UqTkWU5x1gURFHgPdf2XQeRIInCIs84ll79LzBOQ8ez/NBL8gQDHEQhLwnHpyeypl1cX0m6Rov89aBvee7hyfF0PiMRWavVdEU1Fsvri4tKSXcMczaZmEuDpdnTk1NF1Ta2tsu1ahDFul5S1ZKul2zbybIsTUOKJikasTx1enpsLJYIwrW1TpxEJ2dn9U7TDT0v8kiWHC+mKS7cIFI07fD4iGRIAhaYyA1rOZ2MC5w/e/bs+uZG07WCIDieG0/GuMCVaoUXuOcvn2V5BhF69xvvAQDNpVnkxf0794isqFdrk/FsMBj4vkvTEFEkIEFBgNt377GCiBgG0lSpVrNNczoaXV9ckAQBC6LTbJX1UhiErWZzMTNdOwi8iKbYJMmarZaiaaIsRnHU7a4/uHevVqnkeeY6trFcUghxHCsIQrPR3NzYggQQOJZhGEkSCUD0+jeXlxdplp6en3daa4ZjPnzjoayIYeRkWRQnYZJEtmPVKpUsTe/evefYDseySRT5nhf6QRyFLMtkWRwGIctQjmNahoEgoCiYJCFB5Ens51kURx7GSZoEosRAskizKM0SmqX9wEvSxA88P/QYnmZYxHK0pAgsz9Askxd5AUABQJxl8+WSZvl2p+06tqbKNIVEgSMIHPhegXOGoRRZIkkyzWJIFmkWN9sNXuRUVVI1KYp8vaQiRAZByDAMy7KqqgqCoChKmqZhGBYYr45+TVFKmkbgwrGtNElgQSAIeY6Dk8m4KLCua3pJpRkmimMSIU7gojTu9fuz+ax3c9Pv9xVZXi4WcRxDAqRxYlkWg9DG+kaWZI7jXF9f8SKfZLGiyqZpGMtFpVb1fYdlGGMxz5J4vd1WVRXnmKHpkq4zNJMlqWks0yw2zeVGd02Rhel0TJJAkaXLi4tGo7Y0l1pJtxxnvpgHYdhZ63iBr5e0AhKu5/lhwHEMRVGua5fLpWazsepI0jShEH12fg4RkhSZ5TmW5+bLBc1QtutGcez6Hs8LKzHlyZMnrutVK9VSqby3v99ZW18ul9fXV3mea7qaYzyZTnFBSLLcbrcJABzXW516cZykSbqxuckwTLlSEQVxf3+fF4TOWqdRr/ueRyFULulra2s0RSdhuLWxefvWrZPjk1q1GseRbVvvvfcuTVMUhabT8WI5T3Di+57nu1Ec+oGvapppWQzLRHF8dHIUp0mcxBzHURRVFECWFYZhOI7P85xlWJqmWZZbX+tCCFmGFQUREAAhBCGZ51gSZUAAkiTDMHQcZ4VgqoqSZRlNUwAATVWrlUqj0bAdi2YQhAAhyAsCTVMIIYTINMsQhYq8GI9GFEKKLDM0s762VtJ1RZIZmp7NZkkUG0sDkRQJEQCQpukc4zhO9FJ5RY4yDK0oCsuyAICV2EnT9Ir7zPMcEkWz0RAEPk1ijmWzNAnDAJGkLInQcRxZlhVVpWimwMVGt1sUhef7eZ4rqjIejYzFkgSAZzkEoWPZRZZLghCHoSSKsiiRCA0Gg4IoigJfXJzJkphliWkuo9BTZDHw3GqlxNA0CYG5WJa18qg34hHLQTawXZpCiiRhnAWBB4oi9D1d06rlarVSxRgjRIqiAEiolfSjoyPbtcvVMsMxrMD3x4OCwCQJeZ5mGUpTFY7j/cAvCOy6LsMwaZZlef7q8HWcpY1m04+CDOPZYk6zbFEUgii8ev1KFMW7d+7QFOX7/nw+L5cr+/v7JCSnk6lhGHGairIISJLjBdt1Hc+jWcYPQwKCJE8VVZVVNctyhmPTLEvSVNFUjPFgOIzjmKUZSICSruMsT6IIAjgcDPq93nQymc7nHMcsFjMIgSDwN72r6WxaEPjl4XO9pD179jTK8snMmMxmBIR5QfQHg9FkqpfL1VpNUpWCICazGctwlUpNltUswwzDKYpiWY7juNVKFUIySTKOEziGBwRJQhSGMcfxLMO5rpfneavVIgjCcZw8z1VVFUVR07QoiiaTCc5ziqLCMFj15p7vFgWWRInjOJZhzeVSFMQkTihEAYLgWI5lWAAAy7A4zz3PkyUFAJLnhflsHvghx/IcyzM0wzK8aZqTyXS5XFqWhTEWBMHzPJZlK5WKKIq+79M0jRCZJPGqAWAYGuM8y9IoCuF0NqNZhgCE4zhBFMRpQgCg6/pwPDJM8+z0LI4iSRAno1G72S5yDAii1WzWKtVWoynLMkmSiiqrqoJxXq1WNFVZX+/IIkfg1DYXSRxyHJulCUlAVZAUTvQMm8qhM7NEWmBpzrbsNx48jL3Atew8yXzbnY4neYZlUYnj9KZ3k+O81W5lRd4fDV3PdQO/IInxbJKkkShxlr1M0uj45Oj165ej0dAwjDzDEJIcx0MKnV6cm5YZJpEXBhnOKYahOdYLg+FkHKUxpJCsKIIg5HnuOA7PcRRCe7u7CFHT+VzT9BxjmqYBhJpeynPM8UIcx7Kq0Ayzub1lOTYv8WvdrmEarMBnGBcADMcjnucb1VqWJGvtTknTsjjJ0nQxXzA0s721dfvgIM0ShqGjKKAo0ve8IPA6nZbneePxEFFkURQMx01mcy8Ir3s9LwgKQBi2dXF9dX55QUCS53hdL+u6jhC1ubG9u7tXFIRtOfP5guNE348s20aIynEBAMzzIk2zLMMsy2FMrJxAEEIAQBRFruuu7oIrtkiS5BUCl2U5hAAAyHHcSnVyXMd1XZEXOIZJ46RaqZiGwVA0z3GNev3hgwfd7vqDRw8URaYoiqbpVYHUNI2iKMNcMiwry7IoiquTfTqdrkagGGPP8zDGRYHzPAOAIEmYJLEo8gxDQwjyPIN6SQcATKdTz/e3d3auezd+EBimSdOMpuuiILIMy9CMZViaqlIksk3LczyOYZM4kUQpDEJZUubzeZZnnbWWqskAYEnkyqrMs7TAs4HrBp5nLBYczaICUBiuNTpb7c17e/ea1SbHCLbh8DTHImZvc1di5XF/Mp8sdaUiyaqqaYNBP0lTSEJIwsFwYNk2icg4TWuN2ng8ODo6jJM4CP0kjfI8S9M0imLP9Tc2NqM04UUeIDg3FoIoPX3+rLXW9oMAMXS1XnvrrbfDKHry9AlN07u7uxhjSRBm06nneySEKw7HD0JEobzIJ/NphgvbcS3Hdl2XZhjbdRiWLQBIs1TWVdMyZ4u5H4WlcslxHIHjBY4P/QDnOYQQEABBEpHkndt3bMsSRWF3b4cARaNRbzTrFCKD0E/TOM9TWZY4nlN1FSJKUuRqvR5E4Xy5XD2qHwSBH1TKNY7jl0vTdb3FYkkQMMtwvV6v1RrX170kTnFOZFkRhQlNsapaUmQ9CtMgiCnEZFne7/c5jms2m7qur6xaK7qX53mKQivUDSGEcV4UhWmaYRh22m1FURAi4ygqcMFQtCSIeZrJkkRgwne9IsdZkuZZXhDFdDpdmUBIRNq2vRptUCQSBJ4gCI7jVuomQRBFUcRx7LouRVE0TZEkJIjC9z3PcwuM8zyDgKBpCtIMjYuC4ThRlrIcN5rNar3mhUGSpgCCVrPBsxwJQLPZwFmmqgrHskdHh8fHR57jAKLQVTWNYwghJ3Ce72Z5EseBpioMg9qNuiwKZV23DVPmRYiLPMpLckkXtI3GekOvI4LeWttZTgwiBY1yY7OzpUslIiXXmpu+m2qKDgFpWZbruizDSaLEshzH81tbO1s724LIu54DIBHFkee7kiwBCLa2tyVZyjGWNZVh6UqtomjKwlgkaZIReDKfuL5ba1QFWQQQVmv1Tme9s7bearVvH9zx/ODq8mrYHwqC0N3oEhCIspwVBUQUhGgwGlIMLavqda9Hc9zF1WWr0yYAOL+8lGXl9PzcsqzpfMYJguO55ZLOscyrly/N5bJaqZAk9HzXcR3Xcy8uzimKzLKEoknHtXzfpVmKIDCARbPV8H0vDGPb8RzXX90iNre2ZVXlBT7FOWLoKIohRGmazeeG6/i27UwmU5wDCBGEKMtyhBiOlQoMSJKmKE7XKoqixXFqmS4Af426+b5vmqbv+4vFIkmSoijSNA2CIM1SP/QBBJAESZp6vodoJEoCJnCcxBRFQQgsyxQEbrmYK4rMMjTGmWEsF/OZ53k3VzckIAEB8ix3HTdP8quLq9APaUSvjLvz+dw0zaIoeJ4HAKxq7QptliQpTuIwCvM8oyiU4TyKwiRLcYFhhrEfhjTLKKry1ZOv8gIXgOh2u17gGaZZEAXPMhCAsq7PJhOeZe/duSuLwmwyCQPfskzLNuv1uqZppZJeEMTZ5bmqqrVqpciyNI7X2msCx8uCLPOiyAjG1CgrZXvhoJyUWYUlRZGWVU5HOSJTcnAxgCmqqk0ipiRGsw130BtmKcZ50emsQYKkaHaxNMfj6e7uvu047U5bL5Um0ynHcyzH0AxV4EIQRZqh4yRO8tQLfAISjut4gVuv1zRdmy1mFEs/ff705PTMtp1KtQYhSRCgXKmGYURCRAJSEiRFUUmKAiRCNFMQRKvdoVm2IAhN1yv1OkVTmCDG06nlOHGajCaT+XJBc5wkS4fHR7qutVstXdXarSbHsrIseb4XROHqqR4+enhzc3Vxee66zmIxMy3D892iyPZv7SEEDXPpeb5hOppems2Xrw4PW+udcqVsu66q61ES8YIQhXGaZqIgJklaKpUoRGNc9G76o+FI4EWaZgiCIElSlhXbth3HMU3LdV2EUJpmQRDQNG2a5nQ6dRzHdV3P81YsnChJDMfmOE/zlAAEohAvcKqmFGRx3b9aLBayLNWrFRohx7Ft24IE4bkOgpDAOYXItU6HpmiKpLY3tymSQhAlcUJTNIUo13I5lq1WayzLchzHMIwgCBjjlXtO0zSEEAGI6XRCUajdaTMsoyiyrMokCbMshQd37mQ493x/Mp0SEEZJ8vT5816vlxdFnMaGYXIcm2epZRiu63Ask+epKiscw8ZxHEfhzfVNnMQ0S8/mszTL5rOZaRhJGIauL/JiFuckQZXUsu8EDGRFRuBpniqoPC58y69oDc+IGMA5c88YmcvB8vLw+vqk3zsfz4eONXcABhWtlsd4Pl6SgGIonoL0aDCdTRYI0TTDOK5bq9U2NjdH44kgShnOWI6NkySMotOzU8/3F4aR4xySZBCF7XZbUiREIV0vOY47ny9My8IFMRyOBv1+gYlud4Oi6MAPB4Ph0jAIoqjV6jTNuJ4rSdLh8fFsPhdFwbLtPM8N04iSaG19HUCg6hogQb3ZDKMoiqKTk+O9/d12uyXLkh/6GOcEIBzXoWi6AAUuMACE73vlSgVCmMTx9c2N67qGsUQIua6/AmRpiuE5fjQcz2Zz3/dazQbHcRgXGOe+73uexwuCbTlpklIUVas1SJJcLBckibIshwBRiIaQdF1vuViGYezY3ookWtnSJUnieb7T6VAUFUURhFBW5CxPi6JgWbYgiizPBFHwfC9NU5pmFFVO05goCoahzaUhcGyepXEcea6TpQkEIPD9PMeL+cIyLd/zV3W02WgWuMjznKKY+XyxMrwjhFaoPMZ4Pp+vLqNJnIRByHO8JEqAACSJCkwgRJGQhJqu+WFAM3RvMJAVGRdFkiSD0XC+WNAsy/FsmqW+701nk93dHQjBq1cvr26u6o0aCYGqyCxD9fq92WKOC2w7drPZGg+GJ0cnnu2mfvLprz4DGZyPFq36Gs+Iu1t7ZbVKEmgxXfYuBrGdestgOTImN1MyJcmEHF2NR5cT34yffPbCGFlEAna7e5mPcVwwJA8ycqe716h24iAXBZWi2SwveEE4OjoZjyeu6yGKms3nJCIvry+XywVJkq7rhnF8cXkRhMHzly82tzbH4xFFoXqrVanWEKI5jveDcLkwLNOyDKusl+Mw1vVSGISKoqxoqSzLhoMhx7Icy3GsMB6PKYqq12qb3Y0oDG3LkgQpTzNEkvVaDWP8/NmTy4vz5XKxMJZhFBzcOcBEvrSMwXjgei5BECtvNMfzAs9DCGvV2mI+N00LAGiaZqVc8Ty/KMDmxpbvBas2JYrClVsyx3g2my8WC0SSHM85rhNFsaJILMNmWe57AQlRURBpmsmSGgZRlhVZklumw3HcyvK1ck7meZ6maVEUmqZlWZamqWWZuMAIUWmWup6TpAkuMMsxRVE4jn1+dhZ4buR7BM4oklRkkUZkFAYcw/AsMx1PFrO5YzuL+YIoAASQKIg4iiGAqzo6Ho9Zlg3D0PO81QWUZdk8z23bJgjC9TyW5RmGdRwP46LARRwlJEQQInR2fj6eTJI0jdOY5fnrmxutpLWEtTRJatUqz1Ce4xSAIClEQPDsxTMv9KvVarVemx8ulsaCohEigWUudVWJo6TABEnSOC0ITGQFjrw0i4rt7l6W5EmU0yR3dXGtSjaLWNNYFIBGmCyiXOcVmRUoyGzWu2uNrd5olgPCdxwSocnN1LKtervBQI4owHxkjGfTnb2dIDBCItP16uPPvoyjSC/pkCTDKHz2/LkkSXZgRVE4noyTIFZlzXdcw1jqlVqSJMcnxyzN7G5u+UFAEMTZ6RkkoSiIABDXV9eP3niU57kiq3mamUuLIhmaYrI0QySqV+uKok7HEwqisq7vbG0fHR3lOL+6vLp9cMCzHEszWZLSNH1w+/ZXX325tr5+07+uN5ulagVeX+I4ygnMsBxDMglObq5vKIamaVbTKEmRPd+fTibTyaxSrnquj8LEc32aokkIIQBxkoRBEAaBIinD4dgwjEq5Pp/PG40GzgsAyPFkHPghTdMY5wzDx0ksiHyep5AEICsoGtXrVUEQCKJYNS4rs16apvV6nWXZ6XQ6mUwAQaRZatomy7JxkkCSBJCwbMcP/CRLWJqCEAKCYBmGQghneRLFoChICNMkgQAAAEhIIpYUBMH3g6LAURiuGqM0TQSBX+WArKIAsiwrioLjuNV91HUcjuWTJA2CkOd5hGiGYYuiyLIUXl1fQwhfHx8laSYr8sM3HuGiKJVKeqlEkHA0GduuleTJ+ub6eDpqr7e1ktbqtGbLmSRLgAQUSVbKpW53bWksRVH2vDDPCFnUHNPvdrbfevgeIliQI12qSII26E0G/clibvYGwzCIpoORTLObrU6rVNlotHI/jCy7CFMesVudLZESyYTqnQ+vjnvPPn9JJshbhERMRnaCIyIO8jjBpuUDwJSr9ShOM4wxAZrtRpSEeZ5SNDkZjQAkOJZeW+sEvhfHwcXF2e2DW7cObg1Ho+tez7Rsx3Ety9Y0vVFrQABd2xV4oXd1/Y33vrnWWkvjdDlfhF6oq7pjOc+ePD0+PBY4DhIAEkS/32cQVS6V8iynKWo2nYZh6Fj2zu5Os90Mo6DRrEdx+OuPfwVJkBaZVtW9wKcRbVlOgYnJaEoQUOClLMX93tB1A1XVJVEucsJaWiIvpFHaXVtPwpgkgO+4ZU3DRU4Qha6rABIIweVysbOz9fDh/VJJK1dKoii02k1RErIsoWlKViVd18oVXVYkraSmabqKVOB5HiG0OnDDMOz1en8dRlIUAIIMZzRLC5LI8iwkSc/3EY30kl6pVEBRUAiVSyUSwjAIREEgiiKOItdxAFGU9BIJYZqkPMcHvu+5HlEQgR9AAjiWTVHUKqxBlmXLslbRPSv1gCAIgRfiOLUshyAgQvRoNFkuzThOSZKGSZqajg0IQhAEwzIFSUAIffnVV1medbvder3ueh5BEFme7e7vPXj4UC/ppmVGcTyejmmKxjjjOFbX9Pv372Nidb1mScBsb+yrUqlR6gR2PBkuZUHL4iKKMlnSKJpbGnaGMcizWkl7/sXng4szgYKp68gcbc1nie8XSbJeW+tU1nK/CK2IKbivHz9fjMzlyMx8PLqaXl+MzKV7dHgmS/r21l6z0X7+/OXFxYWiKM1mo9Nu39rdr9WqiiRHYWQaBgnBbDwpctztrGdJiguMMR6OhoqmyrI8GPSHw2FJ143lssixpmp5kgk8H4eR57ie41qGgbOsXq299867BS6iIHAd17Xss9Oz2/u3+jc35nIJi0IRJd9zLy4ujk9OaI41HUdUZMMyLddNCdxst8bL2S8/+5gi6Xqj2Wy2GYZ78eLV5eU1CZGulShEQQAlQaIQFQQBIpGxWKiKkuc5QRAcy6qqoqhSuVyiKBhGPs/zcRJxPMcwtCCwvMCvTk+aptI0zbM8DEOSRCv4cuXxFQShVqthjFen/AossiyLYRgAgSSJHMc6jgMhXC6XURSoqtxqNhVZ9jyPhBAhlGdZGAR/PWWCsMA4TRJFkn3PW8XdpGlKUXS5XEGIyvMcEAAhyvf9oiiCIDg5OQEAlMtlkiRLpVJREIIgAAJlacYwfKVSy/MiCmMK0SzD0zQLr26uZ/PZ/UcPt3e3gyB88uQpYmhEUy9evRqOx5zAQ0S21joAwmqtZlrW3fv3AISu79EME4S+wLPz+ezWrVt6qXJz09P1Uq3SQJDZ37ltLdzFxAAYbXf3PDc+OTynKNb1gyhJ1HK5PxwEvv3l41+Zs0HkLk9efO0aEwZinPiBbSzHw7pW8+aeM3XeuP3WVnvn5devEz/rX42WU2s5MXlGrtU65VJ9PJ7/2Z/9VZritbVunue+77daLcsyd7d3Go2aLIqIJClECbxAkRQoisViblum7/uKpiKa9nw/jmPLsifTqSIrFImM5ZJjuc8ef3Z9db3W7oiCuL62pkiyLEm3D+7s7u42683JaAIJgqXpNx4+fHj/we72dq1SC/1QU1SKonrDfpQmYZJQNB0mcYwzWVf3bt0iSHJpGIIgEQRYLowVqO/7gef6cZxSFN3vj/KsiMPYMe35eHZ9cTWfzjzHqVeqRY5Hg4EsihSNbNtKkpjn+fXumm3bhrlI4gjjnGXp+XxqWSYAwLLMJIl5nuN5DkJQFBhCsLKk8TwfhiEAgOO4Uqm0en3zPGdZ1nYsAAHLskEQ1Ou1RrOuqDKJUJZnEIDlYhH6vmPbLMOEQRB4Hk1RAs9TCEGSnM3miqKGYWRZTrPZ4nlB03QAyBwXsqJyHJfneb1eX0UzuK5rWRYAwLatKIpJiNIsN5amY7uAgCzL8bxYFMD3AsgL/Pr6+nw+Wwk3CCHLshBCWZ49e/bsr37yEwIAludolv308ac5xgzHQUTmGG/tbFu2meXpcDj85a9/nWbZD3/7tx3HwznIUuJXv/jEs0MEWIApz4muLvq93qjfG2IM+sOR7bk0TQksnI+v15rlVlXrXZ7IApqPbmq6fO/2zv07B67ljq6n3/2N789Hy/lwXtfrv/jLX14cXl4eXbaq6wIr7u3e4TlZ1yuiKB8eHhmGeffuPZpGR8eH1WqVKIp6tXprf4dj2HarxfPcZDy+vuojSNIUhf66ewWqqmxvbQk8jzGeTCYURY2Go95Nr1Iqq7LCsWwax2udjqIojuX84he/oCAJASjy3DItBMnJaPLy+fPA813HMZdLCpFxHIdR/PCNR7Zjy6qyNAytVBpNJoPx6PTijGEZz/VxXvC8sIpF6HY3FEVVVRXjQpGVaqUaBaHneYoku45br9QJXLQazdDzCVxQFIrCUNEUx7EBwIaxUBQxiqI0T3Kc4zzjed51Hc/zkiRZYUQY5ys0mGVZCOEq9wtjTFHUakDvui5BEGmaeK6LcQ4AyHO8GvxACAGASZrEUcyyLIUoY2mQJDmbzgABPNdbyai+58VRLEsKhHCFg8xms1UGmCRJvu8vl8vVl0ZRtApdWuXApWkqy1IYhrwgNmpNimJs28V5URQgz4s8xwQBIYRwZ2cnTdOr6+vziwvXdYIgqDcab7399mw+sx07jGPXdT/74nMMgO25Z+fnlm3zouB4nqwoJEKarq2E3/lsQZF0GEQ0ybz37vsCK1OQSWMc+elivgzCyA+i6XxhOZ7t+BwvqIr4e7/7AwDy68uTO3d2Qt8WWLLIgjwJChzXSuVGtZlF2Ww0azfW3n30TZGVeEZEBXV5evHky2ef/PqxwCs4AwInLRe2JMgUohFJ2Za1ur83ajXLcu7euXN9cXV9ed1dX2dZOYqSSrVGQjKO4ulkVq3U1ta7d+/eE3ie4zic5Zsbm9ubW3cO7oS+/5O/+vcFxl998RWNGApSzVrt5YvnvZvrLMuyNJUkCeP8V7/6lWEYvufV63WRF3VdJwDR6/Uuri77gwHLshRCnuednZ8NhkNcFJVKVRQkz/NvbnoIIY7hMCYURdvY2EIkyVL0VndDFuVOe+2Nh48kSfqND75VLpUKnO/t7uE84zh6o7vWbNY1TRuNBnmexlFYEDhJQkAQoiAURZ4kocCzURgs5jPbNkkSFEVGQlAUBU3TURQhhFYC02g0IghiNpumabo0DEEQ4yheLOaiyF1eXJyenkVhUOAsS1PPdZM4VhVlOZtDAPIsq1drJIAiL+iazrKsrEhLw2i2mgzDzGYzjPFwOOA4tiiKNEk4jms0GkVRVKtVVVWn06llWQRBFAThul4UhZpW6nQ6siTHcUoQkCAAQQBRlGCKs+PzE8RQru84nk2Aotmsy5J4dXWpKHJ3c1NVtfFkGidJpVKdzmZZnouyTJJosTQyAJVqtYDkzvZuaPtlUetUWlW5UlaqoZfyjKSIYhpF09mU5TlFUy3HISC0Xe/w8DjDRE7Qn331Uq029u7dF2VVlVTXshqVqsCx42H/6fOn69210WT6ne/9Vn84nc6X3fVtnBOqWnr57AXIydDJGSCxUC5ibjb0J30DZFRJrX73o+8KLDseDl4+f+k5vu+FtXqLZaVqtfP3/2f/icCKiqhvrO/sbN36vd/5kW3YURAXeQFwAQnCMk2AcwiAbVkIUaIoGEvDskxNUzRdXqEwHMuoqtrv9yCEaZooirK/v1+vN2zLOTw8ns/niCL1SqlarWZZNp1O5/N5vVoLHE/keI5hGAbZrpVlCU0jz3Nmi8n+7lYc+T/5q3+Xpcl8Nl7vtASOFXmeZTnfC1VVb9SbCKFSWZlNB7WKhtPwwf3bbz66L4t8Godp7Es8yzGo3apmSSjyrCIKLI3CwJdEQeT4RrUGC+B7bhA4AOA8z1bu3izLRFEMw4Blad93OZY1lqbn+SLHzyZTmkSoAIHjGvMFSRBpHM1nE9NcNpp1giA817VtazQaTadT13Fsy4qTWC9puMgvri62tjcRTUZx5Ic+xVD1Zp1C1HAwBASgaRpjvErGq9freZ7rmhrF4XjSWy5nGU5xkQFQJElUFEWepbC93rIdq9ao5kQeJVFBEnpZ7w9u6rUKxtnx8fFVv+/4/t37Dza2tymWo1iuVKk6QbCxtS2VSrQsX9wMIj+eXg/ZHJUZ+c1bDzjA+lakKXoeJ7ZhYJx9+tnj8WxqOI7hurwsV2r1s7Pro5PBaBEuA0xw6mhmHx+dQ0zyFDseDf3Q00uq6VkxzkzPExUNQ2ptc5thuFJJr9drsZ8cPz3/+CefXRxOQCxutW6rYucXP/miyOnjw3OaZASavbm8aTfaaUpopcY7737oeSlNyZpaLau133j/ozwhzIVTr7ZODk/+/N/+WRzEkCDWOx2aohBC51eXXhhs7+7ef+NBs90cjAZqSV3bWHM8J89ziiIVRV4FcB7cOpjPlo7tyLLKc4KkqH4cJknMsHTguztbm4HrBY7fqTQrcokhqOlsqpdViGC707IskyJhGPg8y7z37jtJHJRL0njSazWqWZIeH53NpstPP308XyyanUZWxLY95VC2vdHGcdC/PKuqqsxx00GvVdU2O3WZZ8pltVYtlXQ1ioIsSeIgSJO0pOkMxUKCCEM3zSKOoyEJVtRIkkRZlgCIEQ0AAAIrNqr1AhOBFyqSzDMMhygiznAc0yRJUSTPMYHvCTzbbNbjKFRlxXd923I0XY/SiOXZIAxwkYdxCEnIi3wBiiD0PM/L0jQKQtdxLMPM02yt3alXa7PJNPJDBKGmiYgiOAFJEkOAtCiyosgrlRLN0LBU1jd3Nm961wAQ52cn7VbTsU2KIgGBZVm8f+8eCUCtWv3o298+fP069H1IEKVSSVOU87PT4WhIQPTbf/N3JEHiGdaazRVeSoPYNsz5dCaKwqeffBxHYa/Xg4AQJVGQxcPDI2Npyqra3dxqtLsXvfFlfzIznYXtttfWAEE8e/q0pKnnZyeeZ4kS32jUdF2L07TV6QzHoyiOV3mLo+Hk8MWRs/QGV+Nf/fzTIqXsue/bcf9q2Ki2cU7c2jtYa3VwDtIkT2OMc2hb7tHRSRQmlUoNEqBRaxAFWMwWHMMt5ovpdPbg3v1+r/fVV19NJuPZbGZbliRJgADtdpumqYuLi9FoqKhKkiarjKt2ux3HyfXNjaIo4/H05ORkd3d/Pp/f3FxPZjNdLxEEMR6Ndza3RZ7P4owmqIpepmnq+ua63WkNRwNc5DnOkzQ+Pj6cz2fvvvsOAPlsOnj58tnh8eEHH3xQrdUkWU7z5P0P3js9P7Jto1rVBY62jOV777zT7a5dXZxnSbK9tXn//u2vvvoM53Eah3HkgwJvdtdURSEBcXZ6Yi4XDM00mvUkCRGCuqbIspDniePYlapOkgTH0CSCvMDmedJsNihIlvVSpVRyLKeilQAmZEUSRL7ZahMALA2j1+8XAEKSjKJovbsBSRIQwDCWWZ5HcbQ0liQiAQQURQmiFISB53kZzlY6F8MwKzgVIVQulyVZYhgqx6nn2XmeaJqqqHK1Vk3TxPMcZCyWd+/cfWaYEi/gUtmznfPzc1EUhzd9hMjGrRoJiCxLZ5Nx6HsAABIQHIXeffutTx9/euvBvTTPzk9PuuUmtgJFlDzHHlnjk5OTR2+8Mx0PHMfiRT6LgiLPICREQSiX9PliZhpGRSs9/sWvmq2qaVtb3ToBCZ2m+xfXa+tttVb5T/7jv7N0wtnSGvZ6a93tW7ubhydn5tIgEfLDEKWQoWldluM4EgRlrd2Jg4gXxO2d20+/+pwi7xcA/4t//q/fePQ2zohatXF+1guC+Pbt2xxLC6Lw8ce/WuV5+J7/5huPLNMgEcqK/PT8QlLk5Cp98uRppV7b39/P8/zVq1eqqq6vr1uWdXx83Om0BUEIA//58xeKol1dXZ2cnM6m883NrUajASBRqdQoDj599jwKY8tyHScol3LH8TRdoxl2tlhUq1Xbtq+urlzXLZfLtm1PJhOSRCQip9PJcjpPEywrMiC523duHdw5+G//2/+GEUD40kmzpN6oJ3nuRf7axvrZ5cXh4fGjt9+olCvXN1dRHLbbzTSJeY5Ok4wgSJylFImiIEiSJEuSMACCrGU4KzAxn84VRaUR3N/d1DTl/OKs2Wz0b8ZLY05TVOAHoiTM5zNIQF3XsyRNkozl6EqtCQFJMRxfgDTJgjC0bLesV8IoMQOboKDneo2GKMuK4zi27ciykuc5w7AkSc7HcxrRgiCwLMvzfBAEAIAwDE3TZBjqf5TARISoKIqCIBIEEQKSphmoqmp/0H/77bdVVX348KFpmgcHB5IkqZpaKpfPz0/n89nO7vbp6cnV9QVFoTxPLdu8urrsdrujwfDm8moxm3mOs9Zu7W1vmcaCyFOWIkWO+pN//S95ljo7OaYoWKtWDl+9evn82Qfvv99dW2dYttvtbuzuQYadW85lr39yfn54fLK1s4VxupxPXjz/2piPW/XKtz/4hq7Kz5989frV84O93T/8W39gm06SZDRFAYx914VEkSVJGATHh8eD69HOxr7AqteXoyJnDl+fFxgN+lPX8T94/1vd9fVOZ+3Vi5dPnnz95OlXs/lsa2vj7OwUY/z3/rP/jITkx598+ulnX2zv7AiS1O12b25ubNve2dlhGGa5NBRF2draSpI0yzOe51dZbYIg3L1z5wc/+K08z9fW1l6+fAkIsL21p2klVdVpipVFdbkwswzXq81Go8Uw3Hy+IArCcZxyuVwul1ec/N27d5M48Txvc2cbQHDVv/5bf/Cjx599apjz7/3Wd4ejAYAAQNgfDebzqed6tmO5rr27u41x+u/+4n8olfVKtcQJdBC4BIHzInUc07INXqCzPBZFrlorQZJwPYtmUZKEqiZBsmBYajodjcaDUlmxnSXL0+WyKolcGHmqJlumYZqGpmmCIGiaygtijokwSUhEc7y4vrnJ8lKS5AvTXBgGxiBNUoIgFvNFmmYrLHo2m6dpGsdJ/6Yv8MIqh7/f7xuGIYribDZjGGZ3d5eimKWxzLKUJFGaZo7jMAwdx7Ft24vFAvb7/SdPnnzxxRfL5bLX661GYbdu3VrRUPPFvFor9/s9UeJ1XWM5Ok6iHGearnieMx70Njrtg90dFlH7O7v9mx4FgMBSoWefH79OIjf0nXqt8urF882N9SwOv/M3vnP0+vD89KxaKv/VX/1kMl+ubW7OTNt0fa1SCZOY47hSSQcgF3g6Dpzp8NoxZ+P+lUChewd7oef+mz/9U03TFoaRpXkWJyAvrIUxH83NhRU44ce/fPwXf/bTP/lX//bXP3tKQxVB/hc/f/z6+UmSZARB7mzvUYja3d2VFfnu/btxGk3nU1mVgsh/+uLZ9t7+Nz54n6Qoy3E93/c8P0nSxWK5MtqvBBddL7EshzFutZo//OEPVuBtmqYvXrykKOrXv/51rVYPAv8v/+IvHct99uT5Rnezu95tNpoEBsdHJ8evj0EBKUjOpjOc4dFgNBlNAi8osiLwAmNhpEk2mUze/sY7B3duff7F4wwnXz97UqmXm61GnqeOZzebdcu1B+NBtVbOcOJ4jumYLM/e9K49z3344EGjWRNFfnNjneORqglx4qsa12rXqjWNYck49gmc5nm8vbWexP54dIMQQVOEYxtR6JMwr9d0kiQEnvFdC+dpFIbD4ZAkEU0xkqwalpVj7AeBaTuApJIsL1UqlWqdpJi8KOIoGfZGaZLlad6/GYAC1iv1JErjMK5VawzLIIQwxjzPy7I8m82CIBiPx1dXV4vFgqGZPCtMw3IcjyRJSZIwLjiOK5dLMI7jUql0cHBgmuaKhvI87+joKMsymqG63XWWZTiOlWVpd3fHssytrU1dX4VLDVzHur64DD3PnM+t5VJgmdloYBtL3zaOXj9/942HxmKqSsJvfv87z589efuttziGqlUrkCSXi+W7776LaPqzr56+881v+ElycXWdF/j565ee7yzmk1az+uDufqdRIfM0DR1YpDLHmsbcsUzHcQ4ODvI0JYtivdUmCYKl6TzKOIqnIeMs/SKh/t7f/Xvd9U0io/c2D3AOZV79/JPP/9k//uc3V72L84tH9+8tF/N333vn/v17JEm+//77BAEEUZjOFmvdDV5QCgwmkzEAkKbon/zkJ6sk1el0+urVqyzPm812r9e/vr6uVCqmZTIct7m5YZomwzAbG93JZBYEEQnRwa077daabbtbW7tEAYgC0jTHMvzde/c5jtvf35ckaQUFx3E8Go0EXmBZNgj8r7/+6qOPfiMrsuls1GrXbm6uHj560B/0SAoSgOBYNk3SFy9fWLa1ttaJo2hvbyuOA9s2X75+DkAxX0xynECyCEIXwsJ17dPzwyB0mo1yloWe7wCAz89P8jze2urmOM5xompirabzAjOfjRx7SeAM5xkusnanyfOcbduIoW3HlmQ5imPXD4IoHgxGBAEYlse4IEkECEBRlCTLK0vxatQ+nU1VVV1bW8dFMZlMDMNYLBYrxk+SpLt375Ik2e/3VzENFEUBQOR5DgBACCVJbBjLXu8G/Jf/t7/91ltvhWH49ddfy7KsKMpisdA0bTabtVrNKArLZd3zvHa7/dfWCJ4/OTm5e/fuq1ev6o2GZRhNtXqwvvv84y9rko4jPBmOVF0/PT0lSZoE7NQw3vvww9HCGM2X9Wb72cujvZ39Tz95HMUZphjEQI4tZoPLriY2JX5N00xjQQucFQfbW3uLueUGUQFogqT70wUjlwqGfnZ41B8PGrXybDR67733r676juuXK1XDMjGRrK23vcB59frlo3dvf/Ob721tbo0mk+OT4+29zVu3diWFH08GR6eHalmrlMuyIv/yl78cj8Y//OFvL+ZL3/eSJMqzfH29c3j4GgCAEHVwcEsUxdFoNJvNaJoRRD5wbUnkm83meDwlIVkQBIXo7e2dr776slFv3fQHM3Ni266qquVK1TLtPMOTyfThw0crmGMxHWVZsrm5OZlMjKXB8VylUgnDcGtz69XhS05kAQkZis8xjKI0w/mDh/f7w950PrRsAydRHIaLhaUqpd/48CNF0f7sz/6cZRmEwMbWxouvn22u7cRRhBBFUdRoNOr1ejs7uwAQgR8tjAUncQAAEtKBH7bba7/4xS9//2/9TRKC07OTLMsEXsAZNpYOS/OypFqmv7d34DgBz4knR6cMzzI87/u+bdskiQoMarV6HCePHz++ffu2IPJREiiKen5+URR4tVhnNZHyfV+WZY6hsyxbLaYpimIV+RaGoSAIRVHkeS5JUp7nYRgVBbEKxSVJKAgi+Jc//78appEkyWQyWeXFqarq+34URTzPl0rqYNDPsmxjY4Om6QcPHvz0pz9dGQZOT058z6uWymvVdjTz5jfDulzSBeX66ioIggJgAFDopqPZPAHEex9+1JtMt3ZunV31aJrLYnx4fEownJ/6NIW/+PhnVR7dbdaj5VwWeb2mS7ra7W5Nx3NZLSVZ8fzV6e6d+3/x81/fe+sdN03Prq7ms0keR6pWvrrqSZJ6cXWtanqrVRtNhgzHNpoligeiKMmKMplMStXS1k632a62O/WXr5/6odfqtk5PTyEkIQkhhGvtznK5BACs1MFqpTSZjDqdzs3NTb1eb7Vao9FoZQTN8oylEQkKhBBBQIZh8iyPouTFi5fd7rqq6q+PjpSSStO0wIuvXh2++eZbw+GwVKrs7e1//eSJpsgiT5mmMRqNRFEEAGRZduvWrclkghAVR8Hp5Ul7ba2kV0VZ/eKLL+vNRpzEF5fnFE1qJWVva2M+nQ2H43KpLksahOjLL7+iadRq1zmO7TTan/zy8YP7D/r9viAI+/v7X3/9tbFcBmHQarYJCCiGtGy7KMC7b3+DounPHn9WEPjm+ure/duu43he2F3feP3yUJLU+cyCkGForqTXZEl/8ewZhoDl+Xa7PRpNcFFIolxgYn29e3V1GfhhlIQMx4xHI71UEgQ+SdJVLVQUZRUhNpuMZVkGAMiyHATBapXHyia/2rTEMGwcR0mSsCy/IlqiKOR5HnqOc3p0nEZxs1bf3drWJBmnGSyI7Y3NbqczGY5Fnv/Gu+++/eab73/jG2cnJ1sbG4vZbDwcIpJMk7Tdahd5URSYJMj+1eDi7PzxJ5/QCNjGolHViTz64L23JZ77+svPQ88d9Huuaf3Jv/7/PvnqK47lprPZcmEuDCPNM4xxmCQHBwelksbQqFopaYq4vb2xmI4qqvq7P/heFrh3bu18+vEvT44OLy8uCIwpiCI/EHkhS9Kt7malVA79WOAUCjICp/zB7/3tJMKD/uTunYcM4pIgG/bGV+dXe9sH3/vub212d2rlxp3b9z745m98+8OPJpOZLKuCIPG8uLG5uVgsSqVSGIbdbpemaUVRVpn+PM97rrfCKFfmrzRN9/f3W62Woii/9Vs/sCyLougPvvkhKODh6+M7t+9AAGeT+XQ0xVleUvUCE7Zln52dcRy3sgRpmnZ5eek4zmDQj+K41Wy/fvWaYShjOb9//47r2IAofviD32w2G816I0mSO7dvQwKeHB9fX17/6Y//xDbNtU6HYzhQFL2bnsRzeRo3ahVdlX/1i5+JPFsp67/5ve9KIqtrIoUIVRY/+tYHRJGdHh/v720367Xt7e5kMnjzjQfVqm4bC56jdVVK40CW2Y2NtVqtYjsLQRJUVRYl4fDodZYlosDpusILLEWTBYEXxhzjPE8TRAIEAUWSksAXeToZDSejIQUBx9C1Ws33fZ7naZpeLexKkiRN0zzPOY5DiE7TjGE4AMharUbTNAAFxjnGOfi//7P/YhUshjFeLpeu66qqur+/f3l5mWXZu+++PRoPGZqtVMsAgOvrG9Mw2u321fXVxsbGcj6fDad3d26HMye3wxefPa2qJdOY1uolSRY67c5ktDw8Pr398I3jy5tb999IC3R6fp1kxacff7Z/cE+p13792ScP37j9+tkX0LeEJPqdb31gzkbb+9vN9eZXXz751m98++WLVxwnHZ1ctrrbc9v/6vVxznI3o2mr0Tw/PclxQZIULmCWERTDAAgJgkAUhRh49/6BVtJfvHzhhwHLUhQDtve6v/f7vy2JrOmalXrlX/zzf1Ft1AAkjOUSUSjNE5ZlJpNJpVKez8YIAdf17ty5gzHe3d199erVxsbG8fFxpVqRBe7rr7741re+dXV1YxjLTnut1epcXFw+ffq0292EEA7Go9/41rdubnqWZRtLQ9NKRUEAADzPb7dbSehABC4vL/f39ymKWl33f+d3fsc0zV/+8pd7+zutTvvw8PD6ptdsthfLxfe+/73j02O9XLq5uZZ4pqyVLMsVeOno8CyOkzRNf/O3vvvzn//MspYszd7aPhgNB5Ik8jx/c3Pz0UffCqPg6OiYJMkHDx8Ikogxfvzp574fVcq1osAkgu124+Wr59/9G995+fwFCWia5c5OLwM/JiHrBhEEVJLkW5s7SZZ6Ydhqtmu12uHrw+XSlCRlPp8GQcyyLMbY81ySJOv1+s3NNUIUhHAV4ChJkut6q6VyjuNIkiQIwmKxWGmiFEVpmqZpJdd1F4sFz/OO4wiCQJLQ81yGYWBRFLZtf/3116u9PtVqtVarnZ+f3717d3d390//9P+XJrlpWp98/FmBQRwlpmkbhmVb7mg4ubi4enD/gWv7H//6cYHR3t6tbrebJMnu7g7L06a5aFT0H37/O/Nxv9moLudTxzJIRJ6dnt+7e1eRpcNXL0lIzKYTEsI0ycvVmmW7DMdJonB6fFyrVp89fYJImGdpp1E9P3w5Hd+wNFxr1N96cNdYLgVRwhizHEfTFAEwRZEkSeY5juM4idLXL0/mEzOPgWv4thWQgC2rdWNuTyfL/88//Vef/urzRnWtqtanw/mwN3704NHG2qZlWHGckCSJEKXrlffe+6Zp2jTNXlxcjcfTyWS2sbE1Hk1M00qSxDRNAMB0OgMAnJ+fkST54YcfPnv2bD6fR6E/GvRKqiJy3Ntvvpklke/aRJ77jiuwbKPRvHfnfq1S5xi+rFe+9eG3H9x7+NmnnydR+p2PvqNKyuXZxXQ0ETgOIbi50f2rv/iLze6GLEo0STeqrc8+/XLQG5AAvfv2uzgreJbr3/SM5bKk6Zvdjel0jBBZFBjA4uD2PkVTnudlWXpzc/2rX/7i5PDV06++3uyuNWrVQe/6G+++s9VdHw8HDKIOX78cDgbXVxe2aa6vtRECuEgAkSuqaNvz2XwwnQyzODg7eaWrwnBwKfDo/t3dJPQbNR0UKUUSZV1lKHT0+tXB/n53ra2IQpbE3bUOjWCzXgvDsFKpKIrCMMzKu7fadMhxnOt6w8F4uTA9N2AZjmXZKApc10mSGEIC/K/+q7+5GuFvbW2dnZ3Ztl2tVi3LWnEo5XJVkqRSqTQejxVFGY/HjuMsl0tdL2Gcl1SFSPHJsyM6QeulRkOreIYRetab79wjYO673u76luOFcQEWbvTq9IpkJE7SEc3/yY//+9/5mz8KcfazX/+8XFGnk97i6vLNnY1oMf3hd799fPIqxslv/eAHxsK4vLjQJMV1gtFs6SYY8LIZZcOF4QZxkuHlcknRTBBEvChvbm9HUTKbzsMoLpVLSZIgihJEMUljXOS1Znl7b31jsw1ILElip9M5PDzsrHcuL89rzdLnXz6+e//uZ18+brWarusoqsRxzHw+73a7g8FgPB7/4Ac/GI/H0+ksz9M3Ht7DeWKa5rNnL/7oj/5oOp198vGn3/ve9z///PPHjz//4z/+o7OLM4qiJuNZp9PZ3t6hKPr6+kYUpdOTs06nTRQpgKBarc7n85OTE4qibm5u1tbW7t+/P51O5/OpIkkczzmec3F5ubu7G2cpAYCmaT//+S8f3b+3mMxu3713+9ZdmuZOT88uL89Pz44VRUzTWBIlVVaXS4NlaUkWK5XyZDLxPAdCaNv2Rx99+/DoNQmparVhmpbrBBzHmqZx995thMB4PHIMF2NiPltsbu2Uy7U0K5IM4wLMZvPezaBaraZpBiGiKESSlKpqoihdXl5ZpnV1dQ0hOji4e319XSqVXNcVRZFhmKOjoyiKZFm2LBvRbL3eWDF+s9mM47jVtqQkTWiK4TkJ48J1nSDwCwJXqxUACM9zGYZGZb10eHg4m0yjIJzNZvv7+0dHR91udzqecByfJ3m3s3F6egoAlHg5L2GRk3Y2d8vl8nA47N1cf/vDD0EE2JQ2+tN6rXFumHfv3YvjJMk8mRcCx57N5pv7d7UaN55bF72xP5xMp+at/f2vv/p6NB9msNDUjS8/+3VVFGfT+b3NjdlsAQDpuV6S5gRBkARo1GvG4vCDb7x7dNkjWPGgVP2rn//qrXfe/fzr5xwvhGFIMYxWKimKhFC4NEgKI5qmiQIkSZonue9HJII4A3kMREGfzYf/+l/++D/+n/yn//Qf/as/+uM/+OLLr/bv7LSba8168/b+rVevXtQa9d5Nb2NzY7k0ZVkVRfnRo9bJydlKHMnz/OnTZxvd9s1NT5bln//853mO19bWfvrTn+7s7Pz+7/9oNp+HYcCyyrvvvdVud05PzhiGjaKwKPDb77yVJMnx61fd9fX5ZD4YDP7u3/m7GONPPvnEMAwEkMgJ87wY9Aa2bdea9Y++9Teardaf/ps/LZXLnz/+8v1vfnB6eEgWRFWvPfnyWafTEVjOtZwf/c0fmeacYamf/PuflOSSrmqDQZ+EEFbAo4cPh8N+t7v205/+9MnXX9XqNUCQoR/gNG/U6p7nNuv1f/Mnf9LdWKtWKxzDtZrtu3fvO47nus5ssUwz/OZbbyNE2I7BciQJ8aNHD0mSvL662d/f+vyLL6PAns+Gbz66c3p+NZuPRYkvirxc0W3LpijyG994dzKZOI5D03QQZfP5nOO4VUToKr3Wtm3HdtrtNc/zEKLL5UoUi6LIu64dxzFCkKZpeH19/bu/+7s/+tGPdE3/z/8X/7mmaR999NGqhe90Ot/93vcURb28vOI43rYdWZYJArx+ffj48Wej0biztv782UuBlwzTKpWrJydnGxublUpFkWWSJD3PybL4wb27/ZsrtVLqbm1AABCAJb3061//+u7d23/8B3+Q+P5sOlrvrImiSFN0o9FKkrQoQLPZyvKMpKnPv/ji9euXdw72szTeWG9dnB5mUbi53vn88ePpdGYYxmQ6MS3TD7zlcm57Ni4yCCFRFDjHQRCtdk3oWqlaqa91uubSfvONt0p6/R/9v/+pQEuKoJ6dXMwmy52N3Z/95Gee4//BH/zhe+++++677967d+/73/8+wzDvv//+X0f9IuT7fhAEiqqcnp42GnVd14uigAAAQCRJcn19vbu7qyqSosj37z94/Pizf/D//AdpmiyXy9UN7PXrV8Zi+fs/+lGe58+fPYcQnp6ePnnyZD6fR1F0enpq284PfvO3v/Pt7+zu7D26//Dq/Pz8+OS3fvM31zqdg/1bn3/y2FyY3/vOb54enTbrjd517+zkzFyal2eXezu3XMttNVpn5+csy1er1fX19a+/fvLZ488ePXqUZdlqfnNxfjEej8qVUndjQ5bl+Xwex8lHH33kui7LMKIgTifTn/3kJ69fvrJtmygwAXCcBIgCW1vruztdgUf/w7/9E8ucN+qVVy+fRoEjiUyrWUnTMEui27cPKpWS69mmueQF9vzidDobZ3kahB4ucKVSrtfrK5BeFMUgCEaj0arNj+OoVqvJskQQBcuws9nM87w4jlcrbMB/+X/+DzzPMwzjD//wD6+urjRNu7q6WjX/s9lcVcrTyUwvlW5ubjY3N+/evbsq4EVRfPr403arEbkBmZIdtbHszVpaOQ28Owcb1/2zelMf9S7vdPcAYnOKQYI6mttfPHud5tSL16dRmPd6fUFiAEPu3bnVv75kiZxPsjdv7U4HV+1O7fz6bPfg1u1btx7/+te9ywsSgDu37+aAQaJyNph+/fJw5qVmlEdJFEURRVGiLKZZXhREAVCaZhKvBG6U54SkyJVKpd6sQZL4X/9v/5dXV6fDce/Fixd/+ec/ee/dd2r1yr/5tz/+zR9+p1yV/chZ32wNJ0NJ5r/7m9979vz58fExSZKaptE0/e6773788cerEA5JoIeD69lsxjBco9HwPJ9jOABJWZaLggjDgOPp09NT1/UePXyUptlgMFQUrdPpmKa1mC2Wi8X+/v5wOIQQlsvlt99++8c//vHW1tZwOOx0OhzFmIYxnY4LCCRJHAz6sqomWR5FyXw+/9YHHyRhPJ8t33//w5evDgVecF07y5Pd3c3RqH95fQ0AWRS42WysrbWePP0aIaTpynw+m87GFIk67bXl0vjww29PJ/NKuS6KwmefP9Y1pbu1NhwMipS8tXf77OIsx7i7uXF5dYUB/NnPf765tcmynMQKiiQLgtjr93e2d2iaZlj+H/+jf/I///t/H5Lkl1+9iJJiY2Pz8ePHL1686HTWSAjCMOz1+lvbWyenF1vbt1d7Oy3LiqLIcZzFYrGxuUEhyrIcRDIIoTRNdV2LkxAhiHGeJLHj2jDPcRwn77773tHRsapquqZ3u5tZluUYtzotSZFkRd7Y7G5srgNQmKZB05SmKQCAb3/r247ta2qNY/l2u72+1tFU7cGjhxlEk6X57372q5kTvr68Hi+Xp+dnWRJpirC/u0Hg6O7d3fVufWNrLYwSx3b/6T/+J8vZrFWv8Tw9n88arYasqrV6Y319/Ve/+jVNM7Ks0BT14sUz05iFrnV7b2t/ax3mCUUWWZYBEpE0DUmKIIgC5xLP0giFQRiGwd7eTrmkMSyzsb7+Oz/8bUiAcqnyvb/xPZwTnebacmaenpzHYXp1cT0dzy3LIQkEc2I5XRqzOc8y773z7meffAoK4oNvvv/s6yedZitPYgLnURSGQdBsNDzHnY4noe9jnMWRf3Z6VKvqYeh/+cVX62vrjUaLIECpVF5f75qmeXNzo6rqYDikWOr2ndsfffQtVVUkSXj1+nWn03n+9JksSu1m6/z8fDQeq3ppfX1dEoVWu8VxXOgHq1puGeawP5hNJs+efK3K0tOnX7uO7QfBn/27P3/x6nVREK7nAwANw/zVrz5566137t69CwBiGV6TS92NrfFkOp7OwiiiaerTxx///Oe/EDg2TZIXT55DAoZB+Od//ucFJkRemI1ntmnXyuUP3v8GRQKBZQqA796/k2TR/Qd3eIHp9W6i0P87/9EfE0RGAqzInO/bP/n3/67Trv3xH/1+p131fUuWuWazXCkr77z1yHetQe9mPBoEnpMlCQXJje6GyItBEJb0UrPVbLWaBFHc3Nz4vrdcLqMgQBAyiIatztrm1o6ulQgMipy4vrhezJdhGGd5EedEpV7f3t92A3dja5OAxPnl2dJcnJ6feYH781/8rNPeoJHQqHWiINB0OcnDBKc5Qoe9iQP5J1fTp715zwnESi3Jk8Bb1HRWEfAXj/+qu1H+4KN39fZarb359htv729tjW+uH9w70EvS/sGepEiGYSZR8saDN7Iko2iK5/nNzc1KWSNwqrHU/Z2Nps7zZC7wTJDkGPFukJEAMZBcDCeoABzLCiJHgByAbLPb+r3f/eFGt+2YZq1cffH0JchBo9WeLpYvX73OM6yIakWvOUvv68+fEino1NeX02ka+scvX/zhj35EFeAf/8P/TpWko1evPNsicbqYTEAB0jiuVkrTyXB3p6vIvGXOyrp4eX749Osv3njw1tGrE3NhplFmLkxYwIO9A03R0ij5jW99sH+w9/z1k198/Iskiz3P6V9fUyT8/ne/w9FM4Hr7B/v1Vg0goJdKV/0BRLSi681OS5SF+Xz66vnzNAjq5dLh65fVinrv/oGg8tPFOEzjartB8xwBYRgnUZoWBHz86VfzufO3//DvqFKlpDVurkZ6tf7wzbfUcpliaU1TAMAP79+nIXr/nW9EdoBIqijA06+f9W+GSZRkcTa8HhjjhYiEvc3dKI4/e/KFXtW9wO1urm9urVvmvHd9fnVxOuhdaqqgKcx/9B/+/mRyc3lxFIXWo0e3S7pQrSiddoXAgW8vBAbAPJEYVuL5KAhiPxwPJhSgaUQfnrw+PHm5MKeNZgVASCMkS/JyZsicAFlesB03S3OO41+/fG2aVkkvHdy+m+VFt9s1jMWrVy9tx6JZqr2+xnHc9fU1hVCn1g7jcDgcXV/1FtMZgYvAcdvtJslQXz57gTj5arj4+KvXz06uhwu3P54ORsPRsM8iePdg95vvvX15fvzP/vk/QSwXxPHzZy/m48mbDx+4tpkX2dXNFSRhvV53TPf68npjY6NRa2ZZzvN8EseB51yfn2gS9/9n6r+aLEuz60DwfEdrdbW+rmXoyIiMzMisFKUFBAECIEBhaNKa3ew2Nm3a5h/MvEybtc2w52F6mhroIgEUUAooVhUqs1JGRmSGdq39an2P1moeTqFs4tHjupm7n322WHvttcp5kWdxlqUxnNAMR9FMAMEUTggcFwWR69hyRh70e9euXfnWt78Ow9Dq6opjW1k5E/ihyEuWaZIkWa3UcrkCDNDxaDYbzcb9qWP6SAL/4Ps/LhUKLM3iGDHsjzbXN472j0SOKxcLo+GgWW/ks/lyscqx3G//1m97rg8l8b1X7+IE5vnOt775zSQG3/rqb4RBTJI0BMEvX7wcj8e3b93OZrKmYX7w4fskSebyWV1XT05Orl+/2mw0To9P11ZWSAwP49CLwnKtenp5/uZbX6rWa1Ecm6Y5Ho9eeeX26/fu8QxTq5avXtl6/5e/qFSKL3ee7+7vcAKfyeUyhQKCYtV6o1KqXdm+dvP6LWWm/S//y/86HIx1xXrttS9tXr2aILAfBDNFgWH4ytbm06dPd168eP70ueO4IIa3t65cuXIVQVCSoKrlqqmbPMsLnPDXP/wxhmG5XO7w+Nh2nL/8q78MA79cLoWRf3F+iuMox9IYCvb3XyjzkSjSpVIOSnzXNT3PME01mxVvXt+mSZwm8UI+07k8Z2kyk5FFQbQtW1XU1ZXFbD5TqhQtx9R1BQawazkgjjVFhweDwb1790RJOjs/W1leXl1ddT3Ptu3Ly4snT55ohtZYrJuWeefu3ZcvX2AEASPIzs7LR08f6Zoe+gEGw416o1gsQlASRRFD0aIgdrrd05Oz2Uz1/eTxk51ef86x2ftvfpXns7YT05QAwWQ+VyoWir1ub2Fx4eaNG8dHh/3+wDCNcrmcqqN0Oh2WZfd2d4vFkmVZ0+ksm81JojgejXdevuQ4bjabYiiayWQ4lltqLuianhLhmo0Gx3PLywu//Tu/mcvnGo1GuVI2DOOdd975yU9+8mf/5c8ODvbrtbooioqimKY5GI5PT84mE3U4UGBAjMbzb379W8PBxDBskCCO47bbnVwuP5vN0hvI4+Nj1/UURSnki7pmaqpB4IwkZZeX1nd3jk6OL4IwePLiCcuy6RFjsVRSFOVv//Zv/+RP/0SURFEQ5sosDIInT55Uq1Vd13Z2djAc6/cHj58+mc/mMAQFrkcRRK/TvTy/+OzjTwq53Ne//NXDg0MURXP5PAzDhq7HcfzgwYO3vvSl+/fvkyTZ6/UIgshks8Px6MbtW8PppD8e3X/zDQAjW1euyrksQzO+H87n6nA0JgiKZrjT07PFhaVr124uLCwhMOZ67vXr16vVanrzmTbfCIz4vl/IF7bWNybjsW0YlmlxLDccDZ88fRKEoSCJKI61223LMqIwePON+/VatVwqrCwvWaa+sb6mKjMEhlRtJsuCKDIAjqq1Ei+wTx8/nkwHFI0zNGHb1mg0UOYzx7Y4lhVF3vc9OZNhOBbO5XIPPn2g6dq7b78Lw/BgMBz0erqq8bywtrYqCvwvfvEL0zL+9E//dGGxiWJIvdE4Oz8fDAc3btwAAEIQaHl5sdNpFYoFgiA0TQ+CMAriKIo9NwxD+De+87vt9vgXv/hkf+/MMKM4wuIYM00/idG//vGPCByfDIeT6ZQg6EKx0Ov1Llut+XxumEYum1MVheN50zJxHO/3+x/88pcQAH4YcLyAodjW1nbg+aPRSJYllmNJkgyCQNd1CIL+6T/9p+Vyudlsvvvuu/l8/uHDh/v7+6PRSJKkpaUlGEZa7VYQeGEYUjQzm87mc8223SSBBoPx6dGlqpo4RhM4s7117atf+YaiaqZhUhTdbnVPTk5pmlVV/ejwZG9vv9PpuG4gZ7LHx+d/+/P3r2zfgAG6vr6ey+fCMHzvvfdevnzJctxkMkFRNJPJnh6fbG1u3b1zF0GQ3/qt3/qN7/wGx3Grq6tra2v9Xr/eaGTlDIkTKIxkpcx4OCoXil96482l5iJNUQxFm6a5ura6feUKy3Obm5tBEDx69OjKlas3b94IgnAwGBAkubCwkIpJjSfj2Wy2vrFeKBS2trf/9v1fXJ5f3rn9Sq1WGw2GuWzuxo2bJ6dn+WKh2+26nre+sQFB0Gw2S2lW8/n84uLCsixREFdWVo4PjyiM+P2/93uVUqmYL0AJZBhGc2FhOB5/8sknCAoa9TrP8YVcfjweB77fvmz98R//sWM7hm5ks5k33nwtgfwwdG1HX1issRz1tW++g5PIbDZS9BmCApqmMRTFcZxhKAzH0lW+4zio63uiLHme52G453mT8RggsGEaLMtYlhXE/tLqUqVUsS3nw48+cmw3I2VyuZznehiCJnEocLKhqwmUkCRhaoamGbPpjGU51/IwmOh1JpeXw4XFNQZDHz/e2d6+ImcrzNyFIdKxZwgMyqXCwNVWVlY+/PnfxK4BAJLN5jAYxhC0N+jBAIx6nXLh/pXt7dOzs2wuf3Z6ury22e0P5ooR+FGz0Zhal6PRaJrEjqqUsqLjuffuvfrVr34VQWHLMkmSDMPg7bffdhwbAPju3Xu3bt3+N//23z14+JllWalYNZQknmujCJnLFimCEyV+OtFZlltZXOu0BmfnZxwtnp1ebGyuIjDYWF+fjCcsw71x/43z83MMwWVJUCb60f5pPluulheiJOp22u3LC5Akhqaurq62L86b9RoURxlJODk5+urSl23bKuTzjuWEUViv1yejiW4Ya5vrg+EwvUz3PX88HmMIOh6OEigJPB/HsEalmtuWB91+u7MTRdHbb79dqlSev3yxvLLy8ccftS8ubt56RZTFbrfn+f762hrDsZ8//oJnuThJYBh2XLdYyA/7A45lPdd9+OihxHLN5sJsOkNQtN6o7+/vj8fTfr8vSVKhUDBN8+rVq6qqvvLKK9/7y7+4/+Z9VVf2dl4eHh9vb20xDJPibgzLMgwtyzIGo0EUffbg0ziOWJqiSOLJ5496ndbq8rJhqJ1Od31jxTSdvb19FEPCyEFQ9u7dG/3eoN3p2DaSzWQwFDV1A4agTrcTegEAAMdxVNf1erVmWxbh+67jFAoFy7ENwxQzsqqoij5b31g7Ozt750vvBEFwdHiSz+VMwyiXypeX7Wa5eXPrimWaV7a3hxctQ1ElOVsolIKdfQRgksjOpuqnn36mTUcix5A46gXg9qucbQfZXFEz/fDk/PmzZ2jkjobjd95+u9c6hUOq3W4LLHtl+8rjJ89v3rz1b58+ffzkiySMslm5XK0ADPeDoNsfUFJ2eH7qAM1zHDlfcSwD5Tjbtn/v937/W7/xnSRJZFniODZVmz46OiqXy4VCZjgc0TTzne98R5Slv/yr7ymKYmgmL3BJgmAomsQoBBGSUFy7UltZWzg4OD47u3zy5Jnn2yuri51W9/qN7UajOhyOXr58kSRNnudarc7mhnR+fn7zxm0EQSaTKS9wjm2vrKweHx+hKCoIQiqKWa/XLy4u1ldXP/vsM0ESQ8+/cfXGYDDotNr1asMwhmdn50mSFHJZAsWno1G/203ihKIoP/BZiv700wff+uY3cRh99vyZIIrFUunZs2cARcvlcrfV6na7f/AHf0DS7MHh8Wg0sizbcRyR53meb9Ybnz14cP3GjXqtRlEkzVDdyzZBEGura6kMdL/Xa7daV69eq9eXnj1/IUmSJElPnz5N9b3y+fynDz7NZDL7e3uLS80nT57GcfzyxYsvf/UrFxcX773/HknTnufGYUzhZBiG2YzcbDafPXvGsiyKoq7jsAxTrzeiBPSHAwjyFxZqrXYnVyhCIHi58xjD8G99+6sfffrQcQ2YZnGCQCDI9zyaojECy4gZFCOI3f19lqKKm/nZfL6ysqLqWrFYzBfya5sb/+k//8dOt4siSKpY8pV33j09Pu33hhIvgxggCYijKCvLw37/8uJydXGZY4VaKcllcjevXT85a6NZand3Ly/zJ6cDmiIBgpXrzelsqijKYDggcNQ0zFvXr5mmhZVzcQJM3SAwOPL9QiHX7XYCP/j617/+2ScfNOr1i1bHsL1aozEeT1eWV47b3Xw221e95aVlH0JtQ5Nl+Stv3X/r7Xc2Njcc1ydIguPY1NUZQRCe58ajGUXS/+Hf/yeaofL5nCiKSZLouu66LknQjuvMZ+Z8dui7Ubt33m53Ai/44BefqOqcZHAEQm3bujxvDXpINicuNOtHhwfVcoWhCBLHVpeXK6XiixcvNE2HEYBi6P7+brlchmFwdnaKoohtWycnx/V6XRSFmTIp5ws4jvcGvU63l8tkVV2N4gjFsa3Nrdj3kigiEFRXVQCBi/OLxcXF1sXF/+V/+lfDweD45LhUqaQitOPJmOa4xaXFzx495Bim1WpVag2CIpeWl2az2Xvvvf/mG29cvbJNECQvihRFSZK0s7MHJ1CtVpNFOY4h03SOTk54jrv1yp3RcASjxOrqmigKL168qNfr7XZ7PB6vrKzAMLy/v3/zxvUffP+vKIZ+7fXXZ/P5+enFysraVFEsxykUyxAMgtBvNpoHBwe2bQoCF4ah4/i/8zt/r9Np7x/uup4PYMSybEGQsjmhXi9m88XNrbUvvvhi7+AFx1NJglAEEaOx5/nFUp4kKE3V5+ocxjCsWq14vv/ixYubN2/OZrNyuTyfzY4Oj378ox8HUago81y+8OTJ09FgRNP0xtpGo9bkGIEm6K2NDTiBDE375ONPkiR++fKFruuLiwsLjYVSPr+80HRtk6aJJInjJCIInOPZ4XjYbl9GUYChIPQdz7G63Y4kS47rZnI5RuCPT8+kTCafL7zx5pthEg0Gw7feeodlOMs0t69sz+cKQdEYgcmSBCDQ7fbSggUlSS6Xu3fv3u3btxAYEUQ+joJ02wtBYG1tDUVRSRIIgnznnXceP36cgsaaprEsmwq5RyFgaKFSadCU4LnxxVn3b3/+wWSsapoNxcigP719627oJ9lM4ezs3HWcWrUSBD6CgEIxd3FxenJydO3a9vraaj6b0TSF41iCwAWB5wVucXFRlqXJZLy7t+N57qA/mEwmk8k0DCNN1U5OT/r9/qcPHly5cqXf78/nc1M3MplMpVQuFYq5bLZeq5ULpWG/v9BowABOifQESSwsLt6+fdtxHJZhJFHqd7uDfv/5s+fZfN6xna997WvXrl29aF1yLFutVnvdHscJ21tXXMflOX55ecV2bMPQ4wTSNAOCgOv5GIodHBwMBgMAwOPHjwEA9Xrd87y9vb04jluXlzdv3AjDMPWDnM5m9UZdzmZJiiIoajabJ3HU63WvX79mGEbKTvR979mzp4ZhwABkshKKwfl8dmmpvn1103FN1zPD2F3fWN5YXzI0zTaNhUaDoSkcR33fS2UiwyhEHdehSGpxcVGbzjCSyOVy6QJqPJmwPGuoOssw2lx99c6rvXbv+OB4OpovNBYZks42V2VeNmeKoemVYqmSLxzt77e63bXrt+LA52hmY1WcTyfTyUhRJvmcvLy0cPXaJkpgJIUMRz2ShFEAqpVKo163Had7edqsFLL54vH+XhSFiqIUCoUoiR9+9EmzXtV04/adu74fVirV733/hwvLKzBGiRx3+/YtNl98tnPIUmQhl3vllVcwDDdMM5vPQgANQx/DMM9zCYIAAI7CWNe1zc1NScr8+Z/9eRjGGEaMRhPPCyiKJAlsNpvbtsOzAsEwumo6TgwlGEGwGEJbpnd4cEYzhK7bJEENh/1MRiQp4saN64ahRXEgiGySxCSF9fo9FEEWmk1d13mOo2m61+sVi8Vqteo6zt7e7pUrVwSep2nm8rLFMEyz2ZjNFVGSMAJnWXY+HLIUZRrGq3fuGobBc5yiqggM//hHP/rN3/zNSqVsnlrj2VTXdZplP3vwIAHQoD+QM7LACxCUxHE87A+CILAsk6ZpmqRHg+F4NIrjGEYAHVJbm9uqojmm61qu74dJlDAsF0aJIErT6RzD0KdPn6ZmIKVS6ejoyDCMTCaj6/ra+sYnn36yvrYJw2i31zcs6/DkUs4JCIIxHJcRRInhhoPB0dFxPl/guHBnZ4em6cXFJVmWP3v4aalaXFvfGA6Glm0GYdjutOaaCsPI1avX6rUajnOO7RMkkc1lXM/hONb3AgzDdMdAERQNwjBKYoKiJpNJ6Pkoii40msVi0bBMPw4XF5s0xcynymwy5RmRpVgQQiIj1ov18+MLCkZEltFxHMOwZnMBgYnIcZcWFvvjcaFURpG422sLHFcrl01Do2i0UCy0OheyzHheJHK0F4Qkjs2mUwCD3qCPRMEb999YWllRJtPeaCQJUrZQUBQtk80QJDmbz+uNhavXrl20OihJWz589fbrHsoDALa2tgzDUBRFzuQpnAzDCMVQDEV2d3fa7c6bb36JphkIgS4uLn7wgx8uryw//OJBGEVpIWu1uoEf0DRL01QQxIeHRygJEQQKJRgM8DBMXCe8c+cKLzKup43HquNqnuerql4ul5Ikms9njUajXq91Op16rf7pg495MRNFEQBwJpvt93qrq6t7e3u1Wu34+JggMALD5vP5F198EUXJtWs3EghyHOfGzRtBEPQH/e3VVYYg8/n8aDSCIEjXNAQAimVfuX271+uRDF2pVFqtVrlcTpGB6Wx29+7dp8+euo47mc2/+fWvC4KQlWVd005PTg1V0+dKIZfv9fu5bPblzsvbt25hKKbMFZ4X/CCo1xsPHz5MlRDH0xFNM1tbW+fn591u9+rVq51OJ1Xs7na7Dz//vFqrVSqVw5Nj07bffvfds8tLjEABDCAYWV9aPt07KJercRIriuo49mg0vnnzFoKgg8GoWqnzMnt2fraxvj4cjhRFYVm607nECXJhoXlwaNZq1U8+/nQ8mlZrTYIkJEm2TDdJ4Ew2iw7Ho6yc4XnhfDi2IEPiBYZmDE0jaErgeJKmwjACCXj57GVezlEYTSJks7q4WF+MwxiFMMewaYygSTqOYkmSAz/0HbPeqBA0mS/ml5fL+wd7hqriOIYgEc3gQWBBiV/IiYdHpyQOa6oxn03pcokgaZEh2qfHFMPats1yTJNqapopSZJhm0gSWbaNIMh7771/9/798VQR5GyiOqamz30r8PxqtfrmvVtRHMVxpCqKnJV0XUdR3PO9zc1NAIBte47txDEEQUDgBRwj293TKEqiKAEAwDAShgEMQ3EMjSdjDIcpigjCMI4jCIJcJxwOZpqqUTTmeg5BEcsLaziG66rV744SKMlmM9PJdDwaaapaKBRhGBkN+qVSqVzI7+/sFPM5kec7rUvbNFCEz+Vy/+b/+A84Dt999d5kPJnNZ7KUyWQymm5ESWLb9qg/uHX7tuu6j588mUwmHMetlsumaZ5fXpaIykRVsvl8Npfbvno1juN2ux1GEUMxcAKWajXLNA1NOz48xDA8EUISx1dWVsejkSSK56fnuUym3+0ZhsHxfKfTieP4088+q9Vq7/3y/XfefmdjY73VaruuWy6X19bWMAyTZTmTyRwfH9u2zYuiF0Xd0dALQsU0zi4uBqPhXFO//s1vdNrt0XgqyPLB/kE+n4cA4EVpdW1jOp+TNAMDmOY4DMWSGIIghKFZHCcphtUMnaLp0ahPENTlaefly+eSJFMUpmohiqJBGNiOrygK6vs+wzAPHz2qFgpZOTsfjqfjSaVa4TB8rirjyYQXJciHlheXBVoc9ycbN7bv3X2tfX7JktxibUmZjCWB9XTLc4NKsWyaJsLQORgWROHy8lw35pVCrhd6lu3IGdHzPAiKQ88+ujiDEYzA0TgMPc/jBMG19NF4kmpjW6Zl6HOKFhmGIYnq7ovntqHFcZTLFcbTyWgwKhRLw+GYILlnT546KFuvVr/z7W83q/lyOWcaFs1yMAA0RYVRlLpFzedKRs77fhBF8c7OLoBBo95wA4fnxF5vkMnIpmERBGHbVhCEGIYSBBZFiW25SRwTJOk64e7LI5KEaQav1krbV7a8QNM1naJIZWaVyiUYwrudvmnY49FUFIVKudzr9SzTnM9mmxvrOzs75XI5I8v5XO7ps2fFUvGP/ugf/PSnP8nn8q7nkzTFMFwYR5qu+4GfQAkEQefn5+PJxHXdZrOZJImiquPxOIkTlmM10zAMU6FUwzS73e5oNKpWq8p8fuXKlZW1tf/P//FvBZ5fW1u/vLjQFW02m9UqVdswPds2dF1Vgus3rs9msySOK5VyFMVBEGRz2Tv8XdO2zs8uUBhxXXd1dZWm6el0OpvNut2u53nVahXCECcM9o4PKYrKFYtSPntyeR4EYb8/YFnuwYPPkihs1BqlSnVn56WiqlEYXbmyrRsGgqK5QjEKvbXVwnAwiuKYF/lAmb/55pda7dZ4PMnIiKrMEQBQBE6SUJaEyWQMw5jru3GSoAiCtNotHMfWNzbOjk8hCFLmiiAKlUqVKBC27WlzbeoFlWJlNp7/7m/9flbMIDECh8i4N5EFPi8XoCRs1hcsXZnP57lcFoEiVhZsRcXgBCSRMp2MB0OAoBlJ9l1/0O3SJIEjQJDEICI6rR6KwjACF4ulw90XLhT2+v2syNA0Q5Akw7Ivnz05Oz0TOHZ9fXU8mS6vrO7s7C6urtq2beluGIa2a99/96v3Xn3VdzQEwLwowhjh+QFJwI7rsAzz+PHjfL7Yafe/+93/XKnUGIZ7/uLZ+tYqgVPZbPbi4jKKIhgGBEmEYei4dhInYeBjGEZgRBTFgRvBFGqbLkgIU58TGDXoKBgeN5qb4/GglF8oZHOdzqVhqEHgEyQRRjEEkjAKIT8ZDPsETuA41h/0bt++jSCopmtLi4ubaxvHx4ftdjuTy/f7/QQCJMWUymXLtqaz6ebaRiaXffr8met7nMA/e/ZMlmWGYxsLTSmTiQCkKmqUxFlJmkwm6aEfTdPtTpthuWqligK4c9lyTCtOkkGvf35yShHkQmNhe2Or0++6rl+rNTAMMwxdEIR8nut2exRFoSgSx7EgyZPJRFVVTdMuL1utVntzc/3WrVtPnz3DeYbE0UypkMvlRVHY3d1tLC50u91Wq3Vle7u5uNC5aAVhTJAUTtIE4YdotLq20ev35/M5RbG67pMkTZI0TpAYgcpydnl5NZcr/OIXv3Acd2GxSZJkFCe2bRumG8ex41myLDMMB7e73Xw+D0HQeDRGEUQUhIWFBZZlT89OOZZdXlwqZAscw7um89brb9XL1X67b6l2QS4yGINAKM2wfDYPI2gUxYqqGIYRWFbs2oHnAChOokhXtTiKfdfrd7qOZeMoxlKMLEorS8uVconjWNu2HcdZWFxCMdz3g9FkQpKEZVmD4eDy8lLT9eXlZY7nSqWy4ziNep3lucl0SpKkbdqVUjkKo82NTZLEJTkDAQAgKAhDBEFSRwueZ/f29j744IOTk5MHDz770Q9/xDIcgOA4SiqV6u7uXi6Xy2QyFE3BcIJhCEURjmv7vhcGIQwADGAAAQTggRv5bsxzsqHZT77Yf/L54dMvDuYTJw7xvZdn44E6n1m+B+3vHjMkb+iGrmuSLEVR9NHHH7mem/LMZ7Op6zqGrn/40YcoggqCACAIAGDZ9sHhwdn5uWnZrVbn6Pj4b37yE5wgeEGwHQdBUdfzYASZzee8wCuKMpqMV1ZWojBkWXZ7e5tl2UajYeiGpmlXNjbjJLFMk8QJSRCubG5pisqz7KDXA0mSz+WVueK6LkmSGIYfHh5FUSyIkqbrlmWvra0tLi4uLCykyssAQAsLTcdxarXa1vZWZ9BHSNyJgrEye/T4cX84pChKFEWKpvKFvO241XqT5YX00kHKZjXD7A5GgpSp1Bo8L/KcYBg2gFDHdrvtLoLgX3zxRNN0x/FQFMtkZEHkIQjyXXc+m+AEBgEwm02DMEBd1zUtq1avG7rO0YzE8qPRqN3qAAC1223Pi8qlakbI5uVcs7YwG81CNw5tXypUIg9yTQMnWBQkdgInCYTAcOB7CIm5ho4jMArDOIwRKAFDIE6gOEpsyyRwjGVYmRehKBEFXhD4maL4fmDaFs0wjXKBQqPjkwtZoDudweLyqiiJkeOGvkuRJE0zl5eXuXx+OJ7wgoBNjTiO5Iy8sbGOYtCoN6JIlGZJBEF1Q+92h4uLi7qhi6Lw8ccPCvny8vLy8dHZw4cPcZxotdr5Yh6BkfREi+c513UcxwIwwHGUYzjfC33PTxKYICgoQSiKw3EsCEAmI8VROJkprYsv6o0qyw39wDGtebVSunXzZiFfpghG1yf1Wi2OosloLPLCeDRabC5cXlxMJhPHdqaTCc0w2Vxe0TQ/CFdWVrr9AYCRy8vLV1+9J1N0t9VSNe3tt98O2m3bse/cvfPw4aNcPjccDo+Pjnu9Xj6ff/Hihee4rutOJpNyuUwSRL1a8x038EJDVXEEBQlEoDhBYQuNBgIjx4dHK4tLmqpJgqiZOgRBqdJsulh+6623jg4PXdcdOS5JkvP53Pf97e1tRVH29/ctyy4Wio3FRZQkjs/PMBQrF4sETU3n84WFhfPzc03VLlvtV++8RuA4RdOTmVIo5IMo7vYHCIYncfLFk6fafFoplz3fBzAUJ4muGePZ5OnTp/V6PZfLnZ4eIwgm8BwEkHa3b1kWTpC+H84VBV7f3BgOR0vLSxCAFpcWLlvnURxkMtLdV+8ACIicENoBAWO1Ym3cHxqawVB0FMYYiguyLJXKOM2GtsNxQrlSy+RyoiQFgR9F0WQyhmKIwHCapHAUwxA09INhv2+omsjxgetPRyOaJOM44FjWdd1nz57jOLm4tBzFcb/XYxmWYfg4jOM4UTQ1gUBvMFhoLiQAiqJI4HnXcZcWF+Mwuvfq3ZWV5flcRVAYQBGMwCiKIgiMosh8PudYbnllOYqj/f19nhcajbrnupZlZXM5VVFphpFl2fd9TdNgGLiuq+sahiFJHAdBAGAYQRAIggSBhyAIxwhDtxzLtyxfloswRA37853nR6ri8GyOoWXbjHGUPz/rDocTjhWVmWYa5s2bN3mOPzs7YxkWgZHl5eVKuSLLMo7jYRAuLCzYjoOiKM0wFMNgBJaAuFQpFor5k9NjFEMIkqBoanN7czafCaKoqCpDM6qi2JY1mUw817Vty/fc4aCvaQoCYAQAHEWV+dx1bZLA5YyMEbiqa1/5ypf90JdlWVHVwWCo6/rLFy96vd50OoEgQFFUtVqFoERRFFVVAQQJghDHCYZhKIL+9V//+PNHj4ql4kWnpRn6xub65tZmNpeN44RmWAzFdd0olSsszzEcDxBke3s7SaDf+I3fJHDi6PBQ0ZTJdFIpVRiKWVtZ42kuiWKGYlAYxVAcJ6jLi5YsySxDm6aZJMnS0hLN0LP5fK5qpmXC+Vy5Xm9quqY7RgyH/UmXz7C5oowTKIYiNEy6c2ulsUwkMImgIsdBSYDThO0ZOEtyeSmKPS8JEQLDaVrOFiAU01UdRhCSYbL5PEYQURI36tVshivmxWox4zuaSJP1YjGwrDDwEBhkZJGlGASgs6lydHgyHk4zsuy7vmM7gR/1ekOGFxXNOj697A3HgihDEOTYNkXgCIQEflCrVTNZQVW1BMQ4ifU7l3EYoAhcLBTjOLy4uDg9Pc3n8ilDJ5PJLC8v0wy9f7BfbzQQFGU5rlarUxQNQTBFcxCEJhBiu14YRziBEyQeQ2EY+TEU+6GPEZiiqRAMa4YBUNRyfM9PEJiCEkoUS5OxPR7bs6nP0sXRwNA01zS9y4uWLMvplTdFkQxD37lzJ73TffXeq+PpyAt8mmN0y+AErtVu2Y5JEEg2Kw6H3VxeEkTWto18LgPD0HDYKxULuUzWsSwQJxiKcCxDkQQCINPUMAxeWKhnRe7q1vrN69u5vBxErh+5552zuTljs7xcykUgQTF8Op1ftlocL+A4yXHC9vaVTz99gGJ4FCXjyaTebARRxLDMcNSfziacwGq6Mp6OBv3O6fEBz9JZWQYJKOWLMITomrm0uCrwGdfzvNBjRT4Ko2KusNpcvrqxtbm6xjKkYcwRELE0U6vUoCDS51qGkxzD9myvUWtKomxa9vraBoKgBEkCgMznGkFSLMN7YURQHIpAGIRGtuMABDq9PBYzvO2a+VxWN404jHVVr2aqjcrixcE+SZCJ71EULhXlOIGDJMDjKEl8PwkJgAMUpUR50u+GQcLAiCxnHMeRMxlJlkHikyQQWEbm8JPj0NaUcj7fHwwBFHIcEwZBEkcswyeMHwYRCmMkSV9cXPZ648CPdc0s5Au66diO63h+oVjIZbOu65AoYbvJa6/e29raTKAIJ1EIRK5j2pahziY4RQEU9Tz//fff7/dHvhdVq1UEwTCGoGmWE/nTn550+z2WZSVZnk2nJEVblonjJE3HcRwHsUfROIqjURRTDBklAc1SSZJgKObYDgRD08mUJEkMxzEC13Rb1axcoQpBUBxFKC4SaMY2HRiiaUrAcRrHYcdxFEXFUOLivKUomiCJHM0ACLiumy2WYQwbT6ccz4dxxLBUHIcUjecK2dlsQhDUbDajKTqXy1mWZRkWTdK3b97udLpxGI9HI2U2t3SD4xkERpIogOM4dN1iPmcY+sJS03AcgAHNND/6/FNJyGCAqjUWGE5AYHhxaWln56VtO6VS5ez0TFWMyA9z+UKzuTgeT+eK2lho9rrdBEBvbb+1u7fXvjy/f/cOzdDHBwcSL1fKNcd2cIzMyLlHDz9neJbiyPOLU9/0tInye7/z9y+OTjvdiyTyTXPOsLRlGC+fP9c1TRalbqvr+F42n6M4hsAJmmbG43Gn3S1XaglAHaeHUSHPS8UIFeQcCuKo025vba3MJr1uu52TZUVRa0UIQ0g7CDiKu37ztqnppm6gPCBQTBLEKPRdL4zDOCNJEAziJEYQBIAkThIUxZMkhgFsm1bg+9lSiWJpx5gjaGIqs2xOhgGiTjXHdQqFwtjzoyjSdQuGh6USsr62HnomjeZjT08CDwD44PDwxvXrAMYAjLAClyTx+cWlJEuFYvFw57C+sPnlr3xZXGj6QYTheBQ6qqGQBO75nu25oiyenJweHR31+yNVMXLZ4mQye+ONtziWv2hdXNm+enJ8VCgUp5NJr9cDAARBmN5rp5aBFEWhKBpGLoYhOE6EYZgkUBiGruuOhiOKohAEcV0XgiAPAqIoPnv6guf4KI5KpeyQgBmGoGjuxrUlDIfOLo5MI1heXmYYznOdi8uTxcXly3bH9eOlpfXeaLR97drG2pYfRYHvMTTXa11CAPCc1O8NJUk6PT3P54vNJsWx0v7eSaVcWVhoUgQb0cnYdBCYyOeKNEPquokCnCLBwd6j5fUVUcjYtk/THECQmWayBDOZKrWiSJNcdbthO04cxZOxks/nDd3GUDqTyY/7g+3Na4P+GIExKHGTGEEQYm2lTlHUysq6ebTr2s7xTsv2tEFnOByMy6WyLMvnF+dn52e/8/u/rZnz4+MDBmNG7cHl5fnRwUGpmidZjPeo+UyZTEayKMdRWCoWMAxNYACjCARAq9XiOV7TNcdxppPZeKbAKDafz10v4aVsGIUoikAiz/TarawkDVoXi40FBCLOTtoSnxUYuVZoAhgZdXumboI4TuIIw3AsihMAe24QcQyC4yzLkhwTOE7seRiOIjAJQZDn+wBKPMcmcZjiWDiUAIhxBHbdSBSz56fnKEGMu/0oisIwCsPI9/1Wq0Vi0MLV9YOdDgRB+WIxgmAEQ23bxnAsny+0uy3bcV683Ll9+7YoiqqquoHv++F4MrMdIyvQrhto6qRcX7RdV7lUer3+bDZrtztJDKAECcLo/PzsN77zm5qhRiBkuOvj8SQ9ik01MFIHNN/3aYr8VZiSlGXZQRDCf9ePphEsSZLrulEUYRhGUVQ6c8RJHEVRt9tD8SoM0ChOoIQc9AeBh9YqaxmpTJE0LEGVas22LMvwKDqGYsxzYl2xq5Wm43q2ZY1GauBDEATGhuq5iWvH2UyFwGhdc03DLRcbmmrs7526rhPH8erq9tnZWa225Ptu4IPzs26z1lhZ3cYwbGt77a9++AOMJFAch1EEgSlZ5H03Hhgzywp0TaNo2tC9N+5fieMYwxgMoXGMPjq6UNV5AiXXrl45OzsjSFqS8l988TmGY8pMf/j4i1ppRcyw2Wx2Op1GUXhxcaGqSqGU73Ra3X4LRRFeYGt3bh8c7AsCt7K6MpoO1dZcEKS5NUMxhCBwwzRWV1dG0/HR6WkMQzTPiZKkTsaiKAIEtixLlPOlckHVnWy+fHZxiWIo1KxVZrPR5r07L548hhNYYCRSEOYT/cbWOo9yDz99ZGnKaNDLy2IcBflCsVgql6p1BEdc24RJKo7j8WDIcizFMo6lwxhqW5ZpmjiOzUZDgyYrCzWCZXI4Mp9OcJqEEoTgmXlvYDq2nMnadsCyzGQymScJhSUo5KNJEoeRJMkMK4wn4ySJGZb1g1AS5VKx1Gq3gjAgKMp0EhQnSIo6anWm09Frd66JUsbz/DiKCoXCX/3gLy8vW5bllEvl6XRO0zQEgeGwf3p6YttWoVBgWMY0P8/lcp1OR9O0OI4BACRJIggCQYlt2xAEybKc2rERBJEGou/7OI6ngmyyLDuO47oujuNbW1vtdts0zTBMTMOXRMR3oudPD4qlHEvlS4WKMlUcEjs52V9cKkRJkM+UDdPluSQrFh49eJrJZTPZ3Fifa7Z5dWP97Ow8juFsphpHSaOWD4IoSZIkCqvVhiQ4pmUo85ahm6/cboKEhBKo3+2jKPLo0YtSfuG1e+88ePjZsK/mc/XeoA9jYbVWTGJc1eyinDm7OI6Tvud52Ww2CpDz0y6CICAhXj4/JDF0Pp+hODKZTL71zcVOZyjw4tPHOxjGnJ6cUih1bfPGa6+/NhgOJUkSBOmDDz7geO611+/L2UyrdaJqMxSgIIpvvHn15bOXhqnv7u4YjoERRKNazwv5Tz76ZLHRHA6HjuPAGDoajUiWLpTLURh5nh9HMc9TK8vLqm7mslmK8i3HrtXKqDIbLy8uwIm492InCWPX9HAEW15pGrOz0ENe7u23T08RKGYoxLFsmsS16RSFEpFlWF7wPS+BEE1TDVWFoQKGoTiGJ1Cszm3TNHmWZlk6CMPpeIwzZOy6CUDEXLbb7ZMcC3A0BgAncJrhIAAMQ2+Uy56ttzudm1fWHVMnSJrlcMM0wzBIoNhxXYqieIEvlcLnz3c82//y135rZW1j6se+H+IEMZvNkST0gtA0zeFk8uTJ02fPn4ME5nkxjiMURXlegCCws/tyOBotrCzSDJ3eubuua5pmFEVJkqTuQUkcpWqrnueRJOn7fupxnQpjpJorSZKkjJtisZimc0EQGo3G9vb2aDiaTCfVarnXb6MwF0ZBHBBQzHgOSuKyZye6ZbIcn89kZxOdkwQUUDQhZqTSbGzgKOu7CE1mcBynKMY0rTDAfC8hSQpFQ88DHJvj+XwUYEgVWEYk8iVZlqdTM/D9Sml5NrUFwSYwodudCnxhPDZyubznJIo6twwnNPDhQPV9z3O9+dQKg/Anf/2e7/sYiuULORiK8rks7MaTkXZ81Ap8eG/3FICkXCo1G6sAiUMoHHYmzYWFo+MjnCajKMYJnOHo84sLSRJn8+Fg0J0TzF42d3hyCCXJb/7Wb6IWmi/koATKZLM3bt1CkmQynnA8P55OBUGEcTSVC23WKhcXlxiGAwA9f/ny4rxD89JwPHv3y19BI8/xbLPf7Qx6g3KxAsUISTJnJ22Wkvd2Ti+Pj/AkZmkcQ/AkDpI48nzPVBFtOuYZmiQJmCJpmqZIMorC+WCYzUhJHKUyB45jF/MZDMdbl+cogeEkCQEITQDAcFM3CZbRTVvXLZpkbMdmWUY39KzIN+vF5y9eZmWpWOI1wzJMM4piAIM8x3V7fc/3SZLQdD2XyV+/fYtgKByOEwjO5ov5QuHxZ58oyuzmzds//dnPLy4uRsMxxwqDwajRaAIYunPnzsnJKcfxGI61Wi3HdXAcT83p0hAMggCCoJR1S1HUbDZLhf4BAHEcO46T8vfS1pNlWcuyrl692mw2q9Wqoig4ji8vL3/7W99utdrvv/8+isGZTD6OQ0EURUGolSnNMF9/7Q3XGz159pjhWBRFNcVlSfnGlexlp90+HzSqy+poFEcETcoQgPd3T3Ec810k8MPp9BLFcAIRD3Z2OY4rlUvKfPby+QnHsUlySVKcaows3f30k8cXlwOKpgECjydjVXE7nX0Ux4+PDwmcEtkMDCOCIGiK6ruQZVlhGDEMP56M4xCO42A+06EkKRZLH334qFotu3Yky9JopLAsPZ2NITiEUWRGK5EfEwJ58+bNrStbmUL2k88+vX/v7njcSTwZR0le5POFHIqiEAx1Ot1Wp9OoNxrVRr6Q73e7C4vNwPMD3yuVChhFARQAGGIYKpfLIQg2n2uiIPR6E1HOYAg87HVRHIPPTo+zmczd33hFV81BbyZzROtysrZUvjg9s20/QiBJ5B3bTXwndAGOwGYcTYaDerVq6CqFkxTDOaamG2Yc+rLIwzAgSRKKY9tQDV23LTOKY5BAEQQ5rk/BmJckCYpojq2blmHZYQgxJJ0qZRqmOZvNEwgSM/J4MtV1e6ZoNE2FYYRi5FxVWZ5HUPTe66932z2UwHq9nlhfZQUBgMiynHKltry8RNEMwzBBEJZLFcdxkiTGMGw0Hv7N3/y4WCzNZlPHcziOcz03NUqjaTr1iE6jM/WmxnEcAIAgiGVZqV6DaZpBEGQymdTARZKkIAh4ng+C8J133m7Uarv7BxiGEQS+sbkiCMLjJ1+Uy+UwCAVR5HnOtnzHcQqFbBCINCsoc+X84qLZWKFoBkFxTXV6/X5WLDQb6zzLffTRR/lcAUqIyVi/OBtJUkZRFJKkOhcPB4PRQrNxdtIJohAG0Olp23VsDMMQFNFVlSIoXbvwoyBKEgADgiInY41m2UpxcTKeOVZAUziGUHEIj4dziqRAgkIRytOypTsQiFwnJElyOtFI07UMlxf409P20tKC7yU3rr6yf/DCtMz2eYegSRKnWYbjOCEjZRabC4LA375x88XT54Igl0qlhebCgwefffzxRxeXl+VqxbKsJ188zmeyFEnmcxlTd0uVkuO7OIlhJMGwDI4TNEVquum4brlcKhSqkpSFoJPpZIz6tu1YZmZxqVauduNB92J0cX4ZB7Rl+Z4XoCiRy0lB4EqiMBnoPMOV89lyqRhFkW2ZuhezxSqKY4YyZVkaTmhN0xiawjDMSRLHdaMAsh0rhCAQhkVR8mKY4SXDD4qC8OjZC9N2EAxXdZ3ASd+2cQSpN5ZPj/c3VhZ2Dw5Mw2NpTpZzKI70+z1FVQVRhgCYzpVCsQzj2NnlRZWSIU0X5SyOQA8+/uXrr97kGGpnb79SqbAsZxojHMdXV9eSBKJIqt1uDwYjjuMaC03TsuM4TgV706BMPYBhGE6SxHGcMAxTK2nbtpMkgWHY932CIFAUpSjKMIwkSdILzySBbt++uba82Gg0JEkMwsDz42xWunnzBstwURTNZnMERlAUbTabvmeL2RLLiR2siyEsL/AYQYyn87u3S7btkCRpG5Zruxtr1z745Qcsx0WBhWM8x8qBDxiWdTGv1510O+MwDCiaIknCcf1stqDrGoqSKMpmsgVlrhAEpeqaLEudTkfIZCzTCmMPhvDASyamWirVCYzxkRhKUAxFVdXCcZwkWRSFVU1haXI202VJMvSZZXlB4D0aP5FlSeSkXmtEseTqxipKoBzHvXj5sj8cffVrX8FQ8rNPHr7x6q18rmDZ7qNHDyVJ9oOAIPDrN26wLCtJ0i9+/nNVVVaXlg+OjjZW17q9npzNtLudcrX67MWz2zdv4RgOQcnmxvpgMEZQwg+SyPMa9TrMsZzvuuPR8NnTp3/94x/HcdLt9C4vW+cX574XCJK8trHFS/JUUWOABH6kGWan27VMW1V1kqYcywwdRxRFSZIJkvQ8z/M83/cdx0Ex1PU9VTfmipoAdDiaDcfT807HDaMYQfwEzHV9PJvHEKQoSupINJ1OiqWSahgxBMcQMG17PJ1OZ3M/iBIIwCim6gYvSq1OJ18sHRwf5fN5jMTb3f6Hn3yGYFipUjUta3V1RRREGKAoijMM12gs1GoNiqJWV9cyGTmfzxmaZpiGbujZbDb1BUxxpVReVZKkVOMKgqB0bZ22pwAAlmXTyT2OY9u2U89gURTee+/981YnisIgiBRlZjsGBEXFQh5F4TiJwzAcjaZJEnmeSzGkrlsUztYrC/devZ/Llgq56uriRiFTqVcWS/mayGcwjJyO1Wy2FAZA02wCpw3DTSJ00JuKfEbgMzTNS1Letn3TcCiS67T6SYxoqun78WA4DROgaZbnhtOpCgPcNnzHDgI3BgB1nACB8dlUMU03SeAognw/ggEKIARDSQyjBU4OwySOYAhCowh4bkRTAklynpe894sPoAidDFUco0mCefbkhWsFkQ9lMnmel/ud4YfvfXx1+zpN0V7gxyDBSbxQKd977Z4kyZZtbV/dljNylES+782VOQLDlmUKojCbTd+4f//48BCGYZKkSBwPfE8WRdcyRYGTBR69fu2GyAuDwaDdbm9sbBAof3rU73YG85ldKS1wLNPpDUiCGE/nFALhcGLbZq1auX592QtD3TDMCDTqNSgGAEA0TXu24bpuFAYUQ8mycH5xrJqmpluDmTaezBIM98LAcp3ta9uqbpE061guSdMyw3m+HwTeaDzK5zLj8aBSrWxtVw92DwfDXr3eiKIYoNidO3cN0zg6PGQ5Zmdvb2XrOoSiimofn5yOhoP/9h///WdPXiwv1jACl2SZJKl8Pu84jqZpGIYLgtDr9nXD8H2/2+tmi0UERoIgSHV+CYLQdT2KolSammEYz/N+nTvDMCRJEgCQGp27rksQRBAEjuNkMplyuVwulxmGFUURABAnceC7QUTCUUKS+GyuLC0t2bZtmoZlG2GEizwPwxgCJ74XAYCqcy0MwslM2d3dqVQqjWaTZUNNs5IYdp2A5yQIQgRB6qgd23K73f7NG7fCKLq8vKhQtGFopmHBMJJaWFM07TgeGkZxlMQxiMI4ihLHswGAMByPoxhFMQRB+r0BgIFlWTRF4zgeJ4nvB4EfAhgKw4DnGZhEdMMMA5/AyTCIgyBWFBUDkK72GI65OO20epcwBscggeDAmNuXx63F+jIGhV88fPL6m28EUYDi6OHh4Ww2e/7iOYgBzdK1eh1BMRrHMRjBcByGEQzH9o4OUAy7dfuWYRj9fq9cqXa67ZXlJdtyURhsbazv7O6gzVrD1A3LsEVJKhUrk7ExU2dzTYVhcqZMYATu9trlrDiaTNXJoJgRV5cWr99+xY6TMIpZToApxjJNlqH8wI+DAMUw23VxDHNsazTo94ZDlKRcxRh0u4PJ1PbC7qCPkfhFtxeFMUAxikEgAOfyuV67BUExQVKKqq6sr6uq6jieH4QUzfb6/UqlQhD0eDJXVQXF8DgBFEWhBK47zkyzpzN1Y317b++0dbK7tbmawBBNM7dvv/L97/+AJEmSpPb39y3LWlxcJEh8Pp8zLB0GIUEQEASl1pEAANM0WZZFEMQwDFkScRwPgsDzPNd1UysjCIIAABiGWZaViqiTJLmysvLVr3wlThJRFHEchwGUkTMkibhuYFmOq3jdbnc+U2q1GsMyfuBRJBlHUBCHjuOyLFvI5gf+QDHdWrmqK9pcUeysrczVtbU1wzAYZpDPl05PzqMoFAQpjCBJynz7299ptdooggIY+vDDX2IYms8XYRhW56qm6ThBuK4fxbHveSRJyHJmPp/DMByFURxFAsejCKLHRhLHFEFiKIqhKARBMABhFOEkruu+Zbk4jgIYJkkKw7AkgWCAQAlsWCZB4Ipqvni+Zzo6QCEISb7+ra/+8mcfFkrlG1e3LHX28ScfQDG8tr7x53/xX2AUJRh6NBot1BcYhvGjECfx7e0rR7sHckYGAMznc47jSpXKy5c7S0tL3VYbALC5vjUZzw+Pjjc3t2EYq1cr6KMvntq2tbS83Ol2u70+AHitUen155qpTKaz6XR29/YrTuDMdWMynV29up0rlQbjGUCQXDZDMSxGMwBACIomnqtrGoHCAIDj4+Mo8OWshNP0/uGJ7fiWEyia7fqBablkAtzeGMUw3XQCLxBoWlHVMAwWmw1NmcuCzHECiuEH+0embgo8b1mWZbvHx6fD4ej+G68jiLu0vJLNZ/bPO47rkrTYaC6RJH1ydlTJ5yEI0BR1edkejyccxy0vLwMAyuVyEASj0ZBlOc/zEASGYCjFiWiaTtFNGIZTif9f33ylWsCpsnqKQ6UlPo7j1Ls7n88nSfLmm2+QFO26LoABTeBBEOmaQ5J0RhIvW73dnQOapqvVCkkxs9nY9xyeFnieBQAiCDQOIZ7ns5m863h3b9/90Y9/PJlMVldXVleXAIDG4/npaatSrjx58mRza2s+UzAMFQT+rXe+NBoPfvazn8EwHMfxbDYBMExSpO3YEEjCKEBghONYFEUAgDAMhaAkCMIkTjzX8WGAwMCwbIIkMBRBYAAAwHAMi2MUx2iaiuM4SSAEAAzDfd9PFxMEQdiWLWcLk/FI1x2UICmS6PRa/+d//PPNjfVee3h+cJoVmHKx3m73bd/Z3d/HcfzGzRu6gi40mwkMsSJv21YQBrqhHZ2YC43GxeUFgmHD4aDZbO6+eClnMrPZXDc0WRaXlxZNQ59OlfX1NdT1ostWF0FRjheTBKo3lq5eu723f3p4cEbiHE2Jmm6q8yGMoChJJTAm5kua4+XyhRAmXD+KES+Tz0W+i8BIGIWt80uKJFiGmc+cbn8AYRhAUTdwBtOZ5YYARllGdANPEgTPDwgS2LbCMKxpmoVi0TTN8Xj81a9+pTvoa6YJIYjr+VQYNhcWDUN3XPv3/+B3Pn3wmec5giTqtpEAxDRMDycdx5MEQRIlhiFIimpdXpyfn++83N3Z2RmPx6VSieM4nucJAut2u0tLC2fnFwCCPM+LokgQBBRFUz3UdPThOM79uyEJx/E0raabpNQPHYZhx3FwHH/ttdc2NzcJknRdl6ZJ3/f1IGQZejZXFNWslcskyShzA8NIFCUwFA+CEACIylCaahiGKYoCwzDZLK/OLZoifD/5R3/4hyESe4E9Go8s057NdNNUmwsNDEd/+csPWIY1Tf/k9Dg6CiVJ3NhY/eijj8LIg6AEw3AYhmmalHKZ6XTmOTYUxo4TaroKwzACYCiJYAA810rXZjSFIwgcR34QBzAMEzgCwZDj2ASBwzASBD6AkzD0fT9mGNrzPIIgaJbFcbJcqSEI2u1eAghbaKy125euFRMkAkJk1J8JcoalhMePnyEItrC4eHZ2vrG6/vDhw9WN9XKzAoG4d9mK4kgQ+dFoyNJUCCW6ZQShB8NQ+rddWFg4PjxxHWc4HPM877kOms3kx+OxKMqe57Q77b/+yU9/5+/9wT/6R//g//5/+19d171oXw56YxTEhawgsXyYQKbjvnbvHkHRQRCFoQ9geD4eQ1EQJzFJkDAM7+zu5LNyRpLag+7u3rFpu5OJNhzPMJQKfV/TzQQk08mcYhjTdFzPG0/GGZaVeJan6S9/+cuT6VTKSC92XpA4yXM8imEYjq9vbPzy/fd39w+LpaJlWd1eD6fwTL2paOrM9+uNhqlr6xurRYmPkySKE89zHcdZWV4ZjUfPnj1bX19/8eJFo1m/cuXK3t5esViyXN92nCiKUkRJ13VRFB3HMQwDQRAURdL8iiAIz/NpOBIEkQ7yhmG0W637b7xx7do1WZYpkjg5OSmVyqViDoKg8WSua9ZoOMNRYTTSCvlKtVoCEOp7AcNwEBRHkW9ZJgBQkoAgiBAExlCsddE1dAPB4Yk6P29dSJLk+8HG2uY779xvtQY4jm1tba6sLOfzOV01Xr58MZmMoyisVEujUR+G4TiJHdvCKSwIvDDybMdCETSJ4wRKSIKM4yiOQwBBKAbDSBJFviByjuN4ng8AhME4BMIkhgAEARiEoZ9AMc9xvu8hCMIwNARBJEkQJJUkcD5fFAR2MhkbmhnFUVbM+VawubIxHHQyciYJYU2zDMO5dfuVKPJZhnFdGwJAUebdfk+WJIKiSJrs9Xoiy6Moura68slnDy7OLqA4CQK/0Wicn51hGIoicK1awQnS0HV0MBgVC5XhcNIbtHiOq9YrYRwRLH3l5taH7z1JQt1NAp6hzi4uv/O1r2xcueJHIYSgAMMhEIaB6zrudDKGkpCmSEPVYARZX9+Yjgeu6xRL5dZ01O6N3CBcWV1T5ma70zEMG8VR13MxnOIFniLxyLHzhUJGznRb5+3LC4Ji5ZywurI26o1LxUqv1x1PZvVmY2Vtxfbj49PDZrNsex7J0ZZp/eD737/3td8LfH9luXF1rXS6f0oS8GQ6/elP/+toNCsXK5Ik8xynqioEQacnJ7qqIjCiqirJcAzDQBBkWXbaUKZ5IsWYOI6FAUgdTlOsNE2oruumcsmLS0vb29vb29uTyURRtLW1NZLA56pBU2Sn3dvZOSAJenMdGQ5GOE43m0ueF+qGBcOwY9uKqsUJxDBUkkTz6VQUJcuwTEP7d//+333w0Ydchq816gxD53IFnucd175yZZPnxRs3rruOncvJ52G70ajvHexNpqPFxaZlaaZpmJbJMKznOpPpBIJBFEUMS+MI5rgOAkNBGEEggSCAILBh6KmZYBD8SjcAgCT9NRGURFAkigIUQTAMwzCUpinXdRMoRlEUQUmcYFw/wL2Q50WCoAgC0xQtisLOZb+QywaBe7B/XKrnkwR89tkjOSOKAte5uNzc2MQJYj5Tjg4Oe632t7/2zfFgcHx4hOM4RdEkQRZKxc7ZRbvVHo3G9+6+CgDMc8zZ2YWqateu3kCfP3l2+5Wby0vLSyuLjmORna6qzdqd3avX187ap7aCRQ6SRBHLS5lcxTDCpaUFgNKD6XyuTjmacmwLJLHvuQmM0Bw3Hlth4GAUTQuCHQaTucZL2e7wtDfUx+MZRdEUw5qmvrDYjJPYh4AdRAiMBUECYITluOXF5hdPH1cbJWWuapr26q07Z2enCIKcnZ3dfuXV9977BUkRtu3pprW5tcnJmYCQQOg0quLKcq7Tm8EY4AQ+DINGo66pxurqoqIqqeye57rD4RDDsFxOHI1GjmtTFI0gcBj6vu/XatXjo+M4iXEcS0kh6c7Ttm1d1yVJSvHRtAdNkqTZbDIMs7S0AAD0wYcf3nv1XrVaZigmikJdN3TNMBGn1W4NBj3HcXzPHY8tAOJarYAjcJJAO7s7lmmVimWW4R03Mg3jFx986Pr+2sbaSJnt7h1kM5nHj59fu3qj2VhQFINhWAAFnXZnOp1+97vfXVxckiXpZz89urw8j6KQJIkwCpMktmyb57k4ji3DNHUjnQLdMIzjGMdxAsdJHNMNjaZJ3TBwHPd9H4LQOEZ833U9DwMohWE8RcZhaFkWQeBxnKiq7rkOjpE8yfEcr8xmlm6gCL55dWM6nbiWAwPccz0Ao73WyI891/e/9OXX16I1miU+/uhDkckjEbVQW70YtDXFWV3dGk3mnW5fyuXjOJTz2Zu3b+mGXq3XLdOeTaepqt7p5BQn8CiMLy8v4bt3XpF5YdDtX5y0+r0xw3Brm2vNpepI7V+9ue7HWoJ5KImVa42llavF4vJgYJy2+7TIcznBDL0gAa3BIAKInwAfRhXLHk5VNpMBJHFwcuF6UAxwgJGjuaI5bgAAwLEgTjzPR1EsCNzA9wmMsu3AslzP8z5+8BFBIjzH6poucGy7deZ7zsbmWjaT6/eHJMVomqGo9pVrtzXFwBJw8PQRnViBMTncPwSwj5HYZfvCNK1et2Nb+hefP/Bd2zENxzLiKISSqFmv3LxxlaGpyXDQaV9GYbC+tsoyVOB71WqZYxnPtaEk9lw3desiCCKXy6X2USnRiSSpMAwAgP7oj/4Qw3BBEAv5Yr8/NE1H0/QkSa5eu9Eb9HECtz3z6fMvvvrVt3JZ0TKU0HdEnoljoBrmTFGu3bxVKNeHU3U0U/78+z/84d/89cujPS8KAEJQtGC7IUEyf/Znf/Hd73735z//uarMSZJeXVn++JNPSYqZzuZBGF65dp1iGIphTNu2HNdxPQzD4zCiCDIjyygMIzAMIOjXdBZRkmIYkTJZRTeCKA7jBCVIBCcAhnthxPICimOqps0V1bBcN4gM0+73RwRBCbwMxTCFUgxOy6LUvmyDBGpdXqrzKU2RCAJ83+20uyigoADtnAx/+dcPWnvDL97bOXrcwgOWhoRhS2mdDjXFm83s6dy0gyQEcLZUev+Tj9qDToIkpmngOFqplC8uLp4/fy5IYmNhAacoKZuBJ6NhPp/3XO/pk6cYThyfnOzt76EEurK6eO/1V27c2Q4gGyGT3/jtb1ue1R8OCYro9vvD0VBR1Ze7e5phr25csf3wrNXqDUfVRmN1e6u+tHTZ6ffHE4rhKrWmYXpeECMYxgoiQVEwjNi2G4bBfD4lCCIIQhiCR8MxQ9Obm+uB7z979nRtddWxzP5gwHPcs6dP84X8fK6wLI+gGEbg0+kMiqHW+UVGFHqtM9eaV4oZAEO5Qu6i1fp//ev/p6rMZZGfzybVSimblWEABZ4j8Fy71WpfXvZ6XUkWKYqCYdDtdhzH9n1PUeYwDGRZtiwzZTN5njefzxVFEQQhbQOiKHJdRxTF1157DcNw13WrldLi4pLvB6qqG4Y9mym9Xq9YKuXzOcMwWJYOo2A47P7V9//C81wYBp7nzmYzkmKKxRxBUdVqs9cf9vqDmaLQDG25jqYZUZxgOBEE0WQy/eKLxwxNS6J4uLv34x/9EAEwx3FpG53L5sajiWEYvu/DAGAYBsMg8H3f84IgQP6OQiCKIk3TSZLgOC4KAsuyqezPr7TjUBSB4fS0w/Fc07IYlmV5liRIjuUlUZYEiaYZhmGTOIaiKHC9WzeuZ2UJBpAfBBSFUxRp25ZpWoqiOZZHk9xkMP/5X//yZO8cTYjnn++899Nf9i6HSYhkxLxnRbrmqKo1mSjtbn86nWuaORqMDMMqF6scK3S7/YWFRc8LEBjlOO7zzz9HURQ1LUsQBNuxkzheXVs9PDq4/9abnz54cO/ea1/+ytulQvXlk93HTz/xdH99ZSOMi2++/WYmLz99/oXIijAEPX70uaaqyytNgsAt22k0art7u5989lmvPwIIWfITkqSiMEwg4Hmu7/oQgKIoYhm2XCiqM42lJSiOK9XSxdnO1atrSbV+edH7xd/+rcAwjmlqhiFJ0mg4CEMfJ4h8LksxLIYgnMBnMnJ7NK1Uq41GHQCoWMh5rlupVK5uX9l58dx1nHy+8PDhQ0EQJEmKoigFMlM7sxhGKZE1DEOW5clkwvM8giDpJOR5HgSBIPDTgT1JEs/zUqJTtVqtVquiyN+6eaNWq3Y6bUO3WIZ1XRfDwJ/92fffeefdbC6Xyge12+13332XZuhu+zKKIihJdM2uVqsIji8sruA4YeiTZ89eBoHPC1wmk9E1neEYjmODMHIdNwzDKEKHo+HPfvazO6+8EkaRZVvPX+z+j//yf0IQ5NNPPz0+PqJoyjQNAJIUYYiiMAxDx3F+vRtLCVkMw+A4PhwO0yVfCpMlScIwTGoKAyDIQzwQJ3EUEQQRh5Hv+7ZpEjgRhSEMwziC+r5vu9a911790Y9+RJIEDCdRFNI0EwQBSVH5bIHAScsyFWXmgYRhKNfz4jhKoMQwrYODQw9JwsibKzMAJ6VSjiSRMJAYGi8VKoVc1soYvV43my2Ypv3FF0+bjWbgh0tLC6VSAWU5djqbwgiyvrFhOfbBi4PmQuP8/Pzx46enp2f//L//lwiKWYbevzhbX1ibq93ZrDdTBgiGy9ksR7PPnjwjCULOyKPhZIaClaXmBx98fHC0C1DsD/7BP3z2Yu/w+LTfHwRByAmioqih60EQFMWhY9vty0ua5LqtdqNUPTk8SmL/5OgIQZDbt289ffy8kM+fnZzcuHXrlVde+cl//RkEg6PDo1fvveqHcbffY0gsCIJX770+mc9YjrMDP0kSAKDW5eVgOOQFAUPRO3funJ2diaJ4enq6tLTU7/ctyzo6OkoAvLS++XJ3r1go2LYtimIcxzzPe54XhqEkSdPpPH2Eoih6npcam6TWcrqu//Zv/9ZX3n1nPFNxnOI5jqPxJIm++90/z+XyURSdnJyOxqMvvfkmDMOj8Xh9bbVWq/3zf/7fra4saIpu2TbHMwiM9vtTTdOGg77n+51Oh2FoQWS6vR7HZRAEceMotRJkaNo0TcM0stnsH/7hH37rO1acQL/7u79r23a73ZpOxxiOJUkEAAiCII5+9S8FyAAAaRJNm5NU2jflVmMYln4x5WpBEOR5Hk7QAEEDP/Bc1zAMx7IIDLcIgmXZOAgwDJdlOYrCOA45Tq5Uyy9fvnAdL1/IRmEYhjFB4J6HxnFMkiSG5WfzsWlamYyIosjR0TEny6VKicxRijr1rUBkeRDCnhnoc5MAJA5hcQRLQrYFdb/9rW+4rvPw4WfT6fT27VvoZbtdq9Xa7fY3vv2tzqCbwAlJk7sHuyvLi5lcbjga5IpytsgGLvPo8fsZPr+2vOX7NuRFQ2cEF2AKJQ3diLwgX84zHDWeKppurW9evXvnlW63T5FMq9WJogQA2PcCL/Bj3+doEoqTIPRu3bqx+3wvn82pyvy1V67VKrKpT4+Ojk6PjwPP39vdURUNRZAoCg/2d5vNhelsnECx7zkSz/f6/dffuP/DH/7o//Gv/9+nJ6fXbt+JAh8FoFgs9vo9lqJpmr64uBgMBo7jSJK0u7ubjjjFYhEnKdu267WaYRjFYrHT6QAAstlsGIYpXA8AhKKoqqrZbDZ9finZKl1vJkkMJcnh4SFN0xlZfr5zpKq6ruv7+4eSJIVRtLm5RVHE9vbWycnJdDZdWVx88NknGIo0qlUqgZzAPztrJwkYDIa2a//ohz+uVkuKogahK4qSabkQABiKQgjkuC6KwJ1O5/NHX/yL/+6fmKbN8+R4ogdBmJ7dcRwXxWGSwOmuIU7idDGbbhPSGwGGYTRNcxwnFexMS0F6GpAuxgiCAAD4fgBgwNOMbRlRFKEwVCuXYBQhcTIry77v97p9DIH/8s+/FyXhZDxGEVAulgCADM20bVvXzNl0hmEYzwthFIxG8yiKaJr2/RBAEE1wrh0M+5PJZMzxFE3S56ctUeRZlha4jIF6ljoRxRxN87du3tnd3ZvPZ7KcWVhoJlCEvvPuu71e76133/niyeNCpeR6/nQ+xVCMYdgnT55MNZ0i6Xt3XwGJT5PAN6LT832OyuczdYoQB+E4k+FEXoyTmON40zIgGMqXylJGsrzgP/zHPz0/aflBGAYhw7BzVQMwhCEQy9EECnued3l+Vi4VkQiTiqXxcITEtiBQHMsahteoN6A4KL5ewHEk8L3l5WWO4zKSmMaQIPAszz5/uavquulYt2/ftH0Hx+nd/T2Woavlymg4TKKw3W6//fbbtm0fHx+XSqUUNkp5n34MYTixuLj48uXLdEUUBAGKojRNTyYThmEhCEpVX9KcpKoqwzAMw1Qq1Vqttnt4HIZhuVx2XUtV1el0OhwOc7nczs6OJGdOzh7gKPq9733Pc537r782Hgw63fbG+gaA0W77AsGxhw8f1WqNdvuy3b4slQqO68Aw4Dne87wkgeI4DgMfQzEMRUkSj+P4s4cPNtZWNzZXDcvtdnu7u7scx0FQQpCEaXoQ9KsSDyAohqC0LUkrQIqa/XqjaxhGyiFMiYWpvdjfcbHDIAhIgkx93nmWtU0rsqOA8DOSFEVRLpfJZKXmYp1l2cvLi1arVa1WGYZOfbcUZQ7DSKFQSHewFEV5nothSBgFMIIBFPHdKMvncmJ2Oh0Zc7NSrcZxMOnP1KmOIGBrfTOXLV9e9GmG+PK7X/tPf/Lvj46O77xyCwIQ+r2/+svVtdXLbtu0LFbk87nclatbZ5fnL1682NjY2LhybTQZsxy9trV8gQLgAd+JWYIlMQYDtGeHHauHYgiKIflSHkbQIPQfPX6MoMiTJ0+SMKFpVhkMgjBCACIKgm5qLMNRJEngSBh6CBKZhiZSchT6WVleX1969uQzXdVyuUoQgOl0cnF5eeXq9rNnT3XT5gSBF4VMRoIAfHZ2Np6pDCfgBGVZtjJXIAyNong2Gf/4k0+ePX9ezOddN+B5/smTJ5Ik5XI513Wn02mxWOx2uxTD4jgJAXh/fx9BkGw2G8cxiqJhGKbpBIZhDMM4jkvrY/pEU39zmqZWV1b+9f/2v2EYsba2GkWQZVmlUmk2mx0eHv+Tf/JPvnj8WFU113WvXLlycLDvB34YhpubmziGzZU5gmCzqeb7/nw+0zRNUZR8IUvT9OkpdHFxLmezOIFbtu06EQIjKQ81SeLNjc1KpXxx0f7lBx8Px+MgCE5OTgaDIY6jYRRCUAQAAaU/IgBpb5C+iimNNV2Gqaqa4k3pB9Iq73ner/a9AIrC0DRNGAAMQSiCJHECRzEYgnLZbBRF5+fnFxfnGxsbnU67UMj3et3T0xMcxzc3N5MkubxoMQwbx7Hne0kSEQQBwyAIQ89zoyiKQqhYrve7IxQBEAyLIu+YQRyHtuED4AMY2Ib//s8/XFpqgpj/+Jef3rn56tn50Ww61XUVvnL9WqVWe+3+fV4SLy8vP//i8/3Dgw8//DBtuf73//3/a1r24dHRz9/7W9PWaY755re+USpVPDeOAwTHSFVVeU7AMSIK4ziGTs8vO53+D37444PDY9txp9MpBMG5bD4MQwBDoihIMo+gUBB6tm3EcZDNSLqu4hg6Gg0++eRBuzPAMOz8/DwIgv5wQjFsHEdfeuttGIGXl1fq9XqqcZfNZuuNxkW7ffuVO7VqTZYlCieCwHvrzTdM3SiVStvbW5lMRlVVlmVd1zUMY3t7u1QqpXTj2WzW7/dT8QxJkizLQhAkHY9SIohhGK7rSpKEIEgK0WcyGZIkeZ6/cuWK63mGYTQaDQiCMjJfKpWePn2aPunvfe97R0fHOI4/+vzRw4ePkjj+9JNPnz17tri4VChkSZKgKbpcqV67do0giG63GwR+t9udzWZpHxIEQbrK4gUewzBNUw3DiKL4/V/+8i/+4i+m0+lcmadmbZqm8xwHYPB3V4dh+HdafGmMpo72KTMrZRSk4G5a5cMwTAmEURSlmwgMRREY2LadBne6M8MJPE6S+Xze6bQZhioUctPp2DCM9LsgCOI4bjAY+L6/urqahn6z2eR5wbadfL5YrdRRBHccF0WxXrePQBgK4zRO0wS3trS+sbpVKdYZkicQcnfnCEMpkmRfuf3azZuvjEYTBEZRBK/V6uhcVW3XTWCwtbX1yacfN5oNXder1aqmaRAE8YKsKVYS+CzLLa+uBkak6oaqGqYOjQ3LDwyKi3f3XiAo1uq2AQrOW5edXtc0bU4QddNiUcoLHIZhliVhPBtbttnvd3KyWCzIHEvMpxPXdRAYJElUrVVH/YtarTSfzZeXlmla5ASq22tftlulai1OQKfTMS1rbXMrjMFFq+OFyZtfeucP/+E/UlVVzGUBAk+m45fPnleqpW6vOx5PMplMkiRpdbMsazAYnJ+fQxAkimKn18+VqxAEpWGKIEh6CpdO8blcrtXqZDIZgiA+++yzVLjKNM1arabr+te+9rWUhtdsNjmOD8KoVCrJslwsFnu9ga7r7U6HYthnT57wPO+6YrNe+9KXXidJ3LQcy7RgFH/x/EWUQCzL5vNZnmcXFxd93//pT6erK2sffPQhy/GO40iiMDdmJEn6vkcQhGWax8fHjusgMPzk6VPLsoLA13QNQWAEgdOkiSCI57m+56Eomkbh3zWXfpIkqVhV2ncKgpDSdh3HKRaL6ZsMQVDg+5LA8Txvm5auOySBYTC0vrZimmYSRwgC9lJCYL3W6/V4jltoNofDIcWyge932m3P9ymKnM1mMAx4QdA1zTQNFMVICLAMzzKo5wYsLQgcC8XJ0cFpNisRGBX4M5KgYRjptHoUQT1EPv/K196ulKvz+TgIHRLHYVEUJEn6/PPP/8///F3bcVInFxRFb9y4AUPw1vrm+to6y/JRBIVxsnd0SLEMTuK+57MMc+36NQSFj09OJVmeqcrO7p6qqSiKRlGEo1gURkvLy/1+X9MUCEoQGNY05bXXXy2WczCcTGcjzdCiJEYQxPVcyzLiJKApKpvNxlA8mU4SCGxfu37rzt2llZXF5eXbd+6+9e6XpUy2XK08+vyx54einBmMhqIk9TpdBAYLzQXD0Pv9fj6fazSbpmkOBoMwDOfzOQRBqqqSJJkkiee6i0uLKIqmOSDtyabTaVruMQzb39/Xda3b7RqGwXFcesOZKhaVSiVVUXiOu3//fqVS0XUdghBVVa9evXp8fPwv/sW/WFlZiaJY1/UgCACA93Z319bW6vUFgiARGC5X8p7nkSTNc1yhUPjH//gf/7N/9s++8Y1vZDKZtbW107PTQqEQxcmv2VUp8hUEwd1X737nO9/JZrLT2Ww4HKqq6nkeRdEoikIQ+FXHCUEIjKQLsPQmLM2j6f/+XYqN0+SXgk0MwyAIEgRB+nmCIFzXbbdaFEVRFO06DkVR6WS5srJsmnqzWRcEXtOUer0uCOLy8vLNmzcLhUK9Xs/mcunulKIoAMO5bC6Xy4uijCCY63q27UIQAmBY1VRV03CMAAAejWYnx+ev33ujWCgLvHj71p0kgXXd+k//8U9/9IO/ef7sZafd73b68M7+3vOdF67vCZIYJvHq+katVr+8vHz+/JksS5qqddvdV++8trl1bTicf/kr3/C8wDD1XDFDMMhUHSVokivlhpNBEPqKqkzGkziOaYo2DNO2rP393Wq1ouna2dnJeDz6rd/+zte+/uVqtcjy1FyZ0wzJ8SwjMDAG8wKfLzYePd29cmW71xtqujlTtXKl2u8P/ua//pThBMNxTy8uVFX7y7/64db29j//H/6Hr3/jm/l8SZQkTZtfXJwN+t1bN2+ORqN+rz+ZTGq1GsMw4/H46tWroihubW3RNP38+fPZfB6GUUoATYeGbDbbbDZhGJ7P5/1+v1arkSTFsiyO44IgWJYly3J6kcxxHEXTNMNubW2zLBvHIYJAaT9369YtFEX8wI+iaDqdWpbVal2yHOc4ThRGKAoGg6GuOyzLbmxsXFxcdjsdjmOXlmsLzcLrr7/KMIwoSo7jAQBjGOr5PophAIAg8CmK2t3Z7ff7N2/d0jW9WCyyLAsASJI4iiMY/lWAQkmSvmAwDEMQlFaPtI7/GoggCCKdltJyn0b/fD5P8dEoCgkcq9drMAJ4jsnKMgzAyfHRQrOxf7BP4BgKQ1AcacqMIrA3Xnv18ux0f2d3MhpfnF1kM9n0TQ7D0LFdx/Y8NwjDqFZtNBqLCIIEgc+yNIogEAQRBEEQJEVRpVLpJz/5Kc+LMAQfH546lqvM1PFwggB0PJxFflIu1uFqrTaeTFACr9Zq1WrVMHQUQ+/ceQUA+PHjxwxBgTDe3d2dTeeffvbg6PQkXy0sri/ozkzIEF5knrdaCIm/2NvtDwcJlKTIMIqgUJxIoqQoimFovu+xHMNy5IcfvHd4uPcHf/C7w2G7VJYQHHi+Z7uOYVqGZdE09uV3Xjs6O71y7UqhWPSC6L/+7S/EXL5QqpxeXGxuXWk0l1GSWtlY123ng48++d5ffv/TTx/s7R3k8nlD023b+uCD9w1dGwwGOy9fSpLEsizP8+12G4KgZ8+eFQqFYrHYaDRsy+I4LvVsVhTl4uKi1+ulBs/D4dAwDAxDURTN5XIplJPihSzLLi4uVqsVGCSprfRwONZ1u1QqNpvNUqk0HI56vR4Cw4V8QZIkDMM2NzfiOKYZJkkAx3EkiQEAHj38/L/8lz/z/ADHMQgCrh/jOHX79u16rZ7N5hiaRhA0ieO0IjMM2+12s9lsoVA4ONiPkzhNn2l+/btwTNJwTGMxvdlPkaa0PqQJMm1A03Pq9FIgxc5M0/R9P634fhCkwsrNRuN3f/d3q9Wqbdt7e3sYhiVJbNtWHAdhGPb7/V6vd3FxWa1WBZ73Pa/ZbFYqFQiCFEVJ+34EQRaaiyiKmYaF40SxmGs267Is2bZlGAbLsNPpJAiCYqG4v7/PcaJpWizLxXEiy1nTtHO5QhyD05NzdDqfbW5tipL0xRdfuK4zGPQ0XQUQhCGINle67WG92VxYKr9+79VGrebarmmrw2mrUOUiX9esyUyZWK5JULimqzCMCAKvaRqCopVSKfD9er3meC5OkgCDLBdqt+dvvHn/53/7NzgBwzBsO24QBwiGQRHket5UsRxbq9ebnz95UszV7t9/40//7C/u3suMxqNcsfRyf3+uaLP5nKKo1998q7m06vohxTAwDHAUSyK/XMjXqlWGYTIZAAPguu6tW7cuLi6WlpYmk0mz2XzvvfcYhtF1nWXZtIZms1lFUcbjsed5qdplLpfr9Xo8L8IwcnFxIcuypmkpW9Q0zXv37qEICoNEEgU/iJ48eYIgyO3rVxAkb1nWT37yE8/1dMMgadp3vTiOHz95gqOorn+dFznHcY6PxlImb5qm6zp/8id/srq6fEVagyAEQeD19fVWq0PS7CeffhzHUZwkvw61SqXC8/zVq1c/+OADGIZTC7bUHAJF0RBKYBhOCz0EoF/ny7Sa/3pmSsMxZbqkizEYhlPLyV9/PpvJxEk8nUz+4T/4w431jVwuVywWAQT1O10/CJIoAiDBcQyGwWDQa7dai4uLrusahlkul09OTsrlciorXigUMAxrtdqqqlEUJcsZRVFUXaNZBiNwkiYcz55fTldWV45PjnEcxTB8MBiGYXBxfsELjO2aMIhnQJsmwcrKErq0vPzFF19gKAoDIAiCqqqv3Lnd6bQljkcQBEWInb2Dg73dVuuisbiIYKhuKoWyLJD8D/7iB63uzPbiGIY4hsFwDEAgfbMlnicwDAojDMNKlVJ/NBiOBgmSlGvS06ePPN/5wz/8/b/43vdsL0QJlGUF2IdIGrcMlyDYOIlr9RqGsQ8ePnQ8azKbWrbT6fZe7h2VqxVJlC/brdfvf2muas2F5SiKAJQMh8NsNvfL9987Ob1wLDuOo9F48vw5WFlZwXF8NBolSfJv/s2/uX79eq/XCwKfE0RWkoxOF8fxbDZLUZTneSnMVCwWZVnGMGI+n5um6XleLpdLmzYMwyRJ6vZ6osjnSNK2Hd/3Pde1vYiikDD0hsPh+fl5pVJ2PJ+h6CAIkjgaDAY8R6alTVFV0/afP39B4CSCwB9+9EG9USZJolQQNc3I5wuHh2ckSVuODQCIwhBBEJLEkySRZXk2m62tr42m87miOo7jeV4UhRhGIAicJGiSQFEUQdCv8mJa3NNMmQZ6eoP6a/gpDc10QEwDF4bhVCq1VCqtrKxcu3rVcZw90wx8XxTFXq8bRYGqeiRJWpbpev725pUXL3YgCMAwoqpqsVyy/q4ujcdj13XTrXK1Wq3VagAGe/u7QeBQFIXhKM9zEIgd1ykW84PBAMMw09R5XojikOMEhmHm83Gj3hyNB6PRFIYx9PX792mGUTQNRuC7r746nU45lvnww8dLS8sLjUqlIEWBA0C8s/Pc8x2MRJ7vfv7Fi4/vv32TEdAgChAcHc8mUeITFE4QKMdQAseZuiHLUhyFu3u7KWykKvPxeFBv1FZWFy9b5wSBkjTlBYHlWoZjmraNYkA1ZlNFwUgijCIEJ0ql8lzTv/K1r9cazX/5r/4VguA7e/t//N/8U4YXstl8rlDwg6Db7Q4GfUWZp55u/X7f87y1tTWWZRcWFrrdLoqi/X7/j/7oj7LZLMMwsiyvra2tr68zDGMYxmQycRzHcZz01UqShOPYQqFQLpfTxGNZVj6fR1G00WiEYWjZtu95fuB7nnf9+nWeF5Mksm2vUCizLJvNZl3XMwwzFSkWRJEgiTCCPvnkk9OTE9MwW63LhcVFnuf7/f6PfvTDjz/5GMPQMIoLhTwCwwkEXb12lWVZiqSiOMYwzHEcWZZrtVqtVhNFURRF3/dTIguBE2mJRxA0jbM4jpMk/nUS/XX6TBNkeoMKAEBRNF2E+r4fhiEAcBAEMAwXi4V3337r//o//8+rq8sQiGmaePDZp0+fPu71urzA8Tyjqcp8NnVsC4XRdqslCkK9WmNp5u6du7IkW/avOKaTyaTT6WQy2ZWVlcFgeHR0wnF8NpeBQGw75nQ2ubg8q1YrAMRJEpMkPpvNUPRXU9p0OrVtK5PNTqcz1/ZIkkEt20rCuNVqeZ43nc1Ojo+Hw0GlWs6XxU67zTMkDEMnJyd377/erDcePXxYKhRW15Zj35+p4zuv3t4/6M2m08WVpjKdSxLHUtx4NLIckyDw8WRsOTaCoZlMRjVUkqY9x/rwgw9XV6vbVzY4iT066Zwf9yzVQwLAcAWaREzbjBM4iiHDsnXLxilOlDPf+6u/Ojw6VnQtDOO33v6SbpjXbyzbTlBv1P3AdTz7yuqGYRgsy9+4dfvssuP74XQ6LRdyTx5/cWV7ez6fraysdDvts7Ozfn+wvLQ0n83OL9ue44IkMVQNRhGCJOfzOcsykiRzXJ7n+dFoRNN0LpczDENV1VKp1Gg0isUiiiDFUjGOoWxWwtBV3TA/+/TR1tY2DCOT8WQ+nScAJnEcgiCe53Vd+/a3vuG6fi6b+/DDDxAUffXua8dnH9AkyTCMLArT0cTQTJzA4zjKZjN//3d+67zdPjk91jXVNHQUpRlGnExGURzKORkj4CSJ19fWj4+PxpMJjCFRFMIwDMVwDENQEMZRFMYRjhNpcwnDcErKTjkGacMQBEEURTiOR1GIAIDCAMMw34s5mmYYplqt1uu1MAx/+IMfEDi+trw8HQyn04ljWZLIiBwPRQlDUr4XxkEAQTAMJQxJwXEcx6Ek8vsHR67rLi4uxnGsKHPLtgCAAEhGwx4MxziOIgiK+nAYhqoyCwKPZTkEJCSOBJ7bqNcBgDRN8X0n9DzD0HAC8R0Lnk+nMAxxPGuYhmEYUibreP7p2cUf//F/Q7O85fpyNn/z5u2clDs+PLl+7YYsyNX64jtf/abpRZlC7tatK4JIT6cDliPGs8Fo1idpPJuXRZnTTFV3HdsPB5MZjtFwhDIUc/PGTYIkVUMbTXsQ7HmRxfB0BEHDiWpYIYzQ3d7EciM/Aj6E1RZXwgTGaKLarBiOkcAhTiKmpYWhj1EoTiFh7DO8gFMsgtMBhBwcntI0p5t2qVwOfW806HdalzRJPvjow/Oz0+tXr9bKZYrEh71us1mPQ9+17bXVFZDEOIrxHI+ipGFY6QFxqVQaDocpAyh1Y0mBVYIkYQBgKAFxzDOswLK+54VBbGrmte2r9WodR3EogZIoQQDsWO7+3kGlVuZESc4V/CDEcOzOrVsYgsIxpCsGSOAkjI8PjzqX55sbS6/evfHqnVvrq2tra2tLy0t+5OMUIeWknb2XZxdniq4tLNSDwI2iQBT4tPVEERzGyTCGUIKkGY4kqfQYVZblUqnkOE56yJ/y61zXTpIIQWHfczEEJggEAXHoOySJ2pamzEb9Qffg4KDT6qAwigLs5ODYMa1CJkPhiG1apUKZwEjHcmRJlCWhUi4FnsOxZLdzORp04yislIth4B4fHXmuCwPIc23TUFxXi0IbjV1DGUOxj6GQ79mz2RiGYmXUF2mcw1EQR7PJZD4ZebaOJWFo6TKDFXiagUPUNAwcRbudDgLDum7svHzJcbymqb/85Yc3b9++OD3Bccy2nfForM1VZouOMHIymc6m6saVa/fvvWko5tJydW93v9/pyRLr2D5FYhgKHR8fdwczVpSCKCQpyrLdIPAazeL5ZfvdL9+ZTNt+4NEcceXaBgmye89PIR+QNLeysnJ4eITAhKKrJMt4gdfq9MbjfjYnRGFYXWlOZuNCsVgoFDhZ4gVm68qWaVqG5fCCuHdwFMXQs+cvRVE82t+nUbher+EEwdLUP/qHf/RyZ8exzIwstjsdkqT2dnY4lvE9L/A8AsfjKBqNJ8VyeXlxqd3qmKbZarXSMTmt7ykWk8/lEgDZlsNzDJRACQJBDFcsFp49eVKu1ERBqpQr87kSOAGCI4ZhLC0t1Wp1y/4VSSqbyZTKRShCNzfWYZDAMHT96jWaoniWG42GNk0WC3IhL+eL+fF0BMMgk5UZhrp2/dqtmzfkfOb0+Ojs7BRHUALFZpYS+AFJUWEYeVEQRjGO43EURlGU8kgsy0qH/V/jTWn3CQCAAYAxGIaS2WRMM1QukwEALlcqX//GN1bWNgq5vG24s+mcJikcQaMg0FSH5xlZLpiGCcVxtVIJfD8KAoRJwsDzPSBLHBUQg/kkjhOGYX0/SBLgug4MYhSDwtBjacq2TJLAETgKooRlcN93Qh/1XdOGvND1MYQNXDsj8zhG+q5pWRoKkQLNZLMSyhBkt9O9OO+9cvvqvXv3Hn72EEPQUr7Y7XTOTk5uXL+CIPDy8qIkZaqV2mefPXzjjTdGozEA4eLiQqd7qc/Ua9c3kjioVYsYisdRvLK48tOf/qzbw1geZlkMiiHfixMkgRFU0ZWZOv/wk4+XFosbm9v98bi2uXr0ssMyfIJG2Xz+5c5esVjw/PhqpTHV1b2j3Y2NFQj4QejIGXE2m9Zqi77vx2E4HY9293du3XplOOhn5QyCgCtbm58/fOTa1sixGQJ/5d7d6XTS63YP9/ff/fKXSYIYDAZQkmQzmf5gyMmZtfU13w+eP3uZJAnD0I7ri4KA4RhJkoqizOfztD6mJCaapkulEkGStuPSFBkFoef5NM16nksQZBD6uqbhOG4Yumka2ULh+Pgol8sJAv/tb38rDKNMJjMej4LAD8OA49hGo05RBATiSqVMUUSxkMtlJZzAOp1OAgiawDiauHH1/sHB3o2bN165fbtWrwIAlctlcAsrZEuapjmeq4dRGnlhEEIASpIEQVCYIFJAPi3rKTb569BMW9UkSQicjCM/k8mEgZ9eVDeadc/zSBxvNhoIwJIw+uLR5xRFlUvFMPTKxbxt23EYEhgWRSFF4ILAc7yQkYT5bG6YZgIlQeBHUUKRRBxHEARc1wEAEARuGgYEkSSJG6ZBcWwQBLbt8BwfBB6OIY5lQjFAsBABARS7NMFYuonBke/qSUSwdA5FYXSx3vy93xYVdW7pJkWQ2lzdWF+XZOmjDz+0LBNB+MePn0RRXK81stlso9EwTCvwfYZhL85PCBQZjjrVev5gfz6dT7/+la+iCFauZhFkW/3Fh7PJmCB4hsZ9PymWiv/jv/pv52rv9t3tTz75he0ac1VDgRBGSQKgq9evKbPJ9ZvXyuXyaKx0uoMbt7YPzp63OmejQe/NN+6jGNrr9HEMBQAMhiM5nynksiLHEijaaV8MR0OaZHIZeX1txXGdyWB0fn6+urrcbDZd1+33+5eXlysrK67rjsZjWZY5OTPo91VNd1ynWCy6ng+jsKIo0+m0WCjphp5izgzDwDAsiuL9+/d/8ze+gyCIwDOebWMkESfx2dn5o0ef37lzN5fLjYaTu3dfOTw8ECVpMp5UKhVRFCmKwgmU56k4jkWRPzw47DJMrVTb3t40zArL0qLIh2EgilycJKZpsAzzcv8ol5UKX3ojjqNqtVyrVoqFAoERjmuzFCdy7gTHozhGMYzned/3AQxwHI+SOI5jFIEhCHEcJ+XUpTP7/98ID5IETvFRBEF8L/RcF0riJInffffd3/md38nmCwROTifThebCtetXO5dtZTaWs1ISBVEcApB4nu26LoHjOI5almFZZgp8ZjIyBpOmJ8UJ5Ng+TdMIgnieAyMgimIITsIwWFhsjKdTmuGyOWo4HKIIHMahyNFG5KEwgsIRjkW+o42sCYbDGYmnKaxUypYKIrq+trLzcqdULJRLBQhADE0yFPHs2ZN8Lv/tb38LQYDrOVEQ/P+4+q8nS880Pwx83eft8Se9rcwsA1PVMI0G2vcMSU03xRG5iqVCGl3sRuysgsvY2I1YKfZSodh/QBdUbHBDohRaUjuiSIqc5vT0NLobjUY3UEABKG/Sm+Pd583r9uIDSiOdQCASqMzKqjzv97zP83t+Rtf1x48eqYo6GY81Qhp+LQwWz549tkyl0Xq7oMXG5tLJSTGc9Ib94Xe/982HDx51ltr/87/4i6OjMZCapptBMPr9xx/evnOjoOXSykpBMwl7mm5qOhwM+mvdVcMwAEZXg/7Tp4fnl1fHvaeaAc4vDr/33e94Dff5s+fLq6uc81ajGcwXWIEIg/tf3DNNazqZDXtXiqJlafzo4YPt7e39/WtffPop5+zWrVu9Xm8ymVSIZhzHBwcHT5+98BBilEZhtLK8LCFQVJaXbDaf1/xanueVFrkCX3RdT9O0Vqs1W83JZAoAVDD66MOPtre3VVUhhBiGvljMX3n1lqFb//6///f+3//4H2dF7rpuGC1ebb5SlqVpKr3eeGVldTKZBkG43GFra8t5Ufd9CwDEOF0EIYTStu0sy0xDs0ytXqvV6zXKuOu6jm0bhkEwDoPIsqwbN2585zvf+eWvf4UJefr0KVGIpmklo2VZlmXByqLabH09ocPqOCqKQgimtKyqKRecMY4xRhDHcaQoysrKysH1G0LC0XDMOR8PJ5cXZ6cnx6qC1pe7mq5wTqM4VDNMKQvCeeWGLjiXQK6vr4ZFIYVAACEIOu02oyxLY0oLRnPftQFgAIqbNw+u+sN6w7U9e3g1YEVq2TotFUGZbSqOrSRxBAFVIFaJMHVk6VjQlFycnNY9N0+Si8sLx3au7+0ZuhEFQd33njx8uLy61Gg1FUWJoqjf7/3oR3/42quv/fSnP9U0ndLCMFS/7owmfc9y4yTWDVKytN2t50X83rffvrwYmor69NnJx59+cXw8+z/9n//3qqX3Rv3msp+WRVkWW9vbGvQuj5+Np7P+YPD97777Fz/78zgKy1IKKGZBMJpd/tGP/50f/uBH9z691+m0XMd1rHqaJKbu2KZFRb6YTYs821xfMXTl9Phs2Ltq1nxRloDz69cPBoMBY0xRlJ2dHSHEbDbzff/+/ftr65uarteazZ2tnfl80R8OhOBAyooZWbmEIoQqyQQAYHV1tVarFUXhu3Z/OAnybGVlBQDY6w0eP378xhtvbG5uuK7j2Pa1vd13v/WtD377UVWnbdtcWekWRcU01fb2dy4vekKwLEtUTcuLQkqRZVnFVkEIWpaxstTuthuEqHES1zxX03RTNySXKlE8x+1fDY6PT03T3NzcBABMJpPpbIaIrHAlhDHGREr+0m63IjR9bTxBOGfVX62KKYMYe65Tr9dUVa3X64SQxSLs9fs60aQQCEHOSqios/k0CGaYQMM0PK99dnaWJOHy8kpR5BAiznmUBLNFhCEqSlbzvFajPhqNTUNPJeUKbjXraR7M5hPLsyTgV71es9V0PItTxXIsAMoiTiydIEDrnoGRoRBoamrdcxxDA4ySxXSqqtru7s7m2trR0fHTh49/9KMfOYb57tvfrNXrv/34o/ff/4VlWa+++rrrus+ePVleXiqKYjwebW5u/uCHPzg9PTw5Pr5+/Uar207TZD6f7u/vHx8eXfbOO81lw8S711YPbl776PdfuL5RazUNR8tp0V1dPjs9nk7nLAufPXv6zXfeqdneo6ePEYGlKEsgSsqay/bf/vf/41dvvRpHMSTSMDS/5mJAer3e3rUbpqH3+qO11fV+v6cqeGtjo+7V7n78cbtV7/f63373nQ8++M3y8nK1Wz85Oel0OlmWWZbFGcvzbB4nWFXbzXav11taWZ5MpwLAdrebJIlju+cXZ0VRLC0tFUVhmuZbb71VrzeSJGs1fAjhxflVu9koSwoAWF5eSpJ4ZWVlOp1zTm3beu/b7z178WJnd7vdbi0vL5mmFUVJreZIAOr1GoJEw4gQLCSlOTNNwzSNfr8fReHq6kqz2arqnKroUaT1eoM8L/kqRxCrqnZ4eDgcT4qi4Iw1Gg1MiO/7jLMwjgWQEEJVU4mmVJr3ipxV+Z5Wd70QvBqYFEWpZilGSyFFu9mpAArOuWU53VaryIuKRCeEwJgIwaaToaIqaaL6fs2xrSCYEwylgvOiEFwkUaEqpNZq0oLW601FURQMFYygEKau6aqKickAmM0mjlcbnZ6Lqax5nu/XbNs0NJjqKspKIJiiKrahqwo0dIKkKLIUSoBMzcAAsoIqiOiKapvW/S++2FzfoAUd9Hq6pn772+91OkuPHj3VdT3Ps9FoVMHF9+593u8PXdczDOvevXuEKLu71xzXHQ7HhChRFEfRrFa3HVd7/c6N7373jmVr129ci+PgxdGLJM2LklqWjRVFQsg51UytPxkEaRiXsddw3/rWG2+/e2djq1uw+MXR08l0FERBEAQASNu28yKbTMf713Y5L1UVZ2mCIHAdu+Z7tMhdxxqNRru7u7u7u1EUXV5eqqqqKMpkMqGUrqyunp2dUUoJxscnxwBCxrmUUFU1x3EwxhXB3vf9Smo3n8+v7e40mg3XNsM48T1P0zTGeKfTWlpa8jzfsgzbtnVdu7i4YKyUgP9Hf/Inr7/+2vr6+ubmBoR4NBrLr9bf2LYt27Es2yyKnBBMKWWM67qq61pl3AwhyNIUQlAUOaMUSFkUxcX5xWK+uPvJ3UF/sL21fePGjf39fdd1r1271mw0q7ZSSkmL4isep6pWwg/DMCqaZqVAqj6NECI4I4rSbDY547quf+Mb39B1PU1zQrDv+YxxCGDN98bj4enpcUlzAIFlGY1GnbGy37+Ko3A6HXPBar7n+24cR4vZTHJu2xZBqH91xVkJgaBlbmhKlsacUwG4qitUFI5nJWkYxoFqKhJxwzZd38UIGZrGGUviuFGrO5YNBUAS1z0fZWnSbjXv3H79xfNncRR22y1T1xWM67735NEjBGGt5vu+SzAwdeM//A/+A8+xnzx+BAEIw4BRwRhcXd0kxHz69DCIkp2dvVarMxxNLcvlQsyDse9buqE0mv7p2eGz54/vP/gCE8S5SNK8VvcOru/v7u2WnJ5dnM4Wk/7oUjXx3/rJHx68ctBZqo2mvfPemaopS0sdTdNazWaWZu1227HMMstMQ9dVZXtry9QMVhQX56fvvfuuaRi+554cH66trTUajU6nUw2wFU3k6uqqgtBHo6GiKIvFoub7WZpyzlZWlqWU3//+96uVEmPs9PR0Y2NjOp0maVr3PU1Ti4I+evRISlmr1TiXnue/9947rVZHVRWMkWHqlm10u+1br9y8efMmADLPcwi557kSAgihlEBVlbLMiyKbz6e//e2HcRzrum4YJoR4OBwvFvNKBDwcDiqSh+v6eZrZtt3r9Y6Oj7/84ktVU9fX11977bXt7e1bt24tr6xUuyLP8yq2JGPsJSnkpfao+kBVVdd1bdv2XO/GjRvf+9733nzzjZ2dnYr5hbEyHU/CIIzjMI6C2XR65/XXGc0H/Z6qYE0hgpXTybDI05rnSEHD+ZSWeZEljm1qqjIdjRGEk/GwyDPOSk7LTrsRhYtG3e0utd98+839G/uKqmRZ2l3qeL5br9ds287LTNMUz/MZFRgqBGtZWnbbq2urm55blxKjosgBkA8e3K/Xa2VZOI7d7XZ+9KMfYoyWut3Ts5OiyDmjS0udLMuOjg5938MY1Wq1g/1936/NZuGgP11d2Vgs4jwXT58+J0T1a3XGhGU75xen49mwVrPdmmW5+mXvTAi2ubmJENzc3FQ0ZTjqJ1ncH/XHs5EE/J1333rn3beGswFUxTSapHlkWXqt4U2mE6IoECHd1A1D1zRVVZXpZBwEc8GFpmmNdttxnPl81u12IUQ3b96sRvJardbv98MwfPjwYZXUsbS0tLm5adv22dlZZWVTlqWm6aZpHR4eZlmWJEll01ChS77vlyU1TKOg3DStKI4//PA3n3/++WKxsG1jfX3V9SwheV6kURROp5N6vY6RKMvy8vICY3xxcYkwRoggBCAEFdOoKApCcGUFxTlL0yxJM4hwFCVFUQoJbNsuS9bpdF3HBRBmWQoRFFyenZ9fXFwAACzLun37tud59Xr9a/adNE3z5VSkqmq1ua3o1ZV8pSKa+L7/3ne+/c4736xg2so3RVEUIGWe5kVWnBwdffbp3bOzE0pL0zRKWtRrXpJEl5fncRQhKJeXu57rqApRFaxp6vJSe21ttdVqRoswDEMEwVJ3qdtpNxq1Ws3VVLJ3bUcztMveVZplju++8vorzU7z+OQ4K3KJYFEWGBMJMMaaYVhBkJydX+Y5q9Vbnc4qchzb89zFYr6xsb6zsy2l6Pd7Fxfns9mk2Wo0G/X+VS/Psv7V1fnZiUqUt++83WrWDV37znvvAgldp9bprlDKi4IKAe4/fEKZaLeX1jc2Xc9FCj6/Oj86PXz+4qnrmkWR6oY6Ho+iKOx2O2meRnH08NHDMJrHWXTj1Rvf/v57OwfbreWGxNRydcVQgihQVEVRlE6nLaRUVZULlmVJyYooSbO8fPT48Wg8UhRleW3t6Pi43++vra9BCKMo8jwvy7Ld3d3l5eXz8/OKVHZ5eZnnueO4AIK9vb1FEFQcXkrpZDL55JNPqvTl6k0dDocbGxvVeywEIARfu3at3+9fXV5V1GAhgQQyyzLf9+p1/9Gj+48fP2Kcc04hhGkaU8ouLy+r5g9BQBklBGuavrS0/I1vvKGq2vn5RVGUrOS6akiBTs+uioIXpciyknJZMlZvtlzfj+I0L4qNzY1Wq1VhnJUIrhLvG7pR8bL/er2sgPpqvJNSVn6fN2/efPfdd3/y4598+9vf2d3d3dhYb7fbpmkihAxd92u1MAzyouh2u7quf/CbX0XBHAh+ePh8e3vr1q1btZpfPWCmaW5tb3c6HU1TKmajZZoACCAkwSRcLDinmkq6nbZC0HQ8Go1HRCGqrn3n+9+lnD8/OnQ8lwtumgZlDGLcaDYNyySqlhXlZLqYzsMkLYqSkZWV5aLIVVVxHNuyzOfPn0+nU9u21tbWGKPNRmMeBgRhhRCzXsMI3b378ebGhuf4gvPpdMaE7HaXqizK4+OT11+/Y1n2ZDS+uDgrixgSsr2+MV8sbNcenpy2O83JbK4QrCpKWeTPnj7JExmnIZba+sbKq3dump42XIS1ViOKYwDB2vrak0eHnJHu8nIaUoRQnuZhGO5sb6MCxElSq9UIUbI8H/QHhmlubmxeXl6dnZ11uysIIdM0Z7OZbdvVYrpWqxFCqjdVBFHVq1UWtWGU2K5Xr9d7vb5lWoZhVFy1KtsUAFAUpaZpFXXjjTfe7DRbhmGUJROSYYwJQapqYwyOjl5cXV3sHdxwHOfb337XsiwA5fPnZ6+8cgMCBAiCEEynE8tyq0U/Y4JSxhnnDCqKOpsF82B2ftnrdpeyNH9xdBoE4Xvvvvfs8OjJoyembX33u98tiuL45OTNt9+6/+ABY8z3fdu2PYUEYUDLUnJeFdGqMa2IS5qmYYwZo51O50c/+tG1a9c8z11d6kIgm41aEARVfS2LrMzzi8vL6XhiqJrrOK7tsDKJaNxo1FZWVi4uLiiluq6ZpqmqSjVvUcqCIChKwAVp1GqaouqaPhoPHVcPgznCvFFv267lOsRvNII4ZYxNJtN6vb66tlamyWwyUghWNc3AWlHkglGJYaPVhooynExVBZOLi8s7d27P5/Nnz55VWjDTNCsvCl3Xuqib5GmSpFKKW7duHR8fn5OLH3zvB+PxJIzCkpaabjx5+nh5qUsZPTp+cfPWfq3uPXkaHx49X99YqTVbK+vruqYHcVw8f6pqyvbWZrPuW44Xx6GiKRjhesM/P+mbjjaa9EbzXLfUWTDx6zXO2OHRUVmWoohFkSnSCMrQs/yiyGaTyfLKcpxE9Xqj2e5kaVbkpWGYy6ur1/b3L9/vjcYTy7QODw+TJAnDsNlsep43mUwq+LpCXoJxkKU5grDf7wsJF4tFrVYbDAYYY1WzVFU1DGN9ff2NN97Y2NhAEHHGEIJhFN+5c0dXtaq1lUICIAkhlJaMsdW15cFwOplMXNep1z0I4GwxK4oCSAEAqt7R6XSepmWr1VJVlVEeBrGqqp7nR1GCEMkL8fTpYV4IVdGePj8si4LxD8aTKQdi72C/0+30e/3BYBCnyWg0yvIcItRut2eLuWmarMgEAqqiVGw6AEDFXLYsyzAMXddu3rx569YtKaXneVJKTVNXVlYq4YeUoHd5dXF2GUdRGATStgAACsF5xuq+0+10Pvvs00F/iDFhVERhvLK8nBd5GESqonHGTd2eBdmwP3QcZxJGi9lUVRp5mmKFI8lPT0+trgcw0Sw7jOJmu12r1/KyrNfrs+mYS5HSnDMGgSx5rts6R5xKqhEFawTV6/UwDHVdf/r06drqmu/5KysraZouFouiLCmltVqt0agTQmo1vyyLg/394Wj46PHDMAyDYKGoRNfJ0+dPijLf2l6jZXr37u+ms9Hute1mu2lY1tVwcHJ+9sWXX8zns7PTs9PTk8lkbOl6nqZLy13NULtLbYwBF/zF0dMkj4iO2kuNUpSKpoRR3OsN4iTVDXNldbWaSYs8n87GYRR2ukuWbadp3uosN5otQsjq2vrFxVW7u1SNR2maNhqNKh2hYqlVbnWj0UhRFQCBQhTbtsMwzPMsSRNFVbvdLgBgNptblqUoSqfTuXbt2urqqqYpaZphTCr4ybbN6XRW/dyqCCWEoKYplm14nhsGEVEIIYRxappmp9vBGCMEheAKVjzPK8sSE6IQdTyeHh0d53mRpcWndz87Pbl49vw4y/nnnz88Pb9SNOP07OI3v/3ddDZLs5xJ9uz5M4xxEASXV1eu656dnX388e/ni3mv15NCcCEUQqreozqjFX24Oqnf/OY7BwcHjUajsuICEOZ5XnWfnHNCiOd5RVmGQVDt6xkthRDtdsv3vV7v6v6X95MocR1X1/QszTgXruMFi2A2mZYF1VTdtV0IIKNsMh4xRkfDIWNlvVYbjgbz+XQ8nVLOy5KaphWG4XQ2M0xzOBq5rtfutDlgi2SRsTQtE6iiIFmEaUglLXiJOt3Wi8MXg+GAcerVvCfPHo8nI8Yp46wo8mfPnqZpUvNrQvCLiwvP864uL7/4/HNaluPRsFZzL65Ob7/x2iKYGqZy65XrtmsE8cy2dcpSIflwPJkHYZxltmPPFwus4LIssjT7q5//3NC1drt1dn42ngwglqZt3rh1XdPJYHQVJ4tnLx4PBn1FVfcPDizbwVihXHieFywWmqY2mw0hBcJ4NJ5eXFzEcYwVJS/pfL5wHA9hpdNe2tjYqIxAKlIPpbRer1fy4spjw7JtiGCapu12O8vy+WzOKHVdNwzDJIkrt+UKQczznHMhgQzDiJaF73tpkpyfn5+eno7H4wrEybJU0zUEYJIkaRqHQTAcDiCCCMHt7S3GWdUacsHr9YbgMktyIcRiERQFPT09H40m83n4wQcffvzxpyenV0cnF7/7+JMwjE/PL5+/eHH/4YPP7n12dHw0nc0+++yzXq+HETo6Pp5MJg8fPqzaa0VRKKVSiIpTV3U1VW6OqqqWZWmaVgmsCSGVqpMQggmpbpXKteHg4MD3/e3tbV3Xar6vGzpGSAKpaUqj3jBMi3Pheb7juOPxxHW9ra1tXTfyvBgMhhih/f19y7J0XXddR9WUNEuKIkcYvvbaq6Ztn55dQYSGw2Ga5UmSQYggwiVlSZZppkp0CIgARHJZCsQLnkdpEBcR+fL+/fX1dSFEq93+4ovPHdfljM0Xi9duvz4YDCzTLLMiU9O67ydJXK/Vz8/OKaW26y8WC69Zm0yH0+lIU3FRJHmZLsIMK2h3e+vp08dYQZphmabhupZlmo8ePwZA7GxvX55fjYaj7lJ7f+lACH7r1VeOj85LljQatfPeJE5ioiIIJQCgVqutdDbHvTANWb83aPttjEmr1VoEC1UzJtO5pmkIk/l80Wy3JYDHp6em4yjTGZeCEJJl2dXVVafTxVjRdSOKojRNCUaNZmMwndf9WhwnYRA5nru+sZ5kOYSQUUYwuXHjZlmWiqpquiaEwBjlRW6a5tHxyeGLF+16s2TCcWxMcJ7nUgJVVYNgBhFwXDfPj88vHu/t7VUejkvLS416LVgsms0mxjDLc4yJQrSrqz4mqq7rn376mabp21s7AICzs7NJEKPpQlWVOA4XiwVEKMnSRbgQgknAecnTKImTOIwjRVezPBVCICEQhEJKXdOk5PLrV4U0TSaTqszfvXt3e2vj0cOHtVptbXWVUUYJRVAxDJ1xHoahKGXN92/fvl1mWVnk97IYQrCYz+p1r9Fo0nICIKGUMcZd10vT5PKq59h2s9UOgjAv2Gg8yrJM03VV07I8zvNEU9WL8/NXX70OpFAwEZxLISijaZoVedHv9Ro1fxoEk9Gk0/CJTjAEvuXTPEMQQAAkFAABxJgwdKvVaB/sHowHk2tb11ZXNizL4QIcn54VaenoNhbw2vbezuZuvdZ4/Rvf2NnfLwRbpPFsPvcdJw6Cb9y+HcdxksScs5OT48FoeG1/P4jCN99+c2Nz4+T0bDSe3Lx5K46Tfr8/Hg9v334tTWMhWWepefuNmwe3ri3i6cOnjzTD2t3bdxyvUaulSfLarVefPHpalmJre58yIIGiGXZB2enpaa8/UFRV103DNMaTUZnntMg6ncbF2TGj2WI+efLkCWMMAHh12VcVrV5vJEmiKISxMgjmXIggDBljjVZjNB75vu95ngQgLwvXd9dW1znjjVrtlZs32q26QoAUXFUUVpaj/mg0Htca/urG6u7ujm1bTDBEsO26WV5keSElKIv86uLCdeyjwyMFK2VOg3nIKWcllxxIgLGiaLpGmeASjqfTWbD43d2PHzx9VAgGiSyKJIxmJU17vcvZbFoF4gghT88u7n1xDxKQZMloMtR1NQhmCAOMACvzLAkreXwFi1bXesWfT9N0Mpn0Li8no8EXn32WJzFnpUJwEASzyTRLc4KI5AIjWBb55vambVtFnl1eXXqu32h2soKNp2GWFoJxKaRlWqpCFIKvLi6ePXs8GQ+B5I26n2bR5dVlnKZpWUCiFpQLgRSs5HGGOHA1Y39nKwkiQ9NXl5c0VaGM9nsX9bq3srzEEQSqAlWdAqiaFlY0hIgUUDCJarWGZTmCSUHFjYMbnuMTRNbXNo5OzseTOeAwXSQ1ty45KPJSNy23Vqu1W7V2s9ZpNlqN5U4HS3D7tddbzdby0gpjzLCs+w8fpnlBOd/Y3AjiyHZdREi73ZUC5nlhWtZ0Pms06xLw3f3tn/7sX62sN9IynixmcZbV6+3ZdIEAAIw/e/gkmC0IUoFUZot4HiZY1UaTia4bAEOAcBhFo8l4MhnHYYCQXF9bMQ1S5PHh4dP797+glFqWXRSloqg1v+Y43mIxxxhxTqWUg8FgMpuVjAEAR6MxhKgsyziOKed5XmhEvXX9xvWDPc5yyVmRJ3mapnEqBeCcu54jgEiLBKuEKIQLQVRNUfWCcsb42spKq9mwTDNcBE8fPQmDUHIZBiGjzNB0BAkAeGl5OU6zkvObr77i1f2rYf/x4TOOBMSCsZTzIi9SxsvqlqziYCjjSZocnxyNp6PJdPSrX70/Gg0hEJIzVcEEQc4o/FpwXA3ylbb4K/2xFLPxZDIczMYjJAQCEkmwmM0Pnx8+e/IsSzMpOC1yxmiax0cnL4qy0AzTdnzT9sIwc92aQrQszYGEwSIAEjQb9fW1VdM0BKeaShq+2+40AUZIUXLG/WY7zUvbdJGAiEqeFDwtkBCSsddefXVlueu6tqoqzZpX83230QKqIYhCBUBEV1QTYlUICCRChm5atqMqGiHK7s61z+99ziknRN3a2lpeXllfWwcASiHCMBqORpPpOEnjeqPebDVX11eHoz7n/NGjR4eHh47j+L5vmBbCyPG8OE0pY4tFcHV5WQ3RSZIkSZJltNKnjifjk5MTKXmSxsNxHyI0HI0opbPpTNf08WjsWvaTR48BgLbtjqez4XBydnbh2LaiaRIAwzBHo3GaZuPRuFarOa4DIXQc27GsLEts26zVfAhhq9mklCqKNhyObMemlCGMHMeWAFSJclEUdZe6TLAwihRFoYwZpkFLura28a1vfatKlLNMk3NRlmW/33/x4jAvCwiBZZlXvZ6QsvqHUmZa9tLS6t7eXqvZunnjpkrU/b294XAghVAVNUtzwSGjDABZr/tZXsxm8+l0WhRFo9nUTD0IFotgnmeZhBJCwCiltMQYVZBkWZYQyDxLgzCYz2dhGFarUUVRIIIQQqIoikIq9ufLdPsKMa26TFXTJqPR8dEhkBJIiSHSVFU3jKIoPvvss88//7zIc8bKy5OTz+7etSxreWXFsExFVS3LrtcbECHHsS3LmkzGYRgqipJmKQCyVvPzIo/j0DD0xXxelkWr0yk5V3VdUVUpgWmYw/6gTJOaba+vrDZqtcePHjJOTV1/9ZVXqpQVRdUAwiXjtXqDA4AwRqoKFZVJiLrdbr/Xi6JQVdXpdHr307uKqmiaputGt9tlnGECkyTu969UlUjBy7KkrKw3at1OxzQtLoXlOiWjiyC4uLxsNpt7+/uu709mM8bY4eHhysrKo0ePKKUQQcuywjDxfb/damdpJrlIo+SNO9/YXN8QnKdRNBqMltqdJE6eP3v2+MlT1/c9v7a6unZxfl4UpZAyCALbslRFydIUIVw5KPl+DSI0nc56vd4rr77q+14URUEQnJ6eSilN0zg8fCGEyLP8+vXri0UwnU6lFKqqTiZjy7J835/P5pPRqOKnKURZBAvBmV+rWZZdq9WLklqWqWmK6zpxHIVBGCdxFZpYmedU/ltlWQrB252O7/tpmpa03NzcfOWVV4QQw9GQcz4Y9LKsRAgzWi4WkZD897///dOnTx88eDAaDm3brgLsOOMvFcNVVHiaZoqiVNZglcJd07QqXJTzl8ZM4qV0ruLXVR9XvmjV/zRM07Ydy7LiOF4sFnEcO47T7Xa73e5gMFjMF9UDXEH6eZYlUVyZ43muV32jymvE8xwheJ7nw+EoDEOE0MXFxVWvpyhKFMd5lrfbbSkFAABIoGqaqqoYIYKRZRqmrmuqWhZlxWhmnJVluVgsLNNECGZFnuU5FZxJUQqWFDlSVaVeq937/N7nn38upfzJT36MMUqS+PGjh81W0zT0119//W/84R+22+3KjQ1C8MGvfx0GwdXVlWEZzXarXq+3lzqvvPoKJuT88uL47LwoikUYlJzNZtNK2V2WpWEYtZq/v7f+/PnzvMiTJIEAFQVdW1vvdpc0Td29du3588MoSvIs393dy/PCMMyDgxu9fn82nc3nsyLPhZTj8Xhjc7O6tqql+Xw+v3fvszTPZ7PZ6urqysqK47hpmvm+d3l1VZbl4eGL2Ww26A903ajVanleUEpbrZbregBCRVFsx9ENI8syCMBkOllZWdk72BuNh6ZljsbT2WKeZXkYRTdu3tzd3Z1MJlEUh2E4ny8AAJyLr9O9ZFlShZDFYlEUZbvdrgSWeZ4/f/788ePH5+fnnudQWkxn86urqyzNOOcXFxf3798virLKoK/Uz5RSQjAhGCE4m00pLSswqCiLSmZUrXNebtuFEBCAan0Pvv7gZZB4hUVwzl3XqZiBnLOiyBmjCKE8z9fWVm/dutnutKuHpNNpz+fzytBhNpvnea7pmqIo1bNdlgUhxPO9RqMRBIGUotNpV7uApeVlz3PDOKrVaoxxzrmEQNW0drMJhRSMjYdDjJAQouZ54/H4L//yLw8Pj4Ig6PcHRV4ghAGAHMhSCIkQh7gEEg2GPYikYeiWZViWAaSEEGCMdna3G43acDyaTqdMcMM0gJSKonDG2+12kiR3P/kEQlSU5fa13bwse8NBEEdMisPjo2an1Wg1q72cYRivvfZav983dKPVajWbrWr3uL+/PxqOz88vBoNhGEZLS0tvvvnm6urKJ5/c1TSj013K03w2WxQl/dWvf11vNCbTWZZnSZoyRoWUtUZjNptWtGLG2HQyrdVrCKGzs7NOt7u83P3GG69vbW0BIPM829raRAi7rjMYDEzTKstyOBhKKbe3t6SUvl+r9jEVdQNjfO3atfXNTc0wGBcI4/FklpdstggRUW6+esswTUqpqqiz2YxzWZYUABTHqaKoqqYTQlqtRlkWjmNVroX3798XQgwGA0IUysrRaOZ77tHR0cOHD696vTiOd3d3fd8DAKRpapo6QoBz+hVuqhCMka6rZZmXZVF5S1X1tdJnvnS5qWh1VRF9qTZ+aWT3tWktRwhwzkzTMAwdIaiqpNVq1Ou169cPKk8RSmm1p6WUCikUheR5Xon0XddGCKRpCgDQNAVCWRlJVBdIGEb9waB60qIw1HRdUVSiEl3Xd3Z3LdNAQLqWHcxnhq5hgtfW1999992lpa6iqp7rlnmJEVY1TdN0iDFWNaRrxLSIYRiO49y+/fpvfvVBq93SdZ0QwrLEMPTLy8tr+3uOYV72en6tVjCa03I2nd44OKCSM0oty/r5z362t79/cHDAOScquTru7e1f6w+HqqYlw6Gxap6cnFQEtjRLkyQBQpqmeXV15ddr7XbXtFxF0Yqcttutfq/39ttvY4xu3NgfjUb5q9GL58fuydnS0goCZGVtVWKYZZllGuPZeHl5wzCMxWLRajfyLHMcp8yy1dVVwThl5XA4ODi4efjiiHPa7XYdxy1Lapp6XqSTycg0LZTSfr+v6SYty/F4jDFGGBVFwYVAGAMEDcOo15tFQXXD1IuyKEoAYJoka+trk/FISqDpRq1Wj6L42rW9JEkURalW3iUT7XaLMVEUVNM0z/OePHlS4f/r6+vj1fEvYAAA2RRJREFU0cxxrPPzXpalJ6dnFR45mUy2d3dOz84opQjjir9cdZAvqcdJkhCCVVWFQKK/5lZXVdNKws85RxXaynn17+qAVlmGklEhRRiGRZEThUAApCTz+azbXZpOJ3met/zmaDQq8mJzc+vFi8Ozs3NVwZZpYoIuLi44LVeW2oahz2ZTKWW/3y+KorKzjOPYcX3LysoozbIMqWqWZ45tWo5tmUTX9Zpf21pff3r8wrDt0WC4bjumbgwGfQJAEs4RBBtr63lRMEaDKNZUBQBAAUAAqLqGtre3nj9/6nnOyurS5ua6ohLd0BQF53nW7rQePnq4trnW7jan07GQbGtrwzT1e/c+Gw4GS93OdDJ56+23Ly8vf/u7jxRda7bbjWbzZ3/588vLy+FoOBqPLMva3Nw8OT3RdR1IaVnWkydPBoPBnTt3IISO5fqe7zp2niRAiN7V5YMvv+y027wUg6uBqmntVnups8Q5z4vihz/80fraumVZs9lMVVUpRa1Wq4yKsixrt9sV7V9Kuba6dv3G9bPz0zBaOI5lO9ZoNEyS6Pz8PI5jKWWe57pm5Hl+eXkxXywePnyQJHG1AEySJMuysiy7y0thFKVZMRpNdN3iAnAhIcFJmgkgXdeP49TzasPhaDZbUMowJmXJer3B8+fPLy/73W632g7UarWVlRVN0zY2NhqNBiEkSfIPPvj1L3/5q8FwyCjlnM9ms6dPn1a3ZBRGFYpZtZVVdaxY9xiTl/Z0FRT/8hOq2eilAolSWsXoVIWz8mUQQui6ignSdI0xyjhTVGU0Hh0evej1e1mWlrTUNA0TNJlMMcbtdgujr7yYuRBxHC8WQRAsOGdfZ+zqvu/V6zUIZRRHRFVt1+FSZHkRxnHVsFqWrWqqqWvbm2vXtrayOLl543qaRK1ms9Nul5T6tTpESAoeRRHjgguZlZRKmRRlzhkgKonjeDKZGKq+s73zySeffO9733t+eOjW/WCx6JhLhqk/fvK40267nvv5/S+TLOuPhmmWjsaj23fu7OzsvHjxYn19HSvkk7t3m63GwcHBD3/4A9f3Do8Odza2f/Phh0vd7mg0WlteHQ0G+3v7EAAgwXg8TpJkMBr6jbqhG81mU9O1Rr2OEFrMZv/df/ff2pZt6ZqmmE+ePuVM393ZV4m1s7F9dvRCSlkWhaZrcZwoihKG0Z3br1cW1lJK1/N83/3BD37w2WefQgDbraWzs0tdNy3LEoLPZrOtrfX5s8Xl5cC2HYxRSRnGpHfVMyx7eXklLwr0tbkm5zwMQ0Uhw+Go0agLkYVBOBgMHjz4ond19c477ywvLwMAgmBhWdZisUAIzReL85OTIs01Taucb4UQrut6nnfz5k2Mca2mTmfnw+HQtu2j42PHdbe2tk7OzhjjAADX9YL5jNJSyurkSVXVhKjYQwalTEihYFy1nvhryLNiFyCEZEWa/1rGWTFFKqp81RGqyld80CiKKs6oZVmTyaQsS6IQLHEcxfPZlHPWarWuX7/+8P79yXioG5pt2Zaulnk6n89c11VUYhi2YehJkjQaNULwZW8IsUF0s9lsZoxTSuMksTRIFCKE5IKqCNm65jl2ECwmg2GWF4qmmIbu+TXBWJGXz188X1peaTYbjAusKIqmQawUTJAgCF5//XVBuec4SZp8+eWXiyDwmvWTk5OsKAhRirIoGXUcW9e1wbCfZtn1mzeeH7744vN7u9f2Op3O4eHh+cXFm2+/eXj0ot/v2bZ9fnYeBEEcxc1msygKTvknn3zCKSvyolGvQwBfvHjx/MVzKkSn0/nJT34SzOcXZ2dJkqytroVRvLm2kSSpbVlhkHz+7Pkf/c3/HQDgtVdfPTs+VVSl2+2OxiOENddrAiDH47FjO0WeXV6cW5bpex4h+Pr161tb68vLKz/7i/cxxr7vPnnybHd3Z76YvXhxWBkpci40TZegxBipmsYZXywWnu/HaSoEIwTXavUgCI+Onq+vbyRJrmv6+fmLVqtxcnxy+Pz57u5u5XZ7fn6OEFosFoQQDOHl5RUvmeu6y8vLeZ5bltVqtSqvL8/zsyxnrIzj+Pz83HXdNMuCIKhGlnq9PhgMdE3Ji0RIrigK42UUB4QQTVe4YABJjDCEsOq8q9pWEV+qRlwKgRGqxqOXbvzVijXPc0NXMMGV7+RoNKp0SJW/H+fi9PR0b2uPYHLV6zXqtTAMHzx82Lu6UgjKskx3vShOoeT1et20dEJwnmeNRj3LkqOjo1rdX15emQVJUuQpExJhQhQJpBSwZDSMwtl8sbeznJdFmBUPnj1NOQcKcRWPMZ6mCcJYAkAUZTAYMMb3Dg4gBG7Nj5Lk4cOHaHV19dGjh3fv3n3+/PmPf/zjVqv1J3/yJ3mWmpZpWoZhaP1+/5O7dzEh7Xb7xz/58Z07d46Pjl+59Uqz2ey0W1dXV6enp4cvXjx++PDg4CCOo8PDw/lstr29/ezZs+lkghDaP9jf29+r/K0hgIPBwHXdt9/+puRodXXj8ePHS0vLKysrl5dXs/n84aPHb7/1Tp4Vw+EEYnLr5iu2415d9q76fcqFkKB6B+I0jpPENK319bVFEMzm82r4DcPw2dOnl1fn/X7vzp3Xbt95TddVACRRyOXlxWQyAQAghAnGhBDHcTRdI4QwShVFCcPQ0PXt7W0JIaV0OBzGcfz88PDJk2eLxSIIo8vLy36/P5/Px5PJkydPwjCMo7jKA9F1XdO04XCU5ZmmqpzzIAhGo9Hp6WmFZBGC8jybTCZSoldeeQVIYJrm2tpaWZaWZQMAK2/iosgxxrquIYRUVaskvFWjKYWAX5vRvayaVRGtNkYQIfm1CWN14790aMIYIYjiOImiaDAYWJY5m01ns9nG5satWze73c6NGzdmsylCqKJRb25uMsoAAK1WS9f1y6vLosh1XW+324ZhVtZOnmdLKTRNRQhNZ5OSMghRWZSNRuPg+r7ruq12y9ANgFEURaNejwC50u2sLHUJxo5pra2tYYw73aXJbNobDPf397e3t716/fTsbDiZHL44fvL4mev5KMsSiOD6xkqrWT85PtrYWP3s3t0oCg1De/Dg/pdffhlGEQRgMpmsb2xghF977bWV1ZWry0sowccff7y+uvrd73xnd/cao+y3v/lwd3eXM5al6eGzF4yxlZWVzc3NKr3grbfezLKsCiU6PT2FEP74xz/RNcO2nF6vd3Z29oMffJ9z9sd/599Nkmw6nb/2+u3V1fVms/3Fl/dtz+v1+6ZpGIYxnY3jOIIQVSh6nueLxaLdahVFWUV2WI5z795nV70Lxtg37txuNBsSiF7vMi/ytbU1TdOzLLcdh1I6n89pUSiKgjBWFKWyuTMMo91tLaIwK3PDclZWNq76Ay7R+eXF69+4oxra3/pbf+v263dMwyJYmc3mnusTrHAmFKJ2Ot1bN19ZXV2tesEqw6BCmubzsCwphPDFi+fPnz9vNBqVFylESFXVyj0LY1yUhRBcCEFpSWmpKKRyPIQQIARfrjFfntGXnLqX1vR/3d3upUsoAEDXNFUlqoqFYIvFvChyw9Bczw2CReWr2G63+/1+ZURFCFleWV5ZWUYIQ4Rs21YU4tfcy6szRSHNZkNK+eWX94Xgnu/2+z3dMHRdN22z3qhPp7MvHzzQLDPOkpJRCCBBSJalreu0yFVMNlZXa7VaFEWVM2tRFGmSBmGMiJKlKSGKFCDLsqXu0pu330RCis2Njdl0trq2dnJ6MhyNwjDUNO3y6uqb73zzzptveL4HEWq0mx/97qNf/epXn929e31/v9Vq+b5fZPmHv/lNmRcb62sr3aX5dHp2fHrrxk0Vk/ls5rmuQpTj42Pf99//xfudbte27fF43O1233vvvWAR/NN/+k97V4M8KxuNxmuvvbaxscG5eP8Xv0ySpNXqPHr0+OTkdDSZBUGEiYKhcn5xmWW5X6/7vo8xRhBlWRaGYRzHVQ/XbDYvLi6uLi8913v+/CmlRZrFQjDOebvdLopCVdV2q+15nkIIxjjLUqIoXAggZZKmRVFSxqIoIpgYhiEFnM+DlZVVx/F++9Hv0rQYjyftdruz1H3nnW/VarUoiquJStd1xhghyubm5p3btze3tqodo23bFRc4DMPqOKZpOp1OFUWZLxaVtBICkKYJY7xKO0D/awfaahL6ypkWgIoL8nIYegmCfuVV+7UnbdX+Vmf36+EJSCAwRlX+e1kWa2trnud9ce9eECzu3/9ysVhwwTc3N7/5zW8ahpGmqW1ZiqKGYcAZazaarusSQsqSapoahqGqKlKKLM+qn21Z5P1Rv3Ja7XS7y0vLSRyHQdhutw3T+Iuf/vn56YmC4FKr5dq2kFzTtWC+wBgdHx9DhB3fVzTt4uKiXq8rqjLsD2t+PZxH7//VL1FJi82tTYjgRx/91ve93Z0djJEQvFbzf/3rX62urkIMdUt/8fxZGCx6vcvLq4tPP7sbBnMg+Bt33jB1w3fdGwfXnz15euv6jclodGP/YHd755tvvnnrxs2tra0syxzXbTQaDx8+XFtbC8LQNM0syz7++GPX8V5/7TVd0z789W+yNAWS33n99g+/94OdrV3HclRVnc8DhNG/80d/xIUAEERRhDD+GvmTlbeb4zhFUUAIdnd36/W6X6t961vfCqPQMIx/+xd/YZqWruunp6dhGJVlWbktDwb9KI5t267+YFLKbrfTaNR1Xdvf27t16xZAsNaombb1m9/+5umzF36t8eprrzmeU282siL3fR9ChLGSphkhapaVaZoLAaQEGCuO61bnssKJMMamaVqWWTnAV6E2H330ESFYUdU8z7M0jaK4OrtVimF1QKsjXlmTVmfx60P7FbRUFcuvk8fgS/17JeCsfvWvH+Usy6rvfnV10em0FQWH4WIw6J2enkRRSGkxmUyKotR1/eTk+NGjR8+fPx8Oh1WbGycxRCjP8729PU3TqibBNM0kSUajAaWF53mtZqu7vFwyenl5SSmN4siteQ8fPVosFju7O4vZvH91STCu+V6ZF7PpzLLtW6+8ouoawkTRtDRPHdft9fqD3rDT7sZhQpBy4+AmevH8RbPR+I//5E8cy7p///7R0VGV7zEcDiGEqkqePXt2dHSkKMrm1uZrr722ubnJGDs6Onpx+OKze5/Wa/XJePL5Z/euXbt2fHhUSc4IIUVWEIyfPX9GKVUI+Q//o//QcZw0TfMsRQj923/7b7vd7s0bN7M0y/P8xs1bf/b/+5+ePHncajXni0VR5G984835PNB1XdeNLx/cT5O00Wj0e/3BcIggzMuiKhJpmhqGYej68cnJ48ePx+Px1eXlX/zFX4yHozRNHdu6urpQFGwYuqKQ2Wym6/rh0WFZUghAWZZlUQIINUWZLxbVdnsyna6srGxtbZUF1TTDsbyPPvrdxcUFkNAw7MFgmKVZmubVORiNRhDCyWRclmWe50mSVE7hjLFq/kjTtNLfNRqN5eXlVqvFGHvw4IHv++PReNDvTyaTKI4VRakaFfCVFVTx9fn76ir/er35v2wvxdcxSPjrF0IIfm0F+vJmf2kUCoCsJJ1xHJumWRRFZZDmed5oNHIch3O+vrbmOM7y8nKn0z0/P68CcRzHqYikURhVFNLFYtHptKtE01qt9jK1pyqfvu+7rlvScj6b53m+v78nITQNs9NqAiHDYE7LghXleDiQnBdFoRtGmmdlWdTr9TRNAUSmaTabzUaj+e63vtW/6qMf/OAHvV7vp//23+7s7rbb7UajcXBwcHF5IblYWlr6/PPP3/3Wt9IsRQRHUbSysjKbTrfWN15//fVarXbz+o0yy6GQeZIKzv/4j//4rbfeRhBhCJfanX/1L//1eDzb3NxAGP+zf/bPEEKNRuP27TvPn78QArRare9897tra2tCiMvL8//b//0fJmn6/vvvh2H4X/2j/+ov//Ivz8+uzs8vpZDrq2vvffvbpmXOZrOnT58Ypun5fkkpxrikNIoiCeR8NovjqMLnGGUIY9/3hqOhlNK2nWa72el2qiWnruuvv/46UUgVELiYzyUANb9WGd52Op0bN25sbW4WRVGW9O1vvo0xGY+m8/ncMHSCCSak8jeM43gynVZpdIQQSulisai+e7VdrJjClNHRaKQoque5rmtvbGysrq4mSXL9xvV6o5GmCSFY01QAZOUlyxiFCEIkS5pRViAMIJJCMgk4xhDhr0ail4dPfo0rUUoZpS9/tTqVCiEv/b9VVbUsU9cNy7IGg+F8Ptd1PQiC5eVlKaVhGGEUOY4FIBgMBi9evMAYW7alqGr1eFDKyqIIwyBJEs/zMEHX9rZXV1c7nU673eact1qtyXjS6/csx8IIr62tKYRc9fsnJ8emafius7m2vtxdMnQjLwpN1+aL+aNHjxhlQAJN15MkvXHzhmmZ169fd2xneDVcTBembqLnT55CCK/v7//u97+/du3ab3/721//5oM7d+5QRoP5YhGEiqY1W621tbVarf5P/sk/+fzzz3/zm990Oh3TNKezKdaIgPLWq7c2Ntf+2//uv8EY//KXH1xdDi4v+3/7x//uH/zwB1EQR4uwUWsoivrgwcPPPrsHITy4frC6un73k48nkzEt6cH+QZaWn939otVZ0U137+DW5vbON964fW1v7+T4rN1cGg/GS53uH/6NH6ysdX/9m1/2h728LEpGTduKkiRKkqqVLMpiY2PDMIyt7S3dtFZWVy+urtI8AwAE4aLVatAyq/t+EkaMlhBJz3WyLEvTtNVsaqrmuu6d27drvp9luaarioLCMPzBj75f8gJBVBRFvV6bjMd5nmJVkRAYpmk7nqIZFYUjTdOL8/Pz01OEUBxHAEHLdTRDn85nAkgAoJSAEPLOt97Z3dvtD/q7O9uu5yqqwjjjjGGEWFlCCE3T1DRNCFld6GVZVh7QeV5IIf/6/F6dywpjopRSxqSQLzFRwAVBSEGQQKBAwBnLs9J1vShK87yglFuWIyUsS7a6ut5qd1qd1mw+/eUv3+/3e1ubG0WRh0GQpikTQkBg2XZBmaYbnucNh8O11bU8zyFCJeW9/igvqWFaq2trqqJxxvI8uTw/zZNEx3hnfX0+GjV9L44CKMTG6trmxsZSdwUhkmeFqhkA4TCMsiyHEDWbrcFgaDvuN96886sPfnV5dUG2N7c2NzaCRfDqq68urSxP5rOsyHu9nq5qNcdDmhLGiW5YT58fMS7f+uY3EUaHh4fj8fDx44eHxxcrq0uEYKxAhZA4jZ88eyoRDKL04mq0vX39y88fPPjiwcHBgabqabS4c/uNjz76SFEUTFTX8x49erSYj13X58zo9Sb/h//j/+VXv/lw/+Dmg2cf5FnqOsrqykat1v7pv/6rrY2dnc2dwfDSrRlhSIez4XD4/Dvv/iEGgEs1SmKCcJpltbqvGdViUmt2lqMoFihSdLa0vrq1u/2zn/6FqSvJYl4yjiGEADBa6KraaLaLotjZ2a7XGrqqE4iTLHFr/k9/+rNvf/v7bs0DEIRxYAQqQo4UgkP0xYMvut3lWqN179Gj7a0tzbSGg3Gr6RMIfc/L85RLluYFwGCRhITgRTTX9HYax1lWBHGACJRQHJ8eVTONqqqGpmRF6lg25zSPc0ppddSEEBhhgogQgmAiOef8qwoNgRBCACkgAApBGEPBKGOigp4EZxJCIKGCCaOl7dgGIbbrpXkZx7GmaUsra1lBmQAAkZzyk5OzYDbd3tq0bf3kcO65Ns19LnmUJNEsEkDUlpf5QiRZwVmhKvjhowdhGO3u7U9mc6wZnMEozhdxDCDM8sQ01UyRnqW2HNNGECE4uDq36/USYau9XHObJ8OxlEQznGa74/jePIgQwp3u8q9//cH+3v6Dxw9Mw9y9vjcajdDJ0fGjh49+/vOfB2Hwu9/97tmL5wDCwWBw5/bt7lL3z//8p5/c/dS0rCSJfd8bjcYAgGvXrgkhW+3Wm2/d/tt/528nWbK9s721s3Vw44AQoqv6xdl4bXnzd7/9/YtnLxzbu3P7Ddf1TNMhRH311ddXVtam0/nvfvfx7ddvL6bzLM3OTs8FB19+8fD46Pz0+MKxvf/0P/t/drpLCOLhYIwgfv7sUFPVLEsXi8n9B18WNP/xj3/CgYAYzYJFkqZRHMVpCgBQNW15edkwrPlsUZT09OIiydNGq+7XPdMyHNcVkkMIm62GaRqWZTJGIZBAgrXV1YPr1xuNhkIUx7Ivzs7bndann90dTcaaqVNGx5PB+elZHEa9qyuv5qd5Np0v2kvdL768/+GHv+0PB4yJRr2uEEwIeXF4+Ffv/2IeBN3lJcOyFmEoAfB9jxBcluXK6oqmqRUdhHPGOZNSIAAY+8q3rBK+vUQxv+oipawa05cA0//mVdXOyoapWjVJzoFgCoZSsKLINKKYpvX667cNw0yStPoKXTcs04II50Xe718FixkEwrbM6WwyGAzCMOSCI0JOTs+okF6t7tiuoZuNRnN7e8u0TClhEEbD0aSkzLZsohBCkGUajuO0arU0Cif9vqGQPEsMTfNdvyho5Wk6Gk24BJSJNC2yNM+y/Gc/+3lZUsM0641GmmeKRurNGgmCQAjx6muvXVxePHz86M43vjEYDtud9kcfffRHP/nJG2+8EcRRmmZFUfziF7/AGI/Hk6LMNzbWnz55cv3mrU9+/8k37tyxTHM6nawtr19eXEGIf/TDbx++OPnmW28Phv0oCv/sz/7s2rVr77777p/92Z/V6/XFYtHtduMo/sf/+L+5dm0nOjldLCJ8eLy1tbuxtq4SRZTsn/x//huIskUZrK9cV7Df3O7+7re/PTk6yovFnTt3yoL+/K9+vrN1Y6nTbdTrJaWmptWr1XyanZwcabq+trkpBW03OwWlp+eX7UbrBz/6gzLNr84vT8/OqyTS+XzRqFK4MVIUteI0pWnquNbe3t4XDx7M51FOmeu6juPkWZzlmWOaRCEcwFq9UVCZJOnK6spiMo2iqOJKAikQBqqqaaoaRzHEaDadllnebjS1RtNxnJXVlYePH3U6nYuLi0oT/NJPjzFGyFcTTzXL//XzJ4SE4KvZ6OV5/evAJ6y0PEAACRGCBEPOhBBCVRXGqKaanu9XDcNkMoEQrq+vh2HIObcsuyxzhFCtXrc0QyXq5599phAipMSqghWi6nocBKwsLy8u2w3f9dz5fAohRES1LEszbTmcFbSEUlJazGY5QUAIcXFxsdGuN2qeqkNChACg4LRg3PNr+37datQv+pfPnz+HEOxfv3F+fi6lfPvtt4uiGI/HL81dSJ7nYRjqhg4g/NEf/EE1gn38ySetVuvnP//5Ioqu37p59+7d9957dzgc5nl++/ZtSmkQLAzD3t7cvvvp3TiMfN+t1Wqff3bPdWtnJ+dPHx394R/8rf5g2Gw2MMbPn794551v/dmf/Y9Pnz7b29sDAFRNervdDsPYcVzLtG/cupVltH81VpG63OoMR8Mwnd+589ZKe+/ep8/e/MY3Gw33L3/+r2oNyzDU46PHtdpyvVaDECqKgiFSVXUyGrZbzXazVa/5S0tdRdc/vfep4zo1RQ3DWEhZbzY0rKRJFqUpSgwSxhAgwcV4PL62fz0Mg9Fw2Gw08zyHSM4vzhVMVFURjM/ncyC5RrCghWfpeZ7llGuaEUZJnOWu7QAIEUIXF2ec5jtbm3mRrqysdJeXLge96WzGhdB0HQBAGbNM/frBQX8w+PWvfrW6unp5eVlZKVVDFaUUAPwS3Xx5+KrqKKUUggPwVXhcNemDv0a3e3leEcYQSAAhRNVpllJIy7IQRpzz8/Pz6jevhnSM8WIx//zze61GLYkCDPHZ8cl0PM7yXFFVKWWSpRzIPM81gh3XNU376uqqLPO1jfWiKJMsT4uSKIpumWGS1Wo1ysrZdEoks2rtJEk6ntPuNEQ6BhAJDgDGWZ59cv+hYpoQwHqtVm/Wnj19yjjf2NioUNWKoFiWZafTIXt7+8enJ6dn50EYzhaLP/wbf4Mxsbe3L6QEELi1WrfbjeN4e3tnPJ5cXl4Oh6PpdGqaxr/37/3dJEm/cfutJA4Rgk+fPZkMp0vtlduv3cZIm4zHb7755uHJYVEwQ7c++PWHuqFTyldX17e3tkfjUafd/q//639y8+ZN13HPTs7vfvzZ66/dKdJslJaNWnPcH1x/defxw8d9JxoPs8vzCwyXv/+97/f7J3kWX9vd63Y3Tk5OvnH7DiEESJEkSafTybN0Pp+Hi3mWZUtLK4qilUwgiFdWV6fTmabqZ1f9pfV1qGqkf3Vxdbm6unL//iNNN1ZWljVNm06nQRDU63XOeb/fJ4QIwYWkUoA8TWvLS5xiTEhZ0pLS09OTsuS2V6tMZoo0ef2VG7u7uwjKPMgRwbbtBXHEOK+MdPI8j3FMKQuSrOb71eK3ihR7iWhWh+xlFsfXhbNqK5GUkksBpKwgJPG1sfdXpxOAqiUlhBCCOGNSCoK/mqUMXTctM8/z7tIS57xWq1X4cRzHFWcZQjQajZdfe7XdaAIOjl8cE6IgSKjkYZgUBXMty9LVNElmk6HrmFzKfr9PFK1qXbJMzII4z3PN0kzDVAhQJIuT0HIty3HOLy4aDlZ03XTsJGfT6XxpaSnKMi65ruuXF5f7+/uCC8dxzs7OPMdt1huVZBxDRM7OzgaDwZ/+6Z/+1fu/UDX14cOH/X6/ZGW93igp/dVvPtBMY3V19cMPP1QU5Z133vnww99++9vfHQwGz569uDi7cG3vW+++c3JydHx4Xq/XEMDj4XRtbTMPk95lv93slOVVp9OtIqn/0//Hf0aIkiTx3U8+u3XrlhCy01n+6Z//uULUpc7yr9//FUJYQ2rTaxCJCFZt2yFEC4PhrVuvTGf999//peOo0+lIU42yQBCqjPOa75ZFWbIsSRLHthzbVgkGABwfHeuWoRuKAFACYFpmnhV+vV7zfNN1ltZWKOeapidJWmu0Wq2W7bizeTSfLzY3JaXF9vb2i7/8eWVEqOuaZRjtVkMyihFc7nTPrq6yNMlyKgD0XHc6mz55dN80lM31VSCFpuuIkOl0yjhjnFVr/aZXIwiVRRkm6WQyuXXr1i9/+cu/nrv1Elr/ivnx9X9Wd3p1zio57stPfgnCf1U/gQRSVspOAbmUAisqRhAA7Nd80zJtx6lWABjjrx0r8oq8Z5pmp7VWgZrT2XR9Y2M6mUgMFYAIxkRV5vNA2tb21rpK4NnJISGo2WzFWTadTGZBmOasZEBCOBmPLdsAnJqOeWt/79n9eyenR3sbS0SheV6CoojjLCuLQgD81Y4BIAgePXgIEVpdXa38iCr5hqqqvV4PAYj/1t/8o3kQHRzc5Bw+f354bW/v1VdvT2eL4WjyD/7BP2i322+++dbOzh4A6KOPfi8lZFR8+cUDy3T/xt/4o9Pj8//hn/6PDx88Odjb/3f+5h9xyg9fHD168HhlecVzvcl0dn52ASFutTplSf+L/+L/9ed//uf/4l/8q/X1jdPTc90wf/n+r8MwARLRktVrNUCloZnD/nB3aydPy/l08eTx0+XuynA42tnadixrMZsLBnTFyLL8YP+gyPM0Tas1IJCg4vkyxkzDWF9dgwIiiJeWlmq1WpwVRNUdz5MIqZrWajUPDvZms4mqqpzTet2v1xuGoUnA8yJPong8Hnq+7zhurVarwuLTJJVSpknCRIkxUlQlz/MszzhnOzs7b7755rOnz758cL/ZrAEpLcskhCRJcnF+IYRQCCEKyZJsPB4TQkzTrNfr3/3ud6uLrNoSVauHarf5vzm4X23eEUIYoa+Hp5dMkZcV9CsEFHIJvpqlKn69bujtdstxHM/34yRehME8WGRFzqXoLHXb3U4QhU+fPVV1o9NesixbVfWr/qDkIo7SPCsBQCVljueWjJ6enGia1mw0hZCz2TxLM1U1LMsxTdOwDNPUIQJASoWQvChGo4Ftm4ZhUMaxqi/iZL4IrnoDQghnnHNRFsXl+XkWJxDA3WvXKlJYpZdK07SyNCNFUVDOTNP88DcfpkUGEfrLn/9Vq92+fedOURYlY5Uy8Gc/+/m733oXAvy3f/LjR4+eliVHSF1Mw9uvv5kXie97g2EfQjIYjHZ39na2r52fXZ6dX04W09XVtcePH6+ure7tXdvY2Pr83ue6rrdanfFoKiX+5jvvPHvy1LXt+XSxmAVxFK90VxBAjusc3L7+6RcPFj6djmLG2Nn5+YMHD//+3/+7H3zwAecCQPnrD3797/2dPzYMYzKeDK6u1ldWVJVwzrM8h1IWpFQVVQAYx0kQR1tbW5cXl67XSOK0212aToYbGxtCSC7k6uq649biJNM01XEcxkrD1Ioyr/meUbIkjhzHcSwrihaG6kMg4iBsNuqGbqiKUau36o3G2elJu9MxTe2qdxlE8SIIiKbW6rWj05PBYKAoykp3KU3Ti9OzKIzqnaVFsIBfZ21Vl/hLNSbnAiH4MqHwr8s5KsipoiZXO6T/1RQlJUQIIiiEEJBXuh0AgJRC1zXP8xHGRZFLAAjGCKFK0jQej+M4tmz7e9//vud5k+lkPBxdXFwWReG6bkkpURSbOBzIosht3WC0oIwLAD3P0wx9Ml9QyhbRLC85UrSyKBRdA0KUlBEFZllmaVrJCgntJM8t3XQMqz98InV7fW395PKs1W5lic45LYU8Oz3N89z3/eFwGEWREGI4HFJK0ebO9pOnT//7/+9/7/huGIavvvrqrVu3/uAP//D09PS3H30kJTw7O79//8HuzrWnT5+/++63P/nkMynBH//x3z06Oo6iZDSalYX48MOPHz548vvf3W02OqZpKYpW5OV0On9w/9FHH/0eAHR12f/VLz9wbM/364ZhBotoeXnVNOxHDx+XJX3x4hgh0m62Nzd3Ly/n+/vXHz18/M//+f/0i5/99vjwNM/zy7Nz13TeeuutD3/zUZ7kk9Fs0B8e7O+3221Kqes41c5NSum47u7Oju/7W1vbhqm12y3KSgBAEkedTnuxWBCMF4s5pSWldG9vb3193TStbrf74vCFYeiz2WSxWHiuW2kBiqLotNtJFAnJMUaMsfliAaRMo7jVanW7Hd3Q8jxbWV4WQhwfHWVlkRX5/v4+BHA+mzuOc/3GDULIYNCfzWaNeqPZam5vbw0Gg9PT0+l0WonUNE17qcmsKl/F0pJfSzuq+koIYZxV+FFVbmXlR8l5xbBGGBEFSSkRBKqqYowgBKqqep6LkHRdByAkpAQQlpQGYciFaLXb1/b2bNu+efOmYRglY5eXl41mkyhKXhQQwiIvSkaFlAgrlPEqJTYIw6Isz87OGWOtVtO2PcMyAYKabUnBCMaSUwVjICVRSLX50wxDM4ySs/2Dm4ZpHh4eRkE4n0yXO13JOBRgZWnZtR0oQRLF4SKwTUvBhBYlOjk5uXbtmuO4FfN0MpsyIR7cvw8hvHXrZlkWm5tbu7t7nIulpRVN07Os+NEP/+DJ4yfHRydC4J3ta/e/fLSxvvmnf/qfLC+vXlz0jo9PP/zNb696fYzI7u7e2tpGHKez2bws+XQ6WyzC3d29H/7wR/fufT6fhbNZREvpuTUEyelZ7+z0XNPAP/+X/8KvNxjlBzd3HceZTKa6oZ+fn2OIVVVNknRpaTlLs5OT00oJaVomxrhSLIyGw36/b5jGeNTL0pSxstvusLL0PRcI7tiWpimaqhiGRgiWEui6XpbFYjGv4j01TZcAcMZWljpxFGqaenF27rqOYRjBfMFooSvkyy8+l1yEiwUhWNe1OI6iNKKssCzz8ZPHmqrlWZZm2XQ6HU8mQEpd13XDDBYBo6xRbxiG0e12fd+fTqez2awqpVVPWVVEIUTF/atkRtWrkhZV57VyNH8pS6q48VJK+BUU+vWyEwIppPwaNxWSM0allFVTgRCqTOwXi0Wz2QyjqKAlAMCv1x49fhTHMReCSyExRBgTQsqyTNOMcakoqus6nufbrhsG0VV/ACAAEGZ5hiDUVE1XVckFoyzPMgAh5SzJMtP1bK+WZcWjp48lgGmaLS+v1Pza1eWFbdsIoSdPnlROl1JK3/eraDxVVVGcZmlevP32N//0T/+TzY3dxTw4PDze3N5xPD/PqV+rXVxcnJ6c+L4fhmGaphjjf/Ev/uckKQhR5vOg2Vr+9nd/YDv+f/lf/qNfvP+RaTmYKGGc1OutXq9PKW82mxubm//wH/5fVVX7/e8/9lz/wcNH/+Zf/7lCNAQVwQQtuaZb09mi3my2uh3NML7xxptIVfKM9a4Gi3nw6q1XEYA3blw3DGM6mmKAnj89tCxHAkkpdVxXStDpdGp+bTQaTadTIUW9Vndsy3HtMk9NQ2s165KxIk1FWUTzGadFHMeLxTwM57qmQgiDICAESSBWV5cs08yyHCHkeZ4Q3HGsq8tzTstWs1mluwrOS5pBCHVNlZIBIKSUmq67NW//+kGv30vSVEqRZtlwMIiiqCgKRulsPouSiFJ6fn4RBIFhGBsbG9/5zncQQpWy/uUBrbREiqL8da5d1ZJihKuqqShKVV+llNWuXFZXPJBfjR5QVmMTgqBikjBGS8YgxkwKrCqGbRm2leY5k8LxPcoogmhjc1NVdcfzm60WgJAxLoUUQlLKMFGIoiAIAYJCAsqY53qO40ophZSMcYAAQgBhlBc5RBJIhjAsyxxhXDBKiFJyHqWpppuvvPLqe++9ByFazBdSCE4Zo3Tv2rUvv/hiMZsJxuq+v7uz0242V5eX0d7e3nQ67Q/6/+gf/aNf//pXy8vLr7x66+T0dDweJ3FyenJ6fHzs1/yPP/5EAvj+L36pEO3atf3FPEBQuX3nzX/5r/7N8xcnL16c3Lz1iqKSm7deq9dbmCin5+ff/u73r13bD4Pks7uf//wv/yqKEiAx53I+DQaDEcYKBEhRjDynaZJNZ/MwSRRNm0fh5aD38PGj4XhSFkwIsL62vr9/UKvVhoPht9/7tuPUEFSazdbJ8cm9e/cYpVIIxth0NtN1vdlspmk6Ho9My1haape0GI/7hqZIVvq2zbI8j6I8iYPFfD6fB0FQliXGyLKMRqMhBR8MBkkcxlHIGZecNWr1vMiLshyPxoyWV5cXiqL84Ac/OD89MzRVCpFEMcLo2fPnSRJpmoYQ7A/6i/mCEOI6DlFIxVbOi7wCO696vY8//v3JyUm1cD88PKwua/i1gP0l2EQpLcuyItG9fFViuuqTKylcdeNXEnhcDVIIQSQBAFV8fGXigBCilKVpChAEoGoA8MXFxdn5WeVwMZpMFmF4dn5xdHwcRiEXIssyrBCAIOciLwtN00zDhBgxLvK8jJOUC+76ruXYFWqrKqoQQgrByhIjtLa6CiRQFMU0NNt1FMMMwvjiqhcl8b17X8RRtNTtLmazKAgvLy4W8zkEcKnb1XW9evxcx7Ft23VdpBC121l68uT5a6/f2dzeObu4IkQbDicIK3Ga1huNVrv95ZcPh8MRkMA07bOz83uf3v/9bx/duXN7PJ4qqnF5Ndi+tichwYp6dHKCiOrX6//5f/5fKJpxcXGVpvl7730nipLDFycIKfv71//O3/m7um6NhrPJaJ6nRZJkUZQirLQ7y/3xGCpKfzwBiqKomm3aZVHQotzZ2Xn/F7/gjP3uo9+FYVjz6wgg0zSnkwmlzLIsIUQYBLu7u4QQwUWWJRDK4XBQq3n93lWaREWaYMkX00k8n529eEEwwQRRSqfTCWWUcw4hQAi3Wi1KSyH5eDKczWacs+lslmXZfDEXnGVpIqV0bDOO4oooXZTlaDTa29vVTcPxvI2tTYTgYjGnJfV8b2lpyXVdRVFURTUMA0EEAGi12hUyUMmvq+6zMkB8qWqvpvvq7v7rm0zwtZj45VCFvo6Tq6B+hCDGFX0JQAARgrqha5oCIRCcJ0nCGavwqcoyxLZtz/OqIPGtzW1V1RVVa9ZbGBHbdAlWMVYxJhBAJjiTAgBQdRC6bqRpEUZJnheMcc3QAAYlKzHBlmX6nj+ZThilw9FoupiHUTSdzwHGS8sr62ub4+n0yfPns+nse9/7frvd1lTl+vXrEILj4+P19fX9/f3hcPj06dPFYhGGIfr0088AgAf7Bzs7Oxtb2+PxuNFoNZsNTMj2zo5pWitLK1ma/sEf/IHv1RhjtVqzP+hd21/t9Ya27RqWwwUYT2aHRyeEaADhnWvXllZWf/fJx3fv3g2CoCjK6XR6dna+ubmp6/qjR4+++OKLer2+srLCuZjPAk5lUZRFSS97V16jLgmeR6HXqDebrWAe0pL6fj0v8ldfeXU2nXEuHNurPDZUVZ0vFg8fPTy/uCjLUlEVIUQQBLVarV6vU8mIimlZICDWVpY5LaJgXiRRkSRHz59FcYQxlpLPZrMsTYejga7rpmWurq5W2M7ZySkti8vzs06rNZ/PJOeqqnQ73TgKP//881deubGYzytBuqKovV6fca4o5Kp3gQiCECVJIrgwdOMr7iaE0+l0MBy4juN5LoRwPB5Pp9NGowG+Fm9UpfGrpSWEEELLsir5W/WqjmZVR6uvqs5ldVgxwRABBCHGCEIoJYAIKCqxTEvTtGq9RBQCANB1HQBQkTir5tL3fcZYXhQYISllkqaGYTLOGGWMcy4EgJhzISVAmAgAAcS6bgggKedSAsoZURTLtAghmqopRLEMs9vuNFutzY1N13Vtx6aMlyWN4ujZ82dhFIZhOBwOJ+PRzvb2Urtbxdx/85vfTNP0xYsXSZocHR3lec45R7dv3643Gi8ODz/66KMHD+6/+957aRI7jjsej/O8mE2nRVn8vb/39958803Xc7M8K4pisZgH4QIj9fJqgAjJy9K0nZzSII4uLnu/+e1H9x886o/G49Hk5PgsDGNGxcryGi15lubj8SyOEsGhEMLULQyQZZp5VjLGy5JLQNI83zm4bnv+ZDa3LKvTXmKMYwkPDw9fe+1VQoihG4LJ87MLTVM1TeOM+Z5nGAaltN8fWJZtmtZoMnZcu9GoRXEAoaz5jqYQLGXD81QETU09Pz0VQiCMpARFUZRlubyyoqrqZ5/dWwRBGAREUebzuRASAbnU7ioKmUwnnDFd18qyXOouMcYUQiCAruMYhm7bNmO02WpW4EiSJNXPN03TsizzLBsOh8Ph0HHdTqezubm5ublZ3eAvYXnwtZlP1XdWp/YlJv+/tKEYVye1Mmb6CjGF8KsvRABhXJ3zasiwbVNRFCmFqhLHtoWQ1aEMggBjXKvVLMuqIklPTk4AQkVRVr5O1ZNQZTABACGAqqqqqgYAEFIUtFSI4tiObdsYY8aZqmm6pum6RiljtJxNp1malGUeRlEQRSWllPM8L03LuXHjZrvVMU3zs88+Ozk+WVtdHfaHy92l0+OTPM0kF67lYIigBLZpkV7/6vTidLqY2p79+p3XDEP/+JNPOBe3br1yfn6GsHz48H6z0dnf5ePBuO41ev3R+vq243j3HzyYR6WuO+ubm8fHx996971PP72LoJzP5pZlHx0eu75fTa+VWNZxXN3Q8yyfzubzeRBFsam69Xrd9b3ReGxYpqqp0+l4OB7HSQqENDSjTGmeLI6OnjP+N588eVJJGMbjiWm6nu84jmXoOoQwyzJT164f7Pd7l+3NzdWVbn9w1e/1l9fW0ixbhOGHH/5WMKFCAhHoD3qu674Yj7b39hDChPCiKBzP/zf/5l+rql6Uha5qYRRurG+cX15BhK56V75boyX13BqTAhHS7nYfPXnMAARQlrQAGNcbdYRRksaM5jynw9Gw3mharqtpmqKoQAJWlkRRiaLYjuvV6w8ePlRVNUmSNE2r6liVPc6ZppnValRKUBmWYExewvJSSoTgVxM9IWVR6roKESAIEgTLkhKCMQAcCAAEkEDByDB1QogEUiEKIkoUx6qqxHE8Ho8rxxdFUc7Pz6tnaTgctNvtw2fPkAJrtVqSJQWjVHIAACtKAKSqYCCkpiDBKtyNU84UTQ/TkHKmYkXXtSAOILAwhkmauJ4OJBAQCYg9z+/PY8PQOC9fuXWdKKTumUBQ23Nfe+01LkElMHRd13VcAMB8PjdNi5SQjuaj7/zw2z//+ftYJ0JKRFC9WXv24ikAYNVu131vqd0+enGcpvTyYnh61nvrnRWiWkg1J9OZELOizLIs/vWvPjANXQKQBGndqRtYuRxNl9fW4iRFWOFCuK5XlkUYx4qi9vp9x3I1XcuyDMVoY32dch6HAYZws7uCEO6020VWPn74TNMU2zHvP3zQaHUuzk++8/0f/tVf/VXGUts10zxljBKMdU0TjBKkNuteu+mU+QJKVvOX+ldj328TzTo9PlZV1daMNIzWN7cAwi+m00UYm4bpOK4QUlUVzoVKyGDWs0wLAJFmGVYJEKAosv4oW1ldyRk1DCNLKcKYIZSVeW/QY0Lajo0gLzJmGnoYRodPX5yfXO4fHFzDyLZtKQBjvNcfloyvLLcgUc4vLur1ZlEU9XojCCIhQJIkjAnOv3KFVhUipaCcqgohBJdlQYgCgUQQqJpSFGWF3bOy0DWlLFJVVTktAMGQU8sgCEouAYMSIQClxAhAKDVN44ATYpqmSSmtAnMty5JSVqIAAICm6EtLSw2/VvPcT3/3O0YZwggCKRmTQBKCi7IoCTRVIsocERyncSElBaiEnEuoAWRpWhaHS92WhiAELEm4W28iguKCr2x2j84vvnzwQNH0UgjLc2/euG5b+ngUzBfz1vJqEMeOZ+/u7N6/f1/VFMMy/JqnqJiohtpaas0Ws7ffeetnf/kX+3vXW50W53ww6G9v71iW+e63vvni6eliNnedlqCg1eyenlzu3/R13SEKefr0kZTy7Tff6l9dGpoxn89WllbDeWhqpkLUMIxXVjeiODYUEkZxEieUS91UD27cjIIoSVND18Mw9Fy3SNMiL1zT9gyn3+sdTuaY6DduvGLbdl7mv/nwg52dLUXTdvb2P/zdh7PZRMQlRqhea/T6vZWlbqfZEIKZhnp+drS2ulSvub2rYcm57TpBkgiEs5Lqqp5kWThf7FzbtyyrKAvORUlps9meTieLRaBrhqFrnFPLsq6GfcuysrywLCNOcwmhADJOsyQrVJU0Oq0gCBbhgnMhJK3X60BKw3A4F6qu90ajUgiBUL1eZ4xTyvOiHI5Gnl9bhAEhapWj0Gq1p9NZRciCEC4WC4RwWWSqSqpKidFXoCZCEADJGEUYAQgkBNUljhGEQEIpIABCUCSEAiQEAiIAAcAYYigFY5wzIRXOBJaywhd1Xa9wVk3TqmkMQdioNQlR7j38FAlgmRYtS4hgQUvBKeUCESyriDCFICkxQSUjnPOMcQ4BIQRB5JhmlgRAsFm4qLnO6uYaJMR0HNdz+9O56fp+vY4JEgBEcdy7vJjNZ5XHeX86j7P0nXfemUwmnu8lafL666/neX52doYueueOa0/n06xI//5/8Pc1Q4vT8Kp31Wg2Hdc+PDycTGeVNkgKKAHsdru0oMPhaDQaW7ZdqzUY5YdHx1Ga66ZFSw4hLihPswJjEgTBIgjDMAyCEEKECVFVrYKTF4tFlmdpmgIIL6+u4jiWXJSUBsGClqWh6xXLxvP8WzdvmqaZpClRFM4ZhND1XMu2IcKc8+l0yhkHAEwmE4xRp9tinH76yd3Dw0ND1ypTUsbZ0lK3s9RtdzoQIYihaeimaSgEj0aDYDGntGBl2WzUOaNSitFomEQRhFAhuFaraZqaxBGCKM+zsiivLq96gyFEWNcNAGBR0GqAyLI8zwvK2HA8+uzevffff//Ro0cnJ8eUUs9zGaPVWsVxnCrpdW1tbXl5uVIJV21lJW+qmk5N0wCELxl3L+cnhBCWoAKVhBAqUaUURCGCc4SABECCihuFCSEII0ppScuv6VGiOvEVc68sC8ao6zqNRt00Tc/zpBCz6XQ8HpqmWdnfISgVleiGqqoKxpgouCwLyqrARQUAUBaFEJwQLHjlxQejMMzTFABAy5IoiufXICIAIwHE2saagDDJ0kaz+frt17d3d9pLXUXXKqeTfr//7Nmzvb29t956S9d13/dXVlbIdDqL4mh/72A8neRlaVjGxfnleDJuNFv3Pr8HBJuMp3sHB9Nh8PTx8WIR+PX23v5+fzzWDWO+CBDChmEGQagq2unZebPZNHSjZMwwbZklOWOOY6dp0mw25/N5FSpVGcG1O53h1SAIgso8oyxLyzBNy4QA2I5TUoqJMZvNHGcEJJzP54Nhv9msHx0dx3Gs62qRF5zzNEsgl2EU1TzHcZyrq6sidySnlNEgzL788suV9VVA8OrqsmQiTRMuuef7z549bba7nDEupBSi3+9FYdjpLjNGp9OJrhvD0XjbtOI40nVD1w1D05gQAABFUYIg6veHuqGtra0ahjmfLxjnqqpXbE4pIaccAlCWxWDQa7dbYRhU0bSe5xmGTlTiug7n/OzsrFarmaZZAfJf52YTVSWMlS8B0Ze64arQcsGlBFIKhACCUAhOCGJUKoQwSgkhEAAhJYIIYUgIQdWalLIKxgdfaz4pLatDP5/Pm82mruvT6TSKI13Rbty40bs4n49nRV5wQYUQEEFVIUIAzqSUMk5TAjlCQCJU0pJzLgDUFF2ygjGGEEFSuq5Tq9ct22g2m4auU86zPI/TRFXVRrOpxFq92TBsa7ZY/PCHPzg6PhaIMM4BAEtLS7PZzHXd+Xx+fn6+traGuivd7vLydDFfWV/lkjMh/Lq/tbtVb9Zeu/0aRBhjLcuK2WyRZrlClMl4Uj3fS0vd/lUviGKiap2l5Vq9Pp3N4zQLwphSnmSZblqY4DRN9/f3K7ik8ocZj8eDwWA2n2GMhRRCCNu2dV3XDSNN0+FoZLvO0tJSmqUIQdd1Dw8PZ7OZqqjtdotS2ul0EIJ5Ufi+v7GxZZhmlmdxHFephMEirJjqnu+WZS44G4/6o8HQNA1OqaIqXs1jnDXq9SSJhv0elCIJQwhkq15/8eyp77qc0qWlTlEUrCylFJwzTdNsy0IIEowZY3EUAQk5E4ILgtVwEUZhxBnHENu24zhuVeryvPjyyy/Pzs6LooAQEkKOT44/v3cvCIKyLITgpmk4jl3p8Sv5ByH4peVYZU/3cp/51d4PQiCFkAJ9xVlmEEgEESGYYFTZgQMAIIYV+4kQIgAQUgAEiULY1x4ktm23Wi3TNNlXOJIoyzKO4igKVU01DCNJIi44xhgTXFk4U0qF4EJKiJCmaQgRISWEyLYsjRBNUVRN45zqhm6Zpus4mqr4nt9qtiq4XtP1yvcKEVwZcD98+Iio6pNnz5iUG5ub/X6fMWZZVhiGFxcX0+l0b2+v2+2SVrt1bW//V7/6FeN0c2vzk48/3dreOjs7tx1nOl9s7+wGs2g2D6Mo8fyaY9cfPHxcPH+uGEbByjzLddOM4ljTsiSONze3OeOLMDQMQwAYxglGGCFUmRxVpmqcc8/zKtgvCWKUY4RxmqaObRMFK4qJMfZ8P5wH3aWlJM6E4GEYMiYODvbTNB1PhpTS+TwyLK0oyyRJF4vF5WVvudMZTyaaArM8I0SZjCeej6Vk/f7V/s0bp2dnCELKKBAySiJN1+M40lVtIQSUQCHIdhxdVTRFCYO5oqiMMce0TNOoBpQkSSzb5owxxm3b1DVN13SFqGmSEkw45b2rXppkhmFYtl05MZVlKSUQQjiOE8dxFVM0Go6ePXuuYqVyL0vTtNVqVtm4lTKJMcZZUT3M1ea9AoDyPH9ZShGUXIiK8ESpkEIqBEMIFKXqAyGsimXVuiIEIOCMCSkxwRUhDyH0leWTEKZpCiHSLKsaD87YycmxTki1gEWQQACF4IJJCSAhWEpJFIWomAApioJAoGgazzIpuIIQZxRrBAgJIaQl5YwrmBRZMYsCqCuW65i27foewgQgeHxyROPoajCglHEhO51O5Z5pmuZ4PK4AUdM0SV7kR8fHs9lsPp+vrW64nvvg4eON9fXj4+M8L7vNztvf/NZ0tFjpbj59cpynharpaZaLIkuy1PPrcZIQrPhejZfctr2yLISQcZpymjQadQxgHMebm5uEkNlsVq3vNjY2Ki/jJIhNyyryQiGEUpoXBSFYU1RalgBB3/eBxLPZHGP8xhtvtVrNjz/5aDwZcl5ABOr1+nQ+Pz4+QQDMFwvGeDCbbqwvnV2e1X3Hce3ZdGT7fpLEp8dHcZpOEEzSFEk4mU6zrECLmW173U67KArOOS1Lztm1vd3zswvDtM6v+r5fUxQlSVLVVeMoCMPA9Wu6aVimcXD9AGOlEpVPp1OMMSFKFEWUUlVVEcb1eg0TWLmAK4rCOKW0bDYbhCDLtsMgiOOIMRaGQZZlqqoahl4ZK+R5RktBKXuJw1dFtPq4qLo9jIDkGFdVE0MgNE2tOEQAAIQx46LacgohAYQAwKwozaLUDampBEAoJedMQCClEJqmYQQREPVajSCFlWUUhnq97rrOaDhMM4owxARLCABEpq4zShEQWcZUTRESCAEQ50BKzqmh6oyxMs8VJCAgrutubm6VBU3iVAJ4cXXh1euu46hl2RucEkVVdL3WbDSajTIvz84vNE0LgkBRlG63Sym9du2aEOLo6IiUJX3x4ovV1VUI8d27d+v1xmAwqrxhLcvuD8erK4vZPIjm6WIRDgfjNMmxppVFsb29jZC6eHG0sbYZheHBwQ0AQK93laQ5BEjVDMaZ45iqplb0nJdo88XFRUXFsB0njmPDMlqN5mI6KxmDDEgFTGczz/OGg4Hj+FIIhFDlzw0k6HY6YTTDBE5mM03TEUQ0q+xc+XwR1GuOompJmrqOYzuWaWpcyvlsKiQ4X8wVzcAIl5xLBAzDiOOoavMxxqqiDEfDml+r1+uT2WxlZen0+GR7dwdIySizbefJ4ydZVqxtrIdJurqyyoWsCB+cc4SRYRjj8bikpet5tmXVGrWNzTUhpATAMs2iKACUuqHVcR1jLLiYTMfHx8c7OztSCkKwEKJyngcAaJrBWFxRlirfm2qJjzFmjGIkCcFSMKJgBWNOEAJSV5S8yBHBQnCMdQiZBBCCr9j4AoC8KPK80EuKcKlUhA8JEASarlFKTc/1fR8hxJjM0xQTkuW549ic0UWwEJJrml7SnHJKFDsrclNTBZdCwJIxzhgXgiCo6IrveeFiVhSFV3cbjYZlmpqm5UHs2E4RBxJCyuh0Nj06PUnzTDeNVqvNBZ/MZo5lV4YlVesYBMF4PM7zfHt7u9PpkFazo2smhNDUzcvzy0F/2F1amownjDLPrfX703/1P/+05tQJ0ErKr676RNGWfF/HuqLgPCsll5LxJIoVoqRZKoQMw3B1dVXXjSiaJ0lsGEa/3/c8TwhRWVAsFovKR666+xhjlFHNMCzHKbLMsqzxaAwgxFgviqLZbKVp/vjx48ViRgiyHcP3a3mRSsEBAJ7nM53OprP+cMilDKPI0PXJpE9pCQDOaa4oSpLmACCikCxLFUWhrORc5iUlijKdziUAjUajLGgUJ3GS1vw6YxwIkeVpGscCAACgrime7yZJzBnTNV1wnqa5aRiqogAhx5MxBAACCITMkrTmu+1Ws5oFqz5SSkEIStMEQkgwLmmZ50UQBMfHx91u13VdIUSe59VwTcuimper+JjKxaQa4VVVY2UKEFRVpSLTEYKkEBJICCUtS01RKONMCB1jCYCQkFJGKWNcxEliWDbGBACpfGWlhxAEuqYaht6o1xaLoJrrDcNIowhLQQg2DC3LMwQB4xwAmeUpRJALAQEUlYulAgSQVXdeloWmqZAjgonnur7vE4QNXRcAFdNxo9UGEBRFGacpJoRRLgE8PTsvKfVcl0C8WCy2traqoA4hhGEYmqZ1Oh0y7A063W6e57SkrWb79ORs2Bvpurm5voUQoVSkWYllWnONkvGtre15EBimsYjmSRwRYioIDQd9jMl8Ojm7vJAS2LY9m80qWdb5+VGj0VAUZTablWU5n88dx6nX63mez+dzScWCUkVRyrKEEviupyiKZVmBFsRJbOhQEmiZ1taWfXp6MZvNVteWB4PB2vry5GqiKJoQgFGmatpiOhuPx7tbqwjKKk4EABlHUVlSTMhoONZ1Y3VtnZZlXuRJnilED6M4TpI8LznjBaW26SiqxhhnQhBF6fV6tmMJKYqihBBpur6ysjyfLzRV9f2ahLgsCk1VIYDdbldKqRDVsa00TcMgMHTV9WzOWZLEqqoGwaIK0izL0jQNIGUwj4QQtVrt8vLSdd1ms7m2tlaRQsbjcVnklQVkJf+oamdF+lRUpcwF41JRFMEZAwBCgAiSkhOMGOMQqmVRSggh/Mp9hHJBKQMQciFxtQKVQgiuExVjRAhSVa0ssrIsMP6K7NftdKYQllkyDRaMMykFZRQhBDEqWWlphuACIwQgUhVNIsEEpZSyskgpcy1D11Vd1wgmuq4ncUKZzJOMYAUgWHCa5TktWRCEEKFmuy2E9Gt1jCBgYn19fbFYVFaBEMKdnZ1arRaGITk/Oc/TYmd3t3fVVzVVJWq4iEKQtFqtOI1oyVvt5XAejkYTCAiBxPP9Tqczno5M3Wg02+PeqKKTsbLotJqD4cixbcZFr3e1srL0zjvfurq6PD8/D8OwXq8nSVI5V33VYEGoaVoUhqqqViGZvuvmReHX/MV0kWVZe30pSZKDg5uTydyy7EajUdJ8EQRSyjTNdNOK05zTqKAlhKDVak9HAyi5bbt5kWi6kmVxnqWclZSi2XQqEZmFi6ygpuUgRX9xeLS6snp11ecXlyvLq7puWJatGyKKYqIoAID5fMYYJ4riKA5lrNFsaJpKaaEouq6pRZ4xxjA0PNfmXKoKuZrNpAQKgZZtVF52lX9+GIbV0rLdbpdlmWaZaVjNZtOyLVVVDMNoNOqLYB4EISbIMPRK8PCVoa5h6LpOKa2wOYgRQRJBCYFEAEIEMYYYQwkxQkBIISVSNU1KACFUNE1IKSSQEvz/qfqvYFuu9L4TXGvlSm+2t2fv4/31uBfXwAMFU57lWDTSSOoRKdM9o1a0CcX0hKQYRasfJmYkUYqYCPVoqBpRRZZIliWLxTIACh64/p5rjrf7bO8yd3q31jwkqrrnPCDwgDfkzlzr+/7/3w9jFjOYxDHDcZQQzLAIQkmUeEFgMaaEaqqKGN533UIx70yMwHUgghgykOH9MOB5DgAQUwghghglVW9IIMMAFAOSfAMlAQLAsWw+n2MQw7O8lkrzgtxqd0OMes4YIxwFkapq1eqU7TqdThdCBAilFIyGI03TGIZZX1/XdX1/f397ezuBlqHPvfHF6fqsY3os5rKpfPOkXcyXMcSD7jCXyQchhQwnSirmRcxyJ6cNhBjbtufm5hjMqKLkuw6iRFNkVZUzmjY7XWcxoypSFHrDQS+5mmGMa7UahHBtbS15T/A8n8vlPD8olcuJ1QUiSACVZNmYTGRFRQzK5fIIoX6/f3R4mM1mk/9DcRwD+mnYEbMshNDzfBZzgiARClmOwyw3Ma3A98PAg5QAGgNK4jB0XWc0HjiOYzv28elJq93JZPKY403bppA5Ojk9bjS7/aFhWmGU0OFiz3Vd1x70+6enpwiAOApdx7Yss9NpURIiSOMoaJ4eTww98G1R4BgEaRy4rqPr416vZ9t2ErsMw7Ddbrfbbdd1KQWpVEpLqZlsenq6ls1lPN8lNBZFYTLRCYld103244krG/xvjXhiWzbHYlESRIHnBY7nWBYzGCEEIIMRz2IIIcOyPCdAyBD6aTE+iuIwiFzPtyw78IME1kUJJTFxbIdnuXKpzLNcGEaKLCew3CAMTHOiKEo6k06n0xzH8jzPcpjFmFJKYhKGURwTBBkEGQYxDIKQgmTvxSCYyBcVSV5dWavVavl8QeB4XdcpoZ7r8yyvKJrAi7bleG4QBtFwOM7lskdHR4kTLEkbNptNy7LCMMSQosgnsqRQAvrdYTaTX1lcGeeMXq93sHcEIe72BmklHUYhQ9HM9IxpmQTEa+trB0d7qqrk0+lkZ9httSBCU7WpKPAYjJcWFxzXfu+9d6IoymQymUzm6OhIFMXEs/Fpz7VcajQa2UzGZllAaRgEURxxPBeGYURIHMf9fp9SuL29NTu3gFk8Ho8BpYmVEGKOYRiWYeMwSskKQkyv3xdYwGLsGR7PQc93McsghDwXM5jlWdbyXC2ddofDcc+wbTpVrQ9HBmDYMKJhFBPXjfsDClFGSw/7bZ5jtVRK4IXhaBT1++l0KgpCh9gsx49Go0yGsCzrula3106G6nNzc5VKIY5jlucMQzeMCaVE01RZljiOdV1H1/16vZbP50ROpJTats1xbFJqY1msqoqiyKIoOpYNPoV2//8RHAAFcRwxjMAwgEGQkKQ+CRmEACQMQhhhCgCDWYgggxgIaBRHDGJIHAdhEE4ijuMqxTwhsSzLENLk1DEej0RR8H3fD8J0OosQQyhRNcUxZQRpHMdJBxVz2Au8BP1MYhJTQgjlGIYQQmnEYoYSTCnFDEIIREGYT6cBAPp47Ickn8tvbD1xLEcURduywjAIwjAIA0BIoZCvVip37txJvFmffPLJzs4O/NS5g8MwzOVy+P13PxAlUVGU0XB8sH+wunZmopsc5hvHjaOjBtZythfLnAoBCsMoVyz5gZ/JZCiNdX0UeC6GIFMs5nP5mzdvsgIXlwqaKjuuX8hlHVdodjuyJB0cHCQCtfF4HEXRzMzMaDTy/YDjBUqpMZnwPC+LYqfVPmk0IKCu4xaKxdCL4yjI53JxRHu9HoTIMiflSsG09EKhEFLkhxHPsnFMwyg8aZywGDAg4jBgMaKAsiyGFMQ0YjEWZSmfz2NRoBy/3ziOKbEcZ//oSBCEMIhM3+EFwQ+9/tCYWM7c9GwURcNBrz/oF4tlQeAsy55MJrKsBHEUh0Ech8NRX1XUmEQsh/XxeDKZpNOaqmlxHBNKPD+0LKPd7nAcOzMzo6qKLEuu6xASybKEYeKS86MowJhRFHk4ZFzXYVnMcZjjOd/7dLBPf4Va/nVRCVAaRyFATJIxZSBgEKSAIAgwZgilEMEwikRRRAzjhX4UxwACQikJQ9dxKKUAUEHgIIQ8zyWaDl0fcRzPcexgOAAAxHEkigIAIIpiP/AwZniOpwyFIInwIQZjkDSgMUNjHyMkiorPBl4QYMzwvIAQTKfSQeD3BwNBkGem5wGFuWwWAsBinM1kVE3r9XscyxZyOU1VS8Viu90uFAoLCwu9Xk8QhAT8CyGcTCa4Vp3iOK7fH3RaPYzYtJrutHq+50/Gk5n6zGajo2QKru8X0gXfdliWvXDx0vbOE2Oi+0Ggj0aaoqwsLa6fWfd913Ydz3Ur1crh4X2GKZuWpanqZDLRNM31vHw+32w2kzs+pZTnOdtx05mMbduObSMAkoBj4PsOdSGEpXw1DIiiKJjhTPMEY4ZQMhqNFVUYG6NMvoj9KLEDTUzLd50zayuONY6DQCtlCfEkSfC9IAwIz2GWYWzHYjATkCgmcTabNSfE82MvCG3LFkXFC6IoihzXB8g2HVdA1DJNQikAMJvNAQqazebs7GwQRY7j+qE/1nVQLguioCii59qUymHoMwgEfhDTRGnATiaT/f2DfD6vqurU1BSEUJJkgRei4NNCZmI/kmWZ47gko9nrdQM/YlmWEJIUwyGEQRAAAP3AZ1kWQZQ04zCDEIQMAgxmSPwpjjTZOiZrJ1bgwjgKwpBCkEznozhyPS95XyY7JPQpGpeTZRlh5vGTLUmUaBSRKA7DUOA5QuOYxAhS/1eUZ4QZjDCliGc5kWejAPIsTKdkx3XJZMIwjCxLmqZCCH3Pj6Kxhd3paW9lednaeeiHfrlUjuPYtmyMcLGQ2zs8IAScWT/zyScfvf322wno7+LFi8lma319fXd3F5kTa9AdSoIMCJVEOQqiUr4osMLq8ppre6qSCoPIsizbdnhBNC1LluTZmdmjo8N8vshgZn1txXPd999/L4qCZ597JptNT0/XV1cXx8MBxzKURKIoTNfrrm1zLCfwAolJv9fjWJbBjKJILMcmwdjJZII5LMuyJMtBFLZardPTRhAEpmUSSrL5HGKgKIkRiXZ2dibGJMlgA/rppzCMYtf3JFlSUxqhlOdFiFACfkk2hIledmJMJEniBQkgLEgSg1nE8hBhCgCAiJckiLBhmu1OJwqCtKaFYdDtdhLCfOO0YYz10+Zp4Afj4fBgf7/ZOGUAVGS5Ui5TQuIoBpRyLMswSJLEcqUsy6LvexDBQiFfqVYkSaKUMgxKUAOmabqum3BADcOwbRtCxHP8r0MhCCGO5yilGCMSxyLPY4ySET2LGZbFDMYsw2CU3McTvC5GCMaAAgARwyQwJkppMh6KoxAxyLIsnuPDMHQcJ+lqe57n2A6hJAj9mESIQZmMxrI42UVDQAEhmGEABAyDIGIoSXZaECGEGYbFDMexiiwnyAZZlsPQ53k+YWqYlvX0lSulQtm1PZblTcsej/QoIjGhPC/s7+1zLCcIYqVSkSSpWq1ihjl79uylS5cc14UI4mw2OxrpDx899AOPo8LGowfnz12sVGt7ewe+T3v9Aa9qi/X52It2t3aKufzdW3fe+PzrR8d7hVz26Oh4y3R2dnaWV1Y8z3UCb7pe9xynVqmeHB0FritpEiHg+OAwlcrQCMzPLAgs3x90VFWa6MNiscLzojEaYQbGFABKbdvEGPM8K6XTlj7hsxIhNKZgfnH+7v1bEQj9wFEUGUEU+pHrOq4XhHHIYCaKo0fbm1cvnecx41gTTpMA4BACPA9D6DMMUjh5NHG9MKKA6XaHYYgx5khMeJazHZvFmGUximkQBINBn4kcnkGEgpgQQRDCKPQ8r9Nu53I5x7JURQmjqNdoSIMhgFCWJMdxKaAYswBACTEQEo5HszM1WZYFgfVcGzEAAkpJHAS+KssAxr4fMQwDKBz0h4ZhJk8khIAXBN0wGAQlSY6jgEGsqogkjgkCAo8ZFFESMpBJ+kYIQgAJYhCDUUQiBjMEIBAzlNA4igEFDGQoCQmJEYMoIkHgQUohAgzLAB+oqlqpVEzT9INAluVz584FYWCOdce0MM9NTCuOIgaiOIgYAliepYQCgDBCESSx51EWgTiOw9hzHI7nqMAFnisJAi8IruMSQg1jkk7lhr1eKpOenqp/+NEnFBCKYCqbS6VTmUKWMigIAgJBEvJSVVWSpOF4HEWRKEn3Nu6nUmnMYI5hmc9+4bP3799zHGd2Zo5BPMK41R4Qguv1mVyp0j45pS4JHB9oRFSFcr5ULlZ39jZTSrpYq/GK4vuels04rvPRJx/5rvt3f+/3Lj91aTjqq2m13emGvm/q1qhvenbACwyJIgjjciFjjEcTiGpT5XazJXBsGEYAUlWTKYghAwSRhxC0210lnXcD3w5sPzQVTdQHfhwj33bTadX3B5wkRDSOAtjodp8CKAwphpypO4IqSKoaBI7nWpbj+gGBGMMII8BRgsIg5jAKwiCZeQk8Jwi86/quYyGGgZQShGRVi2PCspgJwzgKo9B3rAmitNfr+UHEYM5xvQcPHq6srHqel0ppE8tmEAoiH3MQAcLxnKqIAADf813XGw0G9mTCskwcaUHgWqaTSuUDL8pks81mezyesCwXBEEQhxzPkijyfRuQmMUgnUoP+wMWozgOJJ4Lw4ASAiBAEDEMiOKY41iIGNt1JDHjeTGhEEImCmNKAIIMAogAAAiElJqG4WbtXLFg2WYSzhJE0Qv9xEAXxSCOKUMRRoyuj2JKeEGgYRj4EaQQxVATZNf1WYgUUXIcGyMKKCFhFAagVC6MJ4brmJIsCoLAIIbDuNvpb209qVUqqWxqZXX9mevPtLvtg5Oj/mjoU3LSaTmue+7cGTfwi4X8YDhIzjy12Rk/DEZtvVgqR1GIYwoIBbwgnDt//vGjx7dv33355Vf39g6y2TzDOitPXej2B6aseLGrKgqD0FS18ujRw2w6XSqWAj8yrUm1Xh0N+oEX8QKT0maKhcI7v3x7qlZ57bVXnmw/6XUhAEBVVM+LB71hJqeIogBI5Lr2YDhWVa1xcjI9PV0qlXzfT4iphJBKpXB6eLq1/WRmdhUz2DANx7VliZ9YRjabIRHu93uOZ8WAalpKt00/ChGJ9g8O58pFHMW+Z0eQpLRyGPmCJOumiVkeY971PcdyWYb1YOA4TlI/T8yWyTjMdV3CYZllfM/L5/NBECRq0MQRY1m2bdu6aUPMJWcy3/cPDg4STaimaTzP8wIWZZbnBI6DlmV6nq9qqSiOFEV6/PgRJ+CFhXkaU5ZloyhMfiHFYvHBxj2OYxzHliUZ0BgCwDAIMkASBUpiiGgcBSwDISCSKDiOm9z9E6Y4AJAQihAGAAEQ8zyXnEc/TejFcbLzxCzmeByT2PVcXhBEUWRZ9snmk2q1KgiC4zgQsb7vM5jJZjMTY8whxppMbMPIpDO+44YkQgCCmLquI2RSqqIQEjq2zTBEUQVB4HNsdqKPdd2oTdWllJTWUhIvnzZPoyhwLLusapfOX9TfGevjEeRYtoAHIytfyEOE9vf2aOgjhknUurbner6fhGQpBOjOvQfD0Xh372Bv/+DwpHHl6vXhePLxJ7e293b9IPzlW2/df3BXFoVcNrO2vtJsnc7M1Bsnx4LAS5JkGDpE4PHjh7ls6uSkkc1mFpfmZU2UFNF17e2dzSgKt7a3s9l0pVqpVEuzc3VR5F3XiWNyeHgkSWImk5FkqVqtiqL40ksvPn31aYRguVw+PjqSZSmdTgeBX6mWu90OAHQ0Gk4Mw7IsxMBcLstzvOcFFNCUphVyOUWUDMNQZIUXeS2VCvxga2vLsmzX9URRTG7EmWxWEETbtpPxZII8QAiNx+PJZMJxXDL5Yxhcr9ctywIAJAaPRN4axzHDYF4QZEW2LCtxjPi+b9u2aZrj8bjVau3t7R0fNTqdnmU5vh8yDPY9j+OYXD6zsrrs+04UBRChsT7S9REFse2YQejOzU1TSmbnZgAgkBLMABYjnsNh6Du2LfKsyHMcy0AGiKKgKJIgJMtUluN4CJkoJHEMAIQMYjiOQ7/6+98nnQEADOZCQoIgTEJ9nu8KAp9KpcIwRIghUdxtd2xzIklyuVA4u7Yui2IhXwg9PwgCQRQRw6iaKoiCKMuSLH+6sWKSshQQOL5en0YIGYbBsRyNQbVaTcmK67ix749OTpZXV86trxbSmVIuZ43HU+XydL3aaTd5Hrc7nV6vJ4pisuOVJKlUKi0sLERhiF584QUK0MbGo3y+DAAulSrjsf7ss8+Vy5XEy2NPJqNBf39vO5VSFxZm79y9PRz2f/6Ln2EGjUZDVRHnZuv5Qu7LX/mM4xqbW48AIKomOa5178Hdt95+e35+PpXSjo4O0umUqmqe5yeX1rW1VULiQb9vTiaHB/vbW5t/8Af/ptNqFQp5lmUEkR8OB+lUWlakVqsZRWEUhZ7nMZgZ6zrP8bVarT5dF0XBMPRep2tOJgzD9AeDsWEEfmC7bkQoy3KSKIuilElnJUnsdruEkGwuyzCYSdyACCagDk1Ty+WSLEs8zwVBMDs7l8/nk4RKEgBLWpoMQqIo5vP5lKYl3stkxRJFEaUkJrHjOP3+oHnaPj462d87bDabrusmSuYg8DNZTdPU8XiIMPB91/Vsz3Nt24QQCAKvanI+nw0DDwKaoL8wZqIojEJPFgWWYyhNpLCRoiqSLGHMSpLE8SKDWQowIAzDYI7nkwFNkg1P7ukJ1oFSGsdREjH+teBrbnauWCjIsszz3ETXTw6PJmNdk8TF+UXHtlOKihkkCkImkyYxieJYEERJlhmGwSwWBUGRFUWWMcNEUWhZlqpqsiz3+/1GozGZGKZhZDLZ05OG77o8g6ltP3PjmdWlRRD4i3OzM1Pl25981O91giDgeZ7EcbFYnJ6eLpfLcRyPRiNJEtfW1tBJo7m3t18oliUp3WwOv/f9H2VzRc8PMMu2u20QhylFXlyYUxRpd2c7k03t7e7KilCvTw0G/cWFmZOjXRaDIHT29nbq9anDw72f/+JNzDLTs1P9fmeqNnV6ejqZGOtn1xuNo8dPHlq2ceHCOdM0gyDQVEUU+XRKM/RRSlMX5+f18UgfDf/+3/v9//F/+O/Pnj2rpZR0Jp1KaZVKWRCEVEplMQaAOI61t7fTajdZzAhcEoSELMubpnV0fOR4nmVbCRTptHnqOA7GrKZpruuOx7osKYVCkVLCYBjFYRB6ABLXczDHEBpn8+l6vba4MD9VrWKMRVFMpVLJojyO4wRnSCnxA1cUeVHiJ6bh+rYfup7vxnHI8VgUpTgmtu2enjZ3tndbrVY+nz083J9M9CDwVU1GDPQ8K53RGAYFgQcAse2JILKERJ12i2MZCCiEFAIKAJVFjscMpIREEYIUY+SFHoAUMYjBrKykWJYXBFnRNEVNSZKa1IKT86Uoityv/pIQk+O6vucnocfkh6eqCgC0XquqslzIZvPZTFpTEQUkCgWOIyRiIIyiaGKMYxIFYWi5dhAGtm0DCGVV5UWB53nMsYSAwI9sy4kiYttOp9kejUZRFPmum9JSt2/e3HxwP7Rsfzz+/f/6H/3ub/12KZO+d/NWtVj0HMt17ampqfmFBUqpIAhJUgRjvL217fs+wpjt94eNk9bbb7/9wvM3dH1iTiyMcbPZ1DStkM2EnrP1+BEDAcsyHM9N1ap7e/vrayuzM1OEeGvrK+vry2fOrKysLtqOMVWbqtWz9ekigNE3vvF1faz3+73ReHywv5vPZ+fmpuv1qbn5uXPnzpimZZoTRZaKxZznuYREuVzmwsXzi0uL3/72Hx0fHvw//x//99nZmaTFEMXRhYvnOJ6fqlVzudz09PTq6grLYFmSGIYBlCqywrEsoGA40ieOo8gaoNAyrTgijZPG6ekppaBcrnAcz7Isy2Lf9yBESVA8IRdoqgohZDGHMQMAZXnecV2MMYOxbdtJKg9+mraILcsOwzBJIbGYhQCGYeh5bhSFgiAInCxwIgAoCMLDw0NRFDkOnzZPBoNuOqOeObM2GPQZBkVREIS+41pB6EMIBJFzPVNTFZZlWBZiDDECHMcAGHueC2CcyWYy2TTHcxBDlmNFWRFlmcGcJKuZTDGVzguijFkmJnFCd2I+TYiixK5EKA3DwA+CKI4TGlQcx7ZtDwaDOIoLuVyhkFucnZutT3MsG3j+/OwMAtDQDdM0giDkOJ5hGMdxPN/zfQ8AwPFcwiVlGByGkSAIEDLD4TAJILOI8Rw3n83PzkwHjmPqo+PtJ0EUTY52L165dOncGUXgj/b3F2anq+XS8tLC+XPnEIIYY8uy9vb2MMamNRmNRkiSNIRwr9e3bXd//xhC3O8N+r2+pqnzc7PmxMinU6cnxywDXc/a3n28f7xTKGUkibXtCceifC7l2JO11cUockrlLGbj+mxt/2gvJH5Igl6v5/sBAGQ06vf6HUkWHMd+/733eEGoTVUVSRB5rEpipVz0HGt/b/vjD96/fvWy59j37t7+v/2Lf/7yyy/WpqbCKGg1m3Nzc6PxYDgcVCrFg8O9J5tPgtAjlKiKOjc9PV2r25bFcmwUx73BgECAMS4US5cuXdJSadt2KQFT1Vo2mxdFyXWcBMmEEMSY8X2v1+v2ej1JEjNpTdVUAkByQrVs2/N8BmOIEC8IFADP94Mg8H3PdZ0EvZlYK1kWU0omEyOOYoZhozhmECNJchzH3//+969du24Y+qNHDwmNXc8ZjQat9qntmINhr9VqKoo8GPbK5UKxmOdFLpWSFUmSJVGWRMwwmEUQEYFlU4rMcqyiKbwoioqMMBMTyvIiy0uipCLMJkjwmBCAIECQAAoZhBgGMQyFEEDI8SJCzKdcEsj0+/393b1hr9fvdkSe92yHZZAiyxzDpFOa67hT1UpMwnQ6Xa/VgsCHCbMEQgqh53thGAEGMpiJ4tjxvAhABnNhEMcREQQxiet7vjdTr6uyfHJwuLO9dfrkiTUYDnd352dmb1y58vSli77j9LqdjY2Nh482er3u8fFhs9nALAKQVKsVz3PQh++/x2J2fm6ew7w+MpaXlhPqEMuyKVUGUVjMpRfmFnO5FKWRpimUEEMfNY5PJIFTFVmUOEUVHz9+KAicaRphCF5//ZWJOYpizw88TVNqtQqEIJ3WBIHtdlu5fBYA0mw2eZ4rFvOmZbQ7rWw2LSsiy2KOZzY3H8/M1J997ka73f4P/+E/FEvFZrO5sDi3tfUkn8udP39GlMQrVy6XSkUWMyxCEJDxaOz7Hsfx+VxBUVNRTMMoFiWRxaxhTGamZ5aWl0RRZDGLEOQ5Pibk15dcjuMIIYlfWhAEXTeOjo4m5mRlZWUymbAsK8sSZllREgVRTMR247EeBEHS2WUYJjFwsiyLMRvHhFASxbHn+UGYMOsQIWRj4/6rr77K8ezB/t6bb/5sMpm02y3Hsfv9rjEZ9wedVEp1XTedScuyqKkJMVdUFJnneVEQBIHjWDYmkeM6DGYFQWQYNgxjx/Uw5gBEECESgzgivw7hAwjiX4X0WI4TBJ7leF6QGIZFn8KboG3bBwf7nucGYeB4jiwKiqyQKDIMw5pMfN/TUtqNG9c1TRvpQ9O2E/ttsoN1bMfzPRazPM9HURRGsWHYtufyokgB0CcTFnOJanY0GimqLPB8IZfFGLZbzUGnG3neubNnmo2Gpio8h09OjsfjsaZpEKHFxYVarXZ0dKQoiiiKiMRRHET6yAAEeo7ba3Z811Nl2XedKPTKpZw+6P9f/sn/uZjLzc/PPv/Cs9Mz1TiO3/zFLxfm6l/76hc/eO/dlaWF2lQ5iNypWuV3fvdLf/pnf3z9mauYww8ePAjCaGFhIZNJl8pFzCJJ5kejXqlUKuTzjdPGU09dmJ6u8zzLMOiNN16PIj+dTvmB12w2bt78ZHdn2/Wdre0nmqYuLi3s7GyXysWHDx9QGu3t7+wf7A5Hw9F4TAmJo4DGRBJFy7QMw+gNBp4fEAJGSbiExCQmUUwQg1mWG43HrhN4njcajQCAGGNBEJI5eaJomZ2dRQzz8PFDludc39MnhjExGIwjElNAEfvpBCeZ3fi+n/Asfd83TZPjOASRZVmlUlmRlaSryXHchx9+iBCUJWVnZyeTyewf7BuGcXh4aNu2ruvJBCCB1CmyrKZTWlqlEGSL+XQmRSkVJZGXeYghQMjzA0VNTyxbVpVEt2fZdhQTJZVWUynMsSzPyaqCGMbzPX1ieL7v+R4vCmEYuoHveF4cAy8I9IlRKOTPnj0jCEIcBtbECP2AAYBBKJPJaCnNCzzLsgigtempUrmsqgrDoGKpxPN8TCnDYoSQKEmSqgqiCBAEmJG1tBOEpuPajt3p9aI4jkmIMDM7P1csF5qtZrfd8T1/ouu9ZjOjqumU5rkuj3GpVAKAtNpNwxhblhUE/vLykpbSRuMhYhHKZbIix1uTiSKpqiJjiM6fPVvMZ3gOF3Ppl1967v/zv/77bnc8MfRiMXf+/JlcXvvil17e2NjotJrf/MbX4ijodlufff31r33tK6lM6vNf+PzENPL57IcfbnCsVK4Uz5xdFQSO0igMfc9zG6dHWip18eLFRqPR6bZefOl5Ssn3vveDpy5fOnf+7MHBXhSHb731jqJKtamyoY8lid/cfHLm7PrhwX7SCojj6MyZdcuyC/mMPhpRQrY3N62JHRMSExpEpNvvp9MZ1/Ha7e5oqHtukBzIJhPTcz0IQaFQEEUxDP0wDHmep5QqigIAUFRlMpkcnxyPx/qzzz3b7/eTbKhpmbZlAQB4nqcIJC2UBAYbBIFlW+l0OpfLQQgty1IVSddH7Xbb931Fkfv9fq0+8yd/8qfpdFqSZEVRKaGWZSUshiiK+v1eEt6BEKTSaZZjE2YsAIDj+WK5pKQ0x3ONySQMI1HS+sMxAIzteJgTKIUcL8QUGsbEcVxBELRUKgzD5AubDIM+BeAjRChAiInjGDM4+T3kcjmex/p4PBoO8oWCqqksy3Y6rV6vxzCIIqCl1EKxoGoqwsiYTIbDYXIY9YOAF4RkGiBJou+HEaFHx8cTxwlCwvGCqEiWaQII0+kU5jheFkuVCifyY318cnysGxNVUWdq0+PROCYxhKDZPE08sZcuXcrn84ZhvPmLX4iiiPu9zmjkZVJqOp1+9rnnf/iDH/7Lf/k/P9l88vqrr/ieG/v2TG2qUiwvr679v/79vyckcl2nXi1DEO1sHw77g0o1q2UyX/7yF7773e9mcmlBElKZ1JUrTz189Ojy0wuBwz56+OiVz7zy7W//iSAIMzOzmWxqa2vTsiaUUoHFxXxOH404Fvme+Whjw5qdzNTrjx8/nputqErONM1cccowdC90cyXt0lMXNu7ftW0rjqMw8q9cubS/f5zPF3lOFDlxYWGx1Tp9/Ghjfn5OVjRRlFgW+4HDYCCJIov5II7DIPSDgON4igCENDFqYIwhJEHgYYwwy7CYIRjvHuwP9bFhW5briKIYhGEmnTYMo9vpQoxKpVLCiItJ6HmeKIoMhv1+X5IkjkWiKHi+l0ql/MBJxD/dbiedTgdBNBwOGGbP9VyOE1mO8zw7isLxmIiioCgyL3ACJ/phSOI4JLFpO5oqcwxiGFSXZMPQ/YiEMTH1iSTKBEAGMUN9RAEjiwGllBNlPwiTax//aVqZ2q7r+z6FkFAah1HAMJbtaJoaBAFmsCTw40HvqUsXzImlj8c8y7m+QygJAl+WJTb0RFmO4sANfcQwSUwiaavGcWQ5duA5AHAhhzDLyalUp92WFSX2vHQ+P7ewwAJgDAdeGAAEx5blOk6tWpVV1fHcwHEG3X4+l5+dmenr42eeufFgY6NSKR0eHe0d7ubyhWw2PRz2HcdElmF+46ufD7xIkaTYD9eWV37+05/ubD750Q++x2LKInrzw/ct02AY+A//4d+vTpUXl+Y+9/k3vvSlL//Ob3/hpZeunT93tt9pdzvdp566qCjK8cnJj378409u3bx59/ZTT11+9TOvaikNIbi6ulwoZK9cueC6djab8X0/8Lx/8Pd+DwCSSim1elUSeUUVHz3a0FLyU5cv5rIZBoHrN65nMhnTsp5sPjk42A+C4MrlywcHR1EU27Y9HA2mpsoIAdM0U1rq7t27w+HwqctXur3+caPhul46lVFVlWU5QRQRQskEmBDKsti2LUJi+CuosShKCZuEEmK7ThAEgFLbtp979llN02RZhgAkdZmZ2ZlqueJ5nu97SZMzl8slBwZZln3f50U2iDxCo0IxJ0mCruvj8RhQyGJ2ZWV9dXU9jkg2k2MxDwGiFCTHjHa7a1mWY7uGObFdJ6IkjElirrI9D3Msx3OyomKOsyw3DIkfxGEUGxPLsh3PdT3fDaLADwLTNIfDYXK0ME3TsizXdX89V2IwSwlwXDcKI0rJaDC0bEsQ+Du3b3MsY5oTzLFRHGeyWYSR47oAwSCOIkoiSlzPS9JV4/GYUpoUBjGLOY6jhBIGnna7hmXrE3M8MQfDUbPVjikBDBJFkZdEVpa6o9HW7s7e/sHR0fHe3gHGbPO0tbe3b1vWxx99FMXRL37xi3K5TCkIw7Df7yuqqigqUiRxcX5OldlzZ87s7e4okvjOW2+pivD5z702O1Obna5l0qmbH31YKhYYDDFmCIkfP95oNk8wQjNTtc999nMXLl7Y293e2tqKovDFF1+JIqZYKHAs5gSu2+26rru1vdVuN4ulQuP0ZHV1eWqqenh0eNo8/YM/+NfVcun2zU+yKVWRRdeypmtVfTi8eO7M7/z2N+v1ei6XCUN/dWUpnU5BCEzLePXV1/7pP/snvV4LITiZTIIgmOjGRDeiMMQMJoQOx+NqvVauVHu9nihJLMtjjAVBDMMgWfy4jhtHseM6fugBSBADGAzzhWwY+aLEd7qtMPRN02Q5TlXV09NThJDruglgFiEU+IEki5IkRFEYBB7HYcMYy7JYKOQAIByHbdv0PNe2LcuaMCwjSZIgSKlUttcb/cUP/vprX/16p9PxPD9pGjm2K/Aii7k4JpblEAIMy3b8AGIWMigiZKxPLNdzvKDbH/pBFIRkOJ4QgAzLsRyvNxhgnuNlgTLUC7zxeJisu1zXtW07wd38GtQIABAlieFYQmlMCMMw2Ww2CiNd16uVytHRMYAUcQhzLCfwBIDeqOeHgeVYAKJypUIB9XzP9bwgClmeAxD6vh+FUURiL/Asx3F8X82kYwjzpYIT+Jt7O41OC/FsEEf7jaOJ7xGMd4+PH20+sVyX43nEYErBxDAphd1ut9VqXb58Oel2ViuVGzduqIoyHo/RpfPnpsrFteXFD997n2Mwhuhv/u7vbD58+PEHH7CANhonn/viF3/nd37ryZPHjx8/un371q3bnxSLhTPraxsP77/51pv/y//8P0d+8PLLL3/+s5+dm5t/862f/bf/7e/v7O8LklgsFTmOUxTl4cONxaUFy5oMh0PbtVZWlp9/7rn/w9/8mzs7O/fu3X3++ecODg6+8Y2vz8/POY5dLpeiKPrpT/86m0v3+r1k0vbUpUsAkDAI/+2//QPP82ZmZnRdh4j2+32GwfV67fj42LHt0WispdIzc/NvvvkeQiiBqQqCKEliFMVRFBFCLcuyHTup/yYDbZZlk55rcuMZjUaiIJim+fDhw62tLcMwEtQvhDCTyQyHQ103khY1xrhcLheLxQR/IAgCQigMA15g8oVsEPq+57Msm+wbq9Wp9bOr/+pf/ZvXXntDFOVGo2UYlihKhFDTtFks6OOJ7XpjfTKxHNOyLNeLKJFkaawbnV6/Uqt5vj/WzV5v6Dh+HMUsyyW/mX6/3+12AaRBFDqOk9iGOp3Op3EQQZAkCQJAAA2jOAzCMIpt13Fsp9vtUErOnz3TbrdLpWI2lx0NR4hBpm1+WhhhYERigFG2kK9Wq5IoIgQlSQIA+L4HIYyiMIwiAECr0262OxPHnVg2gKg/GgZxzGDWcd2hPhqMRq1Bz4p8LEmpbC6dzSqqtrW1vbC4eGb9PAUgldLqtfru7q7rOKuraw82NprNpihJCwsLqFws/PLtt2VJWl9dXVladizznbffvvzUxWeuP81AIHFcr3Uax1Exn//MK68888y13//9v1sul7/znT+5cf1GPp//8pe/PBgOf/DDH0GEoiisVqs//enP8rn85ctPa2rasi1RFM6eOXN8fLS4uLC8vLi9tfXjH/84iuK33npLELlKtSyI/Fe++hs//dlfZ3MZURIYjDrd9o0b19fW15579lkI4cHB3uMnjxBizpxdX1tb+au/+qtvfvObtm0PB8MzZ85omtbttFOqWiwWs9nsZGI0GieLKzPJrk9RVU3TRFFUVUVT1SDwwyhKGK0cxyXLX9M0E8wsQsi2bQhhMqKXJOnatWvpdFqWZQCAYRgIodW1VY5jB4OB4ziWZcVxvL6+DgA4OTlZXFzUdZ3neZZlZFkURR4hoOsjWZb18cS23L29gzimP/rRTwaD0dRURVWV8Vh3Hc/zPEpJEATj0diYmBNz0un1h8NRTAEWxBjQiWWyPB8DYFo2gnhiWDwnJsuIKIoMQx8OB1EcRlE0mUxc1w2CIPmxJdsECCGhlBBi6LrjeZQSy7SSh7jZbDabzbnZ2SgMHM/1Ax9AEMWRIAqKqoRxjFjsh2EQB5XaVK5Q1FJplmUdx+F4XkuneCm5iSmalhIVRVaVucV5QZYYFo/GI8OcdDodx3FT2SwryTFEHM9Dhml1ug8fP2m32zwvTswJZrjjo2MA6LVr1zzPffvtT1wn3N/fi6Mok8ngV15+od3u/smf/FmrOVAUKZfL/M5vf31nd/va9WsPHtwb9Lrj8XCoT+YmRrT1sFgptVrNOPJfevHF/d3tleVlRVJz2VwqndJH4/FotLO9k85mHm08eumll/rtjmmMn7l+w/Odg8MTz/MJCTkW/+bXv/L++x/mcpnV5eXDw/0HknB4fLC0urSzsxMDUi6XhsNhp932gt6162VFlWgnqpTzv/u73whD+4ff/74xtL7/g+++9PJzzz/3/B/9p+8EPplM7MXl5c2dbcu2crQw1McgiCLAAIQUUWAZwBCQy+RjKAwmpwghCimgsSAIqioHgTceD4vFYqIGBID4vpsrpXzXQwgcHx8Oh0OE8PT0dK/X63X7pm6yIquqKQCA43QJoY8fP758+TLP8zs7OzzPC4Jg27ZlmTwvZbPZRqNhGMbU1NRgMMhmco5j/Xf/3T968803Nze3HcfLZtNBEImiGIaRKMqW6SAOU0h9z4vCqFQqDkejTDZvm5N3fvluoVAkhE5N1ZrNZqJHcj0Xs4VCoWCapqEbcfKZiGNFVRgGAwgnponQp3F6DFnf8yRJ4jghJjQkJJ9KSaoCGWaoj1OqhhDI5bMQAlmWHIcAAIyxrqkKieMEjStwjCLx+rBPYsIyQB8Pg8AHMPIDl2FxaNqe5+Tnpx/fv6+pauQ5W3t7mBLDnJh+4DEYAmiYtmsaLEIT23KjgEAakjCMPIZlh/p4oI+vXLnCb26yv7IhHuzto6E+evj44blzq//j//Df/C//8p/9vd//O/1Ba6pe2T85CgCFHN7d3202Twq5DIiD2HPn6/VyvlCv1UVR6bYGf/6dPzvcOXBdF0BAAXjx+ee77Z4qqNOlGeJFRr8zO11+9OieqkDbGT989GB+vv5f/uQ/tU4Oa6V84NnPP/9cTKJMIfvxnZte5HuB94u3fn7t6pXLT106bXZv3r1HSKTJnDns/fBPv/PmX/1k9/FmFAZf+eqXt55s+M7Ese1ioTy/vPJkZ0tUxfnVeU4SZDVj2H53NHHdgIkJT2LfNI2hHkbAsOyQxums9vVvfCWd0Ubjfi6fXltfItRPpaXnX7jOcoAXEEEhxDEvMYiltXq1VMiP+gOBFXjMlQrl0IsVWfPcIJcr7u0enJ62Hj58XCiUVFXlWC6KI04UEMtarhnRmJdEQZIYDomKZHsuZNBf/fQvlZTECkwQeyH1GQ4xHEMRoAhBhgn9gEQRA5GmqO1mRx8ZjePTZqsNGHzSbPpB0B90bXsSxUGv33FdZ2JMbNvx/SAhDimaGpJoZOgRiYf6KKYklclAjEISe57HYdb3/NFobHuunNKGhkEgogy2PF83zXa7Nez3eBYzELAMK3B8HEaBG7CAoX7kWSYAQRQ6PKYCjGPf5jFKpVWfhJyqBCRQZA6CII69+sxUd9h1Q39o6DHLxphheYEjjN4bjvWRG4UdfeiAYPf0oD3qhLF/fHq4sLLc7ffHun7n7t1PcSyet7e7K4kivvjUJT8IAKXdTuve/Vvf+MY3dn+yc+XG1R/9+C/+9t/+2yc0Hg/7r129qmny/qE56Pf29vbqM9OYZV944cVes/PaK696ob+1v3l4eFCsVr77ve9ePHeexPD2J3c+fO89UeR6vfaF82fXz603W62TkyibTf/zf/5PQ8/f3dmJo/Dk6MAOvGeeuVapVX74w7949bXPdE6b3/nOn1y/cr0+Pes4gcDzL7/4XL9zKitiuVAcDcbb24f/7t/8qzdef8VxzPXVlZu3HhOIJUVhWKob43yuNF1fDNyQF8VMNoWdMUOifKFERe3h0SmAlBMYz3N/9vOfLMzPm+ao12spippOa91u23Xt5G1q2UYYhBzD2vYkU03debyhSDLLCqViqdvtWa5lHTiFQj4Mw1ptmtCQUprNZkejgSiJEIGYxoKgqqpKKZBlmcS02+3q+iSdztbqpUxW3HjwcHfzNFMQeZ6P44AhDCE0iuKklExIlDgYEEKmaX6anIM4ly3wvDge69lcNtkUZDKZJE2XNFskUXRcl1CKGIYAKoii7/uD0TAIgpgQieNJECMGYSzEhJi2w7NIlBUKIKGgWq1lNS0Mgn6/L8sygxjLNEM/AIQ6lj3RjSDyc9kMQ6ijj2U1nctlIwi293fdOFo7f7YicO1+N5PR4jDodNqSLNIotlyHDEgQhTAGrhMgyKRTmRhEgAWdYf+p+UuHJweSIl64dLE30lPpdBSG/X4/CILFhQXLNHPpDMIM/M6f/gtAqSzJvXZ3NBwsLS+5gW87bmvYq1TKvWbjeH9vZnqm0TpdXFpKZzKbTzZP2818oUApvXrpqoAFTuIIJkEcVKenvvf97x8dnrz84mfm6wvf+tYfQhQ//8IL777/Xq5UdHy/3Wp++QtfdC370oWL+9u7osBHhExc+xdvv12sVM+eOdM8bQqYaxwev/Liy4YrtPv6yeGugOm9Ox8LHCuKkhd6E9P5W3/rv8pm1T/+k2/ro/DzX/jm7Tt3270OgFFMI03OSFK6WCidX50tSjDFRFlZCCk87htGjFKlcq5U+N53/7zVardaXYy5+fna4eGh63rlcvm1119rnjbv33sAWQgIZRAThYTnRFO3Qj92bDefK/C8EAMiKOJkMonjyLGdVDrl+24QBGfOnLl7506ukDPMSS6XdV0vISYAACgB47GuKGp1qhSEBgD02rVn/uJHf9np9CVJFQU5QeACACmNEYJxHCcpaQBAUh4KgoDjuHK5Oh6Pfd9XVTVZPPI8n/TH0+n0r4t4AABJkhKRXLLFjaIIEooIZDCWFAlikM6mFElYW14u5bKZlLY4M9dtNyulcsJBSRpFd+/eTfYXuq4TQErlgt4fPXzwIJVKdzodLZMSVQWyuG/og8kgnUlLgujatmmYuUxGH44Cz8cIFQsFjhWG/VEqlUIM1K1xSIJ0RuuPBhcvnWt1Wo12M1esbO/s5vP5bDZ7eHh4/vx5VVU/+eST2dlZnM9nm80WBKRUzrMsYjlMGcBKvJiWD0+OWMz+X//ZP/3xj39ses7SyrIoy+99+IEfBgvLi5lM9vzaeRFzY3PcHnSfbG1u7+8Oh8NSqWgaxtv7b964cb3dbezsbZerlRCQs+fW9/Z33v/oA4YABEGr2Xr5+Rc3t7YkVT575ow+MX/+05/6nv97f+fvaoLU6XQ5qd5utudmZsxx/43XX//en/9wZSXzwpVnCUBT1cpo3NU0pVwsfvjh+8VCud1q8AJjGDYWU1987TXMMmEw4nlYzafzmupGsUmI2dO3tx58+K2PHc8WRLlQ1GZn5+7dvfcbv/HVmzdvHh83vvfdH1arpSAIFueX7t6+V69VbNucqc8Usvn79zYQYlIprVqt7R/v6/poMBioqiqIfKGQS9rchmGsrq0Nhn1JEgeDgSzLDIMhhAgiSZEpBY7j6mN9eq7w7i8/6DR109U5jk3EXfBTkRdMVvxRFLmua1lWJpNJ1lcQQkkSw/B/E4MwDJMgx3zfTxoByX+WFN6TKtyvYc0Y48gPEgIjBTSKYtuy89m0PjFoFDi26ZpWRlV5ni+Xy61Wy7ZtVVXr9Xqr1ZJlOZVKRXEU+hHEmBPEiBBJVTlR2trbgxxWM5m1tbMbG/eKhcLVq9fu3b5j6AYAAGOMQDLoRaIkiqIUUR8AmklnMhktldYgBSIvcJAZDQbFXB4QevXpp997771er3flypXpmZmVtTVUrpUBJMNBP5fPCBJXKOabzQbH48dPHo5GI8TC//d/+A8T05yemfnDb32LIjA7P3fl2tV0JgMZZLuu5bphFBnmBEI4HI17vUG31x0Nh6+99lqukF1eWb524/q1Z68tLS9ubj8RRUFW5VKl7IeeKPDf/uM/AoA+evT40aNH+7t7Ai8InPQf//D/u7d3cHx8eu36DUogiajrutP12j/+R3/vzPqqZVuUgnv376azmfWzZxGLAtf2HSfyfA4AhecWZmoZRfJNfTLo1Kv5UjGjqUK5lF9dmS8U1Ht3bzJMuLI8E0eerg8+/viDixfPu47Vbrey2czK8qLr+Aihhxtbqirfv7eZTmuWbfX7vXRay+YyU7Xq7dsfAxAjCOr12mRiKIrUbDYgpEHgHRzsmRODZVlJFhOVdD6fgxBEcTQxJ67rxHEckyjwg//j3/3bT1+7MDMzm6wiKSCIAQnTM1nxJ2SlZNefdCNlWeY4PgmCSJKUzMwTpgPGOLkzJTf3X3/0k32S4zgJjiDZ6MZxHCRBQd8fjIYMYuI4NoxJUrDu9QaGYabTWUlSBEEqFEqpVIZhWIbBiqoizKbSGUlWMcfzssxJkpJKBWFk2na73Y7i6Ojo6O6dO2+88YYsyYBSjuMgQo7juK4rSAJFhFCSSacr5fLBwcHB/v6w3/dsJ5vO5DO5XCY7HAx3trZff/31mdlZRVUlWeoNevjtX/6ikM2Px/7W1uNKpYIYWp+ZyuXTn/nMS4+3NpvHjWqpEpFYTWlf/drXtra3C5XyYDC4/2DjxjM3Pvrkw0vnLhwcHXTH3fFEZxjm2Rs3MMueHJ48efJkMhkb9ihbLGSy2YllXLhwfjQabmzcf/H5FyRFap22CCGWaS3MzW/vbo/HExLEDGYXFxZymewLz7384N4GJEDgxK995Wvj4enEHFWr5V5/GHjuxoP7TjDZ2dsdD7wzixefPN6qFrOmMTi3svwbb7x+fNhOaYLIpkjgxT5kBSVfKlDLCzf8tbWFvb0dVRbW1pd2dg9efOlFWVLeffd9SRZ83x+NR43Tk6WlZTWtnDZOn3/hKseyTx5vXTh3Ydgfu64/GvUNc6xbuiALFy9dApBUyiXXS1NCOp2OoiiO4+QK2YjEtukIgkBI7Psey/LJo5NY4brd7je/+ZuFQrHZagVBwGKWEMJxGFAIAHBdP3HPKYryKV3WcZLwkWmaPC/6vi/L8q8kNRyllON4QuKklAL/d0KwxKKUIDOCICBxTEMSkTgGMSdwkIBur1fM52vFQiadzuQyo/GYgXA4xNPTM6IoJkv2ubm54+OjICDFTJYX+DiKHzKPHNdRNQ1zLMNyE8fBcfTUladUVWqenj548GA0HHEYh1HEIIbFOEmmshwOo8B17XRaU2SJ4zg/iC9euPj40UOW572IZIuFfCa7ubMd0DiTzQIIDk6O4zjCYRhUqqXRsL+1s+UHXrPV3Dvcn1mYr8/OpDOp1mmD43EcRPXZGubYx5ubjZPG4fHR8srKw8cblXzlpHlarlQBBx482vhv/tH/6dbtW7l0vtPsFArZQjHzaHNCSMQJbDaT+vDmR4oqf+k3vqhJcjaVSWe1lcXFen3m3/27f6el0rblSYIcRpGqqNvbO64be74sCQqL8Z/92Z8WcuLFC+vjyPN9uzo181LmJcMbe74tCPzJ6XExl9X7nZX52euXLj3/zPWnLxFZZDcefuSMmwEP+XyGRGFOS6+urty6f+/s+mqhVPmzH/6iWsn81m9+/Q//47fiMBAEWeTh8X4zk85NjHFlqoIxf3B4iCCIotBxLM93PM8dj+n1a1ePT08ARpRGiiJtPHwwPT1zetpSVdl2rCiMxuMx5rCsimEQtNsGxmzyahQlIQrjIAgy2dQvfvGmLCuVSnV3d58QAkAIAGYwisI4nU4n584kTcxxXPKyVBQljmPX9QAgLMtEUcTzHMexYRgl4mNCouRE4Xle8uIkhCSgvISDEIYRCxkGMXFM4jjGLFJV1fM8z/MIiScTIy2ny8WSLCuu4+FEZRtDCBjLdEVRoBQJgqTrehiR7mBoOK6aTomKyomi4/vNdms87AuC8OJLLwFCHj98lBwmJFFUFEWWpIgkqgnKYtZ1HFWSz6wutxrN8XCMGHjS6s6tLO/sbM/Nz0MWW67T6XTnFxZ+8dabaHFx4datW8Vi8Qtf+HwqnRIVyfFdXuD//Lt/vr27jVhcnqqOxuOHjx9tPHo0Oze3f3SYymY6ve7O/t4ntz4e6eNqvXxyejK3MPev/82/zufzg0G/VqveuXsXQsAL/O3bt+7cuXP33t1abSqXz7KYKZdLiIGSJB4eHd2/f48QokjyV7/81atXnkYQBWH8ld/42qA/goBVlBTDsBcuXnBd57133/7gw/eWlhZOGkePHz18/4N3//F//49/92/+bi6Tsif6b3zhc5999aWvf/GzxDYau1tqJq2JUiVXSssaizgsyJykKLKSzWSymWwuk3rlpauiJAyGvc++8cbZc+uplNJqnV64tHL56fOUkuGgnc0qgoDX1lZqtepoOEinVZZjFFWcmGM1JSGG1KerDKbZbKrVOiEk1HUdAOR6PgCkUCgkhG/f9zOZTBRF4/HIcRyMsSxLuq6PRqOZmZnT09PLl68ghBJLNgCE0Mh13IRlJwhC8owmQb7EXNjv9yCEw+FwOBzyPAchTPzyyfxVUZRfuRyoYRjJoN6yrAStraiKpMiiJCLMxCT2fb/X64VhaDm26/ulcjUKo+3tHd/3XdejhI5HY9u2Dw4Out2uIIjtdqfd7hwdHQOGMYzJ0fHJZGJyPA8RliS52+sndhFD1yFE2WwWMziB+1FKAKCAEoHnFUXW0pqiKtevXzs8PDptNCghgMJXX33Vse3p+rRlWY2Tk263SwEVRXF1dRVlc5nesPdk+7GaVikkksSn0pqsyqtrK4LADQb9dq+NOdwb9PP5nG6MOZ7lBS6MQ5Zjs/l8r9d79OQxpXR6ZuaZZ2+4js1y+Pbt26IkEULm5+drtZqmKlEU+q5bLBTeeefmd77zJ3/xox8FQXDjmRvj8fiVV16RJfno6PDRxobACpEfbW3trKyuQob1vMB1Pcww0zN1Akg2lz1pHIZREMfR3PxCKpvK5VNf+9qXZqenqqX8/EztzZ/9xA+8p689FRpjFFOJFWGMACvGAbXHVrc1fPaZFxbnVyI/jALv61/5yscffvCXP/qByLHt5mkhl93afFTMZTRVMoxRf9BWFOmkceQHDqFRPp8DlDROj6LYF0V2YWFGVaXRaMjx7PRMLZ/PyLLYbJ5omixJsud75XJRVeV6vZaUSvL5XBAEmGUymXQmkz05OQ3DSFVVSmNFlUSJVxQ5lUohBBkWCoKYXGsSknyCyBsMBpZlaSkVQAIgBZB4vut5TvLvrmeHkZ/skJI1bILGTR7c5NZlWdZkMokT+BcAMaUsyzq2HRNCKel2u9VqNZ/PJxOA4+PjRL0eRVGn04mjuJgvNE+bum7s7x8sLq88feN6CEiz0/HDgOW4OI5ZjCVJOj45SZjRANBkCjEcjoLABxCkVLVaKRXzeYHnet3u2trq01evSrK8u7+/+eRJrTq1v78vSVK9Xr9y5crKykqxWLx67RrSjfH1a9cc10lcs7woyrLc6rQESZxfXEynUzs7O6Zt+77/h//xP3a7XQahOIqvXbtmO/ZTl5+SFLHd7+SLRciAubnZSrUi8Hy9NkXCYDwYdVudfrd3986dTrsDKPAcj+PBZ9/4/G//9m8jALvdbhRF9Vr9b/7u37h7c3N359Cx7NPTVrvdmZqq53NFL4g4QcAsvvHMDUWVtbScyWUUTV5ZX67USu1Os9fv1qplBEKRY3aePAQ03Nt6dPeTDzlAc6kcAowgKGIqDxleypeXltdUJX14cDToD13HPTo6unb1ahD4nW6nVM6bpskgWq0Wzp9fNyaGYzuZTHo0Gq+fWZuqVe8/uHN0fDg7U8MYLC0vvPDisz/92Y/D0FUUSZZlAAkASUXBnZqqAkANw1hYXIzj2DTNxGaZz+d4nj88PGIY1O12AACOY7dazTiORFHqdNu9Xofj2IQvknh5LMtKEgLJtT3pCgMAJElUFBkAKoiCKArJc5n0pZIF76/dHb+qSjMJ/ycmhEIAISKUUEoYjC3XHYxHhml6gec4znA4fPDgvq6P0+k0IWQ0Gs3Ozlar1ZiSlKJEfvDLt98ClLTazQ8+/GCgj0bGeH5h3nFs27Z13eh2uylNu3v3XhzFGLNJ1pbjWNd1fdsicej7XhQFd+/cPTw4XFxYfPToUUzAhfPnHc87PjnWUtpkMjk8Prp//346nW632512G33/Bz9KZ7LTtZm7d+9//MktFnNzs/MfffhJTAiAqNlsTlWqc/VpEsdXn37acRzbcViW3bj/4PKlS6Ik8QLPsmy2kBNl8ej49PS03e/1MpmsbduGrm9tbimSEoXUMvzFhWVJkM6fOWebjj7Ui/lyKpWam5978vjx/s7eVCX7ta98eWFuAQHkOp7vByN9glmuVKlAFn986+Mvf+3L+XKOIjKxDDdwAALVqfJo2P8vf/qdv/G7vzM/V2cQGQ46sshJEg4wyhdKGS0ri0owMiEWGVZwbO/g4Gi6PmM7LkTIdf2f/OQnZ86s/k//0z+5fPlKt6evn13u9Zv3H9xWVfn8+bOSJCwvzTcaRyeNo+pU+QtfegNhsLa+lM1pP/zhD+I44DjG8+3p+lQ+n2M5HAQeg9Ht27f6ve7h4WGxWHBci5CIZdlUSvM81/OcWm1KllWeF/7oj/7IsqyvfvWrkiQOBt1MRmNZhtA4KVT8Wj0DAHBdNwF9JTjwJM+fmECSggcAQFVVRVF+ZfyCCV49sdkmmsNkGgoRSgB3SQSHAhAEfuLPcF1vMBi02x3H8R892tze3h2Pdd8PWZZfWFgSeMFznWduXC0VC3Nz04Vi/vLVpxCCFJBWq+nY1mg8dBw7DEM/CBYWFjDGhJIoihiEGAbzLDtVKimSoAoCJMRxJsVivtlsjvTxxDZjAPKlopZOFQoFnufNiXn+/HkG4dFwuL+/j5aWln/y059ijnvllVcWFhYQw+wfHnzpS1+q1aZv37mzvLyi60atVrt29VpaSzEQBb4/VZ169bVXNzePNh48AAhKsmJM9Ew6xXIonVFkWS6XS4VC4eS0ASkc9kbFXGFxfu706OSj9z/eerx9enJqTayF+QVCiaaqmEGj4eja05cDL5ifnf+v/8E/fO21Nzwv4AVR0VK9/nBnb6fb74wnI9dz5uZnFpbmU5lUJpsaDHs8x0JKVpcXKYkmhp5KKQcH29mMerD5iMVMpljodTq9TidyXBLHELN7+3sQAY5j45iWy+VavX5ycvLxxx9msuq//bf/Yma29uDhveeev8FxuN/vt9udfKGQSqVu3LgaRf7p6bGuD69cuayq8knjRJKVL3zpc9lsCjIJWQZUq7XlxUVB4HV97Pv+xsaDGzduUAASVgrHcf1+X9fHgiAuLy8n86Pvf/+HR0cnc3NzgiBwPJvNZkRRhL+SHPM8n0qlks998s8kG5XE+AGAnueZpul5fvKiDaMwjj8VJyd/ySOelFfDKIIMjBKWGIQMy4ZRmMjsJpY1HI0kWUmnM+l0mmHQ9PR0Op3hOM4wjHQ6raqqyPH1Urmcz7uuY1qT/qBHKRFFXhJ5RZEyqkYp1fUxpXRvb9c0Tc91eZ5POviappULBRjHpq6HgR9F0UnjuN3rrJ89c+3GDUGR/CgM49jxPE7gn7pyeXd394//+NujwQBDiDc2NmZn5hDGm9tbqqx+dPOm47n5Uum42ZQl2XNcgWf18RBASEikyLLAsQcHuwxDR8PWqH/62utv3H/wYGah7riO6zr9fowxbrVa/UF3aX4+l89PJpNULhuRuFQuf/GzX9rZ3pqM9NnaLMuwlmlZE3NleXXz4aYipbqd7qA/Ho4m88sr5XL18e52Nl8dGr2XXn65cfLwl+/+0vNsiJlWd8wLijU0lLTkOJYiCz//+U9eeeaaJIuIIUHoopTE+yGNfGPQsV173G3ZEKlB+LOf//X+wT7GUS6XGVtuvVZ/9sYzf/Bv//Vbb765vLK0sjw3OzOV0sRnn3v2xz/5aafb+Hu/919dvHTh/XffrZTKo+HANE3PtR3XBpCsrMwNBqONjftPP/307OyCbTmHh8e6fvDZN14fjPq16VoYhp1Od3sbsyzjOq5pYkWRLcvCmB2Px43G6czMXBj6QRD+rb/1N959990oigAggsBDQC1TT+46SWTTtu0kzQkh5AU2jkPP839VfscYY9t2LMvUNE2SJN8LEUIJ1iZ51yYv1OSNm3x2KaCIY1mW9f0AIEgBcBxnOBh2O91yudLtdrPZTC6XZxim2Wwmb3RREEQGiLJ89cqV//U/f8sMvFypyPG4VKkc7h/wHKePR1OVolQV4yDMpNL7u7uaJGOWZRASJUEWJWM4AiQ09ZEo8jQiuVzetKzeaFgsl9fOnf3Db/2n3/iNL1uWncln//y7311dXSVx3Gicapk0yufyLIvv3b23f3B4eHhw6eJFjuU+/PijKI4PDg4ww5yeNDrdDkJI4Lhut6NKyvHBydtvfijwqN0ZnLbaxUrx7Nmzh0dHmqbef3A/ikJREoaDgSRJz914TuTE9mlr8/HmyVFj2B8qorK+sn7/zv0f/eCHsiw7jttonDx6tNk4OXn+2efMiRnH8b1799udHuYFx/NrMzOPN5+IijS3MKeklI9u3ipVS7V6TU2pH330AcNACuJsJp3NZa5fv8ILbL6cZ2C8u7ezu7dl2xPIgIOj/Wa7cXR8EJLQ9ax27/Sd9955+OjhrZu3//APv7W8tHLp0qXxaPDOO28eHu5OJsMgsL/whc/X69WbN28jBPf393/8V3/JCxxioCgKx8eHr732Sn26OjVVOj1t/PwXP//Wt/7zyUnj3LlziiJt72yvr68XCoXj42OMcb/fA4CyHJsMfaanp8+ePYsx1jQ1lVIJIZqm3rp1M3FmCoIgScLJybHvu8lH+dc9vqTGnnBQEGIkSWRZhlJCCOF5PpNJK4qc0BIp/ZQPmsyYCCHJ8BUAgDFLKSWUAoSSST6EMAxD13U933M9t93uKIqSz+c1LRVFkaIo5XJZVVVJllnMZvN53/dXVldeeu65menaYNBjADw8PJAkkdB4dnaaELK0tDQ9M33t2rXFxUVeEOIoUhRluj4DAdVHQxiTenUKUooREwahbhgAoYdbT9794P2F5cVGqymp8tu//GWCb1hcXExp2uryClo/e97zg067M12fyRVKjx49CcJI4CXX89KpTL1WK+TzgFASR91ud2lhIcmxLy/Nl0uVz33+jcFwkMmk7z+4L6vq0dFRFEX9flcQhCuXrxwfHrWbbUGQTo4agIClxaVHDx91O7293f1r124okjIYDRVVHY6Gly8/lc1knzx+/MxzL7TbnTiKx2M9jgGFaDAccaL4znvvKppqe/ZLr76YSqU83yWEyLJ8fHw4Gg1VVQkDf3PzkeNYIQmbjaOTxuHHH79XKKQPj3Zz+dQntz46PtnPFdJf/c0vyzJnO0Y2nbt3d8Nx3GKh5Lg2ofHCwtzZs2sMRt/+9h9fvnLp9dc/s3+w+8tfvjU7N8uxmJD4pZdeFER+NBooinx8fPrBB5uzszOLiwtHR/uuay8tLRISd7vdBxsP2+2OLMuvv/56HMdRlLz8aCqdkkTx8OhQFCVCyOHhoeu6QeDVarVsNhNG4fLy0mDYhxAkL60kSZ2sYRLIQjJvpzR55iiEKPncx3HMsqzruoZu0MTtHkUJgvTXqNHkhEApYBDDchwFNAiDZKofxTGCECGmP+x/+OGH7XZ7f38/GZ3m83mW5VRVpYB2Wi0GAjmlUUo8z4viMIoDFiOGgaYx7ve7cRydnp7qun5ycpyY9aIwSh41SRQYAHzXLZdKhXxBkSWE0fqZ9ZX11c9+/vPLK6uLy0uLK8udXq8+Pf2b3/zm7OysPh6bhnF8eIhNy7py5WkMmb29/TNnzgiCqKRS2/t72LKz2Swh9PzZc0EQWpZ1Zv0sgFSWJcdz0hk5nZH3D46Ggx6Nye1bt6dnp0kY1aam4ygOw1BWFEEQ3/nlLxVNvXL58sjQf/bTn8qStLO5pSpKpVBIqcra0oqqaq3S1KONJ67nsZjX9VEqrS0sr+qWxyAUhIHjehnCeYFvGBN9bPR7fdM8TWfyiqx4rj2OdAlLdx/em4y6XhAsrCx/fPsOn8r4JCgXygfH+4fHB6+89poDmTd/+XaqUqnMVGJIzl08j1A6isDcbN0LPEWWU+qcYzvLy0snjUan0/zLv/iL45POxYvnZmamD/f2EQT5XLbdarUarcbxyV/9+K84lrl4celgf39+fnFpaU5V0ttbT9Lp1Pz8/M1bt017gln2408+iuNQllXbds+cPUNiOjHMKAoYBo7HI1XVXNeJ4+Dq00+PxoP19VXIAMdxpqamAMW6MXYd99cWU0VVAQWERAl1P45DEsc8z6+trVIKHj9+nGyMgsBPNu/J/QkhiDGbtAIFnnd9nwKKWcwLvOvHjuNwLGYwEjhBkCTIQEpJt9eJ4tA0repUhWFmeZ7LpDUaE3M4kBnE0kiT+Gq1HN67WSzmh+OhJEq2NclmUrquB74nCmI6lWp12jIvBWEAGUhpXC4VNY55MuyqisIgePbMmaPm6Um/+9TU1GGz8cGtWzduPGt7DqW0WqkEYTgaDm/fuT3sDZYWFxcXl9Dc1JRv25VSsVatOK6tKJIkCbIs1mtTlVK5XKyaI/v8mYtrK2f3dvefPNnM5rILS/NhHLIiS+OQh+B494ADnCamBV4jEVKUdH16ZjDuZwuZg4N9z3Nc115dXRIFLo6Dqani6595cX/nCYa0ni/e+fDm/Tsb47EJWSxllfnV6ep0uVgusqxACWIA5DDj2M5k7O7vHZOIXV+5EPjRxDA8y3Ft3wt9RsYnw2bXGrGK6hLgQ7hw7uzsmRUjdLrGeGZxOZUpLMwuTJcq3UZjPDZqCyvNkbF3sq+bA1HmtrY2A8+3Jvbu1sH9e4/OrJ+7dvUZe2Ja5rhazruWmU2nysWiMRqf7B1Rn1TzFZmXPvPSSwxw52dnOq3moNNeW1l86flnzq0v25MhwxDLnWAWt7ttQRK1lCqr8tbOnu1Ylm2qqiqrIgWEkIjFjMgLd27diqNYS6vbu5u8jCtT5TAKKI2zucz0bJ0Cmi/kGBYREAMEgjCECEGGiWkURS4vMLZjxHGgSEI+m2Uxy3FCHMeOY0dRiDFimE/xZsbE9H0fQoJZBCiNIqIoGkJMGIYExAzDSIoIMY2oj1h69ZnLjIAMe+R5poChKrAyg4hjwjhiIZyemlpeXK5WayvLq81WU1YkUeREQWAglmTJDQLEsSNLByz0I992LMc2GYzWLpwRFNF1nXw2O7+4mC9XPrh1+61335+amvXd0Le9j97/iGd5geUlQVqcXVheXDrcP+I5AW09fry7uZXLZtbW1zRNbZw2Tk9P5+ZmZUmicdxv9yVBCz2STeWKxXKhUAAQ5vL5dDZ1cHSgKGJaVW88ffWVF1+erc+LnJLJFI6OT3f3dhEDDVPnBCxKwtT0lCBy8/PTB4eN0WhI4sD37YO9bVs37PHEc3wAEScLHvEv37i83zgYG7rIywzCPMtNxvqdmzcxYmRBK+Vrh/un2XSO0jitpSvF2sajI0ZiGY3fOtqLGUQgy2upjj5qDnsT32ZkuVirxxS5lre2uDjq9bc3twniY8xV6tVMPp3NZ588frRx78HxwbHvhTwWjw6a8/Mrv/HlLz118ZyqiIcHe57rpNNpx3TWllcrpdIbr73ebJx+8tGdJ492RYFHhPiOzTMoDr1hr+071u//3t9JZTWA49p0pVIrNttNz/Mq1cJoPPB8Nwg8zKL5hVlZEkb9calQXFtb++wbry0uzQ/Guh+77XYDIaqqiiBwM7PTiiYREFNARvooiEIAESGQ4zhZkViO8QNneroyVStREBuGLvB8wroXBF4UOEJjCuIEI0IIEXhekSUGQt9zXceJwhhQCAD0gpBSygscyyHEUMe3ssX01HQZIgJoiFkYOpbR6zy8e/twazO07en69OLSUq/XPzg41NKa6zqu57iOLQiC7Tiz83MT23J8h+GwllIxRo2TI9ez0oWsklYd2yFxvLa+VqnVeFl5+tqz+Xx5f+8o9AISRPfv3rv58U2BE77+ta+/9OLLa2vrsiijjz/62LHtXrc/Mc1qtQohrFTK586dMyeTBF0+Va394udvbm3tRGF09+59UZIBgHfu3k28n+VKOZfPcQK3s3vkuf7EmEzXp62JORwMfc996eUXk9nb0fExgCCbTS0vLd2+dbtSqWKG+eU7v1Q1tVQpdfu9rd2ddq+ztbvDi6LtuL3+kMQxhCClpTBmPv+5N0qFEqSIQfj6tesIwMP9fWM4LuQyvX6/3e7ok0l9ZrZWrzdOm2+98w5gkCCJh40GI/BHp6dj0/zw5q1CsaAoSqfdSSaC+UI+CANd10fDIS8Ix0fHnuN7jo8Qs3ewt7KyOBj2D472HdfOF3Kfee0zcwvzv/W7vzU29Af3H4gS95u/+dW7d+5OTVUWF+dPT48H/a7AsaeN048+/Mj3J09dPnP9xpX+YKBPRhR6HEfOnFuSFMb1J6apj8cDz7FzuRTPszEJZVnodtsvvPhMvpA/bZ4GoRvFAWaROdFlWXRdOwz8UqnAcWzgh2EYQQjVVEpVlePjo2KpsLyy3B/0/cBzXLvTaSmKnMmkAQQIQQhpFAcMgyRJEEUBQpCM9BVJ5jFHY8KxHIiBwPMcw2qaqmnqYNA/OT5OFv22bTGYabeaDx89PDo+6vV6EFBFVk5PG47rcAI3Nzcny7Lnuq7rxHE0Ho+73bbve6IkUUBjEgEATXOS0rSYxEdHB9WpqqipvV5P1/ViqYgZZtDvYYQ67XYQ+I2TBiXEMk3bsg8ODl544YXhaIguXrwIEWo2mxsP7lNKz547d+7cuZSqOo5z7+5dluUsyxrreqfb63a7luVwLF8qlaaqdUXRmu3OufPnj05OisVSHIdaSvMct5DJ5DK5xvFJLldod7q3bt+6dft2EAazc7Pnz60tLi1kc7nhaPzq669HJIQYDscjThRESXL94Kc/f7NUrlLI2G6Q0OcKhfz6+hqJ4wcPNlRVXV5aajROz507zzKsb9u/+82vPHfj2WK+iCD6+ONPPvjgw4lhdnv9anVqPB5nclnLc/dPjyMM+sboG7/9W2fPnj3ZPzy/uo4xc//Bg729vc997nOf/8IXMGZXVlZOW6eyKtuOM57otZk6xOj1N9649sx1L/A2dzZ//vYvxpNxp9dePbPyla98fjLxU6kUz7N+4I7GQ8iAmenaP/j7v59Ky2+88fz1axco8Ch0SmVtYaEiSnB1bfa1N54rVzOmqYeRhzk4O1frdFs3b9789rf/+Pjk6MWXbtRrVVFio8ibqpV0fZhKKRzHsCwOAh9BSOIoiqIgDMMwRBARCqrVqm3bMzPTLIejyJ+aKs/M1oPQD6MAs1gUJQAgoQQAAgCJosD3PN/z4iiCAMRRRClFAIk8pyqKwPGqrHIsCyjttjv6cBxHsaEbJAhs27IsC2GMMKYQ6vp4a2s7n8sXCgUSx5lMhhCCGGZhYYHjuN29XYwZCEEYBuPx2A/8dDajplIxIZSCXC53fHQ8Gg491xkNBo8ebaiypMkSQCibzS0sLMzPz29vb7/77ruHh4ePHj3a39/H2WxWkqST0wbLc0EQ1Gq1bqd75+5dBsKV5eU4JoZpzs7PjSc6xtzC0qJpmWk/YxgmpcQy7fHEGAz1bLk8Nz/davYBQPfu3r10/uzywuL2ky0Wc8vLS61ut1QpmqZ98+btwPP1wTB0A8d1ZxfnIoKcg0Z9biYGdPdg7/CoweKUY9lpte4HnKKJfmBPJvqDu+/2ep16ffrNX/yiUqtIPs8h7uKlCxGksiAqggzFADOs43qzc/P7nebWzq7v+4Iid0ZDOZe583BDyqinnVYcxTSMMrLa67SPj44WpmfqUzVFlJaWltKZ9N7BwUgfO6HX7XcfPNq4cOm8oZuPnjwcjcbHh0cz9bmHm480TS2Ucs1mo9NtXbt+2TLNiWkACqLAdy13qlritYsfPrh3cHgQxvr587M8L7qOzzDMeNJZXV3pDk7jEI1Gfce084XMYNhDDDk63n/62a+Nx0M/sDAbz81OpdPSyUlkWTrDgEq5aFlOvz8QBFHMqo7jxlEc+kFM4sTpfenSJY7HURimM5rvk/39I0URoigOw4DjOAgBRDSMgyD0OMRghqEx8cMg8H1REkFMM5mMKsqQgjgIA9fLpNK2ZbWbTU1WeQZ7jiuKUq1eVyVcLBcd1z1uNPr9fjQeqtmU7ZgzMzVCSErTPN/1fVdVFU1RHMeOwkjTVMQAlmMxh1PpVLlUcWyHiynDMP1+bxIGCELHtnutliALqUyq3+/zfJHnuTt3bl24cLHf7zWbp+j27TvGxJibm+NZ7tGjR4N+P1n7Ttenz6yfmZjm2DA4QbBdF2EWAabT6dmW02g0ozCem19o9wesIPzVT/663el4nmsY48ZJAwGYTWeq5bKsqaVKpT5df/Jky3bcazeuD4bGO+984ofh4dGJbhuiJvEKP7s41xn2IcapbFZSUhynAIQnkwmJI0MfDwZ913ODIPzko08c2w58n0GIhjEIyObGk92tndPGqSQqDMIg8QfExLTsqXqtN+wbnh2x6HTU7+ijD299ks/ns6q2t7mdSqVeevllUZYfbGy4vjc9PR0T8sILLyyvrLRbbV4QTltNAuibb781sSb9kT403BhE5Vq5Oj1178HdRvPkd/7GF1kWKpqSL+YwRubEMCajra3HGxt3H27c2dzakERmZqZcny4KMmQFsrlz/5Nb7waR7fu2rAiXLl3Qx6NyOZ9Oy2vri5lsqt09zRezX/rSZ1/+zLP5QmqqVmA5yHHIMEaERKoiIwjiKOQwG0fEsd0oDHd3dx49etjtts+eXXM9e2d3s9U61TQpCePValOExCyLMWYgoHEckTgWOE6SRFVRZEniMIYApLW0gHnf9fThmISxwHKqKJ2eNAbdLo3jdrsNESyVS9lCnhX4br/3ZHMzIfa7jptOp/XhWOCFcqXUaJycP3/+8qWLYeCHvs9ihuM4z/f39vfavW5MiKxpoiRpqZSmqQvzC8P+4Oza2njQtyaGZU2Go8HMzHQqpfV6XULI6WljZmZGFAU0Nz+HWTaTyYzH4/t37x3sHzi2nU1lSsXivdt3ojgSJPHmrXu242xtbc/MzCmyijEuF8sXLlyq16cnlg0QPDw+sh2zVi8WculzZ88c7R/qQ/2ll142JjrHc1eeflqUpXa3m85mGJZNZTKWbQuypFv61t7O0DC7g75hmdlCwfZ8XlQKxcp4bEEIASGaqlXK5acuXZqu1arV6o3rNxzLymVzqiwfHx5Nlapzc/PXr13neX40HHW7fT8M/DAACDiue9g42dzf/fDerXSlqOYzBALD0Ef9waDb1VKpcxfOu64HAPA870/+y3f+47e+9eFHH87NzxVLxUq1UigWt3Z2vMB74/OfxTy2Pefm3VsHJ4cjcxzTSNWUKA5ZjhUF1rEd13NSaeXM+nqr2Wq3TqtVVZbhzu6hKPGNxlG1WkxpSqVaHBkDReFZjjl37sylpy6k0jIFMIr8OA46ndNm87haLUzVS7reFUQ0PVPBLND1YRT5E2OcTqsChz3XISSKoyDwPc/zEGKGw+GHH71/7sL6+QtnypWC59kQ0sQil4ziE3MSYgDLMQACQmJACYIgjmIEoMDyqiwrsowoCP2AZRjfdnPpTPPopN1sDfqDg4MDfWLEgExsy/TcRqu5f7ivKEomnXZth0Rxr9tlWRxFcTaboSQGlHqed+nSBY5jDGNsWub+4d7d+3cfPn4sSmJtut7tdlmWFUX+4oXzgsDROM5lMtlsNpfNJgffk5Pj0Wh47/7dg8N9Sgk+e+6MLKt/8Rd/OTVVXl9b63Y6hq5PLBMhmFK1s+eeGo8mQRhaA1sUOT/wS6Wy63o0JpqqKaoiiEJ/OJAVsTpViaLAceyl+fnOcWO2Pn3aaJTKJZbFDx8+jCn54MMPWJb7zIsvL3/zK4ETPHzygHDek619w4LHnS7ixLoig7E1MR0RS4FPZEXkeCwIPIJA05QvffHzvh9BiOr16c0nT1x9Yo4mbzx10Q79+szs6d6RrGpnzp374P7dg6NGrVqOdN31Ayvw949PMrlCqVC2dfvd9z6gMdEHw2azmcllDWsSx3Gn1T4+Oen2eh988GG1NsVy3JtvvffZz3/m6MHRzOxMEIVXr11kMCUEdDrtkTF69ZXnd7e3KYK1+lTj+Ni27cW52Uw6tbq08sf/+Y/n1qdCGi4vLt+5+yjh7fR6fQDo4tKi7ThREOcyCgPZMHQLxaznh9MzNUHmIYxVTXJde/fJlsTLx8eD2ZmpMPIW5qc5Vt7a3J2pTfl+IHD9VruLMWIwjggBEHI81x/2O73OmQtnPCv0vQ1dn6S0rGVZ3W43nU4jBHw/iOMg2ePbjpVKpRRFcxwvDkJZVUROyGWyoSdYFBjjIQWARPFoOEQASILAYjalaTEAoqrolnl4cqyoKuc4rcP9dC7TbbdFgXccZzAYXrhw8b333p2erosCL4k8w6BKtey7DsLopHFCo1DAHERopI8VJjsajRRF6nc7DASZVLpYL208efRg4/7nPve5p69e/u53vzc3N7e/v4dZjO/cuQMAdBz38LDxyisv7u7sAABOTxopVb3y1NOlcune/QfXn7380ce3L1664HjOWNdlRSqVyltbW7Xp6SuXr9y9fz+Xy3c6nW6rzULEc1w+n+d5fmToV56+8t6HH7Q6PWMymZ2ZvXDhksQLlVJVFeXtva3yQjUAaGv7hABWSaWbrc7yyppnhhyCmOVITACghEYkDjmWNyaTzSfbS8srhqlLkrx8Ye4//+Ef3bp1qzJdM4bjdrsduT4rcEdHx5lsNpfPecMhQ2lKFasxoYjZOz4sZ0qu49ZKpd6wV61WEYMcxynmstVqTRBFQRTK1apl26PROCaE5XhCwdqZ9c3tzVKpXJ6q6LpRF2d4jlVT2mg0CMMZVVOnalPPPnu1UiwrkuwH9rlzq+XZEpVQ46R14fy650Wu67O8n8lmu71+oViwiTvsD0IvrFWm9vZ3BZ6v12cYDhm2fm79LKGxZ1sYcnkXHhzsrqyssZDXx2bou5m0dnLSWJifPWk0REEmIOI4LpVRMznt+OSw3W47np1LF+cXZh9uPMYsU0qXRsMRz3ExiREGDACea5GIPn31er8/DCOayaaM3kCWRFEUIKWZdDqy7Z7nT01NRUGQSaU0TZuenj5tnDI8K6dUCvyTo9OQxKqmSZbJcRyJSK1ai0kYBJ4sg8lEz+UymIHmRP/B9763MD+3vr7GYmZzc3Ns6KVi3rDMT27eHE+MSeiHUbj54EmlXOU4fNo4inHUarVmZmY2NjYghE8//fT8/Pze3t7U1BQihIZhePnyxcFgiBBiGKaQL8zPzimiTKJ4Z2fHcsxOt3Ph4urtu7cEkW80Ggghw5iosooZxjStOI4poPt7e1EUfu5zn+MFvtvtHewfEkqPTxt+GD7z3LMXn7q0vLpGAYAQPXj4qN3rZ7P5YrU6v7h49vyFazeunT27fnJyOhzplELfDxBC6YwmCBzP4dX1Vdd13nzzF612S5bl4+NjQMFUrXbu/HnHdS9cuKCoMqXEtM0/+/M/F2Xu/MUzU9P1MI60TOrgoFmuVLK5bDqdtuxJvpCdmGatPl0sFvf39xMxDS/w6+vrDMMQEo/Hei6XO3t+rTcYLK+tUYj8MOz0upjnbM+mkF6+evm03UpnMxsbD7r9Hi/wuVzm4GAPQWhNJpVytdu2auXpOATTtQVNzjCIT6eyqVTeMOy9vUNKoOvYtm3dv38vCHyIIES02WxYlklpLCtSNpfeO9j+wheftW1jNOidNA4dewJo3Ot2tp9sYgzOnl1dXJwt5HM8zyEGZTIZhmGMiaEokh+4QeiwHBJFTpYlTdNs1+Z4rGlKFPmiwt949lp9ZioC0Vgf9nodzDHFYkGRJcMYIwgZjIqFwtzMbDqVvnD+wqWLF+cXFgzLtDwXcrjZ7eqmqZuT/cODMAw1RdXH46lqxTZNVZGnp6cPjw7C0PddxzR0SRQkUXBdR1Zl27XGpjEw9N6gv3O47wW+buo7u9vlSgkAAmh82mj0+8P5+fkEUK+q6qVLlzKZzPz8vCzL+Nr16zzP3b1z97Of/QyL2d3d3a995as3rl//5OOPQ983LFNJKd1Od2q6kivk7t69XavVEm/x7OxMpVz+65/9HHNYEkVxqoIRo2naO2+9nRIUxGItnf7JL38WRGG+VM7m87bn/OSnP/3al746HI9Df3dzZ2+7s1WtzeRyxVSu8v6HH7MsF4Vxfa5uDAiVRYHnWUwnxng46DdPjnK5LAJYVVUAgKHr77737tziHKfKkioPxyNREUPXO3f+TGG6xmdSgij2hv3rKyvWxw/HoxFETKVYLmbzh9v7bhDUZurNZnNnZyelqMfHx6okHxwePH7yZKxb5WqhXK0uL67cvH2rOlWVeMl1/Warlc3mBEFCGO3tH3Sbp4ooTKkpBuPjo5PT45NKsdxutQ/3jj3X3Tzong4bv/nN3+x3hhGgxULF0G1Jyciy2ul1J/ruZKTXq9Oh5y8tLUxN1YLAnZ6uBTTCGLVap4gAVVUxZldWlz0nWFiYH3aH+XwWQTAzPTXot65cvjwYjmv16u27tw3DuP9glC9kW53mjeeuN45OHj14UsxXLMsaDsfpdFYQhDgOIxLxPH7qqfMLC0vf+c6fIYgZzHmux6fVmZkahwCHIKQkk8lMlcuZTDYMglwuVyiXDg4Pbc/tDgc+jTe2HlMa37l/V5RTsprCGGcymdFgaJqmLIkA0Xw+f3JyFHry/Nzc3NxsHEa2bb39y7ejKOAlYWDovu08feEyRIiTxVzn1PHc2fp08+D4wsXzMcs0Oi1REJaXl3K53Gg0arfb586d29/fxwgzGxsbU1NTlXLl5Ph4uj49Ho2mypVsJrt/sI9VWbctzDF7B3sXn7rw4P79qanq7t7e0tK8bVu7W7v7O/vLq0uFXMG0jQd37/EM9nx/tjazMrfESRyh8fTMTLvT5g1DVTVK4be//ac3nr6CZIbjBd3sKIoWU344GO7s7KpqqlKZyqTT9thwHVuRRZZl+z3zow/fev21Z4e9/qOHW3EUSaJYrVQPdndMyxyYenPYaZ42MYm/+dvfhAhuHh1kamXLsYa6fnB4WJ9KpxRFEpV2q/u5V1774J0P0mpKUOSJrfu+LxVLhWw+lUnfvXfPth3L9lIpzQt8kZcG3cH9uw9eeukFwzIJiKdn5h49ejK3NNdstWbqtXq50jhuLC4sCJhtn7ZWV9frlaprRnHkxAzq6OMffO+HC4tLFNFWp7W0umyaZi6fRzzXO215nscwcGqqUqvWNC3z0UcfhCRYXFuM49i2LMd0EcIfvP9Bdara6wyjMDD0URjYKU0o5hZOO+2jw10KWV7gRJETVSmKguFoFAThzu5uIZvDDFI1xba9arVCCFAUeW9vixXg5z77KoD0L3/8Q0IDQRTGup5S0lO1ipqSYBQVszmeQb4DMtkcAyEjCIVCIZPN+js7DM91hv2BPZk4dkpTeEkklA5HQ0kS05l0t9NhEON6ruWZ5WppaWEeUqrI0qDbj+IgXyoIIucH1KexoMiKqDqhH4WRNei1O+2RaQa+R2z/4tlzb374nmFO5mbP93rdvb2d6emZQiG/v78bhhE6PDzs9foMxk+ePJEk6caNG7Ztv/XW2/WpKRazlUrJD93T9okb2Ldv3yxXinfu3lEUuVKtVCrlfq9fLVWq5XIcRr1OL2nucjzHYBYy7OHxie04nu9ncrmxPppMzFKlcnLaJgAGUbiwuDS/sNxsdcOQtFqdYqF07eo1Y6yLgshzXBRFcRRMdP3unTuapnQ6bUVVAaC9brdx0iBxvLC8KKjS0vqq5dtnL54lkAoi5wee59kPH21QQNR0SlGUhbmFUae3/fCJb1obd++pquqEQcyg2fm5i09dmpufH+lj27a/+tWvzC3Mvfb681evX+/3+zdv3p6dXchm84PBaGF2YXlxZTQcTs9MT4zJl3/jKy+//BktlXqwsfH2L3+5sfFoMBx12p133vng+edvQACH/f78/Fwmk6cUKIqaSqW6vd5kMrl3/z6J46evPX316lWMMcbsJ5/cdBxb1VRRFCmNp6frqqYRAtLpzGg0Oj4+YRCama4HQWDo416vfXJy4HtWFDuahh3HgAhiBjuux/Hi5ctXbNulgC4szj14cHc0GtTrtXQ6vb+/y3Hs/NzMU5cvchwjqfzUbDVTTE3P1RVNqs/WIhopmlKtlVMZTdU0nucpAJIkMZgxTZMXBcCg3ni8fbDrBL5umYBhIIM4ntN1IzGIYIbJ5/OIQY8fP6rXarIsH+ztHx8dNFvNjYcPpupT9dlp3RgzAhcBunNwsLW7bVhGROOl1SXXdx3Pebz1WJbFOIpu3bqVy+XK5fLm5mav19ve3sFJafq5F57vdjqVaiX0g363JwoSjcigP6iWKwSSlbWl2vRUr9OzTHM8Hj377PVut4cxMxqNCvn8jadvTGw9k04Vi7nDg73RaKwp6t7+3vHRyez8zPr6+v7RseMHMaW5fN51g4Xl6aPj4wY5+fpvfg0NwPjg+Pioub1zUCyXS8Vi5/SRJIqj4SCtqVEUFEtFx7UvXFie6D3Hsl588aUwiOr1uh8EtXJ1aOmL60v7B/shCZ5/+YWdvZ39vT0fxu/evbOzu40oNU3zqbPnH968Pzc1gzE76g+fe+65hzvbgGMoggsLC/pgNB6NUpeeOm02S8Xi7MJCOpN+9dVXT047w+Ho+tUbtmMdHR2fv3hhdma+VCnef/xguj7t2ZYXBKqqTk/PeparD410JvvWT3/0zlvvqJK4vra2dXK4dvbMxJpAC1SnplgBszx7+95d33f3Dw95inRDz6ayxWLpZz/7WXWqHoSebTscL6RS2qAzphTOTM9bpn3h7Llhd8CxPIuZlCpVK9XN7S2eQ/fu3llaWdP18craWdu1AQOnZ+YQQzvtU1kWIQTz83NRFB0d7WuazPFYVRVJEq9ce+rJ3pPKVN0wrDiC2XQ+V8jwPFso5SSZBzzGkInCOIpjgOBoPGZFgZcEw7Zs3220WwiEU6UiBQCzOKVlXMezJ1an01leWcSYAQDMzMxIsqSPR8ViUZb4TD6zd3AwGAwy+cz0/Ny9hxtZWVNZIXBdJHNzS/PHp6c8xvW5GRKEMSGSLGmq2mic5HK5s2fPtNvtOI6Oj49QUrh2HPfOnTurq6t7u7vLS4u5XPb46Agh+Pa7bzdOjzAL15dX8rmsMRkjBFRVOT4+tMzJs88+AwF4751333/vvfv37ymK5IUuy3MQw7FhtNrtqXodIFqfqYdhNByNRuPx3Ow8gPDpq9fv3Lm7u7s3HIxURclkcnFEj4+Oivm8bVocy/3/Wrrv3zgPPL/jT6/TZ57pQw6nsHdRLCIlqthyXe+dLduL28Wtt6QAQS655HCHwwEJbhHklyDB4S7YJJfNbpB1tnht70qyLatTImmKYhPrkJzKGQ6n95mnzVPyg/IHfP+Czxevt6LIEAQUSwW/35fJZHqCQUWRvZ2d/X29I8PDl+cvh46Pamz92dqzaqsWSUQWl55EYuGhkYFiqTg+Oqiq8tDQkCiKy08WCRhpFMtvvPKqUa8PdnfXmg0QgUvl8ief/E4QhJGRERiGq5XKg0ePUBTlBQGEoIDPPzw41Ncz0OnpokgKR1GnzWU2WjQUvbW1lUqd6nV6m8OuqGpHZ0dvb28sEvP5PB98cOPy/NVvf/uPnU77YWivWi2VSnmNjhREvljK6w0aoc2RBJrNZqrV2osXO52dnfl8IZlMS5JEU5pKuZLJ5DiWX1vdqFRq3cHujg5vMpmcmhq/eHG2Xq867DaCQqu1kl5HCjxrs1kVRSFISlGA5eWV9FmmVqv19fX09HbbbDatVpPN5hqNZl9fPwRBOI5qtfTo+XEAUkmaaCtiNp8RRB7DEIxAWa6JoAhJURhB0DSNYVhblnGSwEiCE3lJVQRZMjEWm9NhtJj8gYDBYBAEHsNxK8OEw+FsNodhyPTMtN1qtVmYZr0qyzLHsmNjowRFPnz8UFJkAEUABG5yLbONgXEURlHGyiAYWqqWEQx2Op00Sfb19aXT6UgkguN4X1+f3W4fHR1FYBjOZrJGo8FiMhXyea1W+5tf//rHP/xRFI4+WXzaP9Ln6fEW88WVjW9GRkf1Jh0vcNFImBcEFEEe3rtfr7ZAVYVASKPVdncHbTaHx9UZ2j/0dgZFic/mcn19faIovsQZNRoNTWsGegbtFtvQ8EA8F3v46OnI8EguV93e2Q34vCYDU6lWdVptmWONBqNWD/T2dt+/+4Ix0e+8/a3l5ecT56c+/eTTSCwSP4uNzYw7Oj3H4TDHc41Syedyn5s497vbN3EDrdFpd/f2+33djNXlmrQhCnJ8cFgsFIqlYlfAb3e7IkeHNpttZWXF3+Vr1OqKJE1NTxcKhUQylS8XaEx3cpLs8vu/+OoLo0m3vr4+NTd98dLFbCZXLBVrlZJFbwz6/bVqXU/pBwaHIvtHd27f6fYHe7p7tjY3z9LpQK8/X8wrqrS1uU7SJONg+vq7796/X6/WSICwMvZWvbmw8ARB0Knp8Vu3/tA71Le3ty+rit3uKhebGIaTFH0YChEYcXJycm5krFoq5rOZfDZzfnpKkiEIwUuVViSW9HR6y9WyzWldXXumodBSpXTp4sVPf3db4BW9Xk9RpKLI3d1BgsAoHdk3EGyyTTZfUUEFJ7DT9InINmWRN2o0KiMTqMZgMCAwjEAQjGIwhoBsk6SpbL1M0qTD6Xzw4MHIyDhFUbZOKwyBOIEvPEl1+XwAqBgsulKx+OXSkiSIgS5fT3dvJHr07NlKKpvt6e+ORCO4Rq+o6kkiAUHQSKc7kT6tNqoDvX2Jo+NyteoxmhEUu3XrVmdnJ8uyBwcHgwMDOp3OZDIhqdSZzWor5otOmy0SjlgsFhRFcpWSgqJjM9Mlobi1seXz+kWhvbO9Ozd74WDvAMcJs8WSiCcikWO2KRZLOU6U3//OO5FEvK+vf/Hpcjx2wra2AVCdmp1WVNXhMJcqjWw253K4XA5XvpjLZE45jhsc7NXidLNcq+YKXqeHMdp1WrPIQ/FErMsTNBp0MNxKxhN9PT2pk0SzVhd5IR6J2BlL7PjQ6XXVSrVWi8dIHIJQvYUBSfLh0jJG04nkKc+3X7/2+oVz5ztsThrBVUl9tPDE2elGcMRmYSAAEMX2lfnLf/PXf9OsN3sDfoEX7A7HwuKTUCj6T//ZD4/2w2fZ7PjkZFtWqvXWQF/f4d5x+jQjAYrNYWUYByTLFhPTG+i3WRmB5UJ7B72DvalsipeEew8fG+1MOpVDcBhBEZvNVKqWDkNHnCCCABCNRCcGzjFma4oTcAKXVTUcjmq0Bo6T3G7v06UlWcr4g34HY9vb3kEBEAUhLUEBiqrXG46Ojx12pyqrrWYDQtuUhjRbDblCGqOonp7ek2SSwMBMrkzTjC/Yvb8ToghcbAuHh6FOv1Noi0JDJEmN3eFoNFi2xTWa9Wa9USxk8/lMV4dHVNsm0ojZEIrSNRtNs4au1Oscx7YlEQBkjZZqVsvnhoZTqeTRXuhPvvtdBZBhFHI4bb6AD4HBje0Ng0Hn9XoRCDHo9I8WFnr7e3P7IY+r08a4m6xUYVsoSVrt9hbHKQrY19P/YmdrfXVd4oVXLl/NFPLNZv2NN17HcQKGIb7FmozGgb6+ZrMJtVpctVIbGhje39vLZNIkRSAUkSmXqrLI+Lzps4KG0iEwotPozAaTJCokSb3y6nUSp4YGhianJmVFhBAUpxylUtWoN2+/2FNVYPbiLELACEVu7x/hpJbU6E+SpzCKyHKbonGr3VxrVYxmbataT8cS6Viit6sLbMuVXK1W4vLZKowQmWIhkzkVBa6/t/dbb771o49+SGD4hcnzEs+9cuXStctzyWgM5OVLEzN2vdVssNJ6Y77Z8g8PgyTdNzAyOnxufOi8yWD7x5/94vMvbz/f34plTsYmx5PJ5Nb6c6HebFaqIAhptVqz2WI0WSEUDkeP5y/NTU4Nf/7ZZ0ajjtbQxVqtygsiCIIYAYFoh6fL6nDEz9Lbu3sEQi88WopGYusbm9u7O8VaeebK3CtvX6+L9SrXlBUcAMgOj48kKJqi3C5Hs8auPdu4fuXVYFfQoDHoab3f7/f6/JcuXZIUdWLqwujoJIHrK6UmrdeLqpQtZIx6nY6ir8xdshmtG883uCbncLolXoFVtFZtEASeKaStbrOB0cmyEI/H3A5PInG2fRBmReXy5WsvDWiDwcCJbDgWbsmCKEtyG3BYHYCiyJKIkyhGwoIqpIrpw1T0OB3jpJbQboGomi/nC+VCPBXfO9h7sb1hs5mtFoPMsR6rxaKjB/t6ztLJ9Y3VhScPKQ3htFtXny0Bitys1c4yGRhFKK3G5nYbTMz4+KReYxY4WWJll8leyBYUBdDq9Jl0Zm/jRW9Xj5NxmgxM4iQltqVrVy877TaDTuO0Wbu8nalEfPHJwt72C2hmZvbK5ctff30nGOyu12r5YhFBkFyxmDhLp7M5k8Wq0xkymfzA4DCK4oLQnpiY3N3dTafTgihmc4VXXn31X/7Zvzg35rJZ7aIg1mv13r5eQRS6e7sJkkBQ3GxhwuFoIBCEQBBFEZvdygrNbCFdrhRVWfG6O3UaTSwWJzCiXmmiKN5q8SzPEySJ4xjLt9qSEI3GIAg6PUkeHYRmp2fYZrNerVyanWXMzJe3vtjfjuayNa1OR2o0sVTy4vwlUWpfmruUS+ce3HuQPsskUqnl1WeYhvrpP/73SqVktTAGnd7KWNfX1lAUPT85cffe4ivXrquA+j9/9otiIa/V05SWHh4fPiueOb3OkfPn0tmMmWGazaYotRUIhFHs0cNHCIycZTIff/x/X2y/kFX5+eba3/6HnyytrhgsprNs1mAw2qx2m9XaajSbtSYEtCfGh7OZnMvpymSysiILbSmeSMAoSms0sVhMUdTD/cPr118nCMJitcqKqsgy12QfPXhYLpWMesPa+vrq6mqt1kinMlyLiycTtJYCQdVitczNX4xGo6HDQ6PJIory0vLKwUHIZDSyjZqWJgFVrjdrIAwiKKaqqtFoOn9+0mwxi6KgAIoKAwiJiqBcZeuCLLTVdiQeIygilU6dJJNrG2sohm5ublUqJYrAwkdHwUAgkzldWlo0M2acwLzezmQqUatUHDZrOBy2Wa2dHZ0YRkAgvL6+KQpSq8npKD3X4AgEAxVAVdR6vSkIYluUauUqoADTU9OqCpymUnfv3n344MHy8vLz1eeJeHx3d3d3Z+c0mYKCgUAoFJqbm9vY3NQbDGvrawRNafQ6URBUVaEo8vDwUFEVBEM5jmPZVrFYbNTqng5PvdHgOLZarVUrdQzFT09TyWSyy+czmS3pdFqW5e7uoNvjikaju7vbL8tRoVDo+doznudsNnuwu/vLO1/l8rmNjY2tzQNvlw9BEQiCaIpCEURsi7zAt5qtSrnC81w6nb59+zbP89F4PJ5InJ1l8/kSRdIESUejuwYDDkHw7t7u08WniVgMRZBf/epX+VxWq9MqgGp3OkZGhgBQ4Tluc3MLJ/ByuazT6XZ3d10u1/Lyss4Afvr5b41m49zFqXe+/W0Igm5+eQsmYJTCHB1ub6DL6XF5A36tyVBuVGvNJorik+fPRaLhXC43Pz8/OjaG46TNarM67KLU1ut1Xq9HlNpra2utZrM7EERhxO8LWhk7QVAjo6MnJ4lsPhOLp6ZnZtwd7nK1fGn+IoZjHb4uURAoipKkNqCqiURCkiVZVnL5PMtx/kBAp9dhGF6r1fwBfyqZtFoYjmWjkYjZZPrgww8Zi6VWq2m1NNuoIxA40BM06g1cs8mYTBAANmo1BIYIAmdZVqPRmEwms9kMw/D/b8fLMq3R5Ip5QREBBEplz1QEyufzfp9fq9FevXKlVq0hKHp+cvIkEU+lUhqNdnRk5OXt9PR0X39/MpFUZcXn7aJJKnx0nMvkkvHE3s6uyWh0WG0up5OmaQBQCYIQBOHk5ARCkVw+n8vlVlZWKIoiSRKAIAUEREE4OzvbPzgoFosESfYO9CNbW1v1er1WKVkYpi0Js3NzZpMZ4bhwOGy2MEaD5sqVyzab47e//Y3VbFFVYH1t3aDT1yo1u9V254uve7v7crlch9eztb2NoWg2k/n8D7fmr1wqFLIsywIQFo/HJyfPMwxzsL9XLpWsVmsuk90/2F9/tjkU7JPbak/vIKnRC1IbhlBFUmEYQWBEVRUUIzxOz8ZmVGqLvd3nOrze5eVvFBDs7+8XJa7B8qdnmeNwhCSpfD5vsdtsNlu9VlUUpV6v+QNd4Ujk4tycw2FDEKgttXd2d0xmE8PYJUmSFWV7e1ur1YaPwz/84Q/W1p53eDw0TRyHj7d3doNBv9XlmJg+f+vuXY/XXSjlu4JdZ2fpTP5s6PywV/UZASJ7lHA6HPF4dGioT6vVAoDqdDkVVUYxZHBgeH1tz2ZjMExbLpW3XzTNjEGj173Y2vIFu58sPEUQ2OFw+P3Bs7NMvljCcTwajWr1hngshpN4MpkURavS5F6aSl1+r4bW/Oznv2grCoIibqfZ5XQn0ie+Lu+9e/emZ2cvzEySJL63c4jhKAyDQqsFA/Bgbw9Xa2U7PPPzs6+8fpWV2ZNcstlo0hp9vV7Hcdxms0EQdHZ2Nj8/f/v2bQAEOY7Hzba9w322JfCsWMlXcJLCIFlsi7Fo2Gw2qyqAYigAgr5AgKDp5ZWV+fl5ttWIx+MwDDMWC0GSyXhi4eFCoVAcGR7RUBQIwof7B0f7h32DfeVSyWQy0TSdzWZNJtP29jaB4R1uj6qq5ycnB0X24aP79Wr93Nj4i83N9fUXr12/mkqllpaWoGar5fV6R0ZGFEA9PTvjRYFvi5Pjk+Pj47SGLhSKy9+sbu/sjgyPwQh2cpLs6PQeR6JbG1s3f3/T5XSxLbZarZ4kUgzDpM/SvMD39gWGh/vjJ/FSuQTBMAiqMIycplIjI8M6gz4Wjen0uh//6Efvvfett956s79/oLe3DwARWVK9Xn+z2arV6i95NwAEdvf2zo2PCyIfOjgolUoTU1M//vGPeV7I5/JrGxuZs2ww0K3TG0ZGRrPZjNNh51nO4XQEg36zwRgI+L/5ZhlBURUEdkL7Foax2+1mi2Vr6wVJYjzL1yo1K8NEI9FypXzz9h2hrS4vb01NXdRoNJ1dHfFUDMLhTr/XaDE0WvVaozoxOWE0mxAMK1cqpVKR47mPPvroe9/7XrPV0JuMAAhyvDA5OZXL50EU5ATu6OioUqk0mw0QhHt7+l0uTzgcUUHQ6nBZbRaWbxrNRsZqQTF4Z287mTpptZqFYlFRFRInHA4nAABHh+Gd7V2bzXb9+qtvvf0m47CFY7He/j6ny9VuSxaz6fj4sF5vkASp1Wp7+3oMBj1NkBqSCO3ubKw+6w/4Xr162awzQIpcyRcAWZGlNkmSGo3GaDQajUaGYR4+fPjmm2++TI8arCZMTwM4xEuizmLQm/Qvg1KNZgsAAIqm9vb3evv7P/ro+++9d8NiNj9ZXKS1mmg0lsvlaJomcNzlcAb9fqPOEDoIaWgNiiBTE5M+rzcUOsBQdHR0NJFIOJ1Oo9Fos9m0eh2IwpRWs76xnj7L+H3dgUC3CkKB7p6urk69wdTR4U2fZqDw8XGhUEifnfX29sxfvlyqVErl0tOVxXwubzaZtTqtwWBoNVubm5uyJCmKwnPchZmZn/zkJ11dXcVCsbe3z2K2DA0NYhg2Pj4uSVIul7t1+9aVq1d9fh8v8MViqVwpkxTBsazNZu3s6DTpjffu3bM5nKfpdFuRDGYTjpP7eyEFAFUVBFQAQVFVUSVZFCTx2fNn586NB4Pd1165BoHox7/8Ta1WPzcxUa7U/f4gCMIYhtOkxqA3KIrSYps3b37eaNRXVla2X7x46603AkH/4spSuVR57Y03KJp69OhBMOhrtVij0W4wWG7ceO/5+hoIwX/2r/751Wvz4+f7lpYfGk2mx48fgYBq0GkWF58oUjt7lhYE9jSZEFpNHIYYs1FR5NPTVCqVbLaaCIo+fvwomT71Bfy5fL7WaAiiQFC43khrtVpIhZw2R+Ys6/F0vHfjxkB/f2+v/9nK6vj4GIahv/715zAM2R0OnMCtNsuDB/cZxhKJRDe3Nnme9wd8GIktLi9Z7fabt29V6zUERf7bT/9HPJHAMBzHcI5lHXbb0tJTEFQgGLCYDcVCTk9R1VKxVilgCIiDYLGQkTgBVNS2IEAQjOP4S5PRaDQODQ11dnaur6+TBLG6vvrg6WNOEUEMbrY5UZF293dfTkGS1LaYzYlEore/j7Fad/f3b3/5xeHRUa1aCx8fJ5MnoyMj9WoVheCDvf0Ot9tqsXicLpPBSBOkhqYO9ve97g6GYZaXl6enp2EYjsfjqqpiGJbNZnmepzWa27dvRyIRDMN4npcVZXBw0Ov1tiXp6pUrkCJKoiBsbm0dRyJtWcrmcy+/DC/OzUmSFIvH86UCiqNeX9fG5mZHR4fb6RofGb13927A7wdByGg0fvDBh1OT094u77vvvksQ+PzlS6Mjo9FouN6oVavl8fExh8MmK4ooCvV6LZPLsCJH0SRjtdA6zeDQ4P/5+ONKtdLV5TeZLCRJISiKYxiB4yaTmSRJu92+vrn+i//981K57PV1UBoqnkjiBDU1OQWCsMFg9nb5i+VSoVCIx2IEgb12/dV89oyxmhkLE43GNjc3pqamZUjz2e9vx5KJi5fnBVEUWb6YPykVzxKJk7HR0dN0evdg79/97X/513/+bxmbrdlqXb18yaSlVElgjLoX6+skhvLNlszxoAQAbVmnoYeG+ikK39hce/jo4cbW5vyVS3fvPm2xQugo/PDxsgLKx+EDp9M5NDREUVShWCrmi2yD3d3ZLRYLKIrQWmpxaTEWj8xcGB4eGQIhVZbFL7/6AgQBmtaYTMaJiQme5589XxV4IRQKsSw7NnHO7fHY7HadSY+iqJWxtgXR7XJVqxUVUNtKu8m3vvXOW2+/+QZNETaL+Z/84PuXZy80a+VMMhmJhHmWI0nyJYDDsmwulwNBMJlM6nS6lyKz0+kyWAyn+TRK4wazUVTa6VzG6XE5HA4IhnqCwe7u7hfb24tLizOzF05PT5vN5ptvvpFOZ77zwYcvxZRKufzqtWsQAE5OTLhdrlQiMTYy2uH2/MmH38nn80sLi6NDwztbL0BFBRXVYrHYbDYEQbK5HATDLperXClzPG8xm31+f5NtLS4t+Xy+hcWn0Gn6NNjd/e6N9wAI3A8dTE1PReMxjU734OGDhw8fdHg8OIZ/+dVXuVwOxbBMJqvVas/S6Q8//HBqaurN1193O9wLjxYOQ0fZ09xvfvNbnCAeLzxu8a2L8xeD3YFEIiFJcrFYgiGoVC4FAgGDUTc2OuZxex49etRstT757FMMRY+OIsMjoxiKkxTVbLZUVTWZTQCoBHsCjxYeMlZrd29PPB57/Pibw8PYX/3VX7rdHlGSh0fPFYqldluemDx/5cqVWq0iSeK9+18PDPb/xb/58z/6o2/VGtWpmZnESQKCmyxfc3uc1Uo5FovV643B/kG303UQOjDbXB3eXpbj33z7wuc3P0NQ/PAw0RsMakh8buq8niRGBgbOj44RAHK4vUuA4LmBgWIut7m1FewO+v2+7Z2deq1mMJo++sF3Vla/kVV5dn4seXqGk7go8jiK2qzuUq4Bw7AotDW0rlQuYzhGkKTH45mamXrv/fc8HW6NhoonEtVqzdvlcTjs3cFgpVJRVKVSrcxcvPAXf/mX9VbT4/EQJDk4NCQrithu2+w2r7ezv7cvHol4Oz2yJBn02t2dXYNO8+4fvcNxjc9/99v/+nf/+ebnn0ptUUPTGIK2hbYkSS/jlC/FvGKxSJKkwWB4+623a7UaQiIwDudKBVpP+7v9MxdnvF1d1VqVY9mFhccADFZqtXA0+rOf/y+dQS/L8tHREU1TlXLl6zt3lp4sOu2O5ElSare//PLLYCDQ2dnZara+WV7+9a9+bdBoBJ774vZtrVar0+mcTme5XOZ53mgyURT16aefRSIRhrFWqpWni4vLy8uKqkpSm+O4qakpZHZ2dvX5c5LCOzo6FFDNlUv5cpHlWbfbU2802pJiYph6vfHs2erU5JTNZkNRTOLbf/93f9/Z2bm9uaelDcmTVItjcRLjeV5n0g8ND4Eg+Gx1xWBkursD8ZMIBEJDgwPXrl2TRGFvb/enP/0HrU4rsGKHq3P83Ll47PT1t986Pzm98HilUKi1220YxkSRNxmpfCH8x+/+8c6LJQICqrUapGLRaObe/QfTM5Mul+fz3//B6XZlc6UBSTkOh1+7/trwUP+tm59XS4V4PEYAmmjkdD907Oy0XJi4kEymFFkFIeh73/sTxsiEdkMet0fHtu7evR3s65ZV4Ks796ZnJiORo6OjEA6/isjq1vrm7MT5w73jO5/dqpfYK5dmJ4dGHq8sCizrcdsJHLly5fLq2trY+Eg4EjlJJmuNGs8LNgSyuDS0hioWi3Nzl56vPF9d/UabNzRFXseYSAo/CO1fu3r1/oMHI6OjCIaTFGW2mGEEvXz1ogqCqqpqtbpo7Wigf8ButN78w00QuO32euPJxIVLl05iqVarJUrC+vM1o9lgtTKkhpKkNkHhkqQQFA6rQDGf9TissMXs83Q8X1+HAbVcyBnNxmZb5DgOgmGe5yEI2traeu211xqNBgiCd76+Q1IEJ3IIAuk0+marjoFwqVQqFYtaSjM+Pr6xsYbDEAhBNz54Pxw70ekNfFs8PT3V0MSjRw+LhfzE6BiB46FQyG6zd7g8Oy+23W630+Xc3d5DYNhgNHnkjtOz0zYvvvHee7/79FODwZDNZnGCYGxWSVXy+Ww6kyFwXOB5mtZ0+fyFfD50eHSWTkMYihmNRgzHdAY9QZNnmYwKgpFwhOc4l8ulNxryuXzfwMDwyEhXV9f6+rrD7vj666/r9TpN0zfefc+gNb5+/fX0aZrjuWgkmslm9Hq9pEpn2bOd3W2v1zvQP1AsFoeHh09PU8vLy7Isdfl8gwODF2Yv3Lp9e31jvdpoulyeUrHicLpQDKdprV6v5zmO5VgbY93eeVEulwmKvHzlWi5fUgFw/yD0+1s3O7xdjUYrdZr+wQ++f+/ePRAEEyexcqU0OzsDgkAkfHSwv/f+B+9MzowNjQ5v7+3KgKJAgCgJv/zlr6x6RqMxHh1FAECltVoYRU2MaWxivFwua/V6RZXbHJeKx7Q4cbC9s7H6fLR/4B/+03+0m6wrjxb3nm+FQ6EPPriBIDDHtcbGRvOFQqFYCMciLZ6nNXQg6Pd0uFmx1dMTPDtLb+9sK22lUW+IoigK7Uq50tfXq9VpZEU+y2QgGNrZ2TlJnkAwODM763Q4G43GnTt3/AH//sH+0dFROp1meU6n1+lNxvXN9VgsNnfx0rvvvsswDAgApUI+n80CqgKACoSAGIYoisQLrEGvhVTZqKdtjBFS5enJ6ZfhJRAAQ4eHX3311cnJydzcnF6vfxm1cblcg4ODGI4iGAwACq2hSA2Vy2dYli1Xytls1mwyuT0eUkMfHIb2QwePnzwpFUuBYNDpdDqdToaxEgTZaDZZls1mc06X89q1azRNf/zLj8fGx4LB4IvNrXqtVsjnWY49PU0nThKn6XS5WsVIAoJhSZYRBLHZbHq9XqvVSpK0sPBkd3cXAIDp6WkoEY9zHBdLxDO5XJNlO31eSZGPI2GXy7W4uHj/wQNXR8fc3KXjozCBkxwrfvLJp++//yEEwDiMb65vrj1/vrS06HA4FEW5cGHm5CQRPg4fHBz4fH6nyxmNRkVR+NM//d4333yzurp6fHxEkmSHx223M0PDA52+LgUEFAUwmsycKNbrTQiEKYISOJ4gUASBdvd2Ws3W97///Xe+/e39/b3+wT6b1Vat1HK5wl//9b8fPzfZ1eU7DocD/u5sNjc2NhaPRp8/WxkdHeJazYmJiXAkrAAq3xa7e3tImnr69CnDWEFQypbPvvvdG5cvzrIt9saNG0az+eT01Ol25QsFo8l4ce5io1Y36wwiz1eKpXq5srK49OlvPoHaaiqe0lHa1169TtOUy+XEcFQQuYnz4+cnJwYGBl5/7bX3v/OdCxcvyKpQLBd8wUAuk2tU6kF/0GSwGPUmiiBhBGlyreWVJV5gEQx+8OB+pVYeHx9ty+1ms14oFYwGg9ls8rjcNE2XKuXB4WHGai1VyjhJmBmrxWpdWFh49OjRtatXA4HA5sZmuVwEQBVQVRWQUQKBEUhV2i4HQ5GoXqfhWrWtjTUAkAWRV1Tl8cLj0MHBlStXhoaG7t+/bzab3W630WhUZCUcjggCjyKw2Ba0GgrDkO7u7sHBAZPZJEiCDKhtWVJAtVAqWa1Wn9/nDwRIijrYP6g3Gm+99ebly5er1WpbkkqVcmeXt95sPH6y0Jak43A4dHTYPzTAMEwwEKQpqtFoeNyekZGRnu7uQCCggkA2lxXakkarwwkKRvFSuepyub1dfhQnmi3u/wFhAbwlecfJugAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "image, label = ds[0]\n",
- "print(label)\n",
- "tensor_to_image(image).resize((224,224))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Create Trainer\n",
- "\n",
- "Train imagenet pretrained MobileNetV2 model with cyclic learning rate and SGD optimizer."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
- ]
- }
- ],
- "source": [
- "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"functional_1\"\n",
- "__________________________________________________________________________________________________\n",
- "Layer (type) Output Shape Param # Connected to \n",
- "==================================================================================================\n",
- "input_1 (InputLayer) [(None, None, None, 0 \n",
- "__________________________________________________________________________________________________\n",
- "Conv1_pad (ZeroPadding2D) (None, None, None, 3 0 input_1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv1 (Conv2D) (None, None, None, 3 864 Conv1_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "bn_Conv1 (BatchNormalization) (None, None, None, 3 128 Conv1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv1_relu (ReLU) (None, None, None, 3 0 bn_Conv1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_depthwise (Depthw (None, None, None, 3 288 Conv1_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_depthwise_BN (Bat (None, None, None, 3 128 expanded_conv_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_depthwise_relu (R (None, None, None, 3 0 expanded_conv_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_project (Conv2D) (None, None, None, 1 512 expanded_conv_depthwise_relu[0][0\n",
- "__________________________________________________________________________________________________\n",
- "expanded_conv_project_BN (Batch (None, None, None, 1 64 expanded_conv_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_expand (Conv2D) (None, None, None, 9 1536 expanded_conv_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_expand_BN (BatchNormali (None, None, None, 9 384 block_1_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_expand_relu (ReLU) (None, None, None, 9 0 block_1_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_pad (ZeroPadding2D) (None, None, None, 9 0 block_1_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_depthwise (DepthwiseCon (None, None, None, 9 864 block_1_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_depthwise_BN (BatchNorm (None, None, None, 9 384 block_1_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_depthwise_relu (ReLU) (None, None, None, 9 0 block_1_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_project (Conv2D) (None, None, None, 2 2304 block_1_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_1_project_BN (BatchNormal (None, None, None, 2 96 block_1_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_expand (Conv2D) (None, None, None, 1 3456 block_1_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_expand_BN (BatchNormali (None, None, None, 1 576 block_2_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_expand_relu (ReLU) (None, None, None, 1 0 block_2_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_depthwise (DepthwiseCon (None, None, None, 1 1296 block_2_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_depthwise_BN (BatchNorm (None, None, None, 1 576 block_2_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_depthwise_relu (ReLU) (None, None, None, 1 0 block_2_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_project (Conv2D) (None, None, None, 2 3456 block_2_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_project_BN (BatchNormal (None, None, None, 2 96 block_2_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_2_add (Add) (None, None, None, 2 0 block_1_project_BN[0][0] \n",
- " block_2_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_expand (Conv2D) (None, None, None, 1 3456 block_2_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_expand_BN (BatchNormali (None, None, None, 1 576 block_3_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_expand_relu (ReLU) (None, None, None, 1 0 block_3_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_pad (ZeroPadding2D) (None, None, None, 1 0 block_3_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_depthwise (DepthwiseCon (None, None, None, 1 1296 block_3_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_depthwise_BN (BatchNorm (None, None, None, 1 576 block_3_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_depthwise_relu (ReLU) (None, None, None, 1 0 block_3_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_project (Conv2D) (None, None, None, 3 4608 block_3_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_3_project_BN (BatchNormal (None, None, None, 3 128 block_3_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_expand (Conv2D) (None, None, None, 1 6144 block_3_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_expand_BN (BatchNormali (None, None, None, 1 768 block_4_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_expand_relu (ReLU) (None, None, None, 1 0 block_4_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_depthwise (DepthwiseCon (None, None, None, 1 1728 block_4_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_depthwise_BN (BatchNorm (None, None, None, 1 768 block_4_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_depthwise_relu (ReLU) (None, None, None, 1 0 block_4_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_project (Conv2D) (None, None, None, 3 6144 block_4_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_project_BN (BatchNormal (None, None, None, 3 128 block_4_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_4_add (Add) (None, None, None, 3 0 block_3_project_BN[0][0] \n",
- " block_4_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_expand (Conv2D) (None, None, None, 1 6144 block_4_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_expand_BN (BatchNormali (None, None, None, 1 768 block_5_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_expand_relu (ReLU) (None, None, None, 1 0 block_5_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_depthwise (DepthwiseCon (None, None, None, 1 1728 block_5_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_depthwise_BN (BatchNorm (None, None, None, 1 768 block_5_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_depthwise_relu (ReLU) (None, None, None, 1 0 block_5_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_project (Conv2D) (None, None, None, 3 6144 block_5_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_project_BN (BatchNormal (None, None, None, 3 128 block_5_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_5_add (Add) (None, None, None, 3 0 block_4_add[0][0] \n",
- " block_5_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_expand (Conv2D) (None, None, None, 1 6144 block_5_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_expand_BN (BatchNormali (None, None, None, 1 768 block_6_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_expand_relu (ReLU) (None, None, None, 1 0 block_6_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_pad (ZeroPadding2D) (None, None, None, 1 0 block_6_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_depthwise (DepthwiseCon (None, None, None, 1 1728 block_6_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_depthwise_BN (BatchNorm (None, None, None, 1 768 block_6_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_depthwise_relu (ReLU) (None, None, None, 1 0 block_6_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_project (Conv2D) (None, None, None, 6 12288 block_6_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_6_project_BN (BatchNormal (None, None, None, 6 256 block_6_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_expand (Conv2D) (None, None, None, 3 24576 block_6_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_expand_BN (BatchNormali (None, None, None, 3 1536 block_7_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_expand_relu (ReLU) (None, None, None, 3 0 block_7_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_depthwise (DepthwiseCon (None, None, None, 3 3456 block_7_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_7_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_depthwise_relu (ReLU) (None, None, None, 3 0 block_7_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_project (Conv2D) (None, None, None, 6 24576 block_7_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_project_BN (BatchNormal (None, None, None, 6 256 block_7_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_7_add (Add) (None, None, None, 6 0 block_6_project_BN[0][0] \n",
- " block_7_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_expand (Conv2D) (None, None, None, 3 24576 block_7_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_expand_BN (BatchNormali (None, None, None, 3 1536 block_8_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_expand_relu (ReLU) (None, None, None, 3 0 block_8_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_depthwise (DepthwiseCon (None, None, None, 3 3456 block_8_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_8_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_depthwise_relu (ReLU) (None, None, None, 3 0 block_8_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_project (Conv2D) (None, None, None, 6 24576 block_8_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_project_BN (BatchNormal (None, None, None, 6 256 block_8_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_8_add (Add) (None, None, None, 6 0 block_7_add[0][0] \n",
- " block_8_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_expand (Conv2D) (None, None, None, 3 24576 block_8_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_expand_BN (BatchNormali (None, None, None, 3 1536 block_9_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_expand_relu (ReLU) (None, None, None, 3 0 block_9_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_depthwise (DepthwiseCon (None, None, None, 3 3456 block_9_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_depthwise_BN (BatchNorm (None, None, None, 3 1536 block_9_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_depthwise_relu (ReLU) (None, None, None, 3 0 block_9_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_project (Conv2D) (None, None, None, 6 24576 block_9_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_project_BN (BatchNormal (None, None, None, 6 256 block_9_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_9_add (Add) (None, None, None, 6 0 block_8_add[0][0] \n",
- " block_9_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_expand (Conv2D) (None, None, None, 3 24576 block_9_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_expand_BN (BatchNormal (None, None, None, 3 1536 block_10_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_expand_relu (ReLU) (None, None, None, 3 0 block_10_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_depthwise (DepthwiseCo (None, None, None, 3 3456 block_10_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_depthwise_BN (BatchNor (None, None, None, 3 1536 block_10_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_depthwise_relu (ReLU) (None, None, None, 3 0 block_10_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_project (Conv2D) (None, None, None, 9 36864 block_10_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_10_project_BN (BatchNorma (None, None, None, 9 384 block_10_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_expand (Conv2D) (None, None, None, 5 55296 block_10_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_expand_BN (BatchNormal (None, None, None, 5 2304 block_11_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_expand_relu (ReLU) (None, None, None, 5 0 block_11_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_depthwise (DepthwiseCo (None, None, None, 5 5184 block_11_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_depthwise_BN (BatchNor (None, None, None, 5 2304 block_11_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_depthwise_relu (ReLU) (None, None, None, 5 0 block_11_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_project (Conv2D) (None, None, None, 9 55296 block_11_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_project_BN (BatchNorma (None, None, None, 9 384 block_11_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_11_add (Add) (None, None, None, 9 0 block_10_project_BN[0][0] \n",
- " block_11_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_expand (Conv2D) (None, None, None, 5 55296 block_11_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_expand_BN (BatchNormal (None, None, None, 5 2304 block_12_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_expand_relu (ReLU) (None, None, None, 5 0 block_12_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_depthwise (DepthwiseCo (None, None, None, 5 5184 block_12_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_depthwise_BN (BatchNor (None, None, None, 5 2304 block_12_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_depthwise_relu (ReLU) (None, None, None, 5 0 block_12_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_project (Conv2D) (None, None, None, 9 55296 block_12_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_project_BN (BatchNorma (None, None, None, 9 384 block_12_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_12_add (Add) (None, None, None, 9 0 block_11_add[0][0] \n",
- " block_12_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_expand (Conv2D) (None, None, None, 5 55296 block_12_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_expand_BN (BatchNormal (None, None, None, 5 2304 block_13_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_expand_relu (ReLU) (None, None, None, 5 0 block_13_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_pad (ZeroPadding2D) (None, None, None, 5 0 block_13_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_depthwise (DepthwiseCo (None, None, None, 5 5184 block_13_pad[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_depthwise_BN (BatchNor (None, None, None, 5 2304 block_13_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_depthwise_relu (ReLU) (None, None, None, 5 0 block_13_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_project (Conv2D) (None, None, None, 1 92160 block_13_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_13_project_BN (BatchNorma (None, None, None, 1 640 block_13_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_expand (Conv2D) (None, None, None, 9 153600 block_13_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_expand_BN (BatchNormal (None, None, None, 9 3840 block_14_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_expand_relu (ReLU) (None, None, None, 9 0 block_14_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_depthwise (DepthwiseCo (None, None, None, 9 8640 block_14_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_depthwise_BN (BatchNor (None, None, None, 9 3840 block_14_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_depthwise_relu (ReLU) (None, None, None, 9 0 block_14_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_project (Conv2D) (None, None, None, 1 153600 block_14_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_project_BN (BatchNorma (None, None, None, 1 640 block_14_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_14_add (Add) (None, None, None, 1 0 block_13_project_BN[0][0] \n",
- " block_14_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_expand (Conv2D) (None, None, None, 9 153600 block_14_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_expand_BN (BatchNormal (None, None, None, 9 3840 block_15_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_expand_relu (ReLU) (None, None, None, 9 0 block_15_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_depthwise (DepthwiseCo (None, None, None, 9 8640 block_15_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_depthwise_BN (BatchNor (None, None, None, 9 3840 block_15_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_depthwise_relu (ReLU) (None, None, None, 9 0 block_15_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_project (Conv2D) (None, None, None, 1 153600 block_15_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_project_BN (BatchNorma (None, None, None, 1 640 block_15_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_15_add (Add) (None, None, None, 1 0 block_14_add[0][0] \n",
- " block_15_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_expand (Conv2D) (None, None, None, 9 153600 block_15_add[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_expand_BN (BatchNormal (None, None, None, 9 3840 block_16_expand[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_expand_relu (ReLU) (None, None, None, 9 0 block_16_expand_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_depthwise (DepthwiseCo (None, None, None, 9 8640 block_16_expand_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_depthwise_BN (BatchNor (None, None, None, 9 3840 block_16_depthwise[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_depthwise_relu (ReLU) (None, None, None, 9 0 block_16_depthwise_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_project (Conv2D) (None, None, None, 3 307200 block_16_depthwise_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "block_16_project_BN (BatchNorma (None, None, None, 3 1280 block_16_project[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv_1 (Conv2D) (None, None, None, 1 409600 block_16_project_BN[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "Conv_1_bn (BatchNormalization) (None, None, None, 1 5120 Conv_1[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "out_relu (ReLU) (None, None, None, 1 0 Conv_1_bn[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "global_average_pooling2d (Globa (None, 1280) 0 out_relu[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "dropout (Dropout) (None, 1280) 0 global_average_pooling2d[0][0] \n",
- "__________________________________________________________________________________________________\n",
- "output (Dense) (None, 1) 1281 dropout[0][0] \n",
- "==================================================================================================\n",
- "Total params: 2,259,265\n",
- "Trainable params: 2,225,153\n",
- "Non-trainable params: 34,112\n",
- "__________________________________________________________________________________________________\n"
- ]
- }
- ],
- "source": [
- "trainer.summary()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model compiled!\n"
- ]
- }
- ],
- "source": [
- "trainer.compile2(batch_size=BS,\n",
- " optimizer='sgd',\n",
- " lr_range=(1e-4, 1e-2),\n",
- " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
- " metrics=['binary_accuracy'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "cyclic learning rate already set!\n",
- "Epoch 1/10\n",
- "500/500 [==============================] - 40s 80ms/step - loss: 0.4258 - binary_accuracy: 0.7878\n",
- "Epoch 2/10\n",
- "500/500 [==============================] - 50s 101ms/step - loss: 0.1384 - binary_accuracy: 0.9438\n",
- "Epoch 3/10\n",
- "500/500 [==============================] - 79s 159ms/step - loss: 0.0587 - binary_accuracy: 0.9771\n",
- "Epoch 4/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0385 - binary_accuracy: 0.9841\n",
- "Epoch 5/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0257 - binary_accuracy: 0.9911\n",
- "Epoch 6/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0302 - binary_accuracy: 0.9901\n",
- "Epoch 7/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0212 - binary_accuracy: 0.9931\n",
- "Epoch 8/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 157ms/step - loss: 0.0207 - binary_accuracy: 0.9935\n",
- "Epoch 9/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0177 - binary_accuracy: 0.9951\n",
- "Epoch 10/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 159ms/step - loss: 0.0172 - binary_accuracy: 0.9940\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainer.cyclic_fit(10, batch_size=BS)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Trainer also supports the regular keras `model.fit` api using `trainer.fit`\n",
- "\n",
- "Train the same model **without cyclic learning rate**:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
- ]
- }
- ],
- "source": [
- "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=2))\n",
- "trainer.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),\n",
- " loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),\n",
- " metrics=['binary_accuracy'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/10\n",
- "500/500 [==============================] - 38s 77ms/step - loss: 0.4070 - binary_accuracy: 0.8026\n",
- "Epoch 2/10\n",
- "500/500 [==============================] - 50s 99ms/step - loss: 0.1800 - binary_accuracy: 0.9239\n",
- "Epoch 3/10\n",
- "500/500 [==============================] - 78s 155ms/step - loss: 0.1197 - binary_accuracy: 0.9553\n",
- "Epoch 4/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0952 - binary_accuracy: 0.9626\n",
- "Epoch 5/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 157ms/step - loss: 0.0809 - binary_accuracy: 0.9664\n",
- "Epoch 6/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 77s 154ms/step - loss: 0.0693 - binary_accuracy: 0.9735\n",
- "Epoch 7/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 156ms/step - loss: 0.0610 - binary_accuracy: 0.9759\n",
- "Epoch 8/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 157ms/step - loss: 0.0530 - binary_accuracy: 0.9797\n",
- "Epoch 9/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 79s 158ms/step - loss: 0.0505 - binary_accuracy: 0.9821\n",
- "Epoch 10/10\n",
- "Returning the last set size which is: (224, 224)\n",
- "500/500 [==============================] - 78s 156ms/step - loss: 0.0452 - binary_accuracy: 0.9829\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data = ds.get_tf_dataset().map((lambda x,y: (x/127.5-1.0, y)), AUTOTUNE).batch(BS).prefetch(AUTOTUNE)\n",
- "\n",
- "trainer.fit(data,\n",
- " epochs=10)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# What does model focus on while making a prediction?\n",
- "`chitra.trainer.InterpretModel` class creates GradCAM and GradCAM++ visualization in no additional code!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from chitra.trainer import InterpretModel\n",
- "import random\n",
- "model_interpret = InterpretModel(True, trainer)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAD8CAYAAAD+D4bnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9Sa9kW3Kl99luzjnufruIeJGvy4bJRiRVBdZAgKQ/IEAzTaUaCzXSD9BvqYHGmmmkAjTTSBBAqQoogk2yyGQyXxcZ7Y17vTnn7L3NNLDt/l4KlSkOlFVJIDbwEO9GuPs9zT5my9ZaZi5mxof1YX1YH9aH9etX+I99AB/Wh/VhfVj/GNaHYPlhfVgf1of1D1gfguWH9WF9WB/WP2B9CJYf1of1YX1Y/4D1IVh+WB/Wh/Vh/QPWh2D5YX1YH9aH9Q9Yv7FgKSL/tYj8RET+RkT+x9/U7/mwPqwP68P6D7HkN+GzFJEI/DXwXwFfAn8K/Hdm9hf/v/+yD+vD+rA+rP8A6zeFLP9z4G/M7KdmtgL/M/Df/IZ+14f1YX1YH9ZvfKXf0Od+DnzxnZ+/BP6LX/XiELaW8x0CICAYIkKMkRAirTYMUFUQobWGagMD+msxI4SAmRFj9NcCgv8bgIi/RUJADdQECYLItzkjxYAArRaC4J/b3wdCM6PZ+UAFCQEQgggxBAKG1tLPwS7vMzNCjKgamBJE8KO/nAYS/Hebqf95frcIaudr5cdq5tfJzPp1k8tniQQ/b/q/9c8xM+x8LCH066b0F4H1awmomZ9Xv6aXl3C5SZgahhFDvLz/8goBM39drUpK8XI852rGgHHa8H5/QIEYE6VUfzMgv1T0GIgQY8BU/Vy+c+7n4z7f65gSrTX/XXa+Xd/uhfN1lRCw88WV83FDEL9OquZ7BEG1sd1siDFyPB3RpoQYCDEyDgOlFDbTRIzhcizn4zxfbwP2+z2lNsz8uC/H3q9dTonNZqIsC2lIxBj94LDvvLYfMHA6nRhyJqb47dX6zr0083Od55kYIzkn7Jc+5Zd//7quIELO+Tv/In4/zm8slVYKqg01pWEQhM12689Ev34iAVVlnmfGcfyla3M5hb5PMJiXmRD8GOW8z/pe/O5lqrVSS2Wcxl9+nYEEuVx7EOZlZhgGYox+P3ocuWyMvhfWdeXtu799bWbP+fes31Sw/P9cIvIvgH8BEOMNn3z83xPFyFkIKEGMq92OJ3dPub9/xBBO80oz2B/3HPYPmDasNcYcabUyDAMpZe5u77i/f+8BVwUxJQbDTLEQGHbXvJ8bK5GQR3KeCOIwe5MTd1cb7l9/Q9aVKQpiDRPQmNkX43FttDQgIRPTSCCwnSbutls2oXF8+5KoJ1JQEEODsDZlmq5ppUIrBKoHxZiwmFlLYxhGAkZbZ1IwVNce3DMWIkokxgyAtUrAEG3EGGgYKpGqQh42DDlDq0QaopWYAlWhGByXle20IadIrSs5CWYN00aMCQmBdW0YgXHcoLWSemBWESxEiJG1FLQp0zCCNjAjhYBpQQI0IsTM+4c9T25vEa0IlRCEhh/LD3/vD/nf/+8/5/60cvP0Gd+8eouZYE0YQiRJwFDUGibG3e01VlYOhwO1VlJK5Jw9aEm4BInb21tev36NtgZAkEBMkSCBED1AhhiYpol1XXsyC4j4A5RTZlkW1nn1fRUDx8OBP/mTf8o0Dvy7v/5rDsc9eZrYbbd89ukn3N+/48c//CFXV1u2U/YHtlWOhz0fffQRJkIz4f/4P/+Ur1+8hpBJecIIBIEoEET56OkT/ukf/yd8/cVP+ezzj7m5u4UgNK3kPKAIphAkggp/9m//jO//4DPunlwjePBVVVS5BIgQAn/2b/+MTz75hOff+x4qhpoS1IiXlGpYDPz0Zz8lhMAPP/8+ASEQadVIISNrZXlzz9uff8Hju3eYGPfHB+4+ec7z3/0hN8/uIGaQiMSISOBwPPGXf/WX/NEf/SG77QYz7YDB71XT4ElZjZ/85K+4vb3lex9/7PcofHtPEbDqQOLVy5fsH/f8zo9/DBiqeklIrbWeYGAtlb/4i7/gj/7oj5imgVpLB12AQWtKSpkQIn/1Vz/hf/lf//nf/6qY9ZsKll8BP/jOz9/vf3dZZvYvgX8JMAyfmjlUIoRAFKGWlXUpnE4zpRRiGhhy5jAvpJQRx3AIgpkQQqJVxa9RoDXFs1EgChf0oQKltY4ooKoSrb82OKJKeSDFRFtPxGFEayWEiIkQggAN1CCckYihTSm1kqOiQA4RtYaI3xDfvM03SASaolahH4Oq0aoQUuyB24jBM7pa7egA5LyBaEQxJBgpOAprKGogWrEG0hohKAEl4teAEMhBiAHEjCiBJKEjSUNrQ/rnYeavASIdAHR0hEE0f8DCBbWBmF5+lhAwCaQQwNQDUTsjNYhiaCvEFDvS75/fEVcI0T9X6ShdL5WBBEd0oaMYrw6E2ioxREKM5JwpQOg3Si437NvjBQ+kJuZ7CXNUyRmRetUQQmBdF9Z1ZRoyKSdUlSFlRP261XVlPh1ZlwPHITHkzG67ZbvdMZeVYRgv+7+1RgwZ8ErItDoS7vDN95n/WwzBjydGRPxeqBgxCCYQo1/j8J0qCt+eBPCErI2yFmKIiBpWC9aq3/d+PTUIpRWWsnK13RJEKKeFQRKxAtaY373j5Rdf8fjuHWVdKdb49Iff55Mf/4B0tcXEP+t4miEIMSbWMvvWE1BraKvIuaIR8DDkwbDU6oGuJ68ggqo5glXF1IghMM8n8pixHijPVUYIAdT3SQgeB2oHUtqvTUrJ90mv9M5/Ho/HXxvUflPB8k+BPxCRH+NB8r8F/vmverGZl56qYBohBlQNMzgcjpRSEImkYcROCzkPQEAsdiAdAKXWRozWs8UIWN9AFRMjBL8Jy7IQN9fY0mja/EGK0TdU7ZvWYC2F1pKX5a3RTIBeBtLOBw7WHy7xzXHes+cbCz3r0dFta44KgdYqJslRApBCQEOAjvRCCCgC2jyAxEAw8+MOHpzsnBhCRMwQlGCKiCJmjsCroebwJUrAKv39YLWhPRvn6I9Ys0ZthlVHFtAQCQQCJtLTVCQYWPNIJ5zLpUBTTxRq2kvYju5RTx6ASqDUxjBsCaEhYcBIqEGK2c+7gak6opWAagANmCUPkBJx8CgXNOHZKGEkzJQQo5dmfnROhUBHLYGeCno56uhECMSYGJJcEOs0bni4v2c+Hthtt0zDwJAdrYh5AMop0erCPC8cD0dqLTx//pyU8y/RIOd9r6qEeOYJekLsgdLsW7RkZkSJfcsZKF61VEdpgtM7mKCt0dQRkzYlIGjz8jPFiBhkBCOgpmhTp5fUKKYs88qT6ztsVWRV0BU9zBzfvufVy1+wzDMxBU5Fef7Zx3z+e79DGyKlFualIjFDSIhBbcqyFFpTzKCshVoKghI7ig8RpDk11crKkBOYB8aGX6NaKyJCipEQhNM8c3t3i+FB90JxqZKHTK1+DUotTieIYKa+RwSks3jhXJqb/45ft34jwdLMqoj8D8D/1nfi/2Rmf/7r3iNy3iAe1II4hK/VH9JSK3kYe8DI0APkBYkQ6ACGdXUkuC4LIafLhTpTU4qRYwTxG6iYo88gWFPfaDlTQqC2xtTLfDrqiFGwEDzrx+hB/hzwzQO9ij/kof8sIfSH2/pz4Q+3NYXQA5A2VCOqDdHmm0eVEAe0h9cYUw/MAc5/ijh/2J8hR+mdk6QfnASnacQTjFkEyQRRlIaakMPg9w9BJKPWqBpJIj2Q+ANmGtAeqGJS/ztTYnDkLaGhdUFIqAUICSNDgBgSqtWzvhqtCcO4xTg6x9k1xyARMXE02veDoogkR6ZhBUtIiHBGpRYvaNMsohpQ9Xsl5ujM0aoH8RASIgk13wcSA06pGUIgxYGAegAzZZomHh8Pfp9a4endHdd3VxyPBw6Pj2htlHVlHDIvX73g5vqa43HPMH6KaYMQ0NporRCj3xuzRq1rL8O9UhAaqpVWC1ivOlSJIWKqfs7Bz7mUTudcEDMXjjOI798gzr06mOtpuj8MEoQYEhJ65VBW1tPCGDOJ4KDj8cjDly94+/oVacgca2Fp0KJw9dFTmEbWZSaOAylGqkKMmePpxLKsvHn7lqZGiOm8uy7PqyA0bbRa/b2tkVK6oMXW2qUqjJfEAcflxJP4hKbqn3nmh1U9wfbEPc8nttutV3bm3Ll24OHleqKU4te4Uza/av3GOEsz+1fAv/oHvrpfHKVWIcfovJW6WBFicH5MPfs4CvOH91x+uaAjPSsL4zhRq5/8+QJrq1iIjv7gImw0VaKql4v973IemENkXVfGNF3KbUMd6WiFUBGJHiyi79SQEiElxBqKOPndFFNIsSH0jWvOZ15KWwFtDbMG4qWqIaylkfpGLrVhwcvwM8ol4NxYcC5RW6ORKBaIGKoQLIJ4Md4sUNRAMklGEEFbpdmKhQ3ruiIhYhIxUUxGTKDZ2o8zOCJBOvpsTMOAREMN1lZJkrCYUDLVYNVG0oSokGNGpWIiFKssFVIcadVoFWLoooK4sOcor2d/rCfGSGuhB4czEgRTD7TVwIjENKLNRQYzp1hCLxMDRgiJGAbMqicbCU4cmgGJlAIqnYuNgSAjrRVSDOQU+cHnn3Jzdc1hP/Lm7RuGnCnLyqcfP+f586f87O9+ikjkxTdfc319zXZ37feneSLUvtc8yTeqNkJ/+ENwuiGE6Bwr2p+V2PecYc3L1lodCDR1SiT2hNGaeiBMCdEKdHTeE4OLn6ABR5ZNGdKEqDDFEWZFH/bc//xLjq9fE0zZPzyQtht+5w9+l/vTgWOtXIkw3twyryshejI7roW//+Jr9ocDDw8PfPTsGU2lU2Kdow2BEMSpHxpqPQ7gVV0M0Sm4TqmYGbVWF+9qJQ/Dheail+GeQFan0lJinmc2m+kSeENPlDlnbHXUua6FqkpKvz4c/kcTeP7fS00JZy6pI6hSnMB3pdmzznmFECjFSeKmjRhcdUsx+UME/b1G7A8TklARqkRiTthpJUgk9Mxl5qiyNiOn2BGa9M+PlKpYLwXW4jfIyyhHLa1nrxAjy7EwJC/tc8o0k47YvFiNOaGtePbXBjFjIp2j7AjODEkjleiIMAqtv6ZJpGljDJm1rsQhoZKoBlgEDaQhU5bZOckmWMw0iVhIrJoIOrjSbwGVSLEBCxmTiCIUrQS2jhY1EyRiIVCaXwdioJYTFraOnDBCMFYrhBSoKoRhQGeQfEXVgrbm/LIaKpmqmZwjQRJBElhECGg1Qv9/L90LkiKYizTaxBV2C13UcAQ/DqPfLxkRy+QceoLtzoWzih6EECMpT+Rqff80co4IRoy+74guKAw54rhdiQG2m4lxnDgdj9zc3PDpp5/w53/+Z9xcX7N/fGCaBm5urrm9veZ0OvLmzStyHp0iioFaV+IQMfPr4ejWMGtIMNa6MAweIA6HI4RITE4hhODVVquN2tQDVE9ipSmlVWIPlmZG1E5NDSNBol97jBCFVhuooGaIeCm7Hbe0VVnnPW/+/kuOr9+QUI7Libib+PwPfp/Ns6e8+mYmDANh3HIqBUkjzYTX797xi1dv2O9PvHz5ms1mYimNb16+4tPvPffq4CLqC1hjmiYO+wNDzqQQiTmDKZtpc1G5z+6QWnpJnrxqPAt9akbtDggJFREo68pud4XEQLDg5XwQaikYUEthHEceXr9mHL/llP9967ciWDrHHAhAa0ZrjgDOlp1Lia7OOUgMPHlyRy0LYsqQIphSi6uFiHjQFMHa2i0o+ku2kWWeLzdAm6KhEXpJu6wLwxCIKUFr1Fq77SH6jTSFtRPVITsBb0bVhpIJKXlpjV2Qr99v56W080PaqapqitVKUy97z0S1quMJVaWpB1DUEYl2G0dRpaqhrZf3cXCEKZG1GGaRizXEEhYGQobISEgDpg2JEIMiIbmNRgIhZvJohDRiKMM4OQKPCRlcWVeM2BIxb503M3WgS0EiCIk0TlQdyMNApJKiOccn/gAcZyXFkR98/iOG3Zbd9RNUAzlmpDoHFYKgKEUd1aUg3FzfXgKkl1S9XBZhXQsxjlxfP/EzN09iMTh3qU07pyqYRoZh5wkBUF1prVFLuSTRKEIQ55olKCrGvu6xVqnLSozC1dWWw+HAmzevOZ32iCg5RV6++JrtdsPxuOflL17RLHA47GmtkgVKq9QqjlazOx0eH+/5yU/+kuV0crSZMk0dOdJLcRc5oZbGmzdv+z0Tcj4/0kJrzrW7OFXYH0789O+/cK46QUyCVecGPdEMLMeF4/sD7+QVrx9OlPcHMDjUhc3NFTUFvnnzBjkd+PnLl6Tthi/e3FPVOB5ndlfXXn6XyjyfIGaWory9f2ReVr78+VfcXG1JorSyklOktcI4DuwPR1qt/O3f/i21VcY89PBoF5WfLrIej0e+/vKr71iy7HK/6IHUVHn79h0xRn7x4gXjmF0z6FqD9GdsM2057Q8Mw/Br49RvRbCMMTCNk6tYXRk+p55WCrVUqroAEVLmeNhT1+LcFzCriyGCIOGEGYzjxLKsDDGQxHB+060vKlC1IgSH82kg4CVPa9VLgO3O1dxqtNpoKTmaso5UolyUUvCgrqrU5uXEOchL5/lScktOzBEYiShoxQQ244hyRkbJVWxxlIZ4yV0aKMFRBAKWibjCaMPgRHiIvUx2qkI7R3UJ2JzpjUhp5gR6c67RVFnWFVVFJCKhUaqSqhJEObXFUXR28r6ZB/JlWfyBxDdgFDAtmBgWMhwKx9PMkFdyhCgKVEL2Y6Y2dBDevHpH2i8clxVVoZVGlghNSV3uL3om+Tth1+0fIpHW2rciihnr4sF4XRffZP1B6m/BzNxvaMXvnyk5BUT8eogMXYltLKWARbab8WKz2m5Gnn/0hNPhyPPnT2l15auvvuBHP/wRr159TY7w9OlTWl3YbEbmZeHN/QN3H33EN794SR5cJR7GiZQcaZ6ORzZj5geff8wn33vO3/307/j8+z/oHGVif5h7ovVn5OndHff379gfj3z6/R+AwDgOzPMCIuQ0Ukphu92x3+/51//63/Dx59d8/tlnWGiIGKJGDtk5eRP2j3v+7vBTvnn1hkk7HywwPrnl8z/8fdLNLbVVakp88bDn8x//Pn/11/+O07xyc3PLyzfvqU1pNJalsMwLKUa+99Ezpu0V63xge3XFzW7DZsi0uhKCEkPg5z//ghYDn3z8nJQy8zxfkqHHQNcJTvOJaRi5vb0hp+z3aFm9WuhiXIiB+XRC1YHO4XCk1cyyzKg6L1pr61zla968ecs0bX5tnPqtCJaqyuPjY7eTBHJMpBiI/eKEKKTQlVUxNybHwDyvoI0cO/eijRAiKWWmaXTVulYvOaRbFYJf+DFnxCLLcSaG4OQx3QakuHLeOR0TuZi01Zw3O5f6Z6XyXCTUVmm10mojRSN0njNF4eFwYNpMiDaSuHdQEbQtnYMEbQUtK6KVHHv2w0nzqq7vxxAJQAri1p7gPGSTQNNE08Bm6xYRmjsJ3PrU0JAcWVUlDIlgTlNY8CAQs3PEilFphFEZcoAmXj7lRBMh05H7oZBHV9hFlSj9/wELA0sxtCaGnNgMGbQACWJkrpWURsarO9bl54zbxHzaE8IAzUvKYOpFgYCFwLSZ3EL2+EipTo8MQySnjIsagkQhBadxWnNzdUzplxCFJ8kJCcK6LF0kSZiu7qGIQgiZGAyxyHa7ISchuH0AulDy7KOP2B8eCWJM04SnNOFqt2UaMxoNaw1rlVZX8pABdf6cQK0Fw1FokAFoqK7E1Pn3ENifTrx89ZaYBr7+5hdeVgp89fU31FJotfLq7VuO88xut2UaJ1Ie+OYXX3N//57r62vmeaGo8ertPZurK54/u0PU7U4xQyvw/uE9r16/4dSD3O3Hn/H25Wt217f87j/9faarLRUhpS3zUrA8sp8X9yqTeDzMlAbDZgutMIRMaf4YFYWixmZ7TW3GMG5I2Q33KRoxGOOYaS3y7KOPOB72DMN1F12k8/zWOcaFEAI31zfdkqcMw9jV7gT9dYeY+FpfsNvtuL29QwIsy4lhGGitEkNygcj8858+ffZr49RvRbB08rW6cTh4l8Y4jtS1kFKitQIYrRaay5aM08i6zpSlcpoXpiET41kt03PheVEyz0twQXpdCzIkULdOmLpBnG7tMCBIwiRhuniZe0GT4WJBcaGmBzpVzCJ5yNgcUP0WtSzLjFk3Cff3NjWaNUwSzTxAS4CUPYgFXUArQSKpewTVlCEFxITUGe2cIlb8d3UHElNOeKuRuG+zn4vGRAiRpa0MXURKEUISrAcaC27ZyBVSVuIAojiajrjyKOoChCoytO7f82BJq16yJ/fMjiJuE5FCkOrXWmEIATFjiIkxj4x5wzQsHI8rwYQsyaOkCoQu9WvAqos8Y0eSHkyNdZ0dHSikwR0MZ1OzmV44LzkHTFWGNHQeMGIWSGnjt9MUIRMChGCYuS83pEhMkZQirRn744lxGHn54hskCF999RW7zcCyLBweDdNCAK6utzweB06HAzkHmJuLDOLCZGuK9OoHnG9H4P7hPY/7I6VVrm7uMODxcODm5oY3r17RauX6+ppvfvGCqvDi5St2uytubm74+usXvHt7z2YzIRLYbDZ8+fU37A8H/rM/+SfcbTaYClaUw/0Df/s3f8P+NNOATz7/nE9/9GPerwuvD+/50ZCwKJyWwvt37xzpzif2P/+SPGxQMx72B549+4iGEscJEWF3dcP927e8f9yz3WyZj3u0VrbTxEdP70hpYDk9sN1NlOqld1nXLrg1zFx4icGBSs6JVryiHFKmtUrD/bUi4aJdAJRSmKaJEDwmlMVFo1oKiFcd47SlrCutudvl163fimAJjijDRWRpvY3M+a+mCylFpiESsmerVtUDRczQtLfeNTdQ4faAFAOtdTRhuLHZAPGsEiMMyTtOau2GhhBoBqUFwjC5JYLYkWIiidAEQgzU5ig09QilnYRMIbF2P1zqLWjqR4VQ/SdrpGBkEUzMlW4arTjyVa2M/SZ7wHTzeDXpYop3g6CN6JZLkoAFccuNdQU+ZOcRVbqp3kWElAJpcnO7REWS21biIDTTbtoXQgaJbl43FImViFC1YhKIO39PEIEKMQrBIqbu6bQm6GK0UshpIMtAXVcQZSCytpkpC0FX1uMDgwiWIzl4wqCBiPaYaeQA05CoxQPtudqYNqP7IgfnN0NWRBubnLp4cfY2mqM2/P0pQYzGkLr/MLrnEjpvChRdyHFgGjPQMF1RNXJMzPOBzbDl2dNbHu5f0krhft5ztRsY0zWmhWEaGYbE1W5DpVHKiomythM5j6QYWOYTIQgxGEqjWONxXXl5/47TXHj67GPeH07kzY4XL16iZJolTmshrcZAYHd7TT0cOCqc7h948fodY8icHle3nLWVUoWvXrzmdz++5+bTET2uNFbKwyNhmYllYVkL929e8X+9fUMFTrXyb/7yr12A7Nz7vCzsjwu7qxtMAvvDgauba/KQWY57NrsNh/3+bDjm2dOnlLLy/u1b1tPIP/njP0Ridr5yswEz9o97nvzgczCnoVJ0i1roomgArBaWeebm+howlnl2/rZXloTIucPBOp0luFA0zy7+uGsgkHJmPh7JeaAsK8M/BjVcDGgN6ZYHVbfQqLnaF4MRrPYSyBuwpnHgGCLrWskxY1pIIdC0utG0WwHqcuq2C3FekjP/oWhbSMloVkFy9y9GalNWhZC3FH3v5ZqtJBH/LO29Hqa99Ha/lqkT7mMWF4LEPX2mBRFhiBDwDhlt1YGqdfXOKWqaQUoDrSOhb72S9Vv+0SN/942FnhX9nMH7mlutpDChDfcYWrh0toRo3s6YjJgiJpWQXbAhK4YShoiWRpwyFrqBWpp3sokgTb+14uTeHVVBcvAWQwOzhg2RopUUExKDUxwS+z2uSIA8Vq6vE2mI1MeFFhpaVxfuuqppQbAYUDu55Sc3yrKwu9pQS6G0lTQE5nJk2m4ZtkLp9XvoHPjZnHzhks3I0bi+mRjywBCT27eav89LYwEd2W12jGMiBCWlK6DSSiOJoK0g3RhuVskp8uzpE66utgjKu3dvKG9XqoIMkyf04AkvxLM9qrmJu7rv9mE+UWNgkcD7+US7f8fpuFJWZXfzlDhM3O5umZaV/eOezfUVJpm0uWZzfcWbV6958uxTloeDI3g10OiI1QIDGTtWmAuPD/cc3r1mrCutrdRW+MUXPyPf3LEizNXbe6+ub9yOczpwWhohZmprDKOAGNvtyLQdMJkIEZZ57ybxBNsp8vh+j+kKZF69ec3VdsNuM/X+bnUvMN3KVmbEktNj3SJmuDdyXWc204S2js61izsxeu/5xWReGHMCLZTl6CDDIMdECK6Mjzl7wI1e1f669VsRLBEuSvR3N3LXj4GeNcSZIjMvm2OI374nuDHa7TyevcdeCrj19Vty/7t841meUVU00Mn9cCnNJCTUCqi6iXUcHfHoeUhAg+r2D6Jn3oty19Es4q2UqJuQpRudMTcfWzdF09v7QnBTu+rZiu4PohvOQVBCymi3ULinriuGwY3Yqv3/m0HwchLAgiLZBR1Gg+xsq2UjdF9hyIEwBFgFm9wLamYu2gyOOqMFgkTqERqNlCPREop6+W9czN5+MkASrBlShWiRppW2FqarxO/90e/w8vV7vveDHzBNG7bTCLWyzCfGMaNiSEz84tUbYgx88sl/SqsriDGMmdM8k7I3MjSMn3/5JX/4J/+MnDO1uHCVcyalxLIslFJ5+/oNZS0II8f9gYpbuVpzzrmWQI4DWguHxz3rnIjRiBGur7eYGNvdFVCY10KIkSdPn7IuR65vb5nnA0N2m9q8nBimrV9rdQuS93BXmjlnqa06BRMjL1/+gpASeUhM0+bCmR86Eqq18vTJU0Rg2kxc393yi9cvub655fR4gupe4XyXCWosx6MH9dK4y5knMbP/8hseH96x3793W1IpNFVun97xz/74v+QvfvZzvnn9lo8++YQnT5+Th8yrl7+AENhutzw8PJDNmMaBTz/5mO12x2Y7MebA23dvuL2+4s3r11xtt9zd3nL/5jWb3hv+7t1bxuFj3ty/I6WgMlcAACAASURBVD97QkDZ7/dsNltiiKTt1jUHtUs3WIiZHAJlLdze3Hgy7g6X89AQ+U5SLGtlHAZEgg8H4Ww3Onsz/VmvvWsv/2NAlnTDMZ0rPCt+MUVaWTw4dF/Y2eZQ1AcynO1Alyk0XTk7E8PnCOl6uP8OPXMcNvT39RK6W3lE3MCaev+x1gXUWIubWLFzP4sf+8X0rj0YBw9xpoYFNxn7X3uLkd9kb5kUsd5REFBr9KgKfXhE6MfjJ+kI2fCgfv5kCeKcYohIzG4lUp+qdFHP6YExGzUqMgktKZJBkkAGonqP9ChoNiwZbPzzz7SvJnX+EO/gOTcSWXLAa2ZIPzBt6kEb/1ki2GpYaI7wTSAIJz0QJyjMyKBM1wPTNHLaL5RlRqiUqkzDFhma83ypcH2zodZC1UILM7vdNUXVha+xsblJDFMkxh3njg1V5Wq49mMeFrQqT++e8Orla8pcmPczdREiE5FItMD7tyvfe/6UIeUuShjjGEEq++N7bm+viTnx4tULNldX7K63NATJiTgmRtugomy3Ww6LT+px36/z2RLiJXmDUWphvz9i0R/6zWbD48ORWhvjmBnHiRgim83I4+N7dlfXvH3/mnf7B37/D/6QhzfvqYcVCYlnn35EjMK7ly84vn3DdUhcSeT4zQvKwwO1zCSUx8c9dx9/xMdPn/J2nqkhMjfl9vlz1qLMy8qyrszL4iZvVdZlIafI8fDIzfU1gcpyfCTHzGYYaDHy9O6O0/HAPJ/47PPP0Fp5fHjP8XTiq2++4eZ6x/44crPbIsETy1JWBwly3vL+LEl3Q6zryrRx/2WrtdMvnkDWZSXGyDAOvfvHKKU4/RLzxXsaxLvvUs4X//avZyx/S4KlB0hFvjMOq7VGHhPL3LxfJIaOCt1OY2q/3InTjas+cs15wvP0FTr56+jV/1RV4nfQ6zkYWFfdaq1MYyLERFu9iNemtKIQkqPa1rNah+9Nu2UoBOiEtJq5rUaNkCLeAdRc5JA+dAI7R5pL+arqE4PsEsO/Y33pGdXN2o0UXAm2cwBy2b+bf/24LSoxOmKU2LwUzooNQhgFSYYG8+bUwdDUIINs5ZJzQCAaKnrxYxL92Ijm/eU4z2hdNDbMRaNq3uUUDIpfF8FtY5Z9+s14lbHcaKFQAFIjDpCmfg6pEUbvUgmj8v70jpwj4zYzSqDKTJgS47Rh0T0tzsg4sdbVE0lyRJ23mRAj8X2jzSvbu8Sn01NowulhZj4sBAskEpHAuh65e7Lj9uqGIXuCPezvSdPIaV368IhEM5+mlIfMYZl59vSW0+mR43Li6uaa7bTjWN53oelyVy8WJZ96IZcWP21GTgNYYz695vHxSEoD282GVlfm5UAIxun4yFErhjGfTjx78gypuNOiNtZ55vj4nqsU+Gx3xXBaKPfvKPOMRKNZ4XuffsKnv/c7vJ1PvH3zmtc/+3v288xh2RPziNp7ht46/Pjw6EmqrJyO6iWzel/87e0Nm3GLbrbM84maIkdV7m5v2W03zPPM6XTk1RuvEB4fN6zHAx89feL+ZOlltLgtLYRITgNmPqZQtXqVkHJ/VvVCrdiZw1YXzJZl4fr6imnc+CwFvOsrxHPLryf00/HENG0Zx38E1iE4z2mUy7zGc6A5DzZwxby3gXEeQHCe7diDUugzL62S09inxfj0HzhbW+nsoI+FChJQC5ey37k0o7YKMhJCpKq3E57nNuYYSQqhNSSee7Tp6BBHCn1KEb18PZf6Z8JbOid7QZD0NHqGYZc81zcEPigjik8pas37ht2IHxHJaDcu+xzJQOtDKEIwNDTnHKPB1HnbEZjABqNFJSTQZDAYlvDznbpgIj7Eg4RTEme71Or3yhIE7QNAqvch0zrdMQi2eJDNSWCIPrzDFEtK3EBOgVVmdlmpYUVGH2BiValxRSKsMiOj33cZ3GKTNhOrHtBcyNOIJGVhz+7pxO6Zc2emPrlJ1SmEkheGPBC3AA0dK5vNiK7KsLki3kM5FaLBbphIE1SZkXhFaytBArvdFRrg+cefcX//0tFKyozTljQIjw9HXr55hYhxdXPb+c4I4lXUOVmEIJdpOgAheWvmui7OQcbA4fFICG5Hynn0oDVklvmI6krOE9thJA4jx+OB+1fv2I07rBSW44H921eMZeZHH33EjSmtVE7LiTBkZi189P3PeP57PyJsJt7/7J7388yT2yc8fPOSeW3c3E5M04b94z2tFubTCegujFbYz3sOD+8Q4ObmhtubO96+e9+n+Bi7qx37x0ee3N3y8PjAdrdjs9twPB7ZjhNLqfzsZ3/vHWJdQIoxstkkHzTTgUDoXOMwjpw75iT4/IR5cT9tSplaK7osNG2k7J7gWtulygwdl5x7wx/3B652V90u+KvXb02w1H7i57l056ESnH2MnR/sg0q8tTGkC3qULtyYcRmxJUFIObG2tbe6+fsU6a1znRjuqM362LUQupUjJLcTSexBrg/6oCtz2tBaUSKBSE4+HKI2JaRI/U75bD1UuyhCRxd6ZiK7oKVAwFvgfFalx0zt+PfMurq4wncyagiA+VARSJiKWzhiJAwCKWKDYtkguz2IEWQCjUoYwZIHPZkEepLX3IjJnQkO6fpgZgsYkXYobvqPnoCsNShueD+3IupJ6b54rEGobgfSalg1lrAQt1vCJMSNIBMwGilGKEoTJWafkyMKVVc0eyPCse3darYbaFoZto6mS1zYlwd3S0QPUOepMuepSGsslFDQpFiCtaw0LcjoXWFSoNqKpoKFCrm595dIJHBcCyEnbu+ecn//khAza/He5dsnT8BW1vXEWgsmDRmj99n3ctL6rAOt3iteawWNHOcT9/f35HHHV19+ybpWylqZJufx5vlIkMDrN6+YTzO/8+Mfk2MmEzkd91hz3vv+zWvq456dKk+Ggd2p0uY9ZZ6pKTJTufvkOc9+98fYdmQVWILw/nDgxU/+mphGhpR5envHcjpxPBzAWm9iaIzDiKmxHAvn0dPv799y//YtqsKTp0+dnzXj9auXzKcju6srTvNMCMJms708U6fTzO2NB6yAC5Sh6w0p+bxXzO1A0Ks38cEspXqlNAyDt7r23vFSqs+IDYGUBheQxONAa5WUB7eMIYybTR/r+KvXb02wdCbxHNkFF3adC2yGDyiVc7827ncM3iKmfYSbdQQpXemqvZxprZHO09CFLgZZ5y98k/pk5i76hEitHuBCV5CtOREf2rcTgcToCME3fmuKxuQzMnsngc9J9AAn4m2ZQYR2Dn+dYz2XZl7IJUSs9zR3kUu/85pOO4QQkJQufCmdJ/Ve425ZCgZBvcd5EBiAobcqjmCjB8u4ESzjyvaEB5hgaGwM2wQ0JIHS/Yrd0gHq1U1w76WuDXK3apkA0bnZ1KuG4gESBalC0ECRQhiNdJXRQZEJVlZi8oCu1lw8S5EoAVpAB+tVSKNI9eyVhRILGkB2gTUVLMrFC1ukettj9NFqJTZmKZxYGKYJ0Yjq4km7OH9Lq1g2bPD/Uk6sh5XTobA0YzPcEMPAdnNNTiPDMDLPR7IJORmb7YYQfIzaUhYeHt97pdkaIUZaXRmTT/su577lWlhrIQ3GF1/8HMG7sbabEyFmbm9vWcvCOI4ECSzLDFYZp53fGxVeffMl5e0DH6WRH17fMdZGvX/AtLCK8hgiN599DLstj9qoxyPjbsOL128wcdP+OESOhxMvvvyCZo3NdkQb1HXBtDHd3pDTgJbFTfZmbDdbF2Ly6HTF4eAJy4x3796yP+wvz+b1zTVDSnzv9o6gxnYzOPhpSi2F7WbDui4cDgfWtTKME4fDnmV1K9S5CpXe5UPwzi9Phg4mkMCyrMR4nvpulC6Mnvvn19X7w+M/CoEHOA+toKNC/Y7Z+3zyQ06+oXIv1XtZ1bSR4jnw9CDV1Wsf53VGZL9sDRARhuxowM6jnrq3UdWH+caUfOKzxT4GynnNFNym0Plnnwmj57mA/WsjQnCbSA+M7Ywee4DEDNN6+ZwYxbuNgk8YEvMWTp9T6PYx62jUE0O48LXnQQpn3Bsk+si5oM4VJhd3JANjn+AzGbL1wbe2gTDIJShIt4NIUmSzgK6EpIToflD/PYXcp/KENLlxe1BCM8S8j/18nVlBoiCLYUWhGjKIj7AbDZkE2UC6SsQxspSVZIZMPspLxY3zaczUpaETRMmUqtSmyKDkaaBFp0zYBZZUYej8dYDZvN9bN1BCo47G6bCypkYdunBYlHEaKIelT6eJtNFo2ahBWaksujJMA3KsHB6OlHpkXh5pVd3XOoxMU0CoGC7otFoc5aR42QdyoUsK2pwCiikwbCY228mdE2IeiBSOxwN3t0+52m57gmy8u3/Pcpq5u37CFCLHeeZw/8CTcUOMwg+vd+TDiWBGXQuPdSE9uebpj3+IXm1oMcDuiiDw5vGRN/fvKaUhatRlQbSxzke2V1vGlFibD0mJ0Y3ita4I8OTuCdM0uvJc3OZ2e3eHmbLZbrm5veH+3T2n+eQj0Vrj5uqa3WZiSIlaCzG6cKRdma6lgPl0oiFnogTKsrLZXuFeT+/jH8cN55kAErxbTdf1EjBLbThoDO7JDA66XFjrjg0Cx+Pp18ao35Jgee6t6EvObYX9hLR1BThSz0Nwu3J4HmJh3aZzmeSNk7c5x8scvfP4J1VHTa0WwpC9bNfO/0VXsiXgU31SAoLPPrTvqO74gIXVvB9c+oCPs+l1CKGr33TFvvfs4cE/hHOEPfOT6gFPtVMQrQ9HhfOX0bgX7TyKynlP9432MWXeE4iPPDYfdZmFkAUGRZOi0fzvUvCfs3OKbAQb1DnMrI70woIkYxojoS0IxX2WwbnRqithI5S6splcfW/NEBUfH1bMzelqEJ375DwpvnOaps6h2iSUUNEBZBeROZBzpOxnSq2QA5vtBiShDzNram53SUKQjIwJhoikSMyR8JDRDdiGPgkquM/TlHDt9hPZCcyQ7zI6GkUbJ1mYdhswnwYVg2FjoEQlXY0EEld5REog5MbhcSaNG1o5IiZo9aEddVVKOYBUxlHcD6uVmDzADON04eDdfO0UUG2VeT4yL7PP55RO1nQv4XY79VFiwnzyJP/syTNQ4fj4yMPrN7TDEdns+HR3TTodKfOMTRMHMU5j5tnHHzN+9Jz3ZfFydKnsdjsO+9fMh9VLOVXaWoiCD/U97rG6UMri1M44UtbFJzBtXUB5eHgkxMizZx8RQuTd/TvmZWbaTJxOJ47Hg6vVKXFze8fD+/fcv37D9eSdTc/ublwkDO5jTimiLSApMi8rps09xfatwh36XFnr4k/sTQW1d2/F2AdAh3MF5n31/v1CwvFw7JrxeYbCr16/JcGyB6ELs+cBoRYnYGtrvYOko8zanA8TH1AR+jRyzxDfcnmtNfIQOsdpPbD0IaIpcayNGPUyPCKcW6XOinlT4ji6cNLUh0Tggfls8LbaaLX51zSII0Q1b6eLMUJXhDkjwU5XI/QSvavb6MUV0NrqpZp2FNo5y3OgtktS6EJKcDR5Fna8ndp5U8mCDMAoWDI092A5Rmpu6CjErZfelo24USSvDFNAdSZgbGMk2gxW/OsuJNAEH/c2JE7a2ORAVUdfIUaaZXQRSjOffN+DpSS3MIXWrVUVam6EXYRNIF4nZOoE5yCIBqJ6q90cVooqOgp1dH4ViYQkhBwpKHmKyJTQXcB2AZ2M2nwmYpx8Eg87kFEIRRgsU4eCXHnibUdDNwLaqRdAtomwS6TrgeWxMA6JVgtpTGzawJjGbqIfwWAaJx+KbAuC0epKa0YeR07zqU8BmhmnDUFgXRZPoNEHHLty600Vy1xYlpVx3PD0yVOePn0KCKfjkcPhxHJamDcLD+8esFNh25RPNjvuEK5rhaYc2sz9Wlm3G9Zpw2m7Q4gUjZSlUArkkHnz4jVSIahTTK2367a6YCa09URKkTwkUhAfaNMqu+1EzgPTZmJdC9+8eEGplefPn3cdwqsrcFHls88+4+bmhlK8FXTZPzCNIzfXV5chKXVdwHwEX0rB/75/S0HKqYMjIUYXdM5fjjYMI7UW7u/v8RbPbRdtw+UbEGL0JF2tst8fLvMk/pEIPHJBfCF0S0U3i26miVWNlKNzl8knG9OFEgndUiTS/YBnTtMHo04ycP4Gv3Mh7kpaQzopvFafdHO2HHX/L63bk741evR1no/W1/n7UnyOotC032c5T/2WTjG48OFm7f6VD/6BPQi7v7K1xpAz2kqfcdnLfwy1SiMwZp/+fR4wYGfnANF/R3AEZxE0GiQ3nls2ZMBR5AhsQEcjTEbaVIZxRWRhEwNqM4KysUCwlRSqB/3aIGQsJswyZoVtyFRrtOBeA0uNEBMV4ThHZtS/yGoV91o25zSjRj/WbcQmYHKUKyFQacSrRA6ZYo2lNdZ1RbdCvMqEBCaNapUwJUpTZDJkMurQCLf/D3VvzmvbmqVpPePr5pyr2fs0tzk3MiNbpzwchIUBQsLFKxcDqf4CZWPVX6A8HCRwSmCVQEj4mCCBBZmRRJv3nmbvteaa8+sGxvjWupFSZVRCKlHkCl3dc+Lcs0+z9xpzNO/7vJ7uO9orTTrOC8l7dK54EfpWCXg4QVsaEhxzWejedsCiwYrmLIRzQifhdsncbjuxRaJ2UjSv8b4VUEf0k3nD8wtBIjHFkSKqSEhGRsIegm1caC2Kwh6mqvb5r7UgHfa8E2Pkw7cfePf+G2M2loJznvfv3+MQarbLvRf47vyGDyEw3XZcybzuG3mKlONEOR64uYTWyi//8hc4hONh4eXjK+unV/76F98TXSTXexyJPZh98NDtHtBb43q9ADpGcWOCrreVXKp1hjFwOh25bTebkGIwVmVKhoHbdy6vr4gIUwi8e/uG32xXW5E0o9CDDBqYsOVC8BF84Hq9kuZ54Ng8KU0DEOweFC3nAoJjmRe8s6TX+x7UeyuMrXfuGU8pRWI0wMzvev1eFEtbGYRBFle7NYqNsT4YsLf0sbpTRcZToLdB5Qm2t/TqRqYGMEKvfJrQ2820gdwnYStsIUXECXFOXG/FLn0EgvPUaicYGfIkwUKkajWdpLSOlzCKY8f1jtM2Chg0BHXBvKpqRsvWxg5UBnFcHNoqIjaeOidIM96jS2mAfhlHKetLnQqt3/l+JtW5u3aceHoTog8mPA9Ck2YXbq92wAkKvuMWT4sdkuIXj6Qb81xJfsf1jRlFpeC0M3WH042IEsT2b9o3cAl1iaI7JzeRm51/qgqlZA5hIWtFYoQFgt/oLiDBKEY0IRAoTfCnQIuNGnaYF5qaRbJtQLAHl4jgo6PXij95astIMGEyi61J0jlSNMOh4g8F59XWFc6gvd414uzNcZU2YnBw7BRfEOdIbxMtt8euzDWHHAR/8rTYmM6Jta70aqSs2CJSbB2jfuLjy4VcPMsseIkEcWxlR6Vxef3Cx++/hwYpRYOpqLmf8I7SKiktVvwQs1LWxnd/9FPeffhAa0LH28GiA1smrxvHmHgXIh8OT8hW6NvOpkoGrjHhnt+wauf09j04zy9+89ekuLAkc+G4pzNVOz5FtGxmwNKxK9aOJTUOG7JYTG1XoY1DSa2NmAw1N02zGTdEKKVwZeN6NYzfPM28e/uG27pyW284gffffcsShDqORK1YvATeJrtcG1++vNBUefP2PSLC6bjYJR6zDQt2o7BbxY+yoMOy0Fs1IpUWpunItm1AJ3qHOGXbLqToCd5Oq7/r9XtRLMEEtHcP6P2SfN8vBJ+syPloLh7s+IKqvaEYjD/nCPhhjbJCqzgkRKMZiWDZUDZKdh9seS6BMgAeB0lDI9mHCHaQYGQUanePqOgIDm1GRxE1cEOnU1tA3YT6QMvD+ohd65B7V+sQ5+n9rvjuY6xwDyAHInQZonbgHiGq3YDE3hn1utlMD96PDrnTfae5jps8zMAB3OyQQ0cXkIPYfzN1pkNnioXZZ0K/MvkK9cYUPLfLK9PpRAoV33ciiguVrlCl0aWy6Y3UJ7hLn3xga4A4ggSiU3qp+MnTU0RbpGVPy3b5lNlRQiO9nfBnhy4WvdDDSHAMDmojxsC+ZepW2N2GROVwmvC9I6EyeyWddmYH8w8r82FF1YKxopMRiex4OkSqFqbpQsexnJ7HGy/SFNI8IRH6prgiTG8Sh3cL4iG5yO1mh8F5WqiXhmue3JXS4enN12i54h0jTVHR5qk0gk/EuDClmW27MU2zdd/dRNi1dw4hkmu1BEaUp9MTH777Kbfa2Ipd8rvAdrkydeXJBT4cz7xvEF8vlK5kJ7z2xhYScljwb95w/fiRb5+f+cXPfkaMgcNh4fn8jDYr4qY8M0p/085eysgpYnTHAw4tgHjidHjomufDkdPpNKyFRrC/Xq+8vF5wzvaTOWdev7zYqqMUYvR8/dVXHA5HkjSOhwPn04lpMhH+y8sLtVbO5yfSvHDbdnKubLmSpok9bwCDyaBs+8aUZgBiNBZm9N4UKpof09p9p9laQboj7zvv378n581MK7/j9XtRLL33HA4HHEIMwY4s7a7Md0zzRKkmKr4fdO4MSoDz+fxgKD4sL/cLdGv2Sewm6Hbj6t4UChbo5IPJhu6Hni465BomFg4xDc6h8fJqNzukehnAURNsixvXzXtipNzF7uMh4MdOkvHmFT+yqv1jX2tyzgGp8H6k3YitYtXhsLFURPAhggaEgJMJfMT7REXRJDAFeoIWGuIVN9murqeOW8QwRYeKnzuBjGcnucwcO53CEjqFG0tI+J5xfSNoNxanE2xQrkx+x/ULcXS7KhF1QlUlSkJpeC0EIhpM6ynBUwL0qrTmkQOkp8TGRnATLTRKEKLRR9CihEN4dNruCEqhxc6cFKQyT7DMgnMwuSuTrtyTLkMX40mGSOzQtszUr/hpYgorBDMJZOfRZtOBdx7JDk2KPwR7+Ar4xePayIVpQtAEl5WOssxP5N7Zt5XDcmK9fQHv8HGm1p3WhFyUrja+tnEcvENuwfz8rSrOdf7oT35K3jYkTIynNNvlhaP3vJsiXjPvQ6JfXyi9s6uyAT0FwnwgPp35tN2oKP/Xz35mYvxosbC//NUvqTlb1DPKPe+qD0tgCJHeK9u+D2ugf/jrBWGeDIIRvO36a628Xi7UUszj7SOXy4113YgxcTyeCDFyOp7orfL58xeur6/86R9+IGfDpt05B8vhaLpT8XStHE9POBe4jnE/TXfFisW2dDXqfBBhDmZhnI9H4jRzXS+UXMilPu4SKSau65U6LuZ7LmMN9re/fi+KpWIiUefDiBU1ck2rjW3fLPMXY17W5kaTJlQt5G3nDnXVgWYyuIR1qvbEiZTthlM70jg3UG/qaeJxPiFqkoXuOl3sMl1HRGhMiZzdw1rF2C8ORsbjymYXtbv7aMAvutKwMdDUC79FVx9ie8tKhru7w/B0jlrvt/IfSdGCg+5GTg9Du+npWFep4qhUNAotgCSHBhu3SYKbDY5RYkeOkI6Klx1pG05uONmgZhKZnjtLaPh+JVJJseGpCNV0rgSKVpbYidzGEc7RtZJctNEIxUtnCoqTfQifGt17XPL4BG0XSAWZO7d6Y/IHdDaavY9CF3Mf9blCyTiX8fMN1R0fhMMciEEQrczSEFW+OnlmbkQPNWfLVqexRGXuKyVfOLidKQV8/gw6E+LCfDqxbjdUIn2zcTk8RWpqaIReO4d3B9zuyZ8LmUKtyrXcODwd+fLlheM0c1uvBKc4mahtp0snpQPBz3Q1T31t0NUhHTugdGXfMyUb0OPp9IbgIuu6EWahbztOPF8fD5zV89TB+4Z7vVD2nSKOl7pTvGd5eoaU2L3gDzP76wvJOYL3HA8nG6fDRK+Vv/71L1lvN4L/m4cOS0K01E9lROa6jnM2ha23G+u6siwLIQSmaaKNpmZeZtbbjfP5TAiB19cXwqCBnQ8H/BTZVkvMvK434jSTayM2ZZ4XyqXhQzS2gbfdfW6FmBLL8WDNiPd4b1ZfHxLiPSnN7LmQS2M5nMilWkFNM/c9a+vt0UVv+/4Icav/KHaWqtxuN1o0Lp1MCRmyAHva3JlBBl613aHttMLBsW8718vFiiQDzqtufN+xTDN937B4U/tIvdqTxEcLsU/e08UNgTgPR0WpbQRCmYuntXFIGQQJd6+W92PNQ/TOoHgnfCvm7nF2yhm33mFFjMzxYMFr2ugdzGgihBhx2oZyUkACKglpAZWZECYLUJMZlYnaIxKS0YtOHlmcXbkPghw6cgB3AHfy1EMnLMqcKgcas+8s0jl4xffC5JrtYB0svhBozL4NCZE98ZvrlO5JkwdXAIeKp2qnewitUZ0jqu1MXWw016naCKpE6RYpHDy5/sDze8+XayaelLba2GWdekEClL4SpxshFnr/hOuZ2AP5UgnJU7LtpqcYCPkL/bqSDjOhbfhuRZMe2S4GRz6yIvuOY6dlj0wn1vyZrQeaW7jcOtG/Yfc7a1/ZXjf0qrBBfa34LSDdQ/NcyoU0RdZ9o6w7bW+8fv7CNAufX39gPkW661yvOyHYgcKmmjQewhaKtiwHUprhKByXE+u2E2Ni//LCeVro1xvvnieW2jjjqLnQtsx136jTDMeFMGRCW8tc1ithOZBOR/qAn+Scqd2mgFIK5/Mbvnr3ntt6Yd82vv3wLff00VIyMaWh8BjHqG5AkuCNCemdo9RiESNdqaWRs9kUQwjEmPjmm2+NMdkNuxh84nA4MaUw8sYz15vlrWvvzPM0utWrJTV64bZlEDcOPsPiLO1R3FtVfGi8vrzgY0SBPWdyqWxbppRCSpb6qKqElFCENLzj/yi84e7ekQ3S9p3OI4jxFtVILCZZtOzf4C1aQZ0Rs1d4FCHb6ynqzB/N6Pw8QDf9ZJpmSzy0X9jo2fTRDXXwI2dGjX9nCVzW7bpRsE1AOxznYp88vQdElUzvBemduu/mWkmOPWfoBja1eIJKDJ3aMr1XYpypTSnFotXf1AAAIABJREFUdISiDac6bJ4BlUauHvFK9opWIXkb/2t3+OjIoeJKoK0DojxI59I6MnSQSKPmV0otJuh2maArkl/x3GjtxjJPrC+fkeNM8MC+o22zb3vTnzb1uOZo6nAu2uEEh4aZ2oQQMVjuWpDWkDDjXaIPQHB3BaFyWp4JTfn8+gUlEScMCix1BFoFqmakb2zbhelwIgXlnBxeK09LwI+MHI/y8ecvfPPVB6bQIQgpOPa1E4JdbNPk8LVTezYS93TETUI9TFx2pQfP26cTpSU+feycP5xIdeL116+kY6KEgl6EdJggOz59itS18uabN9TPOw2HBsdeLjw/f81WXpmXI639hlKUlIKFvw3NbesW9dyKsm2bFZTpyLZeKJcb7JkWJn7y5h3nW8XtVgTqbcc7x9Y74bjAlPh0XcneswEaIlve2PfKN+/fIIjtfbutfVIIOOB6vbJvG68vL9S607WRJqOWizfZTQiBEK07nJeZZV5Yb6/2fhwFqFWjKH3/1z9wWVeCD6zrZrvDVplTYp4Sh3lmW6+8f/eG9fIZcHz69AXtnRQDnz5/GTv5znI80tort22ndfj8+WVoK40exLiix5h4eXnly5cXeu/88le/ejwQ7png3vtHyuc9Vvfnv/j5I53hd71+P4qlmP/zbgEzyrntEUupTJM9DZoaOUdQwpAJiUBFDVnW2uOY0pUfI1AFUkjUvFkndo9E7ZZG6ESYYuRWLNVvXiZqrSQfyaWQgl3qzUr4o0NIB9bNnAAyRgPLpS61MgVPVzgsR6RvqIcWTdozxYQ2QbvgfcNo4NYNmzXTmRyiKWH8OboGOp7kJ0p1BJ9sn1o93iW8RBvzp0T3SloSbnG0UIhzQKeGm6HFQoqVOQpHYG4bR1c5ukbUSsLyfxIbcxIOrjG5jqMweXBUO4D5xF47mwjq4tjZQsdR+kZ0icbO5Cc0NNQVcOGxz6ziKJrZXeDg7WD3fHAsPoP3eIRWMkhjCqY/1anjc2VhY/bCQTrRNU6honXj4BNeOkfZOMmNhO02ZxeYYiZ6j0RHShVfGqV1np/f8LqtHNJC7hXfOs1nqvPokjg9VdKps/jJyPnZM6cJDsLtY+FwmFnezqx6NedTgnZteDdxPk0QKo079SYhmvB+MmWtmJ3Tu0irO94Faq7gAzpMDhOCL8pX3vOBwLwVtusVdY7ci2UvLYks2Fg5T8RpAnF059lzY5oTX33zNWV0b/PhSG12PMyDEv6C8vrywu22o1rZ992MDc5wZtalCcs8m2i/WvT0vu28lotpTGfbYx6eDtTBeYgx4r0S/MI3X33FV+/emlutFt4+P/NXP/sLSt75kz/9M8wOPDrYdp/sLEPpr/7q59y2nT/86R8PeVUbWmtvDqlpYkozpf0F+6dPfPjuJ5RSLIivNVsT9G66aO/4/ofv6aq8ff+OdV1tf/k7Xr8XxdJ2b4M3iXWB6vpYeo+lb7WOwK52dxcNNqZzh2fAHXl1/3G7quvYJ8pjXL7vH3uv3GMbdMQpAOYzVYt7kGm2hD2x9L/7ryPjwmpRGBXp9ol7oNl8sJ+nZRydLOf8Lka/KzfvLpw7b1N0SNT1R22nDrePG3Di5kbKJJb+6AZjU52plZq/E4yMJoRrhElwqRPmxhQqU9tYfGXRnVR25piZdGeSTNRM7B11mYMWkipeN6J03EDHdTWdoldBpeGIKKYuyFrIagmRzSuZQu/OHEbaqVqp6igkyxgqV0LvxL4yYZ28tE4SRaQR1KGusu+vxHphAg7iCHVjDp2Td2jP+LaRvOPkd3z5wiSeXjeOaSHrjYQn+Ej0gN/YtfMmFvq2ElskuIqLgSKOItB9YHZXpsMN1USfK6XYXj24CDPsdWeXDRkuqHD0RI5wM0G8NpinJ9QrwS14N1Fta8GcJgMA10rwCenw9vyG19tKvq7oVljUcQoTX8eZc/fU20q5bZTJc/OCLhPXYvt9ovneJSSbmMSDGhJwu23QlBgn1nWjYwSeFO2o1dpgxDKsta0TxI0YEzieTgbK7eZaK9UcRDFGYpjY951aOy5XbuuGD9HoXTjmOZkUy1usr2ofh0qPiH1OvPPk3MAN66IIp+MTLgTWm3Wn5/MTISRUM2ZEGVHW3aSgth4IvHl+fjidUpweoJ5tuyHeMy8Th+WAd47np2f7tv9HIUq3o0Y3KIx5abuNuSb/Gf9TfVyKe2tDe/6jK+fu074XzjvRpI8rl+rg98igGxHYa8HVivP2xeW8OQ6cT7TasbWZWSZ7GRKgUdQfu0e9H3zuPD3MBz2gHFp0INgUJ4Mz1BuPXHTuhyIDe6AMAtLojLFdz32h2kdBta7WIiwe0beuo16MAuSV7jo+OlQqPgaInRgbk2uEujO5xuwaoW1MWlikECkkMlFMazkpzE5wfSf0ind3C16z6Azn6Ax7pnhDweHxamT7BixaDf95L5Z4Kn5kzjh8uzBJILSVxGzWzWb2NafNLtpR6P0GrjBLZnEe1zOyZ3yByZtTSkph1pWDLDxPM7Vn3kyJvVWCVEQqXouh3Wrh7N8hixIWuJWd5JVbg+Kgu0jSV0L/gl8i07PykjO+B1xIBuLNAX80NcbGjZI3ZqJdaYvpFEs1ytK+dZwkYvSoKLX0h+squIBTx/GwkLeML4rLlXNc+PbpzEkddVsNw+cdLUSyE15yocaJdDjTxZlhQBkkrInmOr1kWmmoCvu+4kLkcDhC78xT4uN64+Xl9WF+eDjq7ov4EaNs7iRLZfR+AGuGjC1NsylUxDHP82Pfmkults6b8xOlVI6HE5fLC6cRpHZbR0xEdyMGZZDEBEq54ENgL4Xr9cbpfKTkYn++oTYRZHSZlRAit9vOYVksB1x3FIwwJMZ98M6ZVrTXh6rGpfQY1f+21+9JsWSkto0Ux97wfcAyWqVV2+v4O79y+LhlyB28WL5MAVsiO9vx6V0+1C2mwT79v1WYnD4Aom50YciwNgZDpbVm4nTnA3W4hvTu9R6g0oeOcug9ZewQbacyxvfg6NhOVqSjrRq7UBhpg+atNjn72KMysGS/ZRi6/3lEh13Q1vaADmiGoB7w4CaByeFmoUWF2CEWfNhJvhAkE6Wx+ErqmSg7UTYm2Ym6MQmo7IQxCjrZcX3HD2tZw9voj9DwBGfFsnQQIsEb4b7g2MhjAnAWbaEeweOkG2epT8T5wMyN2d1sN4wSCYgYADq5QPOF7DKpQeqBRKXlF+rrRvBKDEJ0cPaFWD5zdk/0mK17PJj7pbXK5GYk7EjeOPsNfMNzJYVEpuPaThHTsJ7dxru508LGOlWqX4nn9xzTQnsRXn79hRoL4eg5vz+RvUe/NNwOba/QPM7NtLLTiuBlopYR3+EtTiL6mV4LXgL5Vkjd8dQDcTrzflp49oG23riWTBfPVRwbwuoDH69XWoWIJ8UJ3zBPvoImpe4FQch7MSj1/euoVW7XlbwHbutqu/Y+covcAFUP6ZtznlosZ/vgI97HEdUxPyzDrRdqs+PM6Xyi80LvSkoT4hwxLVyvN37+i18xTwnOnsPxTC2dtx/esSwH5jSZHXn0JJfrBXGeOUW0w2E+ok3w0brROoTxy+QJMdBrJ2+ZN0/P5M20ooybh3M2rneBUnbW6/URfOacmTp+1+v3pli6kaGjuCH/4VEg2uBV3oufSW7GD+qPo/q9MDEsjw8CkdruxHkPvY7L3hiEnR2UdLR3ZpccXdu4eDc1v/Nv/6ZMyjM0lpj6/29YImEchwwCfNdKOq9oU9vN4AZLw6J7ZdCF3KiOXhx0Kxrqfsz3uftkxT6MdcxueKUTFh8RlOobfnI01x4xEiFVnC94ycTQcGSCVKKvBN1GAc143YkOkB1pFd8doRck73hRXAg4aYgbfFAcyVkHYrAP88vfSVmTq1QneBfp4tARwObptnPuN5KfiLqS9ECumYAwYXSb4BXRzDEUnGwkbaTuOU1mFTz5jNaNumWcdI5+5xw8obziKUzNPMG3fUVECb3SJVN0ZdErTY20E2TBa0ZdoAhsrTLrBdk+4rTxNC2U97ZXfL1+wbtEeo7Ep0C/Vq7tYui7VNizEs+RvsPnHy5crze2tRL9kb2uxp0cO27T3StOInXbmDTw3CJP00QUyNtOLhmJgU2Vz7lwWSt9ObAWg044oLROqwWvzjSV3eGaElI0oX9TltPJxtZhfsh7Ztt2Qxb2H5sMxJQlHWsgRDrTPJsN2Hnevn1Hq5XbtnG9Xh9JBHcEWs6Fn/zkD5mmib/+/ge2LXM8nHh5vfL89Mz5/AbBU0rnsJwIfqJrHbxMe98ej88459hLoZbO6XRmmmbTWnubqCxDp9Kq5Yffc7z62EGWku0OMvJ3Yghcrq/s2w3/5pnbehlFPf3OGvX3KpYi8hfAK9CAqqr/roi8A/4b4E+AvwD+qap++p0faIydvffHPk8Gecg/ZAHNgLdOcKMFd849tHwmDndjkW6FzolQuuGwYvC4EOjFPo6/U4vE246PPtw5Vizvbh3BXCbeWxjWfQ9o9kRjWGgbvu5Hl8ljfPE+UOWeIT4OQNJpdyr6+LV+FNP/Vrl1Y18klkrZf7z3j0LuTJDukjmVvJquMgk1VKoWxCe674TkaL4yRzuI+L4TpeLajqcRXYW+E1whUAjk8cWRoWX8Hohd6bv9OV1SxCm4NqIzbPfVXXh8Dqs6wkDSpdDxFMTd/e6A2p52EoG+MWFWy6ibUdBxJO3M3hOjUPKKSKa2ldQTvpi4uOmK7iAt8+aQaPvKbf9CXBqhRA7JE7sSRMn5hXlOJPMLcsmfke0TU3ck59l6Q3rA+YUdQVtl1hsHl8EX8s3shN0Vdqn0lpjSgizKft0Mf9c6Oqn5rF8LeW+cn49MceZXv/oNuTRElkEist1cb40gE0kDc1w4OOXrsOBbZ88bFdicpwp8yTsvtbE7zxQSphaLlGLcUjce+BI90zSxbhvOeY7HM12EMCV6Na/0fVcuzhNiouRqqxJ7jFshF4cPySyaTYfLDF5eXkkxscwHRDwxmoPHyEnNPONb4eWyse+N1oR5Fr766ltK7Rjr1HgGISREPKXudBH2fbMLd0q2PsKahSkZpHe73ZiX+ZHuiLd9ZcmWlxVisIbE2aG0NVsX2E5TOJ9OAwrsmabZiOz/P4jS/0NV/f63vv/Pgf9JVf+FiPzz8f3//N/2QVQtArbkQrxb/lSGzxuDd2qnDxW+9pGl4Y1C5Lyn28KSO55CtROjI5cbUzpTuuJcAprtPL2CVnrNaLyDOAx11obnFDEo6ySOECfqfjXIj3Razzgxl03vDi/+wXC0ZbORyJwP0BrBC7XtiAtUqfQg1GZsTNWR6Y3FLzjsAu/c9PgL6g3bdelwC+FRCSgLaDdYrhe6F3wKaGpI9ITZ4m6RivSN0DLJVWYaSRqOimixuOGWmaSQXMPXTNCG7pUlRNpecc0jokhXo6eb2ZLSG0vsVF+wfPYKrqEyIepIqlRA1GQpzkWkmzRLO/TiWPyZY+xE3QgRXLcDjysdp8IijSSVqhtTqzwfJ+r1ew5J6PvKm9PELDfCrKz1Bb9Vok8kAqfpCK2hbKRWmVBKuzLXK4vemPxEy6/MLpDSka0LPRee0pmD7Cx9JfoTO42zr6y64s8TVxyXTxdu7UpzmSobpWZDmUbh1lfSssDeeZpOxJDI5YrGiYJDJBFcQ+pOapmzTpyCY3Gd2Iy635xnVeVFTA70sXV2EcK8jLVMxytENyR13uNDpHj4tF7YAecCpVnQX1Kza6aYoCu5q0nsMIeUcRc60Qe7G3hL5ewVwhQJksh7IwQ4LHZ1j1G4Xq/cbhs+BOblQGmB661TuzAvb3n75g0fvv2aQOd//9/+V969ec/z6YBia6/r9WKmlFEPXEhsubH4SC6WzpjSRC0ZwdiWfpDPe+ukFPny5ZOtWWJEe8Wum/5hUe69k3N9aLdTnIaqZbAWfsfrH2IM/0+A/2B8+78C/mf+LcXy/gmS0S2aJWkkGLZO9CYdKnVEv4oz+spdKiRWkCwNsv/Wfk/QWm3Yax3vAlobdkO2xbAbMiAbwRy5D0DuIMOIs8KJNxujjq7yceQZB6U7WOhxhOmDFHTPFGLQ3u3zYtow1REza79bg/nakeeObKtdx4gbDeKrjnYvwiKIBFBvZ01niZF4b8xIN67jQZDkCBPWVWol0Qh0vDbcKJSBSqTieyZKwfeCr5D3Bl1JREq19DwBWq6IH8T0qujWcR5SArxSnUcoiAQreiKIVMpwN0XnwDdohdpvTLrj60piIaREUHv7ejpOOl5MfnTTnYNXFhFu9cpxSXS3c3AwO5BWOLpMKp2lHIm1cJqP3K47c4HUhaSdZe8spZJuV5gaMiuXtuK6ZdWrGMZs6leOrjCFxqtuTG2n0YlpIafGPgdqKizvZqoUbrLiZYBmjw4tndaVS7lRUsfNEcUAK15g0kZUOPrAcziSesGVnaqdvStra5QYuPXC522jSrBnsph8R1tnv20oSoqTHW+8jafzcuS2v6Laubx+MTlRKBQfRgb4jX3PlhYQgikTfLD3lJiSRHtDJNFrQ70F2YFScuHzpy989dXX1FY5Hc+8ffOO2kx4ftsb83xkz40QZmpVYpgJonz34Q+opY8mIZDSRM55aHU98zyz7yYb6wrruo3joHWQ0zSPycxZbl6wFqmr3T9iitRi78MQIsH78V5ueC9cr2ZiCTFQm0VYzP/AOksF/gexrNb/UlX/JfCtqv5y/PivgG//TT9RRP4Z8M8AvH8aRVLQESKmA8pgOLMxFv+W31oZQNQhpXFjDK96jyUbkqNeTZrTMd1ktgLr5U4+N8ah8xDFk7Xb7wM1J9AYKyRMg6Y+ru0i4yLdxwhuuSQykG4WTjbWCchv/Z5kMC88gq0ZpFXuOeNwF9a7R37ZfUo3hJx9LMvYGesEMVjxMGig0lE3PrveRhS8Uc4DjaDjFq0F33d8HxdwZ51m0EzQTCyNnoV+q2Nn5UwFNSAPrSs+WEHuudO2hgYhioA28GXYG4UoJmz23aGEgZDz4BzSGrl3FiksZM5RSQm0VKQ1UhArXnWj6cYpNCbZWZzw/qszPV+o7MiemeaA5syxNpbm0bIT5gW3Qtwd9dap18x0CvgbxJsjXKyL9s4RJyH3Fdca6w4xFKZ+ZdErs6wsbBwlj276gi4nDseFH743d9DhfGA5LtQvFbd55hhxOcDBc7sp5aj0TUnqiT3gmhIbvJnOnL0SSqPvph+8toqbEhI8tRf2XAyuHPzQGhvLNS5HdHAwU0qU2ixnp42DYq8kb7s67nxJ9bRxyV6miZZ3rq+viDY8Bo8ROik5uvpRUCKtZFrwbNtOCIFbW5lCYDkcePP0zLIcuKwrPkTW9ecs08zxEGlDW/zx+x/49qt3/Nmf/hmezvXyQi3dVgjqOJ3O7Htm3xu1/hgBsV6zKVSawoDltFbHLtIPuG+zpigknLhB+DLmbevVMrOs9qBq0dbXywWAaYo83oB/y+vvWyz/fVX9uYh8A/yPIvJ//PYPqqrKI/T6b75GYf2XAGn6iTKKU5dxyHlQxUdnJ7Y/ue8R3V1kKUaXnnwae8XRvWl/YMscztiJzviKMoqYJb+aR5QuQwhfHrvHO3W9d2P6iXOIepBBCHIC6gkO2j1LXEZZHCtIGVIKIwwVy7ARu3DXZq4i05oNeIfcA9T0EcJE7Y8xwftIkEDt3kZ9cVZIvA5mIqZRFZAgj++rK3bN1kKQhtc84Bg2akeppDHmJq2EVpAddBf63uk0SquIQtmq7WvDQzyFZiCD1iGub42IZfhogISjdAgk05oCVT2tNiZNaK/MurNIYeo3YlcOh5n19cKEJ4pSZUddpsrOgkdy5g+/+wlfvn8BcRyj5+wT62vhslnHm1Jkv240V1i/XM3/7G3Xza74VXAXcFWRllnODtxGmCrVOYgz76fGkQuzXlj6jbNXqI01dxP5p8jxjbm1NlaueWOKiaQTXgKlW9dGdMhzhA36dSf0zpObOYeFcwhMUiFf2HalB+gp8fTVe37zf/+M17KRlgNTLVz33TiN2fB+vSlKM3KRjsz7Sfjm3TtKbWTtXD59JKZECOkhWD+cziyTMSPbvtFi5M//yT+h5A1aYb2+UMvOesvsRcnFeKZLDOzXKyEGnp+f+fLDD7x8+sjH3/yG5XAkpAnE4xT265WvvvkJ18uV65dXVjrHlJido/bKfsu8efOeFA/cbrfHbhOEfa+2nvOefa848Wy3Apio3HqVxm1dUZQYA5frDYuyHk2PjqRW7CBkxcg0p8/Pz7z/6it6q+ScyXn/ncXu71UsVfXn49+/EZF/Bfx7wK9F5DtV/aWIfAf85u/ysVq7QyqGdCeafco5/xCQizOtmvP2ZOl6303qj8V0HHa4H35EBqZpXNide4zSOnSQdjnrRtx29w5xBH49MnPGTkNkUNetw7zLMO6ZP75ZxnkfEiiL2b3P6PAQog8XkTg73fz4Y/dcHQtAU1PhDxE40BTxwbpvMc96pxv92UNn0JCCRRV0Zz/mQie4RsDyyO2f+7cLrhdEMk52vFRCVVoFtVWndegN6EpXAxH4KAbC6Iqr4KtDpYHv0BUvEH0dOkzD4EUyTQ1/5zGfuPcRamHqO0ffmZ1d5hfnqX0ndIejWsfrle4LB9+JreLKlW/OM+vHFV53iir1pdKvijrQrBziQnnJLMyU687eC/7gkazICu3SRniaPah9qMy+Unqj1kCqLxy4MXFjaq9MDaom1IHEI5f2mfNSqFjGTyyB1Gf2HzKzBIIEXBH2stF8xkdlTsJzTHwTTyxZ0H2ntWKTztjXPX/7np3Ku+9+wrsY2Hthb5XX64r3gU8fPxF8YMsbrVcOpwMKLNNkhaFktvVG23emaUZaIQRPckbjWi8XtCnHw8GcTdr45v07glMOy0zLxn5c143XtfD6euH1cgXg+O1MU+XDtx9oHz5wuV755S9/ibTGYZr5+S9/xXI48vH777lebnhnh5QpRaiNKSZK7nz6+BknAZHINNnUmJKlDHiXWG/X4cKpLMuJaVporTwicmOciGmitmIxvVsmpkAeF/IQRgMlyjQUAaXshngEXl9fOJ2OzIeFUP6BAstE5Ag4VX0d3/6Pgf8C+O+B/xT4F+Pf/93f5eO1sTewp8WPhfOuYbyL02utBOeGlIgHIBjuOkrj7jlnkpOundKaXWWdozsTDzfuoWIydoQynDS2MA+ojbNq+8GHtMhaTRSjtiNmtXT3iJ07+7LbmNrVxtB7kVXkUWx0iLqN5TkOWqLj92N55r2P/arzOPW0AUAQFxGNOB9NahUc6owaLj7hJ08JBXEdFxwxQRi+aa+VQCc4xcsonFqRlhFX8DSkYCFjRXDNE7pn8pFcdgK28tCsOGX4zcHlEdkxXEMCxABeLBky10pqmSamURXv6A72suFLRfKFg+/MFDyK7K/MrnBaJrQZAizQ6a4i+cY8CetvfsF3b9+jNfD6stFypW9Kv3aaNoME3yq92DJkdot9pawKWeAK9UtFsiMNRJmTSvCwaKa7GwdupH5h6hcWvbL0jvgj2qGVACVyDMDhxHyMfHKOmCN0YdGFmAP7S+FIIoaGhMZXb575miPT1nDVct1b62y9IsuR9PbM+dsPVOksrVDplFbBw/ti4/Zfyl/wzfuvDWTRdtIceb1eWWaLeWi98+nzZ37969/w9HTk48cvvKwr+vkzGha+/vYDp8OB4MDRmGMkhUCQYbH1brhzEsej8JMPH/j4w0c+fvrMn//5n1PH+7TWTi6FP/7Dn6KqzMczy3xEEf7oj/+YT59e+fLyYu/zUgaLAZ5OTwQfOZ+fkZHc2gfr9bZmEGFZzkypgf6GmCIhTDgfiDTuEdCtFWjVqE25cDydiHGyFR6MK3gdemqbRl9fX3l6eiIEi63Z1+s/KCn9W+BfjaIWgP9aVf+1iPwvwH8rIv8Z8JfAP/27fLA7BeS23kZEZbOd4YiN6M2I4D4E2tgdev8jL7K2xjzP3NbVCm+IdgTSDjFQtDFPkXy7EEd77p2N6+23PN08utWOwwABNWdqbYQYKflmxYq7xAnzmvdqRQseHvLWOyJh5BjvOJyJe0fHaJJtB6L0YWdUdXbNF4bF0hbTtXRD1XUBiSCBrtZZttDprlmCY3AmgxKFIDRRW367Br3ixYqk9ErwHa0ZFzspOkJRJu/wu0JzOHWAJ4xwMR89qUd6t9gDiwi29Ql7pflCmJM5e/CQh5JSgN6JJTNpo4vQ+45BnAXXA5OzULRTAmk3TssZbRmRyiEkmjaqqwRtbGXl6ZCIpVDWzLUm6rXiNqHdlGM68Xn/guueLsocE7L74bkX0M48LdyuO/2q+LNJU3YtzJi/vomNcdE3lr6xyEZsr7ydbX/+aV9pAlv1pBbRW+Z4OjMvFb5dyF+so2RVQgpo7TwfFt4eE/XWeOMiZ0nUeoOo7GWnz46QnphPR9a2U3zkut2o3c59hixzHKJjSrMdc1zg6Xy2iUIah8NxHDEs+P3p/Mznj1/4k5/+Ed99k8k5U1on4/FxNp90cKSQuKmZQFw0KDZA3jP3fJLoLXohhvCIaZimmcOSmOcF7725lsSRwl+Tppn3b98yxcSf/PQPbMJoZr0M40iY9x33/EQpA/jch2bU68OqDJ6uwun8Bu+n8XVhO0oRxXubEGOyv49lOdCHumbfb9xH8D1nYrQUhD3vzIsdidpgUoQYf2eN+v9cLFX1/wT+nX/D//8D8B/9v/lYIhBjIsbIsswmxB7jtIE1Ric3yCByP/gMQTn4h7D7cBjB7dXoPyEmCKbnUgfpMOO0k1wiyOAJqqA+2CFE+0OM3rWNXaTShgh27wYfsKdWtlFeAsE72t23raaIVEwk7FTxw8OtKnZNEszp4wK9VussxQTdOiRLSjRpkAo4NWYl97E+oXgz/0fM4hgcLjmI9o9EofmGJI9IY0oedxfEO7NeiodeM85b+/cNAAAgAElEQVR3ohcLXuvekhebQDdvsXRP3brdbXy0cTFXSwJ0DmkerQ7NtgJwI9bXZKt24ElNSdroWHKiddwmVlVVWwdoMQmMVFQr2nd88yRnu8+gyqqFk8yUa6PlbjCJW6VeGomJUAOxJihmy2xFLWbDO4Izt1f0iVASbJ7YJtqtQxezBgaovVG9PSX085Wl3XDtgpTKV+d3lJ4JvvPmMPM2vuHL9ZdouTJLZpOKhoV4Opk44lqYj576wwtv5oB7cyRuyr5d0NTZ9kydhbXs/MFPfsJWK62Cnxe0FA6H48iJ6tzWlcMys++V1kCwUK51u9K1W5TCI9Z5ZEBh2sjjYebN85OBcjG75u22EbzHd6XtG+fjyVwualOPD549F2RcqXMuHJYj5/OTBanNM12xIpwr1+vK4Xji9fWFb5cF6Y0g0Eq2uImRUxW8Y993Xi8XfvpHPzWBubunBBgBHWAfvNrWlHlaxlrLvr60mWPO7gNmW8zZUGshGHFdnJj0CSX1Ru913BGEkOJYxQlTvKdm/u2v3xMHjzz+spbDgZbzgxjkvH9cxAXbKbZaH9pt+8uyqzhqoF5ROyx456jaxuXcuqEQAi1vqJqS3qJnR8hY7WMPOdbAvdOk4jGb3OLtyfM47tDBeVTc4FH+KCm/L5nbgGto9yOuwnaPrXXzcxuBc0iPht1lSCJ6C3QbeocdMoCLIBGVZNDiECzre2qoazQPMnlkjpAazTfw0HoGLI+GEaPbayE9bECNXrMFohWFDDULWpSyKROO3DplL8TgRzc8jmMi1Ca4kQ3e+71Qiu0m7hPCLkhuuMmOUr13xNTEeBeh3Zi8Q7RAXknO0doOu2lIPRXJhTkrXBp6Uyi2atFNcbuj7pWVlfJScc1AyYUGUlGnFIpFKiel79BX6BfYSubwtBjTNNlDzc8JWR39oqRNWZ6ULXZ+8f1fsV4qxT9TLjeu8gm5bfQubJ/PhPBEqSv7vqGbx92UuDrmCm/OkUZDfadopfROOQulCnt2fN9XCInSlV0ry/HI5XrlfH6itcbz23fst5uh1BrgAutm3Z8Pnm0rhBiptXA+H7leLszLkdPhDGJFDeB0PNh1PW8cn56py8w1RkI02o9245I6UWoXDtM0HpJ38LTnsm7suTJNk+HmnLncnLOcpHdvn4ddORNj4rZeOByO9iBVy3mPKZLmRG31UfjabnCOPtJNnThqqfSuXF4vhBRtOhtj+AMWghHPQ0z0EQwozlII9n0jBDd+nhlVUkrcrc/APw5vuAC1FPOnAmXfh+ZLBjXcSD6+NWLwwww/khi7SSakYUFatdFqvZtjTDozLtLNR8vsKYUi3fZiEnBisoEuxpms1eRA+oiF6OSaOS2LLYy77Sl1HIZU+kNCJCJEH60YtUpTI7/k1ghiP0cxzabEaMgywaQ2DFmDADj62FsKDi+Bpg510a7IfVDJB8TCOUG9ozuDkkhwdN8heIzcJtBNaB+DKQFEzc0Qhu6U3o272RzS3eguHa0LWWFyCRfEfPbdABFgus9clCaV5oJd4L0gzdEFelETqktAm7f9rpeR5Nn/H+reZEmS7DjT/c5oZj5E5FAjAIJodrfw/R+Du143eS95mwBqyiEi3N3Mzqi90OORuAtiRYoUHFJSACorMyPDXU31H5l8xAKt7IQ4Y01Xh03J2LbT9wxeE576WmDr1Fzpe8cUQwiBlDpBooZFVMFmi6kW6y2tKMnVgHsfe/ewp6xneInY0qi34Vop+uD0KO5ndgs3oT3fyNszD9MRF48Uf+LDrWEdHEyh2sZiCs/bM++Wt1wkIbJAtyzeY/dEmIT9ulNNZ7eV7IVuPbkYLrXweJy0dqIbtpo4H06kzwUuVx4f34BxxOnA49vIH//4Z/w0Y/0EpoHp5Kp/nmUEV9/WjZQLl+uNZVlwLuCMoSTdKM+nE9F7Pu0JEYb2UZPc4Uu9Se1A0QKx5Xgm56ohIt6rHbI2alMccd8T+75Ra2Hb71ZS8NGxlRsUrbDdr4mn67Pi7DK2YGcpWUM/GM/xkgvbpi4kjCXnrKYRixJGRkM3FFLQTFWtlBbNsLWakB5jxLnCul6HssRr1cuIkvubGJYyTgbvPdEHWhl9GHdt3tg6NWQ0UEseZMsI3JXRyRMnbBRul+soPdNzuDW1/Wnn9ThL0Kvb3E9qaUg3BD+zlQ26e62J0M2pgJk1Oy9rn7IbfnZnNaTYyrBgGvVKi+g3UJzqRbWbzGB9GBpMPwIPvjgHOrp5drFo2G9Q+bwJ9GZeiR1nJkQCxjtsBD97zMHhTkKfLCZ44sETTsJyaCz+QOyF0CzRWibrWIgsdOamrqmDCfi1D+2mbsvGBGKwuB7AWKTeWxb1jd1EPezRBmz0TMuC2IKLAtFquWU0uMWDRK1VFe0gsuEuqdLvCcFQTcGI4JqiCcYJsVditgRx7DsECZCE0NRVZCaDyYb9shN6oG4NVx2mGGQ3SDF0q+aq3sYHcm9st4SVQFs1RFm66hJshbxXahFaaIQaKS+VaZ7olxVz7lhTCSZysBMhKClVJXHyI7EnNJbHmYstlKpZlR9ffiJ6o9bIWsiLML154Pl5Y70Vsu8we0pNWv1shNQyh9OBtGVeLi9cLjfevXvL8XDE+YnaDd0qFm6NEILVzpsYEbH4MOOcOmpqq6OLXAdPDJF4mGgDfzwcjl+sqMZijaPkTAgT1nhag3VLvHnjhudf8b9c6muDgbarNpWa9UIQjwt6GaWWhroFBIOLjrhM1K6p/ABxikQzDTWxSvoEYTksxKjp52ZIBlUW1FVaKI19v2GMwgZuMP6lNqzVh/W6bohUXl4utNbYtnUQRHWc/f+1Osv/lJdBWdSaEyZoiKwxMuRBOsj0T0frOb2/y3p0wzNo9JIRFKSVrh5y1AImpao1rzecCSOgor7KebT5UYXt1Y3E9Naw3kPXwddGDShO3RNd7vQ33BMtWstQ0nijKbt+x2BUKlSBhhWDlU7NmikYR+McoDZC9M1Uqr7pDI46zl7JlY4C4LUnqsnYaJEimKwbdikdSQa7BPZtw18rIa7UfqVzo/mdVF/wNmHbDakXYshMfcPdCj0BG5SbQPW0Vah5JRiP7ULpCsZbO4TxbmKrGbwjbYluCjZAOE2Ih3CKTM4yLxOdzrbeyNdEd4J4g58WqnXYXqgCx8PCYTJM1vAwBSYTaHtlu+5sH1+QW+V2zQQJ5Gvmlw8Z2yzr80aUibJV9kvGdUc2O3VvmrtpVCbmnSPEyL7vtN75c/4za1o5vjlggmBnQw0Nd7D4o+YJPP3picvLM8mu1NsV9+aRl8uOWb4ilcbkGjFUXn75N5IsdHuh1ok5PGJq4HIpZEmsBm4k5DRTomGthTQ7rilx+PqB53phmieCOJpt/PL0UTXEU+C2rrTW+PTpievLlRAjt9uOdK1P1toHy229cTwc6O2i526caR2en6/My6xGid54ebmMpB1LrY1pCqQ9jw1Lk4dut43lMCAnFKJuAq2rTtjYIV2zXntyatbh9viIjZE63G3OgHhHA0LUzfdyveKXSDjOupCUwlYTtTec8QTvKa1ySytu9lrpjJYZhjCpuP6uoBHLnhrBT4joJem8IeWNXApmbJ/eq3vjdHrEeSUrrR0Qwt/CsJS7E6a31yi21oY4fNTHStfNT7p7lebctzraPY2oj3NWf7xzFivgRw95KwU7L+oBb0OCIwbTRX3Mren2Z5pKdoa+UZx7TfbuA6M0A7PU8I0+snNApGDdrIEDuNcN2VqL62qTtL0yO0dtqv2Skd1n9SdQLGYw4s7Ia9WG9xMlqxNDn+CZajo+TtqP7QXrwU7Qo0BozBMcJsskjSUYYuvDraMidG8awQmHyWNvoulCMhRQQ+tpZdQIt04wjlIL3nmcD+Q7K140uX0KM+JmwiEwnSfECeEciaeInS1+thj/HhOgmYpY8KcTxqvWKLdKTYmy34jG4UVzMSmNxzhzfjfRD42bvfL00xNLt8QOdS+c3UxEE8w/Xj4jFQ4hqvwmLOx7IvjINC2cz2c+tc9cLy989+Y7rvsF5w14zTQNp6gtmNHy9PSJozswxYnzcsYcwD8unJznc9NO+B8/P3OIb3g8HrhuqmLIu+Hp4y/YzTP1GbM4rqXSHw88PyckTGy1IcEix4nSO/PDTHpZmecDYfJYd6CmxocPHzBimPxoK3SBfdt5+/CANCGlAhb2vXFbV56eX3h8eOByeaZ14edfPiocnjRb4R6isW47MU48PT0zz0rS7HsavTbasfP0fKUNTfDL9cr89Mx13dB2UqeSJsy4noTWC0WEP/3yM8vhQH/tth/BFt6puqFW7Oz46fMHzcR0aiCptep23oTgA58/fqbR+PnzR3rtqsCQoZhxBmcd1sK2ZzqWl8uK9wZDGxbgPrzlnVYzLy9PhOApTTMinFNbdRsKgP/o9asYlveoM00eaq/6bVUl3vWW95MYeu1f/h1R62Af57r3gRiC1mgyJEJ3pg35IklyXkM/USbtjsPdT/ovSevq4DGoPAkzrIxWhbNV9P+LIVCtxrmpnUy933dBvHVOiZoR7mvMPSFdT4r712dE31T00eQo+ns1uEFwWT3drTLZxmtWgIsWMwGu6cbmZBDNDSN1aOe6Zj5awYvgXSciRAPeiuoMpSNFsUvTDU5UAtWLEEyg1ab4UlO9aC8dY2GOM4fTA36e2POObY7b84YJ8PnyjF8c8RiIp8jp8ch3v/uWvaxU6ZStUCQhRui10kthdo5oHBbHvibFuWxgv2788scPpEuCJKyfboQeWOyBbd2Q9MLD8Q1v4oOSTMUQm9dwXWZqUfYzTw7LQs1XHBM23aipcnyc2NdECKoDxIFsgqsOWxyH00KYvcJGB8cpHrjIgY8fnliCcDgEVuf5/LLz8uFnfNPis63O9NMDucJ2TZQFSm40DG3rmMmyrzund0dohYfzifeP71mfVyyO88MDecvUvfLmzSPRBa6XC/OycFwOPPbGut0Y9jUE4Xw6ktPObb3xD//tD8ORJqy3FWc9XWC63jifz1yvGpv23fffs22JkivLsuhglf6aYfDp0yf+7ve/Y5oXjS0EDUgYWQfOO54un/mXf/sXfv+H32vIh1e7JEZGpW6gtsKPP/2Ei46vvnn/SjwZDHlXr7odemqe1PHWaaSS8FZP5loz6ZaZYiTlxIcPP3M8znz+9EStCWs7W1o1oEYaIpV5jpRayCnx5z/9AIhyHHZI4P7K61czLIXhyBHwPmh0v+5qo2tnTMpx+r76xVE7VB9D0FpLiHFELg3pyjiHjbNf8FGjg7LXihgN8ggh0EdnSE112CwVV1TssxN9IA1ip5s7XGBf9ZXmtTJCl/omau2zzkHTAdvli7OoDgb+tTZiYEXKsgdg+F67sszqi1Xb1qud0aEEyF8E/xoHJhjdNHvBuq6J471hTcUOMXpwooEaXeEB0zWFXdskHU0MtaGkSfCUkhQG6dC7wbtIDAsNQ83C9XZRMDgXKpWtbzxtT3TXOb878/DuRE6ZeZo5PhzorSC1YK0mKqWSydedME0Y7yn7jq2GXuGHn/7En/71B14+3zjYA4td8BKQBLd0g2G5vG4XfA/MbsF2S3BHnq8rxkfsPLF3g6RM7XBNjW3vlKzxKmY3HKYZ3yIua2d56BGTLb550nOmtMwkkwaQzJWWroTrZx5O74nrCy150i8vyNrBaV6ADYHTm4kfyo01VxoBcUPyhXr7TTOE2REPAfHC3nb84nCo88QTmOaZ2U9s143leODt27eU8eepA6Tw3bff4r2GzbRaKTlrstO4uLzTJPWcE8thoVQVxNfe2fZEiBFrVc+skj03jA3aaHQ6a/+3C/peFhgqD8F5JcOO5wOP7x4RhFwyzh9Ie1Iyx8PD+YGPnz+Si37t82F+tQofjgveB3LKGIEffviB4/nA+6/fkbaEw+KNBv22rHBaDIHb5cKbh0e+/fYrjO3kvIHtOK/1MdZCrYl/+Zd/5r/94fd4rxdib4178Pdfe/0qhiVoPuV9kKhGahu/+dGnY3TD68M10Npgy9AWxxi146PWqu6Zps6VuxOoy5eyMWNUfqQWSvvqA78nVtiB6RhpmhwD9NooJXNchgddudUxjEHJ5AZWMUfdFu+/tlY/lFo1MQpNXtcnngzRehtSCd06BZWvqKXTj4eEfdU44gTjBxhkZSQMCTijjLXXv5ugQbyWjum6ZdIK3mqXjkU7iKQ1TNcEG4tiuGLQ3M0OvRnVq3YLoqVrzntcDEQ/s1cNZ+0dYoxsaSP1zMeXJ9Z6g2gw3ilIL8Iv/gNT+I1KRmrFOEMrnZYKVKGj2YQtd6Qars8rP/7xR14+X7hdMnspfHP2uGIxCWyxSugk9cj31nhen0EicTaYeebT5cLRe7q1SO28XK88bRtZgDDRcyavjYOb6Htnf9kx2dC2Rr5kZdZDYbIT2Sac8fiW+Wo58zR7prTS6mfSp4Q8FWZ35ml/prsT3/zd37EtJ9KPP5NnT26GsETd2qpAafggNFupZGw84SZ1H0mvuMmzLJGyV27XlXmeKC1rD874fLThgdYrxeKMJgNNU2TfV6zRylrnPHvKhDjpdjlNdBGOxxMAORe9mmrV0rnetDhPOnEKSth4vWxURzHgMmtG+n8nxMB8mElp5xgPlFZYDjMNDbswBsLk+eb8NW+/eqPJR+W+TWqcWohKQnVpzMeZEAM5J/3nvao0yBlkRK/13vjmm28IQXMYjocTzuvC0HvBWmHfLMF5Tqcz2oRQ9EEjon1cf+X1qxmW87zQWiPnzDwNFwtmDCFNIDJonYQPo2NklNjkXJhiHOLVPvpBtGrUdl39G2ixeut4a2njyGec1EhXKVDTNrn7ALUjmMNYQ6kZ42aV5shwhY/Q3+A83hZKr+qCsKqP7PIFFDcDW7k7FfRE1wDbux1IiSCjbDhOh9Rg1sG+2sLEiPb8jPi1O71vgtEt0zMkE6qt9HZEnTWNHwtOlIHsHXrWr0e1zPoQakIrTXkw3Pg9KWNMt/SmDpd9zeSsieLGB8QZ8lZpTXi53tjWhARLsJ6ehe2WyClzmA+8fLoiphNnj3fKvLatsPiJ2c98/OUjNTU+f3xmvSS25w2p0LNgm+H505V38yNOPPmWmM2EVCHtCds8xkS23Hjan2HamM9nxAeSZnfRnMfPCx8vF3rOnKcZ2zrmWqjXxNJmAhMkgysOsxscDpst5SXRpZDMhjtvnGomlhsfP1xpL5WjP5HaysPDG37z93+gnh751+eNbFZKDHR7pmQNS/HB0skc5gnxGhHoo6WZgl8CUiClndoqzjgODwcun16w3lFqZnKRp6fPhKBnsX4WdIBs28r5dGIe/mmLwk0hToSgJWOlFGrVgkDnwqsyZZ4XLhclnKyzXNcrxhlKywQXKWkj14KPQdlwHLOf2bJ25WzrDRscTSrO6yKzLAu1FGqrbHnDRTe87Q3jDTF4rX9obfCmQpWqnTlS1SjSMrOfiEug5abGE9ELU7peZyFO9KZd4X4Qw8PQzDzNzHGm98rzetMgkX5/8//Hr1/NsLyLzmH4va0HvjQpKhQzYn3Nvb1RxdG1aS+wQoqqqfLeq/jADImPMZSBSWryjOolv/zaunka0V7x4N3IpFQYQNGM4Q036qLpXTWNrXdsMBoK3HSrcTbQR1Jz7ULwfhBA+i3RxkmHVN3GEF6ZST3HHZ0RAoBuCr1bdS8hdweauoAc4EV7d4JulbgOSt5j25fN0ruxjA4/kDOdYMD0rvbGjiZ9N6Nc2SiQMh16Hd07RYbbwb4+oKy416itjvYg1dKgG3oR6t4J0RDtRAj6ofrw4wesg9PjgVwS0JmnidYqTy+f2S4bNMPt+UbZO04cVG3RTKsGvz6vF95Oj9rVUwxtb5hqkW7VCeMja8rc1pVH7zlMUbviRXjeNlLvbKPW2NeKj4FUKt55JBv63ul7xxaLLYYwT/S1Eg4etsZxjhzCgU1uPH/6GVNmfFNt58P7E+c/fM91NryYhAuC9I3lFHm5qhStNfWw+2BoubCcJ15+KXTbFVJB6E3ws8d2B1VZ406jSUOskGvWimijD/u0J0rJwzig7+uUkkqHnJbvubiQcmGaJrY94UNgXg76/mwdvOG2roiIstbBsaWNEIMmqzvDvCxEidor3pvmGlhNqJqnibAEJSmdMubihU6jm46fVVIUJo9xOujc6B7PJSnHIKNuxnbevn/DYTkQoqfsiSlMWLFkl6HCfttfr04Rw3pbiZPXoV4TIYyQ4FGl4ZwjBKcieWvw8qXl4D96/SqG5b26QV0tdmyNlt6UlrXW/sUXYr7gl/xFlNpdb2nsKzGkgnLFBsXpem/Hm0rX/TEsGee8NBCrCUj/vyxNXq17d8JI43i0pF66srpuOHtUiP5lIDbAuGG5lDp+bwo99P7lT+He8idjCzWjQKl3g5Z7qYdZiR2rp3gwryG/mmmp/xsH1ukwtNLxRrB0vAGrkw9r9P8P3oIGzCBVaLljmsX0MTC7/v560zCKWirBed08W1ddaYhD2C7klGhWsTFvAzY45mXm4XzEiuO0nHn+9EyTynyIPOXMllYOx4UlzEiDy9NVg5wbRDdhXMPPkbY7drkpJNPGo9QbaPpXMIFaO2tulKHp20plq5XLTz/z1sD58ZF12/h8vZJz5qta8Qa21ui3QttW3pyOhMkjWfDdv5JJU/XEs2K3D/FIS53bnz9R1meMibRcke558/Z7zLsja73x/JLpj8qae1tpkpmWoF9fd5gKUioFoVCxkyXMHusteStgDPNxgQL7NakCY4Q6hylAEZydtavocGTbN7oo6ZZSGU6yrhUnreEQetE6ixCnUU0rakccn8fWGlOM+OORXDJihZf1pkTPUGoInVwLp8MJ29Utd9dXxiXigmK+XQQXtLlSABuH0cQI83HGTeo1Z7i6mlVrqguaPYCFMEdssBzjkTIFrBh66UQiZSsYZ4hT5Hg4EqfIw8OJnDf9XBshRg80TcgazQQAh8NpOHh0/vy1169iWOqcMCN84q7hc4N5HeG+g8nTAF5D8GGISTUsuA0c5A4YakhwG4OWMSjdGHSj4nNglBjzyjSr1MhSch/Yj4Zs0DulFt0inaMWTfoWGLZK9abT++sTXRlCxSz1gfb6G/zypRsdooBO7QFya3PkiKJrjMY7jW8z3gx8Uoa/XAmdbseT1cpgyxWXdKPr21vGf1f3kkM1pr4zBqMGXxhBFdxyVxxYaB3pKiOiCi1VdWwYM5o0CjhHy9qr3a0K5UVgnmaWaebx9MhlfWG/bdSWOT4c8Cbw+fNHujTocJy0y1mq4fayMoWFOS7slwtGhPPhkbo4tn2l7ZUpRmrqTBIxTUXMpUFujdQbqe1076i9stVCf37GzDNhmji9fcvL8zO3nKE2ivNk6Twcjny+3vDBwn6jXBP1mvnq+3dc12ditJziifq8k1n5nD9iZ6G7FR8954czpz98zzo/4O1E7pGP5YbrkSgNQwXXyFR684jTTYuawKsls0chzhFrKi0J+7bRkr73nHWEORCXqG+nkf/SBdZ9R8SMLVH0HMXw9HzlfD5xOp21+Mxo+EQuhZQV+zR3j77Xy0xEU8aNVyWJc46Hh0fevn3Hmjb6fRPPGZwQpkCTTioZN6kuspbRYmplwEwq9Sm1UKgc35zxsx/RafWVAKqi9sfWGt2DW/y4M1WbW6sO4OgtIUzc1g0XA8vxOFx1lst1J0SLj4HStEDv+eVC7Uo6UXQZizEobBf+Bs5wnVeKk9x7iO/ES+sd09Tn/aUPXIdrTW1siW4wWnyRGo1v/H0r7aJPLdroxBmDUqHCQfQ4i+uMcIy7pGm4anrXPmMZp2jTpB5E7rkYBOfYqxJPd+dRExmYpdZWiKikyYxqjDtG+UowjZNbB6gZ3lYz/K8q13HjqSyD1On36CkL3egTGofGs9FVZF+LZk1ScYpejMwjlWWYZpCqEKxumGiQxhhANI2ss9Zh0U73PtJanLGjJhVoes530T+vOc68f/eW+TiTtg2HZb3eeHg8c/n8Qu0FFxznNw9cLy+0s2r1ggtsa2KtCWcCrYhiwc1yiAt+VvG1xdGS4l29dGoSmqirZW+VvXeupSAhkHpnmSbi8aDMby083W588+23xMmS9x2plTlG4rLgwgRdN8tIYPt84/HNiXy5gYs8XT6Q3UabC1kabREef/uAf/cdV19p9cbeCz6+4e3xyPrcCb1ALzRTEJMozsEU6LXhoiEcA252uOhIbafURrABNylEY6qBqlARFj3hraNXJeNa0w0xRM++J1Kq/Pf//i3H02l03HSci8hIEq9DgC7oZyCMMInWNRKPsSxYa8m14kKgKYCOCx4fvQ5rI6+25G46YYl6/aDBKuLk9TPonadKI/eCjZZq20iVasPVZailEZwhpcR0nHSgFl2U4qLYdN0L67rjjSO3ytt377Syumb1xj880qlgGillTHCsm7qbukAuCRHVV95lVX/t9asYlqCDyXs/itv1BKg5K9PVBuNsLXTVSjo7koEGYcOd0R5D535mdxHs2B4HS/LqOTdGcyTF6Enf+z3Kl1e7lJ7ijMFrNNnbO+7RcBoUrFhiCAH2OjbLhhs/7r5d6pqInsqv+tFRFWG+FMYrXqNkjjVqB+SOSQ0cVOB1q2ymEaxHb2wdlFhRiRANg2islauYEQx3j5ijC6YJcu+abuiAFKub2khlsqD9RX5snk2TnfQJrz9j7/p9WeaZLJXSiz7kxJD3pPa3yTEtR2rK9FbVKhkmehGO84kf/vQT3333HdZ45njgZb2y5Q2awzSBLMxmIRjP7CasGKIL2K7lb7UJ3TqwalFtxtCMZVoWeq1UY6jAfDqB99jnF2SU3cVlUQzaGqbDgXA4Uq5aA7zYBSMV2Sr0xufrLxR2Ssx0K2Tb+M0//I7+9YlnSTQ3Y0xkNgqbBG+YpOLrjrETYtP6KAcAACAASURBVPVDbH2nROhJiAfF+Uy0EPWB5aId3w+D8QIdwuwpvWC9nqrBBH2AVkF6odTKlhI5acjtdd3owBSnV3twHWfv/TMzTRPTFCmljs8BY1iCN4FlPrKnzOG0cFtXfHS44KldF5Y4BQ1RKarICJNuvTooGXjmULRYoQ8IyUSLDQqku8lr/0/XX7vmymW7cno8YaPTzbKrs60WZez9HKDCy+3KHGZSzVhnqbWwxIlurNbr+oj1Wjf8/v1b5sMRV7x+NqSz7Sul/Bcmpf9nvaw1hBAHPqgaRh/8GIBu/GUGmdDIpbBM6nm9+8Pv2yF82VRVu9ZfSSHvFHAutRHt6O0Z2GcfYl69dHVwl64BGcaMrm5R+dBpPowKCyV/7thpDP5OauswG95xM7zWxnodWjI22dc4uAEy3nPXjcPgcMbTu6GUTvDgx8DUN+F4I/quYbr+/gTvX05wo/InO/ItFUKSV3LHiEqJpDZ1QXVe2y2tDI/7SD6+9yJJl1E/jP546Vq5G8J4GOn277w68OdlYo4zYjvBaEhtTRqwwAgmdjj2dVe7aW58+Pkjx8MBqUJwkRAVu2sNzYsw0PJ4QBSIfkKSMrkuqFCKrla8kjM4Q+6dw8OZDvzpp5+Y54UwTdr5FCPSO9Nh4mDPRPTPqQqczm/44d//lXzdOJ1n2AvXlxeu6YnpfSDXRHw4gnSm5cQqlSJCmB6xreFNp1FI6xXfIcjwQZtGp2J9pRiDmwKuO5ppVNPAG2Vyg2osjbH4aXxcO2xpo/ZK643UO1IgJ43MCz5irGPfM2IstQqXy0qKBR88yzxTUqL1TgiRWnXg9cEkW2c1DShGzUoxllwy+77zm7/7nnlZqDIgKe/Y00Y3XWsiakKs4CdPRQkoeR3K+vbuRnFNGTUoWQpdOt569ppUNhQCznquaWV5PFJpNKOVLALsNZOviX3dCTZy3W6KT6ed03LWCLmcqFXA6NcpaH3E4XgC9ErUa9UMUvi/KM/yP/NlxklAKcPHqQxyFaGbQfbcA3fNqP4Mo+0RbXm0zg6LY6TT9MQoo6v7/l0a7K10wUb1hfYuoxK046TTELzVGCpE7VA+BD1BxzdcRFlw5zVTz7uxaRqj8WV39lo6zoxAVfE4H6l5xxv147Q22vO8Mt9dNFhCS5k62uNgxymOuoWs1sw6Z3WrdIKJhmo7xmi7onVmEGM6GDFVNXFuWDtF9ZTOgRVNkXcKgVKLYMXp0OxKqouoMymnjJ80o6jXpsEhxtDQATsFT0V/D4KeUsYbTOl0Cj7qG3PbdmLwCFp8T+v0XBCrwvDttpK3TG9CTZXJzSxxpiOst42OJxjFIRENRvai4n3jDL1WUi10Ixg3HFyT591XX3NtnTVlPm8JWTe8dSynM+RM7ZUavG7RKWFL5zwtHPzC0Uy0y8bL9gm8es1fXlbsNwtfff9bXj79H2ruzDjOU+B5v2nXT5jZy6b1Bw6CE4T7xl/UHhsttVqacVQruMkznWaaqZBVpmUE0pawVXMbu3StpZ0CdSv44JC9EkPUrcs45mmit64s8hSGnKiybjfW28a8HLDGIa3hjFZK31sKStYMBh9GyRlohme0YFXW47zh/sbZy8bleqEbbRi1TnuBrLfseVd74dDTej9xXV+0lsRrnmlOjdo1oEaM0LoqEkrNLMtEaSoP7KVr9iud2gvWG2rJlJqY57c0qeS6Iy0M27SqSFSHZLHG423A4PB20uhCMcSgov6/9vpVDMvWGvu+qyA9hlcc8jQy/EBFqoKmKBuUZTZOhex0wRpotWK9UzzHmNHVoyykcfcOnVGWdWe+Bp6orC6vPlHEjDelSoEQ1YW3UfMJRv8uXfE+EcVHRDHEe12otQ56pddGNUKV0Sw5fn/RO1IV4qSJKneowRpLExS7tB5xQU/raLChYb1QjSYZSbA0b3Wbcx3jBOu0fsNbzSbTGl9l4A1KGKnvXLCtU0vDd4fxXqU3ome3VLUgqn7Va+lbziCKbxlrtRQrFwU8g2OykSIVJ/B4OGFHC+fl+cLxvGCiDhCscJgXStM/n9ZHGr5OW3rRPheHp24V2w2neUb2oYCwClO03OhZnUe5GnLrw32i/3l4PPHuN7/jWrVJsVcBnMqljKF2TVPvRbhsK2+PR+Y4MXdwYjB7pb6sXNcntn7DzYZkM8f3bwhfnZnOj5SfYVsTyxZwBo7zAWsM11Y07i02WklYSQS7gBdc6xQK1nuNrAsH/BLowXBNG1TBVIg2kltRUrM06jA/eO9Q/lnwVskTHzw1JfDqOPNOlQgi2hnuvCe6iPeaNnRYFn7+6WcN1QbmeR6JRaLSpK7nsy7rlRDVuWOMSnqsd9hmmeeZ+TTzfH3GRz/Cn/UCmeeoJoOUWK83Hs0bWi9YB6nubHtmWRbNmq1t5EFA6dprlJtKpT49fyKYoAV+VpgPd+xSl4GHN2fmacKhMW+++5E+5mm1UEoB8czTEQSVJwoI9XUJ+2uvX8Ww1Jewbyu9NUoptKpxUjnnLwJxa1/1ltu2D5+37o2taXBob51WqprtrXn95wxpUO9fQkO9+/LlaxeZ/joFJWG8cxQxtNGVoyp/hvsg0vP2ytKPX0RZ63aHisfHVdRXHsJILbKG3JvCB1ZjzozXXub2Kj8yiA0MMyLNOIyVcW47BcVdp1lDHfYva41uo04xW2t0WN7JISWSHKZb3RSkEa1itg2wIZB6UnfOwE6NA9vtYPwrvd0tmSor6qO73TsPzo9ADMvTp2fefPVGh2vJmGg4Hk4E76ilYI3DOMf1clPhJwqL9N5JuQwnkVNgQrrmebZGcJE6ZB4W/f4GH+h1+OmHtMVajaJbS2aaFjAOoRGC53g4cLmu1N6Ylpk//fHP/O7br5md5xQj+fmCa8LXj2+oa+JxPvP8y2f1r0+wbju//cffEX/7QH8X6d0Ol1aEbqkp0V1C3IQ1nUOcyTSt8jDaE0UrGHE4q7ZT4/Q8bVKxXrWza1qZZOa4TPQCplpy3TDOkntj8XFYDPWhFZdJIYlm8D6SS6O+pgMNOdrIdg0xaGCKda/FfXGaqa0iVV1VpVetEvHx9dLTWt7hnBkyMus9YlWGFOqsMjmrCpDgHQ2NSqsIb7/5muPpyP/353/Hz5HldBheOM2MraNIzFmnOZZ55/vvv8dGS6gBh8qOKhVnHVJFe6yMqgfiFPF4ipRByOrlaq3ndquDSI60ll6dTiLu1Tr9116/kmEpHI8H1vWm6v5atF5ChJIzxiqGKANDdNZSipIHqrVTD2y4h1UMfaK1lpaLhnWjjJ61d+G7+rrb0EiqhUoLxJ21OAYDPFKDNFmo07qe/c7qGzb6wZRbrVe11o7ysiEbap0R4o4LkVYSnXsthdoojYs0EUoXDRxGnTI2aCI6WMR6utVw1W6GbtM5xBu6U/ZXjCaUN1E9ZB+d6NGoRlN6GeILMH4MULTXvDShWMG4gFhRx5OgepS7AaArc+qsgvBmALS1d0LwxMMBEywfn5/IuXI+P1B6xnkNaBUzRP1i6E2IIeAcbCVRRh3pnS0NTnV5JWUgcJgmqje45rER1Q4WlZsEqxbU2oRS2rDAwe22YpzD+zhIw4nbbYPh4tjUVkUulU+fnnn/cOTsTjw+vif//IHyslFertgKe9q4lgvHb098+7vfcX7/nhQMOK9RegNbtoPwwlm604dQc4417VipeNNoUqAlrPFY0WHpg0rdtrxjvOH4cMQ2dQu13rUCoQuH0xHXPb134iES5wnbLRQlTUrv1KE3Nlb7vOO0kEtWjA4NvW1t2Gy7vPbftC7EadaFwtph+rCvJEkIkTjN6h6zVrFxa8agqxyWyF4y02EGZ1U1YQ25aAj2fJhJJWM2/ewcH040hOkw8fT0BEAIelmGObDuK6kmpoOe4QQoqWC6UajNqLDdWa8yq2BJNZNrhg6Tm2G0xoYwa4+WD4CWrJlBxPZeh3b7b+AMB9hHUdnpeGTfN7Z15Xw+vzoT3PCMmqG+7639xQBlkDODULGD8bZWvdID67x7uUU6wQf1gBs94a1FJTOip4tWRPThgR4n/XBGlqpyF1C4QHoZ7h/dRu3Qed1DBhRMhnXL5C0zeYu3EHwcwh6N63dubIJjsGJnjER9WMQJgmBjw4SCicBisQeHmQU7O/wMdqrYqBtU9B6PI5pAIOBMwuGx+EFuOWzXJ22PRgNwQTHdAQFYq/0ntVSmOBNspOSEvW/xXbDeE/0MYvnwy2d++viBb77/BmmDaIPRbKlVG84GWl1Ztx0xQpGmQ77rFt6aYFrDIgTjXzeI4AJSDaVk5rjo4E27wizWEKPn+PCOl5z4/OOPiAhv376jlIqpnct2oXRhPj/gSqfkwvPzC//z739P2zcMjnrbue2JN/HA+umJ9edfOCAE3zg/PvDtH37HzWc+7jdqtPSLxdmAoJUOB/sIbWe9vMBpIdeN5z1T3JmeG9IK1mp7ZLBQe0UkE5zXXNMRjNKk4WMAMUjWcOliyiA1DVvKvD0NKKh0fW96R8kdnBsh0qIwjnN4IsHGEdCrg67Wxul0YkuZ9+/fY5xnz7rZ+RjxDkqt5FopUrExaMarhW4FHyyNRpxmctM+qj0lvVK8p5tOqhkfFCMsvXA8nQkxsJXEV6evaVa43a7YoKc8QErpdUgup5kwB5Z54fp8ZT4t+K6ftZ47NMPTL0/gwE8eL55ehHRL5PWCN2EE63ReXlam6YBeMSpSN8bhvS5QfxMRbXcT+/Gw8PnTZxjSFvVca4dGb23YIHllxo3REF5n9Q2hm2ZVQNzdk4C6ssd8kUkwAgXmGHHOoFNSNZV3h4LhfsLrdtmbDlIT/GABJ00Sum9Lg1W3Q6KkpLWmRxv0fPchYOPC5A29JGSc67kkfNQEn1obvVTm2SGmklsn5Y5vBTcbvAFjKpIaYg3NWopVCUkLYELB5orkG4FE8IVcd6hXJrdx8IncNiwr3u7sdcNsQt0bbWuEPSC5YXbBJYNJGnPWm7DlTWtoq57pdxF9bxrYUEvh8nzBGBUKtyZUOga16123F3JL+MnRRspSo2tHzpBTeR9UCjasloIhholoIr47tpQ1aFZkuFIMS5xw0bHdilaetkYtGRsCy3LgVlWL6Exn8o6eC/N8YFtXgvf8+PPPfPf+K5bliN0SRgzPHz7RL1dcF25p56tvznz1m28IxxNxLvDG06Ja+7Z1Gyeu183WWjCdXhLWOJZJK4vnZHCouUFMwZp7mEmn1IQJjThsgHvNBDfR6ETn2LeMs469aOhxk46LajXsVSitIEWQCsFEau/k0jR71bi/2AI1J7J3CHEil9G/HSc6DLJULZE2WMRqzUkaTiJVOjhy3sEHNXd17YHHGkqrhBipvdHQa6IZAavfx/vlU1pV9YZRd45z9lU/fZyO1FLHANbNs/fOfJzpuZG7Wl576yxhZs/b62DGaoLYXf9Z9oapDeeEnAvLou9LGVeVnuVK9qaU/+qY+nUMSwBRksHaUXbf6j0mj5KziqFH0K403ZysMaN/W+s5X7t53N0jqoP03rNhRhjvPSCj96ZMuegbyYi+MYwxVGcxpWKt0d5xrxttKYVpmRWnHClH958LGdIbhFIyYgOIpRq1QlqxRD9poEUYw9c5Wq1E65inmbxlYpg1R1IaToTDFFSXRmeOqsProdMDNIdqeKymuBAMLoIPQoza2R0QTKvEyYxcS+HkI4sUDm7CbUXJAa/gPcVpkHAF4wVphmw7WTIWrYrwwzZSh0W1N6GIlkodlyNhmrQmJESqLazbTc89hJYyYmHf03AjGWKcSH3HGMc8LTjj2K8by3Qg+AjN4EPg4WGhL/D84ZneGmEKfPr0ka8fv2JeIs8vK8Y63r59y1obJWXWLeHnA8fjCY9hK4WWE8sUWS8XPaVT4s9/+jPucuPRB7ht2HVjMXBaJnr0/NtPP0D9yDZX6ifwD5FmG/O7iTUnfvnpIz9fPxAeA+ti4dC41shzCZjDe7YWmYJjy0UlW73gXcT1YUE1lefbMzZYtryxp4LJKiHaLhuznTFiqKmynBb2mphKwjT9MVTBiMPaTtkz120lhsjLywsheqyzbPumpM98IKVCCIF9z4Ch5Do2Liilst92FYl7w+V6GyQrbNvOfJy4rjfiIZJLAaeb7B0HVthg1FjUhH5cDLkWGh2cYT4qS2+HB77WSm2aPGSDpW6V6TDhJiXxvPVUUbacCt6oznMrO4fHo8Ivw27cUBegDZa0JU6nE58+PfGP//g/EFElyl0upVmXWlv9116/kmEprzik1XVQsQu029ugOXx9DKI28AWxSjwoVmiURbaGdt88GcsPStwYlBxSIqjBPZ6NuxddazpzV8+zntR6po9bX5lzVNvJwBfvNkRrDcFalcq0hrXhdQvuTXQY146xWoehGJJhjoqjlJTxxmI6mC5aJhY8657wITIvkd7ziFpruHF+dgfddZVr+KGxtA1jOtBwdlTfjkg2Z0RJky64Nk5uASuCHxIrIyrRsKJ/nnfCyI2wkXtssmN43I0SP9MUWc5ngo+6tbRCt8PdYyxGLFtKNJRAsN1iJz82eYd3friZIMYJHwIhzlqq1jTcxHnPN19/w9VfydeEscKPP//I7A/AzDwdOAJSKtu+s91udGc5W4uJE97Auq9grKbcjLbBaTlQ151///FHvjmdeXw88/vvv+eHf/t/+M3/+AdSKMijJc2dehLMbLARWmx8+uNnDocDh/cHNrtBNFxL5nx6REqgT5Eff7mS08Yyv8U4S5FOK0nxM3/AGgFT6VgOpyN7SWz7Rls7Hs/L7QK7UG6Vy/XC7GeeirA+3XB4WirktbJeNoKLtNLpTfj3P+rnQnFyZXylwzIfWNeVWgs//vgjT8/Pygo3lXxhhjMnWNa0gzP8v//2r7RewcF8nJEnFaE3dCu+3W6IhZ9++kkDqJ3ab5XAEkIMrGnFGEh55+ePO84aQtBRlHN+zV/48PQRrGpK93XHGz+yCxpeHN4ETssJvOH0cOL89kxLnZ41Tb3umn4V58i6rhyPR8AOF1NQnbTcddL2b0NnacfAE9HUmcHnvxImZmyPyAimHQPODF1jH6y4DAJHMbKONdqX84XVMK9J5UpU6L+rcfh2eM2DCreNisApZTAZymIqKFzp4hT7ET25RJr2kvQvSel3sfr9ZFRWzqkguWsVZx31GCJNGWWjG+c9pspZT4xOU8lbxYwN05i72Hd8cWIQzd1WOZDp+vdRZxru2C2Ct4Lp/dXFc09UMoMF16/11QQ3HiZ/kereNTNSTQQamfTa7T7cRbkUjFerfK4FnJD2jJvGr2pUCFxq0Ya+jor1dWziQ6DUotWmJIzXsjipijXOcSIEj8TO45sHPu4fqTVzPJyJ00QWIbXOL5+eqK3jSyHvG00FhASnpVuHeSJtG6VGTdw2YILn9O4NX795S+qV3XQ+rVeOXx/pTtPA4xQoNjPNEWaI3nM+ntSK1xtr2TA+YA08PJyID1/xw7VhRD32pe7YMBG9Y2saozcvAWiEKfL49pH16SeO5yPHN0fyS2Z6O1EuBfPG8Md//Xfevn2LE8fXb75ivaxI7VD09HxzfssPf/qRXoW//8Pv6dJJKdGl4b1qUlX8Hfmnf/onvv32G47HI4JQaqb2RlyiEqzBkn/+CeMiD6cTYQoqWHKAV6zQRUeqiZf/88zDuzNhcuAgVSVoS9NSM0zneruw540tb3hvNKhjXHy995FtWbhcrpSU+eOPf6TsBamCVOH2suLxOLGUvbJfNo7TibxnxTGLwTSN8qt7Y7YzeS/s+86nT59Z14i14zMk90IzM3iN//j1qxiWyk4VZCSjLNPMNE98/vRpaPvsq9r+NRx01DfIEJrzFwPU2qHLFHl1nvQueBSD6V0zJL0PSrAMdtuFsblhCS4MwqGh6eTooBiWQzEqF2q96ok+QjjEWnwVStNh3+3QbhnDZb3x/btH0nrRTSw4Zu9Y/MznpysmqD9bTxiDtZ6UC3XoSrHm9fyX145xMzRwIyrtXpCmtMfrX24kw7vxz4wZncvjPLqTCvrz6l93twTcZVXqhvhLjYVzRpnc+4C1hm1En02HSKVyTResgyKF2UfuxBgGeskqNJ6MMuDGDvzYIRStPU2dlZ1DPGgXeIZbveGDx8yw58q8TLRdffrOmmG51IFvpdNzouwbxEirBRsCxjrOh5myr0iv1FaI08Tpt7/lmnZ+8z//gecffyA7MHPATQFMpZVMWxtMHSOeVjveaALVMk2EYPHxQF0eqOHMKlEJESvj3O54q1heLYllOnPNjSk6zscjH3+44pzh3VdvqbdG3xvTcaKvncN5od4qx4cjfnaYqtjd6XTAdsPLpwsxeE6nA7UUpjANqdQL7969GQ9mIYSJ9XrDh4B3jjePD0zTpFZI0R7vMAXKHPDR83x5prbCV+/fspeEi6qrFAu57nQjlA7bdqW1Qs6J0+OJ+RCx0ZFKIs6BsEwQ4Lq98N13X6sm2inmfbdZGqtStH/+3//M8vU7vv3mW2iQ9wwN0psEFd6c3+Dx/K//S92bw1i2rmlazz+vtfYQEZlnureqpW6jPaRuISFcJBzAwUPCQgipHfDBw8XGQWoDQTsgPDBwUEsICwMHVA6qorqLe8+YY0TsNfwzxvdHnEsXnNvdpZZuhZQn8+yMjMjce+1/fcP7Pu//9r8Dnev9lS8fvqQelbQlbLdYHGnL/PTdO7797W/55ptvAM2+RzFx6E6tWQqc3/PxB3JYduYpcLtJMJJsz6RV9t79v1rtlx8v79iXM2OcoDIbUWLgb02cKS88TEGmvYA3Giml14VMrZXgLD6c2EbwUa8y86z9JeBCDo3af6eKGi14ayLBlcNa5q61Qx/kHuj4KZBawwTHPE1cLgtPz8/UWog1M5+v+GWC0sXB0mA5X1hzIrbEbNyAphfa+Id3LdnYykg1Kx6YJvD0Np6LJr9WWg4hxmxWHJY/AzlKF6CB/EvFQ97kNJWKlxdk3cuTLr8Wyot8/d4atTe2IgP63DOxHmA64eR/h3bPIKcHrLEiM1ECZ80pC+cxFyGBg4RLNcWkPMF4nm/P2G7osVJzIUxeZCjeYBQ4rQnGcp5ntsdH9m2lG811fktRiiPu+GkedtBOTYmUIs4Y1qdn/vibryklY4OjW7EjCmFno3JwPp9F43rEAbPQGKXotdJ14/565bHLzdl0QaqhpDPKKdFtoNeCwhL3DaVnqXJMZznN7GnjSAnvAk4Ftn1jmU9MakK5AeD1Vm5SVYTqthtxu0TpllywhODRSlQatRRSPvAusN6eyakMm67kVmkQyVNVA9abQUlURWui/6xN5vgpRUxSsoBavDjLzMSyLHz99ZfMl0XcPKrRehXCutWs6zOPj5/QVqENpJqhSSyyUUZujk2cP6UXTpcTYQni5NIiQg9hIq4HXXcen5/Y086/9Hf/FcpRuG03TJdAtBQTulmO20HXjWmeMcaw7zvLsuCcwVpNKXFkf/1yafmHcViO+VRrTzy8fWDyntt6Q9EwWsK0mqpozM9LFK0G+1E0lbLTbvSuRpTuIKx3BvBUhOuqiem/tbHZM0bsVaWgjOVX33zJ9z+9o8YKuWKsRuUhL+/i3q5NZpd2iHz7kCZppbHes9cMw4kwzhl6h1QKTXnmeQEyj0/PpFxItdC6Yt0Othbx1vHF269JsfHTuw8UDSoYMAY/WaqJNJPEvYMsufSY3yo9ZqlqwDaQb/7zxv6VQySHfH/Z44vL58Ujz/j9AaN/rTBfAMyCuFQje0VuHlrL/C9tiU/rDeVkUeQn+/p6pCxUIe9l5KAsUgW1whEl36d30MVQS2ffDmhScXud8Hhm7SF1vBKLnx2LO+cd8xzQRqjswVlxtihwRhP3nZoSflmEuN/hWFdxvKiCGpAWpSDFg2+/+5aHZSJMjlILx7GTaiTVgzl5dLA0JTpDNHJjtwbl5aZhneV2bOgp4Iyi1YKzhjjm6a1mlAlYI6+torNvG607/BSok4LYOZJoc3PN1Fx59+07uR4VhHkiN8mqUU1hrMWZIPbH8X0+f/5EmMShY7V9LQ6UUq+mj1IKRSEOoFIwXsZMPnjxfOfI/fletLC6E+Yg2TrOyNwTsR4qDc5biaGNgm5rSQ7UXCvawJF2pimwRzEGnE5njmOXg3v20jG2RlONPe58fvqExrAEARYbZZnPM6oqUo4DKDPAwl0Kmlgk2EwBYfa8//EdfrLc3V1Z5olaK51GLY1tiyMg7ZcPS/2Lvwsopf5LpdRPSqk/+Z3H3iil/iel1J+Onx/G40op9Z8rpf5MKfV/KKX+5d9/UsqbTmtL8BMtZ/KxcX+aOQWLV5VzMMym41TCUKj1wDklLbOq4+cm7fdop15aSu2MxLWO+FixQBrqqDJTjQLQdbDlZ6zPzEtHcWBMpff82no2pM1+deDo4fAtRSIjZBv1upl/mS2+tLzaWAGtYrBmxqgJzcTkL8z+guoOZ2dqVmxbIuXCsiyclhmjNdu24qcFv1xQdgLtMNbKYoABT1WQaSjnKEhErzYdpcUnEUsBI7q3Xvugoo95KeLweTlXRXgsxOquRIAda0P7QOmKiqFpQ0FJXPAAKwhAQVOqMC9TybxC+5XGhYA2Er6ljSG1ClZjvB3yD0Vu8udKa6xHYo2ZxzXy6bbx4+MjH9cbRymCh6IzBUetmX175rRMI+un4UMYBJtMiYn18RmVGx5DXndm7dC1o1tDdzEptFbZj4318yd0rczWYA1Yp/Gz5+Gbt7jrTHXQLLLhVwI00WMut67P1JrRRlFLopYErciMt0k1q7VENHfg2HfOpxOl5uFpbhRkCennCbRoGJXWnK9XURBM4RWbpp3FhQk3BWxwGGdFuO0EZtJbF5dTV0LxUoYwzewxoo3Fh0CYJnkNnWWPkdu6EXMm90aqFe0dbp7ItYr2slT2eLDtG3RE9tY7uWRKzSjdKS2T8Meq1gAAIABJREFUauJIO9opum4CH5kdNsjNv7WCcRrrpMqrNeO8ofXM3cOF5TwRJvGJT7NHa2FQtlZx3gBVZsd0nDPUmum9yiLVKrTulBaZgiU4hdMweYNVimWa0Mpyvd7x9Te//qsdlsB/Bfwb/8Rj/wnwD3vvfxv4h+P/Af5N4G+PH38P+C/+Kb4+IImO8yQJb7d15bY+80e//gZvLV9/8xW//qNfc7leOZ1mjO7Qx6zQQm8FoSDn102z9walGnaU+6LPFFhjKRGj4dhXtIZ1faK2xHHc+PT5A5fLQhovWhgvSq31dXMmC3UhB1nn8F4uND+WUy/Z5+Isqq8Wrtok3zklAUAY47HGcz3f42xgDgvn05VpPpGSHJbzcuL+4WEERdnXahIjbyI/BUrO5BRH5K4eANY8DieRNZUqAU92AA1QQpB/0dTVFxcSHW0kdP6FFC/QECub9y5t9osioLUXdYDMca2z+OAJ3mHdgBfTXpUIYggwr9vPl6WR814seM5KeuR4Hl/afNSgayP2PescSotY23uHNkKGSjmybbdXI4LVsvGmyVxRlUrZD4K2WBQlJmbncNpQcqK3ynmZcdqQ9oPPnz78bHQwCuMtqWZSK2A1YZ4w3tFR7PFANOCWmCIfPnwg50JMaTAF6pizv0x4+5iViQPKGs35skgcQrAE70dcSsEHN+C6VdrjMQJxzg6kn4yAjhiJMRFT5DiOUeWZsdTRQwnSJKlRa15ST6uC3MRnXnsbjIXOx0+f+eHHH0kpE7N0Q+LaqqOrEOuvNpbtOERLbKVw0CMTSKJfCrlkmburjpvkelZWE/OBtvJ4rpl1X9nTPpZCGhfcoMNLW6+tpnbxg+9xx09e8oWs4rbdyDWTcuLx+YmfPvxE043aC84bnm+PPD19JsUoB27vWGMxxlN/z9jy97bhvff/RSn1N/+Jh/9t4F8bv/6vgf8Z+I/H4/+gy6nyvyql7pVSv+q9f/97vgdawxGFRuO9Z9t3rHXsKbOUhraer765E0FsKXz/w/fUUojxYJoDOSe5IBQcJWK0wjhD8ML7895xHI2UIvtxIJvqDgFuT8/4YJiC4vnpxv3Dl/K9n3fCGJQbZ17hw602aqnYk+d6OaNbJsed/djQ1qF0lwPJaKG0vJB7asV4h3NOtsVdbhJ9tA6ik5XhtrAC5WKwSiATVnnWdUVNiuIaVjvCFPD5wAQBufYiSEuttZCnTcE6SyCQ8yEbTKUFkIAeLfvPzE7UGHEoNVr8l+XOzz+/HHraqL/UwiujmYJnT5kcI6g2XFdaDkgtkiylEAsbneC95K5nIcA4K3bKNOhK1mgBEI8spOU0sVjJYLHG4jCo3GkeyJrSMlmA9VitWLwnJfES0xpp3ymlYYOn1SKHqJYqY39aJS42GHJMPH6OPDyceffhPfb8NX4RWx1GdLClFvwkudUyj5Xq/nx3Ty0df7mjHAj0Y4yHZDQkC8GUDnAerToxHnLzqxLMBdJCskNRUjVZ7djUCshyMdiAUQbTNOvjyul0Ju1JNsxKrLm5lNdZvlLyWvSuxu9VXAis68aPP/2ItoZPnz+SShqcSQTuqxXf//gD3737HkbHFk4ePznefvmWt1+9Id+qwIFb5fPTI7llsBBLxM+eoMRKucedr6evUWYsA2PEBsfleubx+YlK4/H5iVQiHx8/yU05Nx6u9yKHQoILXXDsaWc+LyM5AMIs1wUV8LA+bbz7+I497fhFIk785F/5EkobwjRRW8f+stvxn3tm+fXvHIA/AF+PX/8R8Jvf+bzfjsf+0mGplPp7SPWJd/ccx4G1lvPpzDR5jmOXikAbMI7r/QN/8id/QuuV83lhOS3c39/z4cN7Ju+x9sy+b+SUmGfP6TRz7JFSjrFlbVwvMyHcM00TOSeOY6P3wq9//RXbthKPFW0cj0833r75Ah0K3S58fDpGhrjYpNRYIMWUWFvlNDnCPMk8JldOp5nlKGxxSJqUVJh6VHNGG9xwGKEMMWdKEcLx/XWmqARNo1XHdKFRO+UZaElZRl0mUOJ/Pr+5sLGBLfjJklSSqlc7tMqUFnGMma2x6GYpRWGCp+UyLJ1mfP2XpDte+aCtyxJBKamu9AuP9gWA/PLfNmjqCoyBefaCBjNSEfRRIS3zJBlBRQ5MZxzOOoHTjpGAstBL5zTPLEFjcKhm6Lnh0LhuMLUTgmO2E3lNFNsGlb4OX3yRLDcUusv3b0Vml+2I3Ls3BO/RVhYL2+2ZvB08PLxBtypxrgGU0fjJ8enpkUl7emikWLAnizeB+7cPXK93vPnyS2I6qBTC3RXdK49Pz3y4VTYiHz5+pCPV95YTpRucXdhrxjjPNAldXA2b4e22spgF1aTiL0UIRkrB/f0d3nvIMm831opZond88FD6KwvhSAfHukOXayClTOmKp9sq1uLj4PPjo3QeXuIbumqk9SDmA7Qi1oSfA2EJKAPBBj58+oT1hu/f/0j/PzvTKTCdJn76+IG7N2cuD9cR1ywLxKalIzDeCYhGd4y33J0nSin88P5HTncnQgiklPjNd7/lzVdvOM0n0p7Y8i7pmmYsLbUmlcR8nim9vM4p4xElkbJqQpj44bc/sB4rv/r6G7oR1KHVmhwztWXmRSyQ67b/4qH3V17w9N67ErHfP+uf+/vA3wc4LX+jxxg5X87SHiiY5wXrHKUrnteVb359YT7f8fz0mefnlX2P/PY333K5nGlzleWK1bx9+/Z3qM+ZT+8+cF0kD1m0i9KCLstMV5X1lpjnhRACJZ859pVtSxTliEekaljmmSMJxn8szym50iexjIlUqWKs4/5yR+mGHz8+UUpEaXH4mDE87kra8VYT8zRxd73jH/3mO7qSzKFchOlnnZNIA+9pBlRNModRgmKLR6JSMGeNSorp7sSeP3GeZuaz4YsvG2rXzF3DfggZRw3cWx9YNV0xtWHbiNcwZoS1yYcaFS/6ZZsr2315sUWC8JJ1LnOOwSG0RniVpWIGJck4J3EDzmGNpSrJu84pU6aKfs2Mlkx3AO8szmh6VSNWomKMJhiHzhKH0ZEWeT4vWOO5PW6kXii5jmWAwgDBGFJr44Lv0Bv7tuKqxA9czydarjQlKYuqyiy8ODMa5i5jlkHX0cGy14Pb540SpEK7PT3j7iU9MqaCtp5aYF5mjDkxTc+gBJprrcFiOHKWFrDLfHvdVpy54oPnctX0vRNTxGLHNSF/f/WiAx5Gh1ZkxBJvByUWcpTK6/H5ifrxEykmWpGOqCtIVSDYL8SsXAvW259HCdbgp0BTnT3vwxwgVaOx4pxpSAelnCYsjpgTaS2UnxLvH3/Cz55f/fE3fPmrL2G02aXLJN1NDowi14xFSOmX5cJxHCijeLo9v1oWH5+f2J43VFdcTxdaahKQ1gpHPpjDzJEP9nRwnS642bE9baQ1iRQvWKyX8cC7j+8J2mMnLzG9WSpv6wPb87+Yw/LHl/ZaKfUr4Kfx+LfA3/idz/vj8dgvfohoW9Bs+7YSvAdkISKHp+Ef/+ZblvN1xK7K3fV8upJLRmsvF/+eifEz3ju5SwP7kQi+s+8bACknrqUNYXmho9lSHXfgirESVeC05+5u4uPzJrOzYWfEiHZTZn5i98vA5bRgrWaLkTwicq0dfvXBdZPDWmaDy3TCKMW273z99TesW+Tjp0eMcThvyKninEcPslBVncf9keOIWO2wk2NaZvSiKEgUcIqZeCSO9BnjFHcepvlEcAWXFEd85MiVyTquD2+Z+zOhaXTciXui9EbpDavN0OM1QI/YYAbVaNCSxhtWGckuwiDMwCrP5eQdxiPzJLJcmEoE0bVXyrDChWkaYJT+s3ZWKakydRtwWkW3iu4VSrK+pGLpnZQSUTkmZ4glE0vBafGez5NjPwrUiumgq9hHWxdHGK2+Wmqds6Rc0E14tr1mWo1ocyKWhEOPBE1ZyPTesd7QtCXmiAuW3373Ldd+JdwF0q3i7r7kenfFq4VPu5B5hGL1ot99yaORZeA8BR5vK8Y1jnjQcieYAN5jtMFqO7a4CGBGK2KKPH54pGWosVKOSomFluUmdttu0pJ2XufKHQhTIO8HOSaMtRhEHK603BxTzbjhftGT8BmUFeujmx1HPnDOob3BTVZ0pKazXGcqWRw7dL774QfeP33k4Yt7TncnGWc5I19LK853F+E7dCitMp1n0IqCiOKV1TiteQgP1FzxNlCNZDGVYziJzjNdCe1pTzt3pzvJKcpCcbrdVjmktaRJznai5sp67PgwU+nkFEXG9Asf/7yH5f8A/HvAfzZ+/u9/5/H/SCn13wL/KvD4++aVLx+CsvdMwYt0REsJ/dXXX/Nnf/7n3D+84bvvv2ffIwaBlMZY6Q3WEpmmgNGeeZrwwXEcmxxSOvC0HUL46RIdEGujo8ipi8bx3SdpaXrF9EapldoPqrJC++5SiSgt2suOyJdSLngfMKphnSenQ9ppbTHmBSwqUhxJrmyvre1rlds7y3SmL5rPj89DR6rRpqOtG7EVsnEvtXFyi1xEjsEoVFzv7tnVIWh857meHtDmNhxF8HC6YF0lP3rmk+cUCsSM8TMnFzhPd9Rz5dv9O1QyLNOFp9tntNE0SZwQx40X+KwJHmM7T09PeOe5v7syLROfnx8puywIjNXkPJYYveOdFUDsMgmgoXaZaSnZthur0d2gtcFY+eGdE7hvltiM4xaptTH5ibLJhX3kSM2N5ArOBpTTHDEy+xPpkMWXt4adzuylgqu5Yn0geEfwXhZO1rKXjBvb68lraoH1WDlPohl0wUoWuzcUXV63+c2JHRGLoMaSRtWLhDWeOzUo5vPbwTcw4h7SClUbtILRfqgnOr2V1y6k1kqqwnhsW8NUw/HpIOXEfFr46d071seVHrvESmyZfGRaEokcVeRawQdoktVktCElEWHndKAUeG/Y9o15noRcVJLECjuDC4712GRMo7qMYZTitCyscYUx15YMc3FruaAH/LcLv7RXmUF22Xqfrxe54aqXiNxGHiwVZUSbettWptOC8Y4UJYCsd8jbjZpEc1lKYT1WlpPIiEwxxFvkw+NHzv6Em7xAWHzg9vmZ+TSjGnjlyKoQlpcbtWIOE9//+MMvnlG/97BUSv03yDLnC6XUb4H/dByS/51S6j8A/gL4d8an/4/AvwX8GbAB//4/zUEJEGMip8SXX7zFai3k9NbY1o2vvviSmDJ0iYCwSkuejnEw7gp0zTRP3N/fY4zkbFsrEoiUM3dv35LigQ/hdUlRS+bT50/Dd71IDEA6QEEqDe0C9elGV1VwYq3RdUerMTdB2i07i9PGaA3KYJ0T8rTexKI5oB6tdWJKAgL2nhzFSZGr6MPMoBgZY6Wl3BPaWNIemZcza965XK7Yk6VPnagOjuOgPFf02YAyGONYzgETKk5XMImj7Nz5gHKemDLVG95+/StuP/wZ/rwwO8U8T/z0m48c686v3lzQUZGfEuHk6BG22yEtbe7MpzOX05lBQBCdaIp88fXXpB+/o9RK6QWLJeWMDgL6XZaTRKRqeWOIWLsM+KwmOEGItVrIOeHmGWcsTkOMsv10L9bPXkeipGTOrPvGZXEoLQuemA4BBpeM0SJSr/3nxRu9DwCLGXEkmmPfeLAn0fW2IiATY0A3tmPjlBe6aWg1ExZP6pHlPLP1jckG2hSEAKQbR05sZWV7LvQp8uZXy4infRbWQK0sk6cmuRGerzM5HpyWmVYz6/bM+hRJz5m2NTgg3zI9dupeIXbimqhHpWyZGjuqKnTTpJQEBt2HBlgr9mMnuEBMkZgSDYUPMn/vNC7XM9ZJOuM0n6lUSWPWsKiJ0se174woD7zl5Ba67YTZEysUpPXvqgi9S4OymmmZ8IvHTpZGIywT7z994ME8cAontnWnd6ELlV7Jx8GRDh4eHkSs3kVeJsWPmCfMmFG++NIBlsvC5Cco0GMn1shXb76mo/BLIPfC5DzX6x01VUpukk/0uJJbYU/HX+2w7L3/u/8/v/Wv/398bgf+w9/3Nf/SX8IaTucTWim2/UDTxzym8fz0mXXbiTHxcL3ScpFEwrGdNdbSauGLL74QAGypWBu4XO7ED1sq5DLM83ZsciHnRAgBaxzTtBDCglFQu5j6dSn4aebIUmU6Z4lpiGW1GkN3gWH4MFHSJhY+5NA7nU6Yz8+D4C7iV2MCwQeO42DdHAZFqTtdWWrX5FqJ6Rhb8gltLCFMlChG/1La4BdWlFM47yUi1Qkc9uLuaBVKgdPdCVUje7xxXgxbLCgrM6ja4P3HR67TmR/efyAqWNrEfDnRd4gl4+aA646zP7F+2uh7oqPR3mGmwBYTYZFs6mmZMc7xvG8sl6vE21rNuw/vZJlqjWguR4yDMhqlGqp1nLdjENxoIBpMHDklzIgI0Vrm0dPkccpS90LsB6mmn8kzMVJSZ/aLeM0HUq/VRIo7OSe0C0zOoacAzmO9o5QsUNp4UEuhqihx0qpQycz+RNcNjObIG6Vndr1yN98Te4TY8RfJwjlUxDtHs6IzRWmMcWw584/+4h8zTVf+7t/5O6zFcDBzNEv3F5o9sWVDMQbfDKlp3n/4QNs1PXdujzcCgVoqLUoVG6bA+nmDPMj1VrOtm4CAOxz7ISoQ51n3lVqqZE0pqeJBYhSWRbbv1hl88GODXpjmiev1wm1f+fz0Gau0aEgtciDazh4zVllyTTC0j9po3DxReuL6cCHVJPPJ0d4vy8IaN5TRvPvwnjWutNZYTjPrtlJbY5omUbR4w3qsQguw8u8yRjNPgXiLxCzLnUrFOcfj0yOXcCHXTKuNy/2FSuXz7UlyjZbAd7/5nn0/+Ort13TTuT2vVNWZJs9tv/3yOfXPerD9i/gQG6ImxgNnDDEeKGCeJkoS0rbqlXzsvHm4EmNkmmSDVnKhWMXt9sSyLBKhW/JQ5EuwVquV7XbjeneW6FqlCG5wE3snx4S3ohVrbcBnleTQBO95um1YY0jIIklpPUDDYsN7wdPnUuhdquQXfWAtRRxEWlzaR4wEI174IyWkr3MoLVbA223lUAe1gPYTtX4Go/An4Wc+Pz9jm0OVTt4zLRRM1szmRNKZchTyc0f5ymUCqz3P6xNXI61nLYmmFa1pcgPvZ7SqxFui0TndXZj9idoSl9OZ2/tnLvd3XO7eYprh27/4FqxhWWbicZBzwYZAU3B984anp0dKKsynhWmfSTWTkTcfI8IApYYbSo1qWiDsfSzCJACuUVthnhZUl22sMhLZehSRj1hvCWYibhmlZYv/Mvu+LFfiGiX3vVeUEkePmybsPNOdx86BjBDb371/j7aKefGYVthj5nq/CAxEVQpVWJyzJeVILgkd4LbfuF6unC4XnHGorllvH0ThYDzNdFwINCbW2qA2rpcHfPdMTGxFs5ZKzpXWHfvW8H6CAb7oUeRYJYte1xpLrY097aQiN4taMy2LoqHnPpYwhpck0LhHjDEc+cBqyzRPbMeONYqUpZoK0yL5VlpRdslT6ggvNARPBami0w5K3FKT8thJoki0lqKnjQiJsARyEVvu49Mzd1/coY0m1cK8zIJpc4rbvnF3vWC85TRP1KFpbjTuHu7RSpOORDwiWmucc6yPN67XC/FINJpg2GJ8lRLZweLMJdEqkt1jDPdfPBCPyIef3svkvSqcnQiLdCaFXxZa/kEclkornp+fR8yA4Xz/IO2T0TjryCkP6lBl36K0Cy2hNCynQEq7gBpypJYk80JkH+OdJUdhOPacQHVpz4+daixWKXrJ9FyoDclz6R1jLGXMJHPJwzc6PM0ocUR0gZ6mlMkx8f79D6RcOd29YbneC3ZOBIziKa8ZbycZtLfO9XqVpYKdMHYi5YpG83D3AGhKFyq28ZZuoTtF0ZXzcsacNe5iMRdNdgl9MmxPP6Cr5Zsvv2G6y6j+Dt86Jh04Z1B149gbyszkCrcj8jBZ3n3+wKnKAfX+3XvynLBR8+7zT5iiqekDqjtqbOQtsm4bb64PPD8+CSHo2Cm9jjdDxjnhFoZlJq1lWFANfvaU3qhJmIYN0F1hncE6I9i6GkmliS/baMmjbmKfMqqMxEHDfJqZ3ILplvfHB6z3mCa8UfHqV2oRcXKtGcknLKQU6dZwd73y/vMndHDUeaLUxOwtCqHiNF3oauZyuXBLjwIc1l30l02cXwaNMYrSErVnOg3rjSQuHolCI/cqcQitYkzgth9EVmLP+POEBuJxoPXENE10bYhJxjbaGvZ6iCU3i+SIrmQ+WBq5FI4jcp0uUBvdNAyGksuw/Cq2fROuqPfjoBVtaAielOIraefTp/dcLhcu1wt9LD6VaoTJgVlkhFEz1ii0M5SSJWfbyTSm9EqpgmDTTotY3IgOE6f49PkTb9wbUk747mmqcbqcBNqcD24fVx7ePmCt5Ug7sSaaaiIaD45pmcixkLYDNwT6sQw4x+RQyEzbGunucsz0Ck6Npc/br3nanjhdT3jvyTHzws7Y8yHLntn/4jn1B3FYAjzc3XF7fmaeZjSwp414HHjnmOcZrRWn02lsv+UgzFmClZxz0mbMfswNFbVU9mPHWU8phRCuMmtUyJOoZXkQ/MS+H/ThoiglD/q6DMf9PEvokmw5ZElDExq70sSUxAJoPUcGlEVpy/l8JYQPxJgloqJ1vPeknHBG5nyhSi5MV4opWC5L4OnpRkwi9TlfHqSN2ze246CqQpg959OCXTSRREsj2e504ZZvFJUxOFrNeD/hVOfuZHD5Eauu3NaPzOcLV6UJdeKkI+5kmFMlf4zUW+Yyn/HVke3MJZwpeyUfkmL57rufUF1xuTujlEQT1Fa5O10IU+DIB7fnJ6Yp0FTjdiiC9XTN6xsuDxsfBtGgVonPHUwlcbNojVZyIzJdM88z3XdqbChrWa4XPJ605fE5L35rgQ/v2y5Q2tqYlcVPhu4th1b0oFh1Zu2JO+Mot2embcMqRXQHbx4uKAdusuQaOV/P4PqIaG0SmdA73lqms+V5e8ZGj5tk5tZGmBfasB+R2lbc6QtqB+8cW4w0a3m+PVOU3Cj3VKhHws8PdOWYF0/ZdpyTkUJDEkvX243LdCHFJJi4KlrV3gZOzygRya9Rqu0+oLmtDOnXiAY2isUvAKQUqV3JVj87zuMQ+/T4Wd4XU2BPkdIK03kit8xRDlJJ5C3jFid536Ux6xmrDMoqtv2Gcidprc8T67GireL5FpnPM8+3Z5bLAl2xbTv1U+VyPr/aZl3w42ZXKamInZLOPAe2HHnabtx/+ZbbseO0I3dJXs2tUUpBNQE9P94e+Vt/82+JlTZLbEXNldN0Zj+i7AsmLSOtX/j4gzgsFeKeyMdByRk/gpGslZM+l0ZrcjhK5k0n5cwUxB5Z9EuL4si5AHIwDc002lqOmDktjtYVJWcRPmuLcQpiJteGG5IkoxSlJFCalF7uVhljLR2NsY5SM7kU1j2yHIkpeJoO1FpZ98QXHay1w5kjRJ2Us4B+ABsCYZ6hVXKMpNbwRmEUTCEIIKRWSmtYo7FNLI41J1SvUnG3zuQDSSW8NlymE0880XOjZCVgWzdhnEb1gznc8emHPuRDnRojra/ce01sG51E6RFlmhgCkmyyKwUfLKYZRvYYyjTmsyenQmuGWg5yrsRjR+vOfJp53B7Z44a3E9Z5jnzQtcx0G+J2eSlttNK0VgchRzLFDYoUIyUW6tS5nK+0WjjKimmGmiPxSDhrBfg6vOC3baNXJW/wmCFXulNkGslpmq24RfPN3a/58c//At8d96kRtIaTwSiZv+WWQXuxcJ4dRRes92ClVSylQpL2N+WE0YHz5Y6mznz89kf2VDFmotTO7emGv7yRbXxtxJqISpNQVOdoiDri+emR3s8oLWT3tj+LO0XJ8+acE1OD8+zrJpHJWWDVqonuteZKrkkKiBFr64MXm2Nw1Frxk+DYQgjEzxFlNcYaHp8fWZZFtvtaDAlHjjTV2NJO2SvG6wHXOAg2kHKkdUmCzCVCseM1FsqRncSnb4yhdImTuO2r6Ja9frU0xhSxSQwCQiSKHDEKSDpF2shh2lLEG09WDbtMTG6mxIJbxnInCWg74CmxslzPwoiIZcj/FE4HlDPY7ugNnj5+5Hx/+sVz6g/isHyJZHixi8UYhdpirVjfkDngum5cLmdpV7oMgl+kNp8+fSLnPPBfaujZYNslze8lQzylhLeO1iTHWI3HlZK5h1GMVk4WETUL5VsbB0jbbbrCOqlil9PCvh/s+0GYZlqrr5DR4APwM7WnA/pF0v2CdqtFcpWruHxSOkB1phAoueN9kA1vr1zvJr77+B2tNvKRcZNl33b0oji2A42ipsocFrq3pLKxtcRMxRjZUho/Y6cTyzzRdYbY0L5yd5q4vnWUrZKPTLhM9KwwzeDdifXzSi4ZNzt66fiTpzxnplMg58xkA3f3d3z4+JF1veGDWDGNEVUCw8mkjOS90yXK1mgjCZuIFa+WJgFjrb2S7GutpBTJOZOLxAW00pnDTI3iTfcjXzzHKtHCKFKt7L1iZkeTlTh+cvTgSMfBH3/xJbx5g/54IxiNoRNzIuhpQCg0aKi9gBYSEFqCrY5yoBdwZsJ5Edz33mWLbA0+zJRtB6PoXZFLReVC7gJ2SRiq6TQt1XNThhgTqWtiXNFN4drEPM+UVkgxUZNoU2urYjUdPmuhPsmop4ykQuc9bcx2exOZ1gthK5eMiiI810VjvRDIwxLYPm88bU9czAXjxShxxCR5ObrLwqYL49J1hzKKVCLdwhQmtFeUJlZeZcQ0sB8byoNmlvd2kaC23DJrXPnyqy+YT4GnHz/RSHQ6D2+vpLwLVQjJ7Km5YifLlnaqbTzdnrle7jBKZGbLw0LeM7dPK41G1Q0TDKVlabFtx3TNsUVUk6WRakJeSi399agsAY5jp1bBJBltpFK0MmOx1uKcI+dM7+KhBXh6emSaJ6YglJmXDTcg2rTWuL9/IB4H+74z+SBC5pxeLX7DVb71AAAgAElEQVTee2432YJN08TrIEMpcm0SzWottivmSVG7po+cbmMUKSbisVNLZgpehtytsa03/Dg81YhK6L2N6rSzriveaJyBdV2x1uH9LEN2JRpKazWKjjWGOUz0F+1c6azPK4udxZ0w0g/P1wvfff6O29NNtpeLBKQ1fYD2lBbp2hFLI6OZwoImkcoza8tYKoXCPM2EOeDfBHTR9EN86C3Kguvp8xN+9mgjjptW29h2V+4e7jjyQZgm7t888OOn9yKNygXV9YA5NCpNoB+1DkeL8Epfoob1gEQ4M9GyyLVutxtxK/gwo9wIUTsiuTSsE5/x9nxgtUQq3Pad6gUZprXlermA9zzFA90S2/uP/OrNWz5+XvGTQ/VGdZZaC61IJWS13DS11VhvKKrQlYjhbdGoQ15To5zAHRAt5eVy5cPaaVhK6sScaamQlCVlTeyF5irFdFJrdK8otdOGp5+aqBl0lQXYNE9sUfSOqkg13ro8h25ypJYEoFvawD5LSw7CMjjSIcwBbSitUEa+j7UWay1maCrvHu54XqWaFR0sWGfIrb7CRPa4kVum6YbrTqrFLvG0Yv9BcG3WSJDeS2igkXFCKZVUs1xtuXC7PWHcmfkcePz8meU0c14WQbONcMHL6UK1luPY0U5zpIPT5UTrlZgjpWWKLtTUsJPlNMvBedwOTndnyXpqnZyKKDCayKm0NaKo6JnL5fqLZ9QfyGEpL6q1lm3bOS0LZmgt9SD7vkiF5nnidruJrCRL23Zbb5QRY9kGtl8pxTQFem+ESTyz4hDaOJ/OaKeHY6SNu7XAJLTS+BCk/qvSClYUW3wWsK/SIt+hUWvn2DbRdY6lQikyO0spMS8nnLO0LtWI6nKwVCMQCmsNteQBHnUDRmrHDeMl9EHEyVOY2FtENU1NleV+QXdBqlmtyamiGhgc+SjYS8DaGWU6R9nxFkzXYAJH7uypE5zH+AVdK+gIunO6O1FvFZzieD6oW2WxCwWxwyknSxwM+CmwrjdOpzOTkiXdEQ/ZLI4o1+V0IjVJ5DOMLXjvwrtScjhqY34GdyAzzN471jqpPo3BaEvcokiVwoRxhudPq8wrrSOVzLrtUvErw+Pnm4BFvEUvnskGAfs+36j7jvWBbjfW9ZA0IaMw1hMWgf1KCmGh4QQcYaRN7bbjtWdxQgeqXW7KVovmt2uxs+YimeYqnAjTxC1LREax4dUsUFWTGW7XNAqla4qutG6oudCSoh0R2yyLXgZ4WrSfumv85GlxZOqoDrpLAFgTcG7NBRdmrLUjtljmy0oJxDeEgPWWIx4orbiYi/y5XjnyIa07oq/svVF6YfYzpg6dsUH0tNbI52h5XY3TI1scGIQhIUSJ773VSqWgnRHKviqkHJmnwG9vn4UtqjoPD/csy5mcK0/rE9vzTq8Kbz1Pn26kktjjQUmVGos8F1XRc0cVRT0Kec9s+40//b/+FKft62O9wjzNAlSxTvLa91+GsP2BHJayoZ7nmXVdRxKjVHovB5RSsO+fhNajlbzASixaMaXXqu3FgtcZB2eXAfZxHFy/uuKcGz5uA03wZcYawUtZi1GIK6NJ8qLceSV2Yl03cgPQhCB4K+8drRRSymigIIl5KcWRq6NFUK80StmBTGuvi5HeK9e7q8xQUbRWiGkXvqebhR5UZQxhrOQlxy1yuluoqcodvFl0h2ONLJPMm3S3HJvAWXtRHL1RcmLLjVsszLrR1IZvOw9eM7thI1scLcPH50+kI/NwuoeuOLkLPTXsEbGz46gJqy3hNJObHBjaW87zhcfbE6lkugHjpG1vDbzzEq3aR9yqlTmdVlJhavUSiqboRQb6c5jEMKAt6Sjy5uqKXBrrbeU4Itvzjm5SwWgaT9vKcQg02GjNMgUWHShbZP/xvdRdobLlxkbn7fUOYzQxRdKeOc1n4SA6gcrWXoklSnhbLzSqjB965IibWFnPlsmeyK2hvSN4sC5wS4m9iyd/ixlFp4lvEpShNImRO45MopO6hn6m5EqwM3jQWaJT5lmAEcfzge0W552QmzoyDuo7eU+EcGKaJtanlVSS5K0r+XfQpV3ebivKKC73F3LL5Jp5fH4kzAFXHafLidKkwu6qCXzbCKH9iBtNNZRTKCsH+AtJnzECULbLjbVE7JivNyZKzRxxp/QiMr/W5UB3UOrO5TKzH8+0noAstmXVqTViHLz98gt6U3jr+Hb/ji+/fiuhd1XRchfpVCzU2JhM4C/+/P/m7u0dXz58Sd4S9s4QXBCddOvU3Kit8bg9cvfmr0Fl+XMkpdgczVj/l1IwWmYq3gesdcTjkJbBuVekmPce5xzbtjHP8+thG7zAUa1XcByUUnDOkkdkpx6bc+scHOLueWnD9YsmEDWwVoMcbcR3XJscoPK5IrYV5aCW4KuU5OAfekFjpUJpvYEaOLXemOeZQUcQSccU5E2v5eAERe8iiTGScUgrjRwLWWWWMA18mcJgiFtkfVoxF4ObZ7GH1sJy8szLBTudaKbRTUc7xd18ZlY78fhEPaIAk4PhzfUt6l6TblEkObFIheUVWPHjpiNRW5ZlnJbnqNaGmzzdKJSzKGsxdIJ31C4Kg9o7uoo9rrUGFZRuUMemVqtXhuhLLstLntJ8PnOaz3z46ROfHx9fs56V1njvSGtk33YZW1RwxjFXCLXhK9wbTy4F0xXkgp8CWzxk/GGlQtNaEZZAt2MD3gWZlmoSSEPcsN6iJ83d+crOQUw7uURq1+z7TioKHyZqStKlaOGIatcEIN0VqVQqVVwrFar+OYc7pYZ3Ga+Eaam6hO29jKV6HlTM/sLGFAlep8sBqUXCU/PP1SQacsqoosSy2QSSXakyG7QKpxxHOmBHPr9mci+vWTkKx3JeKF3wa27yPG9PYEQCxmjVl8tCrFEcRSVitJWtve7CnTUdlDAalGoEb+ko7u9PHN8/c2w3pmBp7aCUzjQZokLa7dTwk4w9wuzYb5L82F5GO+Pw3tNOqokv77/gdJ2JWqMq9CJMTJrsO1puKNMx4a9BZSktsmQXt7H2l3ZUZlySAdKYpoB1nk4V/WNO4rmuBe8dT0/5VRrRexfBuDZMzrPebqzrKnGYwkaTdpAx6B4XmhqPW2vlTa01fvAWrTHEJBa7XitNSfBXr5U//qNf03vj3bufeHp6ZF4W7u+v1FbZNtkQY35mdyr9AhApOOvFxKI6YQpiR2sCijUGjpSwdpJQNSyqiQXMeIPBUo5Co2NnacGc9gQjUGAXFvxcUC4LxcUGUj3oNpBaIdaOoaOaZtaeojS9bGQKwYnjR3lNy1msZ7Ml9QxOEYw4oGoRMHIqgobLVFKvkDtNK+w8UXMZ5PT2mlkjbh4Bazj184Uqh+QQ9Y9IYmMszslN0Y65734c5JhR1YwDUKyhvVTmc8Bpi2twbhoPpFS4KEtxlqY13QqJpmmFDhYfHHtc2Y8Ne5KgPMnDroKYQ6IL/ORRTlFVEnKP7a8HFU2MCuua2Y+CtQ633EPWuBxpRkz9Rges8nQ18bwWMH4YGjK9JdRQVigj3VMpBd9FSqOaQjUlbXUfsc3dSguutByUXaKljZW8KZDrq1FJJTIvUlQc6eDIhwAplmkAM0RG1FVnT7scQtYwzZMsg3SnV4ZfXA6e3DJHOgjWU1qmdS9dzSHg3SlM3G5PUpFqRcwHhUgIDnrDGGHp399fuN0+8fnTJ2K88f79j4JLVCLfO+KNnDtxyxgnsF+Q6JjcEpf5wnpb0UoR5onWyxCdy2PGGpZ5JifJ/qmpiMfddO4e/hpUlsLZk4qudwlbd3bID2qljkVLjFFS57yn1IhSsmXsvY9ALiPugWDHHNGMyAeZQ77kh7/YEl/iW0HmaPu+M4d5/JV+np+V8T2M0aS0obTBWj9SIi25yTJgWc7Ukvjxp5+GzEO2+d674VqR+VytTW4OQ+AeU4QghG1jFL1LuxlMoNYXIvskbzIsJVYoiqMclF5kO208zngmOxPXiOlWIBwdjD9R1UpVCuUX4pGw4QS1E9vO7E84DbpZzLKx3W5klUWIbTtVN1JLeCORBVU3jnKIMwRDCIFlXrBhUKKMohvFnhKxV7Qy/w91785jW5amaz3jOi9rrYi9d2bWratbbWFA2/wKJFwsDBDHQjhYYCEdF4SDhHSQEMLiByAkJKzjHAw8jo64t7pPZVdWZe5LrMucc1w/jG9EVAlBNpwGKYlSKbNix469K2LFN8f43vd9XqoBO0VMNfQKYi3inKriRr8u1gKi7oO3r1VXBqK1bhC5NWUSXlcudnSxC9SclZlpLa53Vu+5xIjLjbI/6HtW0pC1dDO+vwilV7xRws1kJy0LSzvP52fMZHiUB0c6WN4t3O931g+aEQ9zoLlCk4LRwhN9reDxPiqUOhmu285hZrXF90YxWqMhWFLRyhMR9d5i9LUpY5DNswqYualKXGrBdYcTXRXlnOlZe76j1TbNXLK2e3qrHsuiQkqngR+CVbDMcdZk2WEGti1jxJBbJk4R4wy99LF/1JMgThs0rQHn9WPFKCZPTMOMltAtbbz/5h2f75+oqAizPq1cH1dKO7g8n7BO2PY7y+pwTit4n54uvH//zO32gkjjsb2AdM6XJ0KcMDjCZFUIOq/EcUDopSt1KG1cnk84sdy+3NnLxrRGJhNoqbE/Drbc1fJWO/O8YAPEU+S2v/zomPpJDMsuwy5itMejlo0+ahysMWpGHY2ArfeB59cdZe968qjDi1lrA8lKsB5szC5/OKW01uimv/3ZghkpEj2xvAIynHPYAbAsTQ3B67Jwv+9qMkfrK/Ra5Ni2O7Ukni5P3O93vHfsDy2T7025gc45BC2Hymlgvgab0piJED3myJSSMUZfPK0xopDKRwze0+h46zn5lSqV8/nEQaalxhxmtqIZ4ZY7tjiQmWYz1Qh2OpH2K5VA9DOlFrZ80AScD4ib6dOETK+0abXvhDWyXfXzdivYqDWstTWeTjN72jHG4aaAWwLVinZu16LQYzPWGTEyRa+dREEBx0a0rri2hre61sA5QpxU1bf653jvVZQIfuA0R7tka9hukdoJ1jG5SMDgukAulD0p6LU2KqLXYG+pHmJwBFH9uJUhXE3qTdz2jSUuzOtMd6rozqdZr3pWVFU2BRMMy0n7bzLKCj1S40iG0gO1d4p0qoD1QelIMVKbx3TtUydOerupQs4J24x2gPtCIKjJWvTmZboZ3T0yaiYq9ISNFutG91Gtg1jF2wlULBgxaudJu5KUfNBmz1boRk+zGPnDLtJBjBFjdZiWQ+1j3TRq1xUFw3HTRJmv1htKzRw56W0E/fylZGovg3taSCVhXQcapSSsFXLeeX4+sSwarGgVXq6fAGGeT5xO7wamruG82rpyanz1/BWs8Pn7zzSxesjqlcvzmeU0k0byb5ojx3ZwvpxVlc9qsLfe8NU3X/3onPpJDEtnHZfL5W1YpuNgec15F0VxxagvmMe2czqftYrBGsowsWttQ6eWxjwtuOHPPNKuanSt5CPBGJx2ePi6aC79SAcpZYIblROjjwZjtLSpCC5EnAu0UtRQPUzsxmosc55nLVWaZ3LJPLb7GOAF56MuwGl6gjK6eihVYRG1FvWNOkOXVwuVXvOd1x2nMZ1pmrlvd0VSBa9XdXHMbgIxeHHaYGkjR9NscSkW6yaaMfj5wm4+slW1aDmr13HTHUXU6rI3gzufaI9CvEyQYXvZsJNlCQt+8YQ1MJ8W8pGwk6MXIU6Orex0K2zloFmN+6VjA+tY1pU4TzgrdNHIY6PjB5pMWgHriKOjJ4xunFY1MbXEBefVQvTp00ft9rFqbTGo2LDEicVEbAHTtHiMUvE+qkEbocfA0QrdWfwciT4QncN6aK4pSMNpPasPnuYbYoXPL5/58MsPxDWSyTRTWM8rB0oT346dz2knm4kmE8Z6BE8MK0e2dMnU1rVyuCeO3ijNaV7QWlqRcevR741xhnRoEicGVb5LUXapjyrwxBBVCZZhz2FAdgdMQtc5unvV9k83uAlo0diI/zYa2/FQ7+EYlKVpPNiMVUQTjeN2UbW9F1XIKzowXXNUKUxhVf7q7YuS850ZnTsWObTu13mj5WzWktKGNRHnLKXsPD8/8/XXH/if/8f/CYxhmhZarZzPCRGIcWXfbzx9c+F0WrjXB/M6cft8H61iI67c6/C9Gm6PG+f5pDHLp5OCRnwg2MDnl8/8+k9/zfK0/Oic+kkMS00nqOLnrB0MbpSaDG9lSyH4t+TENM1DCFCLSWuVGCZSTxoRQ8tOnHcIOkSlC6fzmXmaAd6sQ8ZZtm2ntsblfFF8F6iCbR3HaLrrqJjUuqq7U5ypVa9HRzr48OEdOSe++vCBv/72nyJVadQhxrEf1bicXrWV7mKMIYTwVigWgh+riITgKaUTjKdW6KK+uLwXaIaWheVyIm+FMJiFVjzpkdmvO/EStT95Lxodk0ZwM1kczc080oHxjuBnqmmkDnG6kMXzaJ1gK5dZv7bz04KpBm8DzTayKSwxsEwrtTTieVJ7Co3uhE+3LzSBe94xLjDPC+3Vuwco7VvorYJ0grWIKGTWOsvkdReK1Q51b//gtf3222/5zbe/wXRLcI7odI9tBBYX8VWtMSlnTG8Kg1hnwrLQWyUbsNWoxy4G7bAxhnWekFkTYXiws15Xu9UrdyZrCikLBwfZHViZCbNneVqp04TrjX2rZFFBaz8yJUZe7pluprFGUGRd62qcxzqqaEzPe4+xGtuMbgh6TaOmGtudKHuhtortTnF3zv5hh5l1neWCp7WsJ8rXZdM4INCF/diZ11mhM6I771wLzmj2Xq/sepBp6M7WOK2IeDulejPUZF1t2KD2Kj9pD3xv2iff0IBIaQlMI0wWb4StZmKcEGmEYHlsd2IItJr45c+/4du//iuu9xuvRQwvLw1wvHvnab3gg8N6w/uv3vPxyyesGE6XlXJUpAnddObTTCqJn//yZ6QtUaRo93lUr2YpjW7VmvSP/8l//6Nj6icxLK0xBKdVl+o5ZNSBKmDVGCGXBOjgNChUVDPcivdChCl69u2h1zKn1gDnVE2Zwsyxp+Ht62+NeNZqgieGSM73tyd7HVaW3hrLPFNqJWXtAscYSi8Eo+qls+rT7L2zzDMYw7IsXG839dS1V1I6dKm0bugEjlwwPuCNdjljLa0nei+jaD5oYZgzPG53LpeoqwcDJem1lG4VS9cN232nhk7NQitA7oQ1ctsSy1PkftyZmvDIIH6l90TqUJ1jCo7eHyCwd8+jWYII6fGFhcj5aeXx+cGyeJgdRSpLNORcdbeFZr9diFw+PPPy298rck4OpBXKobtmCtr86NQ25AxqcB7DIY44n2L0qu4221B8BfZt5+XTF2yzeHGsYUaOjrxe5XOlNa2mqKM3aJkn+jpRve5+U0osIWKco6dCOGlXde5qnD9fTvjF8/H2EaoQzoFpnTgtK/dyhyokOXBB6VHeeMRZmrWkVmkYKtBGJQdGv0fFDoNltFojIkJpndSbngS7Y3sc1OKZetABJJZj0wHtUfN4K41925ncpEZxbzFi9fQ3BEOxguSxphgtna+OAjxIUy6kWK2UsF7teX7SUERu6e2UZoeSLlZoqDf0TSS1XR0cqI1tOc0qJJmRz/YKAsZ1jUX2wrpGZFTTOtMxvHZ4F5qF1gqXy4nzZew4a8J5R+mVsN+w1vPNN18xzZFUD5x05mWCbsgPrVL2PtIGhIMAL48rzjhOzyfKUaBBpfG4vWA8LJeZ5+d3PzqnfhLDUlDTtrNOy9hzZt93Va7p4/So6nirajrPSWkszqghXGeYcg9B6whs0P2jDCHFGEMtmqsWgRgmai0YtGfndr3x2rSof6ZWQvTexw9wGd3gemLVE8Jo9BO1/sTg6dLHlQ9F5EvX63tTXJs+7b12Ym87lq4na8xI/BgalZJ2pBva8cA4SOOBoSAjgzeRYy8kW8i2wYoO3NTZbgeneaUdWl37+ePBfLbUDsVErqnz5Feid2QOJCf2XAk9s4vjejSel4VlXfiwXpB74WS0C2d5d9ImxWhGFt9oAqY7zf9+6UznmXy/seeNuEzs+aCKDnuMpxQDooOzN6208M6A1ShqlU50HoN9a4Tcjo2P3/9A3gtziJCEehRcNTgxlCYcWcUNMUYVeWNY1hmJgW6s4vMG7d6ZP+oNil4BH6Xycq08x2c+fPWB63HFOK1hNdYxrxNZMvNpQqIOiDBHJHiqGMQHtVRZh4xumW1PGBcoBfzscD5y1E6uHWO1w72LBbwyS3PDtKy+06aqds+6n3TjayxBBUFrtLyrZ82Eu6j73Na05tOOWG2t9U05b73p/9euEJroPSCDXaCrpdIzfqR9nDhtDAgaG24MYamJ7i6N8kutn9TQvu9kyRQpb6uTEDzNZFw3OGcovbIsHu8trWXysSGtIE1AGtYIv/rVL9iPB1++fKHUgyNXYlww2411eWI/bgOy8eD59Mzz+R2n+cTty53tupN7IU5qoQqrCkHff/7hjSkRlsD5/Zkv1y/My8T9cf3ROfWTGJaDEvU2mBT2+torrQPQez+6tDOILuGdd6TjQEStG9bqlfZVWX8FWXjnAcM8TVroPk6VrZWhjtvR3wwygLS9NYLTKGHKmRgC98eOs1YX6sZpUgg1WWu/cxsKeydGPxI67W2tIKJXTyMM3mWj1ox3BimVl2PHOcf9fmXfnqgVSumU0pmmE8YciGhlxg8fP2K+WBUYVoPfA9ln+iy00Pn4209cjzusYC7Qj8aUGx/ez5hw5uWRkVDpviO2MXWI4undE0/vSWLZq/YdfeJOrLo+MB2Wy0TuiWYaNmq07uXli8KVuxAXT71mum2cn1d++PxRrV4t4Z1n30FaJzhPioEpeiav4IbaCl0Mmt3R6yRo/cD95c7tetP2z5LUJJ0K0p2qtq/+WQPTonTvlDJHyczzqlDnUolT5POXL0x9wsfAkQ5mN5NzYn230KSypY1eO+EUeGwPvHE443n3s2fynglT5JAHpVSWcKZ04X4khJnz5T1pE16uG+70FWuYuV8T5+VMNhNH6gMTEii107reFugOhzonEMNxJGY3sywnmhlE9C7UrF1LdnKaj89C6o/xmtVTdWsNF9ybN1M9yVpzUrvWI3c6uR443OjlbpSmqzC1CwWoKsQFY2lGB6a3+n1uttOM7tiDD1hveex3xAmVRh8AkCaF0oVcdjAV7yLORdzwWnpv8N4SwuCY1kItma+/+sC2Pei9cb3e8M6ybVdO65l9vyMCNTZiWNjSg1oanqDd6SWrRWqZ2I67CnUh8tgspWvO3uIGGUlYLzPI/KNz6icxLHtXCID3nn3f9QRYK/M8jRihDtEYI+czXG/Xt/z0K4aqpjIGWUHQgWfdq1VId4QxevYt4719U9hjjDjnSKnqqagU1nmlO70ae2up1mphlHMK0hh0xN5f+7Z1x/TaseOtY5kXHZBdrzGvaR69CkHrRWsu4gdO64IfA1sEPn36SCmJ5+ev38jvvVu8mxECx5EwRnj39KxK5GKQSdjNjj8Hvr9/TySyhhPNNk6nlT4LxW1gCr//dOdpeUdAqPvB1u/EtuHLlZOvPD5dOR5wCZ2n2fJCZqbjUuESTzzqhhdP+fQd+2NX4ovVBxICj/2gtMKyBu47TJOjS8EYR5NCr6P8jUbdE9bOrPPlLStujMU4P5wPaojej51t37HeEt1EO9R4XJ1WGFT6uI4qwLlbg42eYIxaztaK71rBmo6kNwSr3dsOh3G8lanF6PHR0YYfcL5MMGmiJ86RQCSVAzs7CIZihFKF0h3NenIzuDjx/ut33Irjfs+0bjAm0LqegIsBsR7rGPFGZRHUKkgz2K6vne3YSZIx1WIq2oktI90mKgC11jDozjK4sacXoeWqt54RWTTj50CskKuyLEMMOK/VEtJkmMYrTSpiVJRxI+KaSgIx2Djija8QDwPzaWI5LaRyDJVe9/FKLdVgRggOY8JIcAkhaox1ikEL7lAHgrIWzlhn+fDhPU9PT/z2u+/4m+++4zgOXl4+YW1UAlTRNVvulV0S0U0EF/CTI7dE6ZnSHOVR2OzGh6/f6dqkCT98/5EihcvzBRsMOf9/U1j2//rba1LjdXhdr1eMOQ+FvKrB1mlHSK2Kwc85sR87l8tlHOebfuOljwHZ8S4M646i10ouakhFFXakU+uoaLWWmstbkVgrFbwb01CBFqUo9ioPhVaMwaA+0VZG7a1zLLN62F4bBBUUbJSmNNRbUESWc1b7fUZp1ddff9CenmDoXTu4e+8sa8C5hRgtpRw4q1DdUgp+CngJ+K7/dOLxzas5/VHZtp2nX17wtvHuwy+pdMwUmdeZi3/ibDOuXAntjrTCabV8dYnMJuP7gW8JCXeOXAjniOuWn331DelILGHl2HZNi9TGc+/81V/9U7oUbOiE2Y701Gi69JpnN+M/TVS1bFKVN+peWZdoX7UPXO93tv2BjwFJwno5UbZCSVVBG5NX0IiFXjpHy4iBMHnSrhliYyyXi9YOOG8prZBT4RwMrjlOTyviO2K1CM1Ew3xeKJKZpwUbDUdL4NSsPc2RbuDL44F3E9N6pslElRlbLJ8/PXhUR+mB89N7qjtRisMUQwwnugTytpGKkGqnVZBioWn9rxFLq5VeK8FE3ckdRUHI4rHeQxNEtJ5XmhJ+rAbvdaWDUceAcUNUbAoKGVFgqR0x7S3LHfxrTYRaheIcdNgaGQKPQYwq+rW3t8SOFo3pXtNHFSnd5HTYTg5j2lvaznl9TRujgOZqDTUEnFMrWRsdTEtY6a3yeGz8xV/8Bb/+sz/j0+crf/m//hW3+0M1jenE+fwO8PRioDoVPsPC+28+QG3Urt301+sLL1++8HR6Yn/semssx8AdFuzfMg1/EsPyVREupfzh6uz9YOCpCvpKEeqiQzXnNOgup6Gkt6Ek69Wrj4hXFyVHex/eCOr6RZ4HwMRzI8IAACAASURBVNcM7yXM86Kwg+H5BAZUVdcBc5w5jjLSQztNyRv6A9/0uvx6vVbKu9ddKror763hnb6Ia68UK1yvX/j5z75WG9ReCN7hveHzlysf3n8gRr2Gxui4319YVwjBsG0JTMfZgA8zzml7ol0sW35AFhY/v/UwX85nJAk9BbYD1qj7wUYnVSVgTwS8m2k2cj8S37xf2FLl/XqhH3B6v0DeaKazf7nhV4+bHC03/OqZ7UTaE58+f8ZGeH5+x5YfzCVQisYIc2pqyzK669V2RY/Qx57MY3rlXopWEhvP1199w3Fo0ZaLet2zxmFEqzo+f3pRAUJGBitYpOmtQ/F6liOrS8JYQ4jamePUPs60DluXFY0BGg1FvA4GN3m1zThPrhmC4fR0orqKmxzh6YkaFlI3+PlEZCIfB00ct/uBzBPGeIyfmfzEQeOWGkksWE30GLE4G3VnK4JUoWXtA6cqHNpYo+AKF6Doa1LhGB0j2nf7uoqSJqSm1bvW2ME7aLqvNcopVcybDjitkHDaQddFr8RWq3Br1/y+EfPG42w0uld6u7VaGpbSQUW1Bwb1SFBQRZeqMBkbFCITtCm19UYMDulVzfJGf7b37cE8K/zkw/t33K5X3j2948/+9M8pufG//eVfcXtc3woApTt6c8z+RE3q2w4mMDlPbp1931TInSJYmNaJ/bFjvCro1ukh68fefhLDUm0k5m1wvf67GRPLDPjEsizkUWS1H4dCSoMKAhiDgDYL9qZdN5Mi2cyYWMEH/WJhsE4X5wjDk2lxrlPKTu/jpOm1vpaRlmAIPxrDdG+xvBgDhvY27IPXveM6z/zw8QdcUGVOWscGvV4Gb8cOk9ELBDkfWDNRa6bWxPX6GYwlhIXz6QnnhON4aKWGEUIcZKZqOS2R7b4RbcSLpaeObYYP79/z4EGIgb3s2B7w9sxeHzCdaQ1ya8zWQjAYPPPlA7cfvoWwQitkgRAWjT1Kx53PPL584jAZZyGugZrVHE4QbAQ3GZ4+nPkqvWM7bogxYyjqg6uWinTACWJ0dyZoXXG3DiuGXhtPH555+uqZl5cX8Jbt2HhaLuqXNHqitMGRW0GAMEV66bQuuNfXjzWUWqi9kXKitPJGwmnStMOlJh6HujKaqUR3gaBDwFoLVkg1M9uJKhUX7XBAQDAe4yPIxFE6Ejy3R6IbT8VRm2C6wZtAHUZ+6yeinbC1qDHfeMohBNEIHkVdFqVmJjcrbKSrAb2LYLuhjxaA1hqOTpc6UmdFxdLoKaXSu4qazhhlS1oZHFj1ZJaW1bM5R3JVu5HzlmkOiOmEqK/pfgg17yOxY7BOr/42+JEx1w75PR100ykdTkGpR6WW8XOu7hda0xjrpPXXZQiMtSatzy2ZnHRVUEsmFV0pHCnRW+HpcmGaMjk3rtfPBL+Qs5B9oReD1AeTm4jWa5uAGAWKVMEbT/BBd5zBYWNgL4da1X7k7ScyLM2bOPLKrjTG8Hg8eP/+PSkp+NUYw/lyIdVMzplaG/f7A4wCOF6foKCpndrUxKFEbotIfUvkzKiyp4tvvbYYa9UM/poVVzmb1jJdDNu26clWXu1HanER9ARail7xzbBoGKP9yrV38qHXwt4Fgyqrr6DgEAPb/aYJpVaY5kjOh9LJXeDx2JDeiVH5mN4rht/ZxtNlIRehHYXTedV8cDT8zcvfEMRz3A6mp0DPwumyIqVDDZTquG4VXws/fz4hrnLflZj9w/XA2YlrEiTD/X5nonAsjojBmMi9wksr2N5gu+FE+3SC9yzvFuIWmM8Tv/j1z8B1ju2gVUF4IvjA/b6Rs0JiGcmqKpneLNbOiDW8++odf/rnf8r95cE3v/gZv/nrbzEO7vsDbwPGaW5/uaykelVoiWJf6Yj22xTNuDurdqct75pIGUkVRPPSxoGfVNjAGY6SiLP2eec9s0yLehvFEtdA85p+qcvEl9uO7TPNB5gjFcv5+T0ff/+CDRO4SDcesQ7jg17zj0oSKBWOQ0A0099Tx3RduxzHhsEirXHbr0Qb9Mp46P63vFYujMSOERUWW21a6jdNGKu9263rKVNenRzDXzzWzJqaGpafOAdctH/gqk6eVAt73sEbllWTY0dLiBXWdWG9rEoYCqrW73nn8nxhWgLWQkobcRqdRVUBHssUdGUgnZwPtQSGAKJBDkZXVc6JKc7kdPDYDrbHzq9//Suwjtt148vLncf9YPGBkkSRfaXx5frC5AIOTaO1csOg0UhrLMF5nHHcHndCjFwulx+dUj+RYfkqlqj5VGETRuNRVWOLr6e9fd+xxlFKZZ51yCo4Q0UX5wLGZB1iHQqaTQ5xQgScj+RSlVzNyIBrflEH6tCuX/9prXnLc0/zzP1Iw2Sunkw7rpOmD9J5SgSnBJznpyetHKiV33//PUdVlJweePQvuO8Ptu3OcexMUyClA+c91gjQuVxW5mkCHCFM1KoNd9fbjcd2pfdd919JmFynmkLzleO24dFiKdsMj+tDqwI6TGbm08tnfvbNM+IrWy5gG6ewkmWnmkgqhk+3g8kYZjvTbaAaQDRffXTLo8iA9AaCBSdCrxU7O6rvZArL88KfxD/BGqdAXe9ppfG777+nt846r0jRnbQRVYFj0Os8TYjrTMnqafVz4LjtiNF4a0udZeq4OeDi6Fw3qqJbo6cvEzxmuB/ojdILUlUANG6Ai6kUyRTRYq/pNCNBWY3GQFgi3QrrZaU70YKr9GB6f2JaVpBGmFdSsex7Zu8dv3ygmTsmqCWoGacwCAzdWDqiNq7WEVHyu+uGkhIOjzOGjtZqWMs4FXVK1sRaK/rasWIHQ0FbSrvRdZT3emiwBkJQILF20xu6NOZ1pklXdwkdF7RcrOeRq+rCvGolySudyEevMVc7hMsBHr68f9Iu99JpYgaMplFqInQVsE6nFWPqAN80pDd6txi0nC54i3eeUopWuXhPyYn1dMEYy7KeuN4fyDjpr+sJMQbrAuend7x8uTHPJz5/emCI7PfC3W+cl5VgPGk79NothtQTR8o8xiyZQiTWSDPCj739JIZlf+uGVjW8jVx3SgcpJc14oyJKfbsO6+/VX9P6VOeHobxqfFB7fMLI6paRe7WIUcbkK6LtdSdpjMLSSlM/ZesdpV0odOF0PnHddpb1xO8/ftRfEodIHYq3ni5rC/RSuZzPuk+1RsuptqbxSkRtR1afoEp+F263K7Vk4jxRaubTpx/IORHCjIjBuYneDemoHMeDY3/g3MItaT52yTPT80QLDTkaP3z7e/rcMTu4s+NgFDbJQUqdx71jqBRzcJODSXbeL0JY3/O4XnHTE608KFikZciN2UfmGCCcsdMTc7Ds9xfd9aYDpBFj4GEq167euHWZlRiTDxa3IoCfg/ZWP58wtdJbZ4oTwWmk9Pblxu9/+z1Hy+AtuVTef/2ebx8bW9rxJtAtUHW4EBRh5pxTMcN2pHRah86APFv13hpv2MuuaLixl8ShkIhguR8PlmkGbxAP69OCmy3ZFO7bnXD2NN9p3pK6UET5AqlDBl62TK8PXJxptdGM3kBePn2huRO5e1ITUq5IjyAWqSr+UfUh2Uun14ZF359rZrIazXy1vWB1VZEeB37cYpxTu1puRcWurkmxmkdVSwwa4Wy64/ReU2rGatXDelrAyBiQVV/fRo3rcVbYSLeCZ+w9va5mSi0qAhmUjGSH73i6aE2GHTFH6zHB44zHjuK/+/1K8PqQ6+MErKhGz+Nx57vvfseynjXp1FUketwfWO8xA534y1/+ki9f7lovYicet8Q3P/uGZVpwxqmQVYVaGo/bHSOG68tV0Xdj/ffldvvROfWTGJbmFf46eoFbq2zbA9ABue+7xrxK4Xx54siZaZqptTMNSpD3Tq/VXZimmX3flbTtvNpaRAhxppTKka/4ELX/GzBGUzz6eZQ7OM2qxPWm1CJQ9FaIEdHfRKmaltAIufaI51LeruTeaxIHDGH0OEtv+iKXjjFunKg7nz9/JKWEd5pTF2l6crCGeWqU0qkNRCylqIh0f7xgbcKaGecm9seDo+10rxiu/bZBhWPfCTlQbw3/7Mmh0EqjHh47zTQn2OAx3ZElYXvmenS+HB1XhdAb67Bb5SpkL1z3zi0Jey5ID0gXqnicsbiw0OJC9lG7wqUTgiO+u2hipWYkGhCHXTyT0epYEJJk2r7z5fFCNY3P98/YapCkQstyWbg33T32CqlnrFj64E7aZhj2Pr1mW1Sdbeqi2EtidlEHoemY1woEayGAWxyzmbQPG200nJhwccJ5fSA326nOKE2pCuIiFYdYx547Yh25CX4+YWsmuBPZBCrg44wnULc7+1F15dAMTnE9WDFI6zij+LMYFbdXjkw+tLzN4TBS9ck+Vh9+7OVzzkOg1JtZH0Qsjf0CqBfVeatgkaZcVuOUZF57odSMGOHyfMZHx/3Yx47SIg7mZSJ3q+Z5q9QsM8AiMsQfG6xiCWl6mLDaDIABZy3BWY79AdKYJjeu54ppNMZSS8YYwzIv/OIXvyCECeMCv/3d9zzuD4z1PL17B8Zyvz/4/vefqKVzvSaQwHZPrOuZXAumV45d2ydP88p6uVBTIS4z1jhd0eSMcf8/6OAREfWJYClFn3jTNLM9HrTWmadJ6x68egxr71jnOVLmdL6oQd258WTquBBonz/jxrB0RtXqECLWV+y2EeflbS+pw1L/HtOAB8/rShuWJR8CsQtNYG2dIxWenp74+OmF4AEUeNG7UEvHO08IZzCaDNrTzjxH5DrsQUZfuAI06ZphtoYQVJGbpokpBbUGoUoeGGJcsC7SWkKkktOu8UPTsFY09ZkVgFr2ovtJZ8DDdt1hEqot9Ek4joP75wMzF8pSYIXcOp9vX5hNormF332+c/LCyWuULhoD1uMwHOLY2+ioQZM4znpqTtyOzlagEDR2Zs1IaFnm06x1FFI5tg0WpwT6vI+Tocb83ORg77ioFp/SMpcPF37z7W84eqKOqg2aYb8deDTDnLsSexyDwNM7SBlpKqGZyl7HNbSqC8IahXB02znKQVgD1VSl1ZDILRGMZy8PxHfcrFDjvQk9VZLxuNwRvyiRKky05ijNgJuJy4naPDYY9tLIYjB+IsRIq5r/tjj2Y6fnjidwOV3Y+0Z6ZFI56LlrYqZpEAIxmhsveirHOeZlxXqn8Uh5tcbpPl8f+MMX2Yr2/YgKi9bpoK1dY4diwHqHGysMQUHR0zKRhiXLjOu0HRUSpWkKygVLrxXnLes6I1JH5FiYpld3iB4esrVE72k9Mc/6QEg5YTDYEJBeOZ/fsa6rAnSeLnx+ueHdjV/8/BvOT8889gPvA09PhlYt5/OGSOC73/5AiIFf/uJX/Pzrn3M8dq4vd07zSi2V7/7mO3IrGAxfvVfaUEqJv/yROfWTGJaaxTYc103L4L0DaVRfmf3E5HRn2UojrjPSBCsWKwYXZ/w0/yGh0Lp6+IzG6sRYfAz0rEQbPznEqsgTfXzrJ6OD9wHjPDkdYL2+KLwhFd2LTlGHtTMFK8qyPGpmnZSOJAg5NXLuTGO3U6rW5LoxMOwwtgNUVGAoXShdLU+XdabmxBR0Z9OCJ4aID5FctLLidJp4PB5gqsIJWqc3EPGj7Mthu+PT779gFsPGxuVnF2WBhgBAOxrpnvDGcheh1MRlghBPVAIHNw4CvWbCNGEVZw6l0o2hMPHDLSH1oNfMefY4I3g7ro09ctsb07rwst3x1uAFWtOY3qM2mjUcFg4aYfVI1+oLyY1mKo3CXh6qAJuGtIZbHf0ugB1lU0EDBqVjZNCvg6fVTqsd65wyIwedqNvKtM7YIHSqRiGNoZmu/+0H265KaquRZusYxJ4qGTt5tl4oLNTuKWIx80LunustUeyJgse4lWk6MZkO8YwcajDfe6U7z/Yo5BRoRZAktFyQLPSsFqa0HRyPRN4y67RqYiY1vPGYrsOy16YQE68PqpzK201pmtQql3MeoQ8tgEvHrisdb5HOcIpYmnQsjtpVIlvjjA0R4w2uT2zbnWhFI8K9DfpRx1ZtPMWggpFT10cIAe/0Yb/MXq1DteKD3q5ybuRjJ4ui1qagXezOaSovRr2x3W5XTueL9vz0xjwF3r1/4uuvP/DpywvHkcAGQphUwa8TJYPxws9++TV/9md/wn7fuTyflKS/JwyWDx+eefnyiafLmdNJQdmt/h13lsaY/xT4l4Dfi8hfjPf9e8C/AXw/PuzfFZH/avzavwP86ygN8d8Skf/6b/szugjdONzstdphILvicmLPGbFWn8KlkmqjG4f1EdvBTzNpSP56zVWkWZhW9iOxnE7UJlgf6AN95XwklYqPE11/7MbVGMK0cL3vHLkifVTfBh3WuVQ1gefCPE3ctgMjytj0ThXGlPLbtbyUpCqkUSr4q+pkrNUlOULtXV98rXF5uhAcBKfXkJwTMQaenp6w1uuOC622CNFTWyZMsw5TF4jhDHgqje26s4QVNzmeL++QCfzZce8PJj8R5IUgesVzywLuxt6u+Hiid0d1MxImfDxhJqj1oDfDp5crsxcOCWzNMscLLlS6B2MUztBaZm+erXk+3TMla20AIsReWNeZ7mdqh1vqiAmknpljxAfBTp0jv9Bso/uu9B+n1puwRszsOLmZ2c9IEXzxNKvsRYvCJ/ohb/W0znvCOFlhBDc7bads6hv0UX8M3OqpVmsU6GjcdfI0WykU4imSI/j5xN4c+BnjFrqb6SaAs2xZ2HvFzoZmLWE50cMZUzJiG7UZtkfhfi8EtxLMxDH6uHvuujYpB4/8INiJOcw4NHhgZXSqi4xkmMM7bW80un5/C3eo8On1VAcDf1aG9ajRqxkRYac7yta07MsI87rw9P4dueTRGNA1BSZCyYlpmUlN4dV9CDR+0sNBk4YPFowq3Jp5N/hgcFYRjN4KJedR/6IEr1qKJq2qBkIMWkkdp4lPH39AsFys53Z7IcZIrZl3zxeW04mX6w0QHvc7H95/w29+81uMFY688U/+h39My13B2GFWA0RTk75xcLmcWdYJy8w0x7/bsAT+M+A/Av7z/8P7/0MR+ff/+B3GmH8e+FeAfwH4FfDfGGP+ORH5cQOTMWQDvTYKSWXsgXWqVr0NqRQ6htl6RX6FwJYyKasdaJ5nNfP2jhhLnBe2VDg/R70ieEfOlWgcxga2PbGeVK1mwDOUzh0oTahNCCFSc8Ya7eOpreHCRKqdEGe6XN88oFhddOeSFUjgzVtZPALTPDGFSK6KiBIH1niCs2zbpkJP7ppeGfWhpVaOQxsLdadqqS2DDWORnohdh1PvlloNrVmc1xPLdjt4mp9wJpJTwq0B0yz5UWiH0PZODlVNyKeFafU0u2m9ARNMT7jFs9eNxWvhVvcnEo3Drjyqx4SINUFrHUynHFkztz0QiqMdgjET+14BoVzvTNed7bHjjBDVyokznhBWakmczh4vHdcr0/PC9rJRcsb1RraFsAbevXvH4maOR+LI6utz4pAiWrIVRuKkq+hgnHnbDxdXic4zn2b2fCh+7ciUWsi2IK7z/P4JCcLeds7vToRTwD1N3JLWCj929dRmPXOrUSme6LVzZCHgqaIDNYujW+2tpmsirRaHrUI+dijQUkOK4HC4sUOXqmuBrWx4q9CMmqqGIGqDEYk0YuhO89/Be9Z11qE4kjrW6L5QodK6z/XOkWqi1kaYRiuBdNbTyvnpPLylsB87+76xnFemZaLs9S3RM80TxhvmZcZFy5G3gU5T4pdW50LKGUYZHaJMAOcc1iiIpaZMr/ktjOK9H+yGRgwBAfY98/33v+f2cuWrr7+m5oTxXQMnzvK777/H2UjJO4iwLpFf/+oX/M233zFfFvJeqb3y5fMXvn7/Ndf7lft2V6uZjIOQMz8ypP5vDEsR+YfGmD//2z5uvP3LwH8hIgn4S2PM/wL8i8A/+rHf1AVuKataJ36oYcOsLSqsSNFBWEzGOzC5safGl5u26025jdpcxtXWUBqUbjhyI+IoRfDBMS9nbved2sAbS/8j65D3HusnjtqxwamxWAzg6KgAhA0jaaHWDBlAYd3VeB77hrI7DD54xHbtz1FGGxh9gesnUPXQO8enz5+5nBbuj4oBUslc7w9ybTgf8H7CWKf7SaMqZ+91PAw6rSVa9ZQq1KNTZMNGD3nDniwv+x13tkQb6Qn2a2Z2ugtOVFLtnM6RycHnHfj4oH/9zGwCqTWcPXF5/0TLD7YvD+rWad7xdDqTy4GVynQ+4Z2FYql+xp3OLMvEsd1BGma+6K+3QKkZlvfEuSC1UK2jIhgJHCZxN7B7Q3i3Mp0X2tGILxP3/YGZDGFRm4+fHOmRqEdlv2vdhUam9BTRpdOcwVunSa5oudcHK0JzDWYtqDPecjlNPPKDR31ollm95mTfwBmSeEqGvTkWN9OI7M1RRW1oR7McrWPMhIknCoHrVng5KqlZcoaSLa7PqjTngiRRsn1R07ntlmC8Jsp61gem80QfKa3QakWKKsmI1kMH5ylppxuDM368nLVywzpNgSksRofDkQ6tnRhtA9IEg8U5y7v37zjKgWmG28tVDee9DVFSwx/ee6aow9JHT5g9zSTyUbFNK0NqHZt504nxwjJ7Sjq0c/2PG1h7xxjdMe/bxrKugwym8O0QAs/PH7je7vzwww84azi2B35eqKXRauf5vOLjqo48KRi0D6tLJSXh+fkdj/vG09MTpZa32oyX24sGLYx96yr6v3r7u+ws/01jzL8K/HfAvy0in4E/Af7bP/qY34z3/eibIORBRqlFdxv2j/BS1D78WZ3cDoLTU5d1lsd+6BXidlczO68LZE9vwsePnznSoSp77cTtoLVK68L19njjV8ooJ9NUB9zvO72rAmhHeVZtjSAo5EFGZe4wzsqgrr/29mCU4t6kEOfAFCd0z61/jvujhfux73hnSCUzVY+hqXo/RfxYsofxhNWOcz0tqaG469DBjzbMdSSTDFLBdEfNFb96JjvqdosgBcrRiAnSvVJ9Zflq5Xa/czeV6lYOEb7sHdcSlynQU2IvmWgdB0rsqX7hy6EcyGAnSkPZmt2TtkbzjQud1jzeT3gviLOYRdhfPvNla1zWmW4stQrOrSCGYiYSEzWutJrwruv3LQh2dcgkEIUpTsQlcPt85/5yw4l7S2qUpFdXpXt3qtFcejeduHp6VKW4uIJbNcF0cDA9TTSjV8vpPCGLhdPKPXXuWdhbgelCtxO5e7J4ijhqgdQd3U1UE/B+JWU4WmdLQpeJ4yjUPFYFuSNFSFvCDcI9DZxxRBvJe8YKeKsZ8CaqNpdc6LVjRH3ABkMfNRJ+MEGLMeSclO0a9WZRqlY6GJQk7oOjtEJtndO6cn6+MC8z1+uVoxyU0cXjRlnbcRyI0UML6FU/BKW1l6pxVK38GDStENUSGFQAbSOX7qx7u5Ep4FtYlpllWfhhhE8EWNaFeZ653u7c7/e3Yf3u3TO1dT5//IHT+QnpnWWeuG8bxnhuL585nd9Riu5njTFc71duL3fKUZnj9AdoxlgdhKghhx97+2cdlv8x8PdRQffvA/8B8K/9P/kExpi/B/w9AOue2bd9DCw3stVmpFYmTScY3QN2pxWxrTW8sTzuj7dB0rq8YdPiQLUdY8Fda0cwlLa9Gdnv9we9q+OfUS/REbwLHCmPvu+3v6/+PutIuYzEEbx+gO5/dFG+HTtfuWeNsznteWkjcmbMobFAo0KUc7q4vt1vtFr48uUT8xRBBGs8JVdENqZpojZhPZ3pYmhNT7utd3LakMlSiz6de/OEMJFb1q5t72mpk0vhuO+s71dmt9J2gWyYTguWjEke8QvdCX75iqPd2SWyBE9xRgk7tlFr4tEnvJmYzUr0YGnkXmgIWyncSqDXRCaxV1VGAxYrqiBvCR7FcWaiHoZlumCkIuXAtY7zF+71B779eMebzhIsSCNNUGLHLAZ3Ho2G3RJPE5evLqQtkR6JvCc+fv+JfBQV6kToCH3YhNzq3hTeJqI+y2iIEjh6Qlzj+cNCdcIhHVsg9YBfL0gGiRce1dH9TLczlcg9CY8CTDPNzrTuuKVCEWVp7hvst4apWjhWcqEfHdcdtllabhrHC15jq1HY7zslFTqNil7NXy1GwY/eKFEfsDWKZ0v9DyckO6IX+fXmFjzOalAipaoWoctFyTvRsu2bgifmyPV65fLuSbtuTNdKkBjY0wFNDzm9dbZ9o6OGc+tVF5CeSSmBWKx7rX1p5JS1jrqrJuCdx3u14blSMMYyTdOIOhu9wjN6hBrklHUl4z3v372jDrW0FKWOheA5X86cTgvrulCr4fHYMWi3enyaKLmw7TvnpwvTPCuXYrQW/NjbP9OwFJHf/dHQ+0+A/3L8z2+BP/2jD/31eN//2ef4B8A/APDhV9KSLnw1LdNoRk9ue900J86A96KFZFhDLro/aU2zqsiwgWDG6dS+PcG6yIgvmjdP5/9O3Zvk2JadWXrfv6tzzi3MXuHudDKCysiQUu1EjiCnoKZGoIYGoVZ2NQN1JUBNDUNtVVBDCGaQQbr7K8zs3lPsWo1/m3kkoGAICQlwXsBB53v+7Flxzy7Wv9a3tOPGkmscUUlVyWtLejKjv/16GxpirPqDyjkOY2/DWaMTx0F3TyUzzTMvL1/JW2RZwlsR2mtrof5cVHtyVvt2wrJgB4mlt06qEZGEIOz7jhK3lbSeS6c24cvXZ4xMWPOMcwswE5OQku7C7sVjToYeujZIng1PL0/4q/56zonjj1GrXy+WFir+4ug2M82WI26cPcymYHvCUeg5Mk0PPB+JWCOzNzjTcSIEqzDabBdEAlEccS08HyvQCF5J9zV3Sg98umUmb9hSw9AwXd1OrURekkGS4Ryc9pZXiH6mn0/cbeE8NdrccWKYLhNyh+k6kXb1I97KneOLdtjIgESLFcRqEVi4eIqthFkrf3Edb9UtcE8bq2kcpdONhQhFLAdCItBlYoudx4cwiQAAIABJREFU3oRsDNl4bqmSzETKwoOdKc2y58KWhG3tHJtQD/Cvp8rYVadseqqstSJVr7Xa/36n5qonzuHRrQNv56xDGkgFRGtkqWosn+ZJT2FjILTe1rd+ntb0+l5KISw6QV6WWUk/x2BdBkcthcd37+ii7ZqnOdAGlb1sSla3wY6Empal+TATx/P6GqHsdOJxYA3Ms397loyMpoIxeMql0raNXAopV+bJsR8abwSVSWLVZ3DbFGLjwkwulbCcqLVzuVxY143jODidLoNUNjFNE8tyUTeNm5Bu2NYdI8LDw5WcC2a0iP6513/UYikiv+69/3H83/8C+F/Gv/9PwH8vIv8tOuD5V8D//M9+wN7po4ipwBt78ucI5OBSWh1y6OKoE+w66myt0UVN6SiK9LfWvn0M5xy19rcFtJZONUaTO+j1W6r+AF8N5hr8H/3Wo+catDdG6S5O+Zn958J7gFSyErutDhyOGDFjcdRsOWr3sIbeMilnQEV4aQ0/dtac9Gr12vsTkzbk9S4IKpDHuAMF70a9Z4v07hECgiNtByXqdPb88cLitanwuEd9CE0n26zE+GxovmI2oYZCWBrGJl4kYlvCm0LPO46KN43JdmZvOU9OdeRWMb1Ar5jeWaaJ2gwlKlkGwOSK0PTUnAv5njG94KSzzJ6H84lgIbfK/PAtdnJseSdtOy0npAqtB6RZ3oVAOjnCkFyCn3QRCp2yVh6/fyShGLbW1EDdXQdvwAnZKeovmoSbHd127nGj2E6/LHxNleXynkIgFgdhJjHRw5lEIIklV8tRhGJgb5ZqAlUm9mIo3VBlolVL3Co9Cq47aqzYYumpI1WgKFbOdX3PxzWSj0zaEr12TtOCs16JR6XrNVZxnrpoDRZqKrpoNqdaXyuqa6sJQ9FpretQhBFZbK3z9PVpeCS1i753fbbkDRorb42qJVVSSlDg5E8DBqP82Yo6C2pN0DvzPGNtVw3R2BHLtJQU8c7oc//KVuiwbSO3LzIOJMp1qMNX3VH9ct12Ui7YkKi1835aMM4zLwutm9eWGe7rinOVWjvrttNyZ5lOGLE8PX/l8eHdcMHocxuP488uU/9vrEP/A/BvgW9E5PfAfwP8WxH51+jX+XfAf6VrXv9fReR/BP43oAD/9T87CWfkV61oyVHrOtApoMugHo07+qZ6dfjT0DfE0DFqE3Jq4/o6Fjj0dNpBaS9jV371cyl5xWnG+7XMCb3u00fzo/AfEJBqfWVlDhvQiEJ2xkRd4IiRl9sL59M8cu06mVxOC3KzpBENmybtoqFphwytM0+Lehu9o+VK7nVMMYVlnjBGNcuiFYRYa3BmwpiJ3hxCoDVHbZZaDd5Y/OWMTHpyOZ42mEECpJdIKYn5ccZ6fXidcYN4I9hiMTZgbMbNuiCTd2YvlGOlGY38JasJGrEVJzB7Qz52nmNk6g5jFmKuWlNQEjkmpBdqTSxB2zKDFew98fs/fcVJw0oj2M5p8gQLsztxfrhieuHrpx/prfFSPWRL9w5jK8vkKPagSCXnwunbEz4G0k070KfJo1OfznQOinrzllQLbRIijV089yNjrMdNV7Y2cTsaPXjKIWwlMz04ml9gWmjdYd2JPRnWEsFY7HxlK5aYO62esAR6jNy/vHAOV6zTmob92LHdQoH1tiJVq3Cp6FW7CjTBdoupYJvB2oARTQ8Z0Zilxvi0pMs7j3Q9rR1DpwyzdgzV3NQ1YDwhaOWFGGFbNyZ0aIjVybzGJfXXXAoYbxTnlxPd6IHAOstyXpimmSqZ0uMA+xomf2FeHDnvpJQxBzj3pmqNKpafDxgxRn22BnVs33dKVeSexo418ppKY913pnnhiAnE8vnLVz588x2fPn/F2YmUC7f7Su+OzsFpubDvkV51A2kNdT6kxA8//KCdTNPy1rDwH71Y9t7/y/+HX/7v/sx//++Af/fPfdx//Jqmib/5m99Sql6ptaJzJA/GztZaf2t2bKW+DVNKaz/rhSMTbsaPpOby1hVurBkpITWHi/hBAFKCy4jwvOmmeuIcXdfWqk0kpzeAgE7d+uhhHlxLAbruiilnpqr1FIyhTqPTRZFw1r2CjCs1Rz6+f0fc7xzbwfWiePuckoJatTtXAQq10BpjEdYdvTTBGVGGpje0ZshZBvnIEIwSr5trWiOB5t9Py4J1Bi+eXiFYT+0VwWgFsQFjJqwLlHwgRgEUTIZaoTW1z1RvgUYvUU/VWUvTrHgME8YoNuzIBWtnZJkxVFrc6cExLw84A9IS0iveCJZKiSvFWpwXknStMi6NLDOlFT5vnWqB4BR82wXvZ8Q6mgiGjt1PlLbRaPhFGaPOO/AOO024eaKkSqydly2xFYiiXesPy3u2DDV4MoHuFrqbSDKTm6OaQLMT1SwcvdGcIzXPw3ylsLA+DWhHGxtPNpQ8Or1zR4oMXiWK1OtKx6FBL2AaSBfKkSldr9EyNnHrxwbfoGSteW610UeJXBt+3nlaOJ1OpJzUYkXDTwHvPBilqL/CLVrUBkcj9u3gUlqlScQ2RxXN2J9OF8zog9LZgQ4O+8AQLsuMMV2HMi0Pv6dl3/Q6/lrr8tqe6qx6kr3ztC4spzMxJfb1hgtB8+TGUg49oTZEkW2d0TXfyKXh/cTtZcOHCTEBI4aY6qCPaa1x78qT3fadbz5+i7OOFBXYY/4S4o4igvN2tMlp14vzjnlZ9Eo8PJCtdmgN83q6fLuGax2uVuM2BZy2cRY3hjhQVjHmN6H5lfOnr4F1a1Up6k2nzK86ZxGIMAZNMtBsHUalKdIHnVpPw73pgj8FT8kJZ2CeA8vphBijArW3WFEknDML+77z29/8hqfPP/G3f/Of8Pz0lV99+y3btuGc4+nlRk6Z3huXhyv7nlj3jd71elNrplVIsdK7AwIw6S6aI3IYNXcvhmYb1VVsd+TUKC1jF00olSNjiiH1iMzQ9o47KW0mR60xjVGtMTTBNId0hzND2+sZo45u/dlUg+sdY90gUVe9EvdKdRo2uO0r3grBLoQgpFbUf1g99EBHcL3RG4NOf0Z6oq4NgsUuAalwT5mH84I1HXOeySUjj4X4smtVgRhmHzidT5hppoWJrQvJddac2MWySyUZxdCtbSJ16P7MUYVcAkkc+y1DCDTfkWDpeL6uK4kJM1/IfSZFT8sWDkPKmXpUHpZH8lbIMVNjxXflesYtanqn6cIpr0xLhGWa1Qokqm8f+4E1FoMulE2aItiy2m/0f4UwTyynhWmZNcudEz99/ok9DqmGznyeaE1Po6XlseEb3PBAYtApfdDiMn1G9Nl67chaTifm08SRd45tpY8ZgnIeAtumbFYxAe9U2zfejl4gSCnjveXVlDnNAWPV4jUtyzi4CB2rPmfnOFLBecNxJKzzvNyfKdXw/a//mvu6IUb5DtsaeW3WNDi8VQu3dM2c964Les6Z4zjgzwd4fhmLZevtLQeei2p4IhBHgVd/9cnAYB92nPd46zUJ09FmuCaYt6v5a3k8BPGITExTxRj3dgUfN4Bh+FbfYxnWBZ2g/1xC9srUfPV+1VrpImzx0Ou4C6p7tjaw+PpmFzHkkjG54pzBGjBGT81dtHel5cj7h7Pi2azw6cc/aUohJ263G7/97W/57le/5nK98PT8gvcL93Xnd//+79n2iLUL59MVN8zfpYDIRCmWNOpQqaJpl8VhnKHaUVXahX7oteTL8QWZBX/yVFtx3aEtvZ2aAG/I2ZBMY1oCxi5kLYamxUjwei2taacVg0GYjGO2CtOQptfr1vT02MRj8fjLCaQTayaVhBWHm2fScce7ga1D8HbB+UDpB941nvY7c5sx0XKarkBGqsPRmYOjmwInocx31uMLtU6E7Fh3y9UvuBLYjkTOnVgc4q/EllhLAQIxGsQt5OzodqbaGQln4pox7gHcCePPfL5lPt8r4TxB8rSbgeIot6ha/Fpx1bPfDuqudqF0SwQbCBIGRk+HPtJ02EdX7b3EQioJZ71KS02UAZpGYVipA9irCSorhmmamaYZYwOtGVJuiPUgjtI0/FHqpk2oRr3GtXe8VcAFfZT5eZ0uixu1J61TSmZdbwpeqTIwaovKCc0iZhwwaqPkTM4F54y2lDaNzzQ34kbjua6t4/2E956Hq8IxOuC9avVqOlFs4rScmOYFEB7eBUppLLmxrjt/+oc/cV93erdcHy5cr+/VcVDRdsox72hN4dCIxbmAtepLfd0A/qnXL2KxpKsFIafE88uLwiuCx3urzYxjMm6t1VKlplflaQr/oc44PI5qarfksSA1GZR0r815veuCK2icodUxSOpo50lrQ79Qa08Y/s0pqG/sFRkn3vKnTz+wrneMAWEMkKymgkrR/HnuIMax3p+pOUEfH18s1jl6c9zXlWAbpkT+8NM/8O233/Lx2+9ptfHyol3JHz58xLvAn374E/uRqQP48d23v6EkEGWWsSxXYOLLlxun08zl8khMETtZ5seZLIUsmTWtuJMjkbCT5R7vWl1AAy96cpdKPtSn6Ranmo/AFjvi4KVGnO+IqSwnlTasXcB4So7c7oXJQ/AKWhUqtXScAaohduE0OXrN0Ib+2gtOGjE73HLCTRPWdMRqaknMQqWSs7AzY2ugFstkPbXBbA21CtIdNQjmsrK/JHI1TM2zR8v9uTIvwhEt6545csW4TMGBXbB+ITWPRRM4vXm6neg9kKxnWd5xVMu+dr6ujb168mE5zWfIMySB2HHNsd83ehLN46+JtGXdwJtwrDt5y7SoiRxvPLYZpHd6q1ixeOcUOzio7K8tmspPTZRasFPQLvIqtFELXKIWndlscJNecVOqWp/RocREWCZ1oDR9n7fhFKErPNka0Y9vjdbiGo0meoNuXCmTowIwWu0YrN4mJu3uqcdGrxUpGYdoXcWQt1JWKpcY/Zp8CJpTr50j6oS8qx5HrZnaX2PLenR61TsFOJ9ObGskx8zpPKl/NidaRe1+JY8JPGzbQR8aqDXKmHCvra1/5vWLWCw74PxEx2LsjtSOMQ4xjlTGtc1UNX/3jhuVDi931T9q1V4X90o+B0ANu847ROAll4F10wmb904n3WOwo1pGo1ftKbFOS8UKvFVIeOcVFFGTaptYJmvYa6OlpMMWOtO8cDktzM4jovFL0zrbfcUZ+za2ElRXrEMfOvZIoHA+nxXSsW1YgZIi/+f/8b/zh9//gX/9b/4Np1nRUsu88PR847ws/PjyhXhU5vlKTInb7QVjZlJWQg/dkI5CRgczdnaU1DEWpmXBGkcka+d27TTTMckQxpQ0pUMTQ6bpnx+tfx/ef0eTxrrf+emPLzS0S9t6g/cztWZetoIPWnlacsYKeGdYpitrzHy6rUzeMgeHN6iHr2Um98CnrVJzxlE5TV4DArURjGDtA396aXwQxwlLcIbZW44MrnacNdjpTFsS0W9sOeGzJwSP6zOpzqzpIGOpTjhKp2Dx5sRpeqR0A3ia86xHZVmuxOaRZeGWHdVM3HJhzRbkjLQrPQZa6pS9QIQcE7boJlPWTNkyvhm8caQ9EW/qWfSveLtuka5hAmMc1jhaqfT0mnLR2t9XC5B04bxc8MtMrpWUM+XQYY/xGuowztA3rUuxokDo3ArJCsZZJj8xhRknlhg1uWO8XvP7qF7oIqSqmW37asVCD4fbunJb7xQK06JldvtxUErCGp1iq0XOolqbGWQjTzAGY3RwGo/E46PKb/dtZ912jHH6d2cNktzvG8YHHc5KwRgFWr9uEq0JvSsMvJZKPBK2W1ph9D4BGJwNpJS1eqQ2kgwV8M+8fhGLZWudr8/3oV2O6wOdME1qEXo126ZELQWMUqdzUROrcfaNnsKIHuY87CJ7UzBFVa1TWwY96ThG3YQuWjCuGlVBvj54PbJXjRq22jhgXPM7vQ8IMWA7eDF4sQovzYW8Rw4MdrTVrTnSq+LXyrZp1LGpIB5cIB+ReVqI94PT5UQ8El8+PwHCLWdojeAMn374ga+ffuL773/Dp89fWZ+feT59wlvH87Hy9enOPJ0J05mcI8vySM6Jh8f3PD8/U1OjSOG2rjSnhVGmWHz1LNOJIx3YyWGaDiBqU9F/DvMoy7K4yYGFXBOLLLz7+A4XHD/++AM/fPqBl9tKFNF6Ar9QeybFinWCmICYzst28PGbB479GcfCljPmqASru7w0y2UJLLMnZYOhEWNhDmfENL6uzzycZs0UJ0dxEx5h7+CMqAbaNfkU3SPRPrKnldA9i1kw3bNlSxGrtp9YyLXTbMDLCWsfOHKlZIOdZrI3xGg5mhBOge4XqjnRTWPfnrHMzGHGFKvvlecDitBTwxXLelsp94QpooO0PXO87Piup0Q3uIq6UWiM0XZLT42S1awuqN0H9D1bUx3VHAbQqX6n0632KvWo/VNhVtM1Skobw0kopWlbaRuBj9qpRWsttHoCelFgsBjL7CetnW4FK3rrq6UR085+HBhvaF3U7J4zIVglyB+rSlFWtc4OlKTD2uCdAixGQi7Xhm+dlAtH1D8jxlJbx4WJ3Bqud7yboQsiVn+/VkQcPgi1dm4vK7V27HiuW0Oz8q1TUhl4PxA7Dku1MPx9/+TrF7FY6g14HM+tGYKv0pndGKiIEcJkYdKvSU97ZYTv1YJTx4CmtobxWQECAs6gOqdz9B7xfqJWJbL3rtGvVx1xCosOxpvGy159la+eNLGGVutbeZSxDkollUIR0TAy0EuAUgjBaetk68zzgu1Fd0ej138jCj01KOjjfL5SSmIJTn2Kw1O6TBO9FO7Pzxjg6ctnTDec5gnTGp3Gr371Dfue2bbCaZ44KCyz51ff/YZtz+QU9epjCkfLSBCkwmIX0v2ABH7WGt24HeABp55HM2utbKuVkrVkLNfMc/kKR+Px/SPfXb9FktD2H0i1YcswW5eOYCnScF4N4MfeyOeFEiu5HUyTYC3kroMG4xrRWFKsGHOBmjFUbred0zJxfv9XbHHHTxf+/tMz3//qzHkOODq+g0ORcAHPbq4k/8i2C6kZWj/hjNaMGO/IrXPbV8R5chOCnDB94mijJqFM4CYyHpnPJHsCOfPylOhlIvBIj520a/Nn7526FqQaKGpX2Z42TNXoaSyHNjfuhSZguz6wposObaogTdM6pVRardpkOSSkV2eId57lchrE9OHMeB1gDlJ6H5nwNsA0MMhM4kCUHxtTVjtlYzRmMhZKlVqkdjCd4Dy5qBd0ckE395I4hu2n0uj7Tpi9wjQQatGq6XGPwtrBPaUiYnF+UmlsxDYRS8cg1mvlRml0sqbzSJQOxkZOS4FuoXX9fo0/F4/CvOgJvKQC4qgpU4tuDq3CcUTSFlVa88O+9880O8IvZLF8xZ8xpt7O6fE+1/pW//Bq/DZWEyCg2U4tmD8U7TYM7HYAf521BGvpJRMmP3Yhr6w9P71N5LSvRMG7dix2pRQus1LYj2NXPXP0MDfgNM+krKVp4tGWRRGCVy4jAjFHUj64Xq+EyWOCw9Ss6QtjdbF1nlQbk3PcbnfMaWLyhsfHD+S4sd7vpJw5n87EmLic1FRbaqOkyPbywmk+Y9xM6wknsATLd9+85/l5ZV1feP4aeH5eMb0zOUMXz/m8kHqiSiUMx0FOiWmeucwXPj9ppcfp4YQ3jrgfWkomhvPDmdorT/evlJQoRH73h/+L8/XMfDrxTXjPGpVMbazBV81mT2Mq2+m0XIg/RcByPr/nPJ04X85gG2I6Ma3E/IIxndYjKa+cJoc7XYkGPn74hs8//pHrx/dEfuCPT4nzyfFwXghOMLVhrSHgKMaS/HtWUSLRFgMXrx0uZRDo773TssHNZ5pMpOjIFYyfaN3RssPNDyBn8mbpzbE/VYJYfArENdJa1Qe0g0mWXoDcSVsi3ZJ6KAvqWlij2oW809rdCi0V+uijr6UNO5uopQi1x1H1at96wzQdHqaSlCnpX29YQO+qd05a/tdNJ5eMs5ZW9BTVKpRRoeK8wQUl/lgnb44QU7XgS7Wy4VPMlV47zniahV53rHXkWkhJT7C1QM4K0RAxWO8ppROPNE56A81WOqfLieenF3W1+IBYdVL4MCFiFFIyerOW5axfc1TakHYP6RCndf17nZ3wXtNQxho10XeLE0d3QiazhEV9qkZvMhatyP5zr1/EYqmmcQVpaLlUVn6f1V6c2tpIEwjUymu/76veaIwZdQ5aiNXGACXnTLEOWsM2QVDP1ZGbnvZEvWptXK2lG3xQkbtV5QVOs5Ku08io9tbwAx3lcyLlpNUP57N2H6NXdectNY9qUgNdhOM4iCOtY8VQxw8r+IneEiHMKObAcFt3vDU8vPvIp0+fQCyldW737U3LaQ3O5yutNPb9Tml3Uqxcro/ktOEdfHx/JaadD++vLPOFPFrv7scd71TznbqStH0Dmxv1fnCyQU9mzXI87dReOMmM8YI7jF6V185iZj74D1hjuP94Y2NluZyxqUKrPDw+EM4PlNGVflT9MT4ss3r8nOE6X0lb5OvXr/hZBwOpRJpxnK4nHh5O9EvC2M433zyQ0s7f/fH30BfsYQgPv+Yf/v53fN0Pvukz1/OksGEUolGrIYX3RDfoOTbQqko8pTVqh+wnDTbIRDELvQqlCy1Zarc4NzPlhf1J7VDBCL6oPhmfI6YqHKMPgKwrll7VAnT/fCfdkl6xh+ncFjOGOVZrM0qnj9/vFSx2RAY1JfZKEWpNp+ky0mCl5eHz1RSP9a+eYXWZ5JboRrtyOjrENN3QSqXqtkXaM+CxTm8AWhzXxylTBi1RP6ZKAUDtSNfBqTWWRsVZpwzR0sHpjcIYAaunZW8NxiqsWUQI4USYAusaEWO5nM84P+P8xHK68vRyDCuTDuysVRITUQvelByvtCR6Ryp445AK275ijQfpWkjY67BfFd0sRpdXr5p7R/5CFkt6p5as38S3NsVKG3Du1hR1Dz87DnTMbxXb1lWEsc4pabt3rDE479UigFHzr6g2KSLsSeEczg6BeACEY066kDW4rSv9ZR2xLR0GvYrTa9QeZOMVJeUmi4gfmpK+q7wPqvE57Vfurb6lBNo4pakHTNmW0+yZnOpt8/nKtt7Y404Vx54b4mbuR8K4wLarnBDmM7l2wjzTj8Svvv9Gr7w58e7dR+63jZfnL4SgBJpcwBlDEDfgq41ZtCo2dtUm5zCz54PgHJfTlef7M9Y7vVLmysvzjdNp4eP0kfN8wR2Wb+ZvmMrE08tXjn2ltsLl4YLcK/G+spwWypH5eHnUK2KDI+7s6aD2Gecc535ifz5U3wqvZJqutiwbEA/b80TMHTHfAYkfPj9zvsxw+o4j7fzD18w5OS7nhdMccMaC6XCZ6Bus9zuxWo6iOlzvUEZlSDOWKVzABY6kU/uSwZoZaRdSDvjmMd2xft4gdSaZSM+JyehNhYDq3akhBfJa2J426qanMbJ2iBvjtYysd+7HXW1E1tOKkLZjWG48Pqj8s8zacrlvx5ggiy6oAy9YcqGOkIQuqlULxKwOa17fd910uungUe6n6AGg1U7NihLsoyGzdU3wiAPqCGw0nR7X0jR15IwurnUsyK1Texs3sKY6dVOXyDSfsVaIx0oIYZDA1Jzu3ETvln1LeutrDC+0pveOOBpbhw5trSe4gDRDOjKpqU2J3sDq9b31/NbuWmvFCKPsbVCaXhd/0bXzn7uK/yIWy9Yq+3ZTf5kIJfVhe9S4oXXmH8UU9TRQ0qEWihFdBKijyB2gGjvKxpw2/A3RXLvBX/WfThLVNhE9jo8UpWZZfXjbtUvryDDjykCdqVVomHCtaqe9K59SdTdHHZ+PWM8pqOH2SGkYbF/N7cL1+sD1ctJBxr7xvB6U3GhdkLBwOwphmt86oK+XB2rtagVBJ90xFvLXJ37zm98yTSd++OkTMRY+fvcrnJuIsYyTrWVaztrRHhyxJmoCb2e2p8jteUOcUHvh6fON5XJSarl0jbd1S9+F9Vj59IcnYjpA4N37d9rYeF4Is6NHhURM08T+tGO74Ti2AV/Q/PDjdOXL7z4jzigtZjmRasI1xxY3LtMVcxeN6c2efU1Krt8CJkyY5lnCe0p6QubI588/8HVNnE7Cw9Uwn4Nq4EyYqyPHn9hLwWTV1HqXYWWxdBz3m8VbR80O6XYkajxZoLbM9XSCKuSnTJCg8IVdJ60U9UVyFtg7rcDLD8/EFzWdqzUoMLmgkcQ9kfaDyU9IM8Q9ayVDDzgXKLWwPW+01jiHEzXWEYXUU+ORjrf3UR0pspZ/1iuNNdTScDi6URygnzyM6XSj0W2jGaGZSmqDWwBvi51BqLbTalZ2pXMsZqECt9sdrNZ4KPpvdLGLRhkbFcFhLLQMcc9kC7VoH49I0KqIReWu18XQiIemyDvo+uzhMdaSospP86Lc2BwLp7Cw+In0EpUMnyuzOGJKSujqmTJM+8rYFCp5JPCU1i6vn8Cfef0iFksAaqYNgVqrAOw4+ned4FbVC/HujdxTs2LonXP/yG+p1/KcElnU36g/BEVHGav6nKCnPYa26ZzT3O2oEn2t0wXRkqXB1qy1Dx/m6P8WBYdaY4cGo8K1MSPB0hrdCiK6qBnnNT7YjmFdEqYpsFwuGGfJ6QDrwA7a+7YDECZPTBk7n6EpN1GsZXmYELEc+8G7h4/sx7DC5M6aGojldkSMaYBjL43T6YwZmC6qpVUtCautqfQweV62F87XB0KoOO/Y9k0fvmhwTutFz1NgcoXD7mN6qhFDyRZjHff1zvVhoTZDTw66fg/FOzxONTQ382FxrNudequkPbGcF/KakSQUyYpTc8JsZ7a4kyWPoVTGy0L63DhN76lU+nnm69MXnn7auX09mM/Cu28/MM+Bxkysmpd+3TxfrSzSDL0bpulETaJ9N11oqQxvZ+c0aYQuHwVfPItbyC8Zm4YfuIA0YYurwjLEk26JfM84UftQlUqSrA2NRQhmIg+Kj3Sgmjf02ku6sd925nnmpz994nq5st9sLRIJAAAgAElEQVR2fPA/a/gYWtbyMePt0BPbIMNXaq96FTaqT/beEGu0Ktjqtbx0rZ99vcJ30/Gi4YXWVKM0QaOz2gTpSK3QYxx+z0TplW5R2rh0GurTNQjSjc49m+C8V+pTqhgK8zJRywBge0tKlW3L2sm1Z40E14Z2ajXlJNCJexyRUKHthSUseGuZvH/7nPK+05o+s3VAkFvTOGdMFTFgX59v+MtYLIXO5A1hvBk1xxp5PScr3FYz1TWXgXJTLUcJ0qqD5BR1wjkYkUoKMkOe0OhMGwkfa+z4mJbeDCl1yqE2hDau7n2g3WoybwuyduskWteIJUNlTGMhRuRtwGNGrlxMJ6WIsUIYcS7vA967AU9VOMbTy42aM+fTQhPDFit+uVJrZcsFN53oKDxDp4wK0jXG4s+P5Aqndw8874XaNvx8RoynieW+Rp2qP7wjF6jN0LpXM7sEbLX6YDnDsTeseSAnSzcwzTNzCKQSSXvHBUtvOhQLdkH8xH7oQ+yDwzbheDmw/US+C7EXfJhJ8eDh3YPisawjbZn7pyce3515cA/cbjc+fPeR+9MNBCaZoI1psTda0VobxllO1xN73umm8/SHr5yuZ0ovzNOZK42y63T2dkscz0+cL2ceHh84y6/4ev/6ltQSFLpSqw5/GhGp0EtlcWEsgCrPuNlTL5V6VMxuyD1Tj0LfdBE0Xbt90pZow3jvmkOSjKFWHzcOi+l2sCkbPYFgmKdJ7yG948Tz/uEdvXZSytSS2daNd4/vmOeZeERu97u+h63her1iveXl/qIT5KaLlljRKopx0jRNy8pSaW/NAq036qBhidGK4A64rqDkWiquW1y3+v4LniUs0CHVzBYPSsnY4MY1Xkadh8HiFFBsoFdD3LJ2S80O52atJEmJGCsinlottQjBnShFKLXplmB0M5OuxXg9d0osTG7iej4jFfKxY+2klHXjuEwL2xG5rwc1ab00TWjDb6k3SpRn2vsYHP/Tr1/GYinC9TwRpkm7dGrj5f6iR/neiYf6HkUUEhCmiVYbKRke373jcrnw5csXbknZhdYaci2K9LKahhAM1gwxunV6S6rh5ZEEGPll5B9f7V+n8EJJr5N61fpaa/Th+NcrPTA0UCUQ6T9KNhJySTRplFq05XHABNooOVMDrVqKQg3cXm406zFRc+zTpDSV1rRb2bmA94HcBOmduB9jxzd0DIgll9ca2MrpeqU3Q6xNRfZamZcTeVxP2rBv0ZX+bqzqUs479lX9acZNqoF1Q1wz1ukArlTDZC/jaueUjo3FB8/z0xM+eGz3+O6IL2CYsd3w/nwlux1iRGLjaq6054Yk/Xm7yesgYTf0vXH0jHg73Ac7L/dnsHCaT1z6hUalxsrkP1J64en2rFf+NdKeGu258fDwwLldeFlf3jp5VBjXKGHwQatM9khuGWpnsp4gHlalase7ks1LynjjyUfS6oVcOY5Ds9ypUqnMZmaSiRIrk3iCBDxeTeqH8imDndRK5ATo2iBaEn72A5jScE7z0t99+y0d4fFRIbmlKMj6cr1QeqXkwuV0oUsnlshyWbivd2I68DaoPp/0VtRzY1g06XRy1J4aW0cHTrNv2nEZcI6eE6FUTtcLc5jxPbx1AdF1Y7Pe6SLdstqRmg5jZzeNgUujlU7eC3WCWjRtlWKj1cg8XajFkFMn5zZmD/p3WGOpKdFr5XK68M37j1C6Fphd3+mpunb2dcNZz+QDNUBcI6811HqK1OdGT+ca+XT+LwCkYcfo3vRGsJbcG5d5HnGoxuXdex4fHzifz9zud1LSyfe6bTycTwidyxyY3Xt9UJ3l6emZ28sLdO0LD2EmBLUNhRBY142vX7+8Xaf1lNERo1FJK4aUtfxIjME5T86JijIyjXGUpGxJY8wbCi5XPQW31t60VgRqK0DDtGnQknQ6V4zgrCF2zWpfzmcFgZRKPLI+yEBLiZIL8zyrX8xl1nLTLnRjqF3oxrF3Xbi9nxReIQ5jHLfnNBZ0h7NB4cLxQMSOrm4/Pu8hfFcZG4YK9hirYrwB40Dw2popgg+n0TYILVeaMUhv3LfE5B6wYom3iPeegm44JTYyRcvgKhwpcn24UkvjurxjmibWY8UFR0kF4xy9qSfU43l5vuGrQpUnN5G/JqUGj5j/o3vHFjeNFjpHqYXn56/s8z42Kb2eMSSdXvVKW6XgjEUOyKlg0bqJboRUCuu6UmLGNKM5bivYYshHpuZGyF4fuqwDvJkZW7QZvDf1NaZaRjRQN/COMM0z799/gN74/R/+nmNL2KIR3l//+lcKZ9l27vdnSml8eP+Rd48PxJjY951tvWGsZbKOv/rrv9KNxAixRizQLmft/S6R+7aCMax553RZ2NOum8brFbo3Wq/45vF4HEqVlzEVz0diZ+V8veCdo4ZCbY1YInRRCtGQqKR3asz0KmRnBvFcXSIZS4mN03KmS2c/dqRZnExkAapBusV0pzHnOtiWXbASOIUzLcHkJ00cdeHr82fdLKpi5Ey3lCLk4SAw0tAiGaB1jIE5BKYw4d1fwmJpDR8+vMdZR0yRtB9KRQkTOSeulwvff/ednvhEuN3vuhgZQ9x31Stb51/89reICL/73d/Ra+Hx4YF51qFIjJHUGtLBiuHhcqEVracIQdFny/lMylnx+caw71p1IWKY52nANQr39Y4Ala7piqa7aGvtDaOGgDQ3vJyqwRoR4rbSu/53xgolaw2ujCvBl+2TsiwB5Ocu5S4ajdxvN60SsAbbK3m/64DC6BWJAS4ux65dQCi2zBhLCLMOhbpaOFobmp3YESUV5vn0RlXqHYWOjI2gDRze2z8iWGeJkt6+Rh8Gon/s2akXrNX4KtXQSqYHpwkVY5kXTyoVh4VDtd6SG3U9wFhK7Ih1YEVrRH7cECtaBZwE40ciRksj1A4jnXM4caon2Dcl5oy8/+F21azlNXAq4/fBOIc1Qu9Vr8bVYMTSDihUvHF0aZDGG7d2as9KKz867SikEPGzdgBZb6h7wfUBOs4FXZ+7EpukUZvh8XrBe88eV67XM+/eX1m3G9jG999/z+PDI58/f2E/1Po0z4HOz4X359OZ2jLPL08cR6Tl7/lP/8Xf8oc//QPbuvL+4T3nxwvbsdHujetyoZjKx+8+sh6rDoh60QSOVb2z9kresl7BJ4OxnbAE3OxVuiqNdCS6dL75+BF3e+LppZJiVnB31eCCHbKUNCGuG9ZavNNETo2VfFQcRTmnrXA6zzg8k1GJhxIpRxsLmw7BzvOJv/2bvyH4QImJmvPYiAqn5Yp3ASYd2pVmiPuNkpTCL1a/VtshOMfkAg5D2RPxL8I6hHAckXlWTfB8uXAcx2BIZp6fngd7UvXIr09fCSGMq4mjtco8T+z7RoyJEALLsvDw8Djc+WoyP45jJB8sp3mCxwceHx9G70/jiJHbuuKt9pd/8/Ebnp6elD84wALXy4XHhwddNO8r27ZjxHC5XHBe2XgxaeVEGdAMGeY05zwifSxEjePIbzan3ptaTsrw0JXCclLfpfo+VU+MKdFy4dg2Pn74qHSelFn3g9dyOj3t2jeeZUs7uXbyvmKtp2OoTbA+wEhzdKDVzstxV8uKD28dQ3ZID29ZeiNvsTvVbVX3+hmgPGSM9mqh8q+jTpx3HGWjtsY0BfocEJTIRNGDtBihDIisC+4te269xXqt5Ch7IbigGlRvg82on5OxBlMtdrP45Ilr1JNHbm9MRmO0EsG+Jj06VFMxVui1qq2m6+CkCNSmscHWGzXp1dc09SCWXDULXiC4gMmG474rimyrg1s5GkAHak5Q2cd7i3Gd68NCjDsxbZyvE010ITLW8MOPP7DvO6fzgoij5Mx9vY2yPcM33zwSY2I9dj5crvz46RO3dSWmxLt339DpfP38rEBfjBq0u3CZ1aP73cfvOMqhNjVTdYrtDH72iIMqFZwm2m5PK2H2nC5nLFYHSxiccZzmhXas5EMlGhv0htZ7xTS98VljyEmTbyIW2w3BBdIRdehVDXFLNPR7eZ7PHNvBuu/QhMlOnKaZ63LVn3UV9qiwl+evT/zn/9m/UnnNZ5Z54UidTz89Y7tR5oOx9FpopWktdSojAvrn9Ur4hSyWHUXTG6upFmtVJ6nj9BiWBe/cm/n8crmOwnjNgDunLn3t2liIMTFNiyLfjjgSOhptkskzzzPOWeYpsMwK2nXOcb/f+NV331GHJrne7zg7qC+5EILXhbU3ugjnZeE0vxKWO60U7dOZJ06nE8YI27ax7xvTPPNwvdLR66+CUQPLST/Guq0cR2SZZt69eySlhHW66Gu52p11XWk5MoWZaZr48OE9JRfkfOK8LORS2PdD4a9Nc/O1VMRYvAujw0U7nK0NLD6AdPb1puYJEf7q+7/ifr+zbbpBKajAjhO2VfLLSFSpXubeyFBNROEOg4sIw8ea1edGh+vlSotJe4YQuhjcmATbpn7A17a9SqPGQjdwsidabkhVyLL1lmPbEWsIJ6/WnVEtXFqGAKEEpKEw6SiYqiT7NuJ73TTwYMpgQ/ZGs1qp7PH6vWsqGzjjkCjkQyk7zTRabgMdp/5LEGRAl00VjqQ1CSklSk4qvVjBBTsgvlmLutyJ6+NMez4QqZRaMA78pJDjJp3L4/XNheHmifms1/f7feNlvSvkRKA0oWF4WXfePb4nJ0i1EHPBTQHvDVIz8+yoR+XkTxz3gyadh9Mj3XXu641cCkH0/dccFMk06ZSqMd10ZMQchNlze3pmXiZk7vRWeL7fsZcTwQasCKUnaNCyQnCsgBVPKYXttiFNmyPneabnRjkyy+mM74771zvHEZmWRUE5tvHN+2/x1vPjDz+QYuLrpy/EI/JwuTD5GWwnmEpvKApweF4Vkt+012gMj0VkDHu14+jPvX4Ri6UxFuMcKemUOTjHMghC7nIZHD2NQ27bxvlyIYTAtm26+zeYppmcK/f7E/O8sK6r8idLxkgfpxs9tXhrNW9L59NPP7IsC8455imwbxulVE6nE7TO+8dHPn3+DDB6mpXsPvmgHTq9a4sdUGrh2I8BVFVb0PV8ouTIvt4xvb8Nqt49PCJGW+m8d1wvF8KYjnvnuJzOOOfVXNw719OCN8Lj5UwphXfv3nE6nUGEh+sDT08vrNtGf3xAjCWlxL69WieGl60rO3CeZ87XRzqCcxN/+P3vNfbpPe8vnuv8wLb7t6tjzpkwTZRcOWLEidVGPFPpvehVNqv04N3PZm/vPNZ2rG28+/iokod3HEHz5c41ejugG1oVrbIw5q298LWZsvdOM+plDCFQaqZIYfIzvXZyLmzHpv7TxwekG8qWKXetSz71E/t60LLGLyc7UWodkJCCt0r8MWJIa1TJw5m3alrjNR0T+zCWF1S9GLbebocehk66pev1Psad02nmepnZj46tqv+2FmmjW2lZZjqJ59tnjBEe310xRqWmdT/YY8V6jRIaY8dmUNljxPmJ0+VMKZUjJ+bzBe8mzWTXTmq8MVidP1FK1doQdDItVmk+WIOxQtwyeDjNF7pR/3PaK2ax5NoRLzg70yjkmKh1o/eZGBuaDyq8O1+IMdGznsBNUPmljo5zM6mGXkZkUqwOnEw3OHGUmDn6jhfPse6kLeKc57Jc9SQq4N3Mdj/IR+Xr52eOPTP5ieAWfvrxC9fzhclP1Fa5f73Tk0KVHe7tFmGNU+R3hfKaCJT/f6pw/z99GWN49+49RzxY7yv3dcNawzLNiBi2/c48zVhj+fD+A+fLhU+fPw+tsWKMZVkWnURaXXAeHtRyI61ybHduLxthnDxL1UFKG2mb/ThY1zvTNHPETKuNP/3xj/zLf/m3OGv5+OEDx6HB+xgjJSsbL3jHvm/0VpmmieAd0l+tHoX12LUPeZ5otbCuN+Y6a5phmljGYGTfN+1QoeOd4/bywru//mtCCNxeXti3jfP5QveqF9EhHRHp8Otf/5pSCv83de/uauue7nl9ftf3NsaYc6619qWqzlUwMDQyMBGMNOmsM7FF6EQDwcDGv6AjoSPhQAc2CCooaGAigoGBBjaCQQfdcC516uy9115rXsblvfyuBs/vHXufpmtXYYPUGVBU1VzzMsY73vH8nuf7fC/vHk9Yq4QorCqdN2jdUwpcr1esFT7pugWMqQze4LueFBOGxNc//5rbbeZ2/swwjlgi6MTh1KH0IHHDLbvEOeEBzvPcIkiNZJUr6PsepQ0xJoZhpPOe8+VMCme874CMs5mxdxhjWFehnYisb6PvR6yFEGacM+QccE40wqZtc22xP4zD1lCp1LlJZW+lGTNX9KoJcaM3HbUU0pZEXeIUOmvJPqKge0XnO6Zx5HV5FTMW1bqMUqW7LRWNwrUMb4WYXZArxTSTCi0u+boZPEMkhBsPDxOpLFjdNd10bnJehbUVYytbWKAW6lsghBXnu5aEWO/qm5Dy3ZNxmAZCSDJaK0U/DnfZcC6VcTySUsE1s+sQYtNrGIGmVBWOsRM5YixRbAqTxE7Y5o6ea6ZE0MY3ez2HNY4SCmnbWFkYJk/aItYqSsgMrmNNmbQmnPF0diDmIPzGOTapo1jlpS2xFdlUZ9NC5VSmRsFWdRX+s1WebQsY56Bq3l4uXM43tjXhrUxn03CUrfqaef30Ce8833/8jCoGg1AM11iwSmzwhn7EWbkHY4y0PfmvffxOFMtaC93Qs8XA4XRkvt6Ypkk8K9/OjONI18kWeZ4Xlm27t+3GyOZt126bNsp3ned0PPH86SMpZ5z3gv21uIlPnz+Lian3jONI33U471m3hDKaD+/fE7YVvKfverTSvL29oVr31HViACxLHSfjJpW+69CqUY6a96I1lndPT4QQGvndCOk9Bg7TxDzPqKqbUYdkBcnJu5KjGLxOYyXH1BIdN0KIdN4RtpVxGDHe4ZLHRU8plS0kck1S+PyjLI1K5fX6hrGK6/WFIydSykyjo3MKNUo36W0l6kSKG73vRct96iXvxA6klHh7eyOFhcM0YYxh2wQc9z5TayZus5zcJXAcRQCwbS8456FUwlpafIDFWshZNvPiZF3vY79StRUfKaZiqCzplxpFWCXM7dAd5Geiku17CPR1INw2trzSeU+uhcvtRlIRbQ0lJDrfoauWMDBt+DB94GV9vrv9aJS4X1kRN2QlWKbkkCJsCQWpChykVEeMN0rZGEePUrIp7jtDppBK5uHdoR2SiyyTSpX418Hz6dM3aKNJbxljB4x11KrEKAZFVppaFes6C50Gga1Qu+dqh7WGNawoLIhMQKAX7URLrTRZl8Y5FP23doItWitfo2owUphKEZjMOUdnQZvCNI58/P5XknXuCqGuuEOP1gpTFKRmTqw2pocjMYgRhlKy0C3NKy6sG9Zb+TylxhpRDlLh3fGJtH2WGAlbcabHaMs3v/qI0QpnB8a+QU3Kczg8CS91DSxL4vq2MvgD7mEQDm3O9HZkHCeu5zOXyxXvPEM30jkJefupx+9Escyl8PL6Kgod4PHdE7fLlc5Ljkjf92LyW4rEaVI5nU6AXPhtC61olsbF3CSithlwfPjwgWVZGIaR2/XK9TZjjeHLL78SSdm8UHImxMzhcCCEgHOO6XBgmRe0llH0drvRdRIDIDePuVvR5yLBZKVthWspPDYOaEqJ23zFdx1Pj0/UWnh7O5Nz5nq9MowjJ9+xbUKv6bpOtpo50fcd79+/Z9s2jscjKEUIgaenR7Q2fP/9J6Zpwg09b9cr19sVYwzDIC4+MSZSWKkp03UDj+8eMUpjtSFsM7VC3xnW+cK6roQY0RzIaWUcPIrI8XAkpRlQXM6vfPr0SWhY1mJ0pJZA55uVnpKo1MdTT4wLVFkAxbAy9J4Qb/cDw3vTUvzE/UnrFqOK0JZ2WpYsxCzGSGxIrbPkRTvh7TnXs6ybHDRFqFMGAfR1VuhNOvGaCyd3kEjhOWGLpabKWhbsqCn0DNPIwR1Y89a8KmfJakpVJgcrZOaYIjkFrFHkLMsL5xylLKxrAaTov3v3nufnT8S00A89KlWu5xdiTDhneHh4JITAfLtyvW08PT42IYbQ0dZ1ox8GtuVGLoXU6DPe96Rccd4zL7IkTClLYJtqcbaI4MJYj7C/tPAbU0XZikqiFVdGSQSuRsjkqVBLFlMMLfez0RJ7UXLBeUkLsDjiOrOUFeelNPdTjynCqbytC8ttpYUOiPerUdQCIQWhFWWBBpRVlK2FudkOWzSD7Tn1J7zN5Kq5LSv9w0TnJ5Z5RlnNMDyIGi8m/uLPvuGP/vCPMdpgTcJ2cLlcoFSscc2BvWJU5vHxS6yRvYbzvqn7/gZsw7XSnB4eWoB8baHrcuG2dSWnzPFwwCjJBMlF4mh3ueD1egPkxNzTGLtOguPFMr/ifE8/jFyuV6HRdD3zsmKdvRN7tTas2woobreZpW3kxTK/3LtXrUWBU6uMnefzmWk6cLtdxRWFKp1wlSySw/FE1/dsW8D5jtvtSi6FYRzR7SZf1g3vHYfjiZxTu4kM67owTgdyUQzTQdL1ivAbbZNOVmUIMd35oKXshgDqHhwFMM83ckoMxxMlJioS3HS9nHHHI+NhIL4G5uXGMAytUGVeX5+JSZygHp8e+P0/+Dnz7SZddWeIIeA739Ioq1Bi0oJShXWdcc4zjU6koUa3jXcFFTC23GkwSgkpVXBo0+zzPKVEShGlUkpShLquZ9vOdN3At9/9Ge/ff0GMuX1/wRjHbb5RcsA5sTbLWfBVdglfw0cpFWdEE26QDtNohXGOsAkPWFgMkRQDXWfpO8VaZRnU9xKWBxFjDL13XK9naoVlubCFG0PvUCQeTyMxJtZtY1kWzq/PWOd4//6RLawoVQlxo1bF8fhA7x3jNPH58wteO+ZlRWvFslxIubJtBtcN1CLJkapWaN6oEpXs0SkKr7OxPqpCvEqNBJ6hK9oLHqqdRjlF1YWihP5kvUNFiaNQupBjpaRm3VbEMUkbzXpZJebYe4bjUbwyU2S+LBhnBc+1wh2tFKF1okhrplqZCq0xeGWpsdDbDsvMYD2xarqHY+M7WLruIMmXUYjq3kkcyfffv+G0pWQ5OHt/IOcmSe47VPXEnMnF4vwRrxTTMIrRzb9sbvj/Hw+lNVuIbJtc7JzEydgaw+lwIoTA9XqTjmnssUqJltQati0yDLIdzjnfeZNKCS5YUmRdFrq+4/XtzOEoo+cyzxwOB3w3UM7Cm3TNbNd7T+kKMSVySpKw6BzHh5OERmnNsi5YJyFSp9MjKSVOp0dutxvvP3zg5fm5LaMm3BZksdD1LaZUMQyHH/iSFqBijcgth65HIcl3eV55u9ywxhGTOND0w9QkekW63KrEMaZqno6PoqNXolN22lKNdOS9daAgbPIz1lm2sPLH/8of8/zyTMqZx6dHluWGsc3rr1nemaz44st3vH//jlorZ294O78ifJ/Mut7QGo7Hicv1QkmZEDbevXtHTInz5RMA0+HANm/0Q0+MFec7cg6twGus9c2JL+OcQ2uBTlIqbFuGtpSqdQUil8uVp6cBpVYgEcJMCIm+H3E2YibNuqxolTkeByGEF1FSySdPiX8jiRBuOK+AQNfJQTz0EqlRmnx2V2WVmlEqYa1BqcieAYWKLcslMwwdy3ohxQ2tKqUkvJPAsan3dFZRKu2+L3z5xXu++/gdvXd88cUXrGvk4XTCWsfv/fxf48//4pdczi8Y5/AWpmkg5UqzV8d2mqHvAM3ndWHbZkoGtEMri7NdM62WxYv2WqSNGtSKjMamipOQQ5ZYVqGaZtx6A2SULhyPAyWK6zhWoa2HIhvonCXPKK8yMZTm/l63QtSycPVWo62VBZkulK1QKIxDj62WcN2oytCZnufzlVQMfnBsMVJxTZ4obN51iWxUvHFcbhvjYKA41mWVXKEUyW2p45zF6ErY5FAppXJOW3Na/xuw4CmlcJtvsk1sONbteqPvempbJuxZ4MZY1m1tXaRkdxhjWZZV6EC9YGpal2a4YdliwveSeGedZRgd6yZ0hFwK0+FITIm387nRhvKdRxhjZJomjJHiKwohS9ftoUgSo1krlBg5nk4sy4rS4oVpjOi+tRE+4G1fihiL0iLlijHivQDYlRVrnRhixIh1XhgCXUduetsQxU9TaYPWIsfUiC7dKHGZzymhrYytfbOKu95u0pFqcQKal5UUA5+fP9P1HTpFti0wHY4NJ1TcbmJR57zheruwhYUQQtOzJ0oURYYxiofHR15eXikpksJG13nW9QpKMU29yEFtJcRCzhsVKdxif1fb5l/0/SllYmwwQT82+lemFEUpCzFKp/TwMHE+X9r3yM0uyZ0rWhfGgyOFC8vSCmGNQMDo2ExYxOrLmoRWgRDesM2OL5dI1yu2bQWqhF8Z4ZF6L5SpbV2Z55lxHPHeUYsEaxlTUapIllBvoRY6b8lxBTQF1TbyWf6eqfSdpfOG23zju28iMSROpwe+/Pprag784e//nM+fv2deVlzXoWrm3eMDJVeOJ5nMti2xroHTcSB2YnWWs4R0SUyyKKDzVsix6cANaCuaaWWbg5KRQlmFlgnWoAygMsPgsQdDb3pQiZojac0YK276KCfRvqGKz6wWDF5p1WIORPAgBQ/QEJdI2SIOybmvVK7Ljen4hEqaFDPz7RXjOwrCWY4pEzexXNMoli3itGe9SZNjrSNuRbDbCtsahaVhnMRx6GaA00LSfhPT8neiWMp2zLPOsjBYloXT6SQjeM4ohC5hjGGaJqFRKDEDfXh44HI+t25SArFkEWHatnVhnEZicyeqKG7zTIiRz88v9H3P4XDAhE10q7WyLgu+l9F1mj7QtSwg4WFJjk+MG0q3AuDELEDs84VwLrQiI69rXYBeNqBaN6qSu5O4vfcoLUYiCliWlRh/2AJLN2MoIUgofQuuqs3DU8jnsgCiUXY0qo2GEiUq23s5eLZNPCO7rjmmx4BSUqyUKtQa8X4gpUjXWdZtJqXEOA68vKsMDOgAACAASURBVH7m6fGJt7cXwRpLYTqMlALeOyDjvWYcDtLFBjFHNsaKxC2ujKPjfLnQ+a75lBqsNfdkTtWKainiQA+yES1NIiruTive9yxLou8t23bBua7dTy1Z03lSnjGuYD3kspBTuLvZlxzRqlBKIkRZqFg1MAwDOSdKTByPPTF45vkmru/OUkpgWxekNU3tOmdiKhQkdfTl5Y0vvvgCbRTDOLKtG0ardjhUORhFTi3XrlG4lFF4axHfnszHj9/y+vbCz372c0JM9N7Rd47zVTDM6+WFaTxQ0ibS0ZIwuvJHf/h7gOHbbz8Stoy34rizroFtk2hdkec2Z6yiUAaZUmoCA6ZalJGMrNIYBs5pzCBLoZqKhIGVLK5CSlGzJq2JsCVSTqTQkidLoYmwZXxOGbR8TlJKMEI1mtwVVC+pqjprzs9nTFGUJTLfFowPSOajupsSl5b4apSh2GYQUmCZZWGjlWpWlULpWsqK0Za4Jaip+dQKrfCnHr8TxZIqoHJnHXELOGOFGOwcuTSmfc7EnHh5e+N6uzH0PXkVfqO4ClVyK6hDJzd7WGVrvC88SilcrxdqrUzT1BYN9q6eUc1i/uHY1AHa3EdR0aM35+cqLuolJzFljZqUIs6I3dM49BKVEQI1J6ahFw064J1rUaZyk8qWUxQvxrhWXMQun1IlDkPLSN73vVjWFcFglJFFg9Eyzhnv7tzSvu+JSTbFKWeul4VplAhZ4w3ey0hWa+FwGLDO0PWWl9dXtrBwnc+cTkfQlZw3QtjIOXB6OBDCzPE4MS83kUc21c73n77Be0OtmYz4hFYl2OiyLpRaGMeRGFeG3pGSsAO0Vq07FVhFcFbZzI9jR4wLOe9epRrnxCg2560ldm44pzAmEWOm6/qGQcNtW9uSomKMdK5OF0LdsDqyLjf6YZLNsnKgE7msaKshRbRxOK9hTtQqzlIC/wjRXKkm/tCSFrptG6VIdtPL60ubCMRjcl5jO0QBIxMKVULjSkm7jQAp5WZdlhimjlLg2+++wVoPyjDPC4dxFLHC7UZcNeewcTw9Ml/fiKnwPfCL3/sDfvb1Fzw/vzKOVYqmM+RpEMMJJRtgMd0I2N6SamL0nqKK5JEnSfJUVSzelLbkZaWGCVMkcrfkSlgTtbO4wVJzYVs2lrhRmzVcoS1noyitnLesMdF5J7DW28y7pyfyVqlBYXpxkX/5/Mzh9MSoFPMWICRR4KDEQ6EqcRkqlZQr3VhFfx+CJFlmkfHWIsbIencia/nhYier24H304/fiWIpNBElFlXNzxKl0K3gOP9DPnipQjDfNdM730+1ZYXIDGVbvayCNT0+PjIMA7fbVUjfTuR8xuim3S532WFKbQmgwFlFaBdeN6mfs+7+7zllzpcznfes60ophS8+fCna6lLajZ/a5te33BExKlDaCqesFhSanCoxbk36yN3pHSoxSCLlHY/NEo9htZVlhNFQMsuy8HY+U2vhnXlHSqJqKrUyjD25ymFCFds7eW6a55czXdfx1Vdf4L0FMtZJVnPfd2yb4tgdsEYODzcI585ZgzVKPnBUas0kMiUnchE87+66aGSxUmtCqfbBKZWcQzNkhVrtffzftrlt18Fa1WgtTopUkijjWgsxLhjjpIAcDvS9xZjaMFRDPzpS1OS0sm0LWmW5tlaYC66AMQVUJOeNXDTjNBFD5PHxSOc9JW9cL88YW9BanrMxAgnlFNHaYI0cmCkFMdewmpQ2us6xbavEJNv+jsdaLcU8ZzG0FiWaIwahvYUQME70zlKRRc8u0QeV1JRrfecFU62wbht9P6GNJC7+xV/8Ke/efcHXX3/J0I98fn7ju+++F+eufmRdNsZxQGvDh7EjpI3LfMV6h+3EMDjkQNzf1+JQuuK1owSRhKZVii0oioGSQFXJHzr2Jy7LVbwkrSaFKDaMWpMXwQjTVnBO4ZQnLpnOCOlfF82hO/ApPvP8zfdMxxNP04Hnlzfiuko3WKTrTTrtalpC1s2uMVKbf2Vt5jLUKgF07N3yTkZXdybOTz1+Z4rlsixszddszySuwOnhAa0kkF1rzTzPlFoZnWx9Y4u27bue6+XCnrPR9T2HwyQSybDRdV3bYN+4XK68f/8Oa8XoYqd9KKUlEB7VrNQyt/lGipLlrc2OiWkxu9UKq0RlM4xjI2cHjBG6jCwoJIUybAGUZP2U3IK8tBMOmxGZ4LqudzVRNwwS58vduOj+2mJKOCvdqZhlyOivjeZwmNg3yrv6pe971nXBORnBZSkhxODr9cIXX3wghE0yoxUMQ9dwVMs8X3HW0PUdLy8vaKX48ssPbNuC74Tjap0hpdBiKhTWaUi6dVGZnEVFAuVOu9LaYq1o4sG0zCRhG/R93+CAinOG2+0mWOp0aAekIsZVCkrrIL/44kkSBnPm9fWNrus4HifBkgtQAq+v38t7lwRLLDkChZIDFUMIlePDwDR1RCca+BRWPnx45Pn5W8EulZhtxJioNVNqkunSabS2lCpW5opKjIGuF5aAUvB2fqXve8GA2/1birlbsDnn7j4E6yaa677vyFnysq3zcm8A4zhyuVzb9WxE9WGX2G5437FtC7/85Z9T6y9bNy7P0RqJX8mNd2xsxQRD2CKd62WRJXRknPaSjkqh6x3WG5wzXC5vbNsmuUMotJax3WHRXjiPnz5/4jScmNdZXM6LyEipldiWnlVVtHLiqzBvZNdRosQw97Zn8iMvn/6K6+uNYTrw7vjI9/P3EhODbOILUdIkjCXFVYrlFigtpwqxIG6GO63mFOmI5QOtZNH0G1DL31gslVK/D/wj4Kv2uf2TWus/UEq9A/5b4I+APwP+dq31RUkL+A+AfxeYgb9Ta/3HP/U3tBY87e4juRvoIp1ZaY4xtmnGXTPirU38Xhtp9sOHD9RGPXp7e2McH4TSsK1cLheOxyNPT4+NWiLMfTHgtcJ37AeRQWrdcE/L49PT/W/9OCCt5Cyuz1qJH1/DFmMQs4I9klQrofPY3hBji4gqpeGeImHbtnAn3msjUsUtBEyzfjPG3An0uxlIbFr4FCPrkrDetm2tbMn7fpIiHaSD3DuS9p6iFCzLzOkkVKUYA8MgkMCPbeuslVC3dV05Hqf2vCOHaeT19RXnJSfbWCMk+UazUi3VT7bXos23Vl5bjEHMFdq4vY9De7FLSQ4lYzTLcqOUhNY0DwDJg7fW8vAgnNhSEjGuLMvafj4yDJ5tu1GrahnyQiE6TCMlF+FaxoWKIiVJKsxZIAdtZGwPIfDdx4/CMSwRSRTLooO/PyfRFNea8d4QolCUrHV0nSPFjdvtxuF45PHxkRgjy7LcmRuxTUHjOFKrUM6u1yvj2FOBeV6wxvHhwwescayrFLnXl1eZiKDBSEJh++qrn2G0LPZcN3CJN+EQ19Bw3B7fGYy1DNpIwW3PYxxHthRwTj5nsUhSgDUGVXNzZC/UKrikyuJaVZHPjNcerwUiCbeNwQ0sYaU3PaXC6eGE8451Wbhuoq1HKUqbP2pR5DUzv86E68bXX/+Md8d3vLg3Lpcbc5wxSTOaTvLtjaEqoZjlkiULiIpJ4KpGJfGphFYMS5bxu3WUdwONVkT3IMT/z8USUcL+p7XWf6yUOgL/l1LqfwH+DvC/1lr/vlLq7wF/D/jPgH8H+Ffbf/4N4L9s//2Tjz1Hp0JTRUiXucezdt7fu8i7rldr7I820t4J5uesbWTwjG4OM2KUcRWNbytO0vnJ8mFXCHnvCVHoRt57fNuAp2b0u1uubduGLeJCY42h1ITRmmGcyFGMNXxzjpYOQort9XZFa804jOQih8Fu5pFzFmOFlkW0HxIVoV4QhFYlhsGb+Bd2nXxfSpJrA0zTRK3lrhjatqWRvHfSvnRkzlnO57emPBFlUN93nM9nlKosi+CEJcv4XloXLv+20nXSVTtn7z6IStGMNFwbM4UTW0r5kbRR3/+mMUK5Uao2CMC2blwiBMRZyhNjbu5SrnV1hZwDtRbBcimMY8e2xVboS+t2q3RdY0ffW0LYhJ5iZSlDRXi4yoDKlBKJYbk7A51OB7ZVWANKSw6PXEdZNhmtiTURw4q1Y+OKSlepjLj+11oI23q/3/ret21/aL9L37H0fYH48PBASAFjRe0lBfYGyMGpGiQkDkq66e4d27oxHSbWJZCyMBIkUkWyo5wVD4WaxZP1dHoAtS/S4OH4wLKt5FqEq0xhXVaxyKuCs5ZYRS5aDaWKAYmyBt38KXMtzMvK04f3hDXSdT3aGg7TQYygi2Y9twVZhZoqIUWh+ayVqAJLTDwd3vEwnHh3eEe4RZF7ZoXHgHay0GkQQNZGiPdaUw1U3d1DCPdkSmF3FoENKk3uTJtipYlZfqJG/cZiWWv9Bvim/e+LUuqfAL8A/hbwb7Vv+6+A/w0pln8L+EdV3vn/Qyn1qJT6Wfs9/8KHdDBCNs9xV8c4QuumdpJ1LUU0ynB3JrJN3lhyaQqbjvPlwjSO1LY4CSlwu90IYSPGxNPTU6P/9FyvZ7ZtbYuCBFU+zLtZh+Bi6d4J1FrpvKfrOuFZGhm9baMhbNuG0RZtDL7xGkvYIQTx3tyx1RBS25Su98KXm7fltq4trVJ8MvtBfkZpzTLPPD48SBcaI13fU6rEoKaUpJDq7u7TKbSklXEcWwHJvL29olS9dzT7ljwl08bmwuFwYF0X+r4jbJuMKVXoTsYa3t5eeHt9pes8XS+6e200Jad7jLEsr+y9MOpGG8k5iY4554ZRStiUwCEicTSty9Zai444RbRWeG+53RZCiEzTASgMw4BShmHoeX09t2450vUD5IoxcDhMPH/+TCmCMapW4MXLc+fZVdZ1wRrDp8/P1FLpux7nDNu2EIPYAUJlawWwVogx0Nde7hki18uF8XBoHGDPPC+kNd0zo5xz9H137zRrrTw+PrXRWKSZ+/IhyapZ1CbOyjLPqFYkJV87b4ESM1vYGLQGVRmHgVqFl5piajxduR8oisvlxuFwIkSh4qSU+fjxI9539GMvhsYtQlZpkYQSxcUpJ+EjV1UgKxwWlTXzeSFXoTK9fXptzIJM3/WoJJ9rUy0667bATUz9yDxfIWnWS0AlYbV8/uYTj49PfP3uK4jw7XcfMVljssEakSBvUVgFXncUqkiNtUybseGQYu0oVh9VFbSTA0gWRNKYVSUuVC//MsXynytqfwT868D/CXz1owL4LTKmgxTSX/7ox/6yfe2vFUul1N8F/i6Ad09cLhdci8dMMQrfspT7+Gsbuz9lGd9iFLMKvbP+vcc3zuLhcJBtc62EGFowlr0XP+fkw3s+nwlhZVlmPnz4IMsd58lJ5I4xCa2g/9F2W/h3laHv6PsBZTSP3SNhC8zzDM29J0XhbZbWLXrnGIaB3Y5OKYXzQk9y96Ib7xDBfngopei67v6mK+B0PFJqJSyy1FiWRQD0JPEP+8LAOSHnpySMgGVZ6DoxsHh6eodSe/46rYuVD7M8P8Pnz5+bvFOgEd3O4OfnZ6iVSsZYy/F4JOVE2DagNBqVjP2lxf8KPJBRqrLHCsshlMgZhqFvI7bgr6W99r1r2vHlvhdIQKlK33fcbhdeXp7R2vD4+MTxeORwGKkV3t7ObNtC56W4jWPP+SxLqq5zjRYldKxakhh1UAhh5fU2t2nAcL2eZfHUMNhSUvtPJieaagtCEI5sLflu9tx1nnVZxfm9HealFBEsNF2997L0uFxECdb3XXNzb87gjSkxHXqJnDCWaZrYwgatsagorKstjGsjbGLce3p4opbEPDfmglZitNJLJMU8XzGmI7aDR2nN29tZIB2tQGus0wx+IOVAXCJ5S+gW8qaUOKM77SArtlmw+VVvWG1Zzguu98xvN/phYOontuuGUw6SLHM+vX3CeZGSKlW5xRvH45H5bWa9bjw9vuerp68gKp4/fZK7MNeWKaQJ24YbHKoqnHGsyyZWdto0p7DSfEobm8JY0f0rwZitcaQqZi4/9fiti6VS6gD898B/Ums979tpgFprVTJ//NaPWuufAH8CMI2/X4dRqD27RdnWRkVVRdki8IIUTpTkZ5TGwbRWQOu926R9n9GGmGKTzUkB2ouB1oZxFCKzb0VrHOUGDDFK13KY2muXzqbr+vuHeBh6+mGQcCbAZqHFLPPC9XqVm8hZTN+RzhfWbeVwONDprmF0suhRzkEbga2R5xS27Qf8USm2EEiNuD414w1tTIuYSHf9tPdetqfUttjY/fl2D8py53pKhyPPPYR47+53yzuoPDw8sJsVUyuuEzMS1+z0djec3f9Tnv+RmDZyTq3zkltsx+Z2HHO/jsbYhjP+8DpSSo3jOdzfm90zdNu2+/MUatFI1wks8fz8mW+++YZf/OLnPD68YxwHLpcLe9RI1aoldnYSHudd01sXyakOG8sySzxGKYzDAe870SG3JVpM4f58U8pNCtmYGrmQSBKFXGndumCWShuolWEQB6fL5SLKsHZPHo/H+2E3zzPKaN7OV0ot/PxnvwdK4AhjXOOZxpZRVQgxMAwTb29n1rgxjBPv3h2oVTH0HdfrfF/udZ3CKEXJok0vxaGNZjIDzhmWbRXaUk4cxweOpyPDNHC9XglowrKBQJlkRALp+07s1UKit73AX1m1IpR5+/4V13eQ4bW8QgSvJdpElcjT8R2Vwny7cphGtnVhravQ8kri4/wdj4/v6JRn9GOjZwkh3XrXOtJVbAiV5vH4JAW/KrzT5CT8Y6UNy7ygssYpxxdffMkyz9zmmdH7u9Xir3v8VsVSKeWQQvlf11r/h/bl7/bxWin1M+Bj+/qvgN//0Y//Xvvar33otkAZh6GdbG/SOje8z7TCCEg3ljM0m7MKLLNseod2wiskCbK2FEexg/J3b0ZjZENda71voGut3G43nHc8NnODvYCIWkfjvJduVrdNeCt0zjquOfPp8+c7RLAHne2mEF3f3T9EAMM4EEK+/93DNJGy0JR2w5C0exG2Q6CUIry6KBxGM01QKylLXrPS4Jxt5h61YZPtGhrd6DrSmQttSrA/24yVoWKtZCuLKmVoEMhukqEpNTVNuKfzh7s7vdEy/ry+vmKMYhh7QhD54t4p2vtirjTaksX7ruGP+e7fuffQuxfj/tq974lRSNW5mW8cDieMQeKEh5FlWe5YrWvdPBRiCM2lSrVC3LdDQyKYu15cp/q+a6+7NkWOwAS5pDtDQjVoYe+axZ5OYa3cn9INJ2FwtAPwNi90fU+tcm13mz5xyBJc/HCQZdswHMQZXCnG4UBuhP/j4UitQsKeDhPOWW63Gecc54tg4X3vCNsm3Ww/MC9ru5a5Xb+NbQtQFtmQl0oqEtqWN5FoHo9fCgG+79i2QNgi7x6fiDEQbkvrwpDMohSpoaKMaLFDDMSQOPQnDJZDf8Rpz+V64fPbM+Eh8vT4SCGJvHEcWONGKeLcvl0XMaoOpWUDVWlKQianSloSNQtFqSZFVYquJU3qaolrIm8LP//q9/j48Xvmy5VpbBj+GtDV3X/u+28+ywSAJSwRa7ufrIO/zTZcAf8Q+Ce11v/iR//0PwH/PvD323//jz/6+n+slPpvkMXO20/hle2PSEeRM6KsMjjv72Npah2H4gdOZrl3j5qtroQtiNWU1rgWgxBjlOC+xm/UWkaWtbmnKyUj3rIsHI+HxrUU3G8YhrYEsn/Nvd15j7MW9m6ijUpvbxfeXt84PTzIZu1OQ1Dou8pG3XHP3CzAYpBl047L7vCCmybBBo1QS/K6ipzRyHZaaxmKc6Od7Ol9El1Bo924O+63d9P7CDzPt4YRSmEViLneNdqyjGicz4anzrdr+/+ixglBHK3TJdF1PagqruQ0/8S2rNjt1nb/UKX296SwLCu7rV5K5X6tdwqVdJTSgf4wGexmGsN9my4E68Q4Cgvgm2+/FQJ80/cr5NDQ7T0vRTwoFapxIPW9qO8b/JxSC4RTUEXpY1uI236tdtaDad1uSglrxA5PtfdTd4axSWuB+zXZX08plcvlhnOOh4cHrBV4QCCFE9sWeX155fx2QSnN8fhA2GLrxg2/+tWvEFMZ0wjxkv5Z7nZ3klqpFULmrlWiohuuE2Og8z3GGqyTpaVIT1tz0t4rVRXedFRX5PAIQa6EhrwJS6C3A45MTZWYI67zdKZDT5reiclM2TLeeJSTxYvvewkyi4F+8FyvZ0qKshfQBhXh9eML1nkGNxJVQnkROUqNoLFSCp0bhLpXNO8e3pPWxHyRe0xh0RRqkghs5xzbIomwnR/FL+AnHr9NZ/lvAv8e8P8opf7v9rX/HCmS/51S6j8E/hz42+3f/meENvTPEOrQf/Cb/sA+XoskStP1/f2DYrRuLxRSblGjrWBQxWy167v7ImQvEqU5E5VGB5APSJb42Cg3qLWKaZrudJxSMv1wusv0js5SFaxt5DxME8fTUcatnEEp+mEkpcT79++JMbKtm3y4W4G31jKZiXWZJf+juWrf4YDdEd4YTCum1lop4Acp4EPfc5gmoRS1MfQHjbnBGNUUO5HbTf697zvpsNu4fieYIbxEMeIt7LG+xojsUizvBHv7sb/fNB1YlpW0LfSt004pcrvNpFTITmhSwzDy+vqCD4IRx0YR6joxyIhR3Iu2LbRu9oeuVQjall3SKIa/ij14bXcT6vuxFZwda5UlnDFWZIna4L3l+VkcfaiirEopCcY7z3chg3VW1DtVIlpBSPHCCND0ndBNjscTyyLJkDnFdq2ku/zxIZbb0mDHrkupjfc7NGaGpu975nlh24Rm1nXd/dCY55l1la4wp8K6BM7nS+NQGm63K5fLjXVdqJSGSyuGobuzCHbYaXfGSkmWVyL4yHdF2+Fw4vtPn+k7kXM657nernT9wOn0iFJyqN9uM/P1xvt375nGibAupC01zwLP2I/EGgW3jpJpU03Fek+NUsh6M2B9c2eqSBTwLNhiqRK5rBGpbg5FYnaVlXjhZQWlsQdR6njXizdnaamjNXO7LQx9z+nwyLZGluvGu6d3bMfI7SL56vNNmqIYE8ttpni5z+IS2ObI+w8ffrJO/Tbb8P8dfi29/d/+F3x/Bf6j3/R7/7mfkbiHhk+VGIVsS+MEQhudc+sSoG/b65yEf+mHvcOQp5ob1QctEkMUxJAxWlzNrbWtGAhvc/+QWmtZ1kWoONtGypn5dkMpzeYcU5GMmcH30j1USYssDQcUF3EJjk8pNQmlZduMWEOljO/k1K+1iLlrqWwh0vVd2w5rrLNcGvYpqhzBu/aN+d1EOEvhj2Gj1B+62f337N35Tt8pbazsmtyxlETfD200luKXU2AYB0pRxLBxaTp1uWbign6bA6nJKruuF7/Akun7gWEIQGlEaKF4ZWk8kLzzjr4bxeQ2JtAK3bqyPU1Tzk1DypFaNTFlOr9v6mNbXCVxKWoyyGVZG780NxxWiNbWWsZx4nI5y99DOtmY0t0lJzeuKIhKLGwbfS/dbayxxYWA0tzx3z0BM2xbOxhFGVYbRuyca9OOadJPze224L1IXrWWKWldtzvktGOhy+sbyjhCEN8DrSpGw/F45Px2xnt7nxacs2I6bSzrurYJwjAdJsIWGMeJ2+2G+IW2MBpVeHn9RNfJ/a505np94XR6opbIulwbhqexxvHw9IFSE7mlmIK4+htlCEugKGkMjJXsIl0MxEJaszivdxqruyZ+2Bj6nt4MxBIxzskibhjY1oVODWy3FdVpxnEiahF16GJQaFJIZC33y26ioZOE2NW+MLqel+dnvnlbeHh85Ly+UoHedAx2INzeGP2IbYve7tRzPr9xe73+ZJ36nVDw3AnmijuuFkNAGwkLuy9ytCYBzthmPKt/oBU1uaJp3y8GBSKqL61wiC45UpIYcThj2EJqioKNVAqXv/rV3XRYKzEVnW+zYI7rRkmi1tlB4x1X/LM//dM2vk93nqhWmloqmXynUKScSUkwyZwiqo29tA+NUmq3CZCOpXW3OwezNDpUKpmqpNvWSiIVapLf7313x2eV1o3E3bTIzYZq12CnXPBOJGFaSVzu0jLLZYk0MYwT58u1EdTN3a0npdS8RTVVKTGyUDBNx7u2vzQn8JyzqFuq0J1KERceZTw//8UvqLWwzAvfffyOiiIjzyVmIaenXMlVs26BcRhJuVDRKNXcjyoMw4TvOvpu4OXlpU0iM9ZI1K2zHaXlSXvXsQXJZVdKwtfyzu+tSFCc9SzzyhYCrjEUtrDSeXefYkqbhnIqzZRBVFuul+4NFC/Pz614iedAjPuSURRpOyb7w/JL/DpNg3tkyiptxIbDoW8Efrn3+75vsMjKOA7iY0Dh/PbK11//7E7anhu2v4VATCu7EEBRCNtCSpHX10/0wwi1tO7Yi6Ipz+I7WSqoTC6i+b/drhhr8Z0nBMUwDljlyCGTqRzaa1YRef9DZdA9ushnI8yBafS46ilrRSWNxfN2OVOCQiPXqiRYbxvH44PsLxJ4JbRCheLUHVmXhZfvPnM6njj6iW3buDy/YtDyWS6FwXfMxrTJqpJSZL6eUXsK6088fmeKpW04Y2pSvu5wEBONLdB3nWBsbYO9Kz32n9315NaKAUehLYeqjMud9+zKntwI1tfLpVEydFvYaLw1d4XK+iIk3evlek9WfPfuHZfLlXkWf8y+67hdr3x+Fj6eNVYWLi28q+tkqbM/1901aS/wvuGyKec2jguXNLWN8zhNXK8Xtm2T702ScyMj4L70SQzTyPV6Y5wmUuPtPT6eWoGS56UU4iBtraQHmr2jEsxVyrOmltTGN+lSQ0zCFfQA+8b9SjcM+GawbLTmNksXnFLCW1E2pWZWkNoGPueMNrl1uVWwY2f5iz//JbdlbomVX6CV4nq7klJBKXGDP55OaO3ohwMoxbIswsUNkWE8oNeNl5cXhkEsyvbkydPpEWqVLWin6bueGFJjOPQonSjbKnKORtpXyjBNR1IudGNPfXvjj/7g9/mn/+yfsm0re5SxfYPTNwAAIABJREFUUqbhnaLRF/xS7s2+pXI653l8fCQ3CGl3uJEtv6LrfohsWJoQQviUwjPe1pVkDNY4bO/vAoeuEx255KxHQkqSqZQiSisxmraOz5+FqzhNcsDHmJmmkZrkEBceLPS9x1rNugbCtogrUxN0KFXwXU8tsK0rl8srKWXGYWQcBznUrRzqErPiCVtuDA/bYpXLfToqpXC7XBtnuef2KkbSXd9xPJ5gqNzONyhgsFCqdKFbwEwGouD+6IozlqFJg2Nb/C3zfF/wqrbM3OWOl8v5TsXjzmONYgL+NyFWgraQ2OWOSokW/O6y02SD+yLEWu7fq5Vi3Tbmef5RgJmcJClL0SqNb1mbikZrTddLpon5EWBvrWU6TELgjQKqOy8GFufLmY8fP9L1HYfpwPF05Hg4iedm+72liPxsL/zGCHXpBzwr3zuKHbPcNea1SkSrNgartbjRpHS3npPFlPD1+q5jXRdKqc2dJzYsVqCLvu9/oBa165FTbGqSSkxRjBiMaeOsjOe7BZqxDtu26NkYoXi0jnJdN5z1jdB8EJMEb+i7iRA2UeHs42nId+gkhMDxdMS1LmTfCm9bQhkL1XA8PGKNvIcpVq7Xc3t+lZwqxVSGfiTFSN8JhWS+vaHfriJ/fHxqQWkHYniDltiYUuTh8YltaTk/SaSJ8iEWey+MaQVPeK3Pn5/52c9+zu0mnd/L62tb5lVKEW37jv8ZbShVfo+uhdoWUuu6SWHeqUtYZDMdiLHcc6Tu0IuVwmKtdLpUCdVSO6+4YdSgyDE3FoksaoZ+EIywyuLtME3t5xKvr693T4Kdd6ua2gXkcFBKcE5pWDI5h6aUEj5jjJtgolHycKyxeK/RRiSoWhus94QQmdt4LCYdct+L8UltwpDIMOy4867Akj3B68sr2khaqFaKpcEWqk2dIcbGm3aNCteKuhFF0+Pjo1g7FskjWsN2ZycoBbf5Qt/3eO/4+quveTu/cbuK9Hechp8sU78TxVKhGIaREAO3643dgeh2mykpSzeWyx3b2TeQ3nvqj7DCw+HA7Xa7SyedF/zIdx7diqJQBkWFIv+7GZHSNtFtY2qsqHEmP3E4HqRLDEG2do3iI7rk0rif0PX9HeDfu6y9k/3BduwH4nltDkTeSddYSmoLG8u2BUoo9ENHKfsGV2gqn2aJ0RA6kLvffOfLhXEYKLXw8vLKOIhhg264rzj3WDEt0ELmDzE0HE94aFpBik1DW4u46eQsiYZtCWeMbSbLGW0cKRWBS+rG4Lq7xLGWQnUVxSDZQNqRcoFtP9AcygjFqvM9Cs3z55d792S0HBQfPnzVunFDjIVti+KFWQUD3TaxalMYcpIIYOu8SBlzYRwPaK0Z+okcI/BGLhUx0xTYwxmD85240+dC1w8obXh9PeOd4/n5FZr7vrOtiyzSXabWTWplKIXGtJCilnKh7D6jvmNd1/ukIDn3kmC6rhvOyZJGa8Pl8tzGQhE0OCsUODlUYztsafeuau+DiDRU4+Zq0X2CEox1d4d3rfMXqakc1CL7LTh3JKXcOnMpMqUE1i2ilWlLvK59djLOOnw3Nq5tRJuKKrtevvlWoshZEg1ylsYkpSASZS8GxTudTTfYSA4wydOSlM/S/q7ATrspi1x3mZ+NNSyz3LeSghlRqkIJsv3XqkWebLzOZ56eHvjyyw98NohPZ8Osf93jd6NYKsUWtnuh1A3DEdnhJLEQvmtjV7hTNHai8959LcvCro7Zu7hUEraKpduu7661Nl9Jfbd621MTnRMLs73o7htUGSeTEM21XNSdu7kuInv75q++EZzVifHBj80+du5fKSKvK0o4oPtr30dkpRUpBVIKLTxtuxdd7x1975AtdpbFTnPqqa0z1loTmtlCqZXafvbuD9pkm2KMm5pPZ26Lmq6d0qnhv0I7ylGc0DvfU4ocFF3fMzfLO6Mlg8C7nlIVfT+ICYiWkLmcM0clz03pFkLW+JT79V/XlbfXC9M0sZt57Hnxqop3odKusRIEYnBeuolxate0iOv9vtR4fXsTLLhF2fa+UtpCLG+xFRbdMlw83ovZ8rYJD/PTp88SXDeJgch8vjTMVzw7veta8RKbPbn+hpxriyLxjXUhDlFpkYWJKIUksO18vnE6nfC+u1OBShH+oVYSY5yTHMQ0WEobyQiS+2HgfL6Sc2S+ii48hMBu6aa1JhTpCsde4nJDiCLJbXCIQFiGWkXlJdOdaYYaRhglCnISEwp5nSJMKDXSO0ve0l1xhqLR9H5oZLrOM01Dk6JuLEuQu7ZGrPFo7ZoVXyTngLWC0QrVSyCxdY08Pb0X+ERptq1AFdPsGJvfrJGlKxS0qgyD4XLNWIt0rFmKpiLz7bd/SQzvOJ2OPDyM4gz2E4/fiWIpHEp1p/wI6JwpNd4B3N3GbXfTlvNJtt65UYKGxmXLKd1xwH0RITf0D9Zl1sr2NsUfur9cpHt13uEakb22MW1Pcex8dx/pxcOyMowDt9tC1/Wi+qnidVlquTvyGC2Fx3sv8RI3ic3wnXRAd74e5j6SbW3LKpI418YYcR7/ISa2mXxU2U7u2uNe9fffI2mEqXVD0s3GtuQ6TIc7GwHk4Cp5t3wTrAxfWbeV8+Uq3Uyp1LoRU2FeLozjCFWs4HLJKGVb7Gkz+IhBJGnO3pd4O13MOd9gAPlwb5vAE0Kol2xp8R51dy7lFiKX84W+HygFvPPclpts+DOUKpSQw+EESJb68XAkrKs4VmmDau7s2pjGxcwUVzhMJ5QyLPPaOKVOcp76gau94HaP0Sijcue9bH81OOdbPG0lZ0g5tMVeFey90X/2Q9hah/fC85V7UlgZKW1C0M+yiJLPgGDr0zSRS+Z8lsYghmtb8AgNLaXU0gbW+2E6DKM8t7vLkbhmYe1dQy/cTKH2eC+BZzIdRXLJjOPINUgy5/v3j8y3ReKPK+S0oVTBWd38DHKDYsRdal03QlgoJaJU4XDouF5jw3BFMRaj+Hgao+l7y9tZ7h9jFMbURmXb0Frw/5IDtQjPM4Y9skI8BWiS4pwTNSUeHiautxsikZXXWLKCGvj2u79kXk6NH/s3oLPco3C9863La3hKkZOPKjfmDhIro++GnaUZDpRS2GKQG4EqvK2mWpFoWylSQikSnHMniFsk0xm45/TsRXbvCuZ5Fn7cIhEL0zi1gpY4n6XD8t43ioa+S9l2d6OSC5fmt7lL22wLbEop4X5UDJ13wjcrMgoty0K628BJt+C9x1rTbN6kkx7HkXlZSDEyDiO1Zt7e3vDtuSmtySEQU+Iw9uQsh9EOSaxBFEaqsZW1tqxhxbkOkzMlxBaxIW5Qznmm6SAdtxcHm48fP1KLyAYfHh7a+yejYIiyFADYwkqtiWUOTIcDw3CUuItYmieouat6YpTuXJSuFqMtKVfmZW3dd5QxvlGiSq4Y48hRuJjH02NbgmThYzrPfL3JSNo5Tocj58uFFBO1KsZROsnr5Yb3ssRKIdxH6x0qud2uCIdd03eduPQUwfiGfsA4x+fPz008Ydm2SAgSlLfLFqWzo7k4SYytbNEry3yj7w3jJFnXry8vzMssk5GXtFAZ5QdCTIyHiZfXV9Z1aZQiQ0oi90vNXFjkmbrxLgtipiJYXc77Rh5EIx/bvdlRaub9u0e2beN8fqEW8F6YK9sm8lvVirX3ojVf17UtZKWI5byybaER6EUt5pzCWc31ekNrwV/FmcmyzGJ+I1/P0nWmDef7trsQzLaURElibyeFPtx3AvOy0DNgjWzjS5FIjWH0LPMsCqQS6Tt3nwJ/3eN3olgqaCPNDkIrlmWVvJ0Y71w1pTSVFuVJU0LQ0vaQDJp9s26sxXmxwkLpewaPMkI5yjmQWtSDavnftYqJ7S6z6/u+UYMEGwPNPK/3kzxGKUYAKQre2He9YCZawt9fXl5QWjo47/1dN94c/O5F9b6wMppt3ZgXMRPQWvBB2f6qv6aV3uMYHh8fud1mbrcbAOM0NZA7MY3j3cqutK56jxnO5QePztw4oOL6oxoHUmhI1mjUMLEqIasba6CqtuU3QBF8OVf2HJyhn9jWiLG23fCuxQ7v23eh4Sjg7e0qjuRNDVWrjKpD398VONKRi41bpTJNJ1lGacc8zzjvKDFTi6YiaaGliEu7dY5cIsNwoHOW775d79GwRhmUszgv0MKyblwuV1G8aHGnUahm8iHFzTQsTeudwSCO58uykUvhy6++attXw9CPLKsYmISQ7ofAj5VHpfFTdwhp27b7Iai05ny58Vd/9R2liuzRWiddkBLK1MePn1BGM6QRZywPp0c+f/4szwGRIIqkUjWmhpgAC7zTnIyKKHkEGxcneq2FtiV2dxvnsLAtm0RXn07oqqCKuU1VP2SlX64LD8cTXTdKbjf78shSa2oqsx0mqIQgh4JumTzeO+a5gBLXfaX+X+repdW2LVsT+vprvOdca78i4tz0ppKgBa1oxUr+AMGKWNOCFiykBQUFS1oSkqxpWhRSLCoiaEHEioIVwQcqCZo3ERPMyHsj4sbZe6/HnOPdXxa+1vvaBzLOvUlqcu6EIM45e+215hpzjNZb+9r3cMjZQ+sEH1ak/Ea9AgjL+hCwrif2XdgJlpJmaxW7XmewbTucVYBidlTTGFwuA05/4DhWxOql8Hd//SSKJSkULQ4xkLDGVOfwJNG0hYtG6ypRSSgxAtaaprLniUZSF5NQNQCFw5+IIYo2mJSipm0Z9iUKoSKBc46hYT54WcDwoYop4jxOWCNYjeSIO+vgxaMRCixqjUgFhZw8SD64MUZAZs1Q+8wOOIa3LbnRBl3fQWuFZV7Qdg26rofWquJZBQej8ijh+fmZpHpZfm1SgF1Dsvl5HCja7LIhV0qjEypKKQhFjZQk+2ddFgzDgNt9Qds21A/HLKc5+O8hoW17pAyEkDGMPc7jFM4oMLoWfU+6lBGYIEdPM4TI1Mq+6xF8gLMOYd/Q2Ab7dlQn60Ln8Tt9FlNO+MUvvsO6rnh5fpEiBmKnSgtVjImFGRrbdiJnze/hqTF/8c/USENBaTDvWmnYdoD3Efs287DdT4zjiLbrsSwrjsPLUkWj7RzWZYWSh7brOi5WNAnyEAfzrh0EzuAGnuYenmN8S6zUuUZ07aHei6cnrh1iQtuP6NoOBJ+om7euwYP4GKzbitvrKxMAjKn+B23b0lZP3PGto9m0EumvMfmb8ZwUIu8DzpOmEsVsxFqHGDLarkEvuUdFLddag5gJ7zC1oAUNmZmxrhQZAGU5m5Kvo3/f94BTsmAClMqIcUfOJ1I6AURonaB1koVWgFIsWzGFCmE1jUHjuNwsXS0ATlPJ41gXNI2DVvQY5d4ho20tYiJWafBnYAwnBqfqyOtPj6ahyes0DXV5471H07YIKaBtmko5qB6BQuJNifwqnbN8fXyTGGpHMwxFTLE67cgNpYHqccjUQ1KQdnHh5gICVdc7TRM7s0ReGTKqA1JOGdlkWXTEin2e/hR8jUWyH3p+rWi0k/D9+qGvypumacVHUaG4xy9LoUuRCL5uGxQISczLwk0r3k7g8zyhAPRdJzI8whA0U4hIZ5KOitGp1jZY1h3I7KKdawXbDcjgcqhpGmzbLiRfYL4vsqgi/29Zd2Yrgd+zbVs0TsP7iKGfYJ3Dcp9FRZQxyDjed7zOhYu6rcQwjZha5KxkEdPXpdtxHEzxMxoxkUsZUkQ/TojniXHocawrfv6zXyCcHq+vT1BKsQD0vZjLAta2cI733DiM2I8Tx3ZU3ifzzY1kEp2VZ3meAfO8ou9XdP0gpiq5mob0A2lCl8tVtPkGISTRhVvkjNpxsTnIgMow1n0z5ZCrCK2hA7s64xxssHDNhBAjvj59ldiJO5wr1oQkYBfsHWBHSyhKI4Sz4sjTNOLlxct9RgqZ96lOZPvORqRrW8Rwir8p3/+yznRRGi/IOeA4vLh7KYRwCEe0FfoVDZiNgWCbO5wz8gx4NI2RzfwOrVupEw7IQSzsktDaFBAi9uRRFHzWUMrqQ5QiXPT5kYYz1uH19QW327MkpBZ/hN/9+kkUy5QS9uMgLVrp6k6epHsE3jZ7VK/Q5SVKF5WEqlNGzbKB4+KCF4lcsILFvckAY4hMPDTM+W6dRfABpzmxH28mD65p8ND3WNalaoqnaQIATNOEdVuRYsJwHXCcb51coSNM41tRzTuTKJumobzN09GmbMSRUTXtOQO3243E72WpN0OhImmlJG/lQNe2gCxHupa4kbUWXd9za54TDjHVoIUY7fCQucCJITI/XGts60aIQ2kxFfYV4+VNqpAikLM8dAm0b3M8BPp+hBkNXl5eMPsNMUVM44TgSRu6Xt+RIpIzun6kYYUiBt0qXrPzOLDvbz+370cC+nvEH//xZ/RdJ0uIjDOxS8wpwVgFauCNsABaTOMFfdtg7EbRj1t4n+AahX07RYKosW4bYsq4Xq7seAODuSLF6ihenUoDx3Kg8FSHK/PLr9cH5AySwgUyWdcVpzkxKc0RX+Chgqcb6QSLwqyYh0BzQjoEH87gNnfbdxT9fKEmGU1YgyYoDYqH6XHQbelNIQQUo98Cwbwt2xyWZQbH6cAus9DjjMUyL2RCuJYFUBYibdciKwUVA0bTACjdrELXDbJA5aPMlE4DayHUpLMyCYrXAZRCzgFAAH9E4VZz6QMVYRT1/lnkpzTSoHKPUJWWSVHh9AdSTni9HXLoBG7cna5Ckfk+w4e/fyON//9fSjF5r9BNJMu3sQ77sRbxH7LKSDmKaWyCLeYZKQvRlEscZx2sc9h3LjtypIOMlQ4nhliLQLlhy6LoPi88QYVP2LRtvblSBkzN++Y2NYQgo62Y5sqyJaUMVSSGALZ9R7EoK+O0knweQIYrkWTlDOli+N/IwXM/IKgX3FPJFlRrg/04arxu4XRGwSeNNnCdq/SOnAB/ngC0FAqHfnBiupCEhM6RU2eOwcZITpLWsF2D8wzYVh4ox3bANQ1jHQA8fHiQrp3QxH4csomXTqtp4IQukzKlhoc/0bUdNLgdNdZiP3Z0bYdTFnIhRhjrcJyMZYXEeQA0L44pc3sttnvnccKHG37+85/hdl9wbCv2dcUZIoxtoJWV62zQugYZjPkIPuC7X3yHz5+/wDiLEAiXwJQCo9C0HVYxwDgDx+brwwAjuv2cmaGjFak2Smma9u5HLaiAqEhCFBaIhtb8/TPIowU0uqbDvCwSd0Fp6hFYaKeBjvZG86DNKUMrRbWS99jLwSdNQtu2YlBMD4IYI3JSABKmsUffd8hJeJxWQ8WMcDKpkknQCRkRRiAkbUAjYnB7XiCVXHnNfN6c09C6QfA0Lfaez0TX9jj9Aa0zXGOwnwejH8QVKecIICGnAH9u0B2fw3LwWqdF4smf58NJji8ylDGASrCafNqcApTOopHntV+WO7ShJ9GPvX4axTJnjJdB8JnIUSskQDPCddt2oVbQGGGaSBLf950bt3Hkxlp4llopLOuKnBKssRiHAV3bUpftA8bLhLZrcZcN6KdPn0i78B5/7ve+w3meuL3e8Ktf/xqYF0ZU5AzXNGjQSFHKgl1GfHn6CicuSbfbjcVLuqTzjIIRKrjohHrCu6BwHmsXakzlipau8zgODMNYR+mu6+nIjiyqHWJtbdui7zpxEVc1kyjIht0a2m/lVEKu2KU4ZNngU8URglhzObr7MO6Bbt7BB0o9BZMaxwuQ3+hLRNM0gvf49a9/I1tajupaDIO10nANoxEO6XyVpqGdNg5fvj5hmkbpGCMAjeM4cZk4urq2BZRGP0xY1x1KqC5N27GD8ye0ykhpQ9HZf/78BZ8/f0b0HpdxQuOMWJVxQ981DZxp4RoHaHbl4zDi+z/+XvTgxGCRFZxriONFdtNR8m1iAoxzXJplksTpPn6RDu/Avh3clPeD3COFhJ1ElECYprUOXctQNa2ZRX6/3/lehP60brR0Q2bnGiM5iUZbMFUzC8GeQgQ63gcu/mRTHPyJGEhOb4QSte87DsXAQyBjHHp4H7BuNEBuGiuwUsC60sqwOFCVkMESl8FukRNN1oqjtylFU4svQ8RxzIBSCNHj5fUr9uOUvC0rNLYMbQhvkUQZkGKWpVFESlpy7TPavoUVtVBGEvlpgHaW+wV5X84xf/30Scxv6HD1Y6+fRLFUQoVhu67RuAZHZkFSRouBqxhjiEJhWRa0XYcOQnUpfEOAKhbhW7ZNg12yUowxgIzF1+sV18sFMaWqu44yCiilKknbn2cd87dtg1ZvY3zp8o7jgBdFD5dIXBiV3+s8yTMknaEEuhc/xIhiQktX8gjvBcvse9mieimsAcexEZkQ2RzHcuJRmbwfPD4+4vvvv0dMkt0jGGcxGMmJnWPbcjs/TRM3rNIpz/MMwFb+H/0/LXJigYbS0iVziXWcDJvyIUAbBxUzOtfgy5eveHz3DtY1yCGga8mzjCnV3zHnSI6gdOVt13O2UvzntDIP5zwDmqavcQtQCiFQKnceATGSr5ezQi+53zEmKKNxma7ouw45RpGRSgIndP17HNvolk/3dsnA0QZ912NdmGNel0Iqw8cSd5GAzA136YYpTe0A4fYe+8HMJq1xiLBCW34Gy7LA1sP2jrZtcL0+MPvoPOtC09pWMpO4NS5hccdxSoEsXpmm3ptUv8SKV16vF2F7oI7hZXla4KvjoIadCrWIXfKRTlnSWEu4p/AwT8+uUwHYj12WPwmNaxGF7tVIFnpRtxVbQuY6EStsnIUS3ut+MHc+iXItBM/RW5RH27aTSRATun7EONK7tFDSrGVkRIlOZndK5oZSWVRfTq6rFqWQ+9E69ZMolilFbBu3p2V8iSFCy9hKQi+twLaVDtLO0QatmEfsYglfTDOsoYGsMxZ0TicncV4W+BjR9R2cpbLABw9nHaZxxPPXJ2bzeE8VS9dV95592+h+rRSmywWj4DZfn57QtbyRleYpfXpP6y4xJICiDjzniPOMQskgb4+8QiuySANjikZeJJhR3NlVgQA4sn2bPx0FBsjIeHl5oTPSN2YjSmvBIBVgLfZtl2Lc4d3jO2p8j1OWNR2apmVxSgkpkYxf7Pwb12Bd1+r0XSIvqszTexjd4OPHn5Hov50IBDjF1JnLta7tRKceqvpoHC/EoX0gx3CgVh9SJI1zCKKGulyKkqfldDJecBzMP39+fsbD4yNKJMg4Dginx7rMKB6e9Fak6bQPEWcIeOh7wjH3BZfLA30tobDtB4rBLoslD7jiRxpzhLWdYK80P27bXgpEMS+mNVtKXHYV5dK27RQBiBlHiXIme6GvyqCy2CudfrGFozgCAmMpwQZF160VinM+vVAd+n4Q5RepZ8VwueuokKNhyltAnDUatuFhaiyfp33foMQ/4NiZiVgWk8UM5zg2KVpgOqbASvws6e6PJDSqnHF6j3CciNELh9MjgznsOQUkgT9yjug7ymqzyJjfaE+cRqxViImNhBOowftD3h8tBI1RpLwlJwuwPwMLHupNmd2x77ssH2iZb7TB4+NjVSd0EmyllKo3W1loFC5eSqliViF4DMOIJM7QMcaaI2NF/+3aBp+/fAFyhpERvnEOw0hvxDKij+OIERAnH+KOt2WpXWvOGSpnfPn6FSU2oDi6F+fx0iGWWAQ6lfOkLZJGoBGCtq9/93K5YF03fPnyGdY6vH//HttGA+DLZcJ5JhzHhulyxXmclQRBYwwLJ90DgEocjjHier3gD//oD/H+/UcZ7wkBrOuGx8dH3G43cU/yQn3SNYb4OBjV2rYc1WJIyBroB0pUleJ42bRt5a5a6zAOIw5PbbCWJUFMLP4vLy+SIQ/hNib0XVc5oPO60AM0EwdGBlql8Xp7rZiwcw4fPn4ihGAV/OFxv82MrQ0B/jjhTy9ad3Ing0Ai+77jcr2iFXeicRxxv9/rkqnrGmExyOeNNxcoSj8tfI6IKeP5+YVmKr7ADREh0oWpaTvc7yvevXuHpokVevHi46qNrvQWax2enr7+APM+jh2fPn1CyWQvRjQpQfTcb1EiLLbUgHt/1i6K8s4sX0+GQVESlfsOYKNRmcGZ922hwLVdy/esgHBG+NNLPAcz7jNI5SruWk4wfGM1slgOZuSqQivPzF7D7zRClMRSaaaOY8c4Tszp0hYpehrYOIu2H0WVxOIcxMGJnfdbmB4DCA/0EkZYFmE/9vpJFEuooh5QFcMhpaOFNgb3eeaCRkY/JYsgbm1XtE3DEUdOtZBp+lDCzvquw32+o2kaKivkBvv1r3+DdVvx7v17+PPEum0wcvLprsP9dqujQ1HNlJNftS1aKdbOOei2lfGBGzf7DXfTCv6Yc8FHHEoAlzEWObNrKT+r/JyCa+bMRMUQoth9pTrmHQfdppu2AX1AfbmktYMqkARALDLECAVd1S+Pj+/JC4Sq/E2tNb58+QKlFEf1caQRxHEghoSuG6SjjXSpzxmXy4UdteCm83zHIFQrQhPssI/zRKjqHC8uRwZKGy4poOpBZYSCZDSXIOM4YZMFiXONhNsdcJbBWzFQu/74+AjvPc7jxLkfsFqjsVaWhUqgBGYqxcCEyZgAL87g+37gen1EYx2MJr7oI5cj3pNWgySjpIyR5cCL5TDuuZDT54GH6wO+ddWalxlNS9UZNDXyXgyJrbVAAo59wzSNaFuH6/WKeZ5xuUzSZXpJDdA1K4fj+Zv+n11WrlgoJzdbYSIWSU45xbegOCCxoLIjtaoE/+VvntEI11hYq6E0i3iMAe1EC8Xi6F98WI3QuYzVvEcVmG8k+Kgx5CmnRI7neXKUV5lORVpltI2VQ97DGC2Fl0vRtu0BKGGiRFGsATqzKJb3V0IRmVGv4JzBvgcMQ/eDZIC/2+snUSxzZsj79XIl3y6R0+Wcw75uUGLZdJ9nXC9XBO/lA2B3hxiB86zacOsciraaYPhK4u66Eh6JwPfff67YZNe2ErTFaAcAUqxpwOpF0+29f6NtbBuQs6hDEpalRZf3AAAgAElEQVR1hQKqGa4W2ojMHuKIclARY5Xc2AWgTjUnJwj3sfgbcsHDaNdxHOsHD2Qsy1zHs5wZqJZicdsu6iZdR80sJ3cOAdZqLMsMuvbsdXx6fX2Vgm7rRp3dUYBzGd9m4ZQl1L5t6IfhBzSYQo/RmlphbSxMo8QpvAG0ovOPjLZZ3G9Kx5sTQGdv0mhCoEM9RJJXoBout3pauKUk3NwRy0w103meaFuHGAOWNVS6El3buc3NSuEM1CbzQScckdMr2q7FPC8Ce/R4M/0VzFXI9qWQpJSkgPKwos9Ag9cblV6lc1OKxs5aHKlCjGWrQsaAP+EsD+OmvaJpW0xQWLcFbdOg7ztQQhhkeinTCdM9yxKKjlQdjOGyxVpKNQH+nWXZMAxDPSDJHR5RrN+SbNazRCynGHEEFmnvT2iFupxUw4BtW6s5Ss4RWSC2VqCSfedo3rgGe36774pA5FUWWR/GEV+/fkEJ1eP1JhSQMr0LILEXxtJpncwVhZwNcg5QsPIsWTnQxP7xpEvXssxidZgwTZe6G/ldr59EsUSmLdi6brJYYULevhHPSZmyRGpvOUpawU6yKmPjivs8V8zSNQ2QM26ypCCPbaSc8GQYVEy0IqNpLIt0TomY43FwJNAa2hgsomZ5eHiossJt25jKKMYdAEcya4zkrnR187jtTEFM6S6qDapn5nmpeFXhUHofqhFs27ZSEIwUdFrtbxu16kUWl3NGOD20seSnCk5arlUnBwsdaRgja63F7XZD1/U1E71tW0zTRDVV7SJI7udYa6tCar7fcble0Q9DpVuxqLZVwqfFoGQYR5wHM6+L8uk8mM9etpTHzsOtxCGXuN1CHSu7AKMNmq7F7XZDOoj3lsJtLYnZxhgEGa28J5XEWiaAnvuBrufvfJwnSnhd4egNw4Dz9LjPM9Zt45bZWLRNKwXEy1KHh7hzTf3sU0pyMAHHuWHUE1KKsM7h+ekJfd/jcrmgOF/lnKlsihHruuJ6vUIBWMIiU8Ab/7bal+WIvu/Q9z3248Cx74KnkopGp6qCixfcW1RvJM8hxojj2ND3fXXYYmeVK9uiUNVKtxmir2mXOSXssrgkbtxgGge0TSMHeqZjUIr0fBWamz89O8sesjRdEU5mFI3ThGHo8fjuPbz3mJc79i3CiWNVJ9lcp2C6XUvMPqZc338Sx3PuAfjsFlf5nCEHuca2rbhcrtj3HSHw+w3D8KNl6idRLLXEzO7HUW9Y8rIahOaNXlMe0iLBapxDBmpHVDrLRvBBgv4jrLFyA3NZEULA09NTxRrrySjLCUBuKbE2G8dRtq6UeF0uFwG296q31lpX8Dslkph7WaZ4zyVG2W6+vKyVLtS2HToBqxnkdYglXMQ8z1UZU7oCGtbSNIPdnatLnnVboZSHNY4SPOl8Cn0EQA18a5oWu4yzAGMUylKhKKKqr6QhUT+DN0yhJ2mtsQpmu6wr/BlwuV5RcnS6joqJ03ssy4Li+ERJq4XqFAbxMVWxRIsUnXpZOhCv9FI4RykQVNcw+nYVZsRxnmibBo8Pj/j46SP+6I9+xeXffmDoembNyOdDCMQIpzALW4CfAfX6Bp8+fgSgmFipGED25mgj2/IkfpBK8WccxAO3g7zTdV3R9T0OWUbmnKmXlqmmTCw5ZwTvcb/f8enTJ7x//x5PX79CKYXvv/8e7969I2ba9zhPXv/zG+d/6q2LqTSdewrbonhKNlLItu1A1zUIQSzg5KDf9x3TNArv9g1G4qGb0LUNn6P0FuXimkYgrAXbOrPYa47a02USipXEWDuHznTY9w37vtZmQEOh7zscx47HxwfknHC73TAOA6axR4oBt9fXes8pleuBm1KGNlQ43e93aGvkQEu1oVAiZnHO/uD38n5H29JRfZre6Hm/6/WTKJalcJQbJoh92O124ygjf1ZwlnxQibIqRVcfcffpxXU6poQsY6IX55lCV8hSdMvIcfqTuT2CSxZqkJYHO0YWLQW8LWmkW+y6DknwId4g1BErrbHvO2ahhIQQ0AtfjQWaYxBArKa4s6SUuJ2Xgk36UCeQQqGskOvHD56cukJZKmMgDEc5BdKyTKGIAGhapj6ep4cxzIspp2ojmddACeXKKG7aXiysooyh0zQhty2en59xv88oxrgx8GEq9JOsQIcmZ5EBbOuKviPBmg7cHl3bwRpbCzqM4QOplHx9Dwgp//Bn5T4WXq2zFqewISBj3W9+/RtyX4PHgzy018sF3tPVKSVm0efMJUDOCU21TrNC++ECrglcVszz/M1ISH5ljRIJNKM9pNPazxOP794h5YaftHq716mf7uAah+BJ1WraBv04IAaas1wu7LJeXp5hrcHr7RXfffcL3F5vKO7+9BNtJN2Uz8YpzuAlL/5tmcj7LYgPQYGprGUsQ6Gq7fuG40i1eSgxyDFHzPMdJee8xE3Ts0Dh4YHpl8u64Pd//8/jfrszDfOb582fh1gfcpIof17YA7wnHLTwUsdxgLMGx77VBVbteGGQQY9Zk4BDIo6z8EPpfXtU3X45kMr0VPLly4HStl29Rr/r9ZMolkZT2ZBzxr7tdN1Z1m90zapalhVPyss0YV4WcWhhcVm3DQ8PDzXHxnsPo9hh0uE81UUNN3hKIAAC99u64jJNlBcaCUvLWZYIJ0zOaJ0Tn0yLl+fnWnwhX5e+GeULraR0lnywgJw9mO5nhF+pBJMcyAAwjFS9Xtu6oWVuiK7JlBxRA7atcO2OWui+DW0r3XEW3LIcGqVYl45vXde3ULUQZIPLjel5HEAm9SRuG9qmwSEYVy98VOdaGG3w5esXGPkZVboGusIoSBGXP7OOt1/ZhvrgoYT/F2XZ0bUt8WMRIWSFapk39DSzbcS0eByGulDatg0hhqrUKPZ5ZBgwJTKIXV/xIcgpY7pO9RoFH+o1TSlJ2qeHtUaWeBZWW2SxbSO+B2RjMF0uXKw0dEUaheJ2ig3euq54cFz69EOPbd0wjAP9IVPE1y9fcb1MeP/uPe7znf6p284cJmRE4auaFLFvG7b9gJZMIABir3bWQ7VMLSV/ZlkWsfmzWJal5tg8Pj5UfP/bBY11b27/IYR6mAEkoRff2b7reZ+kCGssoqKble0sGtdVHBWCwaeUsG8H7rc7psuFSjPptkkbO+v7LpLImBimpoFKwD+OvUp9nbPy9Q/VfFrJnxVs1lqLd+/eVdFFmbh+7PXjfec/oFfKGa+vr1gXjjsZvDmVYHHHSayMkQhvvnNJTsx9I8+r73smOcqpCKER7RIyVWSCSS42FDhiAfjNb36Dfd/x5csX3G43Loe+oTyUsXQTBcSrLIT6vkcr4xSUkrRFhW3fcUqA0vVyEfzJwzlSTGraoYIUpxNQqHhtkTdmgJigYRb46+sLlnWRot/i4eGK2+1eZZ9Fg56ki963jbQYKeJlk1sWEIOokwrlCoqE/7KtL9QpJ1Sqsv1dVvp60iDYYl0W+MAusSy1SECPuM93cgFlbAvxzQqubJoBWuwZ6S6LjZn3Abf7DYt4AJSiOo5DHamQ395nlAeZ+KxHI0mdhe5URvByjdn582G6TBNomBvqou0Qb0QAsjh09XDLAKzgela60jKeF0XX68sLlFK43+/itJTknqcB9LqxKI3TWJ+H8zjx8vqCX/6dv4N5nmsMxFG655y/YYcoiUJRgkMesihzdXqSv1TH7ePYv7m+nqOzdJvrutVusnb6mRQ8f54wWsEIZ7fcC2SXZIb4yTjcuKZOYkUCPC9LXWSW91LuoXKv0BqQ78lYg34YoIWjWqB45xyajt6hp4QDauElF2tF+nm6OpGGQOOXYn7sXCPpBfyaP2m5A/xEOksa0Noamaq0graGG9OYYBuH3R8yItOjb11WXCaqEVw/4OHh+s0HkRC9x/X6gH3b0HQDXFNoKpZbcfDCDv2I/TjQuBb7tkMh48P798Q0pKN6uF7hPUOgUuJCiBppLgYYgEWOp5fOoXBFmafDzldrLWFLFiGynlDSxc0jcsZ+bLV7XvdCp1JvXaHcVIcntrntOy7XqQa8HQdvACNZLiS+Z1jjYJq38QNKwYv9nbE8icvotR879uOQ4mCgMknp277DWN6Ex76zwHuIA3yL85B8mY7fKwNotIYW/fz9fkc/9Bw/Q6ATVAxQXOAihoBNOK6lW9xke6oNqUPWMQP+OE9knfHwSF7psq045H2Ua900LZq+R9s1COmGsO+wbUOerTZYCy1MKRjLhzqlTC/VacJ+7sxvsrqqXYr7fQgRTdvjjAwk2/2JbKgXjznV+9g5K8FwVJZtssS83W+432/yezFBk3zaCdu64fnpCSkmvLy+4vHhUQyP6V7knMW+raJ6MmiMZeaMqHDOc4f3B4J0odowIkRrhX1f5ZApixwIEZ2vUlxKU0FoqIXS7N544JNXervdAADWXuCD2JxZDRvIjdQyGpfFF6C4gEzEWZO48aecYJzFGQK0IbHeugmvry/48P49ub05wwfmCE2uAbKS2A4mEbTifdq0DhR+0A1pHIj/7/uBFBeEkKGgkWLGsXtYKyyGqKD+LFi0ASTzu4bLi2J+6pzDMND55dh3dPIQ+kyAl3iewbqu2PcG4zhKV5SktWbHSTI4N2JBMJzrwwOen5/Rti0eHx9hjMaXz59/MNqVRQJyxjBQJz3LJryQkAuVhBjg22nW94OQ44s9Fk+3RopjkZOVfJIMmhHklCpRuxFlQ8FQS6dgvhmHUoxivabEh/CsHVUh5Ru5QcnhpM3bccrhI1hmcZYGgK5pZcTiA2K0gT9PKE1H8P04uFA5jpq1Q+chHnpa0xrNOVdzTY5v5GTBhxoq1bgG0XtJ7Qt4uF4rTzHI6A4Ar7cbXZ4U8N3vfYfPnz/j9eWV4+lBQ2aOgGdd2J3eIymg6RtcH69oWivGEgu5l84xXkFc8vdtR9PRX3KRxVUpQOX3yltGEIuw03Mkz5kPuVI0pkhyGJ37LpEjC6AU+o5RH9u2wYvuu21I6l7mBdNlwsP1AZ8+foICcL/d0LWdmAe3wjvVOI+9co1TjNVVaFkWfPz4Eaf32LdNcGyxExRcXck95CVOpQTxFbkxaVmc3ApJO8YAo4wUPR7shV9shd6ktRH5YEI/DDj2ExkZXcuoEVs4ropGIEqoYkppaKOgU8K+b/j++9+SwymTFZNLSaNTxqBvW3T9IH4HSrbd5JRao5FUWeBBYoSjPGOsHecZBBoLomSi8IBF/c8AKd1omv2ekbiB0Qa2tbIljthX4WbZhgRlayQpjsuVYRhFP83oVHIEe8QYoARpIJhtoJOuGMW3mvOUEj5++iQ8SxoKrOuKx8fHijv2orNumga32w0xRlymq2iJC+/Q1xFnXRfM872qLvq+x74Rv9pkqVOkmUVFULbqVJvw4Sj46/Vy4Y0vGOu60E39qxDWj4O+kACdYeZ5lW4x4TwLGK/lfZeRM+LDhw8/CHsrBb9Y2HXyQPkQ4GWB8nC9wojJQ8oZVt53ipESRhn/jOVnS7K8gPQK9WccosAqhdta0oAOwZdSSojniffv32OeZ6Qt4m/933Mdh19vr7he+Bkw8Euh+Ix+mkY8vTzBSdbOfL8JF9SCtL8Ef2Zo00IrRbbDkRnvEGgSEcJbTlNOiQ++Y7dOAnXEdKFVnzE8uAuVjB34gfM40XRtxUDpXN6Qs+os0pagDL0HfvnLX+JnP/8Z/sJf+Av4g7/xB5jnGR8/fQTAjfvr6zO0MWhl/N/3vY6R7sMH7GL0nAGR6apKT1IAtCzxyIZgZ7ltWy0mQJFKproUgdwXw0CoIIYTSgX584QSsxEj+Z1Zur1xYNJB2AJi5gaaNEDKRZGJr5+ei55GxCXzPDOjquuxbTuGcUDbcQEzz3O9j7XsCpRSAgfxOfIy2sd9l9yujGEYYS19VMu9c7/f0fc0pvmWEvi7Xj+JYplSgpGRotiKGWuxrRs7FwCtcO+8dDPkvPBG2PcdHz9+rCA2QOD39fUGZ0mDoIUa82P6vkeQE5mYJHmNztJ8uGsbXK9XPtApYdtocfV6u+HD+/e1M9Wy9Q7BixvQgmKUcb/faBuVM96/fycnn4U2NCQtZrckkEc04qYTi7+lLEaQ8w+MRg5xENr3naOH9zTXbYDXl1c0TXHi1nj37rFuZxmxqqSbaAQeWGuRKeTg8r/yudC9hR0qiycL3X2eK2blBdcjj7GDPw7kFLFva10QXS5XujwpERNESlJVy89jvhPgLzr8IklzMsK9vrzg4fERWmvMy4zj2DkOikb7FKDeOgdjgOAPeO/Q9+R6lsOvFD0Fdv/DMOLz5+8l9ZHGG1DAdJlwn2cuz/xBI1l/IqYAK6mOyOz+s/D8yoFcOKv+pKfl5XLBsiy4+VuNbR1HenPGQAf+JONqVAG//Nu/xLEf+PnPfoY//KM/xDIvsqhRFccuXV+SLvCQIglwkqJbua1GFVpYEaWILsvCA3edqbySUbx8jrRye0tJ7aYJ0zTh6fkJ5xlxHCeGYcAyz7BDUyebthXKWvB0/pJD11guRQu3uSQR6Bgwyc8/Jal0HAZc5ADat13I70rSDbgAot8Dn9dz37lwkuUVww8bKGXQuDeJr9bi+CT31+PjY6XBretar9/vev2JCx6l1O8rpf57pdQfKKX+hlLq35D//u8qpX6llPrr8r9/9pu/828rpf6WUur/Ukr9M3/Sz8gpsSjkzMLYtBj7Hh/evcOH9x9wmS4smsJnO08qLEq6IkDuWlG3aFFCFN1nyllkaidxSbk427bJFjBgLIuRVDKAtorvkfepapF4fX2VEeiNIqPUW/ZxoUG9EYm5bPCiMio6YKM1CcjLwoIsN1bpGPZtI9H7m4zyXkau19dX3F5f8Zvf/EbI4B7v3r3Dsix4eHjEOI5Y17We+jRY0EJbohSRI7YS7NRhGAZM41hll+M4onFONL65qjZy5uKowBSlIz3l370kUHYt83tIj1rlYbfkyR0b/HnAyvc8zgO311dRLe04jwPncWCaRhjB9WLwuEwDnNXo2gbIka5MxyYkaHp0htPj5fkZn7//vm5/7/c7tp3j+vV65eeCzI4FWTLV3vKIxnFAP/RSuL3ojSUhsxCcZSIq3Xjbkpw+jVOV5pYl2uVyqeyKoqyKYsHnBKO9XK8YxhHGGDw9PeG33/8WjXMkbkf/gyVXMcze9x23+x232+0br8oSvseOeRgGXC+Xen/3fS/uSuTtFkpNYTAUKbHWprpvFdbE7333HaN4jfhJCmuE33Mg6dyTZeBsg7bpQPML2uUZbesW3YgYYFtXaM33SSxTVGzWYrqQ/5iR6cGptTRFp9i0NWjaDvRapRtwzkq8CqLAKIWEf2BZljpJlucsSUNUMNzf9frTdJYBwL+Vc/7flVIXAP+bUuq/lT/7D3LO/963X6yU+scB/AsA/gkAvwfgv1NK/WOZHkl/15fSqm6Ou67juPHyinVd8eH9B2ilsJ8eUXA/Ukka4Y+lWqy6jsRqY95SEKl/JkdRi764eAMaUeZQAqYRhGvmQ0AStQr3LrmS3rXWuD48IApWyJtOV5x0miaxNhN8LngsC8mx+77AB4aIzfNM2zAADzLqy/VD2zEXOStU2g8AUZuQr9g27H4fHh+xzDSJyDlxxN82zHOoxPOyeWYOCk2Lm6YRvC5DgZhqsQrTStFy7aRBAeViBp08NPTZ3KENVRXl1FbCGCja9hQjvD/Rdz3x4a7Fvm/IiRiwVsDr67N8FgrbseN6nXD6E9ZqGNvCOSOO3QeWdcay3BFTlBE5ENPbVgS/Cv1qEjkcr9nT0xO6oUf09FssrIiu70Q22GM/dlijSTuLNKCY55lc32VB03bIEkFSnJ2QgaZtoDIP+6LY0lpjmRdY56CgMF0v8HL4WOeq+QiEbtQKLFK6v2PfMQiNRyvQxi2TqlVwSghmX1RWowgUhmEgUT1RgrntdDMqSabf0stYKCi/Pc+9qnWKGTYxeJFm6gxtSAubxgmNawDRVZHlkRHWreKjyMy9CjFi6Hu8//ChOnaxGGbkhDe+a6brkxYBRNvyOWMOuIH31P7nLMmmrpXPAbSP07R6I45pK/Sg5Zkohy3k/ZbO3xiLX/zi9/D09IS+//+AlJ5z/g2A38g/35VSfxPAn/uRv/LPAfjPcs4HgP9HKfW3APzTAP7H3/kzREFRsL5ycmqlK3m1pCiO44AgwLS1Wro0J2PWlze6gmInVYi3RRlk5Ia/z3M9Qa2zb13VcWBdZpTKXopz39MqaxxHhBiZg900UAoy0nSIMeF+n4V4bLFteyXBkjg+CHGZI8i6bpimC4ojOS2xLJaZxTXmWL0oc864XK94enqCNdz+BTHucNZKkJqvOG/bNrVQFjMFmgV7pKTelishwjQG1rATLHw7GpsASAnnfgIaVSyg1Df5QDkSC9YaORPzKqom1zjcbrcq3cyJDIKkaATC7pob+KFnV2GsgU2W8RJti2MnrDKKIbD3Hk66q9LBd11HqaRsR7eNeufgA3yYZUN84MO7d3h+eca63NG1DRpnJTZWVblc4xrxA/AYxoEjqSzvdCH7F5GDpGNS8lqUNBbmgWN/1w1STDNaUfNM48jkwXKPGw0lyjSVizs+MPStGEhzKprvdzm4XOXednJ4JxmVi2DACpYXY0LftUiZvNSqFtp3TOMEJ0urtu0Rwg9t9soBu++76LYVhqHH16cntG1L3utGKKTwn+kMRI/LnNitU7orB6KmUi8L7ypG8pF9ZA7X/s10VUbkwvUtHOZhGIV14oW9kOqy9HK54PV2q8o8pRV0VrC2gTEUIACQpRx/PhCFt+z/RJ7l3xNmqZT6RwD8UwD+ZwB/EcC/rpT6lwH8r2D3+QwW0v/pm7/2R/jx4lo/IOCHNIbzPPHlyxficgLwrusGbTQeHq518cJOs6sKFOpjadFUomN98DhPLkpc21RCbAGu7/cZLy/Pgkvkil9q+YCVfjNKLVESx3Hypsh0G6eJrsF5JgmWP4UMe1RuHvAWQEZVAnC73WtRTSnier3iPA+OYMJHG2Q8ZmFghOxxHGibBlFI+CRbl3jVjK5jJAZVPl6uxxv3rOu6esqySy6FsmTtvIWtpcDRruBepeOmFtpXHmfJnQmBLi9WFnbZaFr4r0slHtPAQyOdb4qRIjAoRTDFhKfnJ8rnpgmdRLqyYBx1Q5tLN5sS2sZhFyoR1SA7Uo64vbwgZy5pVqPx8vyMpmkwjWMdO5XSWDcmA1rbwLmGhG+BLwj7kGPomgYpRLRNC2MCUoiM+/WhLgSBLK5ab4uyop9umwbLykWGbizH/eDh7Nuhw0MmCReTuOEyz29OXDKJWecQ5DmJkRJT5Izb7YaPnz5W7N01jeDflLKmxAnJ+xPj2FfjlDJFlcKzbBtCzNDKwJ8Bt9udGncAfT/gfrvXXYCxDk4zx2nfuIBisB9jNrJ4DQDEbKHoIOQNaXWbwGtWDnOtNVJWUNriPHltm6ZBI5BDUVN5H9G4VnwaMoa+w3ysSIm+nHRfMvL7kq9Gg5QWLy+vFUb5Xa8/dbFUSk0A/gsA/2bO+aaU+g8B/GXeDfjLAP59AP/K38P3+0sA/hIANO4dRhmXaeg7QGniDikEPL7jKQNStVDyt7n1bqrqpVCESmCT1gbL8grGvIqDeSIt5XK9YhDN7n2+4/vvfwujNaaHKyMopGjs+145jA/XK+7zTC6hY352TsT2tOZo+/z8XOlP79+/B5dQvDGLZpoqBnYW88wN9izfV2sGKCnFwLa+65gnJJhK25L4e4q/5jJLAFZMaJuOiyRrZLnEonO/H7hcpqrSsdZB2VzHwxJf8bYgUAg+oe3aN3OLxlXnIoCjZ1kulL+nRBmRIiWBvuSyZFKkss5opVhrTcwvZ5LEqYyx9T3tx45ZeJnD0GMXbPU4Dgx9K646Aes6o3EOznUC0zBMjWMWc9hvQjtSxiCEjLZht3VILMg0jhKPysXAKXry337/W3YwhUStUA1TAJpopBjYlbXsnBMyx1FjsG8rPnz8QMzae6ic4WyHmOjsU352wQob6eaWeWZ4npiXlC50XRacEhfdyuKrOPWn+GaVVwjyyCSKf/3yBdbR/ahtWzncZ5l83mwR6RqfYW1RJKWaqjpeLlTVKS7A2qZD8FGiSvgMpJyBEJHBzi/EgE4w+n0/hLnCyXByYnUXPdqugQ8RbTcIVajF7bawBpwe/dBX6KiYPvN5OetBAclf18bAyr1YYqnn+1I9RzfJTCrYbM6Ept6/f/9G+v8drz9VsVRKObBQ/ic55/8SAHLOv/3mz/8jAP+1/OuvAPz+N3/9H5L/9oNXzvmvAfhrADANfz5bZ7EdzIV+fnmh0kN88G73u7T+DVzjqqVYFDuy4ppTEvpiDGISwbEvphLTMEDvxKOi8NK2bcMq7f/1eiUHTRVbNcsFgMjriMdkXMVIo5c8nLLIOc+jdrfFDJgUjFDHmqKU4Aemsa60G3OOZscfPz5QlinFP+dEjNUYwSWzLCAI0I/ThGJGS0rUAWtVddIpX7ssa7XiahuGjrUt7ceUfXNC5whm0TQkngNAyhH7HqQbSTVjSGldx/JRstH340AQN3ly9kgVIc7F2F3rxLQE6Y2XmMlg6NoO2miMccCyLHh8eMDrjQs177ls2/ddNvD09/z48SOWZYX3AU9PzzKik16jtcb7d++RYkTrGnZ5IQBK4g0Eb4wh1q5GaY2mbXAvS5Oug3FaML2ChyukFKAVsG0L/1lG+bZpkCSzexbTDCu8T4Bb3O9/+1s4cahiWiQ/2+JIVDwS9m2Dda6O3CXNdBRXfurwj3pP5ZTQyKJkl8PXWsZE08mL3aXWGuNI6tpxnBXjd4IHMvYD9XDO8jk3TYPjoKvRMBbpbUBJOGhb6suNtWhzhxiSxEy7apZzHvRQKBSzXg9IKaBrOtxeZ1yvF7HoM9DKYujHWnBnP2MYh4pXA6AzWUq4Xi5vXalW8CGid5SMNgUAACAASURBVB2GYYLWSmhEEdY2pW7hen3E/X5D3/eYpsvfX7FUnI//YwB/M+f8V7/5798JngkA/zyA/1P++b8C8J8qpf4quOD5RwH8Lz/+Q1BNEYokLueMYaDFf/mAjDOYLiNenrkBL50TY1xDpVO8vLwg54yHh0d0EmSVEr30cpE5Cq0BYKFyznJU3w9ooALe1hhYMamwxsCICH/oe3z9+sS0PjH8BThuFYyOnE86iheMrlhndV0PrYGm6TDP93raEUMz6HqSef151viGT58+YV3XGnt7u92IY9mmdiUkkh8y1kbBZoi7Pj098fS9PmA7TymYXWUXXC4Tt6z7UV2Nuo4u6dpoQCXE6JFygDUNsmShG0P1CxR1wieUjEpWLOTYuRjZjBPKYAImBH8uCzOAS4LLdIHSqrpkT+MEZRS6rsUaKdcsxe3p6Qneh7rZVCJ7Q6a3qRdIJifCME3bAJl0NS2KoLFnkT5lvHeNwzj2SKlFRpZlGABkuIYySZUywnnCucsPFifFGT0KuRpAtVIrwW9Dz0JVlkGDKJYu0wSrDeZlrnhhK/e/1hqjxC+fsoAEgIfrlX6qWhNjlo65wFRa0fQlA1jWFf0wIOuMZVnF77NF2w6yBMk4Dt4vDw+PyDnJ1EECOaAwTVMltieVRJ7MEReAmDhrwCq5YjwkedhYvP9wwbpswpNU2LYTUFQVXS4PYB6SQomrPo4g0xujbVPMLKSGOOh5eqwLo6gfH0mXg1AR53mGE6oXn1GFfd++we+z7ElihYB+1+tP01n+RQD/EoD/Qyn11+W//TsA/kWl1D8JjuF/G8C/CgA557+hlPrPAfwBuEn/135sE15e50kKxOPDYx0NCkYXo4drLOZ5hj9PPD4+YJ4X3G6vHP2cw6NIFO/LAqUNxp4bzHWlu40Tn8cQGMNAxyHPQCTZqBfjU2ttPYGLObBzjhZm0j3cbzdcHx6qPvmNHNzV958zR5uua8Urj0RY7wPWlQTYwv0qJPlhGCp1SQmdopyI67ph3w+hljxLXEaqXNMiQ6MkjsVznmcZvzvpvHt2wLK4sJZbwq6jUQVA3fJx7EKLKvG+oXbKSAra5YrPbfuKnNj1K2jZivL3z5kkYPI02bF575GRMF540GzbCuscOzL5XYLnxt0YbuHnZa4EYm3onXkcO7095RDU1qAXUnOKxPleb894uFywbStc2yL4hEPswZiPLXJAGWehNabLRbisNITQSmMY+RmpJO5Vci2U4Sa2ZE5zGmnx/PQMI/hYOUjLAsoYg+OkOcQ4jRIEx8XN89MzMfqe+uYMFgZrLD+T/cA4joAcSDxoSCk7zwOm+nrywF3FqxKKipbpMlZivnVUdvEeoheD1szZ2bcd9/nO6+gsHh4e8fnzZxhj8fT0KvDICO8PdE2LYlBz+hNZDi16DbwxPJB5nY6Dm/IkERRAxjjQF9aJYcrjwwNiiDjOg5i8p5emlYbi3bv35GoqjY8fPmHsJ4QYaLAhh3PwHlAaGQk5034xCxHeNQ2uHWG1aZywH/ufyLP802zD/wdUg6kfvP6bH/k7fwXAX/mTvvc3X0/QPnic5y7mqwdK0hwXOC3Goa/4UdNwNOmGHkppKBm/qRNtqTsOfMD7pqvcrW1bqyuzEt1sIye0P7O0961sunmBVxHij7JkUUpVZU/OqToYGZH9lUVKyrlyHZd1oS+jdFqDuEq/FTqHGHny8npwjD+PgMZ12MLGeOBM/hqyxr4dMtpDLKbI56QaQ4sMrRRuyGaxQYwGOYqJK3jtT8/o0VL0j4PyUhYmUrQyMhQ5x+w0UfTtTpYYAY1roMAlC8dcmtU6VxzdSSfiKOVhrX5bhEDBH9yA0tnnQQ6iDdaQVsONaE8VjWrpli0PPOlWEdbpirk1rcN+bizsgfjYsR/CNxywbhvG6UI8Vml8/PARwziK85SVz+WtEIbgoTTYYccEZywiMi7TBcsy8144GYlSjGqdcFWNNozw3VbklOvSirJVUq62lThb0Z8DwHnQX7OXfJnjOMVA5YaggyxlCIl0jcOBjBADo33lyu7Hif080IAE8pgizamL5wBY1IoRTNtxUdL1HVKmoUiJvChb9FWMtblYFP11zjDG1d+562SRE+mpSbI4IZrhgRLiEOmc5IRuRUknP6NGOnOtlHTL3EmUxZGxDk9fXmrD488gfgakGMWUsR2nRM80sM7iPE6EmPB6mxFiwrLtwvT4cerQT8J1qCxmPnz4iIfrA07Jkbnf7rK84SbSB+aleB+glEHbdui7AVobzPOCl9cid3RwTctgK2Q8vTzxQ7RGDDRS7aK4Vd6x71sdWYqKpcgpqS7wmO930QmzCyjOOwALflOCvYpD0brKmHDi9fUVxa+yqHGoTfXVCYiLqzuKpptQwxu/j9SgTkYHW7/XMJScbRoykG6119Gj64SXJrKTMvL7EJgZbkzVvldC8jfOTcXOrXAD+XmI/Zsh9lkCsYo3aRlLu66r5slZNMWqFHD5ruS5Mha22PtH4WgW/mzbdhKPoLEsq1DETH0fSXLci0SPBHweOK5pMK8zD5/zrEYeJHIHzMta+a4P797Dugb7eSKmhNMHbPuBVWhgMQPWNfAxVlndzz59wibRJftx4Ha/4zxPfH16Yu7TMOD9hw/I4OGplRYtuRLDZn52m7hnFWYAs2jO6gJf7MiaxuF2u8v1zuT1GoNPnz4hiqTQ+1AFGIX72rbFTs9i6HtAMNJG2B5luirMlOKFkDMzoI7jgBcpZ1FvOeewSfBcznS6Knh6IfCP4yQsAiVNAA/uYj7dOMJT80w3rcvlCqU4cQVpMBgo1lcPUe4FnGDgDXTJburZdVtRDE3TiMs01QYgynMNQAq7rhS/srD8Xa+fhNwRmQmP+7Zj33ZAQUwHDKZhqJy5kAOWdUfjIn72858jzhEvLy+Igk2VZDhA0QMwZyDxRLvf74iB2zhuoLtqURXFSRrCnysmCsXHMqf0RrORbnNeFjw8PNTcmUXY/9YYPD8/4/e++w7uG+lh2UKWTvM4DvT9IONgySXfSVoWvlfx8sw1YtQjpVa4eOykGS4fflAcSpaMc+SPkXdacqAZAKWEtNuIWcQpSpIaSSGjZggBWYnGO0XBrkrejReqlnk7NFKCghgOy6Kr0Lsa1+D5hREer7cbLhfG3k7TBfu+4/X1FdfrQ1XMGEMYhLhTU2M1yiEGoH6GSkxftbb18KGCi1vsfhiQI8fAQr6G0MLOEKCMRivvi9rkFSEy7Grbdwx9h5DY1TAeBCKXHGoy6PsPH96KRAjQt1u1CTSaphnlgHGNQ5Q00xPnmx2aFrxVOnbS0SxyHvH161dM0yj38yz0HoXr9VpH1W2jxdr1esW2b/K5ZSmyJJNzox/Rtb1MRfrNECXTN5OsEd4bSWKX6/tXCq+3G4ZvIimqA7/Y3t3v9ES43++YpgmPj4/VT7QcDuVQKCIRAPjy5csb4+MsOeW2Nhg0BfHo2h77TrZFMWPm7kDeo7Y4PbthJYd7yrla9TEjvcG27dUwJca/zzH8H8Sr5Oo4oQZopQXnYNzpum50GBLzhW3b8PLKbGzbNDiDJ260BvjzwLpvuIyTbCUjltqtBWyiqVZK1VGH2dLEkw5xAio64xACtJDak1zopmnwvm2p2mhbxEQ3d3+eSMZgHLjJjSlVHmQSzJHLnxbFLT3KOMzujAYQ5aYo401RyBQXmZKESTJ4J+qgAldwsfTy8gwawb51WQBkyWLRWGb6xBjx8PAAABVQ/1b+VjiwWilkpaA16laYwVBvEk1CEcTX9n1HignXB8YMFLPZrmfSJn9fDdc2tcCUDJiyFCkd5ilyTyX4FyMIjmqc8S2Ruu97HIeuxbQYD1+uFyzLilbG1RAinLFo+x7HnVZj53ni+eUV3oeqNDHGYhhGlJwkY60sEGh0UhZoWjq44prkJSKCzkuHJH/ulVoFBbERoxtPygnFECPFNw/WfT/Q92RyTELMj5Fc3GLcOww9tnXHH//xH6Pv+7rR10ojSWQCg/VidWVKkYugEGO1tVsldE8bK5vtDvtxQCkhzSuNjIgkSinIEq0U0XGgemw/5spHNcbi+fkFwzBIMVKY56UqjigT7X6g/PLeY54XWTwR7/35z3+Bbdvw/Mxl3jg5WOGKlkA0bQw/Ewh2jI5mNDKZmSgxvkpjXTcx/mDBJJvgz0CshAKwbrtI4Ay2jcRzBYhdPo0mHDSm6UKOX+TW9svTVzQtC1Lbd+hbJiE2XYdlWaGQYJyrQny6lnt0skxpRP5UHg4rwWX3+12I3lqsuKh/TZnb5qZpxLSUhWQYRzw/P0M+jRrPy3Gb35PRDa3wvSiJZBdEWIAbcy/GraYuA2aJ8S3jC+ArRle6KMahHihpfuM4yfdzoo0NKHZjfd8hei/Y8ImbqB6obBDfQV2Mct8I6MXVJeUkDvESzSEyTPpuei4aNG3/n5+f4ITse/ijYrpKK9xnUnOiaH0bIWZfLhO8PypLoGmcpFz27BQBOMcDjw9cg8+fP+N+f8W6zsSwFbAfG6yjBPU+38XjE3wPWgEqY9sXuNZhGHtSW75xzL5crgCoygJMLeKMIN7Rtg2J/DL+I2d8/vK5SuratgUUcLvdMPQ0h2AWU8cO0PIwbOVe8oKHQyYHpZJwYE/GEQsu2vcDlGJEhHOODj1tg5yJkZb7IkYWjhBeubSyZYo4kROw5Z22d8CbEEFoST4ECWsjrl0mJwUKJIw2gmE6Bg32PR4f32EYJ3z//feYxGt2GIzEcQDX64NMVra6ljMaxeJyGWpHau0b5skkxh4vL8yHstZhWTf0/VF/trVOKFKNRDpzuWTFJT7FhHXbKw91HCfB9Tm6U30XYYz70Tr1kyiWxhi8e3yPEmfgXCNelQ4hfK2wmdZGDHJ32MZV2olrGxxyk8SUK26VcoKzBufBLufDhw9YlpkPQ6ZMEZmGG0UdVOgDbddVG6xomF39fL9Xsf9xnhgLb7FtYazF5UKeVpFo9iL6d44REylmtK2VEbyvFle0SsuVdlLIxuX/Id5/xmjZEFuRSGZRAnE8LGMErd7IlyzXtPDoCt2qhNuXuADvPdIZquIpCXE8hAgoK9+PnbbfuVWkrRo1vMVkwsjID6Wgja5mvQD/T2tqsIuV2DAOaF2LEGKNKt62De/evata9mVZUPT/nBBYMAvB/q3DfLuf2pbk8pQSlk0WJG3PIiULBmUM5mXBJEqUEt41jlMteCUlkBj2t58NJwLGgmS4xuL19oLLNCEEj6evX+ghsAd0bYOUI+73BUM/4HZ/FWqWh+sKg8HAn5m2aRmymCuZ5CT5v74+1yJUCjeNW3ggGq0RfMTD4wPv2/zmGE//yixRDQEJkgd+njgzg9DalnG167pWx61+mrDKaA+QUtcKXzJJI1D05H/7l7+ssM630bq8J0n4LlNSgQrudyqBijtW+foifU4p4eHhAbcb7fWu1wvGYcDT8zMuFxqiQBnRnVP6XNgbxM+l20wJ0+UiBz9oAJxSXZaVxeuPvX4SxbIYXgCozHpjSCouY1h1QxEaQhZHa2i6mRQ3Zc22BdpaKQjkfeWY8PXr1zqyZSFYG83lhtEafQ/s+1aJ48u6InhuLIvefJ5n5rzIWF9lijnTCVu2ySWSt/gkuoaJlS8vzxjHEfM849OnjziOYogAGNPUjq5Irzh2NbUY5AyRT5IEXx4G6sCtEGvfOHRlrC3ZM2VpolSm6apy2MUUQyt6UnrvSW1pWmhb1A6mFsS266AlSTDEAGOdYE5ZLNBy7VBDCGhk1I4pQQM0sxV7OQhfsjAIxpExtL/61a/ws599kqjeVnT0E5qmxf1+w+Pjo4xlz5imUXCu9pt4Uyq1tKVrt5Oi2or6K2cRHmiDVaSRISaM44DHhytc0+LXv/4Vjr0oPug+tO97Nb6IYijy7X17eo+h7yVVlFjuJrrlXe6ZUlwAAJmH63mc2A9qtgGaJRtj0fcDig9oofj0PbFHXm/JDE9KPBUyFyVGox8GWtF1PUIkDMDohx7ncaLtOry+vgoVSfwvgeoylHLGfZ6pl2+MmIOgEu9DCDgKN1b06Pu+fyN5DXXBVxZNRc9fJMKdmI+UPULFbqUuHMeBp6cnlFjk253QykWco5Z5pfNQ0b3nBKdNTeLMCqLe02gloZWTE2BMW5dnlRb3I6+fRLEkbYEYWfARUBFKkYrQdUM1HT3Pk3pYY5F0Qmc7hJxwiCfldeT2zLVaSO5AgoLVBtYpOGMQ5JTZ9hW95A77QzaoWlFLbQ3DyHLGIIXtPM/Kz1qWhVJJWYoUjmSSsbBgSQX/U1oDwm1juPuClDKenvigj/K+eRoyupRLhFiL+3nGWpDKz+W/0+CAbuhJCPjxBxhQCEGwr14WMycyksj8CEnklHC737FuK6ZpqhnKymg+bD5AaRnLFZdh1ilw82hRcn2sdcJnowHE6SXCotiRNY4RuYLrlcJBfPaQ057wQTFfLuqrGCPud9lgz4scXnd0XftNEToqJ1SLXI7ihlzJ2o2jOcN9Jo6alcJt5nb5z//+P1wNlFtr0V4mWPeW8plC4Dbf0HwlBTIoyhKwFBCGbzGjHlIo2P1HiXjQ0E6L6mmHVhrvHt/hLmo1rZgPH4IXPqUsq8BiWBRaxVGLBxTw+PjIpYZWiCHJNRbNvtZUeBlCStu21amCWT/E5qdpQp9JxG9bxon4k/dJEt25EW38Ie5ZZZrLABxYcJ+enioezXv4rGKN8rzzd/Do+6GavpAhEpDSiYeHx0rXU0qL3l8jHjsa11K8ETLWbQNEapo9ISKo/7e9bwu1bEvP+sZlXtda+1JV55xukqAdCUgQiUmUCCEPiprkJQp5yJN5EAQvqA+CCQGJgg8KKghiUIyJF0w0KuZFMGrAJxMT00k6xiStCZjuts+pqr33us3buPjw/f9Y+7SnTh/sVO3dsAYUtS9Ve48115z/+C/fJcNmj4xYhLaPA7np77zzMQAGd3fbkql/yTjLN7IykCIngJAHMeUkMlgcpKScUFWNTOjYtE3IWGJAbw32xyOcr7AEQjqmZcGzp09hUgISxWOr1YqT20WUpX0FJ1nsPE0Ic4D1jr4vIkwwHI8FLqHSaPqAVxV9y1XR6HA8CrRpoWyWPJjaB9NTcxhoTKbMHr5RKivGjEEHCnwjPey9QMWe2SRDFkhgJN6SZluhDDx0SKR6nhQm3qMViFGSYdIiQwOAmV5OZGYYgfDM84K+I2B+u9sW21u+Z4Aq6LRtiyjBhX0g/n5jbcH1WUv5uU29ERiNKxNP5xyurq5FEdtiGI5gJmCgNsI01mJp/c4772C327NPKsZWygFmr7smRTAlNFUDgP3uaRgRF8LQxnmC9Q5Xl9e4u7nBUBMN4QWqk0LAbrulEpJY+jrnYA04IRdWV8q5TIOXeUa0dL8cxfLVOwfrqlLRKL306dOnuLm5gbGGqkuVLwMgbdewjcLKgH1fL8M+SvHVbUP9U7nmy7IgiYtoBops3TzNCC4UgzMV93hyfU1Q/O0tdtstCRqbDV0yBSK13fJ910OYQx3SLrXnWolVB/G6kIRHud2tMNxGmQGsoFKGiotlO2YiUmIYJGgC3jfo+xrjPAqbzAD51HqJIcE66tTSbZI96aurDds7UlG0TVN0GbSl8fw5h0l6/79qPY5gCemRGTGGutfkUkJ+LeyUlJgZBoF7aNaScqIgsIjxth2FW6dxwHg8UktxmrDqerRNS8tVgQEFEQqFwIacPym2t12HXtgdQW4ClcM6HA64vr7GerUijlLK7iAn1X0PF2bPZB8QPyZiCinLQ2MFb+hL0KRTn6iquJOQcJbJaQgUzVArXOecKA05TNNMIYGqQtvyBrm9PaBpamw2F2iaCi9vbvDs6VOe1tLTXCT7gnxupAeZUuKQRA4KhT/p9Jvuliq3lwuGsu06ZvngVLppmalcXl6WdkVc+DoIL9ljmg7o+5UcMvw5GjAIJdqVsvfFixeSsdMCQkUzOH0NFGaR6Tmpo8zQ6qoRSwMqJllRIQpLwGazKQMzBfYnoYxCZOtg+T6rzYf6L2nPWwHcq9Wq9D+zcM6V1eITJ+HzPBf/qLZhabxZbzAVFIDBNDH4rFa9CPZywKeTZCAX2uj27g7XT67hhPWj5AhtrQAscX1Fb5t+tcLzFy/Yf1SspbVi4eKxWq3vyewlqpQ7xwGovH4VJTbGCUMLBWbV91ZaOEt5HniQe4EITZgmxZSKs0EgMkThaWQExVKd1OITRXUiTsavr0nPvLu7RYh0AG3aDtvdgX1KwfYuIVDq0FccGGf2VN99970PjVGPIljqo5VEGMPI4GAJCww4KEg5IcziVwyWzJxg027dCSbSixq1sRY3L29QO4vKV1Rs9mw8m7ZFCmL0lUFvG8eM0ggtTPFdYVlQr3rYhaZhNMKayd6oqgJA3+/3pCo6V6hdMNQDVCtZVdTJOclggAKozjdF/JUq7xy+qB2psmqWhSWXUjKzCBQQY8gHOUiPN+dc7FW1HdD3HTPqirzlpmnx/OXLooiu/VYVZAgSgLu2xUZUZwAUj3eF9sAAla8wzVNRn08hyeuncEJGRtdLuyFEHA9HdH0HthF6IEuvzTrUdVMGK6SZMqMZhrFM3lXBxlpXAvfJ/pUlocqCMTukV1OKtI09HA9FhWeSFguFdROOhx3maeR9BhQPHuvI9a+7pmRvzjU4iodNEl72EgIqqSK0JFcFeQpzUJR5mkbUYslqjMUyU09Tr/XTZ88wDOS+M/PZlMEJBy7MuGOk2Zdz1FC9vr4Svv8WrRwUTUvu+yieR6tVj7albsIkQ0rVkZ2FRjmMo7DWRJTGGESwF1nVNRAjbm9ucHFxgeP+yKm0c5hFd0GN8gCcsMtVjba1UB2D29tbukcK7I2sqZr01KoqmOKu65BzQr3UcHUlEm+GEKAQUDcNbm5v4SuP9cWm9Cb3u71k8apmtENOBk3fgXoRE25ubt+nFfGq9SiCpVKckAEr4PCMjKZSC00gR9KZrCckJeaMcZoRTUZICaNkUm3H4c80j+jaBjYnpGXBoG+Wo09MVVXY3m050eupun0YDqcyKlBZO8aI/W5H/w+hNnrnAMeeUVAJ/arG3ZbqQF3XEZOYyT5ZRC7LGMBXDs5bNKYufOD7rBg2xWukpP48GU1bYxa4UohB+LIRznLqO4wDXOVpBeorWAFBRxGdJde4RlX78pCzBCOjY7PZ8CZfXhLCJCo2xljAWkxLALsiJ79tcrcndH2P4/GAxS+CD+X3jOGDOU0Th20poU0n3OLd3R2n2huD3XYHyJRZp5gM8MDxeFuCpvfqpQTUTSUspyRlGgNmK6K587zQEz5nIFs6Ai4LweEt359hGOCqCnVVMeMdRvi+l74xXwMAUPCkQl1XwlgZCkIjJ3r5VGITkkFgvqsqDCPxmG3bIMMgyAFknMPddgtnLKuNaZYBY495mtF2Hbxf8Pz5cwAGmw0ZKLX0PCl462CEzNC2xENmA1hvscSAuq0RUsQSZtRNhWke4Z1nawHsLW+3NH6LKSEjwTuPpvXca4zo2q7gbVV5/eS1zsy5X60wzfRNGsR+hOpWDLBVVfPIMQYpA9Oihx3bVfNCEV9ATOyQBUZGHO4SFpAuy+85X8EaL0pJtiAGWFYTwD8MR8SYpF1SCRvNYp4WIJsiqMF+ZSj7VFrrq9ajCJYA3gfMLV+zBDpnQd5nmUJmJFjvETOD5GEai/cw1b8DxnmBycC6X6ER+SorabuaRl2KJNt9L21rLVZdh5hiUYQpikKBFqhJQObKHaaeYEJd1ZLxgUBhwXzllODrloMBYY+M08hsUsp2VYpXlaGUSRWrK4OUDNR0rZLSUbX91MwJ1hav7bppAJmaT/Nc2gKWEt8SSBNqz8yYWDdmxCrFRT44UDcUG46GLYhhGLBarVHXFbq+g1pq5LwIK4oOnOM0l4GPl/J0GMZiB/Hs2Vu4u7vD5z77OXiRo1O/nLqqkU1Elp4jKYRbrPqeuomRFg7LPCMlU4SX1fAqSFumcaf+ck5sLUxhwRQ4UHBhQVAnSkOITkziPmhPg6tlof3w/jDj7bffZj82MavXHmxYFti6wdX1k6I6tIjlbzYGvq5QCRA8poz15oJ44UTUQL9a4Xg4CpaVh0pVs0yexgld30ngIJB6Fok6dbMkh5tMKxiq7scU4KwrGFPVinXOk/vuOXAcjkfReSRiwle+WDWEQLfOpMmKBM/K++IFn7MiNQhN4nvZCrWUSI7Ly0scjhzC1KLT6esKrvKoPDnhvI0trI0Yp4lGZssCa6mWRLppQsqm4Fg109aJu8LvnPO4uqRQxvZuJ4gWV4I98bs1muZk0bFeP8GvffrVMepRBEsdkiRpGhtLX+Gw0A8bBsVn2nkVZMgF7R9DKDAhBXL3fS90MNV1TAj3gNVZeqTeV2iqBl2X0C0zljALzCGj7XpUIuowjCOcq9B4lhbKotE+ay2eQCnSIXAYBjkAxDs58qYDUIZLxtK0ylhblEqKYooMqogrnQSwb1CJPYG6AU7ThKurKxyHCbDqsFcXrnkMtKZgj4+/o65r7Hc7HBbJDtYrHI7H4tWScka/6mXP5CQbA/SrnmXdOMIYZljeObzzzlu4vb0lhtV7VI7lkxrG6QTTe1fsRpdAz+3rJ9dFgSnmxJ5nngqe0TmHVSWsF8f3/3gk7nIcR/iqwkbMuLqu43jMe9h7Q64lBEyCWPCWPzMLpMoYU1op1pGhMws7SA9YNayL0yQA8w7T4YDNxUWZQquIcZFGCwyY94kQOp0OIeD6+hq3t7dY9aS8jsJPruoaH/vYx/Dee+9hniesVusyCDocjkUQGID0Lb30SjmEUTGXnDJFPlJEXTFg1bVUMyGJ2O3JVZIZ2QDI/eqdK/hKnZjrc6dYXAbHHoCFmoINIq6h8LtZgp4xwO3dHemlEug0sFHysJf7eS5B7/nz90ogUVKnFQAAIABJREFUBAiOn4cZTePKoavPu+5PURmEJlG2bbVaFbxxsWgRJ9FRTOwAFOuaV61HESy1R6eTVeXG6immvE3jmWVO04Q5LsiGeoeQUkQFAFKiS+Q4jrB1g9qypLQG8M7LMIcPS84ZcVETtFayuoS27eGFYTHPMy42DU9XpxzpJIR+U1gRs77RMIhLLBaoMUTh2tZC8K+wOw6AoWiuetaMw0CP6brBarUuRmdte8LaMQPwJfuwNlD4NkYquoBZek48DJKhojlLUEI6ur7jYGzhNP7m7pYMmRV9nhcxWdMe6jJP8DDwzgqOkRmCF6X4aZpgrOHrPR7YQqkr8of7Hn3XFuuLqiKAuOv6ImphBlOClrPMjJZlIX860nzLOmYA+/0eFsBOICuKZ1XM6yJBDoLj06CrEK40z9SVlGFIFFEI2JNVrHo1Ofl53lDx5vLyktNhKYVjiGIvMpWHMC2LonthZIKviIq26bBarym6ocEHAHImsWIY8fGPfxz7w4GtFcF2KpxGmTn6ehnkKswz6ZSNdczQYJAtLUBstOgacri99VSuAhBFNEan2sYYOgis1xhGqvCo4PThqP7z5n0oB01Y2lbUjbLSh1HUhWhDTIEQhTXpM9WIIlHdNBjniSX4PCtqnJVJVZes0ks2q5bZmumqiZ5CtxS2pgFZyRRapRpjxLbayHsXCw34w9YjCZbifywXF0Apx9U61OiA3LLZa4PHHANsjgjLDJ8qOTUDckxo61omtRViymWAEkTmLMaE4zJStURBx3MkUFsYMiGwL2LA7FRvECqcJEyjSKSBAerpk6dFuMI7h1s5qVJa5AZmP0Z7nOM0Yr8noyh4D+c9Li4vkVLC7d0dvKtwOFCJXSfQqvQSwiw/CxJ0mjKpNECh1OkJf7LImDGHpYgXNG2LuqEc1yIP+rIQp+cshwg5Zwxyw6u1xOF4KLAWZQrNM+1rvfNYrXpYb0vfNyZmqNZ5VLXHskxU0HbUjwwxSvl+CmTjxL5XHGN5HXVdI8eISXqru90O19fX7wOF55QElAwBm3PIoA6JSkMtmZEcJkEgYqr+Xjjn3iNJALYytOPBIoO++qRZEOX/sLftcZNuSubmvCtqQ0BG27UYpxFtQ2HebID94YDPfPYzxXfHe4e6abDf0T4kJnr+GGMwTqNkVAv6fsV9RgnaOZUWweFwYHa1ULYtLAHb/Q7OURE/RZIgWimdca8CSwIvKpx4oARNHbYxCzcAvNBrifd98uSJGKtRFGeYRtqxyH08jgyQ3npcXV1hs9ng5uZGSAO5QM20nWFAC4mMWNhB2rNViJoGfu99gZ/pvwtBjOdENd1ai2fPniClWJSHPmw9kmB5ElTV06IAurWHlnM5lZynfmVa2O+pvDoYssyZhxFpWdDWLRAyLCi+QDtNBk7n1OaWb0JK4gcNEe0NAtnxDtEAyLYEnfLG2AgnQcV5VYcmLTPlhM2Kat+jnNQpJRGJpRAF2wBe8IFOpKgmYZEQ+kGQci16lVQUmuelMA9SMgWCkQQbOUmZk3NGiDzpYchkarqOZk/KQwYFFGZpeaScCpjaAFJKzfDWYLPeyE0LxAiMw1iYE0Ym4s1FAyBjf9gVXUhjjDBzZsn8PNquwzSN2O62GOcZlefwahxHTMssgxPu1cRQ4GRJMsHVei3GX5RSswLnyikhSGlm7Mmq13mPaRwxjyMzSXntTjL6GCNiZvZai4KV0lq1i65BVzn13vlyf+o9bAwpd03TUOk90BoCoP7BarXCEiOGacLFZoN5mstevPf4zOc+y0AtAXcJC6rEfryxBt5WRInIcxJTRLdalftXFawsbGlftQ2N30ipZGbatZ0MerxgFQ2Uhz+OVOFSWcBsgHzvftHgU6yBSyISZOBCzK4iFpZwoscq4qIXGxIt3Z1zuLvblmxZ9S/ViyqKmDPZSSzDV6sVKIp9LBllJe8dcdBO0BBJpvoUluF72OFwOGK324ruQI8vCwZPyglLPCm95ERVlijqLF56L4MIQ9iKhmJLWGArh8pWTOPTRN5rCDB1A2ctJ5iuKj8bOYuFaYLK5BdlHeGe05/YSdkTBeSasCwRJ91GSnTldLIhDZHsIsjNqnzttuWNaL1FyrGc+JvNybzs/b7OLAkUAkOJskqUkRgwT9RNBoT9bkdwt/OiJj2W/tI40Z5AyzedPmZk6fuxZ1f5CibzeszjCGsMurbDerXCcDhgt9vh8vKSh0aIqFSXs21p5Ca4wKdPn2A4DqjrUEpga0l3VLaEdw4TABigbdriuaTq31aMsaq6QoVK8JsRyVp4Y0qmrMpQWeio0IzQWtHihJjfLUUxSh/wricN0DqHtqZPelOzlRHvHdZR+Mp1XQMVp8faItKfnUWlJ0RSDp0/Gbl5GQJmwx62qzwOwxHDyCFfZSqKVy+poBxYvpKuOowUmaESvRFs8YKma8U7qIKFxTgOxblxmiehD1Yl21IiBXnugbJ1mTqvSdpgxjnAWPia1MaYRw4E5aCgb9MeKoCtwxGFBpHBtuDu7g7r9UqeFQY6B4sl5KLG1ItgRys20oRCOazXGzx//rzMBdbrTdm7MZbKVbv9+/QC6pp9csrAZbFIyaLD0ErCwpnBxcUFjkd6UpHjb8VNoP/QOPUogqUON5LwiZ1AAozLZPNQWYDTuRhhAzMQBaVWdYX1xYa+wykhTAsuNxus2o4eMcaVByTFWOSmvPRhdDquJyRAaSmqplA3T3Ub1YSLTfxYSEcwFkQ/2cKNTpl9Iyf9G7UocM7I3+RcAwZ13fBnpyRZAm9w7ZMRoA7BFLJvOY4jVisq4Oz3B8QQcHFxgYvLS7JfRlpDqGL3arUi7EiwkUGM1KKIMHC6zCytb6lAH6a5eMfEEFiuyOAji6Dr/kBB26ura9zd3mEcxjKp9CI6sd/voNnLYX/ASqaTjfc4DCOWiRniquuxWq+xCOfY4uSHXRpZMnQ5Ho8ES99T0648IVTaxgkhIBSYVVMwsupjrnYCq35F6twiWF5zEjXRvqTeI8WPx5DDTdWbU3U0zxMwGfiKbKNWemfTwql1CAFPnjzh4M06uMpjv9vDGoOr62sKUQxD0VwdxV5Df76xBogn/Oe8BKz71fvEVNjLXOC9zAMyy+cgMmUxpSKNCOnJbkWDUjM+xXNq5qWQLs3WD4dDwWfqIXR7e4v1egNrqaNwfX2NcbfDOB5RNTW6rkEIC6aJwYumbRVU8m8YjnxOrCniGqvVqmTqHMZQkGae+d51XQtjsqgx8R5TURa9D1arvli6KFVWval4Lw1fJnRHGGQDofxFpGzhcLKOVUktXx7YoQh57vYHUZ/x9NseJ+SqFjkuvukhhtLTcsIQCmFBNCjCG+Q7s5GuPS3F7unplTMKFqtpalqpShmvajv0MqERE18Xv6Ysi1iyHWbOUW5epfNZy2BbidWrUhX1ZmVWcDKhr6oK777LfpZRAYNlgXH0Ys4hl6HYxeUFTGAp0jYNgvOo7wXLcRphHJ0Au64TseCEGRY5AVXVIEYq/BgB+nZdi2nkoGhZonC4BW7jPJWW6gbTTEsHlxKapkMICq+JQAZtdycyOayUVSpeotzrnLMgH8BSWYY7utT2Y55nZKPYviyZrIcK2SqtUh/wu+0dJ7JyjTm04IQUOQsSQuXpcvmdxlj0Xc8ho7RyBnFjVPm4IFzqGOknEwRhkCXLfnL9hPAosUlQ5R3nPd5++y0OLsa2yO+p1ukyL7AN+eP7/QEH4Tyv19SZHA4HsnFSKi0F7z1ub29Lb9bIYC6I3gJl6wytMAxQyXReS35tPymKYBiGkiWqSLOK+ap6k0q7bTYbthUW6h94T2+caRqxnXbYXFAA5fr6Gvv9TvrVCcdhQIgLLi4uoXx/upyivCbVH40xYr1e4fOf/3zhoV9eXuLFi5dFEYyvw5bWgzqv3kcZvGo9jmBpSOdLOSEsSXqTSQJcPsF0nIU1BCMP40hFkVbFIUQWrW4wHI4IvoIRcLb3FYwFkKnFSL8ONtlToq+Mlb6jyZo5JowjlU6urq6gArd0JVSiPkGvKl/Fh8jKAwVYx5sPxsD5CkgJyzIBGXBi+r6IEg453RFN45FAaFJOzBBO/VwOrNqmFRtUXr6PvfMxaC+GFEVSQDOA1vMhmJdFZK02fPDDgq4hj1etfduGBldt3aCpalTinrdqOwoci96jlqDTNGG3O2C/3+NSBlNVVeNic4EYqYeo1gExJux3R5HDWtC2K4S4IIMivLWvEOYFKQQMB5qSdas1mVYhIKaIvuvh2w5hmcuNrRYYMQS8FD1RNbsz1payfA6E7/iKJe8cFrZuci6ZkAaiuuIkP0XqqDZNQ6yp3KtG/s45YbvblvaIcrnpWTMV1X8N+n3fY7ffE9wvWfYwDjgcDzgOR5p0xYi77Rbr9apgZIdpRE4J1jsYgQCRpebgqgrrzVpwjYsweRz61UpaAqn0PlvboReldV9RSfx4IJPp2bNneP78OaFOgdYpzjvc3Nyi8h71ai1CuUNRC3r69Cnee+89ijpL9q2BNEZmnl78epZ7BziwKgmE9R5NQ2pyiAHb3ZYZtcDiqppumLXA4aZpglkUqgUAVN8CgN1uh7fffgvGsAVW5BMdNTWHYcDHPsZnJcaIZ8+e4e7uFi9fvoTqx35omPpiFJ83sTabT+Rv+Ia/+r5msWaFDJTsexwOh1ICjdOIbAzavoOTcienRBOorsem6wVCI01vLfa1bwmWJTmlcuNmUPLKWIOu73F7c1uGPDrEQaZ4LA8mU0Dc/NHSDy1mXvx6jCzXvbOIywIInAE5l9JGe2qt3KxQtz1zGnYRcspDQ+0wtMdnoN46DNYpJyTZ4xJ4o6p6e84ZV5sLNBVbDXVVIwiVEpkUP81wrWRn+rNyzjKlZaaWhWnkhZ/OPZFON06jMJiYUUA40XVdF1X84+EgU+V7UnySMWSh3mm21dS1AOyp/mTk2sIYClckMbiS93URWp4RPUo1wFL+tkJ31A8eYNl/KVkO5cmIslBtTD24Ukpy6DnpIzFA+KrCar3C/nDAMi9wFXvFy7JgkUFN3TQFhaGiG0nA8DqoBAAvh9LxeCwBSbn3qmepPGz2puf3aRLo87QsC6UIV325f5q2we3dHd+vwBbNYU/Ylw76qqpiBbLwAFOUhfYvr6+vAaDQMe/Tfruux4sXL9iTVlUimT9kqH5AFiIFcHNzi6urKzLLRPlfp/iqoMWE6AjvvAxoDtBhKecLs1RiLfVLu07EgX3ZA722gqguHRFCxGrVCxTP4ec++ed+Nuf8jR8Upx5FZql9Bg2OWfor2lyvxClwHEakGAWqAXR9h67rS2lkMnB9eQVvOcwxOcPcD5Q4/dykk3ahWbKspzxaLRlU17diF3vPvMuYAq9p2g4RuTT8rbWIUB9lPlhOeqAxRvpUS59Uv++9B2KETaepPMDJdc5s+GfkYhGgf3SIoXYYOgXVCWjOBHlr62GeT8K1Td1gmRZEMUBb5pmwE6HRzdNU5MMIQ8nIxiIFxSyyX8ZeF/vMy7Sg8jUqp0DljJX3QAaWvGC9WuNuu2VrIUSs1xuo1FvlPKYllOBT+wqbiw2G44hlIhOrssRgzomiIzmSGQMAcblXskuGoPjJGCNMZs8uhog5Q/Q4WS4CPIAUulRXFUKMeOutt7Bar3Hz8mWBVQFioyrBNQOCraXOKjKz3MOR7o1Ny6zmcDgWFEYlalaVP7VZJlHh4YBLDi1krCQweUcvJee8uEHGoj2pmEKoxGEIRVNARX+d82iaBrd3vP4XFxdoulZaAsspg0tsx8AAdc0h6nEYqJw+U/TDWAOTLbquxfWTa+R0YhTFGAvYWwcragtT33N1JNqEAjlM1hzdMUV8ebfdoZGhqg6HFMvqLEkpR8GuqmFaU9dFk4GShIv0eRN85TAMBzlUJJaMQwn8RY/CfhkopeeUgXTiiBtjkAKb8pXzcNkgzAEO1JtMKaNvO6xF4kmzUWMMTDbMFK1DjAFhJuDUi5oPfVUcnJWBi2UJF5YF1jvEDBwnejpX3sNVlRhViexYCCWo18LYUJWUbE8WrJXAjIglpOiFqifNy0wMqMA2kvRmVcJNS/2q9oVdQhyqtgiAlFGAukF47NLKJ8yiquAtp7DOOwa1SBuFAQf0bU/8nHHSL7YyhMqwVQVYOmHGRM8VgBmzGlYlCOhZUQQulwBujeWRkZilp5gRloC+7bEIN/iwPeBw2MN7j82qRy0cXkUA2Gz5ADx5iphOFcbFesOHTaihCRZtz/7iNE0go9PCOGaYKTCoIwFhDhjjhLAQ2nJ1eY3j8Yjj4Yi2awFnEEPE9m4Haywur65gLC1ANhcXxOYOBIsvogMaQYphThl2AYIIR+TMUjvHhMo5eOcwH/aYRJS5F3HgGNkSoiizkYFWphBE1AxWWgXGYjgOaOoGfdvRGRI8sGKmbGFOCX3X4zgcYQ0k06bgMvuTCfvhiGEa0TYnBaIUaW+hjJj7PcolRjx9523M04zNZs3M7zhiDqQfO+9psGsoETjNByrQr9foraN8mjhxKnPLVE3pGS9zgPMWF+rCKIIjTHRY6VDSkPq2x+MRg2BwjXOoxK73ZnuHrmlgwYNjv9ujbjz2uy2U324qD1+5cg9RZJvSbpoxv2o9imAJZe0AYlbGYY8xhrSr45EWm/2KkKLEQULbtjiJgaGcfNYqxiyfvm5OvjIqpeYdJ6cwBnXbSuCzhSOeQRB8LZg9ZMEtWotKppMxRQm67BWWnmgWgKuIgqiSTwZL9QT+O82uaNN7v4w/sVJ0EqqllWaxgF43UyaSuj8V11XVorAEJAFzG2Ow7tb3gi6DqXoLAQyGOtQqtriQgw0Ui0DJ5gwMVMwVCDGhloGNCqMsksV63wslzqDvVzzpQbEK5EzoFVgi6+sz4H2gB2ISVEHlq5KtAJk2qd6V/59SgnGeZfiylEyzqtgf7boOV5dXaCoxyjILQmAv8ngcYKwrbJ15TuXeIqTNIsSI9cUG+/2B1MKYxNohiIyaCo8wCK26FSKAvl/jcDhgSpz4a7UzzzOtcgWziKSSbGQyXbQcZPqqwnq1wiYQy/jee++hbhpYwYyO00hUQCIs6HA8om4btF2Hd188Z+ul74vT6Ha7xbNnz1BVFXb7PRaxiYZUfBebDUHvVYXLq6uisXAQweC+aXFMnCZP0yjSdoP02L2EO94/tYhnz/Mo8oLUXM2R4iPOe8HbhqK1OQvWVTNNALi8vMBxGNH17MNu72g6x0zastc9TViCR9M1pW1B3DGNBwtiQ9SSnNw7r1qPIlhq+WjyiTmRcyoTwLAsIm8G9OsVau/Li9eHiY3+9wcoZBRsWhAojpWgF2PEIAwEJwMC5z2aype+aKGwGcNhkXOlJ6aBU4OH9dKnhCmB08KWN/g+PEl7dzllZJNlUORKH7IA8+X00zJBvVrSPZwfAOGmNwJsXwo7BTh5npCXLWIXnqwNeAY/2qEaysWJYAcTWUvcJU6HF2l8KIIgWvqVwCAsm0Eeei3x1Op2vdlwCACcaGg5U/BWsn7tV2sQud9XP2FiT2wLvR6KJgByOWRm6UveF60tLRWwH51E47Hv+pLF8nfx9TpHY6ws+3TOYR5HzMsIax0sLDnNAqJWSJiCrZHZWxznmcO2ecHF5qKwSGah7pnGFiO83XaL2tP5kCLIg1QcpLyqLuV6tcZ+tyfmMmccDwds7+7w7OkzZM+h03E44jgc8VUXF+jatuCNVUPTGIPtdovVeo2+6wkvC6G0l2DUa0gsbGWiXIms3W9+9rO4kgGfDju9r8TBk1CxaE99x5Si2ACzFL64uMSyBAzHgcpJzhYMZ21dgcCpCAZRE9S+9M4XWNRK6LpKG6aodUAYqF/adW3RUwAMDsORFYKxBP1/Obg7ZsF9GWPg5AQy1sI7PpAvxbBK8XSKuco4ZSLK1dVA5K1H3dTISzz9EvB7SeAbOnix0ku0MpFbZNBQVVXJnkpJIiK0RoKVBmkNfvRpTqeUXmFHsgdmSRKgUwTS6d/o/8s4BQT9WwcL+hq078kfe/I00UPkVKKH8tCuV9TBZN+S/Rod0jiZtMYUy0CgKMHnXLJLHf4gnUp+Bgy+b8sSkRFhCrYV0gOrsVmT0aTQKGb5iR7bAkKX9iJgTLknrPSV9doQH4uy/xOLRt7flBECpducdYgpF2C5kwk/YToJFg5tTfYTLY0d6sqUA3zRQ1TEZvf7PaZ5kkDhMA5UAq+cxzhOqKsG2Wc4YxHFZpktGMJa9HVN08TBTUNJuVb7bVGELZwrg0edJqt9yXa7LUZhOmx78fwFEkCh53nBu59/F1dXV/De4/rqGr6qsN9RfSgJ7W8ap4KCsNZie3eHpm7gPGFVKTKbvr25wRJoXXvzkoiDw34PgMD0a1FZTynh+csXSCljtV5TNWheULcEkSdkobw6GGex6emjY8Chnx4U8zyLFTDjwmrV81nOSj+tYL0j4mC6Qz0xQ3SeWNq+6zGNA4bjgHEZ4bJFEry2srSqqkYIlGekxuVJ//VV61EES11GhicwEMHOmX2pnEn8txarNT1RAPCpKsHoBChHPrEnAJQSTiWx5mUpCH6dygLi4+xP5Z4GOMX4AShMmJP964kGqYEaBuzBiszXaa+mTLi1JaD7D6Krp587CQiKyQNQJp0xvR/ikKT8VWte7XPqUEJVhpRHqxg/Zx2yOWWWbU1aXOXZ5ypljzFwXnCLiVJ55C5X5RDJORVOtfqo7w/EwMYQxD+JvVTnHHw2mKZF2i4OSa6XgWFGlwXcb+61V5xmmcq6ckXgQZdzFYxhoDQGyImtHVc1BX0QZrJ2dOhDW19ad5A6act75Z0G3FSyzs36Qq7vjGSdtAMqWOPE9oQHAMHqtvSkYQ2Ow4C2JUPJGovdbkeOuOAkYUDPKKHjMvDPIoi8lHbL7e0dS9EjtRtjolPmNIwwoI8Op+gUyt3utqhk8LPkjNubW6QUcXFxiXmeiu7pNE1wwZWhqLekNCJljANpu7ov77n/w+GAt996q5S0MXFwdLe9E5pihdVqJZ5CZCVxIh5gjRMePT2XNJvlQcts1FgLm5JYO9eoG+6163rsD3t+vWmKNoRSYPv1CvGYYBz76jEnRN4QWGS4hcmgERHrfO8++qD1SIIloS45CqVNcJVhIQC6rmsgU2m7rqtiQZEyQdopshfo/UmHT1dKEVGrLpk+d11XuNRa1lI5vClYOy21ca8UDCKZppJqqsoOYQrongDJ/qQkz4m9Te90+JFK9ggDpJBK2akZ1n2GgZfXr1lJyVRlbxZAyjTCmsSLWRVgtFe32WzQNi2Wha5+KZ04vqrDqQrryi6i2CqhPClnmdFCEAGnNsX97HcRaFSMEX3Xla8pNtFL6T6NYzHIco4HGbKRgZD0lct7k4SFZWFwgu7oQ1Uy5Kzf499VxRKNcBuV5aOISQzEd1rrECCeNJlZv7Y/TNKDSKoGy+ubUsJms0bfX8E7SpsxsFYndR65tlq6cnBx8pYh1CjinbffwXE4lkNVv9f3HW5vbos3zG63xTCMuLq6wDhORYaPYikWV5eXGMYRFxcXuL29FaUsWsy+fPEC2bBfp7Ti9XqNqmI/m2Ii9JdSHCexpVNxeewEz9y3LfvY9gSL6/set3e3dDqQe7aqKdIbwlQSj3EaxIIioe87BummQZhDwVD6+v6gDzgepSra0GJiniYJ1glpoR3HtLCnGYIar1Vl6t31PYwjztjAIBngOI4l+x2niTYvKcGkL4cBD8Cb2giHOJLupbAdZ6m8UtVVEWeNiTL/JhvA4kQHQybfN51K2JMZGEHgpa/lToHJgqbxxmgplwoAWR9clfDSLJVWA67cIBrwS8CW6HI/mAj6sajDcGgsGaZg7O5LiukprL0gAAVvWUpzA6g7pNXyHhDWyIwsQGFVXaF9Ryz9tSlM8MaXLOL+sC1D+eS2BI7ToEzgTlktiCV4O1eCqTGmqAjpzzbST7SaqYIsKsgkmC+JytoK/EpJcaacMqtCtlIulemVRJrOOINiaGUMLJilQn6WFRZHEMEGVdaGZRboZEDoxftoGPaS1TUyfLIwouPYVA2PP7k+fN22DJ6o6G3Q9+xlOkuzsVXfw4iLo/aZu1b42tbi2bNnBWO42Vyg61bSm/MIIcK5Cjmbon5UJMlER/LonMCIKiQkzAIrct4V1pYVRXsv5IVe+NHjMPLzvpdDFeIzvpTett4LKucXRCTGWIt5mrEsQ0lKVMFIn7cQYvEsCksUuqlichd4wafmRajDia9vAu9155ntJ6lwtBLqV3ot+Vz5qoJvfBlYklvelQqssUxAXOUxflkweEC6Y5b+mcrNM6tsymCDmcWHpMr3vqXg2iB9SUBKZMli75du+n/LV+TBLx/j1BfUX6OeLR8E6S/thAxmkcL1tgYMCkayHXGwnEVqTbM53TvDu1b1EjYEAJ2B8vDrCjEiRfb/nKUtbIoUnzBVVTBqthJmC049UH1hJSvXAaZ+ev/a5hNMyFgLyEDEADDa8pD+W5Dhlk6ieYJTHai0TSwDpZFeqLZQZBZXrkHOidjZe8MdPTg+aGUJVKwSUF6M4hNzeX1ZSrDTEKu8r/JatVWidFcjP84kXhwjyAH+8HLHyT74MwmzYouh7N1ygJQiFY54IGfEENG0DHQ6pFuvlSZase0hiUAIS5nkOmthMsSDhp+z925Q1QweKdOKhSIYowRw3huhWoquozUWruZQM0vCEe4degpxgzWAJSso5YR5mcVuRa69IFiMXIMMBrIUMsKyAImQIiu0Y1XvjzGUvrkx1EsNIeCw3xNTaYCUeXCTqsnrabM97VESJ70nfUXlfg4AmVkfp4H3aPXhOMtHweAxxrwH4ADg+UPv5d56hvN+vth6bHs67+eLr8e2p8e2n9+Wc37rg77xKIIlABhjfuZVNKOHWOf9fPH12PZ03s8XX49tT49tPx+2PhxsxEY9AAAFN0lEQVRYdF7ndV7ndV4AzsHyvM7rvM7rI63HFCz//kNv4AvWeT9ffD22PZ3388XXY9vTY9vPK9ej6Vme13md13k95vWYMsvzOq/zOq9Hux48WBpjvtUY8yvGmE8bY77ngfbwG8aYXzTGfNIY8zPytSfGmJ8wxvya/H39mvfwg8aYd40xn7r3tQ/cg+H6O3LNfsEY8/VvaD/fb4z5jFynTxpjvv3e975X9vMrxpg/8hr281XGmJ80xvx3Y8wvGWP+vHz9Ia/Rq/b0INfJGNMaY37aGPPzsp+/Il//hDHmp+T3/qgxppavN/L5p+X7v/0N7eeHjDG/fu/6fJ18/bW/Z1/SyvdAt2/6DwAH4H8C+GoANYCfB/C1D7CP3wDw7Au+9jcAfI98/D0A/vpr3sO3APh6AJ/6YnsA8O0A/h2Iev4mAD/1hvbz/QD+4gf826+V964B8Al5T91v8X4+DuDr5eMNgF+V3/uQ1+hVe3qQ6ySvdS0fVwB+Sl77vwDwXfL1HwDwp+TjPw3gB+Tj7wLwo7/F1+dV+/khAN/5Af/+tb9nX8qfh84sfx+AT+ec/1fOeQbwIwC+44H3pOs7APywfPzDAP7o6/xlOef/DODlR9zDdwD4x5nrvwC4MsZ8/A3s51XrOwD8SM55yjn/OoBPg+/tb+V+Ppdz/m/y8Q7ALwP4CjzsNXrVnl61Xut1kte6l08r+ZMB/AEAPyZf/8JrpNfuxwD8QfP/UNtey35etV77e/alrIcOll8B4H/f+/w38eE32+taGcC/N8b8rDHmT8rX3sk5f04+/j8A3nmAfb1qDw953f6slEg/eK818Ub3I+Xi7wEzlUdxjb5gT8ADXSdjjDPGfBLAuwB+Asxeb3PO4QN+Z9mPfP8OwNPXuZ+cs16fvybX528bY5ov3M8H7PXB10MHy8eyvjnn/PUAvg3AnzHGfMv9b2bWCA8KG3gMewDw9wD8DgBfB+BzAP7mm96AMWYN4F8B+As55+397z3UNfqAPT3Ydco5x5zz1wH4SjBr/Z1v6nd/lP0YY34XgO+Vff1eAE8A/KUH3OJHXg8dLD8D4Kvuff6V8rU3unLOn5G/3wXwb8Cb7PNaAsjf777pfX3IHh7kuuWcPy83fwLwD3AqId/IfowxFRiU/lnO+V/Llx/0Gn3Qnh76OskebgH8JIDfD5azKppz/3eW/cj3LwG8eM37+VZpX+Sc8wTgH+EBrs//z3roYPlfAXyNTOtqsMn8429yA8aYlTFmox8D+MMAPiX7+G75Z98N4N++yX3JetUefhzAH5fp4TcBuLtXir629QX9oz8GXifdz3fJdPUTAL4GwE//Fv9uA+AfAvjlnPPfuvetB7tGr9rTQ10nY8xbxpgr+bgD8IfAPupPAvhO+WdfeI302n0ngP8k2fnr3M//uHe4GbB/ev/6vPH7+iOvh54wgROwXwV7K9/3AL//q8EJ5c8D+CXdA9i7+Y8Afg3AfwDw5DXv45+DJdsC9mr+xKv2AE4L/65cs18E8I1vaD//RH7fL4A39sfv/fvvk/38CoBvew37+WawxP4FAJ+UP9/+wNfoVXt6kOsE4HcD+Dn5vZ8C8Jfv3eM/DQ6U/iWARr7eyueflu9/9Rvaz3+S6/MpAP8Up4n5a3/PvpQ/ZwbPeZ3XeZ3XR1gPXYaf13md13l9WaxzsDyv8zqv8/oI6xwsz+u8zuu8PsI6B8vzOq/zOq+PsM7B8rzO67zO6yOsc7A8r/M6r/P6COscLM/rvM7rvD7COgfL8zqv8zqvj7D+Lww1Vkx9VdN1AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "image_tensor = random.choice(ds)[0]\n",
- "image = tensor_to_image(image_tensor)\n",
- "model_interpret(image, auto_resize=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/nbs/index.ipynb b/nbs/index.ipynb
deleted file mode 100644
index c8a0c543..00000000
--- a/nbs/index.ipynb
+++ /dev/null
@@ -1,726 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "%reload_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "from chitra.core import *\n",
- "from chitra.utils import disable_gpu\n",
- "disable_gpu()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# chitra\n",
- "> \n",
- " \n",
- "
"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- ""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## What is chitra?\n",
- "\n",
- "**chitra** (**चित्र**) is a Deep Learning Computer Vision library for easy data loading, model building and model interpretation with GradCAM/GradCAM++.\n",
- "\n",
- "Highlights:\n",
- "- Faster data loading without any boilerplate.\n",
- "- Progressive resizing of images.\n",
- "- Rapid experiments with different models using `chitra.trainer` module.\n",
- "- Train models with cyclic learning rate.\n",
- "- Model interpretation using GradCAM/GradCAM++ with no extra code.\n",
- "\n",
- "\n",
- "If you have more use cases please [**raise an issue**](https://github.com/aniketmaurya/chitra/issues/new/choose) with the feature you want."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Installation\n",
- "\n",
- "### Using pip (recommended)\n",
- "\n",
- "`pip install -U chitra`\n",
- "\n",
- "### From source\n",
- "\n",
- "```\n",
- "git clone https://github.com/aniketmaurya/chitra.git\n",
- "cd chitra\n",
- "pip install -e .\n",
- "```\n",
- "\n",
- "### From GitHub\n",
- "```\n",
- "pip install git+https://github.com/aniketmaurya/chitra@master\n",
- "\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Usage\n",
- "\n",
- "### Loading data for image classification\n",
- "\n",
- "Chitra `dataloader` and `datagenerator` modules for loading data. `dataloader` is a minimal dataloader that returns `tf.data.Dataset` object. `datagenerator` provides flexibility to users on how they want to load and manipulate the data."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "import tensorflow as tf\n",
- "import chitra\n",
- "from chitra.dataloader import Clf, show_batch\n",
- "import matplotlib.pyplot as plt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "# cat_dog_path = '/data/aniket/catdog/train/'\n",
- "cat_dog_path = '/Users/aniket/Pictures/data/train'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "clf_dl = Clf()\n",
- "data = clf_dl.from_folder(cat_dog_path, target_shape=(224, 224))\n",
- "\n",
- "clf_dl.show_batch(8, figsize=(8,8))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WaxuW3bfh/3GnHOt79vd6e45t++76uuyyGKxilVUlUjRoGTHjh8SSAHkIApsv+ghgB+i6CEIohcjsGPkyYiNBEiAtECiNIqQRFBgJ1JkkZRMsa1iFYus/nan2d3XrDXnHHkYY6619rn3FosplnQE3nWx7z67+77VzDma//iP/xBV5cPjw+PD48/uEf5Fn8CHx4fHh8e/2ONDI/Dh8eHxZ/z40Ah8eHx4/Bk/PjQCHx4fHn/Gjw+NwIfHh8ef8eNDI/Dh8eHxZ/z4iRkBEfkVEfmaiHxDRP7GT+p9Pjw+PD48frxDfhI8ARGJwO8Dvwx8F/g14K+o6u/+qb/Zh8eHx4fHj3X8pCKBzwHfUNVvquoA/G+Bf+Mn9F4fHh8eHx4/xpF+Qq/7DPCdxdffBX7ug365W0XtDiO1VubIROZfUFCwnykIwtUAxn5XZPERBJHpz/1vFcR+O8SAiBBCIARBJPjvzy+sqv4+iviLta/tVQQh2s9EECrqH+2k7dUCQSJBIiIBUErJlJpRrSAQghDET04VRafzt/d56J74lWl7B8HfI6Aq1AqlVGqFWhVV8WsQ+ztRfzV7H2mv5TdWr7yLf63tvjA/J138rtoZtded/+bh57V4cg9f0nSPF9e4fL/FNdta8Psi7S75vZJ5Tfi37R4FQSbX5+el7ZdAFtdYa0Vrtfu3uCPS3i+011+uVaWq+t/auYv4vZeKtHNod0kFNPh5qK056nzfpnWk872Z1rnMr434/dbpxrbn0P6fN+VdVb3z8P3+SRmB93m0V9YVIvLvAP8OQH8Y+ehfeJztdsc4miEQAiCIRFBb0OOQqUUJNZBHpWQFnTewBOg6YbWO9OtI6uxulVoZc9twSozC0dEB/SqxXq84OFizXvekLqJapmdaSmEcR2qtxBinhWjGQRDWxHBC162IUSCMKBtyvaTqYM+jdHTpGocHtzg+uMl6dUipA6dn73L/wVtsd2cgI+uDyGqdCAFqzSgjITbjk8zYkICABEW1ooyoZqDSS+SoO6JPh9Tac3lROD8b2FxWttvKmCMp9sTQUSnksEdCIUolhkIXFK0jpQx2fQEQQUXICKVAVShFKbm6kSnU0jaM2mapFQkFKGiFWoRaA7UKWq8aa4DgG1K1LRm9YnxLUWot9l61Uurg1yyIts0UiBIJISLE+d8hEHsgVkJSVivh4DDRryIIaA3UHKklUmtEMoRihiDnzH6/Z7fbs90OlFLauvUNDavDQOghpc6vw+7BZrNlt92x3Q7UqqSU6LpI7LKdw7ojpmj3Zp8Yh87OIRdy3qN18PsZKFrt2rVQtVKKGe3YB/q+o+s7UtejRGqxZ2JrPBJjpNbs97Ty5j958K3326w/KSPwXeC5xdfPAt9f/oKq/ifAfwJw/NhKYwx0XQKKLwAhSDLP6UZARKhjpY5KCEpBqQpCAbXcpurSusfZuvrHFB14ZNC+3xbx0qgvLW2tdf47ZoOr06IVZPKKbXEKIXUcHh5x/eQW10+eYL06oJSBmAK5DFQdKbW9khmpEO01kMrDUYA0j2cO/Yq5LaWQJVNLoJRCqYWqzWhVVAtVgy0oCmhBQiVQqapApQVMC0fvNyMgCkL1e7LwzNN7mL/SuogoVPxevzeKeb8ooMUdIn6v2/uITt5vjsLm+7x8MZ08/PxcqOpGSdGi7inFnI1CGTN1qEhRNwKFcczkXFAt5kAQd1B2/8dcSUEswnOnhUIthaotwvIPgZQSKQkxRkIIUKEilFLQ0taWOzXqe29Le/6L+yAtspsM5/Kh2e/9cbjfT8oI/Brwmoi8BHwP+MvAf+MDf1uElBK1VkTCdDNC6Dy8nY1AkUqumVoqEhSqL1wPoVSjGQKqLUBkSjNUr+yZafFWD/nM47/39JoBsL9p2zzYAtUWLOviZ/a+IoEurTg6vMatm3e4deNZ+m5NKXtSl9jttuz3F+zGjEhGa0FDJUR8E8zeUdqHLFITfy/bYHb+5p3t/phnnq+vEFHNVP9PQqWqGQC7f/b7tpHtZTW0K5LZwEmzQAtjsYiS0Do9Q7vHi9C8pR+iSJiv7z15Bc3gqYfRnsJYrD+dk7DcDNA2aqUiVQjVQg0VtY2WKzUKIUY3AYFSIY+ZcTeguSC+3nIu5JynKOQKhCagY7s3xc7ADZdWMyRBBIkQo6V6XZfoOiGlaClJtei11AxVPKqVyeBS37t551R3kQY8/AyYjbL9zZzuvN/xEzECqppF5K8D/w8gAv9zVf2dD/p9ASwS6AihTpGATBYWQrC4UxA0V0oRQlBq+33fjLZVioWfCEUtHZhvynKxNCPQNpCahWa2oO1GLsNB+4eCxSLuZefNrwTAzr1LK46OTrh54zY3rt0mhhW1DqgW7h/cpUuH5LoDqahmVMv8+gvrT/OKbfOo5bgOk1zZBlcNnkUBtQqQpw2imBEVBanagib35kJtm74KVZoxvRpVLZ734n11yoVpubzbyslZy9Iav3fzT/8Wy99lcR/mBR0MQ9G2gux7U/7sj7pkNWehkEUZozmTrotuCKLl/bky7EfyfnAjxrQurhi4dp0odV/tOYdCCGFhHAMhBFKy7dV1HSlF+r4ZAbsoLfPakhqnaGl5axahmBsJj1Af2tRXDcF7I99p3b7P8ZOKBFDVvwv83R/190MQUheJKaBVpocg/qBVhRCFWKAmIRYhFDMRulhkEmyjKM0DyvQwl16k3Sj7neq5lBDjvNjaAqi1knO+kh60HNAMgEUdSAvJbEFKSMTUs1ofcnB4wqo/JrCi6J4+HdN1B6R0QF/XVCmoZPN4vmtss8v0AC0KUMQBpjotmuCRSZjXTRD3tJZTa8EMo6gbgIr4Ym6phQGKtvlVQEVQCW4ErqZNWj1aeMgAgG+e0jynWar5Gtx3S50259XFftUQBB76FRFUIoYJtMUdJk+qdjKLTWE5co3FUwNFVIhABbsHRamjkofCfjd46L/I/xfnszSCpVY0mIMSsY1v0ZpFtjGqr+tESsGNgRCTYNhTMYNTi9/MMK/Rhzb/9JWD2RIaIN1ujk4fFtU1RyH+CD44JfiJGYE/6SFBSA7bajUASrUQwsIJ2jonRkidUKp4+mDpgIgQo3kPpRkAqIvFyrQ4Zo+5NAKlmEECs9DLj7ma0FIW9Uhg9nwWYQhKBCIhdKTYk2JPkJ5Ab75CVnRhzao/RMLOfLNW99KDO0JLAFv+PRsBv2ft/+JuT+fNOp8L5ulKy2UDKpVYWrhvkUHxm6IOTNdgRkHFNktlNoilVDcA8320P2+GAgewWgqzeM6eCuDX8t4wtS1WMxYVj3ikGYI5tLVIwI0AYdoL02ZQcXyimpEtIDUiCpGEFsOSxqFSxmopwTi4B5UJXGvPe44KdLrPljZURCohKJblCxIiIUBMka4LxBjdMARC8FRNHayenpl7b1o0/J5dQpBWzZoN1Ix/LCI0/560Usi/iEjgT3L4LZ0QXQuTKrUWC1l9MYcANWIRQRW6TgihJfFm2yU0xLmVx8JDqcDVm1fLvLARIWcv4YgDbdnAoVKqpwq2eKfwdt79NAzCogIrHwYs5JzKQBIQtUUb05rDg2ukUlAJ5CqMRRiGiuro52pXJx55SLAIwRYLDTxA3AtqhVJ1ihKakZtwDTUjQLCwP4lSYgvPq0cLWDQmdi0VpXjEU0qh5AUQpSzu7yK6KrPBahWAEJYGoJ169fdu3q8ZPJmMHh7haVmEwgKi7UWsVjd7fzwlUbRUyBWkULMitSJViRopEbRG8qjkXaaOtqFVKzEGYkxEB4keNnTSvleEWpQiShX729QLUYQUA10XLcKdXq+tG0/NVJHgaYw/K0MwHzaQ4msvELw22aJkD7bm/XTlmdjPH04flsejYQQUilZicO/nMWDoWphrgWEgEGtFoxIqRA2EiFtqLLRyv6W0vG6OBGJ8741YpgRSAiV4aI+BQ6Wof3akvuXh7UZztW4NAVUPC/3fpehkSGKHr4LAqj/g5PgGQ1ZqSJTasd0LtWTG/J4z5YpRmDaOYRCqYpvf3ysXD+2bd68OnKJeHagETw9qgCpqUReCBpkjzGDetBaPBEr7qHOo3G5ItQhE/Z4vy3/vGw1MXv9qCuBhkG/+GRNA9CGAMswRz5Tq6eJllTJk1I2AZQYVClAGRAw7KhlyttJni4TUS88xduAplb3kVYxAVCyd0ApSqTUTQwfJtl0USAHEMYMJt/HnoFSCeDajM5Brka+nU4tKgRnHMBvOhvxciQQW5zeByP8SpANTWDlhPEKU6AAdvvEFTULIZvxj8rwntDIeTtRwy1h1Wp/LG9a8si685WwMxL28TMbhPcDX5HHM4DSjM5GYPCJo72c8hZGqI0gBKYgoXddzcHhMHAuERKmG3u/3gxudFg1czU2bIZoiG48+2ubMRchZKFk8dNc5f1erCFgual5Zg6UFIQghpTkGD2bE1H+3GRmrPNQJDGs4n0i75/N9mhDzltcuHoNdi3pxYzamDd71u8wcHSxfoOElc4rQIrTpmVaoWdFczVRX55/UihYDYbUKtRi+UkqdPKtIC73DlRTMSp4yl5P99Cb8SNUB5odAVK2O9coURVi0Us1AeJm4qjskhDDlN9Mt8Fu4JH4t8IOHIrJpb/0QAwCPmBEo1dKA6RBfCh5ChuihXxfNURR7MjEEC5FrpFQL6Sm+PceKVvFcLPpHmJiCk/Ut1XL1GqdQFFq64QtkPjFf4O18l3lssEXp1zOOI7vtls3lOet0RhAoJTPmPSHAql+TUoXQMebIMGZS2DPI3i4CJgMwI9DL+9ZWJxMGYpFHZRxgHLNXRxYhsi+QUpVKoQrUUAlRCBVS1yEpQoiTpwXQYuBZKcVeJyqxMS+nXVKJIVCk5b0WWtvCZHpeIXqNTKuRkKqlXooSJBA97DV7JEgItsEIk9FbAAWLG9LCat9kbrgsirEqwBgqKVWP1BqmYFWkUisSmYG+BsRNOz5O0aatg0qts6EQgqcHlRyUGO2+RhFyLkQEohPiPJuptfizazV9W1+ltPJt28a+6cXOb1r3ft/VyVpMLkkoOSNBiOHqulkej4wRqGoEjRpYAB8L74vlwjEGpItWK/WNGYIQPSWQbDeltnwVA/xCCJ6XxTmvYq5CKJWg0KU0hVoGDgVCUMbRWGoT4v1BOZaDVVZRGNntdlxcnHO6uk8X1+S8p9TKsN9TaiHESIhrR3uhi1uCHCDaU9lN3u8qRbTdF793lStpQa1KLpVxrGYEiiHPk7Fb5OCluCFIEAwqIMREkoBIoKiF16KBmgvFa+eqSkeCMIOlVYSsOJimTltugBnTAg8xkpJ71RqQUMmaKTlTa6Xruvl2OhhGbKQfg96Wxml5qN+PWnSm/NaGVRRGv2ldlwyDEiP7QHByVSUGo1+3dMOA4theHSVMkU+jCIu0644WjTV8agyEmA1jypC01TtatGFGoCyMgIh45FUWl7mkAYsbqegZ0HyNLbpohC0zRIEYPnirPzJGwBZ1uLK4G7LZCDKC5agSAqFaGCsYUGiexWxgLjOhZcqhCEgrLYnd8DCBUy3vnDfYw8fDIfkVMGzpijyEU1VKLuzrlsvLc1b9PVJM7IdL83y5EkOi6yOIEgmgCbRHc6SWgPo1TM7+ofNqwGbLwbXg1FGoGcqEh8zhMR4RUMVS+KLolJ+L4wI6h+d61Zs+zBNYekoztDoZW8SowlciGPfedbbS7o3nD1WZz3lK5zylUL/j2sAZpu+zvMYJC2kVoDlNVIw/UKXMUZ8E8/DLZ9z+04ZjgAQhqBmBlIwO3XoPpvf0dVGKPZ/i5WWVBU5jltUdm92n+hCk0VKTKR2d0sD5+VsK0UDaxQ2bc0Zb1e+zptvxyBiB6jlRM32GKrc8bwmGYDXuKG6tLU1IKXqYqIRsII1KJQTj25uVdkqm4GFcC7UXcI3OlNWl11164mXINt1bZV5Aal7IsIBK2JyRYodQuezXGNGlY706QsLaNky03gCtgVyEcbSwNKBg6blvFvX75bz64os7q1Gqi5CzMmZDuo0mK9OGqEUnKnFVQ89FDI0WgtmhtonUvIp5u6sf/iQQx22WZdMYA10PoQS0LkNru5bqoVqLsOe1O6cN03rgvQahnZ8sn4HOprjV+e1nDddxVqgbi6zNAOBrwsJs2xEzkUxrM3bN4Fk0qEHoa6J4ib8U0GKpjdaCRTwOLmc/sxYxVavyBDHnlbqElkBxoyPL65yeuF4xDstnVJe4QaNsN7LZFMl98N57JIyA5T9utYNdXDDS3ZxtT+UQB6O8666lCDFZJSEUJQRDg/H80qIAy9fbxi6lGsUmPLSpF4ZoYZMXnozJOi9rsrr4i7mePlJrZre/JKUOyHSpRySR0gGCUUlbigIG7o1DYRwKsZ8fvRkmjwx8MdsCs/tWslBGa9gZR7VUYKjkrNbk0z63RVvnph/x0pYESHWOApoBUAdI7ePqs2sgVXBPB0pKFgXE6B5fLbSeauGNmixYeF8XwCEzTmPw4FWg0Z5R60dYRAoqVzbFw/+uDSReREZzCdMiAAnSAn17rJXJgJgjMsMTo6WeXa+EbI1s1YHTUvxeiqAloAUzxqpI6ghepQkCGo092HcRzTBKvnpdvpbUHUHzOOqbpnU3Vq1osY7HqYTpKa7l1z/EAvBIGQELS1tKUFWJhr3Q6sITuD+hwRa+WvgZQJvH8Q9L6K5s/mZBrW4uFGlRx5X7/JAJWBgB5h/M1nj+GvWHogUmItFAzls2u0KURJCOvi+sujXr9ZrVugetDhgODMPAMIz0QSfjImFGqGu1ikPJZgRKwckuSs3COCjjUBnGShktLKWI3eOiU9qQS4t8bHdMQGmLAMAXmXcLLjHQdh/Un4Z48c5xFNxoWdlbrhgPrdb8JbjD8tdtgF9r9OGKAXCjK2EK0VEzHtN9X2AA07+bIWgRxuL5+oOd7vEU808pyYzWg0zPYIpKJVoUpWZspwhGm8F2urUDfFE8V8ciAEsthLoK5MHLmIv70QwBizRg6fRbpadUY38uGa4PNw69X4rbjkfCCICDSCIEVaIvkFzqjLrKHA20XAjmXH25acVR+uV3bAFMcabVfUW8NOO3oeWWtIWxxAjm5pHp/Zc3ttGG3YM2bn4EawkOlVoGlEIIioyJ3X7HetjRjx21wnZ3yXZ/yTBsGMeB0FUiatU6r+kTGn+hehVAyRnyCHkQNwKVYSiMg3mplg7UUq2mXb01uLR6vjpKbRumGbErJdHJdWMR1wKn0Krmbfw5hYCVF6uTrpjD0eaVJ2+oTCXM1hCk1ViM01OePJ69RyMx2WZpEcICAJw8/nujqIaJLptwbHN7arB45lUb69RpxLizCIt1J0KdMKh2LCpRlpC7l/aIUYQYk/MDArUIQ8rOgHwov5+gjxbT+x6ohhVZSbIQ6uzcHjYEV6LW9zkeCSPQIoGwCFukQgllEm4Iwfn6rW6vipWYDLWdboCHmkijFM/AnfE92qKxEPBhMLJt8IctaZBw5WaqKnFa2Q9dkOe+RndtLD/jczfcIufCbrfl8rJzwKmw3Z1xeXnGMF5SaqZkW3g1yky+cYCr1kZZVWO8jco4mhEYxlYZKNQsiIelZgDUN7+BUeoAoQiOKM/rbybGzAY3iJVAG7V65laEybuKX3sLXSYQ0H465/tOBGpGAW3VGjfDfn8nxBtQj45mwzQbkiUxrKUBLcwXxPUH6nQtMybgm3jCh2R+31rJ2ajqJrHQdC7aPWuCLlbKDAgSIzEmuhhJ0ct9mn1Pt+pIIAZBQ6BmISXb4C39aX0Q0xpceLmWDsz33zompxTIDcDcPfsvgRHAjcB8pQba5FwmGrBtVpnCHtTbSxc3oxTP4dyrWJ25TFazNeeIW+f291dv0GwQrhJ0Zg8xGwIWqYE/RP/ZRGByY6VaCJImjKK4EQAxIQlG9sMFl5en5LJDNVNrsG7JYmxHbVGK6lQGK7lO0UAzAjlbG2zJFS3B8sNWRSgNNQ8e+cgUEjePyiICmJtpLL0y3oQRixTjDMRoC25S7FnsJ9F2T5Wpz2MKoiyFMK9tgFtL2pshaNoA898whxDMqcB8vnNE0EBeguNB0zmoBzVTImDrYU4SJuNXtYKnTbEB1hr9MpUgOhuAYFyOFDv6lOi7jpSMj9HWIGI8iaYtQImUEaKXEaf1tVxbDvJd3cYt/XBcR+dIoO2HH9Y5uDweDSMANEUlVaNiiHiLZUuK/AEtc58QdLKcqg0E08mjiYdOrjzCBPp5SUxFvKtsct648/iRDveP5uFVaNBFmPIXkOI5dS1u/ZMJe9TCPm/JObPbBVQHxnLJfjinlhFEJ1aeLe6WqzbPN1OizQCKlweFmp3q7CCUtLKcLpqdaKxGWPLz0Hkh2jtWJmDVc1gLi4VcWp9AoEavnvu9a+a8vYMZk3D1GvzcGkvT8nDbpKIW9s8e0SKW4B1Noo0wpGgNC1BsPn9lYZjaiVnhyH/OhEuYCfJ/+A5sr1erMQ6lWFXA0GvHpXSmBwev+6cYSDGSUiQmoAYDblGLbKMQU7CW4pCMUBRYGIH5/qnnA0tuxxwBORjYgNalc2oRBVcd1/sdj4wRkCkE9LA0WpeghWARY0TZDanTIlKDuQVQmUpmVgf3DUDbNJ6nV7BWXFveJQg1RIiN6//eDq5lCWz5EVSoozXXBBexqBghp2iGYCFgcAdnuh1eqsoGtuVxYEcBzVQGSh3AySfibb+qQikBya1xpa3stkyap4uo4wXGgLQoRERslWI3w30cjh9by3GwBa5TWExj3binBfXSgmLPYtpfqtRirbq0HBtj05Wi1OyLFbsfWlqOj384A7PhONPz9fC4/S5twzZAUKdyozZRjmqcQvVqhUSFaCo+FDUUHTx8tmcRFEKay4TRUfuYvCIwsQHtGdbsEEiIBrLmbNfvqKBKgRCRqEiCSGDV9+zLCKFgBDYnpUklJIgdpA5ShLFUqobJSLeIyW/1FAUFnLLd1mTDLmRmcBqWsHim73P8/20EROQ54H8JPGm3hv9EVf8nIvI/AP5t4B3/1b+ppi3wwa+lflOnC2yPHmdz2bebWk5wqqRRvRWtxZZPmZliDWwK3mJquVPxXF0nwCWL17VTZ5u0WDPvw0fTGLxSrkIoVO9MK4Ro6UfOmbEMEIrxExriXNSYca1mX43FlstAkIrEal6bYAvTu+5U1UVNPBxvpCesHCohEEOkSII6TsSeIHMa1IRXq9gmpFTvJjTHRhTbLC3n9bAaBxPVww+t2ZpwVFwxxyKVmg3v12DkLQnGXLQKxozYtxIdGPeudT3KFLHMqjp2j5UqSnHvVhsHfxlBVEVp5R3cMwc06RREBg3WRzBYs5ogjpMUI6BhrNOQoOsjq5XpBlbN7ogcbPYejVygi8EM/qiMo9OpgaKD3ccQETcooU/oLiOpUCWj0plWg2ZCDMSkpGQGKIvjJL5xJw6DbwStTfxmUWEpDbxcCNayDBx+AkYAyMC/p6r/VEROgH8iIn/Pf/Yfqep/8Cd5seAPuf3fnqd6fimIN7JMh8QpcqstzJ8WWmV2M+IUdV/UMkVy0wKzGnqhFPNiEzjT3kquagzOeVs0voE4mq1OwS32gVbDAFr4HnSRnzdjZb/XwDRFUIlUEZaNK/bezWMyX0QDqQgeIkMr+4nghCNPjVpKNBk5P7GgC3SLKa0B8zLT7zpnXsTzY9Uppy/uqasYSSjEZngbD6Bt/rY6G8biVRs12rJU99Kt1NeeUfuzYr87UYO9DOkh3rTpLX0JzV5iSk/qBlimlLF9tBQnpUDqI12fJuqztq6+ZvyrpXihinEE3MhN90mqc7CLlagTxE5IKhZxNgFZ38GV7NGD3dvlYb83E9dgPofpsSweafu1uawu/MQiAVX9AfAD//e5iPweJjX+Yx2CeRG8HNZov4GAChZ2OzJt/2+b0+WhJxZd9bxZp7x5GUWg5vFLmVldIVWTN1vcr2WV4KoBsK9rMcGKSnFtw7LIx42NF4NS3biweI0rCjatjZrWkBMRuapwK++TU9vRKNOLzW+OCLDmlSBWCSAEaF11LjA6GYtgqUErg1kkKdO1mnFpmIC9Z62VQqWok2UwBmcoc9XFgjtv/PHkpRl6swJMlQtpm7PY/amqJnDi51OK6QHU2jAQpWgjjgWCq/mIlylDCt6OHL10KFAKuZgK7/IIYszTLiVSSl7aVcowOlbVDLfZTvE289FbkBujsFWyQjNAYmXYro8QlJjiJHlvFar6nrX1QUcz8lZxmSPetntm882cJrrc2QcdfyqYgIi8CHwG+MfAF4G/LiL/FvDrWLRw/499DXuhyUKKCBrU5aMNgAneAixtlVNBs2/+eSHNJTRLISZ6re+aK2pFYh13pRRkVGLABS1nivCy3gpcNQIutAHVOxczuWaKVnBqagmVIJWaqoWlbgAmbGEqV9nWkFnQ3o15q0M7ULZcMLTEwD21mFBprObZRQIpRDOiCjlar4K6RzdRCyuBxWRU1xBtIdc6L6jZ4LRzDTQxlqwmtZWrp1JFFovODdvyYS+iAlWLjGo21ltQy9F1kb4tI4iqBXyeghGllFxlouAagu8NQEHoUnCZNk/nqqBZKG5g7XQ8YBYzbiH6R7Bor4Y81flrNXESY+sVZ2sWKuoG1O6heEoUopcXo7Dqe5Bq8uMxEBCKehNX28wt4lXh6k1b3L5FetgIUcs7vEwfwkOG4f2OH9sIiMgx8H8A/juqeiYi/zHwtzB79reA/xD4a+/zd9PcgbSeJX7FtfGk9bhHZwEan9gQYg9bW9tmbWFe8wxFZyad56TtZvm7AG4I/AHkbPkx0QAKWcg42e8uSzctJFXEIwq0OICVyVrMCAQLn4MUMwIW6y7wgLb4FkSVxmNnuQENCW/o8aSX4D9rSj1IdQYlVzxACoZLqEIY1YBWsc2vnl+kJC6HLe8rXzVfvxkqw2hcwESt4y1XiwjaM5yqCmLYTDNykxFlJjGVsVh+rla1aemSQRSL0Fah4u3Hat2SRYVKIJiHcPaoefYYzImggRoN9oixTqnkdI/dFDy0SGmA/Nw/IdZtWOz9qTOJKUjw++fRUBQ3AN7pukoolZTaOckcTU6lW7gSirZUd/llaZHcohImDTpszuOHhBMPHT+WERCRDjMA/ytV/T8CqOpbi5//p8Dfeb+/1cXcgYNrvao/tLb42kYP0UAvqQ6xL8Iu8U6Lkot5/+ybPxtwU7NOZcPi7EMmgkg7j7nW2jyb1JmbYKkJDaS4Gq6pPzhxbcBqlYL20YxAFqOMVq9FlrI0AhWR+J58WcWxDJnWPs0xzx1xy2jBNn/1Fl0SWM95tN78YM08tijtPoQ4G5EYTa4tppmY1aIgmMFQqoF0Eoy2nMdCwa67tt8ritQ5qmuphz3bpg5t9N+aFR2rVUtytk0QWpXAN2ZkMo5TCL1AN+aKjlJrZJIHVzeFrW2ceY3hf9texD7583MCTivTaru2xX1o96LRoUWCpyNCiNWMQcTup0cDfZ+oFNMBkPl1JrGWqp5S2hEW23paG14OrK1duB0xzBWM+X9elVInyr3/8eNUBwT4nwG/p6r/48X3n3K8AODfBH77T/i65vk9pLJe9bgARvCmISOtVKm0XvkpCvDwsrTIIDcWlW8oAVkIXRhQ5GFWbphDm4EAi1XiOT3T17ZBxUG51khSydUGe6hHAkUqxXPEZniWdV2tSnUQyB0MFPVzsfJbCBWQiR8/nYfTeGOyc2mL3mircUqpqEqOtoERIY5WnhMJJA+BY8MGFpulHVNLcbX6ScmFMlYX+jVvaCbDjNOMB9h5WyQQ3APaRq3e6WivVQhVCWl+3mbgHNoMYapgqBo2QHumOpcN23MIDYQVhXq1xHvFUU77q1GmW9dhnSb/tD+wlGH24vbesohgfe22Kkk0AxuTTccqnrooLVWtXvVyFudEXV8agKsB/dzMNUeR9jsyf3aAsQnkSliA6g8dP04k8EXgrwK/JSK/4d/7m8BfEZGf8qv4I+Df/eNeaJFu8nCHYJDg1jvMuaR/bZvaOg2ql5pqbZ6/pQPOn+fqYgneiNK0CmzBWhmvedb5ozHTWknKTlb84QeHYNrFmLz3tANcucfRbllGHi0dcAMVFiBm6z+YaM2zBwVDx69UCKIRaSJGogpixCSZ7p9FFi28thq6UJ3uG1MTWgHX2KClpoAZuWqNSkbisoWYs0IQNNritwU+G4C5oaYyh1MLok+r3Y+VOhonoYqJdM7rAc+vHfyr/sy1UcHrTDV2D22zBJhKvlZGs9Bb85J63hbhZFHNvi8lxbAowRFRu18S5q5d8bZgT2ObgE1wgxpiiwashOz0p7kJbBnZPZwKfMDRokkRtciirYMWBXiEV0ulSJnA9Pc7fpzqwD/g/RGHH3nWwHsPxzPdADSDIMHKXw2QktCEKqZgeNqcOllUpvy5tpXoXrhRWM3bwxTvq3kDMwLeq6Cto8wX7dS1Bo2a3EA3FudSi60QQdHo3KVqdfRJ7MKNc22IfiPReJ45VxPwz/Z6DTNQjwJwyx+ShSZao1FTJ3zBN2eLPLCyG35elss2D42nQC3sXoSjyiTRhYtrqkMpEm0hhhB8g6rLnFvVoIFytnbC9Ho4oGvgoIFdGo0r3tZAcIMVghAI1KCTASixOYZWJ2/3Vi1NKy605fX9mo29qe3+2g3xv50bjHTpCSYQtvVMiO3qBVNvbipyynhoxgsrCwa1CMEZj8uoUb2RaxZHmT35w/ujGVZ1HlcIeAv3onejeTxw1edK/QlFAj+BY17gk2cF37nCHPos/r3I7duNnTf/VSTd1IZl8ffLTkN73Vp94EVj+AWQ6rmtRwBzqCbTopHFA5yMRrUHZFSABSB2JXRt142nAjqHpbSww0DRoE32vDmxxb1ylRxboBBl1pWbuiwr4ClDEsyD+zXFaCu/OubS/s6MbbW3qkawyaN5b7MQioRoys/SNO9847Qylnr1ZpH+TFFdxdD+UqbIQxdemQVGNBn/RgPJOqnyGJ13yoQ96jJPGAhWxcnqY9oqV1ICsb9BmBrWFi+2XB52t9vkouiRntomb0n5XOGCVrJVv4dTHcfbgNWvRXWR4r3fzmj2yn/vij5Cq3a1fGzaFqZALXXuKXi/45ExAqotTJzBl1oMCKxSiZIwWq9dUPS8UZCJIGQof7FhEtk2Xs6Nzgm2+T1UayqyYdER54xE1Ik7wUL75rjsROcsraW703Ori4fRwmEgS6HrZs/YohArY5r0VFXPYXWk1IGiIxILEn1WTmgcgdb/H6fNPQNlxUU9oZbCmAspmpYe3nAl0QwEIRKiuGgIdhHBOO/N4whC16/QahOhldHq4sNIGXzqTooWDnez0QCBas3AFjkUbxADCFM+q0XRrOhYqENBiw9j9fRnGeKGACF5RKBi2IDLuZdsU3hbKlCx8JwQvDpkIXfJOn1d965E697aXtu+KLUyjqNNyK4mCy7BKhw2ZSjZPAlVSnDlIm8kQowHoJ6itGcz5tHBRk/3RgOxVWEcC+Po+IBWdLpyBzJ9jZfaGsOUasOoqU6VralaSVjFjLsbIHyNjvv3aNhPx6NhBHxjSwvdnXqmQR2UASVPRgBpwFJcWFz3iCq0ttLldNzFm03W+b2Vgqu/u/x68ryq0yYX/50WVs6AoVkQ1WI9354KVFUrYzV/NZ2eGz1He6tPB7JFamUpj0qZwA3m61YNjisEkkcKXrBcgKGKSYj53znLNihUWkTAnLa7sTOQ0FGPJtXurcjiEVWNTIpFlpa3iGfmQlSX3LKS2IyLUCqabUOKv990c0MjMLWy46xuLALaGZYhoU5z/Vqub6Qg8YEgTfWnSbK9NxKYeBYTf909epOkAwLRSVxOwnHnnz01qmolY5zq3jQE23OqPti01haVyNTzcDXssAf9cCAyk+FoHDm/Zge2UcvNGvwScAOiXGHbPnQ8EkZAFR/PrMY0K4o68Nc636hzY0/quvmhoa41OIdC5qHdEDCHliLNfzN9/d5DrnxuG3W5WdubKEzgTIsgZyPgHXE+GLWRQWoDIifcwl+utvRzUY6bWmbbOVxNZ5ZfB/fKUWZOeaUYoi60EGW+NGmvwRxNTNhDw1gWNOTpugX19ATsOqZNXSqSsYU4xarFvKlTiNu3W5mTrKhBAcRmnKIQkhBSICSxcme0XwjJB5GKEjOkFElRGcaR1kJsHtLDZlf1qVPlaI72pvX30KO3QClM+b9oiw59opQl+tPakuqkITKSM9Xqs1NqYAA3ZFdTLlmp3vVpOgxuZJtDep91+TCOOZ24PvRzr5hMmIC20XYffDwaRgDL1TRXchQLp6SSoo0rbzPla7HGiZjcyzaHEeQhGqZZPsMD/U55qDbvVmih5nzM3q0pFLebO4trNm/j+V3jtYs9UPyhWgjgBgDQPHMVrFbuHsDX4wT4uKExIojbgYa4w0TnbQBeIxGJJCvzTaPSAkiZ4HlBXFUYXyDt99rd8OaYKT9dAqzzObYop+E0VRRxLQfJBsbZwE21kGb68GfohmCSK2upiJgDDa4XmZJTfjtBejcEycL2QLTsJVmDVkwKDAb4VQuhjczgpWLVqTLQqkf+uGlp9HIdNDnvlJzg5NGfcfyiB+tGuEKNk0Ip1JqxTsmCaprvl6/xYRzNGWTQErAReQ58y1VDMHGkJj6BTs9lume0tdAiAV+HYtGTVp9d8C+DEUCdBlktXzQ9qqYlZ6Gk5XKFECL9QWcP3BHZ4P3bpihczAvq7LXbY5g+mkFoh3sgY94t9QgXdeXpVJvpna2sBOs5mJ/CwhH677YeBRHLpbU25Re7/ipKkCYNpZOmQpWri6HWFvngBmCOBFLqvMynVCJCpjKii1D8vbd+Dp8mQ1QbWj2DrDNy7aG+17QFm8MnUY2rP+0oS0fU4/yraddsm5sBCGKsxa6LJr7aJ1In0AkkIfQy1d/Bo/agLkFvF9AakazfYMkLqJO0WmmbqC2MFn20z8HZfSl42RQaSB28SQufJWlkIiFmGIpVTLTWCditKuRajUatlbFkx40iOlrEYhHgrNdgUMaVhdue1BwhLiIAwEuiOilESVCaMGrOeZIh+6Dj0TAC73Monu9O+XZjbylaC7W65juWJ9r452zAjbeGmpqPh2xOVLnSH74guLQQuuV/KBPib62q83m0E2ybIEyGorlVmbxq80jFJcCFJujJ4kNpyiatRKjglQlmDAOdAMv3HgETvvRav9iwlOpewvLkufpQirPTJvykTXDWqYRZmyFbpCiTMfCR71SLbMgGUgXf8Y1x2Ci0jSDUCDbCwsBhQhyrPtGvEqmzLr7YAT3QCZLE8wU7KZ1WiU6bRaY74a1W/uPQUhjaOHachdiijxl0lKkKMZehY3AzoMF1CIyzYtwFRZISijVqmaXyJVJNEJYCVJN7ExVvlXYQD2sWCyFM6kQt6mwRQQNvW9q0yIRb7xjTWDRR56/o9P0l/PF+x6NhBKQxA+chFhN/fSkI6blgdSNgLLrgIhDmQbquuFRTXbz8whC0leGLp1GJ/Tdn6nIzDXVeZHDVCOBeRjF0WFss1sqEvvkqlZKqtx1XmijIlTBP2+Z3z6U65aLm/f0t3co/nDi2aT4a3As3z65WixYn0LT3KsXLbBNnYQ7Vr0QCtWUUOt22SdCjNvBRQZyUUy28jQ0bk0CXoIaAhEJoMmfRyS5qI+m7rmPdJ/o+EZOQukDogQ5wXKBpEsqUmvlmgWmd4J67EbiCmNBLQ+9j8HsbxXpEIqQ4jyGP06AUmd+jAbH+v6Z3GMEA2QipiwQ1ElGMacIT1A2uUkwuT+ekopUmzHvLIhJhfj9tz3N+przPR2PEgk5OBmGiNf+w45EwAgL+EAIxeVjvlGEUH5bpZSBRz7kC6nmZDXCIdH1HSsXZWkIo5qnnPT5b2AnMY/m9ObyeW4gbKcd+d2kEgtd6a9DJw0yQg1trsyHO3CrFc/aZkqz+AJGW9duDq3jJ0M9tkr12IzY3FNnpeLl9Ps/GnPSSGM6BRxtJZWYtmvcvNBLPw6Kd88KbF2JLTaoWWh3cHJGRlpoxt5A6IgRyTouBKRbZBQJdTKy6ntWqo+sCEpSQQDrQpKYlm3SSG0PF5Q9mx9HaiMEiAXGnEqfn6E9HhEAzAr6Bk2n+xZgsPw/LdLBOKY4asjt51wC0pq2uTx5WCKvetAVt8tdM8S25upOx15v6DULraWgGoa0v3Oi0CI6reMBirU0ahr5Gp56XH+F4NIyAiD2EZAo/oeVjzhQkYnmhBJTiYWXBtP09ckgJ7ZR9mi16CcsN3N5r+dVsAFp+aBstvG/8pP6/6XNtoZov0PBQ9WDh6aszvGpoXIE5Alg25+CRQPPIIv590ckLtzZTYxBaQts2vMaA4M09xVKQkiuiV4dT5Kl9dREBaDOMV9OVlkOrzj+Dlir4AizzvY1ZicnaW1MMpNRbN2NeNE/55yiBVdfT9z2rvnM6RIFYkaTUqGhSanRDXYVGFY+52NizZENQ1WXNRL0lOCRX+7X7J6JIKQZmRoyVGCF1lk7OKlB2L0o1AMEIlMHBzRZit74B79wM0dZsl+jXHSFUQgfEbLhAu6fozPCT6KKlZXZMzUg8vP4e9v4Pf98j1gniqTqVgX9YKgCPiBFAhNBFLwl5NJAsNzcMxmSaqvgwCzw5UmY0PwYTBUnBOeZuURfdU+8xjCJTRDDV/hvZ5UoO4P9rTMD2ZZUr4fGsliPTZm1OaMn0mmrh7ZNvpKkdtDQr7q85x/a28MKif7w95Yqr7jhJJzPVlLXMrLQWCVhPfPs+U+4/KSEpNAGNCqAt5bETtkt3tlxr5PH6dHtdvNwXOwNuQ1SCj0pv49NiCPSdpQFdZ4NMtVZLaxx/M91Ds4iSLC+vKrOzSGHK58FTBldhkza+XjC5NfeyFglYTh9dnq2VmqeKiT+XIi7V5kbPqL7VVYvM68YkdKtE6hL9qkNihWjeuZIXubmvi5Z2Og+BxXvPac0c6elirbx3Vy+cD1PM45jVbAY+yBg8EkZAghBWEUkBTeK5peWxIkIKAl1Ea8DUpTpnbi17Bix3iynSrTrSOFI0YxNsA42pZ3vLWYeCZY9iII05vGYAwvyVmHexh+9ewDd6wXrGJaix5FodOLvyr4eUxTvFpr6BFgn4ppjKjWqb2Wr8bniQqUuvouBCqRLDlJ/aKvAuOzBO/ogz0xrWYLmplY6Yho9YHd1GddcAQqQRbKYGH9ybBotTp9IoLLyR57RiG7TrO/pVR7/yVK9UilOPrY8g+FDWRN9F+hQnikF1nKUGb7oS0wI0Oa5KDUL1aCF0gdhbdCDVREliNHAsdG5YmxJ1sTeYAMAUiF30DsrmOsUMkf/byFvmdCaKgZh6cBTjNKQ+0q0iqfM5jG6YTM6xJfkRJZIroJWgBRWTqLOU2BSNVPPUw2KRKcgyD5ghrPlYZDzg/uih6OCDjkfCCBBADgxVrb4K1EfqphgtVJtKX2LJIu69q3ovv1USUp/oD3v6mikmAzqPMPfNLgo1F2OARZnVV6a8PtDgJXNGFnJr9fHZud1rmxxs/S52Hjlnoy5nyNmfg8x5Ya3e3gnGoiv2cJVmSKyObN62VRK8s9wptTUXH2Nli6KWClKx0eT2SLVUajMC3pg0efHKRFZp04xMqLIgLkDScIgymqVQ1NpRHaBDFA0tGmMSi40Y0m8GYMXqoKfrLQowtNyMj6gQQiKmji51pJToYzRKsFr5tJrJcpnIQBEoMlIlN1IpGiuxj3TrREiuHKzzpgm9n2A2cpEWj6iohBgt6pxSgUbCYGrOMQUl344t+JJg4jNSXT48WhTQuwHolNSZUck1Mgw+jSnYpKlm5AmFQGZ0kdaYEil1PtzU5M+a1FwIJlXnGdl8NJ/V8KCHIoUrlPcPOB4NIwCNxu0dUC3MD1OpJsosuzSX62AydSJITOYZkjjCHMmDem22cSntb66AgLRuuUUc6GHUBNfVObTW4u/rKI49KAP8bAPFybDMDMWWWNvfKkzRxwQmNtlsDUysPJ2fafu8rBA22rJWJY/ZN3MwxZ2xTh53vqaFq2jpVDMyQJv3bml0S2/8fVp1JTCh8doMpy5efempBAu5oxuN2sq1Bu6lLhC74J5bbCZAma92PnPTjc4eCeGsQulcNKWPIGUyRogFwtJZ9NCEUmIJPnfAryHiacSCR6HLTs3ZAFzBl9SNgacD5idaTu+rxnNBi0CtBFhlXgcNc2hlW/XHIngqq+60ptcV3tNd+Mds8CsL5wOOR8YITBthgWRM5UL/3PLrsuBB2/dMnWcyGG7hU0podOagg2ziq3QmBcn0puIhrb+yf3jIXXD1m2KGANsMoTWuKNPwCZEWR/jLTYm3TmGzhbUtTDdE2/xTndRl2kZsqcfUxsyCmesvp6VSy0gM0dKUapJpM0FoiXPM12xfPrxKmpGdP1va5cW3MHsmFoYAaemAmbnWS28pr5d9q1CC+qaIxM4ivRSTofpX2JTNI+i0qdvphyCQbNaCxEgeMzWIG6NmNpSuT4ZdlEpIYtFZLS6w6jTrgBmo6ZbMGhPzvXj4/hioyVRSXrL+5nutixsjfn4Va2gyA1AmoHGqLwUzzCb7LlNbs4mqLBhoy/2yeJzv8yh/6PHoGIHF87ZvOGHDyyjiHhYvn82LW6eHJTJTiKNPgKlp/ptlGXDmJSx4uIqF4/6QpxhBcR04b3n1SMBIGSCL1564DiK442PqF53wACZv22gILSKojjPURYSijn0Yd6B9PZNAJk/dSnsqc4POw6vAUa+rJdH5d96PITl9byK32By9ECpl4SJFZjmttvknBePYFKOCYQoYNTemROo6Uox2bRkIVoqbALqFt5tiN8/nNSRijVZ+DK1MWWmkqdQZYcHo59HVhpLPCFjwQRzjmMzjw2Wl9xzvNa7NwcCiuuJsy/bf1ClbAC2TcVV/kI2xKFg1wtJJj5KizaNov6vUq4/3/QzBT9oIiMgfAecYBp9V9bMicgv43wEvYspC/3X9EdSGp6NZNdrFu8cOZhklhEVBvJFZnLXmN3+5yWO0/G2qAoQmStKMjIVbk34AuNZ+a8+1jaTFW0ZdFFKWEQTu/cRYY3GRbkh1OquX46ayG0xoM7I0BuLaMwHRMund12bofKVWnXHfqXSHktt7+GcaGNrMjGMiulgxEyLejEm7/kUXYIvCJv3HGIixkIMnPO71G+8/RibR0klkI7atoLQWQYn+EYLdK6+QaAvH0YWhunqvJZgEUtREPzYjoBYdeNhtYJ9M3rZ6mS+XPDd1La6T6doXAiKTo7m6UFXj7JWZ/Yj927oESxMQbQ1lTUPAKy/q3YiWglj0FGPwfhE/J1/bdt+jOxY7p9aevOzBuLKXfoTjTyMS+POq+u7i678B/H1V/fdF5G/41//dP/ZVdLEg7Rv+fbeeiytq3ru1ZTZSxyzUYWPBQ7BFaUwanXI9sylhki7Dt7Ra/Ycp61amEM2MhG1kr5kZ40znfDgIEIKVnPxVzDMtFti0F2dWocbmkbyBB0OVg1qaUGrLEWe/4xkFU9gpLZdvBqORUvDweokLPLw63vu9maHm9OFiz0JwvULf8DGLtXpECJ3Q9R1d76KlXqptd9HWqfgCp/VYOde+Ea48P3avHPAmpSkGmOXSPEpGFFJvIO+MTTgwGK3hp06bxp5BKMFB0eLDZ2YyVevJaC3c7X48fLSJzNUp15PxrRZZ1FIYnavRVK+04GpK1ZdYRVpLfLQRKYhNka5iZLSWCoToUawyAc0i9p4fuOP/BaUD/wbwFf/3/wL4z/jjjIBfQ5i+8EVS8RbUMD+MVk9fPJTGpptaP6Wx1Vz9JQJt0OUyJfAcThfn0Ag7lpo0c9RQ5yXLUCYv3RZrMyhXFukcr1/xtIq4t7aYtzqUaAi/AYNVA6XaeCxV6zpr/8b56+YtmiFwTMG9Z2j6C618SOUKIOjYxZVasrYFv0g5JjKRb8NGskmB0gXP0S307vuO1QpSD6mzMp3i8xo1uj1Wv04j74iOaKjG8feIS8BzCXvGFml7vUaCG6T2g0pKUBtPYDJ2/kwkEHV+jlox0lGu6KgILjfmDqWB0lM/CO9vBEotSImTMSnZ15YPXikLIzBrGeCTk9z1NHKQNy0FT6HqqOQKU3+LS6tpW/sixtL03pQr5dp2fBBO8NDx4xoBBf6fYnDv/1RNRvwJdbVhVf2BiDz+fn8oi7kD3UGiTXe98uJuAKwteGbxtTHZLDbVEu03PCAZCJMshJ/HVTFjB9IaNOQhIzBfnEyZY+OjL65B28+tPSVORgBmpV6dFlgrMjcMY9pYan35lgb6K06j2NtmNrfZqLOy3MzqzUDamoAcaJQw7962MRrgNF1mM5zzmLdpgWrLbT0S8l8PQWwKcQpEF/0MQc0IrCL9Ski9+kBPHPyyVKdioKX6fVXNVjKTOo02a0zCdrfNoCq4niO0+zBbKIk60Ybn67LPy+qPAKgQaoBQKRS7r8U6OdvYtfftHH3oqKXgXcTUUsnFnUtaqFyNTdnIZmBMrfE6G4BZKk/MGAQThSkFL3VUv+8Bm19ohkvmDjPa5phwlLaA/zkYgS+q6vd9o/89Efnqj/qHupw7cHPVaM9XLP/DqrztYSSLu2lQvnWrsWhAsnxWFHI01NijrMk4Ti2i7vEnj1jmc1ic7RXArzZ66nTvF8Bgi0Tay7SFSosG/Mkocz7fOsuWzUcqiMbZ009oon9UvLSltIEE1iykk8Z8kw6fowAzntru8JXFPQOA0kzb9F7qZVbmEDwwDdeoap12oTN2YNcFYlete1DM89c2Q1AtvakipsJDtlRO1JihdiGGkE+ErZYOeFXB2P9ms2s2ExzEO0bbMcXx01fLatC0BorMvAd0evTNsfyww5p2xDgX3gtRaiC4dkEeTQ6ssSNz9lShXo1YQ9u5U1kQT2nFPX67nIYzYdhYbQ+j/cJDO/6Hn/50/FhGQFW/75/fFpG/DXwOeEt89oCIPAW8/ce9jrzPv+ZQtzpZwxfBVL9lAnpa9thaP1WtIUnUQlSLBMqkPGslR6eJYrnXJMaJGVd0XuzioXF7aG2jtAc4C3O2MqE/mGbQ/KR04U6bgVBVF5CYPfyU/7rXxmcIioaZbqDV1Jegddd6i0FjR0YDD2szYMlBpIkaRWtGWphGGrPSJMtmlmXrZ6iOvZhhtGahiMxjzJIQUqsO+KKsXhKrlvYgYU71RIwGLJUi1oUn/mwl2n0MCl2XGGumloEQ49wdyWLD+EPQtoAWi2naz9IM/2zIbD6AzEbT194Uafq/G/o/ee1FN2UphVgCGphmJDYHZv+WK9hA8BSgHdP8RICqxBKIQTEFkuZ03DlMz691SVrlQK+UhBdb6o+JBn6c4SNHQFAbRnoE/CvA/xD4vwD/TeDf98//5x/h1QjqxIvWOtmcnN9EqJM3Bll839KDMGm52SuGIEiKrFa9bzIbcGFGwLrGkofLJvdlrZjG6Jwtc8CQ6zEPEwehViMFWY/D3H46fUy5KTSiiu/6KQXBDUZRJYZIih1jHkFtnn2pzepbqE5Z0o4qJSiU6r3u7q0JJEmo54/jOIKqCXTESK4WkDftwYCFwNipmQFomnqmsuLKRsWjFpfrrhP3EIk2ojt1QreKSGum81CoIeZavSHHc19844QgdCQEodaCBOiC0YwPVwdIjOzHgS6tkDyQhy0iEdFKzXnqwmtcgllpQGnoojQ+sxt1sMEpBBt0kjorGZaCG91m7GbgGZi7FpsS0GTjjJMRk00eyrkpGC0MQlHyWCzSVIUoVAkmJhOtEzZ2Bt6W0TphUxNdLQYeBpGpMoA6AzbYeYRObAZmLhOAWGuFyKxG9AHHjxMJPAH8bfeCCfhfq+r/XUR+Dfjfi8h/G/g28F/7UV5sWouqxr7yh9nKfzZNWD3vbRUBgKsCEO1o04dDCsSSSMWHPqgsBprI5KUDwUQuPAduHtKGd8yDUKdNLkz177nxA292mSO02TjYwgxRbPMgdCkBwqrrSKljHPYEtffc58YcWFg2P4cYTO+2MxNFY5zlatccY/A83r2HU3W7rjfqcy0ENe67mZC88BaOfrhHtbKVOtNNHYStU2oluLJTF+hW9nlSAJo0FgJNJFNUTGFH4jSCPIRAUCEQ6UgcHxxx8/oNnnr6KVLX8b0ffJ/T83NrLtRIHs0oUYRhHEidkY6mTsvJ+Hij1YLO2CLFeZ3MA0g1VCMO6SIKWGBOLJ6pTXRqa5YpHajVhjk0J9WG4NjMAybguZGRpnNxQFA9FPUs06oWVeeyKExrN0hExc5bqlDHYsIuC20OVaVYCPaBx48zfOSbwBvv8/27wC/9CV+MSRZc/OuWyoLjdepsq7lmD3MUsLzoCRERHwyZhFBsbJlhLL4wJrBM2q/PbzrtiubVw5x/tQVhIcZUC1yGodJIMkFAIiFEJEApmZQ6us6ZffjkVAkcrdZoVfb7gaiBOhZiFRKJLia6EDk8WPH4ndvcvnWT46NDhv2OBw/uc3q548Fmy3azQ4tt/D6tCAKlZiqmx2AlJ7uexoewo3VmhraDaV0Vhre0QnQFsaGa1nBonr1bJVYHHd06kbpiAqEEtLTw1ZqD6mipQYg2LLSTBBlW/YoXnn2Wl55/gaeffoo7t+5w+/YdYox8783v8/U/+gN+56u/xw/e3hJJILYWcs3kIc8iHjQDIHPKfGWxybShbTM3QxDRsJRDWzgJrn7dPqY6PkwdosZDkFnYNCt59OaxAk1OafIzNIfR1mzFxtybbqO22qNjSoIrGKVES3MEKEOhpIyquszeTC5XXUR873M8MozBWhZGYJL9kskyT4bAftmaXtS9SIhTrj5xBnyDN704rWlB4QWPf/1TQ5B1qlLoXOWHthgcvZ24wU6AcZRxjgKCeF3XRmYhpoorMVA1E4L1zZecSQI1j1SFLvUcHR+xvr22Ml8SDlcHnJwcc3JyxPHhmmtHRzz91FPcuf0YR0drht2Wd+/e5e6Dc37w7l3evXuP07NLHpyestnu2O1203DQcSjeZhGnDd62jnVKql9rcOOqxCBoFDSWqYQbgiv/RFBRYhfoV4l+bdWB0BlarxpMd08FqdYCTPEyXSlIMiGYJ27d4eOvf5yf/vQbvP7qqzz5xBOcHB6TUocqfPyjH+fjb32SO489zj/+J/8F33/zu1xuL4kabVy9P06tOnFmtEUEQSfjfLW0PEdvwbkdGmy6UYu43s8QXPGy7ZU9emyGQLg6F9PAQahZZmzBsYeW2zdDoFpQLDXJo3d3emkbNdRGonNcgk1gDiLsdG8pjjIZgXbetVbqYhT7w8cjYQRUjVjhO38yAlGi0Tk91JpD27qQU2LB7KrOC7cLbjmTKdjaYtfRp7lOAYNOH1NpzDJUPC+xrz0XNKaJG4bGeAviba6ei4q4ZHU0jYPgDyZF61uPFhEIyrrvqKVyeHDIjZPrvPbqqzz//POE2HF4cszR4RHXr59w4/p1rh0fcJA6Vn1nRBwxoZBSCpv9yJv3HvDgwSl375/yre98h6//wTf51re+xXZvwhhZnTwjglY3Am0jeCeDYSYWuSggsRgAWTPDEInFmrP6VSQku97YCf06knohdrhhDFPVQlvzVca4AqVCNUmxp+88xRc+83m+/IVf4MXnnmfV9axXq2kICgKpP+Klp1/k6MtHXD++zj/8x/+A3/nq77DZn1Or0h/0oOqVAqcJaYvz7Dlal6elNjDZfwfcmiMp2KQgne7LBxkAG7fmz9tMtheCnPDU0gEfFpJzRUr014Km5NxeezYChkUUb0l3AQ1arcQMViLESJeCjzkPPpHb1n0zAg2/KqWQH3UjgGLz7WTO31QaSGUlOWorCjV2F3Pk7o+01EopnvMGwGfTSyNiaLDylHO2YVEUmhxEmF/TF4AK0EQr1CMAkZnuGlqq4C8UMCOQgk8EhpgSIQpd1xFDpOZipR6Uk6NDXnzhBb70+S/xU596g5s3b6AEuv7AAEwX5UhRSQ7g1TxQipNsOuHkqOP69dvkUhkzvHv/Pv/st3+T/88//Id845vfYKx7Vv0KcTnwkp2XPnnESvButRQ7QogGXoWKloDUga6LVGyz92szZlUqKQX6VXRykN/CIJN+guXD6h2YFVFhvVrz9J2n+KVf+EV+8ee/wvNPPc8qdUbKCoFhP9i5dEbGSSHyzJ2n+coXvsLNm4+x34/8l7/xa0gM9LFnqHsL8twQV1qnpqJi3ZTBOVaNCCTItMGm/xbYwcMfE9XcP2oIBOeVNOR+itz9ui0SsA0tuZHa8LkIMmNgbe0wV7LMWBqu0ajoSaIpa6dElyKpT8QQGbpMzjZlqOklFh92knPmA8SygEfECChNjhuW7CeNbhBqNaaUNILJ4g+bPVbr0x9zplbLEVNyC+4dXDUGfxAPvXmrJXvaYaFey91Cq+dYmQ5rRaWJUkRHiqdIgDkliIFAnNqazWAoqUsMOTMOAyfXj/jcz3yWr/y5r/D6K69x89pNDtcH5AoqNlVY62hlsNHko0MQdCyUYbCqRozEVeKoP6Bi2os3rt3k6PCIGBO5ZP7w29+kWyU0mH6AKRFZdBVQ1PNjI1p1xNDZ9UTbwGhH3/dIqqQO+lUyDT2nZnddsK+lzs9PmcaO57FSB4EiHB4c8fzTz/OX/pVf4Re/9BWeuvUkic6FPywvT5JAlXEzUkXo1wkpkWtH1/nMGz/Dd779bb75jW9wtrlvZCufdegUitk/N03GYGGxeXL3yMgUxtOem8zpX8MMoIFtV42Acfwb8UenNGpKD7TRiZ0nUeZtOEcRs+FBmCIBrV7SViEFcwIikS5GUjQ9xC4GUogWFXTdZARSSlO0UkqZvtYPMAOPhBGgpQMiTjPFNqAndo0T0PK5ltvZ/m2ItVJyJo8jpWYPl5mFI2XepFWVRi6b2XM67+DlRwsHWxPMlBp47hxc2kpanEJzG4Y4i7p4RbJoQEwDsJbMzRs3+Nmf/hm+8uU/xyc/8jFOjk4MQKxqUUKKDliKU13tbykVxurz+wpZMqUIiR4NkGsldT1P3H6cz7zxGd69d5eL7QWXu3OGMgCLkiaOEfjXMVqlIsVuRpclQ43oqiepzR1c9Y0cZMbAgEAHtByEqrWSSyGPNh+SUYh03Ll1h6/8/Ff48s9/mSduP4nk4CIyMA4DUQL9ajVNQA4pIVnMM8bAyeE1fu6zX+DNt3/Af/4P/j5n2zOKT91t5M8qtj6yWlm0eu5fm9Zgwz4Ik9pywwKWRqCtN7liGGyzmxEA1exiuE3yXRBpsx7MIKAWFTQMYDl8VFoEjDoXzAyBWLGCGAJdsNprilbujY5jBAlExCLFZNu5pS0thZ7xgUfZCACN494A6ybnZJRbB3gWwJU666J6R5YZEh/YWDP4lNwQra00yPw+Wj2HozHRWLQwt1slV85vAgavxIdzuXAi9GEhJ1EwrS41XTxvbU4horly5/Zj/PSnP8OXv/gLfOy1j7DqEgGl7zpELcyUFtJOoa1HRTUT1Ki1uY42gitDLx0SO4iREgqh63jizhN8+lOf5gfv/IDf+/rvMWxHv68W3cyqyxDE+AopdqTUz5ug7qjRKgAJJXSV1CndOpB6iwAk2iQeU+7xpqA6C6DWXJEcWK1XfPS1j/Clz3+RJ24/juaK1GhzKHNBx0oVZSh7Gqum5swuZ4iRdHiAjpWXn3uJv/gXfoWLi/v82m/8Gqfb0+neK3hE0GTTDBOpwTv1ZGaACnXSUmxzAHSx4SfHs4gAzLkYn8OwTml2f8KpWp4ffFE0vACY9BwtFmgIf3sKztR0PCVIJIbkSttxMWSn6RfY0ajyy+pAKY6NLUDC9zseCSPQwsbJ8Yo/zEVD37wpFyGV6nxzq1J9sdXi7butod+JJFNrGrYB1OmnPkdo6umXRVg//e2EogU0hqlK0BZLmytZUIpAjWJ6eiFA8t9XY9et1wd87mc+y1/8C7/Cs08+w8nhMZ1EH8xp3k6qUvaeBmhGdGQWKTSCUZ86NI8MTpwZdnuUgcPja6AwDiP9uufll17ho69/nG9/73tsdoN5rjob3UYPFq+02KJLBn4VqNFAwIRHOMkUfrsV9GtTBSpYylYm2nNTK3L9hSJoVq4fnfC5z/wsLzz7HBOVWRuZxthxwzB4KdXEZ3Me2Y8j64O1pUZRWB+u+MSrr1H/tf8qw27Lr/6zX2eTtxZxO440KUFXBam0oaaKTjL2Rqppt7UZRn/uLfKb0lT/W3EZcp921SrFEpmmk8nCILQQ8Sr/ACplsZoFNCI1EWrnKIAiISKhI4TOIraJrDRvlgpT9DIN3/F/t2jgXwIjoAy70dNuCzElBEpVootPpBgdmFNjrZWZ2yviDRxjcUktC3GpiWlnOyCUYof00ctVtmlNyCNBsNwxtsXRMgIgdBENpgPXi+VYKRiKXrGOskwlB2PzjVUpKZBiMkMgAR0KQSuf+fSn+OUv/3leeuZ5EkKn3g+RIpRMLZlaI1oCY95B2RIYiOJdAFXQkNzzBR+PnSEPKIFSRnrpnH0C10+u8/KLr/H47d/lnXdPbRxXHhn2A8MwTt2UpnwjJv4ZOwShSCXGQHcQbYMFPBKo9GuhW1kaNw1LyYpK4PDwGjkqMuy4LBkdMgzw8nMv89k3PkMXApozJcO+VMhKHgfKODAOe8ZhRwiBlITVqudonUipIPmScTsybCOrk0M+8dpH+Ytf/gt8/9vf4evf+xZjHdA+MUol10wfvBFJzQipo+QaXdRZFi3GrQIgESERaqGUEWenUMlozUZtDpFSdkQJJorSBTMAYrZaPHRTzdQ8GltQG7/BuAAFtTWjCWoihY6OHolrNBZyyki0IagqNuS0qKUvlu6GKe3M+71hZsk2exNqHctIrpn6Q9hCj4gRgGwSrJZbitNVlzVdD5gsaiiTJ0O9O83zR1rfexvzVMH6/huiHxGN3tCis9JPFMBrsghLPLCRjqrXzK30KIhG4zG44SKYgGSu2aIFbNrNmAtdEk4Oj/jMRz/BL/7Cl3nl2Rc4SB1RovWQF2ecTW2tvfUKlIyWHZU9MQhIAo0MoxlNUiCtV6Yo7BN4cx5JtSASjSodE88+/Tyf+vgbvPnmu3zzD79JySO1Vsb9YEM3REipdwpzIoVk7kwzVSyNsb73TOoh9pBWlZC8Gag0j2mW8/JyRy8HHK6PycdwtjnnxmPX+fLP/wLXD0/I+4GYxLx/LuCGaRz3lLxnGHfUOlJr5sa1E2I4ZDdc0GHGY1Bld3nGtSfu8KnXPsIvf/kXufd//T9x9vb3kJhIvRGjalacJjbX9Ru5WFpSaD83OncjeAlBqgGtCrR5F36JJnibkeDU8d6qKYog2aMC70UQXHeChsEAoVruj5D9WUUCoh1Re6IUQsy2BlpdTIzOHKq4PIR5uKhK0YwRnZwrg4PqTu2OSfigIuEjYQTAAT5VyymlkBqO4UXfCRtoajA+/FFD28x1qg0vXnXKvcTzwElSyicHEasDbg200elBSeMLBbG83lmARjMzWm7GlGXTKgGVWCuhKrEagKe10KWOJ249xqdefJVf/MKX+MRHP8rRak1UoyQFsA2Qs3XcqdmkGGwTNnVTVbVoQWAYBkKf6A46Vn1g3GfGvS36MY/EcSRKpEigauH6yQ3e+OQbvPnmO9x95y53775tRmAY0c4ipyBC33V0qSelzu+ToiRKjAQSEgtppaTeOgXFqcFS59o6KjZtJwlJEreu36Qfez7xysf43E//DGTTga6jtdeqT6QuJVPKSK2FXDIl7zk7fUDNe2q9zrDdsI6JiFHHL/Z7ihau37nNL3z+i/zW73+Nt+7fY5ML9Mk8aM3zzIW24ad0T6bzh5YpylSy0wb2NLHW9hqu9xDEBuaEaJiPkcECEr28HRIxFELsiLFY+7IfVkWVKYoqzg0wdatAm2VAUyOaPnxYTAk0RZuqYs5D5j6HZvBCMgOQ+sjwAWbgETECOv1XHRkvreTj+X4rIdq0G8v/S80IQo1mz40S6xYwqE/6bUbAef4hOt7QLEagGQkCEyA3K4a69+9843sN3OrgylAKqVuZwciZUAopFxgLMo6kmHj61m0+/8ZP84tf+CKvPf8yfUqehArjsCXEnjyO7PeDNfmEYO8ZI1ps1DVaDN6ohaqRXCodgdStibEikil1RPPAmAthGOhCh0ZDyLu+48XnnufPffFLPLh/j3/4j/4BDx7cYxisHr/qEymaAei7jq7r3KgqkJCYgI6QzACs1orKQFUj6GibmYU9gpPjE1a6Yr/Zcf3wBk++cIdf+MLP8/QTT7LbbChVGcYdIhGt0WXbMrWOaPFGJZT7D+5zeXGGoOw2lxx2Hb1YI82Diwu2456Vsyj/3Jd+ga/+4R/wje9/h7LLE65U6oLeq+oswpZKypRSNgZoq/YYFOD4UWWqRlEjtRiVOwQhho4gHVYV8M2JeXckEUJ1fYR2h9Qboi23L9VEW0cpqGb7e5cx12znX4oRiUz/AOsZqBb9xiDONGzStfYegNGzvUT9QccjYQSsNBWNStrKS+79q1Yj/7RNW5nGlDf0s9TWfGG3wOSvZArlrWXUGmsCAWKgeE21zX9r4pat+1Ub8o8bgRT8NR09DhYqBDWFl1IHksDhakVW2A+ZrIFPvP5R/tW/9Jd4/eVXuH5wTBlGdruB48NDutWKFDvyZsduu2O336MIseuIkik6QB0NyPNIYCze5hs7QlrZhYmRoVarxJiVsVT2Y6bI3jTpJJLLhtT1vPTCi3zusz/L7331d/jBD77HMAx0XcdqvWa9XtN1vRGUUnJdvorWCKEDKYRYSMnGjCnWLOPaPHY/MQM77gYigT51JAl85lOf5uc++zNILnQIw34kSWTI2VIbBa0ZrcV4C6qs12uGYeDeu6ccHx0iWkm1sB/31AK5FuqlcP/uu9w5WvPFz3+B/+y/+P/y7bfeJKzXbIc9Y80sx68pMP3Pw/UQ7TmLq1HF0IA0IWJe2pSdmvNwHchkIYNK9OhAHB+aAtiJL9DGmIlYauDDFCbjUqoiwbTHQgiETuhXiRIx/oTYZ0pxfCK4sIzL6gVvThA7v5YACRYNpP4RBwYlCP2qJ+Q8DbicegFqI5DgC0WpQ6HkMoks+iMEcaZe06R3scsYXYE4halk07r/tHVv1TgrBYkbAbENr2E2AhLCbARCJBIJRYkVwjBSLreUyy03Vgd8+qd+mi9/+St85LVXWfUrgtdzQ1WG7ZayHQkq5P3AuN+TxxGJxgSTWtG6B4YpEii1UgzAIK7XVBW2uwzJUgfpEmm1ouxHExcZR6Q4qi2V/W6k63peeOY5nrh9h99Vo2ZHiRyu1qx7iwL61JNimpia6m2B6nVwmaIn95hTN509r5Irl5fn5JA5iUes1x2vvvgiN0+u2USWUtheXNCvex97Zm3FtWTbFR6E9b0RlErJbDYbDlYdWmB7ccF+GDk4OeFg3RNQxt2eW4/f5o2Pf4p/9Ov/JZf7PZ10jHVv+PHkgz3da58djJaAT7fGJkpJk/ryFmep0+aq1Xov1CdjV9cVaJoOY3buf3UpNW0NcLbrtah3UOLWwohwxddewKcqEYlZYQhULzfUhjGYACX4ZKYgjXq0xNLwOZSGi3zQ8UgYgSDB+v6DkKsBaq28ETR4U4bLM49QB6dVqk2ACVUMmQ1ME2Fi14zBPNswRl8K1YyAeiuARpm6C6UBKs0IOD1Uosls60MNRAljIaasRJSoysm163zsldf5cz//JT7+2ut0KZkuvtd8tRTqkAkUclHG/Ujx3v8g9sBC65eXEcUigVwquXjOSWA/ZIb9SOgi6763sl6XiBXKaL3lIlYCNTqxYwClcvPGTQ7WB37vVxwcHLBarVj1Pb1HA7XlqNWIKiVYrVoo5uakpcnqUnCFUq1ZZr/Zk2LgQpWnTh7nsZs3oWRKUS7Pz7n7zjscnZxw/dYtUhQT/PTJycGJWABHh4dcHh1bE04XGWtmu71ks9mxPj5k1SVSEPabDdeq8smPfZJXX3qV3/761yyqpqN6zdcmJxs9PTq9OcTW52Gsx763kWRCpEYIGaNYFwjRmX80Qxgm2ErcCBRV1xx0Gnt11UcnLdk5NLEWmdKCedAISAokDKAtuaDBytKSI2TbB62lveEwMTUAU68YgYraZLo2nu59jkfCCIiYSq2ihoO5V2+qLeL6fKqYMuzgBkFmjx5EfCqNKc/GLrpld5JOWsg4iVl7C6NwBBbwmrCKol6LrcEiiQYGLslC9hCNz98V5drBmsdu3OLjL77Clz//RZ556mn2FxfkGIn9CoJQdnvG/UAfO9arnqEM7LNNDG1goNFZK5oHW4ViTVFjsQUWglGXL/cDF9tLpBMODlcc9GvW60OLWrJSSgYyJSv7/cg4Zv7oj75FobBerbhx4wbb7Zb1am0GYLWa/h2ja/MrUDrA0oEq0TyXjybD9R1ao4rx1W3sFhFO798n396z6iLDbkso8M6bb/Hd732X23ce5/rNW0Z5LZmS5+cjCDkXDg+PuP3YY9RiRm0zbNntNgz7PWUc0DxS88i4uaQMmVdefJmvfPHPcf/+GW/eu0tJ2R2LbdcqZQJ9G9MxJcvt+8kIWMRTC5SA5+OmR1FkXrN4j1PbcuobsNbqCsqFVhC08p0BqTYsVXwWg5UAQQgajbAVEl1KRI1IxgbopIRkJZRkzs/PoXEY4rSTFwxYoGAVhjDbhfccP46y0Eew+QLteBn47wM3gH8beMe//zdV9e/+8NcySxaKECqUamHXxO5zVFWrok4IArwua3hCm0QcU3CRCfP8qUtuEHyjV3ssRuqwJxpauOjpQUsHplTBH/ayuywIRCLJO+wev37Cp194lU8+/wovPf4M1w+O2d57wGa3ZXVwSHdYoVshqacLpowz7DbWC686VR2MC1HQsaDjgKSKRk8Fis0VCNX68vdD4WKzZZf3dKeBayfXePzxnr5bEWKmDoa0o4FaKhfn5/zqP/7HnG8uOHnsGo/dfIztestqteLo4IiT4xMOVkf0fU8I1rgTCISyBl0bgYnREOsGlHmHpxZ/NmOhVmGz2xGKQC1cbs6xjsfM5eWWb3/7W7x77z6P3XmCUkywNMVEDoGipv7UlHFSlzg+PmIcBobtht3lGSWPIJWS9+y2G/T0ASe3H6cMI4frQ/7VX/4V9kPlb/+d/xvvnjatAXXgrIBUG5DicmjJI8VuFel6Y+SBGOFTlJVaepqTKQejIMGUf2KjTIuTzYIaviQVCXUaxKKdGv8kWLk59dZF2cee4L0MgURHRy8rutiZQwiKTeVu0QXGll1gMO81AjMmUDW6U/0JAIOq+jXgp2wTSwS+B/xt4L8F/Eeq+h/8yC+2YDRNNU4aksqiROgUz+LEjuhtrzFMuV1TiYkxeENMIIW5EaRUGxxqqWjTFlx4IG9aaoMDmlFYzo53pjCdFrqqnBwc8Marr/OFj32ax7pDrnc9MY/sdzsOUmLVd5Yn1j373Z6Dfg0Edrs9go3FFonTC5sKj22a6mw3U6uBXBXJxSIZAkNW7j84p9aRUuDGjcfo+9YaGyfEvxbl/Oyc73/3e3QHPXdWj3N0dESMkePjY/p+xcnRCSn1dJ11EeZstfFaVpS6gpKRmiheBNdqYBl1qaxjJazDoyM2p5esFFbrHqVyfnHGvbfvce/BAwiB2HUMpXLok4hC8AjCI4FG1FRVDg8PzWjmTIomvzYl1bWy22x46wc/4PHnX+ZofcQrL77K7RuPcf/0XUIwAQ5vJgYp03pJwdZKSsEpuZ3pU4ILcRRM2suixzjaWhSXjbN0wtaKYGtUkpWJQ6zEWIjJU9fOo5BoHZddMlKWsSaFKIleO3o1MFWiEqXiAygIVYg1TINo5g8hddgzmaogZghS9V6GMO2m9xx/WunALwF/oKrf+mH0xA861PPLtoFLzi4r5rmb/14pNiW3FvOcQSOtS9BqtQv+9hQqMZcPPc2QaRJxw099sWFtuZb34wIcYGQhG4paczEcAOhUOVDh+duP8YmXX+apmzcJF3t0vyOXSlRYrw/RAMNux1BBCBzE3hRjiin0NO2BCoxqG8lKo6NzDSq52kSb7PngqluTJLJeHfLOO7+PBCXGjjubLV2/Agn0/ZoYjCV5uK4cHhxw7eSEk5vXOD464uTomIODQ06OT0ip4/j4xKoD3jy031uXosYDqIfshhGVHmGg6OhdeZGsNu4cFcZs+EO/OmSrlzbOvVZyGdircrG54N3770JcsR1GNrs9/XptdjdGSn64OWwWeG1Vi2Q90BMRJ48D2wcPWFXhxnYH/SGPXbvJU7ef5M23vs8ubwzcc9KMiEeCQS197AJdl7wj1HCbFIxslMJITZUYB4ah0rVSW1PCChA6cz5VrF24qrMHqUaiChHtjbIswcRj+rBm1fes0ppQIycH1zg6OCFJYhwzg+ypKVsAWgzbMmajydNZONKcpTqnZUJo5xRF8nSvPuj40zICfxn43yy+/usi8m8Bvw78e/ojjCGrmOhjqI06W6wry8GTqnVqENKqBhg25VUxAQWJ0CbeNn52KcU6yTxtaINLNURalyIwRQKhC7jxdOKL/SAE6KMx9ZJYKbEvcGt1wEefeZ5nbt5iOD0n7rKBSrmyPjokpcjpbsPF5SVK4GB9RNBKHjN935FCmsRJSh6tC9JJRFqsLbpoJQOjS5DTRdaHx5BHCsq9e/cJyTCMxx+ckrreNvh6ZZdW4fDwiOefe57PvPFTxFXHTgeuX7tOSh0Hh4f0/Zqu61zQo6eqsolbaqlEMklHSt2heaDKSCl78lBZHSRMt9+isjIWco4EUbpuBcOOUo3NJlKpUvn+W29yfjnw+DPPo7EnxMDJ8SEpJYY93jo+9xCEEL2UmehXK3QodKEz4c1c2O7P2RTlyZMbbM7POb51yMnRNV57+VXunb7LW+9+j81mQ1olDg/XxGRl3awjVUditOoUMVAU88gpgSi1JlQLISgB706NQh4Hk3GTQFiZWGkF4gjJAegUhb1gjWRAiXsU5bA/omNNrInD/oST/pjXXvwoT915mrIvfPd73+F7D77DtisUMWE2nSoTFp1N65P2uUxGYXloyP6PDwYFfmwjICI98K8D/z3/1n8M/C1sW/0t4D8E/tr7/N3V4SPOW59OXhfijtP3aPXAybpNNq9taEerjVAhEy88RssxW/PFlHRMwI5b1jad1skkCIhW8n5Edc+1gwPydmAVO/pceOPjr/LJl15Gtnt0X+hDD2OmZWXb3ZbLzQU5F9brI7rUsdvtSBKpOTNS6VdrK5Plwn7Yk2shSSBRjV+PksWnz4RAn3r2w8Dq8JDzzTnXrt3gt37rN9g99TRPPvEMN67fQo6cwiqQPJy6c/sOn//C53nn3l3evPc2j9/ZIhI4PDqi71e00Wxd6hEJ9F1PFyObMXCxH+nTAZU9uXbGxtPI5cWOru8Zhg0iHUggho7Lsw11nzkIx3zuZz7LC889y/e/9T0uLs95994D/vDbb7HnP+f11z/CZz/zBq+98iIpBmotJLGy3DgMDMNAisborMX4IZoziDCMI7K7ZDtUSui4PDsjrR5wcHyLV196hePj6zx25yZf/cbv8N3vfpeqmes3r3N0vGa7u+T0/AHnF2eM454kidStqCEyjAO7y4GQoHf68Sol1t0RipWx192a/X5EQoQYJsBxvY70XWQcM7pK9DHSSQ+ijKFnu9+x7joOu2PYC7eObvKVn//zfPGzX+Sxk8fYb/d89Wtf5e//6t/jm/e/Psm2N7CvBSBL726fFlZhcfTFU6GfpBEA/iLwT1X1LTtZ+2wnJ/8p8Hfe74+Ww0cOb65VArShE+2ILV/Ha6p+HUbU0dkgXMFnnYAhlgHWVuZDrc7fRlxNv+1fheX38MzBCEpBoO+SCZLsB1IuxKx8/MVX+dRLr/DkyTWG042ds2qT7KRoZbu55HK7gRDNgmuhlEzfH1DyiEhgHAVKYswDOQ8euUQiLpSihRw6aozEtGK1PoCQSKlnvT5kvVrx7jt3uTjbcPuxO9x57HGuHZ2Q1pbbB7FuvL5LPP/iCxycHHExbDk5viDGxOHhIYKQHAsQDeRS6FMHB4dIp2QZGMYNVQbIA2PuKKOBVnko5FE5POzJe+NwdMFq9B955Xm+/KUvEbTSp0DOA7WOPDi7z9e+/g22w0CQSp+Ex28/RikjQymOcezZDwPSW2+DlYRtFHkbLT8MA7v9iMbKW2+9yUjP4bXHOTq5w5N3Hufnf+4LvP7aS9x/cJ9Ss4u7wD7v2GwvuNxcMI6DlacVzncDZ+fnPDi9y8XlGeO4odS9NXQxEmKHSCHnkXW/ghjQIGQKo6taxWBNWH3qLB3wsWSpC6Q+cpCO6UrPrWu3+dlP/xxf+JnP8/SdpyznL/Dk7cd44vYtvnNhmMPUfTgt+LBYo/75A4C/Wv/5GIG/wiIVEB884l/+m8Bv/0ivMtU9ZQIKQxN9cJJQc86Tum9r7fSLnBqG2ie1HnLrFbIfzKq5tHh/zpc8/59Oyf9pStSVXgUZM0ex57nHn+SnX/8Yz926TZ+VEBOaxNRjvDMtl8x2tyPnTOwCtRRLczA+6zgMiNiGI3aMdSZAISY8UYoylkJNEUmBGDu6fk3oV4BY9LDd8c5bb5OL8tyzz/H6K68zPnaH9QqaCGtKCRXh8OiIx2Pg7OIcVBlzput6V6Dp/J5HX8w+zDMpow6MeUtlT9UdQazdtWplHDMxdGwu9/RpBbVj3I08fvMWv/zlL/H6Sy/y4K230HGgC8Ktmze5desmNfYowuXFJffvP2DVmXZizQNaMoipL3WNo6GYzHZwpRxVdrs9292ASuZse0p/cIOSM7vthvXhCU/deZw7j103/oJaT8KYR6qY7kTJw6RcPRS42I5cbC45PbvH3ftvcXp2l3v33+b+6Ttst2dIMOm6IeyQEE28RCpdiKQaGPJgfKeUiNKhGfI+T2Xfg+Nr9Bxw8+A2n/noz/D5Nz7PC08/R95ldtsd424PdeTwsCMlKyde7YmRK5t/WsbLkHnh5laanGj3EzICInII/DLw7y6+/T8SkZ/CzvuPHvrZH/d6DgItRR2ZKJ/T0bpulqF7Sweqe3M3HFWgxCl/MGuqXKlINAqw6bs5G66dE5jizX6gI9FV4enbt/mFn/4cr995mgMC+/MLVmkFMbLPg1FHAc2ZcRyIwToFW2976gLDMDDs9zZNZwRJZWpdbiPVa8lkVbLjGwlBPGxN3Yoxjzy4d5/z0zPe+sGbFA289YO3uDg/d6kpN6T+MWabL3B0dMSLL77E+vCA0wenlFoNBFRj+7V0YB/3lp9nJXPCkLeUuiWXS3axp09rLraDtXyHFe++8zbXTm4Ra2Qz7PnZL/wUf/GXfolQK5v7p+wuLjnqV7z6ysvI6pgsKx5/4gmeun2LlBKbzYauC0aSorjH9a7KBuBKoNSAiNHJz84v2Oz3FI08uNjx7IuFLkWG3Z6qVoqLCQ663nCXYl2eNiHJHI8p9kYqHdk3zVh3nF/e5/TsXf7gm7/PN//o9/n+D77N5eYUpRDpKFIYyp6KkoKXolOgjFZR6EKPBmVfhK7r2V+OXDu4xrX+Bp9+/TP84hd/iSevP0WsZpTH/ZZht+X84i65bIlR0WhOa5LSlylLfcgYTGExSyMgdL4ffkKtxKq6AR576Ht/9U/8Ol6+qT5kJPmAuxgbMUVn4bhWvoMZ+Ydp4EQjFTWedvXZ7pVAcIahSKBSEAk+radRSJVpVNicYRCrQqmMuw2PHd3gsx//FB97/mXyvTN24446VIauEqRjLIWsChLJeUSAo35to8ax1CKPI9vNli51FGcCRgnUYOIcwVOiefEbYUFDJKSO9cEBm21ms7nknbff5vjogHEYKEU4Pztne7mljMXvHUgM5NK6LIX9kFn1K55/5nnkWRjHke9//y1Oz87Y7/dO1S4mCNofIF2khMqwP2Ac1+zTihg6YuwpoxGrhmHk6PCEi7MN+Tzws594g7/2l/8qqxp46w+/gw4Dkkf6EPjIK69y58mXGMOaW7ducXSQCNW6JUUULcXteqvqqCPe1hex2Q5AJueBe/fusxv3aOhYrU+4du2aqQhVYyCWfYYiSCmEaJWYdeyNuKWFOlZqgehzIMbaaLg9N44f5/rhTZ567DleefF1fut3foOvfu13uP/gLn1XqXFP0h1j3lGoCIFutUK7wm5jg2Ri6kirxGq1Zp0OOehPHAP4BdbhgFCFs3unaB0Y8obL/Sn3L9/i9OIdQixEcVFdU6WdlY0W+32ub7Wc1tNlhDg5t598deDHO6aH7dNzfDKP1Y3VparU26fFBYEbJ76lA0whzyRVJtU0AESsryJgGENQcslGTY3BWjYxym8pDdJbZAcVeklElNdfeJHXn3+J/ek54+k5WpQoyc5BKrtxpGJ151KK6eUFExatuZCzhX15GLn2+DWGwbr+qhZKbb3lVgKNap4vxIjG5Bp2wjCMDEPl9PSMy4tLTh+cEiSwGwe2my2bzZbtdsd+tzdufjBa7qQwU5h4EyD0/Yonnnic4+Njzs8v2Gw2bLc7MyDB5MlTHunSmq47IKUVUTpqCaxXh1zuLslj5c7tJ/ij0+/wmU+8wX/lz/8ljkLH/vScstkQxkzZ7iBX7ty8ybWbh1zWQEwJyh5VpU+WDhQRyoiF7aVQq9GpS7Hy6Thax+Sw33J2fk7RQkiFp559kRs3rzPmEQ0DVQMpKImOkOKkWVCjKfRMmFCwcXC2PgJ51Im0FGPiYHXCM0+8zNHqBs8//Spf+/pX+cNv/j6n27foUyWtIvuyp6jRrJN0UPdIlAnE1Sw8fv0JfvYzP8dnPvFZjtMJZVs4Pz/n/OyU7e6Md+//gAfn7/Dmve9ytr1LbEK7DbpWvA/G8Sp8PzTPqF5P1+nRWhryzwET+LEPVaYcNMTg6qg2rEKpy4TIjsngNYx/kQ64MTDugVKL9YzTBCEMTGAcstGMNaIYMYOgNmOeRdChjleWyFOP3eaNj32S6/0BZ2+/S9lsCYgJxnTJpuH4vL2KGa8oRvdkrGgyHYDNdsMqWbvufr8nl9EpyjAWI8CEFN1gOT8hJiREcoWzswuQnnv37vHWW2/ym//sn7HbbKEGSq4u7Dmy3++n+nUpxRSXVW0QitN9SymuSRfp+xXHxxiTre/ZXO7YbrcMCiEkYupNayD2hGCiqTEkalFS7IDASy+9zJc+/wWevnmH7f0zDsiUzY6y28AwEoqw7joODq8hg7Ld7+3c1EZodV1PWvUMFPbDTEU2DMWGtIyug7Dd7bncXJJS5PDgiMduP8bh4QFaDXytaiPKREGz2iSmarP/TLU5mqAK0ZZPxOS81CTqilZKhigdq3SNJ2+fcOv6Exwf3uZodYPf/No/5GJ4x54zybpJSzHgkkQMPUk6ahJuHN/ijY/8FD/z8Z/l8etPsjndMmz2XJyes9lueHD+Lu/ee5N3zr7Hu6dvsi8bYmcF8hYFgZJSkw+buRK27tO8MRaHjaTjJ1si/NM5jGmFa6jFFAii1LENwvSWVicVSXCR0KmWbzfCjIajKOqpgusTABDUx72r5cxVCKooJvJZFZLg6kKA5/EUSCHyydc+ykdefIXh/jnsRjQXCoHUORyhJiqKg5nGAguMu4FaC7FfUcuIlszq8JBht+Pi4pzdMBC7Qo2RrBBDZwMxSdYQFQOSOggG2O0vL1ivjvjB97/L1776Vf7Jr/4qm8sLjk8eo+9X9I7yV1WGYaRodfntJqFu11ZrNeBytHrGOI4IgRQCB6s1mit5GJBswFaQZJs/JhPUiD3DcIrUQN913L93yr/2K/86Tz/+NH/0tW/y1M1jOEjIbsew2dh9JCG10sfIKsKmXPq9VobRuAApBVAmzfySM1XUU57CmAu7/Z7tdsN2u2F9sOb6jRscX7tGqZUIDOOARGHd2xIvYzZMRGQCY2M0TgA4w79W6OwcqwRKNQOkxXAIVaWP13jpuY9x89pt9uUBf/Cd3+Ttu28hoaNPwna/JYTEKh2w7taIBq4dH/Px1z/Jz//0L/D4yROUTWV3vmd7uWG32bDdX3B2cZ/z3X1Ot3e5GO8jXaYLgeodm2YE6jRspJUOW8szmiwSeOhIKfmeeNSNgOIhqndVOdliKEohG1GoFs/+IbgqbJRoHYTOHjVMr90UD6XU5bvDAjR0QRBLGQAJRvrAFoMpNylJIykLqShPP/k4n/3ETyH7keFiw7jZEkqBKDYuyzX8V13HOJhAho8LtYWREkerjt1+Rx8gifLuW9/n7r0HVBHWx8ek9QHaHho2ctq8lXnqsRZiqIRQOTt9h9//6m/ze7/7W+RxYNWvuH7jOncev8ONWzc5Ojmi6zvrORh1FqAEoyt73nz64AHbzcbBz70x4YpLwFdj8XW0XvXqhRl7TlID24uR1B0w7Cp1SLzy4sf41f/Xr8L9HfnZJzhbRZ68dULsOsa8J606as1EqRz0HfdrJpc9Qdq4EGXY79jvt5TBDOY47IkoebdnHDP77cB2c8nm8oz9bkN/sOLOE08hac2Dyz0rzWyGPX0/0kWjBq9WK1InNr6umjOoubDP27lvo1uBRFSMNhxFjHJcDJMppVDGTIiRm9fv8JUv/TLXf/uQ3/itf8r55SmVylgq6/6IlAoJo0K/+MwrfOlzf54nbz5N3cPl5ZZxzOQ6shkvOb28y4PtXe5t3uFsf58SB0LnUeC0RQQ00HUWLVtVa7mx27pffkvoYpjT5Q84HgkjICIktfKaiBo1tLcwKI82aSeXwXIisVFYQkSqNbKUXExgsZcJ8aWF40rTcLGSYZsXV9WwAgf9LEBQ5HBlBJ1hpCfQjYET6XnjhY/xWH9C2I2E0UQ9bfKQst9vrcZOpA6Z3eWWUoXDoxM0BLIU1n1Hikreb9hdnrK/OOPBA/s422x55oUXuXHncUQCm4st6aQnps5AzGoSU+OwQftA0R3v/OAtfvs3f53z+3ehFg6ODnjupef5+Kc+wZ2nHmd9eIjEOM141GosxP3g7L2gjMOe/ThwfnbGg7t3uXxwyiolbhwdmzfd7Kyktu7heIV4S3MZC9RALYHD9XW0Ctv9jseuP8bZ3YG33z5l99Y9jg5WpCducm+75XjVM0aLQnIdGcdLYjrkaB043ZpQSAS2W+saLXnPfnNB3e+5HAZH/AeGvbVP7zYbdptzDg8STz79JKujE073ytFhx2ZXuNxd8tTxMVlgl0fUx52rmJKPKQQZ6BhqMMygFmoeXYxUptJcLaAlOFvP1lHoA49df5zPfuqLPHb9SX7nd3+LP/rWNzlEOZAjilT6bs1zzzzPG5/6DHduPIvWzjCgUhjryNn+lHvbd7i/e5vz8S5bPaN2g7ETk/hsyyaNbnx4iwS8y5SCaU1YY5LWeVBvaNO3ZObFfNDxSBgBj3QcDbcFKtE13sHy+TaFuAZCgWb5VLBhF2oess14t8Te0wzF1IWdkFS1TL8itZVcDEPIZaDsR7oa0H2m54AXnn6Wj7/wKmFXCTkTciV4yaaqMo4mXBE0s98PDLuBmEzsQinEPrA+XNElIVIYtpdcXmzY70b2mwveeettbt2+zc3bty2fze36rF8iawGJlh7JjjErf/gHX+UPvv57XG52SBBu37nNS6+8xHMvPsfqYG1VEG+ksIqo5U61WPTT6Mhd1xNC4P7du7zz3e9x4/iI9Z3Hqfs9Z/fus9lcsl113PzIS5b21EwQMf57OuBwpWy3mSSClDW/+U+/xttvP2B4cMqDy0vu6E0ui5KA0HWUKDYAZXPOaq2s+8CuRK/e2IxGzQN5v2e/3VLHkWEcGAR22z2bfWa725oasRbW6xUnJ9fIRGsZroHTu/fp+0BWo4yPtRBqmedGNsWktq5cQERqsR0vLQP3NeYDbq19GlSFWqBPBzxx6zkOV9eIdY2Mie9+71tohZsnx9y58xQf++gneP2lj3HQHbE937PPxlPY5i3n+1POhnucDffY6Dk57pGVGsMzWDm7lXiDxJkeH/C5i5Vmy0JUtJheAYr3RgjSVIb/OfQO/NhHbWrDCrn1/TeCEAvNN/9ds4wz9VeCefhQ1fkDFl7aOKcm6xS8zzv7WO52ONFIoY6ZvB85SodIUW5cv8anP/JJ7tx4jLLdsY6B7Jz2kpWQjN1HBTLsdjtUhdVhT4qRjNL3PQdHBzSFsnG/Y3NxzuHBCV2M5tW220lLMcbOFgJWvx9KJqUVqNXHtWR+53f+Ge+88zZVA48/+SSvvf4RXn75FU5OTqynX6vJmItYS2prtAqRQrEeeWzST5c6ttstd+/eJdbCg5i499bbXDy4z3a74TTAx56+zc3HbyASWPUrysER144GNAfysONw1bG5HPgH/+9/RNjtOOkCw1jZDYXVKjKoctAnFGHII+PlObko6eCAvrfJSWUcqcNAHkfGYU8eM1IL4ziy2e/YXF5yth0Y8p61ZFZdx6rrQSOXYyGddJwOI3/w3e/y0VdeYNjtKKmjhGhzETBtv2YYSy3UXEytJwiSik9mnqtDjU9i0JMRz6ySA7VEqIGj9Q0++uon6EJPIHFxccnzzz3Hyy+9znPPvci145vst4OJwIyZ3bjnbHvK2fYBm+GczXDGqHskGTolXtHSppAtYTYG0dZ9aJR4TFVIwrIqBqYtLCDpCrHo/Y5HwgioKnnwRgff+Fq8dVdNxyW60oyozy20v5zHgReoRahRvbSGSS55V54URUJw7cKmutpKK81IKJ0GurRCinL96JiPvPIar77yGrVU+i6BFi4uLxh2G8ZcSP3KMIHUIxX2w+Ctq9A6GbveesP3+z2b7ZaLSxPaPLl2jbPzS8Yx8+DBKfthAAmk1LvXqWw35+z2A+uDY2J/gIiSS+Eb3/gG6/Uh127e5KMf/wSf/dznePaFF+i6bioFzqFhGzVuiwmgkhiHgXE/stlseXB6xr0HD4jAxekZf/j1rzNut6QYqdeOiTERiaz7A1RHqBk9qaCRoFvGXjm/2POrX/91rncdN19+jr7v2e92nDPQR6FPEbAorKqyH8/pS0VXJmo6DiPDZkvNgw1sdRC4lJGLy3M2lxsuhoFSB/rOqNxd6FEiIwHtOu5enPKDd97mjY++RsgFik+qLoUayywrp2Zw8zjaOK8QkaQ+Ut3rSBM3v9WKBKhTE08XE0Me6brI8fENXnv1Y6gK+2HP008+xe3bT7JaHZKzcrmx1GvIA5thy9nlKeebB2yHc7bDJTWORu0OvZW2G0dkQfZqMzWZwPBgkmWhtcObI7PJyBYDRNfJ9Lr6+x6PjBEYxwyYfFOtuEc0YQvD+CZyv014ZUGvFQgFY/spTIMkxeSeZi0A+zvxkkvTEph0AlSJJbJKPcPllqdeeJLXX32dg/Wamiur1YrTd9/k9OzMSBzAmI1vkMlQYBwzIQrZZwBIsHHk+/3A7sIW8m63Ryus1wcWQJTC3bt32e72xkdXZRx2VK1cXjxgu92jCiuEbnXAdr9FgU9/5g2eeOoZXnz1VV57/XW69QHAdN9MtHJmYTa+fZSIkhjKjouzC95+5y7vvP0ud+8/gFopux2/+/XfZ3+54daNGzxz/aNcv3aTABwfHaMYYBckkMKag27POAq3Hwv82sE/oe63XLt2ndXBAWMp6GbHKgldtE7OmFaIWGfgZiiEwzVd7zTkqiaBNmaL2vLIZrfl/OLc+giSTXtOAVLoCNoxZiAkdqXwnXffYdTM0cGaA288sjJjphRD1gPi3JMyyZqFGAmlWEqA8TOa1NzcmqtuwAxTyKFiQ6MyIj3r9TEvv/S66x8cEULHOBQfQy6MOTPUke2w4WJzxuXuzFiYOkCoRlgK4mP0qhvsefZhcEOuTv5pk6MaC3apyVGtvILpo/xwVOCRMAIoPqFFqUarNx2+2FnXWKMEwqRkMxkFJwzVKuAjl6KIWcBg48jFlYZFgo++xjTeQ6MomwRbQEhVOEgdB+vIKy++zJNPPMk4DBz3B6TUcXFhnlsjrkxrDTqlKGW0cK8X49QXrSQxcG+33XG52bIfR8bsjDivAOyGkeHeA8ZxZK22aIf9jlAGLs/usdmNxNhBTIRuzeXlOc8+/xyvfuQT3LrzBNdv3ebo5JicZ/HPnLNv/jSVkealIA6oVi43G9599y5vvfUO7969RxksJL9/ZiSWkDqe73quX7vBmLesVolSBjQX+q5n3SsnB4VSI4cH13j15Vd589t/yPXrN0mpp+pIrpXLyy0pRVarNX2NdJ0NN9k74r9ar6xbM/vsyGQTp3Iu5kHHAYKyPl6BVA4QViSKJi63mXUV7l2c8623fsATR8esVysOnfBRa7FhteJDbVyuu9HRi3dw5pwJcYRoOgl4M1WtHlrbAjTcplr5VcR0IPa7QkzCwcE1Vr2NDNvvBsZBrfpUA7kWhjKwHbdshgv2ecPIHlJBEoQUrNBVHQ8IPuhmMuLS2l1sY7fMxQHvJm2mbuBUoOu8UPbopwOW51dVnzzkzTPB9etyYwQydRMuSFHTiwhGy03RpJ8w1rHLjRsHwfTfTJcA1/aP3qeQEFYEDkPPM88/w8df/Si9JIbtJf3hdVSV/TBSq7LLA4fx0PXpokuge/idopch61Sm3O/39jGMPkPBZJ9S6k3/b5e9fFUZ9nukCmV7xuX5A3ZDZbU+pMZIjR27/ZaPf/ITPPfia3SrA0K3YrPdApGD1B6pYSRQXS5rcb+rXX8uld1u5Ozsgvun55xfbokhUscBUqKIcLHfc7HZGhDYWyddHvdWURH1gTCCSM+1k5t88pOfIm8vOTo+AQS7JUZVvtzsqTUwDkq/CqwPjujXkbwf2V7uKKPRgQ/Xprg87rcWTYmQVh2pi6yvWUp0rJFVTpxvC6eXe7abLd+6f8b333mbj3zmOaOfi42Z01rIeV4rKUbacNApNagFyaO1mleXVFfnjPg5TDi7A867PLDqDkjBKOJjVvq+Y90nB+zacFGL9rIWdnnHdrg0A6ADJQyEXgmdWkeiysQNECcANqEc+9BF3X/+UOdVqDuRqZWmMhuODzgeCSMAXoZRl12mUhSyDguiUDPrcBXlaLQes5pRbGZ7l8RknpwvnjrT528PvPrdCYspr0mFgyLcOrzOpz/ycZ578mne/c5bHEoixcSw31CK9fxbqG1adJMFRkl9R+pMow+xyGUYRrbbHbvdjv1+j4TggqAdRyfXkRDZXW4sXNwP7MdCOIhsz+6zvTgja2ActmQRaugIKfHyyy8T+rXP8cvUfWG1WgNMXYPVdQltZHV1tNuMg+XDlXEo5FxdL185Pb9gu7kkq9AfHLKvyptvvU0eMrfv3GK7O6ccWCpgqLkgGhFJHB2e8Oorr/H2975D1/eMpaJ5JIn1bGx3A6VAkIFuqBA7+vURa0nGTCwmrZ5HrJTYmn1SZH1wQL+KrA/WIIWV9qQxkYeB8yEzvHuPb5+esd/vuPXYLRMmFSAmC/2LTTqqpZiIZzQKdkxxEgYdSybk4OmihdI2xchl6HzGQ2vgGYbBySmmF4BYdLXfW8uyaht2as1Oo45shksu9+fs644se4qMSFJIToEvLX9v6kHObcFHpim+H8r82YlutVo0k7PP40BZ+WDEKXJ+n+PRMAIKrQMQGrBhM/zkyq/54AZkEdzav5p0c/S5eX0Mhrb2xuOPKU3loaIu2xzE2mWTRQOdCicl8dzjT/Pysy9y1B/y7bMLbj/xNILNzQtilOD1akXqbFRXMyylVlLXz5yDYDnu5W7D2dk5w36HIhweHbNaH1GJXLt+k+vXb3L3wRmXFzYgZLvfEenZXDxgv71AY08e94box57jm0+SDq6zHdW59W2DO+fCowHrF2iTaYNVTNptqzYFuKrSdaZLUBQe3L/Pbrehi5F0YJLkZxeXjMPI8eExNWfCIfTJ5gEYrhIZR6VPK55+8imeffZZYGS3HyjDni5WSKZZuAsjMXSkoTAWWK33KMbgM4gnsNsNoCO77ZZhHAkx0q9XpM40EVShlsAQE/uo7DXwzt37vHvvHtduXufW9WvUmhnVCD/qWFPBNgq1R/qVRYApQSmMOaN+PWHyso1vIl6jB4k2dljEqgTjsEe1TKrWYBWiAzkw3CAPRkcQGGt2I3DBUHcUGSmMhFB9+VcjKoVoaQeZirWx06hUXp1oJc7q5ctalVyLfTSVaDztJTxELLp6PBpGAGjUXzByWlG1lkwH/0SMtmkToz3HbT9jLqPEYJLNJhqp9F0idYnQORcfnTZFa9mVaESSVQ080Z3w2vMv8+StO6xCRxc6rl+7YdZV4OjkhOPjE/rOWAApJdeZr4wlI7FDc6Z3sKnUysXFJWdn5wQq69UBh4cdVYX9MHJ0fMLtO0/wjT/8Fufn53R9z3a/pQ8Du+0ledwTQ6DWkSFX2O147KBHoykMHaTKdnAKdDRmXNd11mRTKl1nEUEQrBTWuiqdNBVD5ODomOOTE/rVmm61sno6Nti0qrIbBmoxubC+XxOL0CUjvpjBiVxe7kip5+bNx3jm2ed4583vsL3c2gQOU0id3nvVKbEoZxdb9sMP2O8zMURu3rzG9WtHxGjGLRfPa1c9iUSM0CdT7RmqkhV2oaN2HQ9OT9mcX/DqC89z/eAAAUZXWlacf6DqpCljeUafNwBYNFXm3N8mFovXAwCxOYPRqbniJJNSMjoWao1AZ6XqUlkfrAjB7uE4ZhNl0T2b8ZLteEnWPZWRwjCljGrChIRoU6aamIjJoy6a5fCuW23Ncy5x7mSh6qK04GVD/iVoIAJoBX/1EiAFG/Qg0EIj9S4tVE0RN1qTUYhzFLDqVhys1qzWiW4VSJ0g0RDl6F14DvjS992EFcQYOZTEE4e3eO6JZzjqD4gaeP6Z51j1a/LmElVIqSN1if1+g9aek4MTVMUWLGEKulfrA/puxenFBbvdbgJ4CIH1wSHDWBnGwrXeKK/HJyecnp5xfHJCENhcXjAOO8M3UkTEGmBskEpiX5XYRQ76AyRltOCiHNHLg4X28EspqA+vbPfZNnVP1684Pj7msTt3uPPEE/TrjotzC6s3u60p4vY9XdcjYn3x1dVz+t4aiCBweBBJqef4OPDKq69yeJC4/+7bXDy4x+X5A3Ie6bpAioH9mNFcOD094+233uGtt+8jCB/9yMu88MIznJwcEkI1FmY8RChoLfSrjiiFoVRKiJyPyrbrGYtRenU38PJTT7NGSFEYcrZx5F5+VIAEpVoOD0rqurajHdPxUrWx1GwKcDBJ++qVg5Zfi2Sq4x6KoEOmVKMKj+MeEA4Oe8bTLbv9BbvhgsvtKfu8hVgNrKz27KzFPU7evu1Z8WdoFYmHAb55Y9f/H3X/GmNrlt73Yb9nXd7L3ruqTp1bn+6enuFcOBxySJEWSVmIbVmOFDkG4jgxbMf+EsERgghw4C/5YCsxkMCAAAeJnS8BAihw4ASIZQsw4BhBAMcOEMhxLDiiaVu8iDKHFDk93dPnVqeq9t7vZd3y4VnvW/ucOd09miGN1js403Xq7NpVtfe7nvWs//O/VPbjYsq6/P1utPljkIVE5P8E/HeAp6WUn62fu49mDvwEahzyTy1moiLyF4A/h/pq/POllH//877HehyowJ/OYRdga6lktRDUIqBx2ho+4qyj8Q1t07Htdmz7jq5zNJ0DV1SObzXRRQ0kdJSo2Xv6Ejjn2LmGJ7uHnPVnECGVyPnZhU4oQEUrx+HkZ2NV4qkrriFWH4SmbSkihDkQQqhKM3WzNcYhRl1pSzG0fU+/2TEMAykG2s4ThgkotF2jsedFn19Tg2QBh3HW0nWOkqCx7i6+rd5Iy5RguREWylWMGe9ULdj1PQ8e3OfJkycchz1N2zJOI9Y6uq6j32zw3lFKqTgIiNia6KRjrLZVpyMjDU+evMvZruPmnXe4efGM65fPefnsE148fwolMI0TN/s9T5+/5PrqFS9e3GAQ3nl0yePH9+k6r7bp1iEWciyaAOUaKBM5CUMpHBBeTjM3oXA8HHh8dsaXHzzEpYhprO7mOVFSJlRvB2uMUp9T1CVStRmI2pcpdR1MEjV5oY7eiu6updTztSw9Qt2Rk9RbPuFcwxw0Sr5pHcYWxunAYbxhmPdkApiyemCoa7OrdOBlBJmxbyz4xXdzfT+Xm+Dkslal3+qpuYwN7dplv+36YTqBfwP43wP/l5PP/YvA/6uU8q+IyL9Y//4viMjPoM7D3wbeA/5DEflmuWPnvP0SvT1zETWTXMYc9Q2pL0GddbDOT0UMzniapmPbb7k4O+P87Izd5q4TwFEpyLYeERQE9NadnOt1hz/3Le/cf0xrG8I4q47eNJSsDMMYE/M80zQNbVW6hRCYg57BYtZ4tKbfUNAFqLXYEOeIeJXrinWUEEAsMSvsY52rxSRjrSEZDSY1zlPEVQmw7soAVgxJZC0+1lm8004gL5FglWOh7b+eDV31JUi5EmKMqMtw17M721UzVt1Nmsaz2Ww4OzvTwNhS1ptKQ1Lya9gMKM7S9j1d7zg/O2d+8IDh9ob/8j/76/zWb/0tKJnb21s+/Oj7PH95rWBdTOw2PTlHTWceR0QajNXphqmya+uEMmvrPaTCaCw3YeTZ1Q3H21t++ed+joebDTZGKA04qwEsVblZkAqeJYxJIEsi8Klff53BkxFsRdb19aSU1c1K0NFyNhqrnosK4NRaLpGSoptL/sA8H9gfXzGngWKqrN2IphlLhGptU07vddbGDT3X6+KvLJf13wv6va2zkARb7iYfYqp3/mekEX5uESil/FUR+Yk3Pv2PAX+yfvx/Bv7fwL9QP/9vlVIm4HdF5LeBPwb8J5/9XWply1RH2ZrdJlULvRYxU0cm9TxvHG3Tsducce/igvv37nHv4ozttqWppo44gSrHdYsiTwxt09C17do+N95z0bQ8uPcQg2EaZ6Q48ArSONS/3zeexu8gBXXwiao9z6UwjBMJ2JznSjHNNE3Dpu81KaeAX9N9AhghpIyIw1fmoRGha1pM7DAlgbGEGjjhvcd7LRZYoaQaz17zFn3jNSknRnLOhJDWjkVBQos02nYu3oChzs5K7TWbxnPYJ5rGM08Dbdvw5J13ML6i7KAzK7MAuW/sMCIgFmMKvi04cwY5c3V9y/c/ecZ20/Py6prnL16xP05YEc46y4PLLd4ZxmGglERIHW3ncc6w6Xq6TUdJkUQkZEcynglLcZ7nL1+wMYaf/tpPcN44XErqTmSqWCjoeV9EtAU3AWsdBaOaghoyqzd8LQK67Vd6bmWditWlKlCMmtGkrDT0nKjjYqpDlRb0RbI8x4Hb/UvmdASTaxFxONPUxC2pBKClDCjiL1LvelnozndF4G5mIIizmEydLNSRZgU0RZYYrbdfPyom8M5iJlpK+VhEHtfPvw/8tZPHfVg/9/lXqSrWVNZsAe9NBf5AKyGV/acosvee7XbL5cUlDx885NGDSy4udvR9g3Oi5p62KCnIWjWDrEWgqbxzDZ+Ermk561pa35LGmRiSxnnV9jqlilL7lhgCcwjkGNlutiCBm8OBOczYtlvPmQtluG07nPWEakKZczUPyQr5tN2Gvtuw3W7pWi0anY2EuU5Iinr6N02HiCHMEWmzWpOhmnjj1SJ8ceBdtPg5n7bwlU5cMtM8cTgcGIYjpajhiLOW3XbLNAzs97Oy+4zlvfffU4Bx2WHqkSrrlrg4WenuVreuOSQkqyZjrpFp9y4f4J3lex8/ZYqRrnds2ob3Ht7jS+8+4f79S5yzzPOEDOrU1JsexNYE5pnj7UCxDfshMRr4vQ8/Yh5nfuabX+cr7z7GpoAtjjhN6lAVooJ+WSclKUbEBmzyShyrMu1lEJdzgZTIZhmB6tEvl4IxRReTpR5JtRvQBQ+LNd1yz9T1UceFkf1wRWDAOtYiYOySn1GWs8EdIFDv+4U6fPe81TLs5LyvZLjKKTBKoS9Zj5+ypPV+yvUHDQy+7eDxVljyNHfAOoOmb2dK1JixlIpqzFfWVD2GGa2W1hq6ruPi/IKHD9Vm+8H9e5yfbWlbrcjGCkEyGHRq4HR8aGsR8Nbri4bQtR3bptHc+5iwVltvYx2pgksignGWeIzM1brLGEsMR/b7PanAtu9p2rbOlC0lRzW3jJHjceDmdk/XS20fDb5pafsN1nnOzs5omgbnLL7ZcTzMDNOeIgYxDu8avT9yuYtRL4p229rCL5wFnVikFcxcXHRMtdUyRrDe4b0lzIa29ZydbXnyzmPmceB4uMFby6OH9zUkZQmMlVoEWDLulga13o519GrKctbW9juExNn5JcfDrY7jSsY5z9nZhvuXF5yf79huenzjGaZQ9zq9o0NMzIdBlZdz4hAC+2h5ur/i+fef8fDeOT/3rW+y7R05DBhpq7MzpHnC5FgDTdAxaUxEG+o9EtV4Y5lMlfp1AsnYdcKTc6aYolZTlScg3q5UXf1avdU1W/BuxOi8kp9iGkhGMw40DKdBXJ3UFLVZz6XUY9YdqCcs+gGL+gUu/2bWx5glT6Po8bNUWzgN8KnMuU+5ftQi8MliLS4i7wJP6+c/BD44edyXgI/e9gSnuQNN60qOmjCUs7bXJUMMmhmoN3hR44+iYI5znu12x8XFJQ/uP+LB5UPunZ9zttuqBZMoScJJpohy1p2xOKPOOW3T4oymzBgRNs2GvnOkeU8p0LYdvmlIMev5ufoPeOfXsuacJ0a1FZ/nmW53xmajC1qsUwfbEiqbMDEcB66uXnFWHNgW71vatlfEveS6kwM5a2tvG0LMyGIFLoacCrbVhGW1BPcaqHlSAJQ5ltfCZa3VM7VxK1EonxBRtENJ9F3L4wcPefb9T3TSIHBxdqZRZo0nLZiMWXaYep1o1g1aBBwNDigSGcaJ737vI8bjgeNxT8qFrutpW0/bNDUsVo1LYtQRm7NeA1GsJ2ZUg59gFseraeTF7cjTZ9eYVPjGl7/MV95/gpSg5+sSscUTQyKHWM/cUlt9PULFGGuUvcXFpiYRQ0ELaFaDRcQYLQK1EyhScMo4r5iBvi8K3Ml6bEBytTJTFWfbdxibESIqXVZnJh1tJ0oJlCpMUku9BQ+TtQswxpASrM7BVUSk7f9pEVC/wWJsBcGXn/Ht149aBP494M8C/0r97//t5PP/poj8aygw+JPAf/p5T1Yq6JZjWfMFSoYQiya6mqLsLVsTdZyl6zp22zMuzi+4uLjH+fk9drszNn2PNUIusS7wUouAUf6AsVgjdG2vRQAVavTthq515OEWEUvb9RjnmedRcwFywqJnet94cmjx1jENgZw05+/e/fv0m41qFoyp0wjNz/Peq0X4q1eIbTm77Gj7Dl+Tf0JQ5ldMiRgiwavwNaSCd7Kyz1IqNHXUaY3VbsbpfHnBAhZOvOoi7Il9e032iYFhGNgf9hz2N6rQG44YoOtbuq5h2/U4tyHOE+fnGqeWpVQlW92Z7uZYyzu5/t1YWwUsjsNx5Nd+4zcJ00jfNoBwef+StmvwtpCygnfTpNoK6z1t29B2HTgHxuDE4hphOB6YjOe7H3/Efj/z5PIxP/+tn6H3lhhGWi81GGQDoWIDLlPDAXW+njLJRMiaF5FyRKxZ0fa8EG5YgDj9zazVLkjZpupQJNTdVgqlGI1XRyhZX2sFVIXNpqftPHPQZzOihRsxGNFNQO97BUMVYLyTEutUydb5/+l0oFqOLsfmpShltblTj8If8zggIn8ZBQEfisiHwP8SXfx/RUT+HPD7wD9ZF/Ovi8hfAX4DHbj+c587GUCPQCmq7r8kLQKCau+N1OTYmrJrnY6jdpstZ7sd2+1WgaO2o2s6Gt8pZpXqzN4KGPWDX0lEIjS2xxlDyQqYNbajcZ59THiriHmpoZQCzNUOSsKsUV3e4cRie0+msLu84OzBA4pRfzoxenRomoau6+j6DW3XMQwqJz67b3C+YVYJHCkqkJdCUkvyIRBjWgGeEKImH9XU3xICRhrE6wuYYyLku5YUlvwCW0FC3SFDiMwpMkwDw3AgpkTbtpyfn1Ni5Pd+5yn3zs65ev6UXd9z8+qan/zGT+IbpzRgqEaXVcZab8DX75kCWWm2fddxcX6P7faMl8eBpmkpOPpNy/nFjsZmzprCdtsrSWZOtO1Wo9lER1u2dmxjOPLR8yt+55NnvLi6Yet3/PFf+EUenZ+TwkR2BYxjmgdc6cljWp2p6+xiRd9TUl1HSolUCpYFjV9Uh4tLT0GMY3H4ycmQjQFJVbQj6glpgGJJCkGs41nrDCZm+m7Dbtcz7qVOvRTnoRjNMCDokaToT6E/SfWrXAqv0Q5DwUBd1EWWboAT/AxtVUrFE4r8eEWglPLPfMo//alPefxfBP7i5z3vG1+keMDiAlSkBlrqGdY65e5bZzFOz+9d19N3PU3Tqtbd2vpfp9xvyVDUoEOcrccBh7d2ldIq5aBgoYJYakCqx4R63rWGxrY0Fo77iWEc8day3Z0hKRNDwcwTWGUOUrLO9ZF6vElVzx7pOs0fmFOqEWmwH44UK2DQWDJarClMw0g2C4HEKOusnvPneSSR8FiM9dod2qI+BoXK4rs7J6akxhy5MhtjToRp1F0yJ1IIGFBb9JSY54nGN/zed7/Ln/gT/wDvf/BlrHPMcVacSuqIsA7S30y8zTkjWeWsMQZ2F2f8/C/8PP/Fr/4qu+2GzaYlE/Gt495ZT2+ULpsR+s0Zu7NzREStuo3Bi3AcBn7v93+P3/nu9/i951c82NznW1//Cb78+CG71uONovApRVIoyHwgjYVme/Iz1tGywioZilR/iSrKkfpxUtVhyZlQpwDq5pPvOtWixVlb9YK1uYbLJFJUzUsMMzl5Qsl417Htel4dHSHeid0KyuZUIlflw8hpVrZUwxvd1U9HsncROZwgb0uXsDAbl3H6j8cT+K/lElTu651DUI8Aby2mEoF80+Cdx3ih3bZsNxqr3fV9PT8rPTRm5aBngYJWT6n22MovsGQcIk7PhTnTNYbWJcJRBUIxWV2kKSqAJoIxHjfVYiMN3hQKgRQDlMw0jRTr8N0G47QATPPIdBwYjntSmGmbhoQwJYM4B9YzF+XVj2FinAZisExjURvypsW3HSHLKnoSox/HXChhAuu1ECS1IFMbquVFVWAqhHmdGFjrdFyWE74qHcMciONAGEfImRBmcik0Xccf//v+Ps7v3dO2sx7TqLjXok57nZau+ImClhDjzHbb84u/9IscD3v2+xu8t2QS223Pu+894aKOUG/3NxgDrunBWA7HA6Hu1M9fvOB3//bvcnt9y72m4Ztffo9vf/3LnPeWhkRjFKosIUJMhHRQdJwWROoM34BxleVXreFiJKSEK/p+kyKkpBOCXEj1TG2ckI2O7VJWPn8MZe2KrCmkEiAXQo0do2RyiLpbe0NrO1yxFElIiRixxBzBRMTE6m1YJzBVC+PQTctKtYmPGsqKnBrjLBhNbf8rEFiqLRlieTtmr9cXogiIQNu4OgdvVjQ7xUTTtLRdR9/1tG2LdRZpLOdnF+x2Z2y3O9quQ6wh5EiaswpDrMZ9F1GHlSXAhFI0YabxTFPAkeg7z64Tnn/8lELS0VuMK9sul0RJAd94dudnpPFICAO5mlUghXnSBWl9ryKlEJmOA4ebG4bbG0oKGGto+h4jDtd2uL7XkVVOXB9uuN03nHcZm/b4tsP6lnazIewHqPPqZRQktXOY5wHfLudYNA5cCk7nUFU2HZjniRgju90ZUjK2oswmqf/ePAykEAjzrMrHmPj7/+Q/yM/9PX+PgnOpQBFSzEgxmnu/TqqpY6163kUBQlMnOW3f8u0/8m2Ow56/8Tf+S66uXrI72/Hlr3yZb3ztG7z/7vu8fP6C3/mdv8Uw3GIbj+9ahqsrDsOel9ev+N73PuZmv+f+dsM3vv6TfPunvsX9ezs6GyghYxsPU7WXL1ByqJMQixVfcRGLOE8uVn0TKMwh4mPARUeeJ/I0QYyY6ieYibWtForzlCI6xs7q56eUdcFKAQIpz8zHWDklPTkGwGqhyQ0mGbxAiQHjEsIMzBRGIFRrMM2DdFgacTjjdXFntWALYVa8y+n6FjF407KwN1UvoX+McZX89AUvAsZazs/O8d5XAUxbNfA6+267nq7raNsW49SLf3e+Y7PZKae9jr1UHbhsS7pNLSNG1rBTtY8uxiLO4aoCTHLEEpiX9n1BhOWOqbgiwUbPaQAhzaSsDj4LsGOWFo6K3ZSiirumVYQeD85RrCDZUmrSUogzIc2U6KCtvP+Q1J2n1CCOGLC+5W4B3i3E1XQC5ZqnoMcrYxRHUe5AYJ5HXr18wdWLl0gppDnoXL0aZnz/k6f85Le+yZ/6b/0ZjtNMaxqwanu2JAJZq69rriKX5VpMLham2wJanZ2f8Qu/9Ee5/+g+T58+Zbvb8tWvfpUn77xH12x4+M6XePzee0zDDWE6cDhesx8O+NavRUGAi+2OJw8ect55XJmUSJMdaVaVoFuMYqyOTdWFJ1Gy11Rqo+NNa3UcWBaV4ZJrQXWtKkXP3wv/etlAKiUb9H3VVCydbEiJUGbIsfb6qdrEKdvS6b6uGE4plJq8HMJIyqE+R7WZF4stuvuXqNOcVBSnMLA66y/3mIj2DgvzUGoRWFq2zxARfkGKgBg2my1t29LVc753d11B23Z0Xafnf+/xXUPXd+x2W9qm011vnZnevWfqIqSzXiOs4Rm5LmbvPA5l9eWyr4SNrAk0KgSv0xhFxZcCIsYi1iHO43yLnRNiMlMIpOFAu9ki1VJsnoOCi0YFNmI9BcUurLEkU4OiSmGeAtM0k7wWhZQzY5xqR6JvVYyhAnKLirKaXljBG0WcBTTMNKp5yCKcSiFynBWFn8OsHU5OpByIKXB1dcUcJv6hP/UP8e2f/1ne/+Bdus2O28Oo6Ly7M2YxIm+eSnm95ZQ1PhKUAn1x7x5fcz/Jlz74Ml3fcX5+TtduVsbkbttBntjvr/jk+x+y2+10ZFdZfW3b8ujeJbu2ZbHaa7zHGtVoVEAE7w3W2+p5sICAuU7KDcYI3jukWI0OqyIrNbXILPr9xcOilNMoPMWbSn3ukhO5tvdqPhtX6++cVDmZJZOl4G2DQ2nqumGJZjwELfKSFAi3WHXEqpyQRaYe82IXbxBTsQOptnnVgISV2s3aAWsd+/Qq8MUoAsaw251VsG9D13V18fc4p2GObdvSNA2+bei2m7VraDtl49k6E737ozfsqhkQcFWrLWIxIhjvaaXgG085phP6RUHkjrChoxe5wxesI2dPsbqT5CI6agqFHCJSC880V019Loh1WN8gxlOKipmccSQbK8hUGKeZaZhJXaM3boiaE1AKvlHxU8oZm/T7mqUDp3LH12KoqHcMWgiyyaosK3nl5sc4Y2ydv8eZ/WHPMB75+k9+nT/9Z/5hvvTlL5FF5cepQMkKBBgj62uyuttyhwssi35pB0oRiliMFJyH88sGZ3W6IvW8nQt1lt7T+A5rM/vbl2w32+oNGBGrY+FN22lBK9UUxqi+P9VuyYoBX3+KmjFIrs7TdapmjUWsxRQt3BoBHykpYXJeZdZFgyrIJiNVj1GyLmpEORm62SbIWgA02QpEMsYm/XrR4JzGd7SuI2XDTKFIxBaHZMEWg6DHDSm6p0vWTWnhf8QcKqwhlKpTUNchAVO7wjpdWKlKcZEdf/r6+0IUAWstZ7sLur5nu9lVdZ+O1qz1tI0WAd80+Naz2e2wzmpISXWJOXXUVZ24RaysBcKZmgsotsZo6WMbLxpskQJQJ6siquBaI8srY9so1bNYjymZFALjFNRs1KjeHeuxzlNQs9FQx0hSfyaMw5XqTWitJh7XXUYtyBrmOeFCoshMnCO2aerv7wGdYIitDjj1BnGi5KVSdE4eK0FpkTDntOzeOi2YppEQA/M0cjweePnyOQ8ePuAf+Uf+YX72538e6zzHoC7Ejx49ZH87aUhpUbuyUsVOcrfe767KcZdaIDAGzea7i49LSxuN6kUiuhm01mOdwzpH3/VVCBWxbsZZyxy0E3K2ciOSBrjmkquy5A6eKLCGhNo6h1+kttZo9FxMSYHWWItFudv5lbSjbb1knV5pTkEt/ilSiqGQVNew4EhFEEmYlChm8crKdE1P7zfEXDkLEkg2MZugNuZlOeShQG+KqjNQP3HI6jWg9IBCMaYSkJY0ory+9suLsJiOfOExAec89x8+ou86NidFoG07rHWar9fUMMx6HLDOrEQcfVNN3flNHReqz5/1DdYITgQnRndiq3Nfa8A32tZqKKYajtaJXbUzrze0oGcMq8cFUwrZzqRSCKWewqyF2i6nlDWW2jVMMZJjxudCnQfVQlPP1TUaa54i0xSY5xk7T3rzFOico+87TNMSCsR5wngDNiEpaTeR9WcPIZLCrHPzmHG2Ue/+OVRNho6k5mni9vaaME0cbm7Z397wp/7Mn+arX/sqJSemKdI0nocPHpKyYIqjpFSjy+M6Q397lynrv+lrZxFvcaZVstKs2YxawP0a4S5WO7UYIuNxoqRE1zSk7RltjOoVOE/6PjXKf9gf9jgjqgiteBEoc69UFSd1DS2jwELBWI34WkaoqSRsSmvbv7TRqmpbOoEq2KpiiWyjgqSkmjgdNCtBZ13IyhAUiiS6dkPf9sSom0AmAJUIVjKxkub055mgRMUQREHuZcfHaNp2pWcqO5blGFPJSlVxmCtOlt6SU7iuvz+QVfxjXgoMXtC2nY79ahFovHIA1NGm0QXvHU2jwh/rHN65ahZqK0POVJ58Pb9bTZdxQi0CjmJsbVEzzgopatAlZEquaPB6g1dgRQwY7SJKyZiSEe+xbYuMmpaL1DFl1HRiMQasil9ygZgygoaYrjwbIEdlr8USCTWgQsZRUeJlPOqdBnRMkblkvHhwAUkWol3Po9M4cDyOzHPQzcOpv8E8TzWDUIvetmuZB8vxeuR4e0OYJi52O9q2JcwTr26uefDoIa7pdNqyaclpB0VDTOVus3nL9KmOE+u/LYClquIs3rfEXF+zXHc0QV8vVLuhfoyBxlsap1z7aVRhmepAVNCUQqDpe7z3Nc26VOep09F5XRjosT+Zgqm04FIKKaqRiJQ7QFjbfmFx65QVME5axxGl+WrkMSVpAYghqluRJIgZQ6rIXVa+iemV7yJCFg8IVrzyCvKdsjMW5U1YZ8GqwZgvkZlIkVi7AcU6VG2bTo5inICXi7jp09ffF6IIWGPZbM4qMNgp2FcBQVMBtabxbxQBWwuEWxf90uqdFgGMtp9W1G9OjFUmIBpBbcUQK3deKaWRFLXVyxmKzmD0vG00wESsheIxrsG6lmKOpKQW5GJUcJKSyoALojcTQogFciJXDUAdOqitVSlVRq1imzLOeKeTEe89ADFE5nlmLhaMB98gKVKwRBeYzcR+f8thf6wSVl8R7abuUrMCpRScESQlDtfXXD1/RpgjNy9ecLh+xc3NLS9fveTy3jniG6UKW8Nu21e7rEBM8VNvrGVmkStXYMnUo5QaniHIAsAZlXgbKXXqwpowv1DEQW3bo8wEqPjMHfHHN9ohatLSouuXtQBhFDHPi119ZQOq56S+5iL5bpS8/AGkfrwUgZKTnsdBNwwxUJLqQ6IuYB3PZn1vRB8vUrBYLKr0FCMUk5Fi8Va5DCrvVs+KWSwpaDgvxhDJhGzVeo9Siwh1489Kky93FXk9ElUr8s+qAl+IImCMYbvd0TRNnQy0eO/ouo0y/ZyvraPDOEfTNq+1/Xfhi7J+3hhltWVRkM8adSIWsRSrdNSSdJdfBDSlKFGmoL79IRV9o8TQtp3ezMYgRR1vjK1ov1hSicpGtE7Hc0k9BsXa1ao6x2oAWa2qpKoBc4w1Ml0R5RCipiNvNOXGWUNOiWmcGMeZZBqMazQX0SZyicoIzIXbm1tub28BoW26kyOHzvVFNKZ7uN1z/fwFz7//MU+/9xHb3Y7f+rW/wZOH93lx9QrXNnzrWz+lN3KdiLTecLbdEENgf9ir0cZb6aiGu8ZbHXupC11Q/UMq6HHO+zuDEtGzq1iViTdNS9toETI2EaaZEVPHeVLdpQTXNBW01d91SRkSY0jI2glkqg1XTtg64VAUf9GZyEkBqJ1gHTVls4iyct0wBA0D1fFgrmrRFKMef2rBUbl4QshKXsoWU0ql8urx0EurnAoxJFcIbmaynjhbbf0p6sSMZhcUKUDUwonCgKFOsxaeACTufAqXWe3bry9EEViAwYUspKNBy2azq5p29fVz1oK1GHcSq2XMHWK9tO0sqilBTMEuU1OpZhj6CGIFrmKsxJei5zExuqhS0ZAOzYKvFF7JKkoyFus9m7Mdzf6WcdLdMaZMymCtx7cNTego+z3zFKruvmBw6wiSomaVgBamOq7KUuhKWXe3GCPDMDDNERqDWyy0YwI7E4MjhMjxeOB4PKxxY8YY5mlmDno8SCkyHW756Lu/z3d+62/y/Okzrl+85HJ3xq/+//46/5+/+lfZnZ3xj/73/rvEUM+zMYBT+6u+86TdluF4ZK4uSHndZeTkaHAyyK6EgZTyimYvMWlzmPW9FNUKxagJREuGwyLi8dbRNg1HaylFNRXGqgQ9pUxxy3ukXYexel+ULCSppiEVRC1JzT6cVK5ATfbFnhS05Si4lLJCRerTOqQvWVv9ktTCbNEbnIq4KGojJ1LICci2chBkJVUBq9isWAgm4hFmyWTRo2Uus1rXYVV2XGwVcNUZ1kKSqjhGKZbay9Sf/QsODBpj2Z6d4aqNlHeKEDvX1Nbe6znKVkTdKbff1GqvXKAKnNTPr+qq+v7lokixLD7toLLgnLCi7nDqU6DT5FKKMhddQ9tttMWPCgp5a5WWnC3WeXzTInZgdZOJukM2bUcIAcRozmAxGHEQC9MwEOeJlDPDYY/3DmuWDMI7otE0jexv92A0jYkaMd54txYHSsHayPE4Mo1DdcMpjMcjKaixyDCM3N7eMg4DcRz56Du/zUd/+/eIIXC+6SFGdVs6O0OM4XK7w5Vcx1SQY6h22xqPfX62UwOQmNRgJbMW4+VsupiZ6JSuTgLqfbn8W66/qLr31JTppIvIu4ZN31G6rga9qi7C+lbHrSK6IVQewkLM0oQqAKu6iZxJCaLR5GpjFACUrkVK0bGiUSQ9Vhl2RiXkJWec13FjCHOdjuh4MyZ1ZZKspLIwT1DVnrFSj4vNtcuBkh1CQ0xqlFtSwlSloDMt3jZKIGOmxECxI7kERDLFWYzxWnATJGJ15dafwWGrZ6GQ0uKMpLzDUgwlf+GLgDrwquS2qVWxzvNN5esvU4DacsPdjrIcA+5MGOtZkBOr5XqDkAtZtAxYY6DobrewwZqmZZVg1hvaOEcYJwo6z7bW4rEkKcTJr3LgnDPONYSQGKcBxGjaUJ1cpJAJaSajAF6OARGVxxpR7YSCVxlj9Y2c54lyMIhryKKWWM4qMKYtaV6BzHkaVbSSYX97y/X1DaWoD/7hMKjxSUqYFHn24Ue8ennF++8+4SsffAVnDffv38dYy81+jxNh3h/YnF+o6q2piwzwzrLbbbHOcrs/aIGDytyUOiI77QTecMrN1Nc3V3OUxVoLLTi56Liwbev7oV6OrnaKdgmSoazTIdBCr4J7VH6+EJaKEq9SjVU3RhBrScnV+0/vlWWqQ+UKrC6/2dUipU9fin5NDLPO7RFcLRLONus9uI771p3IIjSqXMVpR1OSOmWXFiutck6KwZQWUxp9bch4cXoksmqLnmQmiyWKHl+LqdOLZaqRhZyk+kwY8he9CCxsMOfUPce65ZxfQb/FG9AsWva7hf7mn+XzoN2Bxlixtl7VyKmeq5ZWr9SzXqkL2iHWVZFOxIfAYmdmjWAk4a3DO8M07Ov40hFiYLvtGceJcQxAxro7G7TjYWCcBlLSwNGSEs47huMtJQdKUTPSmAIuW3XIDZXgVFTAUkQBMKDGaFfAExXA5Jg4DgO/+zu/y3e/+/sM48yhhoc47zk/P6cpRXGDAl9+70v8wh/5I0zjxL2LC4ZppGs7rl5ecfPiivNHjygJfG9qt28wXtbdcJwDchzudt/FF/IHgKjyxscVsq4fckLHNSI0voG21ZzHnDDW0rWdmrlSgdfaCVqrR6FSvdtEAOeQnMEoaazkZXSIjvSS4i/qHlxOzvt55TeUk3tpJUMVPTaWokUAI3jrGUYFTJ1VvMpYV2f6GlajvjRCwSHiETxUrEC/mYekPI+SCmSPlKbesdrBCobWKk6W0AizjKcQVfRm9OhgSiYWfXZSNRr94h8HhK7vV/BvWfAaprmM/06NMbS1XDqA5TqVS94VBFMPTPW8uhSMOs2lOrksN0HKqBjFGiSq6YR1nqbxeGNIMRCGiSJBgS4jdF3Ldttz2Cf6Rtu8eZxX85Km7QmbQEmF/e2xosAzKU7kNHH76tUKIBmj6kbXGPXGF2XcSVGQE78QR7IWhZIIKmQkhIBI4dnT7/Obv/Fr/P7vf1edkDPsthvOLy5w1mBL4bzfaMCp9TS+5fb6lsNhoN9u+ODL9/jow4/ZH47kccJtz6pbLyAZ4+xKve27nrGfOQyjimScOg6tM/b1Kut/18ILawdGroSX6qfoXENpgorAckaso+k62qJchZDmSiryiFXvwJwTgo4Q9f3WxagjYeoCU8Q810gyqYVoCSZJVc7++qVzeGoylk49hDlMOnlqYBiG6mKsEXDGWU03qqSuVFBDUWkVSzWWChLoqDOpS1HOQkqWnD3QoEnbGUpESqR1jsa2ZCbtBghAYAqGlCLBaqdnUyGySB4W/ODt1xeiCIgYmqY58QSozjnWA3eRzLrgTx1X3v5Hn3SpoeocVCk/ihfUef7asNazX0xKB21kIWhUslENHV004tM8kVPAoOQV5wy7rbrw5BwrIg/TOBAzKl/Nunia1qk9lSnkEri9vuHm5hWCpi0p0FbNRFIkigETVBJqhZKcjudyxthCyoVpCoxlYBqOhGnm2dNnfPS973N7c1RijBgGozZj9y8v2e7OOH/imQ9Hbm73PH/xkufPX3IYRsyV4fzeJcdxZJgmMI55GPR8WwoYi2sanGsRgb7vKGiO4e3+AOjIr1SfvAW/rlxBlg5Am4WKHqycfF2Q6/u4LE5QQHfBhZYjWeWOLAu41Lni4qhkrQWvsvFSQd6E2tctceUK+lbEvySWoNK7e/MOrDVGjVSW83WYZ4wVknWM44CIHtNsxbHEeuWJ5AwpE7OA+KrstSABRA1hYrJa2xOEKKSohUDxSGU9FpTdam0mi6cwkSVQCJis+IDPiVkis0m4okzMxZH4064fNXzkfwP8o8AMfAf4Z0spr6o1+W8Cv1W//K+VUv78538PcN7V87Zbd/z1nI+6ui4JOncxzQsafPp3UJRY/1vT6BGolgxvuOLU1jUXzTswTnS+v3gQVLOQGI6UGFRuGqr6Kwbl4EuhaRxN44hhwhhL1zYcxonDOCmolxXEc15vkMartdnLF885HG4Qyh0uEKOON7NOAIgRawJCHRnVuCxrHYnMNB9JMTGNI9M4MRyOHI+jmrUaKGSmcSanW24vblWAEyOvbve8uLrm0TvvQIH72y3jNPHy5objPPIr/8V/zs/+0i+vgFguBWOt6hZEbb+axiFmwzDNHOqxIFcknToNWdFZuSsCy2lZ7a90keiXyWrzHVLSsRmLgCfXqYDFV2WkdU4nH7WNx1TRTL23tGg4hMWaK1LKYv6acL7iASWvX7ec4bWjqRbjaNx3vf+BQowTDktKDXGeaLvt66auTrsQzSXRIlCMHqPEVMefhdefjLoWJYhRWGLNSh0dkw1CxInHGXUd0sWtBjnGQLKBWBLWJRyRJIVQIukPYDrwb/CD4SP/AfAXSilRRP7XwF9AcwcAvlNK+YUf4nnXS0Rwru72C3AjdeHD+iZQlpilNzGAuz/L35f/qp2zqX7xSxFYDwPrKGdRfokxZGMpWKzX40mIgdvrV5Qw4aTQWiUaparTl5LUCckahuNRdQ+tY5xnhsMtcxJiLmvyka8uvyVnrq6eMwwHJZeIkkqWgBsNZk26YxiLM8uZV2fh3jtSvaFDCIR5IoaZxlu8MyqaspVCmzXy/OrlSyQl4jjx8sULvPN89PwZF2cXJGMJAte3Nzy/esn3Xjzjn/6z/ywIlSevS9cszDmjNmreGzabDX1/5DhMpJSqXVd5bdTGAtaeHAkWUFbphAvSroDqPM9kdCeNKRFTJBV171WnZg1imUOAaiZjkj6fqVhAW6RmTVidPhRVFaYYqiZhiRHPJz9PXfTLUYGMLC5KddMoUkhxxkhDmCdSimpke+Lq5KyjWEuMSjJTSwZXOwGphUZ/74xANrrei6XgMbQULCIJIwkpVl0GysLAyPWYo51uNh5nEs5mIpFkChPzooL+1OtHCh8ppfw/T/7614B/4vOe57MuLQI6h76zV34dYV7uleXxnwUIvvY5pAJouUICd52A1MNrKXez3ZR1wdoCTQUrj8cjx+MRwkzrBNc4DKnuKJF5HHBm0aEnDvsbxHiccVgRwjwxTAFhyRVU48lhOHBzc02YRlJOOCOabyCVCR6VxJILZLFgItYr7/3uTA0VdULQwnDv3gVnZxvGYVxn7wt2MgxHPhoGKCpRtabh+y9e8PHz53z3k+8TU8Q1no+fPeXRk3c4TiNd16i1+SJ6EkWsoaztc9+3XNy7IOVXhGF8bbdnfZ0Li41W7W8raHdXBHQB6+8XYiShBSfkREbNZhvr1/slzHMV7eT17K0AXM0K6DbgskaayeLAE1U0lIQGtxbc5SihHJ9TOTDrvbJ0joVUlZhCHNPdceFkBzLGIt7hKMRUmFOhGFfdlfV7Gmtwy+JHi6B6HigfxVYXYo3m06Om1d5I8SwFalTLUjJWipq31jGoE79aqH3a9QeBCfyP0FzC5fqqiPwqcAP8S6WU/+htXyQnuQPvPHlnzQRUz3azLlZ4vYqJLCMdXusUfrAQ1H+Dk92fu//W8+nS8umRAFyNE1eegOIUMUbdZayhkAlxxrAIShIxBXLMNEaxgOtXV4xTYnN2jyUSOladeYyGYTjivSXFmf3tNTHOxDDjxDLPM23j1bWoKFhIzlhxYGak6aAUpmkkYiq5Rj3tfONJSQ08nrzzkONhTwyBSE0gQkiiHHPnPQG4Ph6xL56z6Tccw6yuNdby7OoVv/wn/n6GONOIx5YqurEK/KWUKET14q+5hNvNhnmO7GMkT9OKCKwFC1gIUiz/WspaIMraHOiqU21AZI6BLGXlkbReEfgYwjoVMMubXmpMd0pIjPr7OIcR91r3l1Je6dralCh2hNXjI4k73GC5j5YjQ1agMKSAtYZxjNVvUf+tVK9Cqa+XK5rCXKLqFfR4ktUS3CpOlFNRu3UKVDq7MxZK0AKQ1CjWmIwQuCNmV/Zh1q7Cimj0INqtGJx+/IdVBETkf4G6Cv9f66c+Br5cSnkhIr8I/Lsi8u1Sys2bX3uaO/Ctn/npom3UMj9+feZfFoCoVr2TIcBnHgX0i1mnAvUbrG+o0jczkNYbsWlbVQOiL2pKgWkcVInoHJIjKQY1lsDUc6ZRcQmVoTfP3N4cyFhct6HxOk4MUySFwP72lr71DPsbjvsbcpzJMZAkEQz4inbHnElFEJtB1MegpEAKM2M+UCZlNYYwK2nJe2IIdE3DB++9y8tnz3j+4tXJNK46JYko5R0h5cjtca/tbdU8iLN0m46f+umfwnpHTAlzApnnkkmxaHindVWybWkbx9luQzweOE61G1jfqwUiLCd/Y/2c3qiseQiLmCgsRy6rLlNLiGpOKuUO06RFspKnclrIViq6CSGAndWpp5qF6vk/17ZblhtSjzqiN0ipYGFOOnGQwqovKVVtmPJMspZpOOJsR6EamJg7hyuRym0xyjZcNqQVxzIW76zySSSTpGCyMkV91aiojkWNS3SUvJYl1E8wIcXrz1k3xCKo4rAGyebXJjWvXz9yERCRP4sChn+q1N+4ZhBO9eNfEZHvAN8E/vpnPhe1dVrvmLsicHdsXFbzHTBYf467Fgx+4GNZztdUMopQgcKkGvMckJTw3jOHwBlqcOqsMI1Krjkeb/DC6rmfjaUUo0hzMcrkylnb15iq1sFqsKarN64zEPSmDMc98+GGbB1h2GNLwkshhZkohdx4pmkii1KVEVGvuhiRGIjDnmwCUSyxWAXTmh6xjlyONM7xzsMHPHn0kNubPeOQ1joo1TsP69SKy1lyTgzDkZCUvORNywdfepcvf/A+u21PjrG6I+vrRl6GfwWT6oJNmu2w7Rry+Y4wDUzThHfVhblWX/Un5CSzQPkH1hrE1J3Q3C3EaRwZjke6TY+0hRwzQWaOx4H9qytl6ZGQrqXfqEIvZAUwES3IoAGuxdWjwkICkipEyoYlf7DI4g6tf0qVMOvC1wlOzpE5zKqQEMOwv+XeRQeVkESBeZ6VX2Kd2o6X6mptqRMJ/Z3t2tma+jmtnQaj/gtFBWsm61EzJQfF6ZSiBHLWsFW1ONPjVy5L1c8YPMjrRfzN60cqAiLy30aBwH+wlHI8+fwj4GUpJYnI19Dwkd/5IZ4RNUe8W9hlPfAuC/+OD7B8/OYR4M2rlEW1dnd0NgUF8krQIhAnSJGmbZlnBdfatqGEzPXxWtv/6YDxTfWmM2C9tpwxUkyzhoPOcSaMQVOSt5n9MDFPI9aj7r6SETKuJOJxT7GW4fYGWxLWGaYp6Pw/JmLKmLbFO1Xc5TCDd6RpZLy9xnZnJONI0tB2O5quJxWDcx5S4Kxv+NKTRxwPIyJXhDgjOeGkhqAWRc5zdWVztur+DXSt52s/8WWePHxAYyzBplo2dXdclYBVnCUlQRZEHN4Yzs+3HI63zHHGOLuocVdc56RMA7r4rdEknlTUny9mbeXHYWA4HGi8I4fAECKjFG5eveL25pUi5SmQQkvfqew6xgTWUYzRDqsUgnFQBKlhLYvrlFiLZL33UtLJQY7q5bikGecQiGFSINAIRTLHw55dv2E6Hhn3e+zlI/15xwHjOqKMuGkEMWzcFnLBGT01SC2hYpXkVSqoaU/FBKjDkNZEQzZZF79YhFaBwJIhzuQS1NAmF3Kuv0OJFCJSU4/Lj9MJyNvDR/4C0AL/QV2AyyjwTwD/sohElI7/50spLz/ve/ApZ5alC3jj5/nM883rz/p6B7GAOlJyBfFi9Q/Qc5yIHkZSDAzzwDSN6uqbAtHojlVW7/pK4rGN1lgTKNjaGaimQETP2LFSUZ3opMYZONzeMI0jt1ev6rTA0XqPq5bguUpsYSFHaYFCLFmE3rbY1uHblm67xW02zLEwGSGmQOMsjx/ep2DZnZ1zfaMGIqZkxnFiSloMEA1maRoHBmKKPHr0iJ/72W/z+OEDhuFAKuqqmw0YKZhScQCDZt4tyjoja8fR9i1+8GoBX1vs14RGd28oy4EgF22JjVGjjznMpKRZCGmeifNcFYiReZp04lOfs9QzvjEG1+jumXK9X3JR+rUYOltFam2rRKQF7JM7RaGaqaY6n9fPxRCYp4FSMhjFYeg23F7fEGYNpz0OB7I4NmeVK5EXRqIeM+7YKeXkVVBg+q1rAu1gFUExIAUxSt9GBJMzki1ifAVWM0sMG9T7MYfKjn37Rgk/evjIv/4pj/13gH/n857zB7+OeiaS1xb58vGbnzt93Om/vVkc1L5Zd621sYBquU21i9LzW875hIxUmCvqnIreENEk9Q6srVupz2scyuQLTs0npRaI+rOqW/CMILTGrG/4PM8M47guPFMDVsWY6kVQzbLq/8kCmFHWuLHWO7Vj3/TQthQiuWg4SWvg/GwLxlOMY7PdMI8jeR7YHw4cp8I4Rz3PO4vzpuY3WL71Uz/Fz/3sz3J2ttMjjbUnC1RjxyFDTdctNe9RTTb0/ej7nmOnoiXnnPr9xbSqG1+7REldFD2imZqtMM9hBefGYaTxms04pxlKwTmrVvBuMWGN5FJUjSeqz7dFX9+c1fW3aXuaxtPlbjUJWWhMpbbz6vSU6nul7MJ5mpjmmZyjvl/GMAwDV1dXFGMZhkH1JMVhm147kRNUfimE8sZiXGrQ26+F5JPXxy60+YWOrMRDoZh0J0+WRSKnqlEtIJ++/r4QjMHlOl3Eb9vx31zwp4Xg7c+3/B+6i68TnvrSZh3tlJwxde6tIqKGGDuMNQzjqMaO1cK5iEXE6dm2GngiBXETYpVAk3KuyjpFkadpVDKLb5nmmZQzznu2ux33QuDm5kbHOdU8JKWkEeqLTVq9FXzT4NpWx0zOVs29suZyLRDTOHB7e0Nu9Ezctg0P7l/Sb7ZMw5H5uKdpG/wQccOkxBvvMBbOzs949Pgxv/RLv8QHH3xAQRdW4xS9FpPvEHwgS2KxZzW1+GWTQFgdovf7/Wuj3Tev9T0tpfogVuOW2gHpRCUyoa7L8xyZ06yBqcbX7EJHKolxmrHjhGll9WwoUQ1EsxiMVZ6BMVpwp2msC74qB1NSwDAvSUN6w8QUmeaZOURyjoQYaJqGFy+ueHl1xfbsgpubWy5ci/WpHgEb7WKWbsCcgnmv3aWfshreRLZPP7/8WUEuFuu0VDuIXLR0pEX2/ON0Al+E67MW+ud+La+/nAs2LSLKBIwRSeoYs8iIVblWiKlR+azRLEDrWoxvUBqqrWfhqOXBNRinaUCpwDhOzPNMoYaEjBPJTIRJrcwWF6UYI+M43t0souSWtmnUUMMacq4tpXM43+DaDU2nYabOqfloSZEcA/OoSsJkHLmA7zzn52f028Lh1nEdJ/zs6IvanjVdy73LC87Pz3jnnXd4/4Mv8dM//dP0fU8IAeuoTLk7nEZ/zkquEp2u6NtTE/KsOjwvDtEx3rkQrYo6qM9Z35E6ll0QepWOV3XgSVGVCiwYUeAMkWr6WTgOA0kcTS5Y34AYJCt92TqL88rmM6LS4xjmdQIQo5KutAjUINM6Qgz1e89zIKYZ5zzTHNjvD+wPA0234zAMnNUxaoyxOlRFYtQRn5hPv38/63i7ktnqY9bXoH6cKoCZ6j28uB8tE5A1s/CLLiD6vOuzCsDnFYe31VDqmCZlteC2VSNqjSXEhIihaVtsUe43xjCME9Y2WNeAOHI2lBz1+GUy4hqMbzUYxDpC9ckzRkNPYwyM01HPrjmvrkjee7qu04JR32jvPb5p3tBLaD9grFPLsbalqQ7E2oJrBh4ls+lbNp0nhIhxln63o+k23PYtcTwwh4lm03D5sOXho0d86YMPuHfvgvsPHnB5/5KHDx+yCLVM3SHVUu1uUlOkkEtCObHqFgS6vm3FT5YwVu0G1ipwci03d2XAydI2i8qGXbUlp5qBJp28zEm1/M5qapV6RWgKVCiGjVgaUEWo1eTmpt/SbzStylo9nmjKlToEhzmo98I6HQiUmChRA2KX6c80zbS9LvS268nlhhhru746R6dqWxaYJ+1gzGfcp59WBN52b6eq4VjenyUpK8XI4mdxWgSMzlv/7ugE3kT8Tz/+gbHfDxCD5LVqeffY+hizuOyg3IBaBHJSAxApqYJKjuNxIOVC07cQIx4oIrQYRZZto/PlVCBqS4xxiK1FoO3wbYdYJf7oUVDnt9M86cw+30lhm6Zhs9nqjlbfXOc0WzHEgMPVs6BTW3Pn8W2Hcw2+0SKQsJovkCPOCu1uw6axTFPAth0PHlxy/9E7hOkxu97z7NlzXLflvQ++zDd/6lu8//777Pf7ql70eqauqKw52XUqIlVZdVU6bJYu4O79ME4JO957xQaOQ0Xe3zwAV1Cw1GlF/X6C4Bc7uSoWipUa7VylCs+TWsb5hhAmNLk5UQi0VWVqraWpXdX27ILNZlc7ORU4WSMkalbjNBGTCnpSDsRpJk0K+M1hZgqaHxFiZtof2W53vPv4Xa6u9uQCbdPpSDEljAfFbgKpDIQY8NUX4W1XfksowNsKwIKd5Qq2LkUgLGPMKrMu1Q8hn/AuvvBFYBELLR+ffv7Nj/9OioAmMp8UgaJFwC5c66zWXraCP8YYhnFQ7rvtlZNe48l924EoyEaqicOqUayJRB7rO0qONN2WbrPFvHpVzT0VfDNiCEmBpxAV6b9/eUnfb8hFXYQ0hVlHkHPQ48Tiw990PW3f45oO17TqsOsdOaK7QJzVQdmgWvdS2O02XFycc3F+xrZ/xMN75xyOB9rtOY+evMfjd56w253x4Yff4/rmhpT0dbHY196XFLUNLXfGDDXd+Q7rLpWDkGtYiHO+Okf76n5c3gDGyh0oK1T1Ha+1bypZ9qQQGIYBEVPNVrRz2vStHvls9TF0jqZrV4+H1jc1xbqjaduq6lO1ntKIFfdQfCAoUBtn5nEkDBOxAsTjqIIs9ZMsPHr8Hl/52tf55JNn7PdHvG+r1qPgrN5fMc7kqFZ1TdstSPXf6erg7raudui5VL7C3d8XIHrJHSx1FrF4Zn7hiwC8jvqffu7Nj3+0IqA7mBSlWGrEk6K/OWtEVKmA0XJMCCExzTO+a9X73TiKOCiWBXtNFXwxGKixZCa3uLaj25zRbTYcbpX/L/WcO02hvjmR6+vrmr3oV3zAVqppKkp4MU5dlZz3ON9gG72ZjW8wVl14c9Yg0Xk6YkyhbRwmazjp5cU5baNsss2mp28du3FDuz3n4t45ro7JlsVo0R0npoS36mlQgjoa6+uT1XzViJqtmsVevM4/i2IIJheM16ShpvEcDm/HdtYiYE9IYEvqTlGT18Z7JhGOxyMxJrq+oxRUz0GhbRt93Xym7Xp22y1N21VZr1rSK1hWan4AdTfV5iZFHb/mrF6PIUxMgyZKz7MW0xgzw6RuPo/ffZ8PvvI1Hjx8h/sP3mGcvqf3oVFtiLNa6lIMxAwpzeuU54evAhXQW4Hw5XNwVxju/qtmrWa5IfXKhmkeXhtIvu36u64InD72zc//4JMu/343nlkwAVMdcGKMeJPqWVY16qkUQkrMIWK82odppLUhZ3VyXb63c14FP1HFP2I9runotlv63ZmeU+exhn6oBdliHZ5S4vr6Wm29qhnFEq82V8BxMc7wTatFoP6R6rOYctaAiRxJccYZ8LYCmW1H23qVE1czTTkZIYU042OgFR2rsQDipZBiqlqEVJ2T29debzU5SeS80LiVFpuLILnq9WPCWkfX9Th3qKYndwthKT4i1NFhqRhKXBH6JUFnyUAchiNitKCGEAixwbjMpu3pjaVp1N6r61o0MlxZnkthk1LI1YAlxZkwTRrLNmsgayqZaRwYj0f1gQyaTD3OStF+5913+alvfZt33v0Sfd9zfnGfj7//fT1WyqJLKQjanoOpjMk6kSo/iAEsgrnFtwAUijp9jZbXfgGvl39b6PbLONOURTuRIea1I/is6wtRBJaz+2ct6Dd5AsvHd8/xlq9941OnR9LlxZznGe+i5hJYg3G+xk5ru3U8Duycp/GGkhdsoUpFncW6BmtgniDGEZzDdR3ddsf27JzheGCcBkJM61TncDgwzzPGGI7HI7vdDlBAcLfb0fc9Q5iY46TKMmO1xd1ssM4rh6DmG1Dj050zeFNwTohx5vmzT+g3B84fPKLfXSjKHeeanKsLdp5H2rbXr68agTzNNcmH2h3d7Uhv8jFSuttNc64U7WwwRUG0XCa6ToNjD4cjt7e3d64/aMgIaAGyTiglqHnpoOo9UOfhaZwwoseCYRg47Pfcu7wHov4Th8PA7vweZ7stYZ65vrnl4t49LQJWNRdUnceCx4zDSJgGDrc33N7eMk3qEjSHwPF4YKjiqwVYOw4j77z3JX7pj/1xnrz/FbVgN4Z+s1M8oqY7KYiY9EjkNGiVmgJkrA4cTidBxlTbuipUCyGsXenqnVg5LKePXd6PBVxWQ1upRKuMCYEgCd/2y93/qWvrC1EEFrT+7/T6POagAmon30V4PaK5It25gJUqbREFmELQJKCYo7Z5vqkzZW27rFSgJiayVT2iWAfZIa7FtT3NZku72eCHIzEkmPNqnbZIVUMIHI9H+r7XgNVWd9wUYw0yBesdrnYCxtVQelNttJffS9CzqLOUeWCejggqYy4loVbfy5BfJ8opRc1cKOrBn1IiVTq0KZq9YJ1Ka4W83pz6PZdW9e4F1cTcgjV1hLpEeyNrZuQiPX6NRIMi62u8VxX56I1eE6Lr18zzRCmF3dnZyo/IBY7DVL0BhNubG168eMl2u6FtejAaSIvo+zXPs6orw6zW6eNADDMxBoZxYpoGwhwoRQliIc68/8EH/OIv/zf44Ms/QSyOrtticqLf7nC+JaY7rkGJieLrzryamOqY9Ye5b9/WES9/nHOvvR7Lx4vj0gIYWuuxNq4b1x+2lPgP5HpbETjVC5xefye0YSlqfKHAyXLSUqqr1M9pWIgqwxDHHDNNVKehaZo0DKQUNtszvO9qKk2ikHSHr5u8sSokEptxTU+72dJvz5jGgRIzcU44r6h+GUYFbaaJZhg0cr0GnMxR8YgkmdY3CnI1arNt3DK2VGFRHZtjKHhncOKYQiHOIxT0KFISNVW9ItHqTZhSqO7EC0dCVoMSW4zKcLGkBKbYdUZf8pKGq8cMRaMTLluMzWqcUW2/lCOQV1LTNM0rnXY9z9Zjja3PmSqJ69QhaLnhl5Z5GAZco+nNYt1qeCpSCCGuo7PGq5bfhETKrBLiUgrTOHFzc8PxeKBUtWKYJnJM630Cha7tePLuuzx59136zY5hrn6BWLbnF3SbLWFUvCLOKgu3jatTIS0AMQYottbM+qZJxVBS1nsylyqlL/WIoHkFZumUuQtTXeTBCxjpfaM4jaiNmneREBLW+PWY92nXF6YIvG3B/6gEodefhBUPoJJdloW/PKDkXOnBGbHqC5+LCmpyLozjgWkaefwI/IXFoC2vjhbV991UO6mcM9iIbVrafrcWgRQS0xgITcLVGLU4ZlKe8cOI85qiY+vimaYJ4y3OazS7b5vaCfiatnOXs0DVQjROaJwnHiDFmVwKIUxQCtZIvUmAkkk5QHGkrL9302roSxjGOmoruBTVtioB5MoKVOPWXF9HtXBP5Gwp2eJcoZiANWntdKSOQr33jOO0dkGnZ2Ed2bHiNBqeWtb3cCkC3rq1CNzbbDDG6u8ZM2WYsDV9qGn8mksBMM8BMWnFJARhGAZurq8ZjwONJpzjjEWcCn1SinUypMBtAY2SM55pTngjbHfnbLZbXu6vNT7MG0Lw+OihytVVexBZl9taCPRD3c2lov53P9/yP8SwoA3GaDFei0AFtTXf0NbCXM1abdai8uZk9o3rC1EE1nn+D3z+xysCSyTdm1ep1XeRZS9c8ZQy4lx1sFFefkwz0zRye3ODtw4D9N0Wi7Co0Rdbc53lR6UWu8rs2+xoqwFo182EKdS4tYbj8ajKxRDY7/crWNg0jVJTnVpotV235u3hfO0CzPrLrYvICq3zDAYoiRwVoUbKXTQX2rbnFDBemZG5ZLquZ7vdMAyTAnpOd2SThZzVLKWYky5sZbItranGiImx6pHo0rpzL4Bn45XduDDdjKG67FSCTT0KaIJyuCvUJ+2xcxYJhRADm+0W3/Rc3dxWlp+qALrGsen7ajFmK9ip83O1/TKIgeG41y4gzGA9bS2EKUVCMExTIQb1IhznwOE4YrsRjCGEAhbafsNmu+P7IVbpNITQKi8iq/w45USIAWO6T71XF0DwVBdzyg68e59roSi1o2URvtVNtDIDl03VOafv1Wesky9EEfi068fuBGrXtZ6D6z1lTl5g5agrxzykhLR647RdR9tofEUKMyZnrl4843hzzeNHjzk/v4ezDmeVn21kEXUIWQxiHcY3ig10G7pNII4Kci0kmsPhwDiGVax0PB519r3ZkIlszrY6Qmyaat5Rsw1fW/xlZYkZKXgDzgjOGGK9TdYpaQUES1bHXWPqiC9n+m3H+fkFV1fXimaX13Uaaslu7trKshwrlkKghcYuUW4pY+0dacdaU70BLaXE1450y0RCRMVT8zxV6q0e2awYstUbOxUNZm03Le++9y5tt+X4nd+tgSlapEs2K/1YefsKqpV6Xg5RJxdzCDSNuv8aKdX8QyPRSgrMAoXCME4cDkeKCE3bM87qpCO50DrPbntGQZimmcbpgs5R/yxMx5TikoD3A9ephf7puPtNbGClCa/HqZM/qZzc8Nw9XzVH/azzwBeiCJRy90L8MNenYQVvfd51N2G1wc9V+roABcs50aWk2UPW0rQdUixCIswj3sI8Hbi9vkJihBjpzu8pSCeLnLY+pbEIpZJXPK7t6TaRMs2M+wNj29L3PX3fs98fmKZZF0k9ToQQEAtdpyQXDe00tXNR2y31yy+rwCaliK05ecYIfd+QiqHxtpJXoKTlrJ3vXpB6ZhUjbLfbuhADOduKZKcqyU0sfAAFWJfzbmWwmWqln506Iuc7eqsef2Ul8IxlPHmPTulGCkbOIdzd7FSyVM6kxuuZvWTapuH+5UPOLu5xcxzZ/87vME0zc1Z+w5JixQnCrhjDEooaaXzDo4ePIM0crq+IIZJSIaag8uCc18zK4TgwTQHvWuZcKKEaeIphe3ZO0zSkFEiVuZey6gYIM7YKiT7rfl7owAtofDo9OO0MXi/MJ5oCdJMr9b3VAm/uQMQ/DGehP+jrbS/SpwGAPywwWIWgK+q/OMWmklSLXUGpnHMNr6ixWEZHf2RV9jXeYWk4222Jx4H97SsssMsJuz0H1+g8dk3V1bRcMRru4ZsO0ydkDhz6G5phoIuJruvxvmGcpjpy9GvUVjGZftPTdV0lD1E7GT07aqDKsrBV3SYxko3grLDpOxIO32iOo4JvWiyou+MauFKLg/d+BfNiskiqGX6h6NSDXMejIGbBVuo4zCzRAE7VhjWVVzMk9P3QFOIl+uvElLMCYYjaiYUw10WhOIQ4ixR1QJrq0aLfbDnbnXF+75J335t5+eqaly9fEKaISJVFK1hDKpUXkHNNLNIjwu5sx667JI5HPjzuOR4G5lkXb0qBgh4f0hzZHw862o2BlK0W/6KxX2fn52w2G8JwrbmGRc09YpgpccbHRdu3XHVWjPpoKg377miV85JzsEx/7qZJOb+9CEjRIrBQim3lUiyo4I9rKvK23IH/FfA/Bp7Vh/3PSyn/j/pvfwH4cyij5p8vpfz7n/c9Tkcdb3zvtz7+h+0adM2U14qA8tfTnbvtyffPqkTBVXuzxaW11Jb63vk5EiLPnj7l5YtnHMPMvfcsrlNKcsGudFmyEKzSWH3X6Qhymmn7LW2r4JtvWtpuwzDOygVoOzabHV3fA5F+06ui0SjVVQrYUs05spJoct11SoqQIyFqYes3W4o4jXezBlCKtM72tdtZeOgp6Xk2ZyXUzGHGRwPBYK2OTHO02Oo8JMJ6lMgl1vGX0lKi81iX15v+bta9zLTd2uZau3g03uFCOrqLlQSlCLqtBiu5ZHzT0PcbLi7u0XTKtnznnSfc7g84Z7l59ZK27XA1r7KgE4EpBFKMqiQUpXHfv3+fy7Mdw+0Vn3z8PUIITNNccxYixmrs+TwHDvs91ze33Oz3YDYY1yJFjxVnuzN2ux030x7v9Eii1PBACdodLJFxK1KtvzWLB6EapkrtiqsRahbAYExZP3e6Lk5HhQYgoWIvEYxf0o8/f8P8UXMHAP53pZT/7eknRORngH8a+DbwHvAfisg3Synp877JDz32K3esqh/i0fVurbPBIjUYY/2JoWa4rwYj9YaGwhwTKWo6rYpOEtuzHWGe+eh7H3L9yZH+3r2KQBeKeI35suo7sNhXOa/uQ7Ed8G2HbRqwptKFa7quoe5wPdvdjiI6ZjS+IYnRXMSigRUL5VWPIGqBVXJUL0AREC0oGO0qTAXHUizkVLDeYI0nVgFVTJFxHChoulGIsTLOalR4iCQmPS/XCYMxgrUKTMWoPn7GCD6qMcji3mRq+IjmFNT21iznX1hcUK2hLh4FaNddTmqakHO4pJFjXb/l8sFDun5HLELTbfngJ77O2b17PP3+RxxeXTGOM945cpkosWCpLsBpJlLYbbZsu5bdtifNM9a1nM7xc1blpKmra7+/4erFU3KcuLh8wBg0iyAX6PotXb9h7xzGeXVbQvUoKSZkNWpVTq8s3elyF56c/Zejcc4REbve63dg6t3xYPlZSy0w6jB8V2vUl6GAKfxYUuLyltyBz7j+MeDfKmo4+rsi8tvAHwP+k8/5HsQQPv0BsvynVsC3Fozy2oOXJsKYUnkCOtdVZFUBlLbfYsQwHkdKmHFuRLqJe12r47IwEwi4Zqs3kQvM7DHO0W83pMORZx9/lycffEXPxwRE4Bjm+v11Fh6S+sXjG+xmQ7vb0c0Te39TA0uVy7A929KfbbFNw/Z8i203zMUgpqlMQU8u1aM+R2IY6FqHSFotxUrJhFywrSLnznWQwar9LAmL4IhJKMbAokAsme2u5ytf/TK//dvf4TCObOwGl4UihlgiOaGJuUZDM81CgszqzR9DZDyOZDmC6C5dsqkjVIO3DdtNh/fqxJOMxRrBO6NhKRbmSUk7xli8a9QQ1QoxRIZZUfxxDOwuHjBnQ99umeaM73dciKVte4b715gSq29/AWZ1Bq5FUrSRouvO8W1Pv0tszu5j26eU4UhOM4WKD1E433S8Okw8/+QjXr34hLPze0jRQorzCHD5+B0++uhvM+fEFGaMd5AS8+FA13TI5SNKChogsjCXVq3FgiUpnuO8QYxfXZh07GkIISsdvKZSiwgxVnVlu0EckC0GsM5UD0Op3eIfDjD4PxWR/yHqJPw/K6VcAe+jYSTL9WH93A9c8lruwBPenGSedgarX/wyDnkLzPpmXVh2mmVMqPNtq6i3GKRA4wTrvFpq50ycAzbOdG1TKcEejMM1PeSklTXONH3P9vycmCM3N6/YX+04A0zTQ3aEoGdFK2U1fMg5E0WgaWj6XmnAbUPbWJrG0jRei8B2A9bS7c7IxjJnwWER21LEkYvRRZtmSp6xjSHmmZIDzltKEp1WuA7fbDDGrfN2KXXOJ5aSDIXaISS10vat4933nnA4Hvnwo48ZRlVRGhFKmiuzUouIqSIZcvW9L5BjIRDAjLhmJKeOnJXwUooBNKpts2mJNZadkirLUHQKEEPVxqOgau2SQkzEXEgI4jq2F5ckLNiGWPQ45VtD07T0bc/Ni2eQA5ZEJmFyREqAYjTiPQvObzC2o+kS24sHtN2WPS8V45AMVWi23fYMc2R/c8Wrl095970vYWwHovJuKFzcvwRrmVLEztB06lYVUyLNEZMzJWu83MKoXJKhsiw+jKaOc43+wZyMDlmxg+VjEVnBW4zyLuzi87h0v3VlvX3j1OuHg9l/8Po/AF8HfgHNGvhXl7X3lse+9buXUv5SKeWXSim/dHl5uXKjf5g/zrkf8s/dyEeJMqYCUK7SKj1t0+GtOs4suEDTNBQRDSK1DnGNnssRXNuxu7hgd37GZtPjHLx8/pT97avVtBQycR6ZhqOixSgnPS48/0ZNQzb9hrbtaBpH13f0m42mM7ctxVjmlAkZYkXlQUd08zwzTyMOQVIkTmMdBeV65LSqMLQaiVXvgsrHVyLJQiJJsWIKRYVIm03PT3z9azx+8oQ5BPaHgRAjIURC1pl5zlmDQJwSnBawMqaix4uo2Qypml0szj268GF3tuXy8oKzsx1N4+tWWK3FpGjcWFKAz3lfF4U6A4WQuLi8z/b8Atu0hESVe6uMVrkay88ElKzBKXL3h9oVYjwZh/iW7fk9tpWKrISqAtWco20bNn1HjBO316+IYUSj4LWtN86y2WzZbM+IpTBHtSDL9RigPgnUj2vBq0V0yVg0dgEIFc62J7b6yyay6ATuUrvvMjuXKYsYECt1YnWHh72VMFOvH6kTKKV8snwsIv9H4P9e//oh8MHJQ78EfPT5z/h6xHj9Hnf/KrL+V+rifMvP9JbHK4quL4TRXbDOUp11iC20Xad032SZY6Qrha7rKRmMcTWRWDDOIMWSgiEQuXfvktZbQgw8e/6SV1evENuxKZZSz2K5ZJwVjPPkeWJh3TXe07QNm21P2zY419D3W7peY8xLJc5E5bliUkZcrom4iXkaIAVc3+qxYJ4wJVGw9Qyt3Y61VfZckfqYdMy32N0tU5EUa1hGUVziwYMtPxES4xR4/uw5w3HCuYJFmKKCZ9Mc8F4pqakagoJy2DfiaKsjz5IbuACQzjfsdmd07YYYI8PBkuYjVqSeoaM6/KS8AokpUVtgS0iJx48fc3F+TjGuHh00zl0LnPIKEA2OybUL0RDQu3SrRWae0TSmi3v3uHf/Pi8/6RmOVl8T0fvKO6vj3PHA9c0N8zRjfSLXoiUibLY7zu+d8+LpDUn0vcurrLfU111b0zd3xVI7rMzdhGDZsIwx9XdjTWBe1IQr1+Vkga8hvidr5vOuHzV34N1Sysf1r/994Nfqx/8e8G+KyL+GAoM/Cfynn/t8vH32/6bIRD6joi1gyeuP1WcXUTimyAkyW8U0tmkwriFOMM2Bplic7wixzvuNSna9tTjjSTNICXgrNE447O9zHGYOxyPu5hqsU47/woRL6qK7iHes6M7hjNERTj33ucZjnZKCSskKBEolx6RMCQGRihrHgDeqjU9pquETqQKGapSxeBGo664y1mLKWOPqxqBTkhQmknNrF5NywZjCgwcP+cY3wFrP9z/+kP3hSFsZhiVl5jnReLXNSlFzAI2tfgxp4S7UEA+72G/r+6zhLp6cE40VSB0pBq6uXjDPE7A4LLm7Ha1oMbPG8PjxY5xrmGIm1cJVSs3oFUM2WuhTSiRzQr01Vk/5YkCMagqMyrU3uzMuL+9zfn7BsL9mHBe2njCHhKsuR9M4r3ZiOgZWV+OmaTjbnfPqhcMs41vQ71cxr+25IxTR7qiSr4wIcSVdlcqp0A7BcKcmPF3wpySxhTtw55bNa49ZuoQfS0Akb88d+JMi8gv19/zbwP+kLtpfF5G/AvwGSqr6536YyQDyg0XgBxb03Q/0ufyBU4XbazWj1Dk+iqynUnDWY50jZphC4txYrGmYYsCJsgc1OzOtfHffNCRRc8/tdsfFxT2OT58xHA+4tqPpcp1FZySpfVkMGiyyWI2xDCyqbZfzjUpejboa5xpNXDAqqJl1bBVDgKJioRRmShi1Q0B3emtYuwFrVd6bSybGWcVOXm9aaqucYiFXM8zFrsoUQ9P2vPPOk7pQ4NnTj7l+daMkm5q8O88RZ9QIVcEozV1w9QiwtLF3JJdyV/Bruo6TgimOeTqqMcp8p3UoxbCkRS8uUJvNhvv3L+vPmkjGUk2a9TUVqRhE/b6VfyC13TZZyOj7GlLCOnUL8r7h3r1LLi8vuXn1Qr0h6mKephnb9Kr3SKrudNaTK307xYgVw3a7pWk6TA6afSiyzvjnELjnHTEoGSwlU23k9Di04DKqC1BJshG7tv4rKSgvVuJ3r+8PsAdPFv2bf3/b9QeaO1Af/xeBv/h5z/sjX6V8Ksjxg52AVno9jVXqayVqpJhJqFTUNg0xF0IqONeDcaQcMEVTdQqZOUTSPOAk0hjNpks50bQtF+fn3NweOE4z0/F4R8bJGcl61p2mQd126vhx3alSwhhL07R6zDGmBkzUXRDRwI2kO1AKgb5xeIFpOFDCgDManxUjFAsimhxs6kivkJljIMaMcUvIpiYz56TElkU9iA1INmAjvu14/0tf4vLygg9//5xf//Vf58WLF6qxoDo1KeqKoDtyyuBbv3YCaiySSemO8uqqAjLX3V2KevNNw5E4zdpViLbNCwYRQiCmxL3LB+zOzpmmiRgLtOoLYajHHPKKMSjOUVtj4zQ0BTCiJK6UdHSWFZrn7PyCBw8e8OL595mnoxKGivoZNratOIrO8p1vSGIpaHJUMZGu7+naHuoC15wKXcBzmHHWUqZU8SFt+a1roKCSboqOXavxjJH8WiewsAqXQrAUx+VaCsLpkeC0SHza9YVhDL7th3zzc1JvjM967B1VtdJa0WKg/6t02VKIOerAzBh825GKoYhne3ahCxBtGW1tz+cpEuaZNO/xooo943QO3/UdFxcXjM9esL+5WdvDnDJWQJzUHbbgK+gkRtY5uK2sQuqZ1TpDMWYJ7+XOjShAyvi+YZ5GhtsbJM30vTLDUsl4TJ3fA8ZgnBbAeZ60dc5qzGmpO5XSzCgxquQZh+8cKUYwEe8bLi4uOf/pDU/eeZdf+ZVf4Td/8zcQBGsscZ6wxtE2Kr6xVrMHp0kt17339abUP95HPaqI1Nd1JE0H5vHIcDxWT4PXdze1+56x1vLOO+/Q+Jbb40hheZ56/EE1CTllSo1aq+57aBpwLS7iqpLTrY5FJRf6zZZ7l/fZbrdcv/JKrsoqPHIFKKb+jhZrPbnyBGJS63lrG5qmJ8eljbers/EahFpxmBghuoit+oJYY+ipnZ86FJe1EwBeKwSna0JZmfKaE/ECjt9pFz69If9CFIGFIPGDn79r7+UzjgGf/dyZO/NF1l1LSiVWGEvX7yjWYxycnV9gjKuSXX0hixRsbDGlMKaRcdgT5oQ3GmQpYtVQs/Hc7m8RA85c6Nm+ZO0mcq6aeZ09O2uxxim7UOFoJeqkRCoGrGIB6l1WTSlSwgs4ybx6dcV4uMFKxNIgzqJZdUlHgACigFoRmFOsZKnKZEPdgGXpSrKm7GQcWTxYB1Hjx62ojdqDh4/4xV/8JR48eMDvfOd3+fjjjxnngDOV1DPXkZlAM47MNZAUlTEhxla7LoO1Ze1UpjhzPOwZhuM6TVi0B/q1au+13e548uTJujDE+qoN0NeTxXE31bjylS0nq6cE9T1vmk71IdZRiBS0k9GWXrX5MWUNHrW++hZot9A06gc5pQpSCxVLUVJTjnqkW0lOXi3o5mkmreYiSs+mjMTKEtQjZ1wt1Uopa/E7Pecv17LYT7UF6nB9Z0CyFJgFXHzb9YUoAvDpu/vp4v87QTwXYFBbwkU2UpmUKNKtbEKP7zZgGmxj2Z1d1CRZ1fw7p8Ba12+xXYP3cJMCt6+ek2Ng0/T1BnB01RVoHAb6vkedfdRxNsUEpboTI6uDsHNe9fApM80zMk0Uo377IWVMrsBWzhhqcGjJXF+9oIQRbzOTZGzXAILYrHp4dAwgxta2OipzkFIRddBY64qRpkQIMxlHMSNYSyoWW8/7yWooy+N3nrDZbNhuz7l//wHX16+IkxpyqAQ3AJm2a+6KQGX9NU2j6H/KNDV8pWkagrOEWb3+Uo3hXkdl1iBJmEPg0WbDgwcPMbaep5tWlZKiPPkcRMd6KSqvQyrQtvyvHuOoTlFt1+nxsi5M6xxtp4EupWjy0BwiDquqS+u5uLikaXumOTClQl/DTStHXTGAep+x7sgW44zGmKXlmKYdyxQnirFQZdpLR2CNjnCX4BN3MhE7FRct+RXzPK+YDmhBg9exg0+7vjBF4Ie51o7gh3gcVBolC1GhVtGlxzYLSmxxbQ+2wRmh356DaLu3kDacazWrTyKt15HW1cvn3N7smZtKQMlZgy6953A4MByPNE1TQzUtKQU1DqXBWJ3Ve9/QtOqjPw4jzTCSbYNtWqQY9bnPSX0Miqbatt5BThxvbzFlhsYw22otZiy+qKZfac6QagcSU6KpBhyl7vxKz12Aw0CWmZANoWgBcm3C+xZrDd6q84212vV861s/xU985cvc3Nywv7nl1dUV19ev2O/3jOOx2nirbFqsxdqZnHvFCqo6sG0aGu8pnU4HpnGoeIWSYRau/IIn3Lu85OzsnGwcmzrfjxkSRlmFqRb9+lqXChSaOiql/q5SNMew61r1CwiVSWi4820QVlzDef1Z+t2W+/cf4puWEJczuHoi5GiwfslK8Ou9qhoU7RS0yOri9L7ayk+RXNTMpEDlA6h/pZRT4VBez/jLtXgOvrkpLqrERaL+eR30F6oInL5wy7X80qdUyblSjE87g08FP4zBFKoYgxrsWWe2omND23aYpmXTb+g2G2Kh5gpCzGCco7KAySJY13Fx8YCSCs8+eUpOucZtJbqmZX+753C7x5yfYypxZZ41msqKQYpKhpumpes2+KZhv9/jNz2hCN0OjZs3juE4su06GqNgX994wnSobjUj3jaEWUh17FYwtI22uSnDOE36vYv+HssrpEm9M4ihyIwcB0wDYjN5DIgbcM2gIqemofWWyQ5V5ehwxuGd5fGjBzx++JCcv0KcR26ub/neR9/l5dWVcghqIMc8z0zjqOxFMVij6Ty2c1hrGIcjw2FPiAtmcAcujuMAwHvvvcdmu63uT5CwGgY6BSiJLEIqiTBPOGt017Vq0jqFiVi9DozoREbEYGzBZsViTD0+tW2DNSqwEjG1W4OHDx7z4MFjrHjcpiOFSY9cxirLs+1p2x5TNQpiFAY+DkcSwub8EeLUlXqz3eB9y+3NkXkZ7dYjmvdKCpJiambDTAjhByTHoNyB5XWyVruttm2Zponb29vXuoVPu74wReDNVv9tx4BPu9583F0xkHWxi6AmoYuMUxQsymIxtmF7fqkOtc5DHc+tCixT3V3R8711LU23pd/OdBu1qDpe3+Ccpe162kbfhGEYa0S5qWg/esN6VR2mnLFO2YL7xXPQOszU6KHBFJygJpk5glgkJ+ZxIMUltlszB00xCA6whJjJJJpO6u+i1OSu6zHOEedAzCqqWfL6Qow4E6EYIokcAnYKGN8weVd9CVQh6b3TCDDraNtGufHG4Jzh4mJHt/kG7x4OXL16RQhzFVgpOCrG1lZVgawYCvPxyO3NNcNwpAh40UCRkrNatqWM956zszM2mw1TKDhR+u1xCsQUkaJI+pwWP79EKUnZecao4Uk2WFNxkpQ4HA6qUHRC41tyHtjvDyowFT0ySM61szKcnZ/Tdb1uLMZhRJ2BrTUkwLmGpm3JcdJ0Yus0/jxGZY4aTVbyHjQTUTvN1jlySZrCtPBHCvW57doBGGNo2xbVDMSqepxea/eXQgCsk4kFJPy06wtTBD7rWlqh0wnA6fVpRUIqIITI6ipUOOk0pCbGu4aL+w95/M6T9YYtsqjctB6kon5tYht809N2WyUX9QeaOXJzsyfuD3Stuucg6jTji2CtU1qrWMZ5QjJ0zhJSLQJtx+E4rkrGME9YNPa8cQ5noATl2Md5YtjvCZPyBpbWGqNUYbDMIaJqeg1NEStqU9b35FKYphlZ/fuKjtRSpIQAsVSqsiAyIs4zWlF1pDFrRqCzFiuGpm3Ydj3WWMQI3qrWf9OrF8IcZmLUDIeyFGUqTyMlUkgc93tuXr1iHA4KyIqp2po7A9hHDx9z7/I+3WYLYyQVdXQK+0E7CoGmcifiPCMpkWOARtGghWdmrfoPOmsI0wjeY+vCS0G9C0MIyiR0jhxUUem95ez8QhWhWSnJRgy5JHxdqM7rdGA6HrC2qKmsv4soP12oyh2YVfrrNMlapKinhLMKjqby2vl/udeXBa0pzfO6PpZx4kIvhjsG4WcZ8fxdUQSA9UV824JfXqhPnyDUBS3KrdbJnO6SaphpObt8wKMn7yJW0Wh9zZRoAqw7sbUNvtnQ9ZlpToh7RbvZ0W72HJ8fGIdBmXipMAxH2lTo+g2pfs85gdQdKuWMtY6maVWGaxVESmkmBS1GznscWoRImXnMHG5vmKcJYwspVwKUsYjxpCJILPjGrn77yiD02vmkpNr05XUyRb0VUiKkUdvsVOrPa7UzkgJkrJgV6LK1CDjnuK1mKE3T0DhPP0+03Ya2bdlutxQK0xSqCKj6NtSJUMkw1k5gHAZ8m1cyEehxJqXMl7/8FS4v7wMoFbkIFst2mximiTCN9L7VNKEw4/KSCBxrx6SdAQUaVynIQWXMKiFXIc48z0zTYmqieETMM7sLtV8zRkegKthRebmxauXsnPpSHmsyVNP2tK12kXlZhPXIkVYCVKYQNHfSLQu2xonFvOpNvPfr7r8cjU/JWMtRGXhNV+CcWz/+tOsLXwROq6jSNM0P3QksX6/EkXrOXr607vip6A3ZbXZsdmeVEioUs7TSVGRR2WFiwPseeh0htZsrpnnm/N4lcZ548fQT5mmklML+cGCcI1iPceobUIxjToGmpsPoCMnhraXxjq5rGGZ1tSEnpRxj8UYo1Rf/uL9V30OjbXURbU8RS4wKejVNj7NNJRpprNr+cKyU3kxxKkaSAiQ9PqQUGMdZATaoIy5PKpGQAlZMzQvU2HDvHLYW2L7r6TcbnHEchpF+c0bXqSiq7Tr6vqdDiJXpt6jhRPIaA5Zi1CDWyUCNX5tndSd+/Pgx3juub64xtsX5jrZvedB2jNPM1XiEonyKGGakFoEwTxRjCFl9BFJR30VyQtARpVqdZ+Z5YhhHxmlcF1yq8/3Ly0suLi4QY1m1Wl4gler8XIvAkg8hma7TBKh6kKziHz1KjVPUwWn1TTSiIqx5nsnVmvzUe/A0U2C53swfWB53+phlrfxdfxxYCoGSWz6d/fQmqKhmIfoWlCKL3xgg4NS7fUlv7duGIoYiaXmy5VlZZMiCtoDiFFTaiuHBo1F3hlxwTY9YdSteOo3jMCH+yPZcc/HEKpAzx1xpybmeEz1WhNZ7df3BqEIuR0oSvAghRcaj2p8vFOYqGwOjwRs56yiraXrAME4TISbmkIg3ewrq9ddgsWhsVcoJSaUGb2r7vnjhG2sJOTLGCSsq9zVW/Q8a3+Cq1HjueqbpiLceP05Mk1Kql52qaTudhjinRKpMVdkpU05fW8UB5jAreFpUP991HZvtlpQz4zjivIA4ZA5gNO9w8WfU9J9EiKqpCPNMBkIJJIEstqZN6fvjjNB4S8kDtzc33O5vGSctPKn69TVNw5Mn73J+doGxHouqGrNRGXWpZw1rtWg657FGweK2ayiSV0FXzqlKiXVytYw7M16p3UG7FyMCxbzGETjd2ZfZ/7LrL1MAnTrc6QxOxUefdn2hi8CbQN+KDbzxmFO68JtfnzkJuqh/1u4CrQu5CGIbpqDVWVsGqLQiFsZZvVWVgy7qGvTg4WMAPsmZ9tUr+s2WaRpJQRVzYxx5dXOL+I62U45AzhCKsglLhsZ5Wu8pOWAFfNdQjGN/nFUXEIPuQDEwjUdi9fI31rJEliO2qtYM1nqca5hj5nDQCLRS4DgOGKtn24zFZR1vLZOPGCNhDmqDPs+UKpUNOTClWYGs2o0ZAe88XdPqznbcq8zbenx3zsW9hF2yAY0m+qa20LSapehsVVtWPYVaiOnxLMWoZi81+OXJe+9zfnGOMYau7TiOE4fjRLeJ+LbFOvVjSGFksRYPYcZk9fwvAe10pIAF77TrSlXM1DjLYT9zc3PN8XhUsK0CcXOI3NvtePLOu3T9Vn0bjUecJ0rEFPUarETQlRNhbE1Zdo4WZScaYzWd2Zlq83aHsyxHrpQWUs8dGLj8Wdr/Zfb/tknawjUwxlTOhq6DLzxj8Ie51tboM843b3YBp5+vDF0WX/a1ZTKCqb4BwzjRdaYWiuUFXorAEuKQgYXKaei35zwQVSe0VuhaR4wzL1+8VC5CgeMw4jsdE1kxSCo4yUSTkRCwztK2nhSDRpu7BqwlOL1JcgxEoySYFNQodNl1jHO1+xAoCsyJWGLKTOPM7c1BbcRyYn84qOloDVf1TqXOAKU6LsegMd0a0qnmq5GkOguBJTBEUMnu1DQ0viEn5cRbMfTnjyg0bDYb9QBICe/Vk2CeG3zb0jQt3nmd5+eEc2YFzFJOSM4cD0cwhidP3tG8RhH6zQbrWg7DzKvrVxyOA48eP9Ich2G/vPvEGGiNVMMMPXpYI4hVhN1bhxV1NDIC8zwyjYPSnaepEpaU0PPw4SPuXV4CuuFYc6f+NM7We8mwRITraLSsbj7Oq3+EbRuG8YikvJ7z1WylvLbTL4V5TirRXnIbQgivLewl2i3GuPIFlmKRUmKaprVz+LueLHTaCZiT6vfDjBBXVBVqAVhAKTX7WByErHOEEGjreAUKRZZDc5UiA6UsyPWC2iaadsOjx0843/TcuzjHe8d3fvs7PHv2giIjRYTjMGo8F9A7IVql8uZx0iThpiVNR8rC5Uets72zTPOopKNK90XuGIfG1iJQBEG57QXDMM4cj0duD0dyLsScOA4jzlqa5gDG4ZusJKOiKcQ5qkpxnifmcSSGqBMLCyxOQrUAiGgI53Q8qBkqpSb9ZuZk2fQX3Ow2IKUap7S4Rhd/2/eENtF4j0U1Bnfvq9KY1esw0PQbttutzspTomkzfX/Gue84DMpSJCecs3UEqRhFignpPNY7sBZjMsWAcQ1919K3DYhHEOZ5z/7mhnEcGEc1UYkxczgOeN/x5L0v4X3LMI4kEXzbkWMEp2rHHHPt8PJaxEpRQVZODdZLjZ9ryGlPkoSIwztPLsIUIjEFclEfRhFZo9qW+3u5j09HhksnsDhFnx4NlvXxB6Ii/K/nuquEuZQT9G4BqMyKkpac1a7xRFSxvEhvjhBLKXcOw9V0Z/m/XK2eBKsml1KttidTF5dZFWN61ejoohTUhYtYimCMw7UbLKI8gX5Hv73Hb/zG3+Q4/y5jhGmKYHTB2+Jw6FkghEhrjQKHcVYQb1Z/AP0l9GfVLkHzAcRarNRcwup4JBVcslYVkfFwVOZijf2KFYkGUYvzYSBmFVBRsgZlhEgIGtaZonYcxmpij3GLKxOQS2UaRqZ5IsaEd4qCzyHA7TX76xccti2mJOa2p2k7XNPSbTbV4wCmacQxM03TcuJSBSOpqgQTfaVQ7/cHUgHnZ9puxvqGtm14/913aRpHSWq4KqC2cGJIYpR9aS2pBka6RnGJvvNY2zLPE1cvb7i6esHN7Y3mQMyRKSaOY+CDR1/inSfvg/XMMVGMGqnGnLGuKN+j7tbLWd5YwzzdiXa8dTpCFUMukEMECl2/3FxaNMZhIOdEv+lXKfab5iGLd8KiEVj0Aqd28XBXOJZO4At/HKgAvY5rSnmN/LC2PCmt8txSRyLLC3Da8px2CcvfUxWkWLOwDtWC24glp6hy2uhIITDEzG57plU6q7ADlIsvdbFFMVWcklYnYrEW2xqs73jgeja7S2yz43o/sB8+ZB4OwIjdtLoIs0OcMBXl7RsUlxjGQCmCd0o1jtOgu3QpOqxoHWb2NKbFNA1ZlF685CUgyqg8DgPjMKhsNSl12FgdG8aYGceBGOuNVM/RmpgTa7ExK/ussU5n6dVPL1W7MVtb4nnSr0GKUnDnWw6vnnPbe9I8sN2ekXcX2DrTdr4Cg6XQmMAcpjrDN9giSNQjyThNtEEl0IiQYmKaj9wcNJnYWMO26zFnO862PVKR37bvmTZbcslaBJyqHRfMIsZAKYr8T+OBw/6a/f6G25tb9seB/TgxhoJpNnzw1W9w+fhdTNMj0ijt18iKY6SsFmoX5xccbq9xXk1ow6wBK856+mZDKRYjDtd2mkkZZnb1/s+1GO/3t9ze3vDBBx+sk4LTOPLlvh7Hkdvb2/X9WeLMRYT9fk/Xdesm2bbtj98JyNtzB/5t4KfqQ+4Br0opvyDqSvybwG/Vf/trpZQ///nfQ/9bYFU9pZTYbDa6mCtNcln4C3XybeShcRzXuan3XitgrTJLley6lnnWgAnfNBgM1hSyCGGM5LZo0nAByRX5rSNFqnOP9gGpdgLLv9UIMm85azZ89evw4uUNnzy94vnzK+ZpxEihbzxzjJRc8+rJeAtFLDlGjCSkZFKc6utSgUkRTNPg+0wxBuc7DSUR9d8TEaYwM04T+8OBuZJeUtK+xTrVF4QYmfcjzt1RsZe0YiOCbVQi3fcdfdfjjVMloXH1PQrMUyQm9fEfzFDlvzV6LATmYc/x5ooclJjkvY5Ip9Fw3O8xflYeg69BG1aPOE4KEiNiHKXAfn/gux9+SNP39P2W/WFgmOsuWxJd47m93fKNr/0EZ7uew43iJdvz82riKZUM5Gu4S0MMgePxlv3+wKurK65eXXHY7zWheFCfgoLlvfe/wjd+6tv02wtCFhbWUVl5E75uXqq9MFbW83/btoRZDVpiiIg1WFR1umDOhUKImgodY6x6hg7nnMrGgb7vKyU9MgzDygZcPAeXddF1Xe2eIuM40nWae7jwCT7r+pFyB0op/4O7BSz/KnB98vjvlFJ+4Yd43vUq5Y7wc3qGEZG1yqlTz91iXxb0cgxYftGlgACv8aXviER5fdFTilhnsbatIxnqmXiuIxUFBfXFdjoKKtWZSEAPmTWGTJ9ZZ76oH8Du/B7f+Oa3+I2/+bf4vd//fY6Ha1KK+If3KRliSfRtSxgP2r4hlCyEWNHmpO1/qWmzGHWgbfutFgTX6gJrWlzTkEvhOA4cDkeOw1CBKqnJOw7rCsRMSoGURlwd12koaFXjeaceCTUCrWk7nGjegTVOk4aSxRp10jVWxUqaWhQpCVJRscwwDEoTngbacSBjcAjTNFLmmc12i21cTSZq8I2nxIJMM2qxHZhj5rvf/ZC23/Do8TtMc+IwKo6QY6BrHC+fPaXzwuX5GdvthjiNQMZWkVjXdzo6raDyOI08ffoJn3zylKurl0zTxNWrl9zc3taFlNmdXfAz3/453n3/SxQRUq7n/5KJKSCgngB1NDdNI13XEKZBJcm7LcfDbWWLQt+0hJQ0Hflknh9CQIwwh1knKSsX4I7uO00Th8OBGOMPHA+WCcI4Kjdls9msmZbL8eC0eLzt+rFyB0R7738K+G9+3vN8zndZzz8L7XFp45ddf5l/nrqqnL4QSwT2KT4QQlB0vX6dMXduvaVUt5oqzIDq4htU0mrVohhb3WeVHb6wDFnwRaUZSw2bqBiCDiCUwHP/wUO++rWv8yu/8te5uT2QUmK33WpeQE403hFixoqtY0hDSOssEwM17rBanWFxjR4dMkJfF1DK6mg8zbPGZYUAGMUYUqq+BQbr1ICTqraLMa9zdgWXLM41eN/ibIPU0aiOZrUoihWsOLBJswtqEZjDTCmGuRTCPDOFiA0BN8+4YWBMia0Ivut00TsNKvVNQ9N0ODcSixb3lBI3t7d0/ZbjcOTFixeAoel65ilw2N+oSq5vGfYHjCR++ps/Sds0dfcL2uVYR99vVmwnxsA4jhz2Bz76+CNevrxinidevXrF1dU18zxhreP997/ET37zm2y3O2Kq0d9WX88YJh3vWeU62BORznqfVfDWNQ0ihc12w/Wsv9cp/x9Y7/vl3h6GYTUlCSEwDMO6kBcHqNONb9ksQdWJS/FYpgnjOP6hMgb/AeCTUsp/dfK5r4rIrwI3wL9USvmPPu9Jll9ooUMuu34IYeVAL2qq5fGn3cLpx6dvRggB6hFiBR5zWWexC6awAI/TNBDCzDQPILp7anVWwEqX5Cl1eSHsqEsOUr0BS14lzE3X8tWvfY2m7RimGQRe3dzy6MEl5MLzl1c0VoUlymuQNSJN8X6LW/ztjatWWBbrW0qMNPUGv7neM8+JaZ414rxQke/AFALeN5ob4PRcb40QciTnCec8fd+p36Jx639B1JIMozx5UxS7qOQY1eVbjNHsBhuC0pNLYT/PjHMAN4MbKXaPmxu6foMhs9t0bDctpuhitb7R168W1xgj1ze3NP0W5xzjOPLy6iW78wtiTAzHA8NxwJkz5mnk4+99xK5ruH/vgsJdq7xYKy+vL8Dt7YFPnj7l+fMXvHzxkuubG16+fMlhf8B7z/vvf4mvfu0b3H/wEKnkKC93eYEpqy3bpm8pTklgrW+YxoHDcaCkyNOnz7m82OkmURLGOpq2WVv3JYZ+Ge0ttGARUdAPoW27tdN4s+M93dmdc5ydnXF7e8swDGw2G3a7HdM0rRvqH2YR+GeAv3zy94+BL5dSXojILwL/roh8u5Ry8+YXymn4yDvvrD/oaaukGn3/A4t+IUq8KcoAXlvwi8xyeQGUjaVjmMVX73g8vtY5hDAzVl27qdZiYsB4u6rJFj5+QRetzs3V5lpqbmBG47J8anj46DGX9x8yh0QIh5o7V3hweY+QQYwGhkhBbc7IsLTf4sg4EI8V/XlyEaQISZRZeLvf88knz/Tsv5J5NLtvqrZkigsYjKu7j8hqn+V90ZFVU2iTMMcCc2ScFVA1Yqu5qLbTiypPjxAauybGYJ3QIKSQYX9kCJH5qGf4MSaePHnCV7/6FS7uXVJKoWlVIYgoBTtEzTVQ76VTuyxTjweR66srBTuD+g/EqQEKh/2e7/xXv83m536Gy/MLjBH2hwPFuFVb4b1nDoHvf/KUX/u13+DFixdcX19zc3PD4XAgZ7i8vKTf7Njtzokhk/OE7zpSyozTrHTzLEzTxH6vqHvTeHJKPP3+R9ollMKv/8Zv8Pf+8i8yh8jtzTXG95w/+tJ6/y5R9Nvtdl2oi1LyeDyyv92vpJ+6Xta5/ynetXwco5qwDsOwjgsfP368ejr8oQiIRI34/nHgF5fPFY0fm+rHvyIi3wG+iaYUvXaVUv4S8JcAvvXTP1NObZJOhRGLW8opLfK0A3jTe335mqWrCLV7AN1dNONNCOFOgrm2cVbR3nmeFDlfHIMN+LZRRLgi5caY6giUVMYrakphKCCmWn57ighnZxf8kZ//BX71P//P+L2//XuM3cRuu1PQzXlSTkwRktwFhCjOqNLgIgZTREFADDFDmFWWe3N74Nmz57y6vcWaKuKxlXocdFGNUwBCVS3Wopo1Ydg5h3VSjxOZKSRymZimwJKOqxLihiVk1NbfD1TM07WdzuarP2AsUJy66MZUOAw3RApf/dpX6/lci/hhf8PtzSteXV1xuz8yTjPDqDTnKQQ166yLfyEpDcPAzc2NFqM6Mt7f3PDi2Sccthv+6B/9eSXWVEON3fk5rmloG414H8aJ25s9L1685Ha/J2fo+w1iNGug73fELHz3w+9ze5wQa+n7bXWkzisBLKbM9XULpbDdbonzxLOnn/Dw/iWtdzx9+kyp3GJ4dX2D2IbLJ1957fw+jjpB6LpuvY8XENA3zboZLpjYaeiIgod31mMhhPUI0Pf9ejxYvsc0TZ+6ln+cTuBPA3+zlPLh8gkReQS8LKUkEfkamjvwO5/3RNpd6iJezjynM9KlMJwqpU7xgdNicHr+Py0iy7UIQ0KYTsDG6slWF31ME3muIzkpmhc4eZ0/NxlTdz/qzeBEd0KsUatpq844sZppNH3PL/+xv5ff/Ju/wSdPn3PY33L16oa2a3l4/x45JZ1Nkykp6nMbPQpIEUxSzYQaB2iLnsqMtZ7b/YEXVzfatreKWSwhGzEFxlkzEUKlMbtaRFNKNL5hu91ibGaUADKxsCHX7itnjPNYO62yXiOLoAUa37DZbtYzbsmFeRpVriwCpXCzv9XXxhr2e2X1eWe5vrnm2dOnDMOe/e2e4zhxuz8yzYHrVzfq1iuGMEfVMxS9qV88f44zwsXZGdPU8uzZU3IInJ+fc3Z2TopBf+c56JjQeppWI96btmO7O1Ny171L3UmdYxgGjseR3dk9zi8uubq6YX8YMM7StC2b3U43iXqvNU0HRbuHeQ48++Rj5nliu+lp/E6nMrmQUmGcA0+fv+BL44i1msPYdd26my8LFliPvE2jR7LlHn9zOrZ8vKyJZa0MgxqwLPf28pj5ZDN88/qRcgdKKf86mj78l994+J8A/mURiWg0+Z8vpbz8vO9Ryt2iXmyRUkpcXFy89gsv+ACwtvnLL7+SzebGAwAAOjZJREFUiU7YhUsHsbzIevZPDMNIKfEERKxfb/TMn5IeDXKtwM47OAjONbSpgx6QllRVcaboWVnppIrsqm5/Yjge6fuOb/3Mz/CP/xP/JB9++D3+4//4/8vT5y/xrboZ2f9/e+8Wa2uWnYV9c87/ui57rXP2uXR1VQFlaEtt5Ma2Ih5wwkukJPjF4QHkF9KOLOWFKEFKJBp44QUJkEDiCYmISFaEYpBMhN8SghJFkcAEkO3udtPtdndVV1VXncs++7Yu/3VOHsb85j/WqnOqC7rtvSu1p3R0zll77bXmPy/j8o1vjGGk6Ufw0l24zHIYl8PGsJTk/nv4mGUjFgwQzIiLy0s0bYe6msG5HGOQvn3eD9hud7je7HBxeYV90wroV5QwkBTZqqjQDwFtL+Bgte+w3XfCB+LhM1YsImsiI1BIN85KheMiLzBfSMS77zpJ+ok9EowJyKzFdnMtmEjT4smzJ6jyAt57PH/+FBcXF+iHDm3bo2l7XF5d43qzwQdPnkzpzwHYbfeABa6vrvDk+++nwiCAx9MPn+BLX/qj+Mmf/EksFwucPXsWuQw9zs7O8SArUc8XaLoOeVHiD771Fsq6FgFdFCiLApvtFtfXOyzmK1iX4fnZc+zbBsZY6ScYw5aCNQ1SG7Ef0DQC0r399jtYr1d49vw5xmHAYnmCq6trXG428MHg6YdP8eGHT5M7kOc5Tk5O0qWlEG3bNp3rzGWpNgAvNWsI2MjjIBGormu0bRuf+QzL5RLz+RzGGCwWix+u0Gh4ed8BhBB+8SWv/SqAX/1Bn/nR35uqpFJ6kRVFNFXXTeO/SaQQM98fWA60BjSRoo+UWCAcmFVc2HHo03zGUYpJdF2HomvRDQPyvIyU0ICyCjFpZ8Ig5I/D6CV/3VopH7253sDPZvjCF34c/9WX/2s0TYdf/xf/HOfnF8icxem9NXJn4IdBMh5h4cYMzkeOAAJCGGORDcluy7MCm/0O232PPK+RFSWGbkDftYDZo+tHbDYbXF1f4+LyGtttCxiDvMjiQZQQ1NVmK6HAaCU4xxLcPhZalRqB/Tii7zr00S2T90n8f7lcxDJgLRCEwpvlFm2zR5lnyJzF+v59nF9cYL/f4XOPHmLoO7x4cYZ902GINQ76wePyeoOnz57j6bMzrNf3Y5Uf4PLyAjAGH7z/Pr773e9iMZ+jaxtcXiyw2W7wY2/9Ybzx+uu4vLiSdOqixDd/86vIyhnqxQpl2eDF2RnKusJqdR9nZ+do2g7eA8bmWCxOUJYLBDjs9w1OVmssADTtPlKBPbrdHnkha7Tf73BxscXV5QaLxQJvv/1dfPGLX8Q7b7+Dp/VTFEWJ77zzDkaIIHzn3XdRzL+K1954E5eXl0LCiiFBYKIDM77f7JuDO2CtTQJCX+gQlY1zDhcXF/DeYzab4fT09IBv80NZAr9fg0CeFgIMF2r3QBdLYHokL7L2ewj0+QgiZlmGspSimRIGMtjtdolkEcLUCJMgirUGw9Bjs91IhqFxqOoai8USdT1DVlYwLoezBrO6kqrDxsAaG2m6A66vNyjzXMJC1uGnfuqn8eVf/EV0XYevffW38N77TzD2HvfWS4RxlEo1WYGrTYN9K6EoAd0yDIPkO7RtB+caXF5vBCyyDrumgR+ihRBCpPN65GWF+6cV7j2QdcuLWO4slsQuYkgtaZ8sQx1N1RCANvYr6L3Hcr6I6bUB7b7B6Ee4LEeZS0HVfdOIdjYB49DBl0iU1t2uxffeex/rkwWGQar/bDZbESpGGKEX5xe43oj1cn29kXTrosBu36V4+fffexe77RbbzQbGAB9+8H2UeYGirNANA55++BSr9UpCif2Iq90FXF5gDMDVZgez2+Hzr72OvKjgsUHTdri63qAoS2SuhA8j9q2k9Ga5AMF5Lp2HnJMsSjiLoe9RVxX8KJdwDMCTp0/RtVIX4cHpfXz4nbfxwYcf4qe+9Mcw+oCnT56gmi/gnMNms0Fd19jv91gulwkL0JmDBAIJkFIYyNm0KUJQVVWyBvRZ5+edn59/GoTAYY+1KWZtkzbn4gATsYi+K4XFxAWYNDPNKZq3eZ6hafZywBXDigJIPk9+p+2F1960Lbqhh/cG+0jGyfMc5WyJ1fo+yijRx3EAYk07Ke09YrvZYKxKyYcfRyyWK/yJn/1P8NWvfR3f+ta38OLsLNJPPTIrLbSyLEfftwhhQJYJ2JcXBfqhh3MZttsduujrByMpuOM4whkpMmqdVECq6hJVXaOshLtvnbTuFkyjiOuTRTdL3KiqqrBYLKMLJii2B7Dvejw4fSDVeo3BbrsT4lPMIhxGIaWMwwggoO12EmnZbVFXJXJnRWg1Dc7Pz9FH07UfRhgn3YbPzs6wa/ZiURiLpmmx2WxRFDVcnmG/2wMBWK/XaJsWeV5gv99jsVzCZRk+fPIML16cY75cwg5S3uvq4gyjl05Gw+ixud7gwYPHyMtSqgT5EU0rIVXnAkYfuRXR7clySQfuB+GcwEphFVtIG3BrM4RwjTfeeBNVKU1hdrsdVut1fIY9jMvw6HOfQ5ZLyG+xWKTwNIADC5gRAVZYLssyuco0/+ne0k0uyxJN06RQN7GGoigSAHnrcwcAHCzKbDaTLrCbTdL8fCDtNhynSDLmKhRMicf2XYeyLHF5eYm2bVEUOXa7PbwXN0FKZDeJY22ioMmLXA5k2yJ4wMTST13X4/p6C+89qvkSRVnh3nqFfhC/0SPAlUVMXPIpIWe9WsMYm0ChL33pj+H0wQOcPX+O84srtF2HWVkiLzJ0/YgQBLzM8xyz2RxFWYgfX1fY7na4uroCjEVelPBG8gZyl2OxXCEvChhrUc/mmC8WmC8W0ubMOZRFCWOymPknYb7lchHXrcd8vkRVleh7qf8/X8zh8gKX1xsp9+3HlL4q5muN+XyGEDyaRsDDqioxjC12+51k+Bng/PwFvvPt38HFi2dSKLXvhbjTDvBGiqNuN9cYRo8iL/Do8Wvw3uPBg0c4ffAAXdehKit8/nOP4AdhFDrr4MOAR48ewdoM77z9btSgPXa7PfKyxn7f4erqGizAsrkWjMS5HNZmsEWGxckKANC2Qp5yLkNd18gyh2Cmyr5SLsDEMzrHbtuiKErcu5fh8ePHqOsKzW6HfuixXC6wmC+kinSe4+HjzwFWwqzz+TzhVfP5HABiWbNIEw9SDMfGKk4UELPZLJ19mvoUCEVR4DoyHhkpePjwIZqmQdM0CXt42bgVQsAYJM1PlpNzTqrBqhgqffflcpkWkdVWNUmIYZE8z1FXFXa7XZKQYmk4hJhW7L0Xhl3XYb/fIjcGQ4jSePAwsKnuYFnV0VURzZJFLZw5SUQKfkDT7OEHya/PnEORS6isriuEYHB5KeGt119/HXlsctGPI66ud9hu9sicgQ8GVQVUZS4FPoYXuH9/Dusk19y5DEU1w3q9RlEUmNUzzOoZ8kz+3fbiu7ssR1GWKIoqukJZ5KbnqOsFXCx0sVyIidq0LcqyxCJV8dlLgQyboaqkcCjDtMYAJycrLBYLbLfbmNAiNQWLKkc3dKj2+9jN2eDhw8d4/PAxtptL7HdbKZ2GgH0j1OCm67Df7dD3PRbzBbK8iEVB64jReOHWFxm2myusVmtcXV2hrivcv38fz85e4J1338MXvvAFbHYtrq+ucLI+xeLkDF0/CFvTe5xfXMC9+x5WqxWGqGkXsWmMda10IM6kmKr3I/qhiwpiYuf50UsvCNvj9PSe1AwcR+x3O+RlhddefwN9BB1nkDJsZVmi7SbwmppaU4V1hIsFXna73QEHhq7ryckJVqsVzs/P0/k9Pz9P2BgpxPwODaofj1shBLQLACCZ6LzY9HMICNI90G4BzX4uMt9DPCHLstQYYzabYRx7tK2AjPv9Hl3XYbfbYh6zsvq+w2XUIGVZIa+qeCEc5nPxxYqyxHwxg4sddPa7HTbX1zhZLlAWBSyCZJMFwAThGDDWXZYl6rrGar2WoiFjD2cdykJaXi0WNU5Wc/SR6HP/dCXziLTQqqoS+lsUBU6WK8wqIZ7sG0nNZeWhup5JD71cLjMgHXOICRgruMN8Phd3CuJzzucL4fPDwGQOi8UiuVk6CsP5UEA4m6EqpXlnZqUSQ1HPAATUdYWua0ESct979D52GB5GafJaSJPOvJB8/6urK7G8qkqKvRng4cPHEq2pSpRlhe89fRdtP+D86hrf/d67OH/xAq+/8Sbqeo4nT57hyZMnGIYBz549xX7fApCGIiFIUU/nHObzHPk4wkSGoSQFsadgDhCYHT3GwSNzeXI/6dM3TSNnLkhRERGeNZr9Pp1DTXKjRtdNRLIsw2K+iAzFkM7M5eWluKHRaqX7q8ONIuxdyjXY7/fpfr1q3BIhMB0mXmhdPpmhQ150nTNNwUFhwEWhycoN6mNiEF2FssyTn7TdbhFCwMXFBS4jILPdbLBvG2RZgdlsjvXpKfo+diFerVGVNWxmUVclDAJ2260kozQNFrMSwTvs2wZXlxdwVoSEseIydF0La4DHjx6j7/rYblBy0auyiqZfhaKU5JqyKlJDjPV6HX15m8p3AxZVJdZACAFFNcNsPoN1Dl0frSSbweU5yrISNt4gqdVVXcUc/AyzeqZcLYM8l2y4IQhJhlEaHlyi0tKwo0w8AuEkCP04zzL4UVqgleUMeVYi79vYph3oxwHDyO7E8jTej+h6ARTzeGnaaKUYY+CHHvPFQtKjY41+GId7pw/hsgL7pkM3BnhYrNZrjLHFGwBU9QwBwuFwLotsRelOXVYlbCxKW+QZskE08DCMkkMCJq4JQcg0HbIsxzAOUikpL+CyDVKFodjz0OU53DCgihqaF5YJQTTfOXjORUiFdJY1OM7115WGBM9ZJF7A5eXlAS72qnErhIAxk0QkHyDP88SsIg6gL/fLKq0w4YjoqLWC4jICIBzrBzDGYLkULUrrYLfb4fzFC3T7BuMw4Pz8Al0E4up6hl3Tw2UZTlYrnCzXolGNhzMG8CM2mys8f/oUZZHBBI92v8PF+Qu8OHuOoiiw2Ujoqu36dHl+7K23sF6tUFUlikKEW5HqxQNt32CxWOD+/XvYx/oAr7/+OgCgaXbS689l0XwUWnAf3Z7F4gRZnmO3bzAMY6zYYROFtqylBVgZTWE24ySISmq2y7PYwWkCW2m2koOhTVwwqQWQjs9Zjj4AYwCKci71mXYW4zBIdSZvACMZiAYC3KbGLV2Pe+s1Vqs1Li7OYYxBXUuHH5cXmC+WsRjpiNMHD6WFmMswXyzRdh2WixMUZQljDZarVcpB6LounSVAMkddCBIShfSqqMoSIRQALJp9g6osxe3zHkWRI88KPHtxjrKsMYwjsrh+i+UJttst2r4XglKWoRsGKVdugOvr62Q17Xa7AwtA0+bFMpWkoTr2cCBISCug67p0RygQnHOo61oSsK6u8PDhwySoXzVuiRCYkiN0BGA2m6l8d580wZQMNCXzEB9gSIpmF3GGtm2xXq+xXq/w5MmHuLq6SpbGer3GarXCgwcPYGKt9/feew/PX5zhxYsLnJ2d4/J6C5s53Lt3D7N6jnH0sBZYr0+QWYtmt8PV1QU+//gxEDzOnp/h7OwM7b5B33Y4e/Yc+7aXfPZByCanp6cAghB1IohJKe8ygzdO34iIsMGDBw+wixZLlmVCAClLVEUZIx09PCz2+xbGxuaXMAkD6EcfMwTzA+1grEURewYYY5LwpJ9vjMFsNk8Hlwlei8UiAVFXV1cJeGJXX81wM8agiJhPs99LTkKQohwmK5DbDP2wQxi9FH6JZbnzIo+kJBzsZ16UsW5EZDXC4P6DB4L2j2IJXV5doWlazOZLZLlNfvLJyUky4WmSl2Up7miRYwyCPeQRiB77WODGsLxciNl9A8qiwsnJCfphwNXVVVJe9XyOrO8xjCP2sWT6IrputGSHYUiXW1PmaRHYeJmZRUjlV9fSz3G73aa8l9VqlZiYTdOgKIqUk0Cs4feKNvwjG7zIJP9479MDAlPONqUeDwMwWQIaHGREwTmXqhXxEF9fX8N7j/l8NsVcHZLmG32P2azE66+/ieVqhYcPtuj7Eb2XzECyt5qmQd+1OH9+hm5W4+LFC1xfXqC9t8bZ2Rnee/ddnJ09kx4B3uN3vvVNNN2A01MpijnWFYpCsvcAQXeXyyXyjD3le8xmc4QgG7harVAWBa6uruQSzurY7nyURqGZ1MybL1idzSCLQF1eFGi7HlIbgVTUqUYDLwRJMeM4StMP7yfrIIasXFzbsiiwNRYWBnVVo4gt1lNVGyM+twBZQKgl/CjdgCWakOWS0di2DbJ+QFY6LBZzzJdLdF0n5detQbPfYbk8SZdg9FM6uXUW3hu4PJfQrxFL52S1hl2L8MmcjSQvSBViG6nRUUAxD0JKqUv7eBYaHaPyqapK6hZCKk17+NhhSRQMXdGmbeEBzOYL0cyR37DZbmFDQJFPPRaJ6RxT3kUg+HSO8zxPAqFt24NEIloPs9nsI5YC7xXvyavGrRACwFQfgJeaKCgw8QL6vscwSB16XnxKcwqBuq6TIMiyTMJ2MbwioGKXTF9mWEkBDAF0zCisv/lyibwssV6dwliHIS5u00pYqG07bK6v8OTph6iKAk+ffojzFy+wWp3g7Pkz/O63v40Xz58JB9xleHF+gRfnl3jjzTdx//4pVqsVfPCo6xo+eGTOYR1N1q7r0HYNiqrE0PfIfUglxGazOViuOi/ztCYWFnAOs9kCQMB+30n779lM0OsQD5sVMhMFbhIAQah5DNPaiAFQM025BEKqaps2WS56P4yRIl9dxzoNBmVZpIiKc5k0fR0Gibsbea+xFkUl5rNzAsY6I9me3gsZBkZ88BAxBnEdixjTl1TfvIiYSlkieC81C6JlU+S5lEVzGYpcEqKslcq+bdfCxxRu6ZE4JiC4zAs4l6HvBmQ2h3U5citdobroDiUEHwACUORS9VmwEo/9roPxI8qiOKACU8GRqEVLy8BIhEel19PdZYo9zzyxBYbRqfl1nsEPVVTk92Nw4qQ4ai0PxE44jg0WEJtXaOk51VpnSISHmJWCKKl5wbI8x/X1JtbkG9DsO3Rdi7qcYfQBuc2RZUBVZcjLKmUNCnfBYbfbYd80ePr0GYa+xdnz57i4vIBHwOXlBd7+3e/g/PwFHj9+hNXqHs4vLvCd77yN5y/O8Qf+wJt444030Q8Dqlktqb8wmM0XYDkBFgIp8gJmbrHb7TCOPe7fvy+18fsBLi9gMkgx0hAQxiA+sDHoBzFbpRyYV2vsowBgVSGX6KgE/ZxzmM1mKVTVtA1yJz3yRBh32Gwk1bWsoqAwwOiV6Rzkws9mC1RVnQhOQlHOxeIIEiHgXkuMv4MxAVVZohuEvuyyHIOXS9mPHk3boq7mkLLwFgGSuBSCaMRhGFFVFS4vLuRiQFiWWV4gGKn866LF6ayTNu0BsDGtu+vEXC9LFxOMCjlj44jcSTTFWYshamQ2oEWAYAmxpLg1khQdxlFSsYOcZwrNoRcsxBqbWtExKtL3A3w7YRekvNPapTXBaMAQIwxZlkn5uEg3HscRdQwVvmrcGiEwny/w/vvvJ3O16zqcni7SxScxpa5nCZDKsixRJcuyxHa7xXa7wzCMWCwWEnUIU/WffdMAQcI2TdvFeoHSK7CsaqkL1w4S3nMOUpJKKuP2fYeu61OYzzkrpZz2F/jGb38d5+fnGIYBv/1vv4G2bXF5eSn5A0WOzgecn5/jerfD2Te/ifPLKxiX49GjR8iKCsuTJayxCE66HC3Xa4RrK5WDaskRr+dzBAC7pkNWVnDWIS9L+LZF7gLqrIBBhqKsYxqzEH6GQczZk2Ulab4qssK8CtJOQwipGIWu59D3PbwdY9jKY2alaEVVy+Hf7bcARDgXUSjMwywyHztsNlfouj5+t4/dlgICmM2YYT67BwDY7Xbo+xHOeRQRHN5vdyiKHIvFHJfXkt0Xglh9gw+Q6EgZQ3exM4+pMJ/L2rVdh3o2R13PpO2csWhaKckuBBzhPGRZhm5o0XU9ZrNlshKL3GIYPazL4Q2EHh0kecoqzKLIC3hWoIZ0k95tN0KlDgGZdfCjR9f2UlE6Jpo55zDETktt16KLZ3s2rwEA1sWITez8dFIsE2GIUZm265HlGba7HQBgUBEWa6Wpy6vGrRACgBT8IFIN4KBwIk0dACnMR9+TWp4Hdj6fJ19JfKgm8QwIPkoc3CW65TgIwWK/lzz/oihxeXmBYRin0FeMUw/DgM1mI6EZE3B1dY13vvcu3nvvPfRdJ3RaL/X3DIDrzQb1bIbN9Rb7vWSlzeZzXG2usVqvYKyVqrPWSKgpmvAmbvhisURZC9dAfMsNslxi496PmC2WcC7DOEjVY5bzFmFlk/9MUAuYQlA6B4MhK6L9dEustbi3Xh+4acDkftEs1aXg2MMvBAJpVkKcTmolSkFSJ+nBfjJxacnRBen6HjAGRSl9DYIx0tzVe8znC5RliYuLixT+Ym1IZ6dKu4iMBJfnsWVZjuCBEEbM5jOUpYRIjXVo+x5N08K5HPOZhNpaK8xCYwR5R3R7rDHCbRi7NF8+AyAZlV38E4KwYJmdSV+dLE5y/HUSXN91GN2U4Kbp8bR6aT2VZYl+uE6NechDWa1W6T79nhQV+VEOmvV1XSeTlJEAjQ3wcjMDiyYRF6iua9S1SM+maZJGI0qtk5OEYFGAzTGLoowFGhFjuQWMmUKR3CCSc4wxqEKB/vQUX/ziT+DBgwfYXG+w3WwRDCLjcIwNJRzurXtkWYF6NsO9e/fw2mufx/3TU1jrMJvN42WSeLN1Lub9C8iXZeLrmX5Enpeoa0Hrd7st6nomc9+KgNFFKDKVM0EAKfmcZmpySSHHZyVxi59Dcgr3QgNSGsdJodpocTDaQ79WZ8TJ95sE0JHZrmPaZIPy/wFIZ4Tfy32ZPtOmuVaxEWqI+zdGbkCwolWJeXDefd/DwGA+W6CuZ3FNpjqADIuS7pu5TLokYXJdmRQ0xq6ueSzikkUzns9PzIqvEaSd9mS66Dx/wNRxWIOIdBHItt1ut4mMRgFy68lCOj8AQAqJkDzEwossv8wabccHl79PrSRUYVlokchT2TFALgYth8VioXLEG6zX6xSRsNbi8vIyVXJZLpcRIxiwWi/xR/7Ij6PvhaMucxdAjJxtEWKCnNfVDNbZGPet0LYNlsslyrLCfr+L3IYB4xiiEOyS5hBffZ4SfIZhRJYJaJXlGQzsgdag9QNMuAsvDN+XrKNIquIho6Ds+x5dbEZCIJVYAslWtOBSEcz4fVpjacHDg825eHVAdTYjMEWGjoUSw5ekxJZlicVikdxChsqEfuzS5dXaU8+Ha1PXNWYRTKXVyfnoBh+0OoOfCndYa3FycgJgCtVpctvxRdesV/6McxK698Sg5dqkKNY4HpQWt9Ye5Akw65KZsj8UWcgY8yak3PjnIODn3wsh/B1jzH0A/xDAHwLwNoA/G0I4j7/zlwD8EqSwyH8XQvjfP+47eFAZNun7XnrL7XZYr9d49OgRWDWFeQFk/hljYn04kYo6M+tYY9E/yvM8uRrr9TodCgqB58+fH3w+BQ21i7CyHNq2iWXKBHCr6xlOTx+iLIuITUgtecnay9D1vZQTU2wx0Y4+NvuMzTF6j7KscHKyVFllYyKD0LLhAUi+ezekC8a4My8/6dO8MNSCOvTKeRVFga7rsFgsEm7AQq/UhtfX18jzPAFX/P0+rhuRao7jyro8zOliqWq5BCQp9MlDyPMc2+02HXAASSCx2Ka1Ur2Il61TZrm2WEIISbloTUmBQEuGl5sWKEt6A4Af5fLrLNeu63Dv3j08ffr0YI5k9vGc0srt+z7RtandbeRuAEhcjNlshtlsNqW9R0ow3bf5YvmRaFnbtnj+/DmWy+UPnUU4APgfQgj/xhizBPCvjTH/FMAvAvhnIYS/boz5CoCvAPiLxpifgFQd+qMAPg/g/zTG/HhgBsYrBg/GlKAyaWwuHIkVJA5RG1ET7SM/mweD0lFLfE1HpmbhAR4jIk8zSkcUTk5ODnxoORQVjDXouy41qZTNDLDGwdkAa7OI7A6wzqEs5eKOfpS6d1mBcRzgvZSjymOuQpZNdRN0M0pqAY2hCBlHQli8eJqFxqExAWopjQVM/rt8Lp9zFsHXcZjKgbPJi9YwWZahOtL2+rt1SJIXkSXfuQfHn0lBQ8uvaZpUTZeWHy+ipo3XdQR6eynAqXMuKID4nLxYIrh8shq5XkVRpNqGPHfkijg74SLkoWhqNclrdAPo/3NNuK/MyuTcslxK3dNloBDWc+dFN8akdGEKPO4zozxUni8bn6Sy0AeQKsIIIVwbY74B4HUAPw8pOwYAvwzg/wbwF+PrvxKk6Oh3jTHfBvDHAfzzj/seaiVuppasvNg8OPShNE2Yr2vJLX8jfZYGX3gogElrSl2B6TP4M2ttMhGTyRsvjDUxI9E4dchDbMohbapDJlx94fqznqGN9OYKrJGfZ3k8YAbWTrF57UNSCNKU5OcZe9iMEsDBOmhchf8/Bpz4fh789LMsA6LA5PqR6JLoxSqezfnoNG9+9/ElYHcpWh/U2PRxKfylMMkuWXtlWR5YdMDkl5M4w1wGWn90Zfg7NNV5SU3cHz0/nX2qlYkxEs4jNsWzst/v8eLFi3Rm9RocuwD8XO0ycH+tkYrOxFK4f1x/DaI7J+3lSFqiEqTrqt3ml969j7uYx8NIE5KfBvDrAB5HAYEQwgfGmEfxba8D+Bfq196Lr71y8AGtFYqv9nM0vZONFPjgWttoQEkvtCa7aJCE2oH/5wGnP8VDKPnxU5YWDyovppiC0qDTmiyW4gZCNrHwsiwHyqmv4aQVxvicWdxYyVQ0BgIMGQc/UlMIwCjpvz6G/wbpDxDENNUWDg8s11C7Qhrl57Pq9RR+fJHmL4DZJBDpDzO1m59JqyLL84ieD2kPOA/t+gFIgBnnl0hJUSHQ76cAzvMcm83m4Pm4/1QEdO2urq4ONDCfl8qD+19VFbbbbZxTSNYIwUTmeqwimYtKyARz4A5QSF9fXydLRCexHQtFWmO0gjk/ubSTG8qoBy0iTQoijjOL4Vtt3XI9pTbCjwAYNMYsIPUD/0II4UqbmcdvfclrHwlSmoO+A59LGkJrPW6U1lL8Xm3a7Xa7tAn64fW/qe0pgfk5PNS8KMBEUdZ+JF0LDXbJ51lUVY1xHA5cDG4szVhjWA4qZswZl4THMAillQw1Mf0aqTiEAX03TiaezZBlOazp4UehuAI2/v6hGa6fUeMbGpjiJeNaUbtqbGEchoNDqE1SDeCR1lrEi5U2PwpgjVOkKIFV3aKc5CQwsqNNdgpe+rfp8M9msi6R9MQ5CCmsE3QeSOdLg5J8voltNzHtNNahIyAUIFVVIYwhJfHoC8hzyotNyyWFMBVQba1N30mBYYwQsgLCgfuhcSGpf7FPPyPwSWuHLgaF/cfc108mBIwxOUQA/IMQwj+OLz8xxrwWrYDXADyNr78H4E31628A+P7xZ4ajvgPABHBx8aiVtSmjDzkfnAeLwBWlK3/Og87NofA4Rlp5MKuqSlEBglA0ZTlP7T9LfX6Ji/f9ILyD2OyT5CZ+FuPGWuOxvRSfU4SSUJzZ3ENbRPrAUeAAU4vsuGcH1hAPmRYU1Gj8TF2HjoeoKApAmcH0YSkoKOz42drvp7Dl7+goAr+TJqyz9sAq0dgNgLQPm80mrRWjFQCS1qWpzwvhFAdCWyU8P977lEouNSUHns8EcGq8SltMo5caCDwL2u3k2ldVhcvLy3R56YZ2XZdcX76Pa5FlGQKkqIl2tbgftDi410VRJEuGGADXjJbMx9UYfLWjEIcREfL3AXwjhPC31Y9+DcCX47+/DOCfqNd/wRhTGmPegvQe+Jc/6Hvid6UNohlKk4wbow8HkWqdPMTDzA2mJaG1AD+fGoiah4VMKAj4u1qDaf85zwsJ0VmhllrjUORCUPFjgB+FzVYWFcpCKvvojDE+G7Wycy4BUPqCHpv2PDQ6zs01okCjluQz6PdpocTPpNCkCc71CWFKeqElxEHNqwUG14vfB+DAeuD309Xw3idXgxYCMKH+dL94sBly5eXQwpFCnll0WcpDEPeAOII+P7y0dLn4mXqNtGDi5ZM+lsOBG8D1J9pPIaIxBda14Prw+fT6hDD1diD+dIzpUHhoV4lnnxmddEF4H141Pokl8LMA/hyArxpjfiO+9pcB/HUA/8gY80sAvgfgz8SL+nVjzD8C8NuQyMKf/0GRAfph3Eg+NBeP5hY3TZOE6Jdqv54/k0Moi8eLoYFHHiCCKSGEg/x6HkgKGz342SEA0sY7Sxu53+/jHD2AEXklhTz7vkuXXW8qLyF9dQkfzsDy31r7aIGhD/CxH8uDcmw1xD0CgAOBqy0CPQiu0crSjDf9udR01lppoqoONOegQ1j8frLotIDX7iD3S5N6aPUx1t/3faQb9ylUaAwrEgVYO1Wu4oXB0feKls4i/XhMF5tz1pYbv3/sx/QcFLSc636/P8gu1MQgWn8UhiGEhHNwPyXNG8kt4p5xn8gBoMChldH3fapkzP2b7sLLxyeJDvy/eLmfDwD/6St+568B+Gs/6LOn9+PgUmttRy1NoaBTjfWhpLTTfQZk0YfkM9H8pEnFxaZ5dtwtVkt3akj+jJGLPBdTtiil7z3NSO8lsw0IMY11RNs2AAzyPIvug1ekHxe1aa5CV92BaS0HyqW4vrgRU/09jZeM45jiyMdgob6IPNT6NR58ramHYUjJXdT8XAeG6gja2rje+gLrMBjdE+ckw0+Tu7SW1oJBXwRqNx58Y0yK3TN0yM/3wUuNBWU58DM021SsBBXdUNYaAWL+LiDuUhinzwKQktc2m02ykrQFqcPLWgEBUydizjEEaUnH803BpQFqanwRxhOYTQuX68n3vGrcCsYgY7PApJ3031pL8fDv9/uEjnLTuVlaOByb0VxQYgQUAPT7aZ7RlKOE1/F08hW6TmoRSm68A3vPGxtSrnx8QuUnSuMOAOi6AcKjN4lHP5tVisIsmYA+Vp4dR5/wgykqMbHoNJfg2HLRWpmaTpvEvCTaepC9mUx0vYbUwJpoRE18jF3oPdRunDEGGTPfVPk3KgJ9IbXrpNNw+ZqOFFBpOCddinhO9Nx0WE/PTyshXqYkDJWVqufHz6ES43dwXYGJiq3Nc36G5kbQdXHOou3aJOT0HdBRE84xNxPOQVYtq3Xr537ZuCVC4KNmKDCZqUy91KalDmtx0ygMNG5AsIgMOGpUYOrlTnYgQb5jSc3LwQPP6jsSQWgT0CjmvvDTuUEyNxF0IdavYzUhHyvusq699yPKcg5rp1p0WZYlDdv3fSo7TW3NC03hoJFsDRryefgz7WZQSGpXRUcQnNL+/Fx+jq6Bz3Vhjr0GU3V0gvvlvWT9adSdP9NammeBbg7Nbv4OhTUg1ggL0kijz8mM1p9NS0KH6diOTvMnABysJefvnENmJ06KFoRUHFqIaeFHDEDv03w+PyiaE8IUuQImpUglRUyIIO04SseovpeGpCcnJ+m7jq2/43ErhAAPjJbAlHj6PTpUqAkWvHDUWPqhednyPE+lpXigiZjTmhDz6XAu2scjnVlroWHoYIyEw8Sklx72AC8/te8A1uyXIiIZ8lwuf+YsMse24x5+mAgh1CS8BNrCoWbR66Pj7dqK0cIRQKItazCWeAtHErT2MDrB1zUGURRFKtxCIcCLqqMI+hlCCOj6XhKIVJw8JQwpYXTsE1NgEb1nyI0Hn8qDr3HPQwgHiWUaKwGm6IGO/ev1AFRUJRzS02ktEtDkGeFeTRbclGugn4OW7H4v7c6YO8D9lfM8sQ+1K9c0DerorlEpLBYLnJ+fp/V61bg1QkDHOnXSCA+vPqwhhFg8YuJ3a5MNmPxaMa+mJBm+j5+TQJgI6BVFmXxyCgJeJO3/0i2ZfLbYpsoW6PsO4yjlvPh9dBtcRq7ACGMNnJXaBMZK2zPvB/T9ZOJqwch1oNad5jmZ7xpM5dpqYIvz1bFnriuA5Ecem8nARGTRApLaja4ArRGNy1CoavP9IKphLXLlkmjzVVsm3CdtjnMP+Hl8fxJgfnKBGFYMISSXjmflWNBopXLsCiRwsp3ouVpB6TOow876PJNHoVOzqcyGYYDBlDTG8wbgI2eTJcX6YUysSwDJZeB54LO8bNwKIQDg4JBQqmu0FZgQ53Gc+q5ps/hlEYZxnMxRzZ+mxqEvSoEgwF2eLg8tBrobWrvNZlIrT4o+jBhHAxPZfj7YqEGl8tE4SkNRuW8hWQW2yGCswTj2CGGEMQVCGODDVEBVqME2NRAJAciyyWQEJF8hgWFR8NAU1H6pDlG9zP/XwoZkLX6e/mwtHIiW012wdqpjoM15riU1sPqAAytFCxkqB+CQI6IFEBUG94bPY4xJLeIoRJqmSUlU+lKLVYTE4uTF1gCnfg5gUjS0PHimtEDWQpifqRUbzzb3JLk6fuI28Lv43FoI8pmLcuKheO+T5UqS0seNWyMEtMl6LOlZzIOmHJFRsvpohpLAQl+UUQNtFtNM1GaazlvXZu84jolIwsrH/JkIIdHe1ObaBJRWYAYmSLtzaw1GHzAMfTJ3jSGm4TGObLo6g7UGfe8BCGBojKQmF0UFY2hWB4TQIwRqqUlYAfiIdcTS1X3f4+LiAlmW4d69e+lC6nAVhQNNW2um0BUPGQWidh/SBasqeHVx9WfrUJqswZR/wKGFCQU83TZeWJrF1Owaw9AXJy/KdBl5+WmZaKtIWxkaL9BYBS0nzpfuxvHnaLYjBS8vrMZk+PwaA+E5H4Yeo58AWQoBzXzUSqmspjR6YjUhBKlleSS0j8ctEQKTuafNXAJ21NIajSbjipKaQoTSVoNH1BQ0dXm4GMcFoJKCXPpeCgVNoyUwKJshJr1cFpu0XJZnKbsMRnIGpB2FT0AVP1cOjw6jjbA2Q+YifuAJoo1wrsQ40gXKo/tgMY5DDEl1CWnmgeO8ediurq7wve99L6HQ9+/fjwVKdh8RFpow0/ed1NOP/Rw5xPXxCXsJYTLzeWk0WKbDvAw/6ji7vnQc5E4ca0V96Xa7Xfp8Xo7JTXMH54D/pybWa0RsiAKd+IEG+fheCh9Nujq2rDjPoigSV4XWAD+bxXGp1BKN25mDz+Vnaks3nV1MWBZ5NavVKn2vTjg6HrdCCMhD+QSgySb0aJo9Tk5WIhVjLFw2vVFhEimAKUP6DI6jhN4kvHa4kBpRJgOOF0cjuSE2taiqEkNE7qtKtD/NrRDi4Q9AP0hJsSw+z+BHSIlvie1XZQUgSCvu4DEOI/phTJpcDraR5qfGwlpEXEEq6orp28M5m6IGo2ql7pzFOE6aU/v9x64BfV6i803TSAt3sCLSBGjJ5RPQ0+UWfj9g9Ab90MEaCYc64xAQ4DKLvJjaxWvNrH12HYr01ibGoL5YxIaOQ8REwI0xyIsCLmroYRwxeg8XAvJ4KQclyPw4Sm9FY2EzKcNmnRCEjJH+gqP3sXNzkejdxIF4hli2nULfew8XIv8gGjPGxqpHo0dAQD2rkeUZmraBMw6IgDFN/mzI4IPHMEpDFml9NuEj2nJgA1OeXVoJZeVE8WQZrDFwWYY8ywAfkGc5UN5yngBXTzrbNkm7i1T1Cs2doSjydHH0QgFIyH7bdunwUfPTHKSpxMwqjT9MUQHxDckd4CANVRiB7LyDVG8ueGCEPzjQQYU/RSNI5SA/BgQvrMLRi1AoK2owqUUwmfJ5sn6sLZHn9M3HGPnIYG2ZDq/WmsBkcrdti7qu8fDhQ7EmnEM/DBi3UiiU35fcAmMQIqiZ5VKhGDbyOvouHjaJbAxDJxmUZsIVpghNfuACHIffDCaTl5pOA3WaDcrWa54aEdJCTR9x7bMH76XKoAHGYYBNwl6qDyKGbL2PDVEgTVqdO8zB0OvDs9LFxiJDGGDCFAbMo6XU+hYGUhsgIMQaAfFcmCg0YolzGMBlTqICZSECVgGsXC9q9GNhn7MAbmzeIuFRn/bZ3P5qwxNZghmBdV0n94DmGdl+Ukl4uiQaqSYeEMJhW2ddloxsruPYtMYjtEk4FfMYYMzUL9Hw8qsogg63VVWdEOmua6PgyaVEuPfR1/epRFWRl/JzTJwHjVzLHw/vJZIhgm2qiMOMMyZDvQzoIxbgiUZ7qe9Hl+vYnQKAEBtxMqHFWCsYBgxcJqWyuXZd1yLPTSzmeUhXJj5wnH5sjAGUyav3Avgo280eWTN8D+fMLtTSsuxQmBynm3PI5xh4cyjEecn4HuJW8iy92pdprXnOiMvQGjkuf5fWJZvyEvSF94rPwPPG79Et+ZxzUs8yfhcjHzq7USuF43ErhAAHcQH63boOHBdAI6LU8jqko5FhAClmywXmoJ95HDLUIBC/l0gyNSw3WwM59E85/+OD4dwUr5fNGj9C7RRLRBpy6nAcwS8eehaTpIbt+y5ZMXwP58W1dM4dFOCYzeex8+5wcJk0lsDns9aKNgvAfL5I3yUXWEDLEAy8B4IfYTDE16d94Fof59577xPdmu8/FsgczkkfBVbVPY5983e0b20V54PEIF5kjfTTsvTjOPE8lVXCwf/rOerwGy1OfXn5c12jQeMROvavP3eIa8Wz4ZQrxM5QxHK2/faA5HQcsTkWpHrcGiHAhaK5Q22kQSWShzR3XWsUXmD+mwvAy6czBTVphYvEBffeJ/Yb50LNy9/Tlxz4aHiNGo+fL4dvshoO3ZjpwHPjSEr6KEA3ZT1yLSbXaaK5AoeCkJ81CaWJAcc5aIBOI+EBAc5PxUkoWCnctIZE0uBT3T4KAA3Oaa2mI0O8BDT/j4lO2pXgM+p901aZ3tPEG3BTarI+I1yPrp+yUvV36flzz8nsPLYqjqnD/H6ec32xuQ6ch8ZsXsaB0VpdA5cMbesoAvNh9Fl42bgVQoB+sz6YOuSjkVk+jE7O0AJAb4rWcgSb2rbFfD4/2CR9IHlwdbiQbK7jhSRwpDWS3iTOaTrUh4CdZvfx/dROzJXnQdWkDx0N0S7D8YE/NmtpaWl/nGEwvkevy3QJpouq0XTuk6YGS7POPs1DC0vOU/MTuHdcO81rOF7vpIHVZ9IknsBVpNAdMxS1qa3DeXrftJDRloJ+je+ffHGLEA4ZjcSc9OB66bRrbW2yNqYWmlDK4tjtoSVM1zYEqWlJK+fYQtUuxsvGrRACTLTRkpCHS0vlYzNMA0DAdHC1sNBalBupN0xrDF744wPB92ofdzLrp0NBC0ALLI0vGHPIYdcxYx3H5bPzwDLspQ+Y9t11nF0TTrg2jO2HICzHzE217gVIbQ9AQS0IiqKQeLUyqbkeOrR2UHvBs3rSdJm5B8BEpdaHVb/3Vf8GxBWwym3jvtKcJjYCyKUbh6nMOL9Th3u1htVugLb29By0dTA1d8XBmeLaMsKhKcHaAuXv6fwLQIhDBocRFm2BGGNSWDTtvZlwJNZcoMWlIywvG7dECEwAESeuATlt5mnzTB8+bY5pHEHHqtMlUDRgTWkFJoFC4cHF1+COzlrUCSr0u49Djvzj/aTpOT99QVLISZmDLHDKzEliFMaY1GyFwuGYG6AtB66LFlja99cYi7aMeOgZs6bloAu/asEzDANc5oBhSm7SGA4TYBJpx3t4cwjuas2qBTuf6WWYAb+LbhT3AEobch30/nHdrLXIcUj55TnTl+nQnXPwfsok5BpzTbj2/G79XJyjVnrctxRNMVJOX1Pb+RnabcyyDM1+atJDC6au64+4MC8bt0QITMgrF5SLr6muHPpQUUtSaHBozUjpSM1vrT1gcXFj9WUn5fJYQzNiIQdooqxq60CDRbzgMo8xWTf8mdYy+jN4Oac6AofgKEEuAAcRAa4dMOEU2gXQ/rX2ubV5qi2CZCHIJ2IcPbpuAGDhrPApEKRdt4HBOHgYWDh36J5QsHNeCdBVlpleD62FDyy7vkcRBYiuwnuMZfA56UZpbEU/s/4+7/1BRZ+XCSPuFYXCy8xsrbgAHFxY/YzcL42RULFZK9wGDXZrt0JjGdqi1PkZFEafGndA+5d6Y6aQ32FGmQb1tODQG8vLRFBQRxZ0iEZ/Hw+nPmB8L9H/CbCTzWD5bV3v/VjqS6z/ECgDcGAi04T03qfSYNrX1dqZZjnnSexA4xp6zbSwyePBOKYKa+2qDz/4u7DChYhluIqiTGau0JtNcgOOLQruw/Gh1eb1sSWg58X97PsedVybpmmSMGfpML2+ZVkiKwp0MSTMNT9OkkoXM7aPM4NJSuZAEKrzJX8O15bry/PGNTzGALg3iWKuokqc0ziOqSGLzp0xxhw8txb0WthxvXTB11eNWyEEvJ9y53lZy7JMLZQAxt2rgyiBPvxc0GMhoP1hfVGOqalcTM33Bg6lNQ+wbJJH1/XpsHEOnLu2KuTzhQkITJV5ubm6Ww/BHuaLe+8TJ19r57quEUJIxVh5QV6mzbUwyLIMRazJP6iEKv6evizUrsZI63NqWm0R0TTVYJo2cY+ThujKcG9CkD59x5eJe3Js+g/KbdTPrHn0GhAuiwJtOAzjHQujBEYbA5iPukPHwOM0z5fH3zUXggqDa8nzwPOqXRS9b60qfKvXVQtvAseiFEqxxI6A1mPG4cuG+Thf4fdrGGOeAdgCeH7Tc/khxgN8uucPfPqf4dM+f+D39hn+YAjh4fGLt0IIAIAx5l+FEP6jm57Hf+j4tM8f+PQ/w6d9/sDNPMMPLDl+N+7G3fj/97gTAnfjbnzGx20SAn/vpifwQ45P+/yBT/8zfNrnD9zAM9waTOBu3I27cTPjNlkCd+Nu3I0bGDcuBIwx/4Ux5pvGmG8bY75y0/P5pMMY87Yx5qvGmN8wxvyr+Np9Y8w/Ncb8Tvz73k3Pk8MY8z8bY54aY76mXnvlfI0xfynuyTeNMf/5zcz6cLziGf6qMeb9uA+/YYz5OfWzW/UMxpg3jTH/lzHmG8aYrxtj/vv4+s3ugyZF/H7/AeAA/C6AHwNQAPhNAD9xk3P695j72wAeHL32NwF8Jf77KwD+xk3PU83tTwL4GQBf+0HzBfATcS9KAG/FPXK39Bn+KoD/8SXvvXXPAOA1AD8T/70E8K04zxvdh5u2BP44gG+HEL4TQugA/AqAn7/hOf0w4+cB/HL89y8D+C9vbiqHI4Tw/wB4cfTyq+b78wB+JYTQhhC+C+DbkL260fGKZ3jVuHXPEEL4IITwb+K/rwF8A8DruOF9uGkh8DqAd9X/34uvfRpGAPB/GGP+tTHmv4mvPQ4hfADIhgN4dGOz+2TjVfP9tO3Lf2uM+a3oLtCUvtXPYIz5QwB+GsCv44b34aaFwMvKnXxawhU/G0L4GQB/CsCfN8b8yZue0I9wfJr25e8C+MMAfgrABwD+Vnz91j6DMWYB4FcB/IUQwtXHvfUlr/3In+GmhcB7AN5U/38DwPdvaC7/XiOE8P3491MA/xvETHtijHkNAOLfT29uhp9ovGq+n5p9CSE8CSGMQRpA/k+YzOVb+QzGmBwiAP5BCOEfx5dvdB9uWgj8fwC+YIx5yxhTAPgFAL92w3P6gcMYMzfGLPlvAP8ZgK9B5v7l+LYvA/gnNzPDTzxeNd9fA/ALxpjSGPMWgC8A+Jc3ML8fOHh54vjTkH0AbuEzGEk5/PsAvhFC+NvqRze7D7cA8f05CEr6uwD+yk3P5xPO+ccgqO1vAvg65w3gFMA/A/A78e/7Nz1XNef/FWIu9xAN80sfN18AfyXuyTcB/Kmbnv/HPMP/AuCrAH4rXprXbuszAPiPIeb8bwH4jfjn5256H+4Yg3fjbnzGx027A3fjbtyNGx53QuBu3I3P+LgTAnfjbnzGx50QuBt34zM+7oTA3bgbn/FxJwTuxt34jI87IXA37sZnfNwJgbtxNz7j498BQRChr59UGrsAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "for e in data.take(1):\n",
- " image = e[0].numpy().astype('uint8')\n",
- " label = e[1].numpy()\n",
- "plt.imshow(image)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Image datagenerator\n",
- "Dataset class provides the flexibility to load image dataset by updating components of the class.\n",
- "\n",
- "Components of Dataset class are:\n",
- "- image file generator\n",
- "- resizer\n",
- "- label generator\n",
- "- image loader\n",
- "\n",
- "These components can be updated with custom function by the user according to their dataset structure. For example the Tiny Imagenet dataset is organized as-\n",
- "\n",
- "```\n",
- "train_folder/\n",
- ".....folder1/\n",
- " .....file.txt\n",
- " .....folder2/\n",
- " .....image1.jpg\n",
- " .....image2.jpg\n",
- " .\n",
- " .\n",
- " .\n",
- " ......imageN.jpg\n",
- " \n",
- " \n",
- "```\n",
- "\n",
- "The inbuilt file generator search for images on the `folder1`, now we can just update the `image file generator` and rest of the functionality will remain same.\n",
- "\n",
- "**Dataset also support progressive resizing of images.**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Updating component"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "# data_path = '/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train'\n",
- "# data_path = '/Users/aniket/Pictures/data/train'\n",
- "data_path = '/Users/aniket/Pictures/data/tiny-imagenet-200/train'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No item present in the image size list\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "['/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/n02795169_boxes.txt',\n",
- " '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images',\n",
- " '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02769748/images']"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from chitra.datagenerator import Dataset\n",
- "from glob import glob\n",
- "\n",
- "ds = Dataset(data_path)\n",
- "# it will load the folders and NOT images\n",
- "ds.filenames[:3]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "get_filenames updated with \n",
- "No item present in the image size list\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "['/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_369.JPEG',\n",
- " '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_386.JPEG',\n",
- " '/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_105.JPEG']"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "def load_files(path):\n",
- " return glob(f'{path}/*/images/*')\n",
- "\n",
- "def get_label(path):\n",
- " return path.split('/')[-3]\n",
- " \n",
- "ds.update_component('get_filenames', load_files)\n",
- "ds.filenames[:3]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Progressive resizing\n",
- "\n",
- "> It is the technique to sequentially resize all the images while training the CNNs on smaller to bigger image sizes. Progressive Resizing is described briefly in his terrific fastai course, “Practical Deep Learning for Coders”. A great way to use this technique is to train a model with smaller image size say 64x64, then use the weights of this model to train another model on images of size 128x128 and so on. Each larger-scale model incorporates the previous smaller-scale model layers and weights in its architecture.\n",
- "~[KDnuggets](https://www.kdnuggets.com/2019/05/boost-your-image-classification-model.html)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "get_filenames updated with \n",
- "get_label updated with \n",
- "\n",
- "first call to generator: (28, 28, 3)\n",
- "seconds call to generator: (32, 32, 3)\n",
- "third call to generator: (64, 64, 3)\n"
- ]
- }
- ],
- "source": [
- "image_sz_list = [(28, 28), (32, 32), (64, 64)]\n",
- "\n",
- "ds = Dataset(data_path, image_size=image_sz_list)\n",
- "ds.update_component('get_filenames', load_files)\n",
- "ds.update_component('get_label', get_label)\n",
- "\n",
- "\n",
- "print()\n",
- "# first call to generator\n",
- "for img, label in ds.generator():\n",
- " print('first call to generator:', img.shape)\n",
- " break\n",
- "\n",
- "# seconds call to generator\n",
- "for img, label in ds.generator():\n",
- " print('seconds call to generator:', img.shape)\n",
- " break\n",
- "\n",
- "# third call to generator\n",
- "for img, label in ds.generator():\n",
- " print('third call to generator:', img.shape)\n",
- " break\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### tf.data support\n",
- "Creating a `tf.data` dataloader was never as easy as this one liner. It converts the Python generator into `tf.data.Dataset` for a faster data loading, prefetching, caching and everything provided by tf.data."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "get_filenames updated with \n",
- "get_label updated with \n",
- "(28, 28, 3)\n",
- "(32, 32, 3)\n",
- "(64, 64, 3)\n"
- ]
- }
- ],
- "source": [
- "image_sz_list = [(28, 28), (32, 32), (64, 64)]\n",
- "\n",
- "ds = Dataset(data_path, image_size=image_sz_list)\n",
- "ds.update_component('get_filenames', load_files)\n",
- "ds.update_component('get_label', get_label)\n",
- "\n",
- "dl = ds.get_tf_dataset()\n",
- "\n",
- "for e in dl.take(1):\n",
- " print(e[0].shape)\n",
- "\n",
- "for e in dl.take(1):\n",
- " print(e[0].shape)\n",
- "\n",
- "for e in dl.take(1):\n",
- " print(e[0].shape)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Trainer\n",
- "The Trainer class inherits from `tf.keras.Model`, it contains everything that is required for training.\n",
- "It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by [Leslie Smith](https://arxiv.org/abs/1506.01186)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from chitra.trainer import Trainer, create_cnn\n",
- "from chitra.datagenerator import Dataset\n",
- "from PIL import Image"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
- ]
- }
- ],
- "source": [
- "ds = Dataset(cat_dog_path, image_size=(224,224))\n",
- "model = create_cnn('mobilenetv2', num_classes=2, name='Cat_Dog_Model')\n",
- "trainer = Trainer(ds, model)\n",
- "# trainer.summary()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "import tensorflow as tf"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model compiled!\n"
- ]
- }
- ],
- "source": [
- "trainer.compile2(batch_size=8,\n",
- " optimizer=tf.keras.optimizers.SGD(1e-3, momentum=0.9, nesterov=True),\n",
- " lr_range=(1e-6, 1e-3),\n",
- " loss='binary_crossentropy', \n",
- " metrics=['binary_accuracy'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "cyclic learning rate already set!\n",
- "Epoch 1/5\n",
- "1/1 [==============================] - 0s 14ms/step - loss: 6.4702 - binary_accuracy: 0.2500\n",
- "Epoch 2/5\n",
- "Returning the last set size which is: (224, 224)\n",
- "1/1 [==============================] - 0s 965us/step - loss: 5.9033 - binary_accuracy: 0.5000\n",
- "Epoch 3/5\n",
- "Returning the last set size which is: (224, 224)\n",
- "1/1 [==============================] - 0s 977us/step - loss: 5.9233 - binary_accuracy: 0.5000\n",
- "Epoch 4/5\n",
- "Returning the last set size which is: (224, 224)\n",
- "1/1 [==============================] - 0s 979us/step - loss: 2.1408 - binary_accuracy: 0.7500\n",
- "Epoch 5/5\n",
- "Returning the last set size which is: (224, 224)\n",
- "1/1 [==============================] - 0s 982us/step - loss: 1.9062 - binary_accuracy: 0.8750\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainer.cyclic_fit(epochs=5,\n",
- " batch_size=8,\n",
- " lr_range=(0.00001, 0.0001), \n",
- " )"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Model Visualization\n",
- "It is important to understand what is going inside the model. Techniques like GradCam and Saliency Maps can visualize what the Network is learning. `trainer` module has InterpretModel class which creates GradCam and GradCam++ visualization with almost no additional code."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from chitra.trainer import InterpretModel\n",
- "trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=1000, keras_applications=False))\n",
- "model_interpret = InterpretModel(True, trainer)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#hide\n",
- "trainer.NUM_CLASSES=1000"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Returning the last set size which is: (224, 224)\n",
- "index: 282\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Tcxt25KmBz0RMcZc69v7nHPvzcrKLAOWjMFCokOBLNNwB2QZQQfLDZCNZCOMbHeqgeSGTTUQohogZGPRsigLJJD4lcACWRbGskSDDrKxkDAYI2OVjctF/WTevOfsvb+15hwjgkbEmGt9+5xzM5ObVz6pOnNr7W/9r/kzRoyIN954QyKCH7cftx+3v343/fd6B37cftx+3P693X40Aj9uP25/nW8/GoEftx+3v863H43Aj9uP21/n249G4Mftx+2v8+1HI/Dj9uP21/n2azMCIvKfFZF/XUT+DRH5x35dv/Pj9uP24/arbfLr4AmIiAH/L+DvBP4d4F8C/t6I+H/8kf/Yj9uP24/br7T9ujyBvw34NyLi34yIHfhfAH/Xr+m3ftx+3H7cfoWt/Zq+998P/H+eHv87wH/y+97c25dxvfwWAKdnIk9vEBCRfE7WE7y9ASHx7efXTR/35c1zgawbgeBIrPt5g7ePv+/G02f51ueBAIkgAoiAOlSfzpyezwvIefCP4wke+26mOIFH5DerEQFzvQnNvQmpn9HP9vTx2OPt3iKP99VJze+IvE/t+vPlWRdJ1kfO5wJkXc/8RlGevx2RqMOM+mQgNQZkfWa9X0BwqHMgIvichNe5Wz8pj0EhIuf+rOeDOAdDIIgqZg1rHW0N1YaI4oC74z4ZczLGYM5geuAe5zmJOk+PwxVUQOt6qYKZ0Z++W8V4vtLrxOb4f/xdz0V4/vXAPe+7gz/tS/i6Tmsc8PgeYP/6L/61iPiTn1+5X5cR+PYYeR4bgIj8Q8A/BHDZfpP/xH/0vw3kSQ/3PHMahIA0QZpAE8SE6EKYIF2hAwZuTlggm0CD6JGvbXmTSx6tXNZzApeJboPed5odNHa2uNNip3Oct8ZBZ9T9ei3W/YHFoLPT/I7FjR4HykD9wJgYg4aj05HD8cOJw4kRSAifvv7E17/3gWM4aoJZexgqE9wclwEmyCZ88eWF2YKP0xna0ct7bq58c3OmN6Zc2aexT2OwMbiwR2ePzuEbBxtHXDiicZvGHo0pjUM6Q4xDOkhjhjEPYxyKu+CHgQs+IodvrImfl7s1A82B5zghg5CJNkfVsRb07jR1mgRNJk0ciYHGRPxA48Bi0hioBE2cLo4JmAy03dHmfPXlOzZrfPj6G+6f7oQHiuLDUTWsNUyNbds4HKYHajnxRgDaQYwpDd3e89M/8Vv89E/8Kb746Z/k+sVvoNt7dnde7x/58OkDv/Pz3+Ov/LWf83tff+Lj6+DjR2c/hDmUmAaHIQeIKxbKxYyXDr1PfvJl52c/+4rf/Nlv8sX7n3LpX7LZF5i2WhwEmZHGbAzmOIh5EBz42Bn7nTnvHPvO/X7nfju43Q5unwYfXw9eXwf3T8FxD/Y7xFDwBiHMOZjsAPzb//w/+m9912T9dRmBfwf4G58e/weAf/f5DRHx54E/D/Dl+//QaSBUlZC01v54b1o0l7TsUwgRxAFPD2DdxAWJJyu4DKGTK6qXtY4Az+8V9fQAzl/8fbZnc3au/GuTp79P90MQl1pNn17zWkTk7afhsYoJaRhCAg9nPw60GX3r9HaB7cJxr2NQxVRzgIkioQiKhqKe7lA4OUljIkiuxoDiCIYRj/MvIOrgBlonUYXHqXrscUidVw1glpfFeVP99uoQERWTPs7hMizy1qc4/7rDnIFL4DNXRxXByMmeHkQei5QLZpZjarrXlymhSoSXX/RYufPXH15cLfX5r8aMhxMuRAgRDpoexTovETAB8wCzXP2b5NpmgVieGyLHa/oEkeNaFFElwkANMyPCMGv05nh3xnCsOWaCqSDiPDwHcqC71Bn7rjX5sf26jMC/BPwtIvIfBP4i8PcA/6Xve7PIuuSBpr/I8Hm6gOkO5wVxgggBV8IDKVc1PNITKAOyjv1hCB7PcYYWE5FZruTzMCsXrNzPnBzz6f66cX7mdGHPaRsoOcCUtZNxuoxrV74Fy5bBCs1j8ghEBcVyUk1nH5Pu0K4XtG9MAeZEfCKaxrApdFXCFQ+wEMxBZyDh4DMHMM+ut6A1+aOeU3UmimiQP/QIp+QJURIhJ8M6hmdbCKg9T7ByyuOcWugZgsnjPfLGxBCk5+QTfDih5Ro7iL39HO6ITo79znTQvuERzOkgmucgnIwJ67dlufFRhjHKyHtez3BgQuS4kRqrIdTCI+kJ1cLkDlMjf2YNZqsLLBMkDTWhFS7lv1wIDfGAMEIN0wYWhE1mM5pNzARVKeO1Bs7a7xVDxmfm9Nvbr8UIRMQQkT8D/POAAf+jiPi/f/8n5JwRK/aXHIWISq7w9ff5IxnC1puXsYg4n0uDH2dMfUbaTxmRMwbLRxCORE3ymKcjwXr9zeeWK/KIqtf73pz2iLqgvMECTiuwdv85lquBNCMwIpcpAg+IEZg7TQQJ59hv+Jgowpwz3cjWUFOsNTwMn4pMzcG6DAw52NfEV3GUhtVxeU1+1RzQorHGVZ5jr2Nds1vrwNTPAaj1+Ud8/IyT+OMEkIZBJR7XnjW4yUkL5yoX0/HpCYQEhbVEGhscKjw4joMRgomyVnUhvUonvU7Cc99OzyX3TSONPmUANBz1x/hYeNKyPCFlAXRhNumZrFssw6ITdAAdwh7foY8hJp4nTEUJNUIbYRO15U1UxMzTmlbnSyQyFKOG6OfYw2fbr8sTICL+OeCf+0N/7lwNMt4U1VrdyJNuEAt10QoPFMIUVz/BvuWKnvNKn/7W/TXAwVEmEpNncEbledV/3JY38LxSLFRmQW7rZ9f9qPBjuYsSOYnWuitIrqyy1jyt8zBzAB2TmMFB0BuIQyMYc7C/7jCVq20IwrCMzV0ctaCJMiXhQnV/ctH13H8ro5mDXms36zjUEU23Ndxyskc8lvY62AgInfkxjfN4REHsYQCWix7LQ8IfXgTlgchjHJz+QqTHFQjuwhxlnKQMUcBmQsw8xq0bzQQ5JmPu6fSLAaQ7H0eOoTI+qmAKVqvq59dbyiNM4zAL4INQxcXTW2rllSLMMv7DIwHYGnPSHLH0KMJbLWbLJ6rxF/44/zUWztAtnm6SY091Adw1ntYiWP7dGW9+x/ZrMwJ/uG25pPJw34nyN6NOUhoEFMKE0PQSUBBN8CzdqCfLrCAWpzfwbA5F5ZwMywN4uH55Yk/v4Lz5eaHWe5W1Mjy5jSsEWO9zR2a5rVGGoFa7Fco89i3jTARUDAlnzomXKxMCvsGxO/2+Y5uxCdzuzu4TNmNrgZgwIggmMDHN2FFVamV2RHL/nUCZGMqyUnkMjsv6TIIXoZqxppZ3A8ttS0BX0vcVTTBQNTAtm60PwyjE6ZKvUG8ZiBzswiNT4/UzdQ7LIM0xkQDTnCSmiQ2MkRjAu4vRL+/4eB/83jef8JljxCuU85mTSMIxAivjo8sTYKIMjFH3/TwvBtgyajqZkWYjJ1wa/VmG/5jOcE/cygDLUCWNwCAHcRDiBJOIAZGvLwN5LiKRE/1xrnKaqIBZejML0Um7KE+hwXdvPwgj8MgKCh6eVtrIARKPeOuMKRWwjAPTM3iEAAnQ5Otxrv5CaGRgYpJZghqgonGue2tgLnfvsQK8neDlSJ7P1VFwDmQeiThdL62lcoE1sZbOeHx8WYIaRC554cNzPFiD7SIV7wtbwKUp2/v3xHHnF59gHM7UA1BaE1ycg4mI1ers6UaqoOG453FGxNNknMxafxQnVNNjCqBN3JWIJwP9tFqjNTg1ymUN1Or+Oh/nOVrnfE285aw9xccCCZ6tsCAwDEGIMREC05aTNATDCXEupnQNvnh35eW98Xo/uN/uKEH4fArFcqIt78PEMSaxDECNh5z4gyZ+3hwYbS3GQsTMMStBTMErWrzdB/cx2Mdk+kh/QgSlpWWksBl3QibOIHyc2I3HIGKe35+GIEMsQzAR9AnP8Ao7pLCK8Kc44zu2H4QRAGplrMHviXIv4EclVx89XWS+45hyQGp5B+fNnm7rsSZAY5bAl54Tfk3ex2M9H69JP8/XF+D3/DhXLp4md6QjUgMiHQp5jMHl+T2fhzICww8CP/Gr1pTr1vjqpxe++NmGXS5I67T2wlfvnJ9/GHxzP/j5fXIbg631yihMJuMRPwqJpovjkhZmij28l/N4FCMH+xma4Rm6xluMJp2vPMgV+z9uhbyTk3idJyJOL+oc2KcBeBjY0xMo46lqqGhmAkLoJjAfHpwJ9CbgB5s51y++4nd+9/c47vfy3AoEJPEAxcsArFsCgJOJkenK9AYcO28Tq2Ma9nTdmDAtjaQkD+PTcXDbD+7Hzj4P2swT1rWXca6xIWl8gpG3sv4RZQieMi4akjfLbNBj/NZ5EhCv1JP/MkTgB2MEVvqlOAKLHLHSfxUiuHuGdF7BW70Hy29YRuTcno/9GWqW9ABEI13IIN1BIvPRGdo9AMIzMxBPz/lpMITHaiFPj8/b9HSd12Sv1T2xpQcQ+IiBM0SYMR/POBjGF+/e81s/+4qf/PQKJhwBtl358qXx1RfwzT65/OITv3sf3CTwGIzI7IACTaAbjCkZpqw1P3LAiygilpNfJoGlx3DiLIaY4175nJXeEtCYGbdDgV11WxN7AWpnJmDhKn665VGA27PRyEuZ3opKehMxHR9HZgHqtGqM9BQULq2hftBl8rIpW5ea3HU+I41c4MlRiPEUAkyIgRXfwxiYH8kHKU/BYiTWQo65UMVanAFDAMxMiYw5+XC78eH1xvtjw7ojDZQjQ76csQTlBcg8H6c3XFmJIrSpKGaKNcMkPSBlIQdpcINKmUviCM+Y+ufbD8MIBMn8iqco3DP3qmdyOZlRzIqBkCf+AGkInoxHLkpPCacFpS6PgAc/wDTdqhYJtrWQdLPm8wo/nyb/I3vwxgDUpCdm3vcJY9b1e0xuoJIK8UDZiy74zMYLLxQ4YM485i/fveOLviH7RCzDgnF7Zbih2vnq+p5+fc/1042/8s1H5n1wAFOUJkKYESIcg1rZJglCDiIUJaHnhFYqh53OAZUzRVRPN/3cWxF8Jjh2ot0rzDgxj1l5+RzUZ5quLGJInPchfyO/6gknQggP9rHjx44BMYO2jIsH2wbXngDftQvEpAsYg+GCRk5Sk5YTzQfiA428iR+5L55EMIsD8R2NnSYDjR2LSUgD0iAaliEqg0dO4QHkfPj4yi8+fMP7rzrtEnQ3ph65H5rGaPqBe40picIHltGk0uG5/007TaUA7RM2TAN5unuZVXN+uTfwgzACAUmBfXKhnXLt1zhbIF4ZhOUdPFb+imhPVPTxObRWppM6PBNckTV5HxNcn/CAjLkyPWSyAKHAyo19hArfkT2IXP31JCetA11hXRo0H4FPT/pnJBi6vJo1CSDvd1NeWkdnrVi+MBHDI43kMUHaxm9+8QXWL/Dzr5m3kSuegXoCjU2CS6tYfgYRkxGDCMEjUO2Ie8amGN0MJsw4UOmJsUjFm6eT9TjYBa5J4QDfxlI+P2flZckCXXMVlHNKPUKCmAc+M7xpyrmSqwS9w3UTugbdJI3c8foI38ZERVFTPJwZtbIXBqAcKAcQWOSElziw2LFI9miGB2fynxCtYSZMU5wDV3AJQpSYwuHOh9c7Hz7duF6N3i2JXRQpRDy9AEaN7fSMkxu8jCEschEuqCcJTLDHWBTDK8RaxCPV9tYr/mz7QRgB4A1Itv5/49qXUX089icsrT5xukG8MR4QZ0oRTfBKrQgfZ/w7cxU4V/aJSRqFJhkHNpwWnvn0iBMxfnxHGZGKezXiTAXm5C9gMAF78OKmx2KiCQ/SSPLjTRMU8+F0Vbop5olvanlEGQMGreLDj+PAjxtfXS7Ez34Cv/jE77zuxDxQD5oI125Md/aY68Sld8XKdw/CBSJXZA/JNGIkMpOrjRJWk1OEWKj1Z7cT9HsKr94Yzqe01nqcCYfyEMhsRhoFmHMg88Asz0N4xs+9By8X4/0lQcHLZmzqfPPpG/bbB/DB1qqmwmcZKEFjPnkBSfdWhcma/DsaBy0yJGgxcnE4h2QGFpMcYtMC18DVmaMxRTn24MOnG7/45gPXF8O2RDw2m0kMolZ+macBCJ9QuIdGZWUCCDuNgkmN01qwTB10JpEOIawhbD98TwDgOeecZIcHm+1c2p9tgvhjdV1/IgkwK0vwxhCcMSqoTESLF3BO4nGu4MsgmOSKqYUXaBRwdMb/GSa8BRHjAT55JDFsTf61oD2BhGe4xwMsFEnApzdl2xoazrjvvFwbTQT1Sme5FBstCA0mk27wvnU+zomPnS+3K/7TL5h85K992DEXNpnMmHQ1umY2BpxZGQLRYIwj3U5pjApvFKVpouArnXsW6wTYGzDvEfcv6sYjzVYA4sJaItIgr/TX6QI/Z2uWBwGxEHtJym7MTEdeu/FuM65dECbvNuPSlPsMvny3Mfad45gcYyZKIUDMAv3S9Vff0egY1KQ/MF+1ImkAGgdbQXgrvZcGQQpEzXE4KyMVoQyDTzv83oePXN832pZU32AQ2jEXqKwEeBmBDHV1hWRhaZgLS1rArUnQJJhlJ0SOTDeKIrIhckluzfdsPwgjkGiyPlb+5bprLf/l0r+l3cd5f/Eg4mmir9eToLGCSwGZqA1UakBGuoGyBmbkgCD8KV/8YI89Vv1H7tjeZAzKS5ieVPsTBIyn7MDT3wkSCcZpeTFpABpbNy69YRoMmbz0ThOBOXKQrJNX1jDZbxMz44Iyx8Rj54t+4U/+5AuGf4LXg/B0f7sqvT3YD+4zB9ksd1NiRZkcLqh2TCrnjZG8uG9Xoy9G4BkCRMbnaTCfcvDP6djTAMQTIWYZ6Xx8Qm4yaZUTZ6aB6ha8bMqlK13T9X93Ma5N2F34yZcvzOPgF7/4yPRZk0KIGI+CpTjQuKPec2X1HfOdFncag03SAFgMWu2LiaEJJaLArEVkyqQsIx456eeAD68Hv/j4ieu1YxYEA/qkR3JCIjIEWEZAXYhpea0rVZyzXWuabLkvkaSw01mQxIwksnoufvhkocxzLvc+FqKpmkBeI89wy1tYsuHerPKagOHpo60y4UoZRhkVMU9AUJZbOp8GZSHkixFWr1vMEzV+Tgfm+8sLiPQsZKW9PB4FTk+rfyz68LMhIF1xT1gdE6OpIZB0YM0VcGuW7u/IXHgomSWRIBb4EIN5BCI92btzosCX13f4byjxux+ZnybTghlOF5gqTB+MwhVmBCadQJlRJCI1nIm7ZwRajMHF9BN5O8jeplvjBPjkNLxP3lP46QGcnsDTSXpgCXm/adSQyGvXLbhuyqUbXdNL6grvtsalCfF6Yx4H+H6m+lbaNafwqGucAKD4PTGJcSDjhs47FntVk+50dgYAwRRHwk4jMCSLsohWw9OJJqg1hjn7nHzz8ca7dxu2ZfZFwgltuWgUFTrmBC/MJTTxpckT/0AqTDA0WtGaM2SrHEtiH7IRXGrvvnv7gRiB2hbhZ93VRKIz+FkTGbCilCpJFNLH/WUAJIOkLCwxzipD1cQCiPk00XP1T0xg1opVk3oVjLBuA4nxtPrPc1CfIGEBgm8MwIkDCGf9gCeynfOowgXJfVYVAq/4N1OZvRlW1ZPSYOU+FlFkSq6SC0MwjC6NfeyIKO/ahT/xky8Ycuf45AmeadLv3XK6qQozMcvMM3sU20+ZPhmVylzTWynEtiz4YmDWOnu+M+30Mydj4SdPHpk8vIeM/zNul5O+/RaHkZhsLXi3Nd5dLUFCHBPnujVeNi2jMLl/+oZP33wNnhNlzshzHJJhACs7cMC84UOJfYfjFcYN9VsZgp0eR6YGJVAaKunEnxyIQlcmiw2peEsw8rYPPu3wzadPtMsgMMAJ3bApMAJGlZkPQacRUzIUmE4MJcby1pKdKN7qPIJF8kLwyGpS2Qi58suQwR+IEaiqvXVfC+ALKj4k4+enT6zJ/YYItFKA7fH6aQQUUM/YUx8Ivn6HN3A+9nEaCFmDpFYSjQQLF4Ekvye5+TYXAPhdWEA8Z8USGJx+lqhm2ULmglUF3DEVuim9GcziUtRpydTjAt4y1jVVrq2BXbgNYE9EXUP58vqOQec+PzLcGZbZiFxzKy3rWqtz0nc9nCMGEZlK9SIKpesOHomOL/7+GQ7IMzawOBUrs/I5QBifXZPH5NcFxhaIIkwWHe96Mb58d+GlSyH5+b6XTbk0RcR5f73w1fsXPvziI6/7jkVliwIsNHkAzBMDkJGUYt93/LjBeEXHDZt3egw2jqQEU1G8ZKJVcAak671IUAgiDY8DbRvO5H7Ah9ud7dUxbTQxpAltCjKiDEEgQ7FBuv6kAcjF5GEExEHCENesS4pAXPNWmQHR7REzf8f2gzACEeRJTSraSplzFvM8pdceYODbg4oVEjwZh88NhVgW1Jh40UPztgbl41Ypo6cVwngOCca3w4TiBej0CgPiTRhwAoHrOOp1H8FJFS+VGnFBZ05mL5KIqWQxyu1GD89ppcnOCyFrKapazi4b2l7Yp9I82Hol6iRJQV9eGr/11TvCP+KvO5NJK0cZN3wOYEOl07QltOePWH3hBFHkm+UNSHkSeX0euEAaNR5u/dPkXhc2Pa5IrGZhA5WaXdTixSjMGl3n0uCLzfhiU7pMZKSIy0U7L5eOmTLmgR+TL14u/ImfvOMv3+9pdCUr+xCjySzRmAT+1IFjEPsNjlf0uGHzFfM7zWcCgxW2qiwDlQFBRqPpHYwFW0lLzwFlGhxzsh+D213YutAky8BniYvIzLStDKcN8JmUQpuRRmIK4oaPRqxKymEJGE5Biu+hGKqpZvTHABMoQxWfxZbP9F95+iuclNUnVkC60iqPyd8enxdLDru1Bz20kXn/Rt5/fmzhmK+8caHHjEf4EOMEEYVKLc2RrJ6nFOADC+DBEIwHWBgj0k1xTYq0KjoNpqJNQRseA0gj4PNArcGxUko5GK0bzTakb4S2xNGjTqzn5OmWq30w+dmLobxAfCI+HficuDZmBIeXdNVMLnvf3rFtjds+iX2gUsQeWcZAqYpcuvV8zp3psxD8gamdGMCzBBsLE3gCXVNFCMQnrUQLNCpDI0BkKPPTd52fvHQucWDzjtU1ef/ynnfvLqgG99udj998YkTnZWu834SPnxI0M5ThzibBRYMWg42JRjBjZ84b4/iEHje637nEnRGTCwNRZYowpAqlIoMzF0voSoV9TrKw9eAQmCF0NdgyPXvbJ/2errzboCM5IWdWjcouyD5pI72NjqFTsSloGQEfTgxgDBgUUGoJbBa9Og3Rsx/9dvthGIEn1P/MAGgZhKfHbwzA5889YQPPr504gXl6AporjbHyxH7yAR735+niJ5HkQShpywOIceIGFjMNxpwnPThmpe9OnsDb7MBiO66Ehle6UJDECcZEtoZaSze94BLzrNaTZllzPhdZpCVANfOY1eCybWBC3CfzmIQnc8590kP46aVhf+I9zT7hXw/mMZkKQ4UZE5dVCXfPqrzNaNq57XtlchLwQkrzTrwGVBZsyRzlr/k5gRchSGLx4BfnogyxpCBKK8tpsrIA6bEZk96C90358qXzYmDzQOYd8cG2aVYPWq4qvXdMgw+/+IajSFZdZ4KaDESELpMuk00GnUwLuwzQA+dAZOAy2WWwM9hkgiquqVngYrgII4RJz+Igz4IJE2WP/J2DCt0MdlXclX3kuRFzpkALkOHEcOQQ5AjGkatKiNPT7QNXYiYRSTzQsEyXlg5DOmdZGyPiv55wQET+RuB/AvypHNb8+Yj474vIfxP4B4G/Wm/9s6Ut8AfbVigAb8lCb36ct2IjFrn66wMAXO9Lg1CFQrZSeM+A4MOlt5UhKDffZHkHK+6PRwFJzDfGQisbIAsEfCIGVdq7QByejEFUebtn+WhtPoI9KsVTA8dF8FHxnyRmEMCcjgxh3A5iHMi7y3mSkh/SaKZsU7iPnNjqkfUM2nnfrvz2b3yFyyvxixsyJtqFXWC6JKFo3PA5aNuV95cLJsJ+H0UgAjNJbKPifdNMaQ1dAFUeY1M9wb+sqEwcWyOzK60mYBfoFXqoOk0hwvF50C348mJ89XLhZdM0yuliYU344v0L718umApebtjLZeMbPnG8foB5sBlZU+HQROk66DLoMrnooKkRDaQJ0QULiBbsNtn1YGhSdV0aKqljEWIMN0ZMDhRkICoMrADnLChadf5NSE/CG/t0hMHwoHmgA+QIdCo6hBjOUSlrUzLrU1J16WkITRVpgnsgMiCS6QkDZDwm1Xdsv4onMIB/JCL+FRH5Evi/iMi/UK/9kxHxj/+BvylIwsqJBTxeOqsG5TtuTxmBN0rD8OaYo+JM1Ur/yaKJPvL99pQVOI2CxFO48Ljpm8rBGsSehUg5wR8G4DQGJ55RB1fpwnTb8uIGtaISjDGZnyadjuLsU7m3wdaN69ZRYMxKk84sNnKHy3UDD8ZxsMcAvWDtyrW3zByMKC2Fxj3gPg4u0vj3/ewLLtvGX/rdD3y4D14lGCqEQZtJNWY6zZyfXDuvAdMn1kv9eHoeahXwhDtDk4DUq8qu6TwNQXgSnCjwdxGwWhFfOp4hXBmPqelBvNuUL991vrx2OgOdByaOaLrg795d6b3Rm7HPwdxv4Afhd2K85rUSYUIRyhJP6DrYdLLpoLfMSKnnimsIPoK7OrsMphyoCm7Jvgw1pmwcKOYzU3oiNFGG+JktUCb3WElPCFE8BocPmIbNmcVeI9ChtCGYC+JaegUFARcZYGUjTKB3QSYMH8g4iDiARsRB+I3vW0/hVzACEfGXgL9U978RkX+NlBr/w2/y/a7/+Zi3r53iHhQuEJ+95xlLEE+acK3+D72At/TVB3noERIsD2B5AafHsF77jBOwVv4H+PeUHSiX/3w9Mj7umzLVMs6fzqoIS4Q9B6TPYL9nRaBettNgZAVgBgTWjE07Ix7kkRkOcyDaacCISRNDzXKFGTuG83Lp/PZXXyBh/H9/9xsYk712vTclmrDPA0bw/qpcv2iJX7RGuHOM4wxpVJX7PavhhlRZbwGwlmKEgJeHkNwG8TQEJ1Yjsyo8kzJsMmhN+PKl88XVuDZHjoXXOBqDrTXev1y49AaaegNmjTlfmfsr4gf2xHRchTtdjzIAk4tNujmqQosUajXAd+duozyBg5WinpoA7cyAjDuJ2A9giGE6qyozU7cpTDoTs9H0zBzncM36kRn4BJtxMjbNOs0vGB2JTHVJ0ULsTJnnOLc5EE1OhIeDW2Wkf82YgIj8TcB/HPg/A3878GdE5O8H/mXSW/j57/MFWLe3k3659hqfTehc/c/SYR73TxDwWVNgkYOedAOeV3vhmfG3kP7yDE7v4AkAPL+jvIHw9AKWEEzwbQ/gTQjwdD9AJBVjL9ZwnBGpHdh7R83olwseExszB8hY4UV5AR5JKLLGZXvBtDGOnbBAe5J9xriDBu5SqStBfWKe4GcH9vtH+ib8qa/ewZwor3y4T+7jwMywfmEfcMzBVQ+u13e8vH+HmbGPwX6/40/j7OPHLEaKOdFmqBhzHJlyHEk6aisV7EXOCn8KwZICvdKL2OR66by/CFcLEm8vSXcZwOB6eeF63eg9vYAPHz+mfHtMJA5aS4bDdCdFhychSi8P4GKTTYPNApOc1Bq5Go8WXHSySRoBE8CCWZWZUxSboGKYBwdKk8nQkc9Bkn+WgESVi04rPEgEF2VRo00Nk063C5f5wsWvbH5F3dAwpDIRIYG0AJk4OzaOpA2z476wj+8PBeCPwAiIyBfA/xr4r0XE1yLyTwF/rob5nwP+CeAf+I7PPfoOXH6T1vu3jIBLVrYt4s8bToA93ntmA/Q7biXvvNI4DzZgpqVMnsKCMxx4xg4WaeWBGywvQsoA2FMmYPG93078hfxxegAZMiQ4qCo0U1qRv5spW29Yb7RuuCRHwBxUjTlninU0SRHL4WwvG721RPWPyRwZXknvdGtZi1GPJ8qYwWbKLjD2e1JY4xPBwW9/+cJla/zVrz/x4dMBBn0Tpiv7Mdma8/4K7981tt6Y0ZgzfxtSW++1RxkFh6p/JyYqcNx39v3Gku5eRlMjsFAqt0HTinXJFfK6GdcedMneBCojgV4/QJ3rdQOqWcg4+PoXP0dE0yNYKeQK8Y6YuAeqLfEA9TQAGlwMTISOoi4w4K5Ol8Gmg6lHVpJayq+FGa7CrtDCaQFHTA4Ohkii9AERpZC9inlEOFQYkviNhCGaSkEtOp0LV164+AuXeaWPDZmKhRUbENBM1XrsqB2YDVQHEQc+DwJBbdVyfvf2KxkBEemkAfifRsT/BiAi/vLT6/808M9+12ff9B348j8c8lzwo2SJbJSewDMRqG7WjGhBpAhA0onXffv8vYkDvBUIqVBgDaZVObjeE1VHUMISj7xfeQPx8AI+TweulODiBJwFkuWwnK/D0+qQNQOtGc0Ma5LKuZacsi6N5kEzY9WXa2nZ92Zs/QozOI4jaw9ECFX69YVoG59uR6WKwOdgVBFNN+GQYO43JgOxjYjJT64v9PYFH96lWq9IY7qwT8NMaLLTxkd6v/KyNQTFI7kIYwxe5MqoFGH+rtD6FRXB58HYN8ZIwCrigHkgPk6gL2amY7fekuFXAiKbDPp5XaphCU7fjC/fv6R34Qe9Gdftwu/94hfMY3C73cqQx6mqJAQNoYdzcWdz5+LBJRwTxddiZEHXSZeDTQYuB00mqCdpz1JLoAvVoka4h7IHHCEIluFiJP06MU8rD8ChOZNMFasYLYyrXrnKlQtXtnGh7R2jYRQxSKrXwKKMjx2RHdWB2oA4GKNYhKK/Hp6AZEL/fwj8axHx33t6/m8ovADg7wb+1d//2zIuegMMRmY1RCSTxk8rvVgQVgag8+ZvWJx6glI3a0U0ibcrubKIKW91AJINOFB/GA4tjsDDK/BHRiCecYDvuK2U+PICeDxOoCdSu1MkXWdN1L1vDWnJ6Gsq6J4Vfr11pJVAaAjWGsexc/u0MzTo7y/otRPAfb8z94MRCtbwMRjHwRyTMVN/IEZ1RZJWx5Ie2NY3fvZ+YwbcD9j3g9Y0KcTzlpyB5phsT+NC8TG4KKjvmLZc8cdAaURMtt55/66XVmGGTVGZFauMQ7MNicnlstFVOPad26cPxHFgI2Ne5kgmpAnvrlcuW2IP33z4gPXOthmvn77BQulJacBH1usr9XsIbaQ316dwGcrF9KRPx8xGJ5cx2ObBJe4JDJKaFKGlGWBOb86QC10mLSY6L6jn5wsFyUrNWhhGJGgtMom2hNUUE6W3zqad7g1DkZGU7GSSaom3UPqaE2RH5Mjq2EpRuR/JMlT79aQIydj/7wP+byLyf63n/izw94rIn65h/heAf/gP9nUV+z8BhNmuTU4vID5z9d8wAuvxG+9gMQSrqCS/JoGnVR78APnmaQxOQyGfZwLizFVLsdZiBHNU6m9lBZ5ZjhUOxIg3h5qKupXvHdVPgGLdmSINnANT6L3RVGlShSWak9VKVGCOwSxj48OZx0RaNqtwBt47tnWcZAxu144MY366MeeR+v2FM8R0pjYgVzqTAFd6ZAoOrfTaAjDnjasZ9/s9ASszGAe9d6bvxNxp3Th8R72G27FjemFrK6swEHOaZQwefrBpGsNLS2/lao1OR2agYzLukfwHIXUX319pTSo3H/z857/LL775hnF/xcnCqybGkEmMcYZuMgI9QHeQXbI9nWopGoMegh1gB2wjsH3Qxx3rWYeCBdINvUq6At0Y2rl70PbJ63Egs6HHIMaRcLJueDjdHWfilW0IlGadrkYrhqiQJLfWwYoaLEiFF5lanvOG+870bFfmfuB+MOcg5lPDnu/ZfpXswP+J704+/qF7DQBvMgCyxECFkmgmy4qVdH9Og8HbUOFzw9DzBIosFdmHIci3pyFYWntLUfYUFhEqTQjmT9VsuTzA8OzLV4VBJQ1XmI+cIUCGA3FOfk47l+me0HTxUyZ65ZITcWeDbnYKdrpPPGYVDRkhMMZEutGt4ZGrBZH7ZSaIGdGMOQNphoXgTNrW2AKQkSnGMbO9lzvahRj5e4RhNM4mmi1ddJFBlwZzTyEOMWIOmg82EUYczBlYy2xGE6e3xjjuxBG0dilD5UiBg61AX40jZdqHI6JsrdHfXWghMILZhcMm8wherlfevdu4dCMkeLlu/N43zv3TN4TPqnnQzMS4ML3AyQGukbTbHeIO0XPshULMyIzNPYg9YCR5p42M50QH0sE22K4HdgU2w23jdRrcBnoHnYNAGK7M2dlkMKPRdVbVtuKWAiCtUosayeVIOqBVVa0ToUW0IseMT9xTndjnwRw7c+z4euwj6dG/ZPvhMAY17zxW/3is/J+/77OJ/3lKUKwYa4skJE+pPlnstJkGYJEwSKOQKal6/KQh8JAcq/i9woDvQ/0XLf7UQKwtSAxhdZPN0ba+IG2qrxy6JsV3cjCmssqX3TtYy5+qRhsZSmUZ8tlsYhmbcMY8mBOo+HDMiahyuV6SAhtHatxFVvyJD3zW92unKezHYCJ8+dVPmBrsx04XZ//wC2y7YKrsY6Qevx8JtJoi86BLUn2vTThCmWPH6LSuiDXmMfExcsXuivjkOA78OEA32sVSWXcKZh3X4B53ogvvrhtbz3Tc4cm7+MkXV77+eef2zQeaZO197INYXYwr8W4IMovTcQD7U/g5IPZ8PnaIe+R7JhCOmaM9+95ee9D6YDbBTZkyedk2nGDsymaJ5/QYVZ7tdA6mQZgTLZWfdakzBVWrMQv5P4pdGlTJZxbXSfDQIxxMn0kBnzMXjJlpZ+RpEH62/TCMwNp0jeXKai7m33Oa8DszAN/1vD8aYPBQ/HkrJ15hwake9IwnPiTCHinBCgfiwQ6MJwOQQN+a9AVqnEYiw4TVtPMU4AyqnkDOSIgo9p0EzmTGYESuZLoQ9UqP+sk6zH0wW+01eQCQDtOdMZ3eL7TLxojg/mFnTucYkzlqNXGYblk/oZ5gn6Zn0sh9txi8vFz5ehzst4/M6Vy2lsIokYrF4SvLIqlSpCns2U2ICfuxE6NngYsEqsHAwfPzW8+mqqlxOBM41KQQb6aENsQ3NDovl4ZZMPYbo4hSvt+IezIgm2ahzXEfuf9K8iskGYPqgow0BDGCOOoaHkHs4PfyBpYRGA/sSTtcB1wZmDlTlUMksw0tU4iHK3sztpEr8+aDKXvSjVWhBbIF0wLxWoCq3oMR1VKsFBWKaSlTzg7eKdM/mXUdxxgpKDMG40jtwjcr0WfbD8cIrNw+D43AZwxgtSFb1YJnOPC5d/B0W81F3qzknxsCWTLjD+Wa06acgGE86Qr6o/PO51tN6iUiSqXMePoD1dE2svHHwg8k0t2XdZw4qCRqPGeViFa9uNcFrYsvZuUd+ulZ+AzQYLZgzoE25csvvwBtjOFsreEvVz58vJFqRIpFS7GSCc2gtYZLZ3iyE1WES2tJPvJJb8qHDx/p2wY+MxQwS09mziLmpMwZqqfXlYzBwTx2ZllTjUkrA8nc0b6xbZXqicGcezZgkRL1kqC3+k71CrOCS4M5nOPjN8g8+Mn1ypzG/T7Kc4uVoqchtErJSaTrz6jwYEoahN2JPYi74/cMCfxID8kNZIC60Gegh4O+4uQi0lUYNLambO1gM8PngceBqdFECROsgXVhVAszmVlTkU1VvYRwcrVJg158kWPic8djZxyT45iM/WDsB8cxGEcUXpSsxe/bfhhGQFZKMN6Cf1ATn7cT/3NGIXzLAMjqtrNKPWPp1D0r3jx5CZIqwgkGViERD8OQu5kx+2om8q2MAI/YP3jCAlhJj5UOjNIRGI8UGunWq8mjg69QKsKZN2cKzavTbe1TrIq8KsH28CQVkRkSH1TGwRh7uvzaNpo1VCa9WX2ueOtkTl9rByyXzTJsybQLd7755ht671x6JyJTeIJgvWd7MKA3Y4yDVsq+MbNoq5uxtZaPPQlTPjPVZwJNFR8H0ZIfIdqL8JNu1fSZq7gp6qNYfTXYVdlw4rjzhTZ8M77++g7TUSoMW0ZAM/62oDI9TowJey00ZRTSAOQtsYFclKJBHKTncIA1QBzfdroYQw8mI7tFaVYQHnbQItOcLorYZDaQpmjPjISWt5GFAeVyVpMYJ7GM2AO/DcZxZ/orx9i533fu98G+74x9TyPgjvtAHqvQt7YfhhEgUd3cvLIZASIPyTD9zAv4pbc4m4u8mehPXkD+6nO8vxjdPIBB/ExZrgaZ4t/vVrGyf0+GAJb05uNNHuvieKHQZZwUWhPMUs03NHUWYiZeoJGVakk9LQwhcvVIuFhONDjJgfLwDMZk4kzPXn15NFGue+aU55yoNC5bx4tgZKK03lATbveRaD75N5qx9cbtvrN08SiVXGtGbz3db2sc+70MlnDZNubLlbHf8FJNiulMZnXcTQ9i7AcSxsvLlW491XfHOPsY9FbiGZFKy1ohVO+N33z/FUd7z+/93kd+9/6BOb3adaVxVsmeDV2yfFenV48IJ44kOGU44MQ98N0fXsEo4ZuRRnYek9gNMS1OB8xrsFUDkY+kt2HS6HIwdKeFMcWyAY6BtMTDDsrLYGYmgclwgXmgPhnDmYczb874NDiOO3N+YvqdY89Wa/fbYN/zvalFWS2Pvmf7YRiBExhcj+NtafBnwN/vFwZQXoAsQYpzcj/UbU4dehJgiQUSFrtnreALGMzPPxmAzzyAc/uuSCHe3l94QDLOZaUTaF3p2+p0C0eFRtPJoqBIZJvyKKRW+/y+7BmYLDwyJVRgIZHuuVpDW+M+Iok6olnocwyOY+Ae2Cb07UKoMlRRNVrfsBAilNvtnuy9yxWPapRaK/BSQlKqOq8Z4Qlg+pzVOBTMGpfLhRg7PkddkcQDxhwoll2Sxk648O56oTfDZzBdqZYH1WBVy7tI9iThdNv4rd/4DW6fBp++vmeqLxL4lQq5mqVaU9OstcswpJrFSKHvI1KV6cjswDwc31MEhp5g4dzhuAXzFtCzm1BrxjYCb8Go0nMJoXGn0WhyoclIcpYk4Ug0CCulIs2MyYzBMUCOLAWXXRj3ybhP5s05Pk2OfWf6jWBPrsjtyBqTYzJHHVfNqe/bfjhGoCrNgKeKwKg25H8AD+Azo7BCASlw71k1OH/y8dwiAEXB+qd3IFGAnaCnW18afzzN7WUI4vFcrMdVd79i1nRoIzGB8Jqn6RGoKa1rat57vTMSaiCEGSlkgWWZrJSYh5dXIPLYqxAy1FBFrSGa+RExQ61x5+B1P/CR8WJTTYahdVQNmpVH5rkvYvTe8RDmnPTemFP59PoJtWQ59q1zP9ILUK00pQQ+Uz+wtQYkRmEC121jHOnmLlff52DEQbtuUD0ZiAyVWrWoN1tNO4LW9GxAMsaBeQJIl+09Q5yG8tW7K7fpWWrtWbjUJNl5eoYCMzX8jkX6UIryl4bgHhUOVIdgAYqzNFKBjGkC1xS10RD0ciBqWQgUtxICPeiyc0hnFh/FJY3TkMB04jZxkUL6PTMUr4q8ZiHTvDvj1Rm35IRMz6rBYxzs++AYzhiDcDsXi+/3A34gRkBI72t5uMsA5GSWExRcq/zZU0B5hAgnVlABe4UUUv0J1uoP8Kge5HyOMhSP5H5+p3621P+ycCCWafiW0S33MYLQbDDhmso7KWBRmoIWWCOLbFSQUWmiwh/S8RCGKAdJeVWVotgu0Q6qVFjANKsFyVhYmjLG5BiDOdNtF4HWDOLC8Awlbvc7TbcsjJmTsX9MI7C98MUXL9z3LM758ssv+fSa1XhSRU8jMsTQNYh9cr/f0/1uiSccx44pvLxciU3Ybx8zc6EQJuCTedyJOWlNHoCtCs4ie6XnYAhdswXaZo3NNubd6aHogC9fXrA/ufHNp1c+ffjImPc0KhHgWdwjDGTOFIUZUSBcuvt5izPuj/0p1CtMwMsb2JujYaB6ejfRd6wyO4ZhbCiDJoMjqgiqOmI1dY7ygkNSqBRPzQjfQfb8vTk8Baym13XMhWKMxy29x8fY/sGHA4mFpwuWTUITI8gJXgn5dQwrQ7AyCJ8BhFF506LwnUuyVA5vTX5YmMCDEKSk9LnU6n+WYFajzefbm99Xsn+AQObCymuorEZoroYuGevRkojUuuXE79AvijXSRcyoHutwiYYQjOnsPhA1fuf2id/+yZfZkFIFjuzNZ7kkkk1DM2TYj4rje6umKx2R9DSOY8/0YATRjG6d7fKCXV943e/sY4Bquv4efPj0DW3sbJcX+tbZj533718QkewNyDu0aM5entMxD2Bg1rn2juB88/GVud9pP/2S66XBthFjJ5iYGu576u3j+AQ/dlpsCRz6wXj9wMs1uQs+HOsbqf2fHAlTYe6Da+98dX2Hxp2P+y+Y91d6S7M+fdLMuGzCpRtbU1qksGdENmPl8MQFRhb99DDunuMkhhBHenZ7wM0ipdBV0d1STsInx/HK7R7MeS0FoI7xQldniLOLJ703DrIDZoaxLsE+Z2IRI1OaEcJxBPMe+JGFY76vTJNw7HAcGdVEVHgWkfqVP/hwAB4T/fP8/7nSP4UEK3w4PYO8H+dS+HQ7cYAHRKdPzwFPK/cTLvD2hQfaD2+Nqjz9XfqISzrdyHQTC7jzLPus3H7q+U+kC20z2maIzdOFU9EUnCxsIDT1JIcKdzzBMoHWG9nHzpMxWXDArMzC1CRguKfhO8bkvt+TkbhCBhRMGBLMeXC5Xmk+ue+D1g0R49P94HZ7ZbukcIeocOyTbdvQWY0vTmcoMwkqgZjSLJE0kaQBD5/s9xu9XSs7k17WZkrIVnRlkvW278RxMHH8foOxo2F01awJ8TSSqzuvB1lejfDSO/vtTvPAhld/C2c1RDl5IhG13kguqxIl85ZcAVaUMOMcR+x5rWOH42Pwqk7jQF3xg1QiakfRRgyJdhalmQyyeHxyVJ2K+gRNGfKjag68eCfi4FM5Zjyua2kPZHUieDQiGjCSkl4OcxQW833bD8MIPE9+eDPp43PDUPHTOeFXSfEJFqb3kJhAPGEAK0W4tOCXx/+g+Uks94k3QIrnFMn7WgN7GaO1/5/ftL5HST9eV5QjZ1ffNCiONqVtjX5JhDlduaS7zqNicrSaj4Juxn0cvL9uzIgEomTjiGwzjlLDS7OvoBqiDUQrM1G5drPk+msChmE9m5uSYiEqjdBeEuPG5ZoeAUSWfgM7k+MY+bhKoxMLSAktry7I3TSzD6Zcts7cjXHszNFpJjQzggEJeeQqH+nN+HHHxwUhmMc9KcYx2QpjYE7iPmhu1bqeTD9OpYvRtXFpnc06PjN9mfyA1GmUKhAVWfa7Zs8QOISziLSUus42C8ipaj1uwScCGwPZA9+EsTmjO3olVa1m5f6rWioFSr2axHrVUTiHDw7PcZcGXeowneGpkuxeTWyrU5FEDkg1w7wTlb4QArPOHw+y0BuXn8dKfwKE1GrPW89Anp6v51Scs5UVPMX6Cx+obEBScc4bVNwOZ/nvaS7iYRQeWfp6ba38slbhJ3hwYRtlzfQMI9IkCUkUsa1l1aBlZaDOZHzNGAyfKW99hklwzJ3JC1rgYustEX5ZesLJVhMxQuwcSMOz8YaZYdsGokjr2HZBrTHFGCHc7/cyFL1WnEnvG37NM5phkdJ7536/c9le8LlklUAsMwvdWgFgVMGLYGa03jn2G3PsXKyjLXWcpApf1JNQFJUWG3NybVIpyFRW6U0z+D1S6j1cKo0YmeZzMBqbdK7thU1fud1vWaWpinppOJVOf7V0SvFOqcnvlKArFRYkZiNrzA6y/iHIxiwT4pjEBfwCvpHjomWvhLOvRXmpnEZopg6EDuYQjqFE7R/kaR3uHMtYlBGIkYQxk1zSVA1pLV+rFLGcq9J3bz8MIyAQa08+S/W9qSHQeEy20yB8TjDK9zxzAIAEghY2QL3v/Ju3lRb04EwfOkkOmrXEWxmJhejmSp/7FM/EpmcvoGzEsupSLniQPAgzKeEUQxslOz45wvM4l1kp3sTwQcfZj1sp+0xerhfENI2AUqJGaVXdYczB5OA4DvZj0nrn+m6jX1KiHIRjDG7jzu3IQX2MidjA2oa1DlFFUZpVg317gUhhjnFkai94ZCrEtPQHs4jFolJAksZjjjv7vtMkVYaaJWI/piQN9sh+DzEV329oy/qEcSTFuVVmZBxJOpojhU1jVrVd5MrbJPEO9RTtVJMqsqIWG4FRucNlpSE9gVHGoG4yn+jdlSKWauzMqJ4gC1teHsW9+klEGUnJ8t9VpYpnIdqMmT8zhGM0ZIIW6LWIYDMmc1GFya+LqUUwU8xa4mJzAYtrnP/AgcFzxfzMpV5xMKeYaD4WjTfvedyP0ws4CzDgTD89b88UngUAekhN+ooJofLuaQio1bW8wPyscGY25Hn/9QmUXXHy0tdbBozIAhvTUv5JZN16row6BtIOUruM08iMGLjCh9cPbO+/INtit4cfbcmCODzwI1MLrsLhzm1Pbnmo0slUmQiMiGx+IUZvqXM/fM8xNJ05dxBNUU3PmoLj2EEMbcZ+7FmQpVInY8lfZbnwnANTSc5/U/rWCb/ic08PBudaQipNV9iSWgGKM/YbczN6U8Yt2Zbinrn8YyDRiOPgGFlya3RkOD52xh4c94P768G4Bds1V0WPLDsPIKX7koglC9EdwCHEARzpBahL9cqUR51IGYKFRSNZGYgq0gW/FxnNKl0nXmlhsop0gksW/YyAww+OYcRo6BBkaGYJgrNz9PJSc92qBUWqsa1luBHSsm/lH4fsADy5+fAm/keSRHF6AvY08dd7eJriVYzy6JbjT/PyrSF4+vWne/V9Tyc5AwmpQh9FxVNzvkDJlSz4rq+N9bcm/ZJEX/9U0r2fUY1ATWpFTLGQtnX0cObgTTrUJfj0euPLd9dcVal96oZYz0rBe3CMiY9Em0ckKOgITYQxnePjpwyOtIH15BS0ThfFt6Sxjukcx8D6hb5t3G53+uXCp0+v9J7trkAZx6S1FBEJi5On757qybvsSdXtndZ6VjfugY97MSC1VtCkGMcYqLXEB2bqPXZTdgUi8/pS8mqptZDiKBo9F4qZfP/jdXL75s7t48E4Us1YegJ/PvPcZMl6GkEiAdmHViR5m0v2Iw2Az1wAmDVOClOIo+J4U+JOGoNKO2phASYlrFr5PR/OiIMRk30G90OZh2J7Rw9FRhK70hsUsOwt4R3YyYwQOe5FWkJllWac45ewXPmhGAHh7Z7U5I7GY7J/7vafeMHzYz+Nwtnt5tntj8fkqwDgzUTPCVsDl5yc+S3+FjcQIbR04Xjaj6dQIOKxjw98If9NgohJ4BWPZtqp+kumx6CC9kbrG60n5XcZEOnZH3Cocxt3vnh/ZUqwU2XFpjBTZPSYVXAinij9tWPW6JcLrXXGTKbg9CBipFiqBr1fk2B0TBDDegOtWJPkBai11MpXMhzyFCUJvBqtVkjlKVk+JDhmY4v0GLQZMh59DEU0FYabcb/P8xqaWMrAVdPS1B2UE+TDA/dRgiR1DWfWAEhyr/ExWZ1Wffd0rjxTjC6eQjSjLqLIo3/E881BZ+E+FT0wyhNsNT4kjyWzBmlctIEaWJ84KUozC6gmAvFBRKkNu+ATxuxJEa7isZVBUZPsh1ByelL6LyKtPAwt7QFBaCcp7ZelB35VjcG/AHxTp2hExN8qIr8B/C+Bv4lUFvov/r5qw/AdXgBvswNLO/BMCUrFVs+eQdUMrJps1tx8GIC1xdMtH+d7FofQAI/quksaAye9gEBwEbT29TQEcGYCzi9eCQeJiuPqXzhR3WNxaFJioPJIUGprtM2xY8BM19w1CMs0mF0at2PHt3RH9iNXP3p2xQmVM46fJGPvcn2hbZdkBUpSeBfnf3h5JDM4/EArM4Amy3A/UppLrHHMQPsFL7DKrOHHqJUf3Cq9Jfk3Io3RqB4GQX5n740xNY1HZCdd3TaOm9Jb5rpVIglEY8/6CjOMPFYtDf5xP+i2AVmOG2MSR9C10a2xWedqnfuxn9LuhGYvSIPYSNJ/EZ+ymjBHtiyvoIBBVEosNB7XenBiQFLU5unA4chGCTVNzEblbZZY7QTP1EN4VAfi1FNw8txZlNhMU7STknMtoAXRC7BcYUztkGgpEluCkb/MCnw/ZPgH3/7TEfGnI+Jvrcf/GPAvRsTfAvyL9fiXbwInwXu5y88ZgO+kDT/F1gJrSp8S1etxLANArdCL8EMV4uSqn3iAVnbgFBMjyB5yTyLjy4bjS4FGSZbXymA8eyeWNFJZ7yNbRz/+JW00CEQVack4C02Kb9s67dIR0/O7p0I0Rd91bkw+HTt3gkOE+8waA7Rj1hHtuCizaMdRwose8vASELCG9Svt8o7WL6w+l66dGcqYzphxpgud5O1b29iPiVhHpGXKivreSBBQi6cQpAcz6z29N15e3tG3S068SClykxRP7dtGs8wI+BxZhDRHqhpV41cTQ8nCKZnQrWX8vGfpsImyWef95R0/efcF73q2AI+dbMwz4gT8Ercrcs0KARZjcBTI5lGlBXKuVZQDaita86ibnzJ04k7zlEdXGZgm6GkcSIyqklx/J6aONs8W9KWVqVa1DyaVUTL6ZvStYaaIdJBOyWoh0lA11Dqq/Xun368jHPi7gP9U3f8fA/9H4B/9ZR8IahLJ8zOwUoXPK/0bPkG9N11ofwAuixOwKMDwxhOIuu9R+msEZ6FNwWzBWqTzcgeegpKxDEQST1gr1SS7BIc+9k84PQElG456JAo8Y6SKjxhOMCLrJBIHsMrzD0wa7WhIV+KYTPFs6NFTNpym/M4333B9eZeDoCkqDbWOWOBH6g+OAD9m1rxbEnhEhGMODg+0Jx7QWsfH5PJyYYzICkHJlF7bOh7BPpze0zC9vt7zu4NM+90y4T7nZHqwXTqX6zv2YxSAumJjw1pLEdDeYVg2JiHPkS3aM+BxgA98gJXXE2NinqlRw5iSohrX/sLhqa3XWqu6ffjq3RfYoegBv7h/zRijkgFFz56LAVjYyoxMNc7k5/sx0yDEg+ilJY02nbP8+3CArISVtOcwl1CN4zppMnCdpYCdTW8lBKVlXUNko5vWHe8pXCJ71hMk1FCCtJcieSGMT9nn4TF/RoUnVYn7awQGA/g/SMLw/4OSEf/tpTYcEX9JRH7ruz74pu/AF78JrYQdtECVb+EATyu/Vhx2ZgmiYrEnkPApr/8G+IuHUXjePFJlUJm12qVPkbwzh8giICkrJKK5Ty0Hi+pKApRBESgx+fOnlqpQ4gQCLplDD0n2mFQJsKb10wYiM2P8SvuFwD2yAGkzob97IbRxeEqGpWJyuuRHrebHdHYvVt4xCRvoDOZalSWLcGakEQ0xfAqihjW4HxNcUdMTWDxGNu5YXoZ7MhzFOse+k51DFFFju1y4HBfckwyUKkfV/lwtDU+zFE9RBRIQlMz70VTo1wsty/1omi7v2AebBqa2wJScTKGVqDRwSQEVC7xPjus7/Db4OD4xRxK1TnmxSWZYghPTyNbf6QVkTwmvFFyOwWXvFzis5BhVJYlECqQaHNrALReA7HNxpFfAoInR0NQYjGzAcjRPncwuaAftYIdgW1KcNbIhaVj9eE2OoEE4q5Ylz+n3b7+qEfjbI+LfrYn+L4jI//MP+sE3fQd+628OeZr8spD0b4UAPPCCp+Yjz1kCEX9yFOJ5/j9tz/Ii6eobs9zVxAH8nPT5eiaqFs9gGYN4hDF1yr91uuNpN7wKidZ9SwIIPhiRbcFzopeHYUVKMU1tgaqJmCpMCVwU1YbYhTHgNg/0mDTPvXSpyNMf4cxezDc10pMQRTSf9yVppbAfs3r2GR7B8Dy+Scbpwx2hIU3Q5oQ1UmG/0nvh7MO5BLTLhct8x/1+Ax+JOxTSvQBQ3Y3w5BYwI8VMENyhNeV6adVrwJNdKMGxD7wHph1hR0uSWqWBlppOCBZGw7lo46uXL2hT6dH49OmGh6HOGwwArck+8+b1l6LxygpTl9GRFV6mDVEDaaCboD3gArYJdGGqZ9PSGMhqey+TJpMuyoaxkSDvwJk9wT/tZN/HTdJYYEgo8/DsO2BRXLhWi04r8Jk1ob53+5WMQET8u/X3r4jIPwP8bcBfXr0HRORvAP7K7/tFNXtWnv2M8z8LAR6cgAcpJ97UCixIrarEWMHC2uH8sYg1ZVf2Rx5g4JNhkHULr/tLpskqaFQWmzEWK46naOApHDhxiMIFnkOSJKYV+aM8gWzGkicjMxHJ6w/JkuMhMD2bUfXWUIUhDi6MtSqqgQkhmYmIMEYBXBqVESB32CTxiGMG+32vIhRPgMmy98AcyTQMVaZngw41xTaSfhygPRuf7Pud+5hcp3N998Llmp2BjiONLSKn1yRqhOiJqotmKU2mt9Mg9KZoGM0nnRRX8RIMVdIYauT1UrE8dsqwpDJ4VhlejCudzRs9PvDxNbn+p6xYGTs8ko48ZqYrZ9USlGin6Fp30lB7XV8jY/a2Sa7gl0AvoBfFuzAUbu6Ij8QAVkNcnTRpdFK4dMOZMtm7I5uhQ7BDaFPTCES6hnGDaQlIxJBkTYYSYeURzxxT37kY5varNB95D2g1I30P/GeA/xbwvwP+y8B/p/7+b/9AX/jcH+Fpxa/z/AgJYAnpPu3MEyj4ZAgeS/CadLzpBlaM/BMcnOuClgfwHAKk2lA+qmGXorMRJQJS2nm1zytK4TtShGdH3jqWWH+VyhDkCukSTCnSmpIegApiedmGp+5hn3DRThiZYsJAjQirHgapAegIIh0n3f3hqa8fLswRhXHkZwm4v+5oE14uqTOYEmKaA02U4VHgYE+GojsNydZnIhxjT7ms1rE5aX1jzCNDAGuVMcjrFWQ7NqDSW3nftEDVyCahXSzZgKXJny660LQlBRfL0MwE8dxXpWTECsg1U+QFGOD7J2Y8QgKZtXCUQpLPgY/SGljegWShlkw4i0CiyESrpVzT7BVwyeyAbspswkGJ2JbMvcWopjjV9Voe3a+7RfIAmqDnDdSrP8Mgw9Hiz6DATDq3R8rY+xr/vyZM4LeBfyaFLGjA/ywi/vci8i8B/ysR+a8C/zbwX/j9vmiV2+bu8rTaL3c7n4tnY/DI//H0yTJ5cU660xeoif7QLqksdDxyCZkdeDICtfYLchoASE34KEhm/UaChw+DIEQJkpawRuQtJHCttBkUEWqt9iUsUYHHdGcPZ0gwJHUEXIzp2UugabC7cHNQrdcEpigqWYjkkpOUmXGWblfUjDEnkaMWNPsdRmgSTVpPUGtIhQs92bQeHCcz0sgsm9BaJ/XvkpCkomwvL8Q9DZpHgCYT0o5GK/5DRKYkE5CVE0WzavyRjpYiTOYcXE3pasiYmbNXLZpw0LQXbyMNn3peyyyuyTAlqPTkDDrGS7tyb859Zkggs6z12VhmvgkJkiCU1zO9gsz84JWQ1iQTWVVKtpaEHqmeEZSKUWYR4qn35UQ9G+VoJPGpS6TxN4hlAHqBmB6JU2h9Wcu/YRBHyc+d3YgfBXLft/0qzUf+TeA/9h3P/w7wd/xhv89XQYU87e6qJHxOAz6HCudym1NYFvX4O3yfhyV8wgPi9B+SGgwVBhThP5Z3sKzP48RKpRNXfaGSwGRAcRWSwryYSO4pGzVjZSWWZ1Dxviaee4SzKggHwR7OHtnl1kVxady9VjPVUsASmkcOp4B7MeiOEcnDFy3ym2IFtAyymCjcaZcNs06Ish9OjMHWL2zXd8w18dUI7YzjKM3BquBTQ1vPrIgoc78h2pDWaJHh2u0Y9PIY+rZlf0Fb5rhouKap8AsgmX4MUzQSMI4KyVb5SDn+J+1WU48cwrJpjDXmSC6GHzMVgo7MkMSYWAgX23jZUkPwHHgzR0t4FeqMbMpCVesto+MOMp4Wr8oPSq3SWjZN19iMHFmpNVijLgKVJT/miGdLMiXFZpqU7HvL5rNSMuchiQ+di2fLcACTNAQziEh8a43+My79ju2HwRgkUuq6YkDgnOTf0hn83AOQHGhS3/MtixfPzzwMwPP9RxrwaeVPnD1Te/XsXGBgpK7dY0eXw1XgYBUw+arjjuxeO6Hy9ZKFJpBxsGaseIhzj5krOIkDpK6FnFwFFyvlAMPE0kvAOCKN0uHON5/uvLzfcDfuY3JEeg8jgnHb0ZYSYlG98XBhjNzHMTMFltT3LEbZRz4XGb1mpyGyMalIrmWtGXAUZ77Qk95SwGSm9oFZo2+XszeCECWXnhmC8J2lGmWWrr07xMwCozyXub+p0qyPsR0Zokn9Ne0EA3dn3AfsI6m3R8b+4kIX5do3jn1k3YTDKUV8TvgKAzzeNpkd4EamEWvUyeIXFGAoVTbsVekjYafW4eprkc6un0YAUmJ8NcmxM0Mm5UI4U+KBeWmCkGFUY97CBsoQxAkIfD84+AMxAqRruiY4nDjAmwKhz72ApUD8RDR6GIJHKPC45RpvSFUK1qSPlQVYqkLLG1gGIHPThVcTKQcCZQoyPSR1MZdBkASQkDJUzkCylNfSGCyjF5phwD1S02BMI8hMwRjOMUmR0co2C0KEMV0Tv8I4yFlyBNw+3QlL4Y/hWTgU2hKEPJzGpF9KO2B6xWOpOaBNQBvDV4gp7NOxyJTgRDPvrYIUy1GdDCliEGqnZ9VbS7JPOaVJAuqphkQWS4nlMVnvHHue+4hZwqUJGKooZlXE5eTVPK9TtumOkS5jGoHqAlyu/DgGsU90BjIii4FiomJsovRaUTRqcvlKC/qDPDRJLGTmWCiS32NsSqBV9bfwJLJ26yQhEVFejKMxePS3jCpyK65y4R2rKcuKIULlUYQWWRMThXPQeKggV4MXhuBTSwPi+7cfhhEQzgILkJOXnRbQS0BkvRysRiWrwnDJi6/Kv4cBiKd7uWXMnwPca/LmKjK/Hf9HdaYtjyB1cyu6DC3hozi/L8OGJWxa46P43GiuxjuR5JrSIHBPoAgilWVG5ogRY0znvg9e98mMnOQe0GVLRRnXohkbR2QnH9fM4X98vfPOrkhrGdsSKQDaFdGWQKhXTkMarV+SOSiZSpwBXdspdBEIc2aq8AjnZcuCoxAlxNlnUXS3lwRnNb9LzTAm40i67KUbvTe65hIukgxEtZZ6iJH7Oj2ShtE6zcBinIWms0o2W++YdtQ29j0zI+rZUcjvB8enV+4fbxy3iYaxhWZV4acbFsLWNwzjYkqs9KjPXLn3A98Hc5+MfVYjDyGiFR04U6gmVmHoLPmwClMQ3BO8k+zXUiu5ZDDme7Zq08VNnachiMz1AVV5aFkejqzsFScT9vR0TXBxpki1VE/2UpR+xPfDgj8UI0A8xB3hrNOXcpm/lSZc2MDnW732TN93IjMAZ6S/gMCVBvR67yIGVUrwlI+xFbmSGG4QYWfUUpSG88IsT2BJOSwTspCEQaL9IRktRmkjCJHa98c8qcnjGNyPyX7UbyfsjdJq5YLQxpSOQOrTq7JdLwTC636k6k0UEUhzxUWN4Qk8TrIQCOtZ6FOkozz0ziTLf5O8EwQJKnbnTMmt9NjWW+EfxZunSrtN60xkqSukF6GlyoMkU8PViJFZj6ZpfBI31RL28BLXnKg2ervQZQNP2S6TBhPm/WD/cOP29Qc+ffgEbFwvW3ZKmsLkzrjfkeFYv2A0LKJYiTu4wnEw73U7UtjTpzCnFLszdSmjXHPxQBvMI5gHyBFEy9ROAnlkA1srLyb8rBuIVZ1UYeTZw0HTBXGyDd1aHUME0fKc1dNTWOCgpscgpmcxGP7sYn97+4EYgdpON/977j/foFb+OD/6bUSgDEssYPDJAMSCAZ/Tgxl7n25GLPOQ8Xl+m55G4fn3Elh8UJBiTf5IbyDwkhBVPFKPjwoVnPQ4dk/g6vDMNBxHCkgMrwmkHbQl8DYp4ZDU3p1R6TYHa5pqQPuRxSZlcFJIVUtqLI8snKwpmAukzKyJT3/UTKhk6BCAOsfufLztDCdpzia8XK4cfkdn0KzRuqUs+LlUpacSaK6QmgZZF+FJFTfFD2eOIwtkat0706ojzmNc6VtVZX+dqbM/Hb85r19/4MNf+wUck2u/0NqFpo2uDWkwrHP3OzMGIj0BOg/mMYi5JwvvnoZiHDte8r2CMIcz3FM8Vqq+tHgIcoDcJ/Eq9K606iwk+wTN9nOzpXZELja1NKwwZI3SSI+EuZqMDoan8dSVMlWpMEFYCtypiZAgYYSz+l+qfL8ByCvzA9lOBeGTaVMH+rkRgBM8XMAgJA9gBegnJ4AlBvIIA6QMgLDi98UOzICAEwpM+Ga56kkEmawU4Sn7FFXBdWYLls9RqEGRBSKEEcoIPQHGICsRg2qI7pFNJmbiBcekdPZq4lYhSKAZTpTP4eskSTIJ5zHymMxO3APN7r9iaUjysHKVDjWGk6lKBG0tz7GkLmHiZCkOWpkybrfBGI4147J1tr5lODvT1xonlTs5OBpwRO5t65ZjXAKRmeFcgOk6p7niS0stQFY/gEUGUsHvwdwHvgWvHz/x8es7x6cDf3X2j6/M28G77cL7l/cJEg6IMZGZiE6z7I7kI1dU8cDHTmAp5327s98+MW435pEdlpSMxcO9xFZAFjAoZDMSCUYbzGaZJqz8vQfZPKWl/qA2y7oGpMIKwaRO+8IlZFHZMp27+AlUQVEaAMm/Jo90oecYzPFYmZfvTw78QIzA8+SHRybg+fVvGYLnv98GPp4zAA++33Np8CMkoF5f2gF5uWMFB6wOBc/aBEKir+sbVwFwQYGc6PdpLPSRGVi6RBKwlH7LGLkniJQ2Lav9Ujm2I2SVWGYOCqSUrAyMFZ8GjGPkZGkJ/iGC9a0Ui1oKiMyAWHJUyZcQM8YoERbJ0buiyQwTFr9BUXtgGmM6t/sdc0fm4Hbc8XHQDDbLpp+bCRqTeWnoS0+WogVcjdYTIbeiMLtmE1LVkicbM4utiiWnxT3wkUvwpw8f+flf+wXjddKjcbGNL3/6jhe7crGOH844DsYY2EigcesXfHqmRCuFF8eRxVZHMO53jtuNsd+JcYDPc4KuoRczMwSxvLJ7aZK2wNvEu+KtHJcynuGAKdKy67Jpo4umEWBxftIISOljpI4AuMnKVD9R6vVRR1OvSY9TaDeKS/FUnfet7YdhBNamz6s7p5vzXeHA6QvUqv+Y2uvPExy4nATI/ClyupNyTuGavuv5AiZmpEE4kf5lIGIZgieeQL1akhcoDy2j53JlP/c4MG1VwLiYi1panUX7FSOqnjREz1LeFXAkQahVK8fsHSjWkhW4Cnus0bYLtl0R29KEyUrL5oTKzkSdGDtjZu+H8JLvrkmXXkCem5eXF1rTEgJJg7TvR6kFDW4fP2RuvDQTXjahG9yvnfHaaepsXfiNn32Zpa5RGJBKDtzK158J3VocWVoEkSiphnDcdz5++MBVX3j/7j0/efcVXQw5MmTe91f2Tzead1QuaBGKRkzwPa9vJLDn+2TeJ8f9zjx2wo/MJLCa275dd3zpC07wEhjxO3gPYkvG3zIClRPGZqZFVdMbUNFayOVU2V+ewFLJklWnvKLU8gLOEnV1omoWoAxs46GQ9B0L5dp+MEbgW80R5Pzv25jGCgFOkxxPGgFR8l2PiScUzZKHAcjVP7vlLizgwQ/wkhJ7GImM2Yyoqj+QYrP5U4jxyEacxKMoULHCgVlA2sNsPXoeL0O1eAt5RdMlD7EySAtLLpBTDNEk6hAUaFQqtR5givWN1jfQ9BhOAUxRZhUHJUtPys/MvxPNar+AfXqWA5eK8NY3+qXTTLFm6bK3jWs3NoO538AnY79xf/1EHDfunz7w1/7q1/xC0ih89eWV99dGXB5+2IOB6SW5BRapLjTGREf2DJCh2eHIBurC+8sLf/Jnv52MuoBmDcS5v76yf3plvu5pKK2xJKtUBJGZysQxk4l4ZJgx9yP7N/pqTZ8LzrNYTUT+VsyaYkl4xJco6R74vbogR55aKwVgDa1i0zQspkpD2MLYQrh5YAqm2RdBLMoDiDIAlAS9FGCuhGTNslrVMBTemEbg+7cfjBEAnlb4evhdHkwhgOf7PisZTiZgTuTFSXsMradJVmxAkDOmX95AhD0knFlZhOdPZ/xv5fRninFpGT52upI5OWnr92a81TzKx1FOzQphyp+IOlipwhBNXkDU/IYE/VZPgWz2kbX8Ill0022jbReyNRYl6FHHZFYhRNYCzAA0mXarqOEYyZy7V759u1zYrleiNAp9TtoYtTClNHmocrle6aaYvIf5FfPYmfsrn77+OR+//jmfvvmG++uNl034YoN3HZgzQcGxoz6ZkWGAzWTpjGPQPdNtMhyfN+z4iEbws6++4mKN3js6jeN15/7hzrwdqTBccfIsVF5idSsyjjkIT6+BY8B+wHqOOLE3wTEVGlKqSQXY62NsLeMwS5zUbxkqiEEbFJ05UX6RpBP3BpdmuF1AL0zvjJGEJ1SZZM2B747vWh7BAw/IVn0zswI9sIC+yFWDzDT8sQgHnkOB53j/+4hOBQJSrKg8+Yl2R/mWD6xez1Shl8v1+Bo9U4WPisFaFUMZKVmBLIsUpYm3vr1W+lW9vbINnKv5ev1RqBTl1ylLZSdTb9SnvF6PGachjFLAze9JT8Aow6BG0zp+ScReRDiqK62XhzR9ZtGTPNKNSLUQl2w60q0xXu+MPXnz+57iFNnyXLLleG+Jh0gawzEzTeVzMuaBT0PfXbKNuASX3uhNYFMuTXh/bXx86Xz9Oz/nF7/7Db/xvnP5cgPf8WNn7jsWe2UIsklp7DCOmd19bjtNOjImn+4fGfeDn3z5MzZ6chtGqgvvrzuU+IiKYrQ0/iOyz6FZSY/HKVWmc6QBGLN0D5PktEDBbpVt0ewmHBWrvKnUq0VqlnJY3LMMOGqgr3Gm4lgL+qawNaRvWHuBafghWCkFeWgSzbqkvNwyPFrkqpUtaOdUQk2wRSJaXbC+Z/tBGIG1Wp8P1mpf+/7Yffn2B9fdcyV9FAA9v3vJiZ9hwBPk9zAEUWt/+QDynElYgqNvswOLRbhCg1Wv9XD41+E8AMaQxRxYsT15McXOY07C2khXnyAi/dwUEMnz5QI2J8OyOenaVPXhAQWMOUtVd5UBBzFHpf40Q7Fio4mn8RpjZxzOvSSrV8PRFD69IDFTGHMe2dg0FB834thRGrfXlMlqKvhQtiZ0Da7XxrV/wbUHOnbuH77m57/zO2zxnpfuMFJiy0i23oiJDEerDZjXqh6effiOPXUNY0y0pdDIcctA3TRp0VIups8UBPFRVyVyMvpIQpBJXzy0jNVNmWRRVCxWn6RMfEegSeo9Ghzh7DGKIlz7OoEDdONkD64+ABrJBmyNLBC6NPp1o7cL0JNrEBtzNvYBbQbWA98U3zMduPg0IVRmaxUsZQJI84eI71tIa/tBGAHggek9z9x4Sv2ZPFjB5/YUG4RAdbhZbaSWG15rck0MTZewJv5DS/jBFFwNSaVeX57ESQctU/FccXianaIX597VzsoS9bCK4ZNRFwvXqDg+PRXOWv4Z2ezE52oPnuchVfpJpp4afQxm71WtKKm0W/Jdoa2aY8ZpFObMNldigrYSppDsRUBMPFJw5H5M5syAsvWN7XKl9UtOjuHMY2eMpL8STowd8cGY8Ol1x8TZesv8flOip1BmFvgoP/nJCx/mBz59+IZv2oFcjU32xADMkEjPIGaWBC8unomk5NcecAgtGrePH7m83zhuznFzGp3eLshUdDpzHowjCUUaWcdg1k6hkGPfS84sr721VvjBTM+gViX3iZjQu6UepAl0pclk3maWV9fQ9Iwe6cKplbFWN9FALZLr3xzdDHl3ScFW2RhDcTf2u/DRZ9YT9MC6Za+EZQAsCXHTU53ZNK8rRc1eCke/bPvhGAG+7bDEZw8WEPPmhScHwkPO3P9yjR/MwJX8Wyv/MgSP59Y7jFklxp+pCVXYsTwK1tR/ChFWoLDCASlUJiruzjDlkSKUpwNYKDznb6y/K7wpM5ZXOgerrTrzdGvnMVOxVwU1A2uoGDjscxkUKoRKok72Q882YPOpV8AxDiKCtl15efeO6/WKqPLp9VasSrIZKU7MgxChrUqfyNbr44g0NnPyOidjDy4GTZzLpSNfvHCwM+93XqcTzbloypCppF5CVv6lQlDX7GycxfR5DeeY+LjBNbIX2JggDZOG9cbcBwNDtaMYEik7Jp4hTdfGIQ08TjFVFthKsOirIbXAQLL6ELLZB8U9KI3BZfuf78fjsURml0KL3duUtgnSFTchhY+VLYwegQ3JQsEhzMZJm3clWZxLZGfdCjNIb3alr3/g4cD3bkHpvq0HPKqi/PGWvEAVJ0XypV0L1a+Js+oECtZ7rOALFFyVVrHUg8jcNSlDzlkP8Cgoekx050ETzr1K52S9Hud+5lWPBHNIFtmqp5daqVcskUI78TAEpLCd2IZVbjkZZFVDX0Uroqn4A0JU6fIcM2NhbSnHJSmGP8YsSa2ctPuYHCPpxJfrFbShFQdn59/gOPZENnThGkW3ZdJaNsmkTJ0wc9VtpZ+nSSWOmfvWmuGaSkQyBttV0Y1sOspEjswSyMjmoiqGlayPIBkWHAd+d/bb7aTtWkslYjNFtxdkCDEMjdRWkJIq1xBMe0qBzwrcVAmpc4Scfnc2kpVkCxJFIDIMQ5rTZ+O+VxfiCdILdoman3U9T0FcScyk92xIK90YqlnXoMoVY/NSHrZJ68HRcqWPqqZKzkikRqenAQ7PUZrNcymVpV+DERCR/wjZX2BtfzPw3wB+CvyDwF+t5/9sRPxzv9/3RZb1nWO9GLslulm/me+sibLCgIy1MmcupzWUoAQtEpVvNX1nufRrRT9BGhb1V06hUXl6/bHqLxLQgypM7c5SJpLKFS3v4AQEJaWvXEqNtiZ+fkWcwJJLejRnDQXk5E6zgdqDdntSp4VMebWsotPiFSS+MKtcFmx1GZJWbMR1AaTc4pFNL0NoPWW/1aw6IqX34Xsi5hEFHHoJY1RGxaPYddU81T04jkG/dl6unSYw74Efn5KEQ6XofOQErbDKPbUN2APzHBNJh1WadqYc7PPAj+yy9PHrb5DZEO/ngElW5oZZZhXmpKoIi+8PmLZqvJphVnoBvfgYINqTbekDjWzqslzSNIZBM+PYGjaO04hrcArQUl6slrcqK40QIxuq1MQWMhFtmixCLa8qVhYJOUkp6ekm30PLI2TmgjcXQ7B+azXc/q7tVxEV+deBPw0gSS/7i8A/A/xXgH8yIv7xP/iX1d+1owmxpyFYZZDPA3bNfpL0sloBJZnkyU2XRRWu7MBnMfya+OuMPk9di6g8f3kO8dAgXI1JljGISvstT+zpctV35ERXqX4CkvstEtmBSLzCnScIdElsGeUpJEMRDURGLjO1yns2qUcki26kfkPkAXiyzkqlEpeHIItnoJnrz+/LIpQlyd5bpt5MU9dPVUoINIgpJamVrctaE5jHydnwYsiZaXELrmwSTCZjvDJNk/NemM+Y2ZU3BHzfkftI6a/I/RvzQKJhvoqKQGYgM5IQJFdMDNSLii6oXAjLvj/hk+UjLgOsqqWdkOpIWEfYCE1SklhDZ8p7ngYu8ywpbBvVPs6zxNzzwmdIttx/4cw2iKSG4pQ0OioZlqz+jcSiAizvMlN8Ip51ASsjUcVCQWaRij+VNG1ILkVpHpzz6Du2P6pw4O8A/t8R8W+dqbQ/7Ja0/ByuOXPTIyhPRqoqbW1RlnRVSq1qvKj8dhI0lpzYKhBaqcIkCaWHsPCAggjj4SFojPP+CiCWAVi8gCjP4DRKZ3CQB6VnJJ9upUpauOxgFOVdnAEEsFSva2DYkjNLI7CESrVOmEcQfhCxUcofyxnKX421WlVd+apQC4BlEKiS09Tud8++BmJZJqsmGRKEM3xiVvX9kHqHkXGnaZb9OiA+MJk0VS7bhffvLly3ztaNjiNzyw5GzRAT3FYn4ZFllgp+HMg+UM/ch7szqhdAc0NGUB34CkCO0zNy8VyFWyofMTveD8QdU+gi4IMxjsRXtOFkmbRjYOkBBZJFRdoQMVIYvNarWuVlXUdJLEYi0th6ueMkfiK+si9pDLSEVbOMOvP/ttiQi5DG8izrOi0HeNWkVEYqPFIzceTk0AoRY2bNR9YXf/f2R2UE/h7gf/70+M+IyN8P/MvAP/IHakPGk8tSlm4ZArRioHLjSRSwVsY6X06iyOIgStNIvvYKJ+KhKDzPE1wRfsQZJiQ7cJ6hg8WCnzgLjawaOyw2YiDVQjr3WZ4m9OltE7USZBowKaiZKRBPbCBDkMfgkAL4lqZB0f3P2nIh1WhWGlOlJaNPcvWfPhlzMidnmbP7ROYEVboZw6uzEHDsg31Pzn5rjXa5JDWY4DjuqbqLlxeQeXRTJVwZ+55NRGiYegJz2ti6cbleeLlc2KqtWPhRbmpkyFM4XEe4qNFawDjgqKajMyq15zCEOLIjUXd91O/HpFkqDjNS8ty6l6fVs31Za9nSfGafh+HOXAo8GCGeRb2SFGpplbJtjVSCMczIMSJKmGfWihyP2XVI0AZEeWNR3oBzemeKJCdBLTEXWZkhLaOh5f05z20EU+xoZYaCB/GzlKOr5kjy8pb0TRBVTfh9269sBERkA/7zwH+9nvqngD9X4//PAf8E8A98x+fO5iPbV7/xtsppYQPnkrYe5LZSXWeJ4FpHNU9CSAk6sACkyXO6ML2DXKNnxfvp/i/DkJNq9SBICOYhUurlJazVdoX13/KBgjN2XOZASkRzrQZ2Yg9PyHMBfrb44ZUqlQCvXouswhAoA+DF4a90aJF4jqqFT0nvmnGsWHgdC7XEFEXW7PSNrMKCOQep+JsD1T3bqeWxJGOQKmBSbRhJrHnZNlSE++2AJtCExmAeI7UTxoBIj2nbjPeXTvc78+NHdMzsNVi8gJiKV60+I9OeTIgR6Ei2pBZ5LGayA2fMUk9KolCMyRiT47iz768cc6RqkwjREpwT2YjWcDPCU4chFZira1KbORokm5mimabzJSxb9RWskucSHpF4SkNLUodneTE+k8DkmnwG98kRmozNVVTmg+wrkB6gVtwgCtYTqwlgjAxXYmSK+00nru/Y/ig8gf8c8K9ExF8mB99fXi+IyD8N/LPf9aHn5iPv/9TfFPgank9bWboo4OzN6yWzFM9vnEAp3fisySCFktY3nCSh5WLXcC9Zi3K3VrR/Qj8FDq7Hj78PcLC8i++wBudeFjq83PssCV+lQHUTKX2/lOBWdUak4KRU/OpVXZaNSorXXuksn566jCGlU1euowbSLCsFPRjzKMrxdtrcVRSV7cO37GUwZ9GRE2Ccx0GTrbj0ToSzNeP6UrH4HOnJrNhbFVOlmyCxZ82+34n9EzJuWaAjgVnQm3LZGv76Cd8HVhLiMRUfCaplmZ5gITCCsXsBfcY4Jl3SQIQGc+zcd+PyckmWowTOZIyD26c7t9tr0bCV6BtqHdsAtiRWFYYTarjkzZrRmlWV5UicQYqVOSMB3AVGlcea6cjlexYdvMY0M6sbZQ58DIZNjhncZ3CMEikZSUP2wYIiVkxwjqnWhbkl69md0paM6tUIb1fZt9sfhRH4e3kKBVbjkXr4dwP/6h/kS8Tl7cJZ8luPrQIiL3TUyk1YE07WyXcyZVjGgAXQ5UB+oy1Y6/6slXmV/awJnVV7yxeQMhTxWMnrxx9IwKPiDTgLmdK1l3JTEkUXLZ6J5ERZdfqp0rPKeTPP2yRpp1kQVv+qPNQsBT8jBoTRLYPy6ZNYZcFUzH/cieGENNQWjS2rX/b74DiOXPnnQfhAdUsgE06dupWJ2HpDSbpyUwifHPNA3cEaL9eNrTWC7Fq8dSvp7lfEX9H4hHIDTaLMxpVrS+E+IbLE+QjmDrFD3BIc66HEnrhFm0bcg3kLJJQRzvaSmZHsqJrNP9mTbdmsgc7V7oMxMzWpvWOWfQ0vZuzRGXSGB/tMXE2s5fmQLJ0WEbZto2lwxMHr6y1Zh2qkgEhWT/qQdM+xDFU8r7FFJG5iAJNxvHJo5+7C8I0xO6/3nU8fnazF2vADxn3CVFqJ3eGz5MyDfs0hdruB76QK0nB6V3q/fO/c+1Vbk78D/k7gH356+r8rIn+anMp/4bPXvntLH/ux6juLn/FmVY3TSsBqrZQqYE9o2My4PsEhKWu53Op80wn2xckDrO9fA32Jjj5+e3kKb3f6yQadu1BgzskUyRpSKQMQlUpLTYiMqY2sFMu2d1XkgiRuAKwGF6eQaQyigAHTFCbRGCW2OTMGLFc089pyttIKFdqloy3pwrNE1ebYGceOtE6zhsks2ewoDCXozTDb6Aa9tSzEIV3Xue8ctxsv28bL9YJVwVIzozcFSTntppMWByo7zWZSZlG2wnHES9pNsm/AOAK/A7tyzPQ+bIKE0qKnnsHxKOMz6QnoOanKIgfOQainyhJZHu5heBj7BNM8N9YSnMhEceodOuBVpGVEZhDcaUK5+Y6PnX04cwTSK/6OeXI+fAopTVzhWA0jlcRyncHhB2MOjhgMV/YdXl+d2y2Yx0a4Mo+se2By8hzWsDfL8E4H+BWOqRwflWOM5FXY99MGf9U2ZJ+AP/HZc3/f/19fNmqSnyBmTcgVA1T2QLTY+fL8Lh5n4+QKCLhmGmUm6OZI0YEX5bdUhavqMDHuTPk878WDyJOPTlmJWMx/WE7/khg7n07UKAk0kROhfHQkyhhQGG/xB5b10fJNTqZgmrZqYWXowiaigRsRg+PwbFRJpZxW6klj+fz0KkU9PPX0GaDVEltCuW5KM01jVSg6RLYS31J8VKMm/9gRT8O2GTRL3YDluTVrbF0x35GYdAOLiXLk+1oqBDegW3beiajFe0rJioGGst8n+76zuaCyYQHjdXDcsiPv9dpRaTSxjK2pngOyaieyD8MxJTUWq5ZiRMbhNifQUtNAqDLdBGiriL/mcY6BOWGOyX2fzKOu0sxQJKpW4GyI9ezhUuGaKqLCTmY+oozqdOe237nfgzES+faQLEaaGVqEO0tgxZqwSRoH7WAvyoiNb+7OuCffwv3764l/GIzBNJy5LdLQqn6UfG4VQTwz6tYTn+MI+VcT1JFM6SWTLh5VgufEzh0Inr7/CQxMj+FxAs9wrD6gNdhlhSvLbEh5AZEpnDzA9AiS1SnF+nvYvZMQUmCoRsXjXkXORXBJhRuKEiplCOz8Xol5avENSIFR68X8I+PQI0OKgXEcAdO5JHu4NPEnFgcaDdEsdWri+Bgc+51e/RLFM0Nx2YyXdz9hHAf32433X3zB+3dXwgfj/gmzNF6R5YDEPIAkyvStcVXYRJBbti6TyFLlmKm1yD2Ie+Cf7hzHxNl4ncp8PbKGQA3TS6n7tixcaprkIF8xeBZpoQ1pHVonjsakipKC5FiYPUDatbosUHUxuBzmDOaE/eaMwytPX9qDq5Y/SGmzehxZxskqcBJt6XnOSLKSJK4zxqyCuJXkzosuCyivXKEJbF3ZKOZpB33fcb0wPt45PpHW6I+DETg13Ml9PidznfNz5q3nR6UIbbkKT6ag6j4QSVeuJtZK0SQwWCDNef/5H49a/jIU57fHqiV4vCanISjXvyb/GQqkkgDg5+repFx54fQ8ll9Rkhr4HGhlOyqYzPRilL5UKd1oOOKp6rNy0Vosyka61Q0DywZn49iTWh0p+jmPFErp2gGnMbjYRjCIme5kiGZqLjL3ryLZ5cgHx/2Vwxs+DrbW6b0z9jufYvLuunHZOsxPCbyOHR93ZOzMOOhNufbGSxPMR7EqG1Mat+OVMaKKhRzzxrvrC70L7VBiZo3B5doRNcbhuGc4qFLipUsXUhtIyx6CzbNRaEx0ppDn1NXhufqIF4U4qd2J01DkqShQblb25RieBVUS2QJ9peUrXUfUSIgENBdXYJWCRxToOmYSiKqVW+udFg0ZD+0DLWmjqLhZVNlU6VILxAbNcpSNd8a4pRfxRLz91vbDMAI8eQKspTHO/H/m0qKENcoNOA/qafIvT6sMAP7wBsKTViz6APW0Ph/P/39rQq7fyNfOx/E0ZdeEf+MJPBuBKjGWjP0f+pCOlXHTSHdwDbYswPGqGc/f9OqKIyXRHdrRcNRHsssiJaqk6M9pzipMiYmRPQez/j1fm/Mo5FqZY8eAzV64NpiR6bQQpWkpDpGCFeDITCxg3HdaTC79fZKPfKJW/fg0i4WysWhae4mBzB1h0rVzadAkYJYx6i9EFz74jeO2s98dGQaHcETQSxcgGaK50IsLtm05+bEMt9DkRZBxuVTnI1oKi9h2ocUkRnZOkn5BepKuTs5KZUDcV0PSNOYzZy77DrOafISsFF/2CTjDgdXAJAGGHKqVRlyycpNg6mRoli2bNVo0mncsirkoDzA6qLEQ/vDUWnqGDUd6wE8aMS58eh2PKPs7th+GEXj2BCROYBDqOV0oO5/F2g/XGdLtOl+r1ExULz6RZ/mqR6y/cIFVWfiIwde+xfOf8/7KCKQBWMVFC1L0ys2WiKX40/PJ1hMPVmWa1qQ/b0uRch4QT+lKX63aqLTdyH4WIRkfkkq6Kx0qi9QiafiYIEw0skGHOIlQY6fElVmGAjru2SJcKYrzck/JONuzzNiPO11ha43rZcsGJ5LAYS/FXdNqrOJHhk+e0t4ZnlmRZQJmIDM7D0e/stmFD8edeQ84Jp8+OLdDaBfH2pbgGMaxp5LSyxdXzC5Ul9dkzUmm2O4jaJq08KmGW4N+KTXjI8dBvxCtE6GgfjJYI7yqL2eFhquuYXLskzmTm+AR+JTqDl1GYOZXPa0PLE5IeNZruDuOZz/KRXd+asfW6EhYCsYYSBOmJsFr0QibwaaSmSQybdy/yDJu4qmW4Du2H44RSNG8x7Z4Lac3AGcL5gUKrDDc6m9jLb6P+EuyuwzFHUg+febjF/wAPHkAJ7T3duaf+/rwGx5RYzyMQdRkP+WinzwFnGDmZF4AUaXgksobSFQdgHt1NV65Dqq3Xe2dFiusVn+F7GUX8phYkhmIpBpPxnSmK9MLaCoDspmUHHlLwdF54PvEtupQLMlUG3Om21stuscY4MH12nnZeo3bpCg3g27QNLI02w/Ej5JtX41FImnCE1Rn+Wa5ive28e7lPZ8uO9F3jmPyest02VeibO7oSBd5MjHrvFy/YOtXfOTVUTNMYZ+SBgZhSKL903qpMCn4lmXc1jNzkKTTBO5q4YmICqHSQB8juyrNfZ7p08XbcHjjCfjKxC7yUDUDiRmMEbVUZE+FOZ2hj2VFrMRIp6Kq2cw1GvM+GW1iIz3LrSkvksrOiqTQqMK8GvvVuN/WCvnt7YdhBKBIEPHdEx+ecIG8fWt6BiegeN6E9AZcTsacuOcFLtciqJjp/OqFAcj5tecPlFFYSgMP8167GA+sYE18yXwOmTLKPDjFH5heqTbSM9DqfZexfSkax3KAFpNhxafzdP8TbZeshvTiPIad7dwyphUstPgDebJMWzIAu5aevSSPv3otpeZFINLxgGO/sd93qkgDH05vxtZL3sxzRVXJnLjJ6rV3ZO+9CofUgG5skiq+PnYcZ5u5smf3X3h3fcdv/Axe9c7X/onjcieOiYriw/EjuLSNy7bx/ouf8P7lKy6XF+5+VNiUHsHJBNWiB5MeGKXtIER+p2hNSqdZEqtklQEuTCpIYzA8vYD7TDZncVfCCw+0NenPxfoxfk9PIFmCiwKcBVfJcgz1k/qrkQ1fL5thdqG3xhiD/X7DJPUZrs24SnpuhtFCmDiXHly6MO9/HIDB4+GmP3sBp746sMqklkv8rW3CmjVnZF/pwlVqLJ6U3ILvnib/w+1+3i14eAnL3c/nYAmIa8wC/zJ1ljH7ckcycE1V44lWH6KYUmSiKhOt+k9xzslvki47tcIsgGl6lrJqSKX20kHq2thUEumeRxYDLeIUhkjDQugimbu37IVgPXGYESM9CFNarxTbPkBTNmvud+b9TkhqEW6miUxbttsOspouQwBPmusEYtFzJuIHTQJt2duxieP3zLMrHR1CHBCH07Tz0y9/xnub2PgFm3/k1T+i5GSbw9lUeHn3BT/76W/y/v1XbNcrc39l3+/sx2AfyQpFrXowWFGus02XrxBHqy8E88xKaTO0N2xPQC5K4dXXOJxVe+CBlfRArEK4WBhAuv9LRHalB9NTDcZwRkmAZdOgLH5yvOpAss6g98YLF/rstGaMQ2i3ARw0h66WTE8SGLTI0G8z5WLC8UvUhX4wRsCfvZUyAhHp0kiTM0sQNdhE4s2kPbHcZa3Tnz8vaFrazyux3jgX5/8i6w2reg/ACxjMWP8086ww4JEdWIYg04MjtQIlq+oyrVfItAfzfqT7GbV/VHyvillWBS4BCSJ5D+LpXUgZAyFjwqZGI0qpN4FE0+xdmN2DDlQ71+2C9pZ6g6Gr40VW1i2uQnkiEcHYd44xK4uQdOdLsdCyUm0w8WyT5tVIQ1N6vIljMYh5cH/9iOzfEHGjx51umQc+bnd896yp3wM5FJ2GeJYot+sFfmpc/MLvfH0wP+5sVfVHCNfrO7748iv6dgGM1i/sn3b2+571H9YJqR6CtjQmKp3nGerMSqdml6eAmGg0et+Y2wV8MKdwHAdHSa5pHWdKDyZhaSkIyZOjaJYeF6umIEoMZQrHGOwczL7h5kx1JlUiHpky1KZc2oXWX9Aj08r9Cu1ly3TppxSMwezsiqwOppJhwlXx+cfBE3gD6vFY6Regkbmwk2jDc8ny8gzWhF/hQJUZZ5iwSmarwER4Y0S+0/0/d+nZE0gTf94/fYi0LitUUFZ32Xl6ClBy10zECwCcgRQDbv3aKjSxUvPNc1C5DE8yUKZG01AaExOlcWChT1zxSnGRP9XUsC60TbGevPiUA8kYOCyPaIxxxsFzBHGMrOCbWYa99U7vymXLmFxk8S6zoci7a+fSGxdTNgWdGWffJY2K4mxN8xbOgWKiaFix8Rq9XxAxdBjajJer0b4y5lc37v4B7tljr28Xrpd3ZZA6YwSCcrm8YG7ccQ5tiQMUwLdHNoaNCgGCpwRujas5Iw0pqd7M1tHD8XEwRWim0BriyWegwq1zDMtj0iU+U2N2LU5BCbUGE2fIYOhgikN7AIMIBdCmMdcAPaKajqZnM90Zt8lsqWHJ1BOUNJQuwqbfP9V/QEagJuRzVuBE/iVL5YNEXx7Zqny98VlmAJhPKcZKzbjLAxCszz/ExJ4zBw/wL78ynv4+MgFUjL7AwFWKJCcgOB8698yi/Y7KTwe6UkgVxogv4/aoKFyiqeUasToj5Y5G0mG9LKV64h4hGEuULAeymKJtwzYrIHUkoQhNmrBlzjrd0NLu8+CYBz4ONODSGtKMy6WzXZIe3C+XBB9Jl/ZyaVy36sPHJMZOzDsmzqUrJhcuIrxrk42B7geXy0uulEeg2rj2Fzrb6bVJKNvW6O8a8hu/waehfH18wJrw8u4dL9d3udp7dnIe+8hcvDSCwYzIakJ3png2gVlhklrG4jUWcoFI8ZS9kHtVzW7OPk6q92bV5t1BRpZTmwhqqfKT3myGFmoPoFaqQvRM+0ZeozEn+zhwnSkVVkzFInyiVl2LRo6tqP1vJXQyb+Bbg3aBRRufgXjqUZh8f5LwB2ME5DMjcDYoladJUKhtEKyORW8AQnn6+2QAYsmVueRq58WnZzkWJ4jwNPXr21fCOJYm8Vr5H8i/soqH3t6n8II4KbkT9VF157VvVQ5bSbwcHJrYxWIvnpWJBX7GBLWoXZuEZdMPes9Gl2X9puTxqEDTLbvYMBjHzHbl/P+o+79Y27auzQv6tdb7GHOuvc95v6JiafhXARLKhPKiEhLuRCJeeKEhGkW5EZEYK8Fw4wWUkmgglWAUvDHxwmDQRECSSpAYEwQTIxdUiIQbAYkUGFOhUmAVVd/3nrPXHKP31rx4Wh9zrn3Oed8v71eaU+Nkn7XWXHPONecco7fe2tOe9jxGeqff7rIvM2NgeDMiJjGVJ2xNsmTb/Y1tv7Hf37jd7rSmXag53G43rBtjPHh8/9ucJJsbu012C/aW+H1jyzs9jS3eaSMLA2lqZUaUGcoChRCGk6Xvt3faN99g3598+Z0H7htvb5/Zb3dIDcvMEZyPwXiczGNwnspApm/4dn/BSFbvBsm9FRgcq2tjzqAyKMp7wEWnJpyRNW4dSZvBOBP3kMhrM5kcOYQLepQ+odesh9eirtIVsQWHBXOLa/cvCih4DYplCRYGUnTKhrHhkRCOxyc6n4QHRMIc+nxDTko/dfxsgsC1k6+AdaVD+UyjjEtpqLIqrtVrCy9AvALjWjAX+nf1cCXgcLUC4boo1IH8WAp8WPz5Mvb7UhasAHB9n1Hz9hNSBBmvtp/NfBJJ5lrMIcCKur3AL6uLU9+sfpVdxKVMPYdEL4O916BL4RYRpdzrG8lgnKNaYI2t71hPWtNgjwQGkjOS4/1kDtj7xqf7J7bbje32hvcN81769pK0FsaoDOg43zkf73gMJonvjc+fdm5btbpGksfgfDyIxwN7SEOQ0/HpbOaM452ek5YizCzij6UUjrZ9Z99ubH7ntt8AYwz1680VUI7HyfF+gHWGGXMOtpcdNDIr9noBclyhHcQtSW9MMxgiCXmqa+DVvWkeeG/stw05Gg7wxNzEGOwwmxafLmMt6DWavaTeoFq2VHFZuJfajaIhK/+zJ94Vhs+m2h/n1t64tV+w+WfaTDInMw5sDhqD7Vcsv59HEIAnWejCALi6AwYspuzaDT9AefbVv7Xwl9jazCLgGBn+BAeNKxA8h4Lqy0tCYC83rqkCXoIBLxnAwgOU+tdQyPK0y7xopDbFIrP5TGAynhzxzPV1vSZlRlZtVKsgcQU7gG60YWyW1WabUuqySWsSwDCk+e9bp+07NAGEqk0GmZPzHDAm3Xbue+f2dqfdbpg3gsmcA+937vedrXciZlGRB56ndn1H8mBT4pxOE7g2TjhP2hnEkcSXkxYNRjAegzSjRWOmKNHL42ueUzP158DM2PaNe7uJ9xHBeJwYHW+drcskZZyif7l7lTpUnS9Ph1gloa2Bspcz6q7ZAm8cEbRxsqeEUmbI9We4+vNuGy2yRo4T8wkd2t6Yezyz2lrBmZoFyVKKtnz6HWAqQUYE0RTMZ0jRaYsUHoRK2gjo2Wne+Nx+i3v7lo17JY0nc77DeMfnA5sfcuYPx88jCCxg8BUPKHDQXtWG065WGc8Mnud4sb5fC+MDb0ADYhfveyHxv6o1+EwTPuYMCxN4ZgALFJwsRR4uDEAgoIcwAAqwkdBEvZeXf8tQ9Vr9yTNtNGUiuADFXHp+q73kpXTTYEOW59sqn+LEO2z7ds2d5lr4AqzlYRiDZsE39xut3Whbp7UXEhPGftv49M2dbd84z5NxvmtKLQYWB05y60bfbtyKNGRx4swCBo3Nd3BjerB5x8wZY8o0xHcanRYdn6by5X2SR2CPQ+49JkZghhSUlPEYtfHS2kbftJi8Ndg64gwlI0tOjrURwJr3WSCqev0d613fh8hNe43sCpjTDuWW2L7Rw6FPKT7vjXk38pNxbge+Ob0vS3deOk114dZEYSScc3LOwVzdgjGZDLaYtFAHIAtUbmz07TM3fotm38Do2DSZq04njsl4PJjnx2v89fjZBAEpytbPTu2EPDkDKwNYC3sda/dfqf96zDqTa6G9AIRLjPQHsfGng+UPcIDVBfg6GDyFzafYcGPAkDmqrIDyGQBm4QCr4xiLCCStA6sS4Kp6KkC451UWseTJQltTNmUJZkYvtmTOJEyLxDfHey89vbNEU/QHhEckrdp/Zru0BLJqy7bRto37p11z9OcX5nlCHHWahlqVJoPNt9vG5knLYGPq4lUbgobRNyf2xM6U6IU5Np2WnTaF/p6PwfH+YLxPMQQza24giFAt7VNScJFDTsWhgJblPYEL9Zf/ol0xN1ZwTa4s4aWPI8Zga9qtXdqTWdVpcw0ALTalBFQa2SSj1jbIe8M+N8a2Y5/A7oZt5TxU3YJY5aYZeCMyOeeU6nIEg+ScAXEyYrCdlYLoY6eNjd0+0fMznDfm6TBdG84cjPE95yG59Z86fm0QMLP/FfBfAP6DzPxP1W2/H3kO/HVIOOTvXGKiZvbHgL8XBde/PzP/hV/3N65QvLoqr5Th2vWt2cUB+LDgFznotRxYwUIa4VxMrwk0I6IGNy6K8DMzWK/ntf1HPcXHDGD9/iMY2OrnxRP1qdbaAv4W4YlplzClFZp7pf4lIb64+q8ZCdU39lJW8gQPo0UtHvbSDBQanhZ4h71okj6DLosbpnmlxRLP8NaU7mbpD5gCXrrTN2O7NXxrynhqJ+sWui/B262ztY3z/Z3z8T1ndvrmYLLH8hoNjjPIsXARI0diXRKuc8QlzzWPyfF+cryfMDRT0FCZM6u1FlYsy5qimyM4jsk4iu/Qt2qDCuzTmLBjcTE+9DXzIpA9M0zhAtYbdnYyg0ylrNY0l1BWs9KELCkyGmQ3bN9pt518g7gn+ZbEbRJ9El3LP1alWlfVyOSYwRkSc5lpjInKpZiMM+B0xiGtADsd9x2LjTicfEifwXAytip/F57048fvJhP4J4H/OfC/ebntHwT+z5n5j5rZP1g//wNm9jch5eE/DPxVwL9kZn8oXwfyf+IQ37su9EUM8memn5lky2fbiOfCz9rBPuZz+eQJxOuHsAhD9iQNIebYtZ+nUujX3v9rJlCvmAUUPoMBLCMNQsJwS+VX8gLx0rpZi9/IaTW6iujGU8BGjtBOX62l6ytq/QjN0kIfZ3IM48jOft8kEw7KJiKIR7DRVMOOJJDZadskIfaYwgKsy75rxsHWO/vthrVO2zb61gqsGle2sW0CHZsn8/0L4zgYx0GOQeCcswRbIuhjwHkyvn8Q7ydbwBYBZ5KPd2w45/tk46DnxnhM8gCmyYV4Gh6dx/cP5iPghoLZGLTmGoU2Tf0dIVl3wuB2J/udSGOUfVhWxynXma4MQXuIzmQOzWJI0Cik0tR3zAZxllBHCCdgKjDu3dl3Z3bH+w3fbsxmxA5xg3kPjn0w/MHkrL/tnGk8ZvCI5GzGGc4oJ620Tk6pQftonO/JfMA8nW06OcR+5GHkQz6SmpQ0nX+jOkM/fvzaIJCZ/1cz++u+uvnvAP62+v5/DfxfgH+gbv9nMvMB/Htm9u8Afwvwr/zqv8FFG6bqW50HMbx4wVWeQ0R6g1cGUPd/lgL5zAJexB4XHhA1U7DSsvX0ehX2fF1f/YZ8Sf3zpRtAXF8zNWVnc2rHSS4RSuIJDgoY9Kuva9drVlqQQ2PQssWTjJhKJydzAZx6bdl0IVs0nE3BJEAzC3kJ2oQnxEl0iK4esuyqjO6NiMEZk/3WtcCbRCz7LtHTmZJAa62zNTkSzRzkGOR4Z74/sDnYm/AIj1Nko6n0fXx5wKHSQMw6lz7hcWLTmYdm6be2071j3Xgc5xXg5xE8vn9wfDm5NQ0wCTwbUgVOdT1GNh6RDBx8x9qu+Fv3X0QRtQU/6ncWk4eV+5s3hjlnDDY3et1GKQhh0CLpGdy6E82Zrr5+s85pxnQnmzE6zHZA03xAXrmjMdL1d1BQGBNON00pnnAeE44Te5/ku8G5XyS7eAS9gqSRZEwiThmxxiHM5CeO3xQT+E8sMdHM/DNm9h+v2/9q4E++3O9P122/+ljlADxbegvZf7lLtsqyC6C6AMD1mFUmVBnwMrz35AysfO9KwV4XOy+p99c3fHXHKwN4JQitIFAGH1WPS79KYM5FDqqSIGu+6MPrTGqIiKdaWmUUBM+Zg0ppuze2trH7zmY3mu3SHCxPQCsie2S55m4Nv3XZmT8m2eB+32HrHFPutp/2Lv38ltx2w1yPbwhX7O7qKEYyjneOx4OeGmYJkAT6DOxUO22jsbfG/dY4xzvMYG8yf512QmqK0FtjY5NyMQBWtOMSF/ny4HgcnMfB48uDWz/Ztw4ZnHEQbSdzI1vXJoKrq1FtQWHO0ukPe2YAH/6VdJq9EIWmN8ZI3o+DezP21thcCD/HiRlszdncmP6Up3HA+sZsxuwGXc7CrQhEXFDykqltZLpEQiecBucBHAHvg/me+Bcn3512OHOGgtFMlVWRpAWRD8b4nuP8nsfjOwGJP3H8pQYGf6zw+NG//uo7sPXf//GXr8DfayFReMA1dvwKHP7IQvrBz+s5UjupgLYfdgfi67eRX4OAa/G/3s6FMJB1MqoyuBZ9Ivmr145F1cbP+6x/z7fIwpHyJXOpcsYT+t65tRs3u0mAYpZYZmrwxa0RKfJPZNQGJ4zAzLi1XswzCYPetsZ900yBb0bvEDk4ZtGTt41MpcRzzMuSfG8NY/kBKAj6lLrRre/s3rBQcIlxwtBoMtMgvNhtXhN2QZyh91IZ1Pl+EF8eWpxmHO8P3vsXWu70vjHKU2BgDHPwTu/qhohrsS6FvOrw11N9BQF7Xj5Qbj7eOCM45kkPMRhbF411nofUo9uiB/PSxpamo7XSKvSQ0Epb8mw63fMacnMyG5FqRY5hjANJq71P2pfAvji8O+3hjBjMNtnSNN49T7CTsC+8n9/x5f0v8uX9t39sCV7HbxoE/uySFjezvxL4D+r2Pw38tS/3+2uAf//HnuDVd+DT/a9TFnZVZTzT5RXBEg3Po7t8mA9YZcACA1/13a7CPy8V3syFLSzCsH1Y+B/LgAUSPm/7SDF6IQ6ZVryV3PQzAPDMdtZrrkWf40ewjIUjWOkKtkKPazjksp1OwY0tq52WDY+GhxfrrmmoyAEmI07OkHnnLM7y7nLE5dS02n6X+WYze7LW5sGck5aJ942GM4Z6/jFHTTCm2pKZVUOXjFYavUaLx5eTOE58igX4/uV74v0hzv1Yn4FdsmGMaqcOBYTx/oB5srXGvXfOc/L+3Rc2v+O+M6ZsZibJbFII9u1GeLuEVZYHIy/fLwnCdWaNcn4qb0YD6Q1EMs+TM6zEgztl8bCIfax2rtc0oERYoyTassapKd8GSlSkZjxaIU3mZHYiO3N25nDJrh9BHIYdWZqLgyNPHnawt8DKcCXznRG/5MvjL/Ll8Ts8zu8ubO3Hjt80CPzzwN8N/KP19X//cvs/ZWb/OAIG/0bgX/31T5ckJ0/Wy7MOyEQXSH+p1ypkvHYFcg0KzZQU2YTyEPuqDEhefdkWw15P8pow5MsLyAIjX5mC8eHny+mlsoAnJsHV/luL/xkcrDgDqGRIrkCwLizgOVNQWY+3otmiKbj5SE5Odmv43vDsZQCSujDmJGIQiM3WaTTbaKYMIA8JXe73xs3upQfQgcZ8DB7jADf23rFxEsdDdfCQ7oC5tPNyHDQ6u98YDMYQ194mfPc7vyTPwe5djMHvH3AM4lF07BqiatUZEAAqLOV4fzDfB3mqHNlaI7aNHIM5Bl+++0KMjvc3rDd6f6P1negb2bYaElK3ZYX6TGTpXbdfKVeiLkJx95+4EQz1Hjkz1Xaz5SCsjIwInduui9JKTCXZeW414pNIRRJiWk0yakQ5zcjsmO1gOxmdmI08DaTNik8uAdb38aDzHc3fuJkMZ47xPe+Pv8gvv/xHfDl+mzG+/5Wr73fTIvynEQj4HzOzPw38D9Hi/2fN7O8F/t/Af1UfbP4bZvbPAv+mXi5/3++mM3AlXy8Ko0kqbYcPdXQ2/U591cqHv0r9f4gFJFe4vxamXTt+8MwInklhvf+vsgA+kDzyShvWvN4SGb36/tUNyJUJTHT1FFswa4rwmTFUC5F6auNiSlplOutSjqCIJAEjaemMfWD7Tu+yWo15YiRb2wl035jJ+WUgS8Idy6T7Rs9d9F1rNfq6CETBbeswYR6HXI5MuICZla6BHnd+OTnPh0aAs/H973zH48uDt+3Gp+0uCm5hJBGGe5fVWPX/xa+XqOnx5WC+Dx7fvaus8EZzE+/CjX3fOA94PB4ch/Ht73vDstH6BtvOsMaobs9LWL8CjF1nN6tFXGe1OghWhCSKiizrL4g5Oc9kOGzdy0pO7tAzUGnD4kSUhuEwmK3e57hA5XVNRrpaktkxNsx2jJ2IjRhODtOKOsFOIwbkY/L+/oD5HTMa39zFDP3ll/8P3333H3Ccf4FzfsfkKALbjx+/m+7A3/UTv/rbf+L+fxz447/ueX/4wCdJQDNd/gwEZk/wb72ZFzbgBSZeBCE+puNrXc+ErR7zGgiKppsvT6/38vze+BjLRA1e0f05RUjdLjmqeh2vpcCaSlmQ9OBS0rl+VxjA8h9Mr6ynxCjiVF0/QjV1axosyYGouKd2FasIklZjzQVVLZdhwxmPKOWaTp7GmRO36olXdnXznUZjzhB6n6kF0q7GCoT685uJtvvdL7/ju9/5JQTc+42Nzvl+sOF0K0swR5oIEZdIyLBBZmN8Ofjy298T78Ie3rY7LdbEp7jWe9/EGBxRp1jCCBnawaUk9NoKLl0+Q7v9SxL48g3Lnn0tHDON7W69a0FOyicgcJzuFUDWeHg+S4PwlKtxyQ97FmjqcbEebbaCEHu5HisQZHZlAsPJEykuHwlnkzvTmcT7g3g0zhGcjxOzB999+Q95nH8eeCf9C9j5TCt/5Ph5MAZfYJhcqz2Tl2kifVmA4Y8BgT+WBbyW7vXYaygwV8bhH75+eEnwo/Hzujh4QorX15dyQK3B5+u6Uv8VAK6RTz7yVlcJsa7L9ZGoTcCYQw+ri3+zxr2/8Wn7xGa7FvMYZJ64S6zDN7EE9aR18VkjQpiCWpVOtx2bjRmD9KDfNjbrpXQ8aenP8drUzrYAOS89szFOju8f5BnsfYNIvv+d77j3jfB+kYU27zXQM4t5NzlPCZiO94M4ZSjfqGzDjNZEzXLLsk4PWu/cts8036BJflw+i+UZmPMKgl6BofnzGlgzaismKDPQ+LFXJuStsd1unOeX0giMqu3Xc+qcL1r3cheaFgwOrD4rc9nay3XKkYtRw7Jj1nHfcNvI6KSrFIhTmVG+J/El4DAYxjyDcQzi8WCcyRgHZg/G/I7kJPlC5oPWFqHrx4+fSRAAFibw9fFSqynacgWBH13wLy3AD2VCfvUVSqN+PXfWw38YMZe82OIIvN725B3GpQ344W/DleJfU4FLanDhAy/Zi60gsViOwdURCVdrNKachmNSYiCQVS9SBKQIXcgLle4un6NJ1eAhOmx3XYBMk5KO7VemRDM8nBwwpuzYm3WIydY6XgBhnkGOYNtujHPw5Zdf1BG4f0NG8OWX3zMfJ/dvO+NUgOguS7MlvZUlsBHnwCbEmLTe6c2Z81S2UJnQNWtvTdLm7NzfPtNuN2g7tu3M1kte/aN5zHV288d+fsGB8uW6qDKgtyaJOpQdZI2Ry54MrKuVCimF6dJTXJQkSCxk3d426ObsvbHlxhZd54IO2cloxGnkKSq1sCRpK84jsVOBII7g8eWgp5GctPZO24K9dY5hRA4NNP3llAlch9WCgTqJCzS0Wkh5sQoXW/CVI3D9qyfLxRpcwWQa2ddftuuE/2S8XBfJxe1dASGvgJDrGV5AwaX9T13os6y1hQPkMyOYWe0iK4CRZ9AIrj6v8BCuzCEnvJ8Pqc++n/R07ttObztGkxa9BTmkkGMOs2pgS110MZLWNX9wvg+8O603/Z0zOePUrtgFmO1tp7VGTEmOMeDWduKczPfB5p1t38g5+f63fweP5PM33zAfJ+NdYJ73G+c4sID5ODm/HOQ5sQk9NRikboMxUoM1Y4yLUGpVzshZace8sd/uTNQSDFf3JMpC7UKaEpaBiJVNW7KmNfW5R53P7iYjlGnVDZk16anzchwHp8GtuYxgDSTPVhefa8fShHYQQ0NlrRm9O7vv7H7jU7/zPu+8512lQI3MzgF5urAaC801zFRJNhKnERk83g/SnW1TZuQOrQe3Js/FkcePN+/r+JkEgXU89+H86nbdsOS5KY2A566bM38YAF4zAdZt+RIcqm14dSW/7hr89LFKgudMQXkKTG2jkVm7WyiK14J9zV4Wd/4HQWs8M5TXDOf6dsKcLEKbBlpC7DT3rvZg6AKU3LqLoOKq4zVXo/53VMnh0erv1i4bCMRr9pTHSrURMeP4/niKgGCa8pvSNGylSzDOQTen7zvMlJbgSPa2YWtRj8l8DGJMtRJdBqVOo4UL8Gyu1meHOEd95kXG6R33O70GkJ5n5vUaUuBcl8c1g1ZMymoSVMIlx+CoYO+kMBd3jSHPSYzBYcHuQJ/0bUOjwJPwVVRIaFVzBjWL4Sb6rpcZbW9svtF9Y2837nnnjU8cdqeJXkWLTUzKM8gjiSPJR2IPhP1IJ02j23lwnO8kB2YH5oPIQcxZGcqPHz+TIJCFBcCT7le76qUR5s+M7RXEv1qGz+d6pnUvt13D4/UY0CARL9nAuvfr4153+R/BCZ7DRHpgRl6TexlxLfrlK7JahFdH4EPJYi8r3Z5vJVbpUW9lVABB173jNFMq322X4kzozebUzhej1giuLKuYdMbyLWiVkYgf4M2u7MOawMQLAxxJHNoVeyu7k3ni1uhW7L3HSZyT3ZV9HF8eMknJYE1LLk2EiyT1IvC69R0bEATeOr11LOAcy81JfoF939m3N3q7E9aus/HqFuU8uQFP2Lk+7oziW1R2UCe5GdUl0NCxN3UBRgncSDFaXgHmxoZKj9mc6CEWn0lLQI8H61W+GXgrtSBXINhiY+fGze7c8s4eN7a8s7MxphFjEEcQ5cnIe2APK/l4BaCMQcRJ8xNSNnaZB8b4elf9cPxMggA824NK/ZOqi4naoSdrCEh3tfXrl901P/78YYFxgXV6jpee8Ye25NcZwUec4tplXmLP83Kzq4ZcPfx8eT2vr2uVnRd7kK9ea/IEDtcfrMPr9wYQLsuq1rn1na1JSUCvRCPJMeE8VFNbS9X6UKIW62KUtddVctUCTZ6z+2bI4rxQ8VxuUZk09BwknI9BjCE2o7tmIGawt8Y5tZs26/UqKXfe53Mtz0ip9Kg0aXQsk/OQqIizkbPTtp397Y3mN84pvsIy86gxIKgry2urWWf+Wvzr+zoprVDCmFPGqVmEqG0jtx3mSQcsxgUGNhPbz9016FbUbmEYDS/sRsQ219SkcWlIujf5BXhnY2fPGzfuRNtwgoiTc5hIQyfkmXAGOayCa6pszsmaZ5njLA+D+atiwM8nCOR15VdTnIASytIKWih+3X/d5fVGPqyVa6Xm15/AS2aUS7j0+tVLAHgZv/zQPXh5wq+zgh+moi83rMBRnYJ8eR0fM5WvvmIvWYLahm19VqmedMtOr6Eb0aIri7Jn4MwoFmAaS2fcTRefZynULtC1TDgAcstq2BT+EcnmG0EwS5m4W8cwznESp7zvuhnMIMco5TQjm6v9ZuvCLQUh10lwnG7bVU5J109+fDEm3mU/7rkRo+HbLksy32q2QmliFgCKqaW5PmpPmJarsCTzxdRqkb0qezjXbhoDy9SMwtaJ0dhSRipGEmNCb7Rm0BvZ5SsofMDAQgBtM2UILeWLmKxXqbBb3YLunRs3bnkjfMN9kDaYnFJMjpAy1WnYUNfErSTiWbN0KV+EmKTn5ZL0Y8fPJgh8PLTok8liyjyDgepW4GWR1GL/sJPW7vyyKnNlA+uvLBnyKuwj1wX0EZ24aMY8A8OTWPQxyLjpJXsNlyzC2TrZxNqBXtrTldpX+/t6fxfV8zVToHQIiicdVas37/S2Ka1fAGjUxdXXhdJpGknEaTit9O4ai1JrlYHFkLYdBjZkhkHJllnV7coW5MfQW+M4T3kTgNRtYzLPkww5JM2h4NA2zfSPQ6i/WnTa8Z2Gp0hHTDRo0zcBuQFtuwkMTEl/ec0GiOVXn38smbfnNuI8XaZabf3rdnKVD8UALfPRVkzQjAL0qiUo/QLV9aQIW9nlMp01RUiTsxBF2dbUIeUKJTfh8oerV7awF2E73Ta67exWngVNOgS5ObNN0b5WoHeju55zDi3+LGyKQLLmP3uh0WuLhCd0s35T00K5cIFn++zDw1/Avlfg7QICv84cJte7D5yZzw8jsQ/P/+QS2PXw/CoAJBpG8ibBifAaAW66KHEIe470woI5n7y16/hQwtjzPfHyvlBd6ek0JOaxtU104pnXRS58S912UkSaaw6hsADDFIBct+VISY+p7S9iz7gilCTGp4LjmvazRGl/Mf9iDvI8sZjXANA10m0VcMzorakuN5UlFlZjx6ESxBve/Br4WUGgsWN7x/JGNn2S3gtRvxb+GvKyJ9tvBYPrI18TK1nGsClrsHGIi1CThrqO1ALWINaktUKqCjvI1tQmLLMcE/+HtCgpsnwSv3DwCsS5lIMbbuWSlBqoaumaHek77OC3jXObnNvBWdJwZhpIAnkgDA6aD4yUNkRC5l/6UeK/xMfXyyA/fPnpguYrCu9PPZ6XU50fb48flAN2gUpx7ScrMOR1H0FDzxIl66y3Vsoy5R6ra0cgkdkzDfAXxloWFGK8YACvfZJVEsT6pMp00mUttt9uvL194na7wRQIZjVnYGhhS7Tl2cKUw7vhXS5HsZByVt2vBeCuvztDQaG5V8alKGUlBBpRIqbWlLqeGjDqSP1ojFEXfzCG3rTstr0cliCzbL0meO90V7eDJq08zPBWA06+4XaHsbFm/tf8WKSkwIN46QjYFRiyzmdClQorAKAsqFSaM7NMXeuSmaJPDzOYU0Hf0OBYulSBlZQ8Kd7NCA987f4eTHfpHNSMgtxL1+6gjGeMIA6Rqjxgsy7Zsv3GcR88vnewd6Yjubk49I6qhJnngdtUYTTzKdrzI8fPJAi8HJekcC3cryL21Rf70ceuL/byw4riL/dZv4rnQsuXBb8w/+fr+Pr2Chbw4llQOX5v2Ay1yUr/AFdqbfX27JJTv5pV6+mvzscPBpxfWhNanKLnetu439745tNnbvudOY8rA1qBALcnyLiASZLoFYGCQuv1mrWgjYayhkgh4UVErjS0Xp/F9fosa5TDikhdryPQhbl4DVmdkFmgmudraSGQrPdNCz26FIEqKNGb9nZrbPsunYBFmprQLCS4GpLriAqYVylwXQLJCrRP5YK8cjNPiCHz2P5Sfb69vZG/3Mh5FAUY7fBNi9yaYR3o2gSsVSYAAj8tL3XjdVlGtSQDBaBJyEH6nOTZaNMx1Eno3el9KJiksIrG5BwDa1PlUMIMjSmNCB7HyTl+9pkAfMwGnhZDH1PxdeJelmi+pnY8d/prob/8/Prv5fbIQrpZc+Y8MYDKAIy14As2qhoyLYuZ1vCmnp+Z4d2k9hoIxOlZpUH97VmbaY2YWk8ZsFhdjPb8BPKlBLC6gMy0yPrmfP70ift2l5zUNKXy61I3pekXAp9cswOOsZyalqqz6umqT/GiyNbHviCZOg358tlnFg6QmmcwFvgWBUplPc1LBoHKCV8ZGtLpc3o5JndonZiObSYA0280azTflU11g0giHoC0A3udFwo7mZnXQKmQlOfgUBSyX2/v8l9cr1hlvXwHGAPS+HwT0eluSbMhMhBFEmpNZKumXd9aGeDarO6DqTtgRSHOrvTfFHxHqt4nU8YroXPK0Nc+IYdxyw3f3iRNnu8YcB4H4zyZqKsxxjvnOBjjlBTaTxw/iyBwXSL5uuCdZyKwUvmXvfFHkoEPweD6H3xoLeZzJwI+UIfjuewUoet3QTkaX1s1LGnwSEQCcZ3cSJ1T716MwCSb0mjbFDwiIFsUIKn9x6ae79KEyydwmKzbqrllJVCBzC7f7p8uBp+Xk0+a/nasxVhXucWi4miB54zn67fKCDq0rvupY+BlNSbegTW7okGuiEktrljA1GugLvDPKfJS5VyubIOoRVkMPaN49G3DUvMFmzvNtzIkaQoQKBEx167p2S5GoZdhByni3ky/AuvaYoQ25WuCJDPQtfW4qUyYkziHFtMIbu6iNOdc+i4l3z5LtxFyc9h0SXuXTXiEbOLCd7Vr8ZoXKLwGUZGLCSF8IBUALlr4mdiR7Ols7cbswTkPvG+aHzgOTk6GTd6PwTgPGvFcCz9y/CyCgKLAV4M8mS9puH9Y4B8eWCslP94Kz0vwBzjAutcqB2JNKqJA8IoDXOl/PmVG1+3B1+WBsSh81yu6lGZqZXthELUz59pVbaW0lcYvJaL1F8wKR5BkuLfG3m58+vSJfd9rZ43LQvvqYiR1UYmH4assyaofA+nUUxdlR8KnBWquake4rKneXTvp+uzXNro+45U+J0+69kod6rOwKzBX+9dLJbc4Ca3UfNy6WHFNhpwCN1cpRrXcUGY1hVtk4SutuhmtUm2yZkG/srB71ai9zrDVZzQnOSYtQ5Jqc8J5shtYDnrn6v9bT8oTvNiBdv1sDtFUL82AkcY51a5kEbeyGI9L9HaqFajNxGAUQBuBOpDlb9g6mLE1p7fGCNf6qYxRF9dPR4GfRxDg4+JfSdsanXsuat3zwwK/AkH99JrLr6db97uygCzxh9rtM6s0XgvndTDYr9sDufg6iyf4dBrQRSnCiHlNbZUxpUR+XESd2plyWxlHXXRVoliRa9Ly9W3USdU2566Z+funN7755ltut5vaSGYFfJnGaWufi0hp7n/4JItFN2ss2B3PILNxORGsF1A4xioZrKbm8joV+TwlyVPy+kW6TQSg+j5fUnJ7XvxWbUewMkRRjVycWJbxTHot2JcSJV38Az3cnl/R3y0aPxU3rtIgsSJn5mXnrralotpMOS4xpwRGM5lzsHdnnJO2NbUDG2QXB4BuZWBY/zoXgWhaXgFgpDQJwh18w9jARIKKNLE9p4Rh1uRplh6Dp1yrW6vOT2xyiz6d46gWYb0X6kr+qeNnEgTW1rE4ASsgrODwVe5vWSSM111+sQFfsoK8nqTAr/p9rPsv9N4vzvda/M9F/swOnpnBq77wi39dLsS36u91xS0gsKEWWTMWu9Gm0mPzFL/7qjiqlizsYd0uSawqA94+8/bpE63vhVLrlUXK+eiVQhsZpZ9QIqi2FuHaNWpH4oUtmMIx1udvq/RZ5+Na+FZJWbW9WuLZi4P/MTMzU69dfARY7TBfqbF1VCTotUghqVqvK/PIBbQqKObikl2TcvowDGjdNCFpEjG5Bi1R/a9ZAWVLFlGfU1nHZcnI5yRj0kwt0OZGa8osfHv6DoatksC06FtJjHW7AsKw5AzjNDhITozp1RasskBpQ0W6GWRNEa5R9GVdL4KRDE9pxm3r7FvncXqVYL8+AMBvbj7yPwH+i8AB/Cng78nMv1DS5P8W8G/Xw/9kZv7RX/c3gB8GgCsb+Pp7Puz8Whx5pacfk55n2pcfvnl+XSXB1R2oMmQFgstWZDnZpha/FfS+Hjd5UnUx0wVbnZ+wdZG63kaza3DICqG3qADgaoXRygFH2DrCdexavH3bud8/ySmoe5GBtHA9XTp18aT+RkhoJEL0a1GELwLtx8+mgsWs0eXLJ+/rYHydjxUNqlXXXhB3N2IazChG23wGESBLkchM6b7nEgaBLBTV166epngj/nI9gV2fM92q0PcrG/ApXkPUZvpM/aVHaLFGq5M1mZVjwBw01DoUxihtgW6TdnOMA3/boAW+GfRkmgKvm5ygViCgV+Dv0j6cCSNU4k+yhklNsw/eIZomPMOuGRSLJ6EoiQsz0teJu8qBW9/4Ulmd5XxdNT95/KbmI/8i8Mcyc5jZ/xj4Y8h3AOBPZeYf+V0878uhFXPtGAnPhf96wbDWAR8+hfUUT6eSH5QDF4V4lQMLJEwu5mCYf9jxVxaQVafNWhBR+9RTaXDZkAbLxESpedRz5EuFIybhamorGNQY8VK3qM5hInLJcluKTNSycvbbjfvb/erze3Pc1RpaO+glY51UDx6x8JwLX1BAUE6d4aqrQa86okKb6nX56FVAsGfGpcRldS3UJmvlvhvXP6HjuSzoMwsILOGPGmAKxNADpbIiWtVlOqKACmUtV1sz1+fdyobt9bKR03RzAbLtJUseGVr0iAeRFQRiDmwOenk/irsayGYt2DbjmMH+tvGYX2h7I9uQp4MvirBrdXWBxLEpGEzrjGzyGEgvHwfknHyVT1IasiU1V9eqZ43Rr7Z3QpbTFAizuPWNvTUEr8LAfk0e8Buaj2Tm/+nlxz8J/Fd+3fP82r9T3YBnNvAaBF52IL/W97OKqP+vdP/6/2s5wPNxH5mEtUio3u21+L0WvbPcBdta7Pk0H9P9kmmafX/Gn6fJWRRQtIKAQLdKEVbvahbTrIrdRGaaS3QU10WAGfv9xqdvPrPfdz0PiJOwMiPsmre3st7OUH278IZmnVYwQUaVjgE5y2UopI3u9V+7WGx24Xy2Vpvx5BNk4QcpD4F1nqxcU1cpFjXqbK1d536Yugo5ofvGE4D0Yu6t60Peg1YIu1MptKmthqfaaguAbMJhzApeCCsTltCobVJRQR6AHioFWqXU5kFrqUDmVfOT4gOYvqbX157iCOyG7070xHfHd7WJtdE8DUdmOiPgtCzpyeoWIePRqAvq6WLFMzBEnbwMcg68ySX51p3N/QoAv+cg8Ls4/lvIl3Adf72Z/evAbwP/UGb+yz/2oA++A+2veCkH6or/EAReQKjXX5OX5NYqBz6WBC/FwUp3X0g3C0+IWDv/i2JgPl0FnrYi9bO5dOGlvCeSR5UEkU9iSkctv9V5AAorsKtLYOHanrrx1K7Wa7N6U5Kw0riwW+fz5898+vRJU21J7fpJ5tRFuQIBz7amWpOh6WVPbFNWQ+1ENos+k1U25DMINFoRj/KZyjsqV6wWvYmVmKH5f0MrzkhJZ6FIEy2uXWxGcp7jyUngmunDl4GHK3Npq7Qalc5cvblXil59tnpRV4ZAVpZV71eYhFicm+n8jUXeyIEhwU4LyT81GwTBCO30I4N2c05OuQ/bxGvRszm+O+3WYDdiiysIzM2Y2QlrTBpBY2KcAYNkeG0YLyCp1ea02p2x2q+RCsqAZzBi4J7s3ti80c1otiYMf9Xy/T0GATP7H6DS5n9bN/0Z4A9m5p8zs78Z+OfM7A9n5m9//dhX34G32x/MZzmQq4Bm7TLP9mA+AwFcO8Pztnw+x/V36ilr5//QPUiuHnWEXY40M73opstj2K+MYNlFLWXcsEbYCgKNifje1AXsToGDPPmnvr6iGXMK/V4CSo3r+RejrnmTIvB245tffOb2dlPKGVH4Q9bU3bN+X20/BQF9kFk1qMeQbt/z42TJfFmaAC2PAk9r567SX0NH9sw8XjKtrLLlokRTgY2abKyMYEZynCcjguad27azeVdvXFNAtSVUgC4fx4iB2IlrUMrIbPXzqOxHgSEpHkdWZvACqmHQLKGpe2IZNJ8MlxzXZqIOxxwEE3pAFIvAJn1zjnmw7ZsGrTrkBtYqwG6rBEC4wGbk1omzM3JdN42gF7NPgWC6P8svFA5gDXZxAbbPnmbxQKrGcUu25ty3jTk6g/kCiv/48RsHATP7uxFg+Ldn6WuVB+Gjvv/XzOxPAX8I+L/9uuf78Rbhyyu3JF+v2Nes4PW216/PJ39WBfn8t+qrmE6U3Jh2wfUZv6b/xqj9itAS6+ak92ovrl58YyChyzTonhLkWBF5pXTAyqstkeeir9YY4PECWkYFo8nbrfPtb31D704whJp77W5tMeWtPrKFIDeszFxnqt5W2yu59RteLDer15wUiu/+FNLMZI6hUqKpRelWwz7kNQW4Am7mvEIyZle7TxZgk3OcnLNMUbvTt9I7LAJTjqj3bszx0C48k/N4QATdpJuwNBUJv7wUmm1YOHNMxjlLdVolh+M1rbe6D/p8mye+JWZLEWhADtIHmUXTPQdpk7Y70wbZgmkDvznZJoNR7dYp1SYvkfcE+gbtRozOGZU10nWd0JgJ56SmQtUZaIioMeuCkcYC1W0qoKAAUk/IMQmb3Hrnt775BhicXyZHDpmU/sTxGwUBM/vPIyDwP5OZ37/c/geAP5+Z08z+BmQ+8u/+Lp6RD+j/62peIexa7LWrXog0H0qB1wDwAwbh6w8VVbWTWHEDPqb+E9X5Cx+wquGs7jOtafFbdQdSHO+LHGCSlbJWfer6tFdmuvZrcW6pf6asFKWwqybvTbMCb59ubLcuZiFR2a8Xiec1ui3Gmeoei+IkBCSaMdeuFnVBicpaUHzxAgQ4PrOsyiRiSmk4UIbgXC3R61xcph1K0Q0BouecnKe8++5vd3Ee2nNG4Xq9ReOeMzRMM2YFhxPmVLbmHU+Nz8ZINt8RF7ILJAxqVkEdCukDavCqW8dr+AlfpZeCtgZuTsJPEukCeI0KzwDbVjuw6OCbvXAEJDMeHvq5ugSzmTLFKgUEDBonzjRtNBP5D44lQLuS3AsLqKxxmVRexVOxMVJFbffGfd953zbaw1+XxI8ev6n5yB9DxtD/YhFAVivwbwX+YTNT9wP+aGb++V/3N3T4D3KWfPnVFQT8R/59WPwvFyNczLvrCT90CeB19l7tvwUE+gUEjlqIWTiAbDSbzoup13yZkdYIYUN9X+9irJGrN77Ycs/sYI0a06iWIXKace3CDfkCbJtsx1kL9xpEot6zFo55VkXZtKYLGFwXUySYBXgSOZkhHMLWNJ6DJLuLJ7AKUis+gSVjniwXAAFzCgipa+bq2S/CkbkxM0ouPbntO7d91w6mFo1ITUPYgUUQ52Q85GpMWs3vDyw1tTenQL0Ykk/zJvOPFYzXqHTSixsQhbg3zIuQk9B76SlUyWM2mXFIxCOkC9Ddsa0W5PZSgvZ8goEd2CBaMH2SHdreGDscGI8Jk0ZaZ9KEBRhM90sabcxkHBNGXCWMssesa9ee/+q0iAhXMuc1XEYONnd6BdjfE2PwJ8xH/omfuO+fAP7Er3vOH/9DwAUM1bEUIG0h5LnYxRfH/prAJK/vf7T+eZEC/zBUFElOI5qxDCtW+v/sDviFCxjl0FMX1iRrwk3wUl4vSBfitGT2+EGsetbhquXp+YL66vfN/Umb6eg+PdX89mrxrdG9xeazlOhHkZ+y0PGcJWsSWc61WUFgVLe1hoZKgPTCMC4AtkhLBWzO1JalmQmxDAO4TD2oqbhZQ1VItty7s+0bW+9VWgmBj5BycQxJk53v79isYaa6FGYkHqWma6VZMLUrtt6IfHBhIaFdfqZA3KyywVK4T5QVnaWB77h7EYUUYMNO0gfRBAq6d1jTgKUVaIawgmaI7GfkBuGTYajMujViT44wjtDrSd/UFUiv9qmT1olszDJTaTNEFX7VmlxBQJGKBaQuYRdDik1WQ1h736TNaNfZ+dHjZ8IY1PGDCYAV7D4s8hWF7UMA+CEO8FIqvDzlMwCk0u4GhDCBmNXTZgWBpuWf7UMgCNqVAQjL0w7TEJ/ArpJBBJBoEBkv2oCVGeQCrlAw6uILWGYtxioGXPTQ1py2G9bETEtSsPlKuWvxLzXhReo3TbFcmIiFwLu0WXiD3lnl9QowrfCJlyCcubCC0vHL+KiWbF5/tjCEORhTykJWHY7t7U5vrURIxMSb58n5OBjnodtmMM4HnrB5AZtWnxHCNsYiPbmUdqViFFc2Y15ckJhS28lFvtKQ11xK0AGDEjJdXZZQOzBLPtxIbIetN85MrEXRFaoM6IltyN2qo/ZjC6w7thuzNcZ0YQGuTCCikzTCOnjHamxaGEhi5chMSdNfgqxAFZHPze9Cv/WzqmXJsvUyYJFZ7o8fP5sg8ESanxjAEpt4ZgDPnvkTRnjJCPjIFXh5cipj+lASkOgDdsjmzLDCACoLMPsqC2hK+63TLK9A0FZ5UJbnnrKXXqNI06i5AZUGnia2bCHvGanfL9ygXtta0G7iEHgTTZUWZKpnndWCTPfnPHsFhEtnkPLUq4tnpvjoAjPXxT4llLkMO4ohmVkTiazP3EV+mbqoNOOgut23ft0tyib7nCcxJ705t/0mnb7QIMyMwfn4wvl4cB6HtAh1uuldLMqsPr6ByEoBYxaRyRq9bZipJPB97RHV7K0uDq2IQlQGWeXROCfH42AexuiN3vvFR5jrfde1li2wWy+9hGcmEJ7kVkGgeAJZJCG67AfDN+YUYBx0wjbSN1JMItJa/etkNmJCDA0PqXTMqyxYYxqaEpkXJfxaRVVWWWVLGsL6GnP7ePxsgsC1sPPl57XwP9T+gkI+5Ndf//v6+BAA6t9rSVDc3gyvOYIlTJXMVDYwaaxmoeq6UBCwZKSwAKORWZJQKeDQzfDlFOLzYpSpkSBaLwUoXaDYOtHrvJXxarQCnDz0ukuk4qIjX8ixyoMnPbc6BH413MQZWAMzpp655Cxq4ZSUaVxX3gou9XeqCbF2zwilrxd8OIMZg0gFGdGJdd7mnIx5cjzeOb58zzyPmiaMejSadvSvaGO5ujDqRiQC6MyaevMm05I1zrzS53aTu9+qqxcWY12Z35yDKWuPqp/94j17ExN0tnF5L9bHUx9tYQKb5gWiWoTiCMDhxrRNILJ1pnXCN5KdzJtuY3ULdP2ticgWUdcmV+Ba51NfnvwQM4r0pfPYWjFu7Dn49VPHzyMIvH6o9T6vhQ/PK+DKAPJCR59ZAD8IAlfqv1Klr/5djkVTC2lOUWO1eKuOt6iOgBcgKABwWmdWqLCy5rJsZMH8yhqqVACidlwtoCwyil07/0UOek3tlgxObY9WaWd2pbHPTEn/0qoD4L1ou8W0A6DorKYMhWxqL0Vx0VlMvFFXela4yKo35RaMq4DQwqbah3oZI4dKrMpuIic0SY613rQj52Tk4P1453h8IeMsHEPnKWMyI4oOrSwDA2+drXXGGUqXzchB6f67MociBlEiqXNMMoNtdQJ4ftbUJXT7JD9GsR2rtvaG967auovae6kErxXTngEwt4Td1HFpiW2O78bocKQz1sLPjcHGpJO+AxsR6jhMYExjnkaeAkifUvpc2WtSl/51navUsSrXZgyIAbs+C4nIvvbRf3j8PIIAPGkBX+3oLzhb8QTs12QAFRiuH5VKWS2orCzgwwds62djjgYWpbyjlagCoVhvyHtumj2DQPEDlAl0MfekMCm5K5JICWriCU3kUE/DhnaQy8gUpfY5g9mowaDGtnfu286nb3ZaJjZnLXLUnitizzWe45QPYe39yeUzYCZFX6LXgApX/Xsprpnq08W0syI8XamyZ5mSlFCKTcY4Sz+g0J0alPLmtE1tzJjBGAeP43vG+UWy3R5XntvKEj1yFlNQCHcr8o9tXum/xne9Sdtv5KiZBce3XXTb42Q8TkYMjd32wmqqHMlM2tbYu5bBnENGroQ4GL3r79V1aDu1YlJBYF1jlfqnI5rwBnlzRt84w0QIso0wBYBpjfSNiMbIxpHGAZxRzlIDicUWM3C5XAtEzdeL+/pPLVa1VLGJjzVUzrUZ/NTx8wgClYFdxp/Ax8Egu27KS3Kn6qAPu3tdgKvldi32fC74YuUt5VvWdF4zGF0jqi2kTe9gTJZGY9IwS6ZDmCPtDZ2cRMaemYMZjZlTTLIMZsrlR734qieZ9Jy0UNqbhYGI3CPF4jS1IcVLN/rNwEYFkwIMveFVHljTAhrzQdhG91398N5EXXYkfR3S0DOkaJs5NF1YPnZeO1oWg3Jx98NTij2+cAMtvrQg21RwPKVnl2a0vtFukjk31yJ7vL/z+PI9GSfb7uRxcp4PrAKAdb9ae735hYm08iUgDO9Ozl7gA1yOT00iHVbZR9Y1Nc9TGVxTNjBC6b+0ACQEaqYWpqwMqxy0YLoIUtmMaEHbS125MgHOAgA3gy7gdrbkyMGMG9k/8Qi1mcM7aRvRdtI7I5xHOEeIMyA8qboms4aXMoWhzFniIk6cA6bRm7EszMf8crU4xfAUbJ0RZXz7sra+On4eQQCemcArOegiTXNlA7Zq3pcSYKVHH95mfvXNSgEXHrCUzKvO08UkXGAOlQPRnHGl+LPmAFplAaNS/c6CB41GsEEMeipgmMkUsleGImprFvqVou9W0FqsQYroMqM0+PZO3xqtw8gHe7+VOu4Uwl8ZwRULqzSQ/uEEkzb/cvOl5MGs6ImZdk0xuucliKnP/uUD9lUPP8GbWYJcRnUs8iQYSHOx413Zx5hSHz7PdyIOWaa7BETjFMhoDtZbWXZXEVMgVzRpGJrYu2qB+qqXk5jwOB64a/FvvgknyIZv9gTMEuh24QlZEmAzJtNXe7D22EWCKhKX3Rp+q1l+oYzqetyEAdAd22FuwUFj0AnrPKZz0DjpjKKWT4xxkYbgDGNGlZ0Ls6gRw6yvVt2OmImMZJo6SM0Zk6Jruzo/i5+xGJXzLwdgcC3sle2UKObVAbjKmpetf5Flrud4fpvriVbf/QJX+CojqMdN9HyzERbMEsdQK07uvQ1q95c4xWspkBesvwwNpNj7HIp5LUb1+swT35xuo9ZZARxhkpeutpZ3p21G2xp9c5prp4gag22FWIB601vrAqzKkjrMwBNvXaOt1JhxJE6v+l0fjBiElXGR1+DQGsy55hRSYCJULU2QcTJzAPIM8G60ruh+jpMZRwUIvfcZ0u/3XWaprTV8+RBgjDlZAjIZA3rXjgz6ZNeQUdXMEUIxJoHZVCl1azTfiHOoA5HQb514X8xFZ+tN7UIranW9LjBak9Q3DfzuUINXkv+rjs1u4gl0GJsx9zthGyMbj2GcxQw8cE53iYpgNUrsjFBWOYdhs6jpqewmyvad+kyIvLKjXPMVpQyVYWV9t0xvXnbHfF0oH4+fSRConed15+dJDHoSVngJBvW4r59p9ZOCZ3aBFr+9lgcLBxg8g0Bd7GnF+55NEuILDIQiEOn7UT096dtrN4wUbSyEs3NmEtlfqrf1klbGUy2mZSldF/SiCrei0FqHdjO2rUuwsth8UQadzWrIaBe4OWbxAHoDn7XLmwRIfIl2FHQpbawaW53PALzQs3bFADAx79K1+COjFkxIiotJNtMQTS9x1dB9ZhYK31S7xjwJgr5vbFuvVlY5+lBZRmqXP1Gq37xVKSRFZ8chE5vw9s3bVSUqQBptbxdHQezB8lakEXlwcgCbxoDzCWpmAaPele5rQChhRwtqZQhuYhBuEN0YeyPaRtiNMzuPkRzmnNjHf2aMbDV0ZpxT/AAPY8nXqZWazBEXX4DIMirxC8hUubSp3AjNvixfCVi0+J9efT+PIFAbYNb3KyJf38OzQ7Buh6/wgMIU7AVbWLdPkVyWOMf1b1YaPkSMIQTKYOoQWFOt39pk0j8IZCxQUEjBSi3iCg9J1XZUarnAspXtFClJ3YXE+2TpCm5V50476U2lQN9FWx126rrrXe49Q461eg6gR83UyAdvVK7g1otLUC45WUFguWSs2jMhiZespXj8Xoh8EXOyFn/YLGR9qgNS9GNvrrTb4jlrf0y1N0vbYNqUKnMzAXtZ5iaWHHOqrs1gFNZzzoH3RivPgd3s4kphsN02TUBGMM6hXrsZ06nSrDIoAjdn8405BsMHvTcygjGmRn+tKa3uYJuC2pRMEWuYLctmPFzBYW6NYU0dAOvM7BzZOWmcOGe6vpqIQ4GrRZhK58dpbBPZv6/du5iaGSnNiVBeuqTnE1imrREKKM+9cbWN+PlnAnqN+Vz8lRFc0asW/5UJvOynH5/kpQxIPgKEawT9BSjMBQwaMFbgSUk80xguSSxM8/TTjGFK1+bLH1YCuikTYJJ0selqZ4srA1jRR8ATwGmK+s0ct6Qj6agO7H3n7p1Pt523fePunW5GToFw3sD3EuqsRXzGgZnTbhuYSzGn2my4k62Rza4Aha1BI30uGjnW4rMKqosGTFPfOpgy+EALNbJGbL1S06aZeloyGVe5EJZXQCDF2DOrEdplbNr0XmaMAmbrcjBZbEWZaHRObnGy7RpBNjNGTLkyd2VFyCX9SXlupqA51bq83W6Ms+k9uLKTKQcT+l6Lx5L25rR7GbD6vOJmEGRPTg9s25l955xWdf7GsI004QBn9tr12zMDKDmxMHUKsgA8YQA8J0+LPJQTPNrVTScXF8A1C+Ed9+2p86Bc5ipLf+r4WQQBHWvHfwkEcO36VyB7LRm+zgQWwFZtwQs9tnyWAus5K8t4TrrVbUP1GAZxKlU269oJkJ3UNKWneipJj7QqDWZhAkmWElC9M1MdO82BARVMThtCFnLgNR6aDbolwyYHwSMm2xj0210lQjPGOBnz5NY7+7YVOBZQYpm9dVovBmTt7uGDKPQgCyhc3Rdn9eVFWLE41wr6GHgNIXOFCSgADnkHmoBb70uKLJlzihwUh/CCAh2XAtAZo4J3VAtRFkW9N/Z9p5VJSu/OPKeQ/QhiBo84JLJhN7Yua/Xo1evfkMFp+TDEVHnWbxvHmZznqeD71mAKB/DN2XID7LIOD4QFbJ82RgzGyna6rrMzk9HAUAYwzDmyMxAxKNvGiI1pGyN3LXjXz2k7pFykjC6y1ZnasNacwwV8BtJ5WaUa1xVoGN4a0cR6jNjxoj3rHh27rtgfHj+bIJCFCTzfX37oAFxfK0BcVNavnyfyw30vjABY23deLUOlhx/RxcIeBlQDkOGhKbgtaBYsHd9VDnhlAqscyBRO8OTnAUvTj4HS8xLAqKxAU4vjCkgHQfdg607uNe/fk7BR4p2DcHUofJFtTIaZcwYnEGy0rdNsyXEv/ZzEvDoGpQmIGV6v26dpio2qkevzzpo5CJcjboYwgGEh6a1q5Xl3cvOLU3COkyMPwkScNYPpQW4C9cZZ2EArMNE7b2937red5o1ma4xXQ1Azg+P9YIyh4N6VYfR9E5iWocErFw1aoB9Yc/q2kSeM7wcz5mUg2hChycxKN6EYkqZ6n007LnOqM9AleTjThfiHiCxa5DvBKgtuRRHeyVQASH/ShrPtEDsZDab4IcySTAtlAHPG87pe13R1Alaq5qXn0LMz56a7Vh299BN+6vjZBIHrWOToC9Gz2kVfav2ffOjLgk+e2UB9fxGPFiC4jnVbvPzuCrhOeGO6MU4X0+/6A1rgS560XPdqd1Tn4KrbrNVJU33i1/eaWlzwozFVG1uI3LN32qcbbRcYRg3m+N1wOpbByEMjxybzCQbX4A6xi/TSDIrqbM3k5Ltakssoo3TtJPhbAiWFTyyvvMxkZjBdJOOZukg1pqsC3Tq0rerWkOz2LPpwmOS5Rp5gQdvVPbE0treN7s6+dT59ehPYabUjV4usbxubG/3eOY9x6eunwUCZRqNhXd2PIw58E0aRlkyf9Hvj3u48jke5HzvbttFr9uE8FXCs1Vn14LQT36rEaC4QMEzqPbMQ/umw7eC7dv9FDLKdmbsCQM0NhG8qIVOei82cGRAjaQGWCggxQ6VAZCVRKV5KVhdhLW43PVfbqsOCdOPwuvb+cigHVm/zye4Enu/xQ46wVtbFLeC54F/e62tQWKpEuRY8FVEr/b8qkKqNrz+XAJ3wYLSkjaLuZrKihaYIBTzM1DaRtb+vJ1r1mcgOE6yxLRqkaUqx5cDpKgs69Ptdu783onVy04z/8fiOW9c4bpwH83GCwd6N3hs9G8dxij3WhPbn0uGzogMv8b7uz5kDEMwZsBqgi4+ekcyWBViqfz/8cloj0MDS5mU37qLUze6MUYM0hdnkCAZB66kFuum93G83LKVRyK2AussERLKZYYlbx3fnvt2UJhcQ+P1339G9c7vdsK7XfTwOdt/YbhvjHMx5sO87t/udNhpfvnzBDPq9482ZU21VL6HUsOScJ5OD1nc5EjfNhYyUj8D0JnpwqRuF3QhzRnZOhA1IRUiBYA0QQSdjI2OTC9ScV5Yqe3euALAs6J6boTYdq93qIpm5NgIJMdm1+fgTSfjB8Zv6DvyPgP828B/W3f77mfl/rN/9MeDvRcn335+Z/8Kv+xt1aTzRfz4m6PBEgNcOHbVLsTj0iyZbrBlN5tlLGvXVwl6c/ZLdyswaK9ZtChT1fGFYNHIG5ynkvG91IrJ2wHRyOnMYjV4JjKPeesM9OTkLvxO4NiL4tO9sLZjHO3O8s22SAtO2d6fdnO2+Ec34/vzCeP+e/SYgqO03fGvMKlFm1/N6gr81YprS3xk8Hu8KQ97FYjCju+nvuVLsS/K6SUkkUqBZRlljrc/2PDke8+qFHDNFdwX62w2/fdJgTkweM3kfwRlqdVl91t4b909vbLstWIIZodq+N2axKFX1JXSpHY8M0ga95iNa3W6b8f17cuTBeAxmDm63G3vbL7Zjb50xB+/zwd3h/os32OHxeHBwKgVvJeZWmQMGvndGg4cn2RrnhMc5Sd95n5otme2m9H8WLyAbw0QXPrMVSUhDROkb5h3zG8ydjMWS1LzDHIGfQ0NE5rT9RpzJfEhhyaPXtSdWYGtlOGPKOLf9TuTBzIn78TR7+YnjN/UdAPifZeb/9MNCNfubgP868IeBvwr4l8zsD6XI9L/y0CL/SlSEAkJW16N2e+F5dUEW1fZDJvBTJcF6DtAmvuS+9OJfMImqP8bL8x0Anbn081P9/UAilZ7VRmRDe5ceuFTrzeT7NyO59Y7ZZAT4hHMEnY2tOe/jQffGL0+dwLf7L0jfOXPgdqN92hh28mVOzi8ne4Ntu4PBWW9u6ZmGGd4T2xptuzPm1GL0k5bFDyDo3Qjvldav1Kkm8syYFiVKIlvtaU18ycoAAoGlkagNFjWIlZNjJmcgU42Wl1+g90bbb+AhuTJ32rbrfWTotK3ORJWBymGqdFmajOt8Def+V3zDeJzMOTltYnlqlqA1HsdB75375xvz/Z0v8yHgbdOQzYVBmXbgKUND0k2GIa2rzp9gbWfM4BhoJqDQ/1FgwaxFf65hISuK8Eze08DVGgy6hpdmk1CUYEi1CFdpWlOEHyCw1EW9VJ4WbnMNFtVaqjVZ2cBPr73fyHfgVxx/B/DPlODov2dm/w7wtwD/yq9+mL28SHtJA55gyIUT1PdSiKmx0K8XPTxv+/qrqH6UM0NNhdVzuIlnXZTb1+lEKTqpBjlnK9HMRmuJx4QaHFqyY8s+LV/0iWRkUZl3CXocmdxck3xpRUVyZ9s6233HtjdO64zyoGuoP3/flypvamrQxMAjg1aTfWr3ydzTNvEbxjkgwCM4p1Rs7ps6IGFSItZ7TtKl5DttiA8QEs0cqZ63BG6NkaFU32S0+ZhSWhzDeJzJY0r3rt+qAzFVh0/ves/NydLJH3Moi5tr38gaaq6XZRomCjPSG30NlTXoW8PuO4yTOAZfUiHqrTfCXUHSJ/Omz+fdQ/yHrVWGJsWmOZP3cz7LJtTz12KHbjvTk6PKP/O9AuNG1sJXAHjhDBRleIhgQNb382wQ6ti0LNwordqFXKl+rkS5JuCy6tpF2LIoTwQKRisXZoGCT0bpjx2/F0zgv2tm/w2kJPzfy8z/CPirkRnJOv503faD49V3oG9/xQtw8RLy7NoEXgDD9avX4v/59UN3YGUB/vJ1veMVDNCusiaTXw+xx17iz/USNVMwJ3gPmWykJghVqKw/qKGQNcjRDbo1jowSyjQsDvrWsRyM851+20hPbrc3tk83hsH7ROT5svMCIeFb64ycRCRdfS7MWg0xa9fM0KJxkplaOEsRUTp+J9lPdu8ir2QFMNMzpE9GihcRIUfdSER2KdBwFCMSb0LHMWImY0xmFHhjjbZJoVgDP8pKukNrUtsVwecEihxDKRkVOGiYZhsi2UNg5Gw18muiRVuHvk2OdjDOU+IjXSo7kUULKSGSR530VoSEOYWbDJwxRgVEmaMoGDZ5B0YpRJg8A6z0AiZSCxr0D4HgZCOsQdux4g1EaGZgnI7N6v2bIZk6nm1une6XfTElJ/aCZkdMzON1RWivdJV/rRiTP3X8pkHgfwH8I/W3/hHgH0MmJD+WdPwopP/Bd+DTH1z6KVrcBSBp+31Z1OuZfN1kV2aQy2Tu9RW8lgZfZwKv2cCCC15oxuLvpz70lSGTz9GAbrA1ZjRN5pk06AQIlk6h+bXgMqcQ9xqyacDuUpHZ2XCTcOYZTt46/nYjm/E+T+Y81cJqb7hvtJaM1pHU58TmwTGFTfTmdLQ5Lsu0OfPS4sO2EsowSOc8VUd/sht92zVnwKXNQ9auOzKYIb+ACNPAy5Qu46zA2/0mWW06c56cZxKmUsSbQes6aw4zBzFPMosEFMpSxhrZrLkBNwFeS0Szu+jVoxs9kr1HDSlJVKS7k20jevEdPHif0FEHwEwzCTnFzzBfZqgQJWIxaYRXdmDLVKZuN80DJE74xjmDRmOwc+CANAOOKg/W7q9AsIFXhhDGOSRrZ9NfhmarvCrps4o2kJTqVdaaWDVCzW6E6NqvrFrzjvt5tUp/6viNgkBm/tn1vZn9L4H/Q/34p4G/9uWufw3w7/+unrQiXv2FD2senjXRovdepevKEF4DxNcZAPX718UPz4Bw1f8r8PCx80B+HDwq4Qyltk2cbQ9oHeuidaY1ZQA4W/0hA42nZoliG3gTkLRtN/qnzhEH7fYJv71xxDu9jDq2Bp82Y+vGp/vOGF94jJNuBiFNfMO4mYJPq1xJphxruAasSbx0zTQfp0DJ9J3P7aYQ5jUJkVmLAIaJKDPqGnyEyfcwjVkYTe93aHfCjXNMjjSa72xbwy21+ELc/VGkpDMm89Aos05Vr25Erxr5eU2Qk96VQW1j0AMh8gGtGffeq0yRIlS2Hcx4PA7inHzT3/h023l8+cKX46R3F526REpqOkrBvu+AlR4hjCzRUuuMSKKAvmzOYONMZ6h/+EFW/MxeQKE0A44Q7+T0YByQQwHAQuKosoe3J2Eu7am3a3ZxUxYakwVOR0oLczEFk9KpbFbj4b83YPAHh5n9lZn5Z+rH/xLwf6/v/3ngnzKzfxwBg38j8K/+2iesialr0b+iID/GDUjdZ4lfftjx1+DQj5UD63jNBrzag9WtI5Mc4oyrvKjn6VFBodLZCKgx1HBnmBO94zu0zelMTb8VOAjFtw9jc8N842By6zsnop1+/uZb4v13sNsnbp/esLNzvhvuJ/vusHe9zq1r9/ITmBwTzjgVt4az0TRpiBXPPMG6PqsZNCsxztYYOXiMSX458X5qShGXhXe1Oqclw24cgNiByTldGUAYGRppTd+LC2+IAN3LgUmovIKATtI8Q1LhRxDzGXV769fkYiQX2y9jLGY0vSUzrFTZki1Dkm5DhBlzmDWPMCNIv2EWPAbkkaTfaDfpEUyQ52Mmy87MTDhKIgGSSRYxSEM/acqEzulqG7LxPtQq1PBYe+IBRRN+THifk4cNoiXTjRhWJR5FE9b1pjmBKkUTVvGrNqAt6kw5r4kKG6HgYasdnIu85eIh/F6CwE/4DvxtZvZHajn+v4D/DkBm/htm9s8C/2Yttb/vd9MZUNBT1P9pPlB++DaT55ShVapeKeMFJL6ipfCy8J//roW/vl8txwUy9nrui0yUaisWvzt7BSNTS04LQP13iXUugYpGRxz655M1Nocjgi+zcfOd2+eu8t/faJsTI+k2aG83+t4gTt5n0JqzbXdN4rUkW3COB+cZ3JEyMZn0ZpVS1weRUVODTguX5p3Bl2OS358yN8EuFyWujkCpByGh0jNNNXTVSo6osoTRcdW/XVJiOUKTgUXdnlNtsEYjsuOmGv0cp1R31zmGawApTXTgyWTJpgcQDuEKdvMIdpxt36HvzDx5jHcakjkfGRyPYN939rfP0lkcpyTP5iSm6MruWsiZuoiHpfwBcMZMlTumCdFRtPJJcLJhNObiB9CvtmBYE/C5NCxHI4bjy6Gjssw1P/ABDyiQ9xkK8tk5qSMukgvXg554ijoEP3X8JfUdqPv/ceCP/7rn/fggvfl6/HXz1yynvP5H7cY8ywKyNPD5uOvb87asLGHxCrI6AhkrCKSmCFteWvIERU19gjUKAihaTznOJJBTkeWMRu6D3CoYpGa/bQP35BFSurFm2tVjcsbJOY1vf+u36C0YZrT9jZs7zVTvPczorURLUCusZeL7N3g679MYj+9JUzaQGSIkkZdUlzwFBGBmmiSvW+M4BvHlQdvewCWflq70Mk1zE8M0GXFmcKYm1laq2qosWP4G+7bhPTiO4BxD4wYhsHCUCemnt7vUmCIxL3MXcx5jvGABTWIdVOtzPhhxYsDMRo8i3DSXf8SpLKB51zluwffvD3aD2+0TlvKJYIprkWXdNubBGSfJxmZbtXMpARCYJiGQk9KcbJtszobRd3ULJisTWOIhraZPxQ3wreO5E7YThwKmApqusVgzAuXMrN/ZVf6vNrok4OxZwsy8Lm572SydRX2+uGA/evxsGINPUdDn1v01Z2D9+hqtXLe/7OavGcArTViy3FmboXGNg1pe/gNRaSgvHYGrhRgJXelhBlJ3KT24cMq8RK/HNX960WRbn2SbzDjZPNUPZ0iPoN243QwbXwiD29sb+2a4D8yDvu80hgC5TNJlnHnMd4iTzTtS8Xbm+8kjDhhNwysxSOtKDWfV0+b0EBlIn6djTbX5l8cDtoNPfqNtW2UMSquWsvJpxnCIPqQpSEgHoMminUz5Bg5kIVaKOZpmbJwzOMO53e7k/pl0eQ9gjm031fPHKUOXOn3Nm2i/bsyHxDMyAy9cIQacGLspWJxHcLPAfCNb8sjB4zGJluzbRszJcSZbL/zDNFU4p4Z/ku3KfhY+FwUKDoJjatIjvYsNOXgOBS1iUBmOrq7BUhRK64xTWYufiZ8TTiNPk8ig6o6iB4tdmSM1RlzlqJbIAghTDNMEprwo7IVY0FxZ4cq0f+z4eQSBlXo/QYHrZqipwuvrSv3z+dgX3cB8CQIrX7pMPu1pqHGNJVfjPmdqrN4p7oE9XWaQGOgs373oYhfOkZWKW3UMVktRO1FvIs20VEof+Q7duN07xAOOd5LG7e2N7jd2P/HtRtuStnWl+hbAJhWdDI6Y9CbCErTSzZsMD2b7zHD12WM6Fq1Ue9Wy6ym1oh65yAoSAa0L9f34gn33Be9v7O0mcVTERAs37XYO0RtsMM/viTjpvVf5k2BWAz7KVBYF5gztVNM7fnO2T59g36APtbCaqxkTSY+pFt1QazWtpMEjmb4xiythA3oKGPShC7/TiFPnZ9sVDG27cxyDv/jdwW1PttblODQ0fZc42Tr0wZESgTGXmvQZk0gBvVhjxuAQYIL36uCc6L1sN0aUVoBLai5sZ4TxGFHgIZyPYH6ZbHOQE+YJfgob8AsXqH9zMo/6/dC5tNooIwaZU/u/wZxnAYJeq0Rt021rP9q2W8fPIwiAAJKvDr1VE0OvaqEP0IA973fpAvDMfa7fF0YQCyz0qqwqlb0mDSsjsHrgRSTbKnsofUMLKz3Ago5bobjVVkzTPLzNjZ4bghQa9/uNbTNN0/XG1u/gAbdPfPN5Y+ed01JjvFPkEbkgiephqfmDwMHvWJ5Eyr02LBh9MNrJzBNNjwWOfOkiVNsLB7BiYhrdmjgL/U5/U13/OCfzsQw1W7XPVP9qJJYak93BHO+9VH9FP14Lf7Ubgyi5q0bbxO1/e/tEa6b2Z5fXoiFVoTkHG8ZCAiOTcZ48Hg/GoR09kFPRrPZfc6eFMAZLZ84mt+nc6LcOPXl8+cIv30/2btxvvVq3RuvlLN2cc0bNAAgAnC6gE5wI4z2CpWhg2av/r87BnCaqcIGCUL6DWTMWdDJVErht6tKMJI/JPA2fq3Oj0WZb067XJpnXNfv8RoCCLcagrvwLXHNMZrbbTy/1n0cQSHhqXX/9O63gYvX+8HHwEfy7gEH7eD9/xogVS6wCwGIIYtWqsaIirawqDVp9yNIcLWmpfGYTYWxvTcMbMem2sbedlo3dN/Z9w2wQ58l2b3z7i50cX7i3wG8b2Z1pG4/8otr41GXUm9eMjyYMM40d6euRzoiJ56S1G7knsZ/E410Xt5WGYJYtWCRtltJwgYVn7RHmO9Y3HsfJ+P7k7sF2lx6BmgrOjH51W6wlbUsITd9JDERmo+7qz7dM3DXBtgfgrZSSOq1J6qs1uRJr8i3JHEjN6anMBOBjQH9gfmMeB3NMpb8lXTZmkCdsJTvepwK3+84qim04Y7zLbu6ReEu23aUOTQ1CGZVQVzawFh7GMZPHdCYdKDEX3xhmnJGM6dAVuM8w8I5bY2SWMphk3DzKNXkk80xsOF6ciwUIWgnArjWQucDohZjqjqsduDJlUdrtwsXcjX3r3Pf9J5ffzyMIYNfu+3rI9MKeYGGue6/S6NkJyNURWPd4LQtW23A9eH3/CiKu2xtSDAkr6zC7gBszk1OsJ3kWat1UIlhqYXprbNvGbjduvtNLBuzedz598wZ9QD/ZfOP+i9/H1geWB1/mg9133s8Hb90hghbwthm3vdF9acWdREojQLMWB45xs1YEppMxIEi68aSLmiGDFKX3rSkFtylSbrdOmikdPtQYz9BEWiI5sMAw26A3ZEHqkEErgZKcpvKhdZZCeGtNvazQ/HtrjVZ2X5epLPAIWYKLgCScIorE495pbefWb+A7D//CfBzQQzF5DOZ5cJqYmxGNcxibGX1vGsm2hu2OTWecg3MkHslbE5FGDF3hDiOE63TrwnvSiHSOPBnlHRg4GU+G4fuM0l/pAhFLPqyjICBPgAazSeZ9IhHRA9osmvAI8pHEUbhU1ABcZQKLm7IygcUTqF8+S+QXTM2Rn+PWf+6ZwFdA34fffBUAropg4QTw3PXX7+wlWvDEAwQW1u6dq0OQz2CxFnP995oJWMDS2VPQUdsqWkrw0h0/nT46t/1Gm40+O5/aJ/Zt42278c39E9vdoQX9DtsNMt/JePA4E9uSc74zM/Bo5KHJA1oTVx5dkDNMyrxU1yFL+rp1YpuMI/Ao+68aQXVvxDiJeYIlm3WZVZbhZ6DFGg3OnLwPyDPZCxtZv/dmNBMQZtYgCxisEWUshNSvbLUstyOVRMdUQGlNeMUyzRgxidD7A+PMJYulQObuJB2/NwGCE7X0muM96f1GEkxzLdoRDJLNxNugWHO2wZwP5phyLh5GF5sGc7kNnRl4NjIFEFbbXoNNtkPbiDRGBawRog9nGD2NE5UQEQ7ZimeQSvmHkWdgRxKnBFJzQI4kHirDOKGFJN9E/UbYSHUMdJFXnZBX6vDSGYi1eBDrEr3Hnzh+JkHgZbH/4Be11H/ka/36WSd8CBCV968uATxddr3+3uIKrEDwQhu+dqqsFuEaU64As9R2rGtIo89Gmw0/G9vcufnOvd+5+52bbXzub3zyG/d9k4lI1yDuKbdSjnkS3UkP3sf3NIxznPjo+GzsNSyVKwiYlIAoERJPp1uS/Y3sp9RxylqrYZIrSxhTF0Z4F0hXBntSopJEVRJ8GcZ4TKapXvfl/usm1qEHZk6G3JQyQzJZDkZ5HUZUtpBEKrmfIcFQGxOf8ibAKsuhFdU6iRAgIyXdJZNmeLvR3jotnHgcjBqY8n7jPA7RagPAiekQjcidrDKP1olmAhbRXEafTrOOmxSXhwggGg66gM2UFqKLRzBDIq4zSiQ05UO5GIMDZQ9zoHLjDGJI8IUz4DC8RohjJHkM4kjGGfhwWhY2FQXxVQuRklVPAkv5J66yYDEMVequNaHbf09kof+/HMlPtjA+dgZ+2Cl43vGlQ/qaJdSOdHUEoIQnudqEH8qDzrV74lasLLtGmm2VW1lDGWlsfWPnRreOnU6+B59+8Ynfuv+C3jtbb3zub9xbZ6fBKfLMdus0vzNn4zFPbDq3vvHlcMJPwpMjEx8Co5pJq+AsxdleBIalU78B1nbobySS35ox8BoAGql/ZDBHDRZZsf0ATJRctTvFbrRQdNy8qQwypc3mgXXTzkSSMWhb14xAJjEGOTTVKOdcLWYDIoo7ME7wibeadHR/Nokqw3U3ekg1SVim5utvvhPte758/72EV90JNuYcais2LezuN0ZKObi1pjHkzUlOaRVGcJ5Z4yDKCGhdQ1NTvIqZxjFHtfoQt8FMWpOziFNWLMlwprvaiaEFPk+Xx+BwlZOjrp8o6feprCAWSSiFDywOBlGt6VkLwop0lk8J2+ekpRb9NYyjy/wDvvL18bMIAkmZV/7Y7153+XzWOi/JwPV7FuLP6/e2HqEP9+U5Eq4WIZUhrNRa9Mx8ZgfL5dcMw2VNXjz4PTdutnNvb2z3HW/GNjc2Nr69f8Pb55um3w7p32UbZNMu3Zv63m/+BgOcmybK8qC3xoh3vpzvnHNw242td+YYeIqu3KwVvVaZSfcb2aeMLtHtFsYRSUZnVgnxmCnarblq9Hp/Ue7FvjXV861D71h34QIpYVAvFRttMElaJ8roxDy1KzIKYA1mPJgRQvH7jntXbT6Fgrcm9WTzVSIEc04t8HDNH7hS5LRGu220MOyUvBpm+L4x3t9ZtnCZDZ96nVnOTmaGbSVQcp6MnOSErUlfwengJuXhKTuzGXBEKVATWqAuCfozp4aN0KARqXJkWpUWh0xF5hD6b1XmyL5eAcBr7NdK3t1WpynXhoOCYqyokIiGXnwCixofzuevr90vkPzCzzwIAPCDTGC9iZV+67br6+vdQPXoD8DFVexTmUI+H7KixaJs2jMALDERqQrVAwysSdAxAU+56Jg7Pp1tdm7s/Nan3+LTt5/Y33Y+bXfe2o0+a4pwBjlFHEqfnI9J7kIub9uNMTXrv+UnYGNiyhLOwWlTvWp3ZpZxesh9qKP0NhPxGPyGyt2ozpIGdwyl+mFaYERy3zZufqvd2Mgu7sG+32oEFaw32W7P0imIWb97dlLCJmPmk76Rmo+QdfGEEZzHg+Mc7JsCQds6gyFVo7BaHCK4YELdx5x4So6sd+EIQadbg93pn43oh4w7DSyEfZzADLn87tuGN+3ipM5rdLX0jjzqSinF3wX2ZQ1QZSuxlAQTIWomKjOQs5CZypiZKPhZJ9glQjoacbqA5lkKQtloNAW5oSDtV4op4k/OakXXMlggeHVdC0h/rpHnlX81058pFfz/ZJT4L/GRYF9nAh8KfKw8CaxS+avmsVUD2UvYfG0N8PJ9rZLrPvUxVhdCJ8hVqw1EIvIKRPXB9+bXfEIm2DSBgNG5+4239san/san253bdqOHk0eondhU09GSZBI2GGcqhZ5qbSVJt61OpSL4eRwcJZUcM/DW6S7TD+mDSlo7ClxzkyZBtKzW3oSm3WbWvP4ZJ5GB253b7VusKwPot43eGrfbroAVg2yiDVN25+f5LvCMp5xbpOb2vbKtTIFRVvMTtgETjvMLI4O3LiUh55SYZoqLcBwTLNj2O9Zu8oSMySOMc6QyFysnqLZhN8eycT4OAWD3z5zHyTxPsUTT6bZjbVO2VNdTuJNdQzyZyaBBCB8JREnWa9cCpzVGiBkaEwF9swBTxAUYOGbFFmWDbFh0coqlaeniw4Q6KYSrpTeW3Zhdv48p0NACLJVxpWu3Un1fHYa6UszWFfNcN+omBKSA5J86fiZBQPj0x6PAD3spCVZAqDxpndDF8Htd9LmiZhE90la0jKqZarR3EYNsGTbwBF4vhaHKy4TD4c0lEdadtjdu241vbt/wef/MzTb2bGzZ6UM76cVYLCA3CjwzS/LUXMAc0t0zX8GgsfUd3DniC2M81GqaJ3tvzKaA2IW7lXBIWVBV2RJNlN2RgVnN0pt2vmkHmRO7f8v2zW/J/rs5297pTQSacRzkeGh4KFXfeyZndnIedYFpl/ImiazmjdadnJP3MWgWSuW3rhr4TI4IbCSbGfSbxl1BQzx5cJySMe+903zD2k0LNWEMdXE3c7pr7j86ct+ZMgaZXq3OMTVCO4ytaydcpqwjh3b3Joxi2oZZF404JcuOaeEmNTuQEowRtid5OMGujWk1MGZdr2U4Z2EBFhuGF9Dn+pdVVoI6I0PBwKZfPAFHqkBZXg1Z1/gz++KZHWghXCsnV/mcWiV/WWQC+UEDXLct/bR1Dz4EhOtWPuz4+fz5+TutwKyxQ+3+tfiV5z/pwVmpO07ECkwFvwxdNL7J9HP3Xey3T5/4/PaZT/sbb23nZp0+0fB4muZ1mhV6HPUyF/iY4BoaiZ5YU498qcK4OZ0bPrQzz5GMrou57Y3sxskk3OgNgokhimu4M1tjErjvGtPtg9ZcQ8I5uX/7DbdvfyEvQIfelUyq562LO+KUitDUVJq10rWvMd8IcfIzNR14ax1rjTmCc6iMue0bbTP6Hcb7gy9nMghutzu9b3KEs0lnY3BwzmBm0jZn22+4GzmD4zwZE+gS+sgMsu20+6aZg+PkTNl9z6klaqeUkt2NhtO7FB4ecWrsN01af8UUXIFA14lIoTE1ICRBlZTEeCIMBZd6cLUx52ycp3OekIextwal8PAUpTW8Fqgc00swhAoOXiSqcKZPZswrE34dErq6Ags4WNf62lRtlckfELQPx88mCPCDILAqnudQQX719brT9e1rNgC8fFyKHWtU8WOZIN7Nc3Yzc9EC6/frOWsSzoC2S7v+m/0bPt0/8en2ibftxt4aLQzOGuSoNo8CATW8VGlcUplCkmMQGvXDSwE4Amw3trzR5s4x3qUE7EMmHewIkR5o1sfAxQFMm7K4ahoV3rY37HZjI7ndbuKTR2jn//SJtolm/JxRV5vMUhz7MYNkozPZNq8JQ2Mck+PxIAbyPCCIY6kG3xnnF84vJ2Gd3ja2e+eIxuPxUPrr2tWTAhW3jb3deH8ccgcOTXZ175rfGAapsmNOfb9AzROwfaPZTrcb+TiUXZwQXa7OFs4W8pGIFnIVipNR1dqG0V0g5wyVKSPU8pTAiMhEowBA2Zx0pCzVmdGJ6JBdXANzLLpe52pF1VwAQQGEKrMUH0zYU4gbYawNfmWsVOv6FTOLJ0j4AgpemPpLa/vHjp9tEHi+l3qT9fOPBYDrtvwYBJ7dgZUJ6OerqFidgAsrqNza1n0FEllFe8zJVM1+7zc+75/59v4tn+6feNvv7K3jKb88Odu6AsdIsdVactlw1Svxppc3CMJlOJJjYpt2DKexc2fLN77//qFa35O+q90cw6Bt5aST0DreRImlyTPQm7F9+pbb/Y6b8Xbbue0bGVKnYe8aiEp58jmBxdBOW5Ji6VMj1DaZVTf13nCSOCbv7we33fGmgDYC9n3H+o3z8eC798G+Gdu203awcM5zcD4mO8G2qWNgLo3EzTbGGJxTrsQD6F2jv5HBMVVCSEm32qR7KSTnhOiCTMfU0M8sgpWJ6SfJdmNySCKtugFqE0v/YSArmZHBCG0yETBS9mOCZ5us6mapCk05AFlstNTJNSnPYNk0ATlX6q8RbK9NSZOuVmWpNo+nA1Fctb8u37Uhrh/zSv9ZQSKz5jeySGE/fvymvgP/O+A/WXf5fcBfyMw/UqrE/xbwb9fv/mRm/tFf9zd0/BhPYKU5fPX1R+77YcF/eAesIPAxJXolBwSqNF/uZyoLlquO+1Ytsc6+33jb3vi0vfHW37jbjS03PMDOwEoIY0ZlGV0XvXeBO3npRZV9mNditDWdaOKXh1pl+/3Gbp/w+T0xtaNxqs3H46TflA7HRJbgOFtr+AatJ33buH37LdvtRiNpUvfEcurdN6kiRwx6BanIU621lrIM81mo82DErHFeF6C4vXE+JnEMtqaUNEkJfN4+Y+3G+/s75yO4G3h/o+2dMd8Z5yEZ9+7sbUcMQ2h7hy7ZNJmGCMzTNKG0CFvCtnfMNB/Qbsbj+3dmKnU/QiBuGByR9Ck35zDRlunanXMaM8clFENUEKgOwUi1WCtsl+pSVru14ZWtBK2ARivZ8OoIuHCDxVMX+y+UDcznmr1s8UIpfIzJPCfzmGUjV1ezrQ1O6cRHzCyvTLcg9MoEfm+YwD/JV74Dmflfu5aY2T8G/MWX+/+pzPwjv4vnfTmElv/wqPT85X71Aq7vPyY5H4HB19tyCRZcH5DSfbUWlcaatSvCurUKNQInNROws/Wd237n7X7ntt/YfcOnEw+l0NbOa5IwhuYK2uYwg+iVc7oovYl8/cwFA5vp91HGAbO443u7sfsbb/1bgpPWBme8c3x5Z3pyN8daJ9IVrLYN6zt9b/Sb028Nv9+hd/BkuC5us2RrWrDiv3kpbKUQ7QoC4SfZdtxKQDUUNOYw9n3T3ziTOH/JObOkuZr4+a3Rbzc8nPcv73DCrW/iHmxK50egnZpeiLyBG96g+2RyMMYkpoHrvIypNmVmZ/MO1hhz8AhpHRqD48vBOAatPs9wcfvdN1Z+aV1W7RknEYORRUtOqQBh8l0YGcoK6+/PUl6m/BuyaMRal5KhX92mvWpBK7WilEglC29eWX1Oya75kOpThAxdo4aGCraqzLWA7sqUr6w5EZi9ho6W8MjvJQj8Kt8Bk/TP3wn8Z3/d8/z64ytMoFL/fFn4+fr169f5fFVf3f4KisRHSOXKHpQJKNXqmA0h76WO627se+N+77zd37jfv+Hzp898/vSJfd8LtErmQ0HAr4ElAYmZyRiJtSxsQKk/JCNP3AbZUS2YXBqGYx7Y2XjnxL3x+fYLMidnfMf78WAchvWGx47lnW6d3u/0bWfb7my3jbY71lXHRsDmkreepvbi0iloVoQXq8EUQ1oEJNMOsFPVUg3KSIQjsGy0241thhSW4tTn4U2+Bl8O9pvTb9/QokssZIpsw6ZU2YZm9O1Mtk1ZSlaHg7bR9o3wkzFngXCtwMrSgQin98Y01fln6ExnvxNjzS2opcdI2FztX1JDVJvh0Yg8S115k75HKqCFBbMmONsKIJmllqRBqnMY86xZjQiVG+Z4NLUovcDamRc12jNpUMNw2rVDl+klMbbYq+tS/dAEuy7y5yThh+QZCnzoP3zMy/F7xQT+08Cfzcz/58ttf72Z/evAbwP/UGb+y7/+aRK+ygSe+3x++Dl/cK+VS8H1Tj8Af+t4BRjX4fW5eQGDS5dNfPZ9V/rn5ux74+3txufPn3i7v/F2v3F/63INDjkBM6SSE6GUW/bcEMcUat9TCjEtpSPgUtFJH/jesFsr09Gl8w/M5Mt4Z7/f6f3GYJDzZJ7SKbi/feZ++4a277R9o+032rbT+073TSw7akchJLtF1c2a/9EF6OtCCSIGbhtbrxFkeydzo6HJQlIqwmMcxEh2N6XfE/a+07ZNVOEpWm6cwed94/555/E4JIxS1Noz1O9Pc95PeQ12F7cgiqBjvePe4Tgv3UNojHGKk9+CWxm8bveN9y/vhBn3b2+Efcf7l9/R0FMa4/0k2439fiNJxgzOaSX44ShENs7M0kboUhhiIBPQnUzxNSTl7hidOIPxrmGqbhtelOXWbzTbsSbXYTOYnDKGrfkF16gk3pPWqwQIBZRmreZb4NIOqPohqwuwrmpPKkqoRHhuoQIef+r4vQaBvwv4p19+/jPAH8zMP2dmfzPwz5nZH87M3/76ga/mI82/4aMeab2tJxp43f4hFUJp/nW/QvKzsoUlrigJ66hIqsmvrHR4Pa8krEwmFiYjh9as3Gpv7Pud++c7n75949P9jX3b6D1pNpROx2DGSY5RSrEatKGBW4JN0VQJ+k27c9ogHgfZZqV7Jj/D4q2EmSqVGeBTeoGtg71x/7RpzPjzG9vbjt+dtnX6fcO2ppmAcGyoNqU1Mkslp9plmgMIsMbM1O5MTQWSvB9DO9n2xvvxIMbJ1u+c70Nlge+Yq14e1vjuDPX0ozNj0tvGzMEccEu15pgwjlPBBCqNn+BaDOcaimsNluJvQradaIpavUnp/3GqE2Euy3hzPcbarnalGX7/RIvJ8fjCmIPWO35M6Mr0koQmsHBO4QeZJnnxdM4BEU7mznnIIXiWpJjlpuA0mvjBQ4rIWYq/5ptKjxRhKE/t8JaNZi9j8unXjq9FP8k4rpTecNyXw/XknCcZojzHC0Ao3ZuodvcaL+aaFP2p4zcOAmbWgf8y8DdfS1T2Y4/6/l8zsz8F/CHkUvTheDUfuW1/IJ/tu3y90/UGnz9XEHgJDLDqpWqLFAVZu3sFCrKomY5G5gq0qzHVbfOai1ev2L1z2523z2+8ffqWbX9j2994+/ymnrd7ncgTz6kSYuHJmSVtjdSJmoFNYhwEA4uO70YwmOepuQJvYoVhAqbSsCYeO6mLNMNoW2fbb+x7p9067d7wzWEztQ1rkN+nGJCmhj9eakg5Q5yFEk4NrRuCag+6VcpdKS873kIuQ9NoTX6Lx3mqv13mpdbvhN/45SP47EZrewmUJmMMtjO4N8f7TbMMU0NQtE0WaxOa5dU6kyjqXuy9JFMBcZ5DJJrm4IOIIRPQc7LvnXMG6R3bmrwV+w2/TeJQOZHNOSbYEeRNXIz0dqlNR9r1WYciggRHRyfmZBzJPLkwk2ZN4rSndAF0eRoMlS1iE7raoaeuC4GBC4jWNbimL9fFHNY16ZhFbls7f0YFc20+q90sGCU1I7HAg8WY+xVzA/B7ywT+c8D/IzP/9LrBzP4A8Oczc5rZ34B8B/7dX/9UC9z4GgL8uvrX/axoqVQr5eJDoAW/hpEyveqtAnUqVVrEIHend6f3nX3f2Ld73bbRWuf26Y3P337LN9/8Pvp+w9tG3xqtGY2gOXhIE98YmIXY+am+MjN0gXQE/NUJlftORfURtCbswFrDYlcQMqkCp5u4A65eubvqfts3fGv4shZfUVHDAmo1dQ2tgGi92mH9ApGisg8pJxkWjZphJd3wzSAncUySzpmNPpP0nTEPRsLenNY6bXNub9/wF//Cn6fvxjf3N+ZZct4BX95PfHtj22/0dI44NFnYdmgiFY2RbK6SKZrTIkmXvPfyOgyXkYcB3nY8OpFwnNCWhJa3Qtx1brzd6NtdJCNkle6uTNCbSD9zdBY3TNwE1DUI+TXG0GjyOEJqQGFl0S7+f84ScMl2nT8rSrFYgrU3TekD2HpDaRitJB/z0oBotVk9vRemNhAfmE3W5r4ClpW+47VObF0Twpd+uJaex2/kO5CZ/wRyH/6nv7r73wr8w2a21NT/aGb++V/3N/S6a+HyGghes4LXW+N5mz1plLq2n2yp2u9Liiv1N+q+5o3Wjf22cb/fud1u3Pc3+ibtv7417m+f+fTNL/j0+TOt7yRN1k7W0EyZLqSYk7QBqTaaZyoYReEVoRRx0ZLXhUOT6OTojm2Nft9oLBS/45tUcdg01NO6xn6938QNKJJMWl7lzpO7v6KkXT0oa7XodWKVFeCE1+hqq9fbYE4Jcm7NOG2TeSiN9/MsYHFTsLF27dj72zfYd1/47jFou9LctA3bnPcR+OPA9zu+vWEDIg7SOtZ24vwiUk4JZ2Rx891EoJoT0hz3AvnOZM7O8u6LMXm8Z3EhOmcJlVq6xpHblAnqVJchK1j2XVdZhIvkg4Z5ckpIdgykVbgkwFPnV6YrQMhERUi/QEJPlWJeVGHV46uvVxsRprmMGWojSsKIOeR/YJTGQ4HEMwaZQ7qRNcOhDtZk8WOMZ8dhjdKILjBeCugfHr+p7wCZ+d/8kdv+BPAnft1z/sizUXju88f1zXXT179T+nRhApWJqaev71eabVhRgHXHTA3t9N643Ta+/fZzBYI3tn1j3+/sfWO/v7Hvd3pXerxkuZrydl0MmVIEzkGmhmEs21XjRQZ5qjTw8ryPMtO0JXxB0wUYO+433Ha8iziT5bPn3cthVrsNxS236nKkL6qxM5l6v7WbWWalm3WESgFdyCb+vMugNJv67zNOXeRt+SluDBoeJyOMtr0R82BMp6UIPN42fuv3/X7+oz/35/jld1/49OlOmrPfdr4cJ798DNhO7vc3fLtxjtAF6p3wTgwNQJ3DSvVZbknSSSxKbLYCX5ViZRoZU/V6TrZdo9ERmpTsTYBn6ze2Hsw4iEjGNOwUo09BwGCNAhczVPr/UmoijMZWI9x5jfVmLt+A5+ozVzCwqSDs1oi0a+gt07GUJXsOOVMpKygwdUwpDsnx9UL+VQ5Iabq5QFMR3l5KYp5MwcV1vTaEnzh+JozBWuQ/GgPmhxtf8M7a+Ve9pDfqlTrrTtJcb609GVeu6bDWOn3f+PzNJ7759q2CwCe2bWO73dn6xtblIpsAMart16r+ktBImjykksGcB3EMqdT4hqOZ8Sj9PAlTKghJ9duAvYZ73nB7w/1Oa7vwALSL2Yr89b7dGtYkD+ZNI7U1VQOOaLA2BIiW17hDKYpwBTTVlLWLpO6VVA2c2jVtA5sbWWq6EUv9OAnbeEzIQ/MI6Z23z7/gl9+/S9CEVgNNjb45748H3z+GntM30o6yAKsRQxtEtGqnUmi63vscetFK8ZNIMQyx4JwPzlOj3Y/3wZxbUXed8yiptrhpQYQUjb13MttzPJp+TbPHnOQQb8GnqxyaEiU1RPrMKvlihrKvWDP9dqX5maUdWFZjMqwp3cBQ1uY1+NVyjagXXXlMlQCxulZldn/NATwziiu7qwxU5a+9AIQfTUm+Pn42QeAZ8fi44L/OBICV6K/4+NoMiXzOU1slaJhzf9Pu3vpWCredvm3c3z7xzec39tud/bbT+qaOQN8rtcpLTYfa8YkaOHoBaQRQSS3Hlx9cnRyJTIaer1eT3Qys0fuO7zf69gnvd9xumJXJYdXrl1hoUi09p6XVxF7HepfIaIc0CZ1YuuxNSsegFAqlya++lALHeu5iuKUjZWXf5Dl4Bt1kzX2ejid0N44J27YxI/jyZbLfnLe3Tprz+Zvf4suX7+XU4wUCth3vEuA8jqBvG7BXxhKQu3bhKDq3q8UaIcuuBJUXOauzsHZFI6MxR+NM4T9rACzT6jmjSEIiRcndqGO0kiCzwpf0IdtsMCUakyOL3y8BVqXpdvXyY+Sz+1wq1FaMP0JkNO34DstI5NS/VqPCUTU/tfvPEcQp+7alveleXR6rRX/RhGft9PV9sQitOmFYZaq/Ahv82QSBH0v3nzfkx188Y4N2Cl9xrmpallfbc9f/9En9/dvtphHVJX29bdxvd7b9RtvkdS9+v6YOvVpPZjqh2gGG6rwYNcOv+n+xEiNLPATpzC1nW6/U1r0LAGsd7zvt7c6+32n7TXPv2UQ5XWpGaO58XXg5K31cNlXoYl8be2vqmbs55zxq4QQxT2ZO7VhdRBZhR87Tp0oXTmuNTFmMuxvGDbPOcTSyTWIM3G64O+eYnAT328Yxg237zDiNcRy05oxxYhhbv0ugYygQNr8RHowxrvM56715Q9Jeo12BPFJZibt0ERRYjZwbzcqsZKKx3MoOvZWz7NIq5CiZso7npnIos7oi6v9XKsQ85G2wlYvkeQw8Jcu2eP0xonZ/NI5Oq1kTZXLSBkCLf9hlX2eha3aOUHCIwE6KGTmIuk3ZWjkQl/JQXgakcTliyfJ+XYMVBNwJi1Lz/5lnAvnVNwXV/CQecPEA3HCjdO5VH1NvHhQgtm3jdr/xdr8pELx9Uouvqc42lwZ+26209vTfzMRTC9lJ7e6YQL1EO2yIWBMhLb80pPgbpgsyQQITXUIi3rG20faSB28Nu+20243+tgsp91ZiGAWKvWol2GoXTTHhmlLSNpT+SU/MyLLvXrv/mBIenfPgnHqdbWuwb/QrbYRXkpX3RiOYcTLD6NudrX/mfD85HlmsxlPCqe12DeAkS3b9rl2yTtwYya1vsiWfmvnf2l04SX5fF7OQ9wT6NOhNCL2Jtp2RJbAh2nOOQU4FMredyEOfi3OVEc261JtLLVl+c4kNUY0lHhXXEM8zba+FWyl7pkhPtqi48KL+q5yT1RWwVn4LrSzp2qoQdE7MMSQUGlOCIgTYlEpyFk1YZUrWVy4QHApcTg13XfetMnNtgm7CpOYLzf7Hjp9FEKjinpXcX7fxIwFgPaSGe6x1Wq+FXJr/rVcP1pSyvt3v7NuNbevcdjngCDtQIFkCm8qykgjhEJ69wJhRJ7pOQkjtxrLagRca71iTKKQs5bL+RqtuRBebb9+wXai37ZvGX10z+EpodVil7RUCKqgsOaq6Z02YcZFvKFVi7aSdRk4YYxDnUVZVoCk7A/dnECjFGrGoJdBRyqTyUtjf+GLf6eI7Gu/nF/IT/OIXvyDmyeMx2W8bcxqt3egbHI93SNX56nBsWgiprkJzI1Ercc6p3R1qiKZS9YlAsAjmXGIbG81DpZjUPbTgz4kxuN12WutVf5var1hN8tUAVFTKvNyllFET5yTPoNcw0zgH45h48S6erw9dF2G18SgT8JoT0FcvpScuI1wsME/cpjQIQsCjpV2tRW05q9LQ+zRmYUpW8uxFIMpnN0xBoK6ZlLzcnH85BIEV7b5OCXju+uvmVf94s3qcUp9933h7u/Pps5D+5djqLr28t9ub3G96o3evSM1VK53jBBu07U73VilWFXppZWE9roibhT6rlgvatqkHP2sNOeoSeMfbTT3t1qUetD17/HZrlMUQgVJhqzCepnTPRHPAPGlNJKd5Ds4c2Bz02Okkbdf8v1hmL7MWYxCH2IzNJOZxPAZzyBHJN7Uj26aA6t15fPeQDVlMxjzIU0y3re18+f6dTKW8719O3m7Bvt05z5PZrNp7J80aze8c4wRM/ojmStHTOR5JDCsMRC3WXopP45Dx6n5ryPjQaLYLlMVJC5xT6bfD4BTgZ5XhVfCISJgmQlLKn+A4prCCkcw5lEm2auVFlRNlpx5rpy0HavN20bkvPgfAkhajcI1prIZBDGEUS/E3w4hzQhhu/bK6P4/J+Tg4jhNO+Sq2ZioPaqNU+Xmoe5OaZ5T6mZdsfF7cghEhlem4AI8fPX4mQaBqQWAFBB0lllBb1VIBVo/UaN3Z913KPp8/8/b2JgBw3wGrMsEuoE9MwPUc9bmkVNqaFfPqskdOSKHTqz21tPMydDIyVntS9XdrAumsmVo86ZjvWAUA8ybfvl2LzjaDnuBi7ulN5guyC5eS7AKA7ZkmrgvcpuNDF3J7nTO3SY6TmINy60BqtkVcstWrFo5BSlPQpjPjxDZU6pwP/Y1M0YjbrpFXa9XbFnEq0hmHJjLnbBqdrv63PmrN1bOkuMhi5XWcTjBV6kTiLB2+wnzSLtxirjIjW31con0f8wGmWj23vHZWlf2FNaASQcYpOv+WK9vIAvtq1HdmiciUEUqaaviAyzavRGNa6/S2Yy6fQat2Y1ZWZqFTIEq5anpOyaxpHmNd9DXenFFloREqSCtZTtmmV9tPG5kzQiDiLIxqYQO5ZNR/dFRfx88iCHzMAl6/17BIxBPsW+0/d+fT22e++fYbvvnmM5+/+cztdhP117T4+9YrELTrRDZXjWdrFjsmaVZy1kr18cVevHoOtfpQbCg0t6jZRfnt6vH7LlJOGEnXzyWWoWGYhu+VBexGyG7m6eJTQ0dLfIRX2ndbn09etF5CO5aN1cJ0LYxMksmY78zzAXNgWdbVmXgENqfAqgyyT9Xf0qdmzenMeTKOA981iGQJ3Xdw2XgNDsZj0j2kPxB6DZ69dPJD6W0mRNGfLyqrQDOyYbbhTEmAR3ECahEKCC60PRSwljlrIglwt1aamurExJwCXk21emJSCUZ+iO4SZvUlhhrqw0cstmd+HOGtov7yBkCfz8IEdMnICdp6F/DoHcuNGRSFe2WRuqTmDGyu8q6BBd6S1tF1OaNKzVBtHwUaxizAMLlYwqtleTFBtYFJt1Jlyk8dP4sgoKMi3QIFoXbhVadn7YZJ786+b3z77Tf8/t//+/n8zTe83d9EAZ1q1TV3bvt+qawGXbU/aKZgRpFOFDnX8ImbabcqW+6lPrQutgjp6M0ZFxDkpkERaw1MM/EeDosv0KQejJlovt2xXrJYC/OTFL4WculPPLMBPmqgXAABKhlSs/2ySZNsmEUSdjJOBYGME83SRj1dzV+EePmEEa5djVHAYZjmHc5T5CajdPJL2LTJO+B4P7lvd3zXfIFacaauRCYy78yrxpdugT87PFVLGyJZqdOSxXMIcQZ8dUEqNUevQcS/xE0GJjLuDOZZqkpV62NPRanWhEuMOQoXoYJ7PpH7l4SwLqD6yBUg9XulZRlIfu34/7b3NbG2bVlZ35hzrn3Ofe/Vq6IogbIgAgYb2BFi6GCIiYkKndKGho7BhMQORkk0oZAOHRI0kcSWCQYTYlAkEQM9RaIxJgoC4dcKAkIUqVAaTSDUPXvNOcew8X1jrnVu3XvrlSDnPN+ZL+edu9fZe+251ppz/H7jG4FW5bIhsSKbMtqxBHB2kmJcgh2VDcxKFZA81ivdsOlY2aU+HHOOlYWyEuRIkMykedtWsLwUBVTPa+kl49EIAV+9CGnmcHDlR7AU1owUUa1d8OYb78P73no/3nrzLTy7vUXdKnw6eu/Ye8clLri9VYFIgIG3Ylr8NKm4YAb69YrhgcuzZ7jURgGBQCg1xKdOCcummSwjLQb68/IHIxqpuFRwT5ISkWTk5SRzjyoVyS4UXOQJ4jm/zk1/il+wIInfHxKMae5moYm5w+OK2a+Y40qaXmU0VHVLWTJoCVmhuW3CD0Sf/J4+UOAEuQQRdBkHMRjdAR/wGbiUhgk10IDQbyqqMTPl9BPaYuu/BHot+e+6T1MxILUQy9LifB7pvfkksrC1DXN0RABzTowx1Bi1SotDMRc9T89NWZRz56yKEdkZCrtn3JoYDV3PIqdJP58NTtyNXY/F+chwsbJO4YdcCS4Ixn6b7oTDSxNQigVmHoVEqGEU37XBMGntKsBooEUT1mCItfkZP1rRoVeORyME5jwLASi6rdioM2dfa8Plcou33noLH/jA+/HGG+TMm9MRGBhj4Pmn7nDd7xDueOONZ7hgo49djUE6BEWrhaLEgf2643ee3+F9UXDZnikgyIdgoh2jr0otNQeFiKkENUpV9Zmp1x8DVFUa2+AMGjaIS+BAQS59mAUgsgLC7ND6yhKkECnGNCAt1Ny8cjxR6HwaeQdiXOF9hzmFQIA+bTGTYPNMQwhEU5R7n6rsI2Mvzd3JduDTse9XGi0qQ/Y5KKQLYwDhAr/ouR74eRw/CgIyy4GVGmO5NxaEtm4H8j0Rk7RoQulaukWLWs+dzE3VpYGPvgYJoY0IpXFdGyuJX9l7kSxGk+cOxovIkTBp9ofiQPK5S71Fac9QsEkhGHsJhK+GNcSPCIeAWEFSchAqdBJMhfpkFyUzFrQZLiiNweIkxbUyFdMaaI2Bco/ECCjuZWA24jV771EIAUruOL2WJ+5HxV+tDbe3z/D22x/ABz/nbbz99tuopeDu2lG743JhXfq+X3G97rhcLkJbqWegJZbAwSJ9bb9wjDFxfX6Hy3aLN950lMZF7DCl3KgF6GtK6gcr/CIqUW1O03R6yBfL1lLsPVCaNngFUGIh81Ccv6HjkNlalb4qgHqML7cgSFJDjag05+FarCQ3IjqLdGYHfPDaLSGl1IYmCvRiqlsPLs4p1wFmohknRBaKQO93OwoCt7e3qJUc/zHZ3yBUsQil1CKCPQBlcqc/y/tzknQJupH5TOEfEhoSIAVMxwlXwAVDgZHFN5IkEmq2tDgDaVWYfJ7TPdRghqeiRi7aOEdnoIiAW6APFjBRyxYSt6iIqtgNUDamPm1T5iKluhPm4dDcCH6Kqc2fvQiRhCpc87US3RjegDJQW6HAxxBStQu8FkqzDtGTTyRvqi1f8uXjUQgBjmOiVFITScVcCvH/z569ibfffj8+8P7Pwe2loY8dfe+I5mx44RkUov+ehI3MuyZlVYVZdtLlwiKSzLDfXTH2gZt6UQAKNK1hMm3pDkRkM1KWcc4wmXuJUgM3mLGIqdRAacTDk7GXJjnNfgqNOJv8a8Mbg4xqjGrFYDXYx9BkGcvkM1kJbFTJWgafXe3Id5SYWsy+It1gDFDGeABg/py5NWpX5rcFWlLXIZJgyBdf3XAcY59opSGrAMnhHwtfz+zLctGXo2owpWx54R6KV8wDOMO5m+6r7AdV9VVrmFDEl1kk5gAAKJlJREFUXSenXpTLB97fAsZhZgymGEuBzxRUjK4XS6KPY6IFJiFWMBuzCa1s2NqGVjZmG8oGBAOCFLAFJGowIiKvRFnGHAoGBqaz1Lx4AIOZiRqGm5tneOvN96EVQ6mEOgMdgc4Mik2EdwZtxx3G3NH7jjkH75ObrAoIj4D0G186HoUQMNCfu58hEMtNSdKPDTc3z/DGm2/h2bM3AB+MBju1SS2MCfD5cZGkBohPE4T8ezaC2NoF23aDMSb6PnH7jB100geVtYk5Vd6aga3Qj3rGuQKaBQFUObe1EItfXVaATNRT6i85A2gVKNxbA6ZeBUa7mz8FZCtW5iD9ewiIIngI4KxpmDEWOcXqKYADIGSmegGZyh5gcMwM2VwkVJSV+AML4NLYARgzVhp3jokyQkIcytQYIogTQEjYpeKNQEqzfM5wIIbTl70X0OaE53TBouk+mBkZgmaXVIyFgKYlMWD1InIVtpFzn0wx18qKPbkfdCNMpbuMtBcQAQlVcJRb/ruWygKjUlFcQuDw5eDBTQ+f2K+dFHN3HdEnyqRH6DuAbqw27IHihmobtssFbz57A5etoVRH+BXuO5+nd8wQvyIC8ErWIpis3aru1dmPIetGHrkQgDFi+/I/0Ty9ubnFs2dv4vbmTdTasO9XocNsIbPMKrK8Nlm9Q9Rc5kIRFpl8Ku8cE4AIOvu4o5/ogLkpH6s8MgpBImGrPDkx4/AQ6QNIXGlOpGAyC5cg7lsAoBAleYCLzqDj+k0SkcZioyohofZZaFKg1RZr0SoIygYqDPvzP6WUSkn8RdKqudwN8d5loI1v0ZwUsCULB+pWlT/v2BoXW6ax6maicYuljaLSbzZLmLHiHlkMI0GdzKWlNG64VaeBlSnIhUyNnZBoAKB5XApTf24Jqc2gXob17QgGAms+uTWKsfnJqg50WhDsBsXNHpXMTtlXztSv0KwBZQO8yGLsBJf1O4QD/flAdIfvDKiWCZKtzooyK2warQAvGDZxvXZEPCeozSZcQiBUreogVH0MUraPObBAdUK/pgX9OnxAjndCKvJFIN34F+iM3x0Rf8/MPgjgnwL4YgC/BuAvRsT/1me+FcA3ghCMvxYR/+K13wEFlPhijVKqqgKB22dv4H1vfwC3z96QeR4YfSg3TZOzFkNtFbUz52NLhTPIkwuIcL6KPoBPXSelfbvAykTvjnGlN+UjcO00nwlBhXreq4Nt0Jrw6Rh9AGZo7QZtI9V32SABMGkdNqLbFBiGiwXJIgUON0nbblCbyX0AN001Aosq0Y5I66AYacNOmp3ItwLfgz0CoGKTCLka4lQwtjybisBHYtPTFQm6CX2/g1nDbWnY+0TvV9RacXO54Hp3tyL4ud/MEt8Bzrdu6E7qtVKOTc7Ua1mEHLU2bNsFs+8UKMCqwGSyXQs74xilwEUeEmEK6AF3fbB5pywtU3B5ThF7FnY7Hr0vs79VVkD23nWfiijONlilpi/RYLYx+j9Z4VisArURKj4GyU76xOgT8+qI3UlcK+IRXpQRbEUTbGEh5nTMseNudhT7HTD4OQG5A7Ap93HKTSV3Twru0wWvOAYNhFdjBIB3ZgkMAH8jIn7KzN4H4CfN7EcA/GUAPxoR32lmHwPwMQDfYmZfDrIO/VEAfxDAvzKzPxL3mUTvDzOUkpZArGPgWkRrJPrYtgtBISFNM1OSJxgi0OoFrZFVN9M5EMwzjHTPFkGyyAnWrgOoZcNloyuxXwdK3eDLj0iT39I2R0JEGZRikKrWzM1CvjwY9KvGWEDSiJkpGKVYQ0y2yzKgtkYijOZAs2UNWLGFLszNv34bFA8IwWm12hR3yKrkPJauBC9P6j9taMUK2G2YtnvWU5CTAViJCGl4Pi756UqdmoqfQjUACV6xOLXWisN3L4qy0w0vSKKMrIzLNKJZanUCaEYM1d4PxnZU8ekeGL0zun65iD49LYi0iqg0itwWZnJoW7JJalXdR1MUf4M7ewx4UBBMGKbxu/qVRCyRJcNyzKviH4eABS2waYeVstY+7whj2nHKHuU9ocV47JQl/fUqa01kdUkAvm68E2ahT4AswoiI3zazjwP4CICPAviTetv3Avg3AL5Fx79fpKO/ama/DOCrAPz7V30HFU+7dzF8zqQDu9zc4vb2TWzbrZBhc/nnUFQ7o/3FtImisEJrkMHnvgYGfEBpKFJa1duKy6Vh9I5PPb/icqOW1JHsMwqOYUMozG9yEebs8DnZz28zkmY0AC3UHgwrM2DNmOYr5K9zn9jnFVfvQDXclGeMJ1QnBkGCQLKHHYxq0UJK1wD3LKiVF96wovKwY7MeQoG/mXE7Be1wQKtDFGmugKsZiVvOy3BxHkThBrCi6kBuBLNEadIlyo+mIMiUpUuopkBZQLEg25EViOY7S6MHMQsSan101odcpFAUgU/f3qqyCpFWBoQZUQxEsaRsh5bQXw9Bib1j9I45bFkD2WNw4Se8kB8FdN8o22i5LcIR18WcbmHK7eWS6ViipRk8Pu5dPs/zHqKrZ1jQc92DhN2/anxWMQE1IfkKAD8G4PMlIBARnzCzz9PbPgLgP5w+9us69roz42iQkLh5GjzVCi7bLW4u7F4bKIp6c/OWWleAjnNkD7rwwBgTtdBPLoUmnrlMZ6fEN1SSgczAVjfsc2C/XhG4wDYFe/L8+YPjx72jDyLq2IQTQFNQq6UwgCwCZ8ONYrRKuqOjY59X7N5RasVNvZHZH4jmFBoyOrgT8ly8R1GLGGZl+mkhrc3atPDM6B7lIlGcYt1+U43ESWtZxiucT2OOiVpzw8cSHPwIGZdY2SbEoAfY64CxmvV9SABOThZLKKQeM8muhNmG/p5CIXskzjGUnhwInyyAqmVtcuH0QNiw8vyTxKZ9TowJeA20UmEQ+sAY94lUJNOViitgGYYRAh0FNtPIYpwpi7/KSSebp1V7NtczowQsUpL80XUfxMG2uCV4T166N9ezTAEOUNa8rucA8FkIATN7C+QP/OaI+K3XSJeX/eHTpn2/78DbCDStBa2IRHCVhrbdoG03MBSlABPxl5syTVekMYfwQv9MKRKbksQ1010mqOkFEEedbbQurtcJlI7NbgQFZmUYH6LwvXLEpg8MH7AWakxrp+YiDI5ZBaKxLsAU0Auwgq37jm4dXifqVsnwKwFQlDGIZAFSgDCacPqGlWZEeiowxQbV2XarcJDTLi3EVMAoQiueFk0E+QgjXQKtW3ZEGqhlUxotHU8JnHQHUvvrsYczX5FksInAM/Ccps67i2N/cf6Bgi+ReQr0EdufwoyBw33fMUbH7c0NNbjpe0Ilw2ClSJ8Tve/wPrD3gT7FDwADCWSw0sYxJecEEHNVEbILstzPIC5/9Q1wum02ZVFo5S88VmAhDXESdvdBYbp2JI4i8Q6g4PB0K+z0IT1/HM8rZU26c68b70gImNkGCoDvi4gf1OHfNLMPywr4MIBP6vivA/ii08e/EMBvvHjOc9+BS/twkDTy9Hc4FhdgzVgAWWd9BtgZqFErJe1yYZsoL4wOjwFslfhqdHXqlYSFk+Vnqxue40ouOnOMQUots4GyBUs0BSuNfFrBBezqTOM2WJ1YA7ZJixfm2EsJCQJt3gqgsQZhxI49rpjGVuPbbUG5gc5BlyB0LmS5ay2IVrTxjULC5C4szS7T3+VKKGGQ7jQgwZF6MjX+4UjQzSpcgMWKmogMeGsn4XDfYsiFb4C+k5oX4azhkAQyLFtAuIVDCFCDC/kmfycVTuj4dKVZFewcIAlM1mdYYqKdAJruJPDofeC6iw0qAFOXYgrUsnAhAdMzz2C1cBqJ1MKx+RFADN6j1qqIXYDkKyQgK03ztHQgy+EQZjQs8/6EAqwsLLNyQJlLOW9+BhZxAjfx2fgpJoDlVrxqvJPsgAH4HgAfj4jvOv3phwF8A4Dv1O8fOh3/x2b2XWBg8MsA/PhrvwMGs8vpAC+iFLAEuBB9pRCBUkSVBRpptjnQhOCaZTJ10ge6VSAGLJtjNqZ7XF2CIInuc2BksLA7Ijq2N4ztpUVogXJsFhe1uWMiygRaXWZ/1LkIJKKEEH6mXL8jKiHJe+zotgM1UG8q7GIUAC3YsqyF6KHoQ5ZaUdPdKFQv2WwiStqR4t4z4RJqiO5cJqzuOK0IIQVFyR7ZvEXKhZYYo+QjQCHgUy6ncRPVuqxYM7pvZhKaqrqbY7I5Sj02FXAC5QD004VTUMsGcesXVWAKRKR2Xb138heo6w+s4K7vqBvJZWqrMCmMMTotL880blO25yKhpa0p9wVgnT+iZCZTz92E81f8I4zcA0q3JtjphPuUAMlYR77Gvf2bRMopEGjRFZjNQ6tnxyLLtF+a+DM/zCuxFIS2LLwjEfry8U4sga8G8JcA/JyZ/bSO/S1w8/+AmX0jgP8K4C/wYcYvmNkPAPhPYGbhm16bGcgbZRekCZROUmsFl+2GtFvgZuejYHS+iocOkH+mDAHQMPoVIwZiGHpz1FbR2gbfgFJDtdeixApg+f6TzSmmO1zCJvHcYSeHpfiyArBcAVkBS3sDvgRAAZojWoFV8hSO2DHRmQ7cKqyFBIqjbAFr3NAzAT4VbKZZ41gDB6cFACcqDeSkc/n9WZBkhX46A//CCxxW/aLAglKI/KcpxWQYk/nzqiKehfJzCg8G34ihSHffVerMAi49bj3zBCjld4URl5GZ3eTsN/FC+FCQsVRYocYeEew6NCe2suHaB2LvuLlVWXlr8M4NWUpD3Qx1xTrkIuEQgrl5XSngtESipmlOIZDZDwez9yUKU9E697FXbeFJ0l1QBJvfWaACMixLYG0LgBbZSatn0PSeFDmb/MstSJvjsKReNd5JduDf5XxeMv7UKz7zHQC+4zOd+xiGUi44R0gMTPPVeoOCtiQvNQg3ZlFKiF+aggCAG+YAI7llojUyC7cW2EagNTHABIuByF7LCrDJGhnFFew4p8w0JgwCbpPWQPrjygZEc6UEjdkAmf8QgYi1gFdWRc5CAZJ/89JZCVadGYbK3RAx5V6U1V582d2CKAOCB9lA2ECxgGNgxmTxi9ZMaEEF5BZlqlGYdqYZqZEreH9LS+QfNbs1lvGSOoudjBOdmcTonhVzQYE6pi9BVE4CgFDfSOudtFlg7X8xCk9TdiYw0MdcbkvVc53hmAhEMdztO677jkvvuL1VjKBuKFXs0SRCxGHy2Ol1rBiBT4X2lOkgSMwWyMmKwbySENWCaXyTG5IYixQAy9yXiyaNz+s4ITjTUli7LTW+39vcZ83/4o+lolon8cPSeMV4FIhB+v4XCF2OFAaUmor+TxXpWJAzb9oCc6wW2hM46KQb+n6HHh2Xjb5+KQNtG7i5PGODilBjSWwYY2CMib0H3AvadgFQMIev+16qLQ0fcJYDV3LGo2HVBYQqBjOlRysglqBwDEzrbIpZCupWEHVgj4nNGuMBZQpXwN0V+d2N7oGJDMMqo94xJSwwEOiIYpjRsY/nMEy4VbBbz+H5h8XiNQAgs5VcCcVMUF6SZta6watjzKm8ugzptsHGxHTyDMhrAtNzk+a8FTUdNTSrDLQlMm9xKIri2wwoZRW/eBzXNyPQVSAjDx1NXZjDJ/Z959w2unxo4nao7B+BCKIcM7Mh5GeiB8nmQz+klY2YhkhNbitgyNun8yA3rUzw1OSngCZLqHHKptDHHzGYdlWn5yTDWdawviejh4lxOATB8b3ZrXnp/+zDeTgmrxyPRAgYtstlRUGP6KYCSnIF5pB4mGSvjRKozbBV1msfrhILOUK13bPkA5uYs8AwsQnnHU4B4u4YE2TCdWkeZ116+mlpXqcPvrI9ACDrYNqUyVpkEQBeXMU/rC50d0ybTCEGYJf0/R3TOrwMTBGTUlErMLVRCLCGvKA0stiaB/kPXe3QjOjFsA7HQC0sZabJfVpwVphtWL5oFgYBSWZJ07ZS486BMSc2F5zYADOiIGdA7hIdNug8Jp9+UbMBSDjw9FixBJMTAxM4p10QVtHHhF93WCHvAZHbRz8JWmmuNWSLPk7JdQmrtCSd803yP2AJAbb+IsU8vKAiS3xPvpLLEkyDFcApeLJM9jyc7zMwPZsuUsgiWyGRwGIeWoCiBG1pludfa98cG0iioNz/i+XRA1H6svFohMDNza3MewoCls8zOt/EwjuH0j6Dmn3AEUbihVINtVJiEvsN+fKAD+XSQcncy4Bho2YPA4JtrlxstmMG+iD7rc2hoFugOBtvJFlDpnAAbvSOgYKdj6DQXXFh863EqvRzm9Twm3zijCGEY5aBHleYNKq1AmYpA7YNmcfEypfKjcGA3iA8GQOBoQ0wURoRhFbTygoQ8agNmxRmMJmxNINjEK4b6rxbtwtsZ5u1GQAmW7gXaxQwHkh8m6W2pcPLzetiY0qewCwTtqPkmlYAiVhvGzs/TRjmGHy+6hdRTNIE5P1Pl6JdtiP4ZnzmJpBXCOLNTGmsvZv720pFQSCsSKPrc6npUyuvRZv38mSGv2itn9+7sihYsZKALLp0EU7mfGIXj5OevvbYOMDS/fffsI5muflr9t/jEAKl4HJLlJdlQEpR2tQaY7BYKILItb2L6BMTZhM1FMgpULss9pd3nxiDBT2AwSfLiGGBLVU8DIHKQKEH5uT3jTlhLh47OGoUOFTkUrAEQQSFwPBdUFDd8sLiFk+roRDdRrM+Fo0gGo22sMBER593rOQLxkXKVvjGChA3HggVrzBAp5QkSBTKmIChoKNVpuDcuOkWZz6O/HOJEKFPrFqNAJbaLnbAZ80m+iRmoAXQNmLuQx10yb3A3eUL6EN0JCzEvAul+SCrKXUYCVrSFZGsYYfk2lDaxnPgaPhCN60im9DkpknrBpbQZci8PKyApK1bWl1mPUpRPl8/GT9Yp4/jGa+bddbix0fXGs/5FajUnecoKSDy8zopp/LCBj/P8bz5T+7Bi4LD0jJ6zXgcQsCAuqWvBgaNRBoxI+BGHyoXrU+SO4Q7Sq0Y4oaLICaAKC8GEFNLHJLcAHNYnar1P9JmTE2xF99wx4gp8gf2GahRuZnMWBtQZXI6hVMXmw5mRtZFaCmBUYohEh19MXHk2SIVMQSmdezTAe8ozuaktTI3n0UxMR1hFT5JD15gQGEKLDBgoaqy2FEL3RN2rjlpFVNOHo5AoaBVCa2FIQaUKwdg6okn0/66dwBA88DFKn34qXjIoGkegIA98lRLW+5C7pLcR3zsMt2LwFiV5nUFXRh2hlKfPkW6zJguTKzC0q7G78wNvLziZQAciEVPUtM4ovoh4A/SgkshMU4LNk6/9e/T/jyDSgkjNq6BPFl44geKgh96NllrbSfBg+PE98TCefPfsyTuH89mPK8aj0IIAPSJCSLnazPq35CvBsRK6biCeBGBTQttmsx5M3aS9SDlV2qhLFYxIIaj9IlaHVXgkICw/BECATm6dxRnsc+MgREVE6SLqlTCwoYzfTVmp/BKFlncoJWmUlcwuFdN5ryxv0FURKGgQwSmd/RwFL/g4hMGB5tXFEQhfsKdATfEBZjip/OAeYePXSF2xxx3QHTYWo0SWhKEgUTfDdVATIzBPgsxTRaCYSAQY8jJrxh+hwiVPQ82KfEIYDi8MiBlwKLzCqMmN8U2Aoyoh4VKB/SELQNcKoA1W89GaQbMYAO/WrLLD45AQ7pmsrmZ8gNxJWmV4HAHAjgAOulXhyF7E97bgAYiPVds7rQZ48jPr1t9sgbyM+tU+VOI6oTmYQkwymd0T6ufBcDp32vz6/iLQUOd6wQD+7TxKIRAAPAyFniE1YEKPLW8XEWPPTCD+st9YojDPRBHfbj8zxWIknVh66E44wJloIFosTlZdjvCMVWtde07TAVB7hNjdvTZxe5aSG7BEjEiFFXQMjvrx4keC1Q0uLgEYCZXQNF3AVIMQQ2+3yFctFGh9E5u+jR/Y6Kgip+EZbThjrHv2O+eSyBMjP1K4s1aAJAGbVlCZwtR9GhTlhfkglUF+3wMxJiqUzfUdgGMVXbZeNWKinVW/4h8uEHuA6zaRi7tIktA5nnGslewz9SXQKjAdGNKOyoFqXG1Zs5BNUBov7TTsz8EVO4sc76QfCOtRENZOP810cN7wNpsr3AB7mnps0twqpnIkYxMlhefloW27DLn1/9fEAT3Nj+WEDhG3gsJsHt/uz8ehRBYTDspp8U0C0l0Kw21qNGFTbgipyMc3Qf2OdjaWRVvSEYcPVwPIJymPRRI8x2MAwRgW0WPge4DPSYm6D8/v96h3BhaKZggI8w+d0H1N3HvqaCmsOV17wMGYLYO3AbggQscxdh/DwoOAsn0E8uEN++A3WH4jjIa+u7obaKUC6JVLqZi2GBMAfXJwNl09O7o+479esdCoTnQ9ytiOmprQKssjY4CUqGHhEEA2DgPk0a0uuDGcDE2t1RprOpcpcJSa1ayo/CxR3IB85EoyxJ28lNTJeLQVGkFF31OwgOyItq2kWJNzWApV18weTUJGggHKy+8MKvjtoKh2e030go4lOg9a+Cegs0Dsu65f/OceIU14EovKqCcadYoL1gd/PIz4vD8lTyZnv+9ieZ7Xpj4azZ/jschBACgMIdbrHFzwXCpF1y2C33eGej7jrtPXUmU0QyzT/Q5sPmUmSnz06c2V5qTJGwoJbRYqXkxO83eGhiY6D4wfLJzbxh2d1ycBCIjuOD6HGjRsCnztDgA1Uxy987GFR1oY0ObG2MJSEYhLXqZw/CJiAHDQLWJQMecV8y9Y1RHLxNmYxUeWalA2wBzMSM59t6x7wN939F7X5j9vl9h7mg3N+wADJneC6XHbAsXcAMqi6oSnAVa3tJX5PKfU30ZSxFeg1kHgmYI3Fp67+QnJ6KNr235+IcAiNPnwMpAQBtK9f3FWCuBLGlWPwPTsZPqJiQ8GDimr8HN50XWA9Zcl3uQc7RD41v6/WudpnRZV7Nckk/bbuujukIPFrKJHMWi4FSHdc9lOP8+tPzp+86TsuO+3j8mARMvm9wxHo0QqIWcdFvbcNk2tLrhZrvBZdvgw3H3/Iq7/Q7dO0EW5ogK9Oh4fn2OPtltRtEDhDadF5APvkraQ3EBC9ULkKml++B5MRR9BkY34FOfwiU21I3a6zp3lGGo04DYUFVcM4KuxD6JJvExUPsO6xXegejA7IHWGP326pjYgTKIzDPgeh0UAKNjhGG/cyAGfF6xZa/AWgBF8+d07H1g3ykEPBIsJYvhQmx8vVxQbm8ZTMwCGLBPgplqnkOFQV4FjlEHG9ASMhhaIztPboCYof4GWQ0od+PeioaybbYi5PlDn9/vv3f566H3ES5dihFslZuhYKUKYwFzEqWYgTVS1QdAZGUi59IPF4XceWS5suH+nrq3P+nQE2MR3OAFtj7L9mVYmaKjRILBzLxPjBUoFkHvQO/TPVEwgfgGUouTSSiWIEjyFZRDSCDtiDVpQzpcLxuPQgiYAVXttGtlj8G2VVbwlcDExD53XMcV+9wlCKbSgRPP9+eoo2ETK48ZkmGPGlfNJlf5q0nbmKMrEj9XMRDvXGLr7voOr46b7YISE3f9ClwDuAF8m2ilYnjHPncJAgW7fALXK/w50OvEqBOXuuGSrbFiIgoZZNsmlpxxRe8dmB0zDNMmegzAB8w3tkqvFdPo4pCOigy2RcCqtm0AEnmmyGVtQNvUH4GpUxKkiiFJMGxMBiox5ftbQVNnn6p8uwEi5STAZmZMJuJwwXIzSLOuZ3AUyL9WMwXo+7NIScIgCUQN+DRCDQMDyS76uDxLQGaznn1uMgNWJ+L8QrejCBORnihSpSBUdyEcBeQKslT5tMGU1WJ787KsBm50kavMo7aCl5Qqn4Ls5Eth2SpCHsU64SE8bUms0/Ugg4G2LvNV45EIATYNBbh5+yQoxRshqnOf6HMnR91G8EpJVJ+EXNbAM84jX7PaikAnOai+kdkYMeqM7NFXVQUHCgGrZAqqm3x+OOCB6wDKDkSdqKAlcJ07i1+qEdocTndjB+Z1wi+k5B61kghom7DCzrJkodoxe0d4xwJ7hwHhKDEALzBS3iPqUIUdEYiXxgrMMFbQeXKbCRXoKJhW4DJzGYzKpZ7eJ+9XtYKyNQKErKCVJm79IuEFaTr2a5hjqrow6Ar50WWHazGWT3+MAz142nn3F/9a06npBKBZ9dDHccTaGtSYlqeVVaIU3MkhOeZjONX4H+vRcu4vmvQRSWSkdYbVjTrdhyx4WsCrhRyUAIECfFljoGzEImpdmv4V4yxIMyPitApMVkpZlpdqMPDqGr5HIQRKKdieXYTf5jGPwN24QhYQHIG2NbG9Bi77BTNJJl0w2pJoL2USwtVAUvRSpxuXrp5boPmkhaifrLpzxGoWwjtF62L4wHUA3kldHcUxQGRhaUUUYL6aa/qYwB6YbWLWyorimKhtwMoUfyR3eKtE0G2toLWCVmiON+PCKAUoSPJTA4rcoCLeO0XSA0q3qfgmU0VZ4LP600WokpKc+7VWcenX40fMQAAXrFVaKeVUehui/8kNc1KBJxP6+HsE7r0n33gv2p3AnnLe+Gdf2LEWDI5KxLV/LA7TvwStBAucm/Mt3z+tFL2FipYv0lRPOD/rhIyVg2oJ10pBrbY4Ha0aiqs2oXIN2zAK82nsEdNBLkJZrhCaMd0RXcTxO3OLea9wZBK4rE11Hmx4w7hJkuHct57O41EIARhWEVD2qjMkeMhgm6EMR1wubESiYgnyvU11bgEQEBWUL7BRYtZL2OnGQqk93fQUAHlcfIBdbbu8yFUwR5SJslEDZ2CrNDajqHWDN8NsE24sACLfYFEBEPEQpQCoDlPzylaNHPZ2g2hqSlkNrQBbZW3E1ipaJXKvtCKgI8ktivLrzAoABhcQRyXBBnH8yde2EJpSd1rakww7XBKtNWIcVEDDFlqxOv2E2J5HH6yIXLECLB/4yKmfdHcIH+CZjTgtA83Bkv8gfy9hIcATxIgUS6ScltJJwwOEZAsCvIJ6uSm8HAKAIYRjz5WUQQXVaJURhsx+A9Ua6wvU5KZFQfVC9qEB2ORrQwG6IUQzjmF8RtMQnWzEvjvm3URHJ2PxlMm3zKG02AwLQ5C4Bj1nQu6LenVSgdRaDyGARy4ESq146/1vS7LJdxIAg7TSzAz0wWYXpdBsnZPUzoRhCheQ/PYJVMmacRVoYLkMlJQhPn6ylAXdYwtYBW6MVgFLdCcZi8Ba/7KRUrxcALsx2Bbk+2sGbwTNhJiGrAHlWUG7MdRb4HIT2G4qWqNAaCWwGYNYxRvlkDrUVgmCWirz9KUcLg6AxQmgNKRVI0EqKwa4faQFPDeZFs/qRTBpipLqpMOCjE1uvuJJIdLW2SfjFo5FPuqKC7TacF9ja5Oe1HOa1EmHfcL43LMazqCX/DPfG/Tzl9yPI11WTgs96jL1GaPRvcrsQFoIKaGUauQcaPKbmq5Ua4ROe8VWL6iloYGdh4rSrmUAGMH7JSFgzjRgjNPmH0JjDiD2gSiDJDgxsKSihdrAnW7M6VVaAWd3IDMaKQhqbWiqEGVM4JELgW3b8Pkf/gLBKHO1iEAiCuYYuHt+h+efeo7eicpjmpcLxY3NQjMgkpZPCH4MgA/55HPGyQSMovcqbedy+spNXe4BrQAH6oRtIKtwo6YvF4NtBdgMM3kFVCBkF75GC5SLod4E2iVwuTja5jCbaOYyQCoKNjQLmvzBjV0KWDatfw9PVB4d3twcYaLPjrWu4TL/T9i7pQwjz6EX08XJZ3dKNYJugOjdUxD49Hv7PDsQvXoc5v9qkoFDAOTvBbxZ/zYQmYVlzqbwOBb1PDwCDfrCsgCkxYvZEZtIv2Gl++z0nXmDKC5rIQVdK6S42+qFvSeMQoBaowC7U7iQCIGbXj0vrRZal8NUc4IloDDBLEUNlAXxPgvBl/8sBqGTxXc0TimCbLNt3HyNKwA8EiFQW8PnfuhDa0W4aKXdg2WyCXgxwJ4bxt7ZWQj5wG0Fd2yVl8paLIcQyGHAYQ0UkkYcBTax0o9ta4mtEcNviEcwhQBgGwC9joth1mB9wAUH9XhyBm6OeuNo20S7OFrLstXJ7r+26d/0+xETBcFUmMYytSXRuInL6dqErovUunJ51uomanFx+ilCl+9l/YFh9q5Yiro6BU1aZJ+BZZJCnW6Q9v69Tbl8f2VNzjEAe+nitJNAEBgpQ3qG+xv+JNQPoXAIo4yDZPnxqvvR586B4ntCwI7PF2PJdq2VPQdPwb0lSYFVLEbEK5CR6qMQ6YV5pwA9zeJ4Ji9eU17X2R0AzjGBkDVm5hhqmuouZOK7QQiYGeq2HWYZJvvcZwCsFNTRyBtXaeLE1EMS/BKAetPppOu6bW36e49C0rhk8KRUCoBwnjMbfhRGWNH4XMsWa9OfhQC2YJfi7DxcDUV0YyhBWrBtKqqf1F4m9mNNdtFbZSRc0SjkJvU0drgYZd7z79TzLos0+fYd9KMXOOmsjdNdMoKEwhLdl86xiEsyrFr4TZEovdRIeobn6PaKCdjxfS/6/zClsZZZa/fekxZvCjBaHH7a7xnxjnvnXUJELmVuw0jta3lyzf1cEZjnyGvP68z77JElV8RHrJstiyug4wFLCDULJI726xKm61mnBEamVdOyOgmp80gBpvsmUcCvClcdiOZaXkhhvmTYZ6Ij/v0YZvY/APwOgP/50HP5XYwP4d09f+Ddfw3v9vkD/2+v4Q9FxB948eCjEAIAYGY/ERF//KHn8X873u3zB9791/Bunz/wMNdQPvNbnsbTeBr/P48nIfA0nsZ7fDwmIfDdDz2B3+V4t88fePdfw7t9/sADXMOjiQk8jafxNB5mPCZL4Gk8jafxAOPBhYCZ/Vkz+0Uz+2Uz+9hDz+edDjP7NTP7OTP7aTP7CR37oJn9iJn9kn5/zkPPM4eZ/UMz+6SZ/fzp2Cvna2bfqmfyi2b2Zx5m1vfHK67h283sv+s5/LSZfd3pb4/qGszsi8zsX5vZx83sF8zsr+v4wz6HM3Ls9/sHhNX8CoAvBXAB8DMAvvwh5/RZzP3XAHzohWN/B8DH9O+PAfjbDz3P09y+BsBXAvj5zzRfAF+uZ3ED4Ev0jOojvYZvB/A3X/LeR3cNAD4M4Cv17/cB+M+a54M+h4e2BL4KwC9HxH+JiB3A9wP46APP6XczPgrge/Xv7wXw5x5uKvdHRPxbAP/rhcOvmu9HAXx/RFwj4lcB/DL4rB50vOIaXjUe3TVExCci4qf0798G8HEAH8EDP4eHFgIfAfDfTq9/XcfeDSMA/Esz+0kz+ys69vkR8QmADxzA5z3Y7N7ZeNV8323P5a+a2c/KXUhT+lFfg5l9MYCvAPBjeODn8NBCwF5y7N2SrvjqiPhKAF8L4JvM7GseekK/h+Pd9Fz+PoA/DOCPAfgEgL+r44/2GszsLQD/DMA3R8Rvve6tLzn2e34NDy0Efh3AF51efyGA33iguXxWIyJ+Q78/CeCfg2bab5rZhwFAvz/5cDN8R+NV833XPJeI+M2ImEESvn+Aw1x+lNdgZhsoAL4vIn5Qhx/0OTy0EPiPAL7MzL7EzC4Avh7ADz/wnD7jMLM3zex9+W8AfxrAz4Nz/wa97RsA/NDDzPAdj1fN94cBfL2Z3ZjZlwD4MgA//gDz+4wjN4/GnwefA/AIr8FYGvg9AD4eEd91+tPDPodHEPH9OjBK+isAvu2h5/MO5/ylYNT2ZwD8Qs4bwOcC+FEAv6TfH3zouZ7m/E9Ac7mDGuYbXzdfAN+mZ/KLAL72oef/mmv4RwB+DsDPatN8+LFeA4A/AZrzPwvgp/XzdQ/9HJ4Qg0/jabzHx0O7A0/jaTyNBx5PQuBpPI33+HgSAk/jabzHx5MQeBpP4z0+noTA03ga7/HxJASextN4j48nIfA0nsZ7fDwJgafxNN7j4/8AL1dKgedcIpgAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Egyptian Mau\n"
- ]
- }
- ],
- "source": [
- "image = ds[1][0].numpy().astype('uint8')\n",
- "image = Image.fromarray(image)\n",
- "model_interpret(image)\n",
- "print(IMAGENET_LABELS[285])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Labrador Retriever\n",
- "Returning the last set size which is: (224, 224)\n",
- "index: 281\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Xah227bnB/1a672PMZ5nznftfc4+ZaUqVSYlxNwIliDxIjdKiCiIIRdKIiRiJMlNLoRcGHMhYiEESQxeBRMUDPgJGpQQ1CB44Y0kBsFojJShqpKqysnJOWfvtd53zmeM0XtrXrTWxzPXPnudc4pd21pSa6z97PnOZz6fY/TePv7t3/5N3J0fjh+OH46/fg/9a/0Bfjh+OH44/toePxiBH44fjr/Ojx+MwA/HD8df58cPRuCH44fjr/PjByPww/HD8df58YMR+OH44fjr/PiVGQER+c+IyL8pIn9WRP6xX9X7/HD8cPxw/HKH/Cp4AiJSgP838HcC/w7wrwB/r7v/P/+qv9kPxw/HD8cvdfyqIoG/Dfiz7v5vufsB/M+Bv+tX9F4/HD8cPxy/xFF/Ra/7NwL/9off/x3gP/FdD1Z9ca2//rxDPvyQ500EEMmfeVMQFfz6+7dvDiB+vSYiiPr1eqrxUz6+J784OvoYNHn+n398hks8xnm+uX947offcf/wWJDrA378qPJ8vDzvvz7st57w8TuC860Xx2X++8MHEUfy38L8N6jEe4vkdzTDhjGjRhF5Xg/k2x/HPf7+8a7f880+fqHnfe78nvu+/Rry7Tvk994vP/+PD9dMhPwOHy6K/Ny7XRf54xrw5/X5PX//9uM+HvM58dOR673i6qgKqorq88O6x2f058ngOtnyc+fvw78/nuNvP/f58N/5s//uv+/uf4SfO35VRuD3XsWfO0Mi8g8B/xCAll/jx3/8H0XnSSuxUUWB6pSqSAMtgi6KLoI2QVbBF8cXh0XQVePvazxGmlK2Ai2+qRdHq6KrUxajtk4fD0odFHWqCoojWFxst+uTD3PMwNwZBoYwXDApuClmgllhjIIPhaH4EOjgHeiOD8e74wP8dKznWTFH8t9C/I55fAYLMzMNnOSCaevCdr/hGC6OY5gYqEExKPGdKYar4cXxMqAM0A5+IOWk6I5yonSqDKoYTYxWC2tRxGHsO+9f3jkeOzYG1EJthaJCKUpJoxEX3lDRy1hbXtUwMUoYDcWlIKogccbdYUyjKorn61k+T0Sw3PXDnlZ+GuH5/maGSGyuuHYjzqtAUTAfuI+4tm6A5+cH8XndR97yU4uhKNhAhmFu4B3HERkgjqpfK1zdEI/vKfn91Q2VjopTqrDdNr766s7ttjDGyWN/0M8TM8NdAUVLo5SGlhbrDfBcofEzfseV2hqGEhc+ls9wySXsaBH++f/cf+fP/6LN+qsyAv8O8Cc//P4ngL/08QHu/s8C/yxAXf6kmzlGbPzLcTuIgftARlpON9QEMY37TFGJRWQ9NwKAAQNkCF7zm1aHZmh3ygPaOri/CCKOiOeTyAXiuBujj4weFK1KkUKTgqMYwmmCu+KmuBfMCm41jEBPIzAII9A9DMJwrDt2hmFgOFYdHwYjNrS7M3xc3ssBcceGRxJ3ACr4/OwKlPTqEqs+nL5fnsWvBR6LH2KxxCY18p0ZbnAa4koVRVSordLPg/N06ANRcBPMHPsYSbllFCGx0cU//A5PrzY3p2MoBmFkkYxWJBa1zM/GZSzc5+aPjS7y9IRmFn/RNBw2ruhkqIDHJhYGWJgYl4x+ZjQ0DcQ0ApqfwQbYwN1wH7g7IpYR07cjIMfxMdID5Hnxk3UtrMuN+21hWRYA9mPny5c3Ru+oClIatYaR1Hkr9bnO0Q8+IgzrGCOiYVVElKIKBibEOh7jOzfrr8oI/CvA3yIifwr4i8DfA/yXvvPREldBEKQQEYA6os/QHSUWfRjJCG9F6G7Imeuq5Gvo86a1II0wBMWR6mh12mLUhbDijLSvXFFAXGhQ8Vigo1+Lz9zj5EvBtcRi9YKZPwMIL/mhnwGgE5/bc8Esa0sDYfjwCLnTEEBEAY4jV3iYPxXMnPM4kHwbIX9aGlIENwcNg+LmuFiczxnhmOOxVtIQZKAq8VlHH6BOw6mt0JbK6J3uHosOwWSkEfh28Bcb32JRS5wr8pqFodK4lqIRxXgubNIQQBraiCqmx7c0AnFu7bI+13Py3NY06G5h3FTm8+JN3MPoFHleF5U4V+ID8dg0gjPcKaqXEbV5kWdWQRhEJ14vPkcYDR+GKChOrXC/b7x+urM05Ty+8GV0zn1njBMpStFCqZVaKlrCyA0z8IGnsTMfdI/r6x7GcpgjKBRLA1jymsyI6bsLAL8SI+DuXUT+EeB/T8Qn/yN3/3/8Po+n+0BcrhxNJKIAEQ/HYI5meK35AOnPQHN6GyF+an55nSfCw5NqcaqBDWN0Z9kUEY8I4/ICsRBijQniFhvfIhUYDuaCc0ZKQImv6QXzimUkIB4/GZJRgD8jgiEoPb7zdMwzX83vrCUxBstNmpvdHbQSnkH8ebPw5TIMEUWLgGW64Ia7IWYIhmh4MjO/loiL4eqggqrgozOGUTRC+7ZU8IXHHvdbbk3n6f0/HiKCfQuDmWF+fkd1XEp6eMvzSiZksckj7I3Ql2sTcG3+abo/vClFlW6SUVREAi6S3iVskbuknZVcP2Q0YmEEZiKS59Yu8/SMosDAJU29YjYiEhVwG9joFDoFpRbl5b5w2xq1wnHuPB7v9HGCQFFBSwmPXypSwqOHsTJcwESeEYDNrFGwNOPmFtFwRluqgkpFRDjO/Tv3668qEsDd/yXgX/pDPRbntAybDMQkcuFCLJYxQ7UM3Z9PRF0oKrEzzw8vOuLWyoL2sCylyAXsqEIpzhXYS4aGeIRwNvPDgHU0nU8lvKx53GYe7wJunptsYLECYyHONCNf3zU81NkHbhLfz+K7XLgAsUFjzcWmuV5GIoR94j/xPujEUxR0bvxnFOA+EMsFLhHlyIwwmB4tX8cnSDUYDkWVUgRdWxhCOyE3ryPoB9DwY/oSCznCZs8wf+Z8YvG9bCIxzmVkEcsrE5vvQ5yWNj0MglxnK/4uGu8/MQG38N4qEtElsbbCq3NtdEnA1MaI0J2RaVV8XPVnKiBu2LwWxGVRPADUxGcYJ1jHFWoVbmvlti0UNfbHG4/9wdlPVKGWCH/dMrpiAIrJQHyiVBbxqidO4s/0KK5/iaViFp8D6AgiI9Ol/x9HAn/Fh0TYHgbMkZIXLKNISngNqUADqfLM8UvksOKRD2mRBP8UlvRTnsCOhFdrVakNWnVURgadI/3NCMuagFKE4BF+d/sYDQhoQesKWGbUGl6HiBywgY8CJgEK5qb2iRNkhEJGQNMrkWDO6DZPDxe4n+DghRkglwFAJc5ZlQ/eK6OEmUpgqBixsSzN0vwJYBFaWuTFZfoZy81ShFIVPXSenufy+oBgi8f5MJ8hdXgrT0MeSbhfp8CI7z/M08N92/s/MQK/Qn9mhAC5iQETTBXVjFJy4xYRTB0lw3obTDRCsUhpiO8cRiDXYtjTTPMSF/Aw3pGZSbymeOIRRmFg1nELMHKpGhFAEcxOjuPgPB7hxLTk5x6MBJ1lEJs3XRRopGBz4/MEWfOKUkqNFJCCFKVO7CUj42VZv3P7fT+MAI4Vu1IBEmyRmVLP34XwIFeq4xQFrRI4QS5YswFdMuSUXGsfIggpCAWdwA9nnuprOTI39hg9PYZQVUHlWjoeyTeDRGPTiMXViovqHn/wa7/nwp85qmc+PWLzi3uAofiF2sWClOdPA0qEvRMfcbHclOlKS5zXiSNEFSGiG3NPKC79v8/lFL7VhtHTKEY4LNdrMNEDeUZVguCi6ZXj7/H90qz49U5MvOFpOeKquU+sJdD/Kz5x8jw/qwNPI/A0CDJTBE+jnwY10h3DRSiehtHDa0eeHddZBYoEaCozIfGZJs0QfCQ4mOVSL5hPIxs4QMQuIwwAzlJgrcK6KG5nnEPvmWJKYhYjv4cE5gCEMwrk31FQxTUBsWlIAZdCAcZ54lqoRQNULBXNdAL4awIM/pUdAtQ0AOUZesuseCgRBRSiNJhovzRBa0QIclUAyGjB8Rp5NbWj0iMkpSBiVImSYPGe0YBcaUHVceWPXeyq3Zp1us18TEArpUmWdAQwXEoATNPCO1jyGPwKL+PijJEIs2XqkEZgYgBSJH4XiQ2c4d+Vel88gmfYSiG9a6YDTAORi09HLDofFB88cwwyL4886jK05Hd3x3yEVx/+fN4HDCdSGIuIjCinzk2qpVBKAVWGDSYCbB52y+amoGQZVBA0FrYWpDREG/vxoI8I7x0uMLYUpZTCGINhhvo0nP40MERkg3N59GkAwlNEyD9z/yI+4Ys4tzYyvQDxDLEz3RpEamneUQatOPebcr83tq0iPvj85ZtIJySwKtU4t733xHAqLjPBUYroFQmgJY1xnNc8qVQRRCttiWoIUmMDuTFGj/Nj8L7/NcAE/ooOAW3+5C9+5AkkUCVzs2f9WxrX5tfc+LSfMwbVoZyIDrQMSnFahSbPh5S8aEUi+JIMjSE2aE0vYiTZQ6OuPBwGA8b+jCyk0NSxouiA8+yYKdpKhH2lXiGDHZF/WgV6ViSUKBnODdwn4BYgoGiUQ9P3ZdRE7EDNEtW3qilxi/vJxziiWSWQWWizDwBD5tgfjAu54J9YTGy8eP9MYeT5u0rmraJMqyX5+aPcWi6j5WkAXWaqIHGRrzJg1MfFw0BG/CJXXjyjAUkzjgTek5+eSZyRaZAkIz6Zdfz0/DNCmaXV67vG7QJoJ1YCmTbEAzRfY0YSpUCrQlNBrNMPT8PDRdzyD+g9YtPvhG2XeW4jBB42LtBUREFr4loVKYVaKt2cs5+cE7j15Etkmvhdx/fCCIiALFxGQKf3n4t44gHlufElCUDy4UbzKxKgOtKMsnTKMmirsSzKbXG2Bls1agFnULxTnCCNABC1ZLeZKQcCbLmmzYWSi9NmyIxjEjchMQxVaknuQJKI7Ijgj+rUpeDmWHE4s2pAGsPx7X0pcS2D4aiR39rMlkWej2PuIf9gCBwStRZNYksgsEyPLrnSJ9xGbvsrjJ+HZ5hOlqJmfdI/vH9mp6oBnspEqjVwFDxDHa2YBJEmuBGaBqLgnmSsCKEibHYLopbrBXZdoGIagdjMEYW5h3mYIKBmFCAzjZT8rPNE+9MMRmAzUymuwo2bPJGITJHKrCRgiBpVndtSWFulqcDo4e3NrvB8lvuu1P2K8uKNwrDaVXGRki5qplZu+IDTDqQrVu0yyFUjooq0ZeA9SpzfdXwvjAAKskT+Phcq6rloPnj/TAukEF6/gDbQ+mHzL0BzpA2kDmrrtMVYmnNrwrYItwbbAkVnzj8CltbcZIDQkxk2gSuleDLgJLxASe8+JtlFCHCHKNMUFawINmB0ZyQ6LlLwAl4lQULHW3h+m4ShYUl0eS5KnZtdc0Vq1skn0DY5FBeWkmW46fXFLiQ8SC4TBIvwf3Ilnkl7YgH5FvnpLyxgbuwnzRUurGBWCIRvWTDR8NkumjgCSXKSOIEaXg73SdqLvNsdkywjzlSBAMvSvaIuaD7XPhgNSe5APC9y7iLJIyFC+8mdyCJiev807pY4lDuSqUV4/oxL5Fk6bMXZlsK2VmpWgWwMGD0+8YUvzHSFNGia5dysnGgyfcSSBCSXQTOb6ZkAPSKF0RENgFBrZb0eG85sOoxfdHw/jICArLnJk2FGmcYgNrvUBPl+3gh8KzLwTAsG2jq19qDGYlRVliLc6mBtylpiQ3QfWD/x0cFAqybPYGC5YObidwRxYeTP2KADkcw20+MV0iDgCcgYZoKUQpEAbRgl0s9T8GERBdQgDfmIdMB6gjl5ISNNiE39rKLkOdSPnh8u2qU66Ai0fN7kuXBnyVXSLWUAmiHvXDh+fXf/aABqUIfdjD7xjdwONj0okt45Xd40ChfS61luT0Zh3sw1y2KJs6YRyE+dRkk+IBpzk0ucbySJNM/vVJKYlPB7pgTz+2viMvKBtxHffObgM7iKuGmCys/yclVnqbCthaUo6h0bPcrdCEU0sYlkPrhf6Z0TBiM2fYkyZkYCUQo8EzORZ1qgJVIDFDzWzmGG9I5qsAZrUaQWhn/PjYAo6ErmrGkIEuCS4mEQ5m2G/h/+rR8pwWkASh2U0hEOmjirVLaqbK2wVaMVQSVy/mMcjHEQVr1SSiFYl55WVMOrMMPCWFbDBnYOXCquFS1+5e8mGvFBiVUdtIMolUWo7kEmapBuGOkaXrs6mCCtPEPS5C3M/xDH0sMH+OdXCuC5+SMKsGvTX1GAfiw0ZV1cnqz0uQEm3DBz5MABIn8vVZLVJozeYYwrfYnvmbmzyAVTxKkLTxdI96yaSBYsZYZdDHe6ewCxaXzMjZHIZyA4ZDlX0vhMMCTLaQ7ugoom2OyZ2M20LShJMvEBj82WyRETDLDMBcTTYARAwfVh87wtDZZFqQVUwvv7GGGHVTOiYdIe5xkJDEW42I02jVjuD0cwC6M2r1xsmsSatKAZyViW1FxjDUoJQ9GW797q3wsjEJFA8gLmhkhv9q3NPzkDNYHCEkZCqiFpAErtlNYpOigSyP/ahJcFXlbhZS2si9JKAOn77hiDYXuEhFqppQWvIK5eXJTJD8BRh26Rqw6L0pskmQQNoxCWKcBCp1BL5tnuDDMskXlxfXrAWJ9ZEcjQO9Pny+V7GgDxqOHP8qDnQooSwxMI/HDTjAI0801lRLNLkoauWrtMH/ss1U1Q0H2mJRp8AYm6/CS0SG7eZ7iacVTWuSd4mF+QWXg0D4xlhuHD4bTwemYwMkSYG8BcZ9aRp0TjXGZz0UXmIs+jCqqzxJlAb56zyFQEMYnmpFl+ufaqJ+CXizX/OAHFaTzXpbK2NJTWcbOMFHimWW5XZBfpRNKng5vO5IfNcqlPQNMnc3ICpkERNhmghaIlu2lLYDU+CUUT8+nfuf2+H0ZAHb1l4FYy9JpkockDSMIQNaOD6khxtI7c/OPy/kUiBSgyqOrcW+F1gXsTbs3ZFqElh97PjnHS7QTv0AcuZ5zYopRaw19ohKXdoPcolakXFMV8MBugsIEwcOlAQaSGIZBClRKRixZGd/qxY1IyrINr07nDyHz3Wxszz02mTOHhDJMJ52XOKeAycDVQQ3XkzT4YgciFI7vOINufVFmp6cFlVg5meGDP9muP+r7bJFRFLdvM6WnZ3MFG4CHFjOKCzlWfG9XRizcRm1sYucmDFut4/s5s3rrygEma0YvBiafnZMKUfqURaWfj3jRCl8fNzWo8GYVxqmakAB8sAxBrtOStlbnZO+49cYbIxodbRjX52mkVIjCYKWN+qXQEUYaM62RMjGIaQg+CikzOwuxc9DQWJdKdBGbt/Ein/fbxvTAColBueVJzgc/GGFWPRgp9ev6IBkYYgDqodVCrUXQgfqA+22JhKXCrCQbWwVqUrQpFCBygGK4DKwMfA7eO7R4MRhoilaqRIriW8FhNOQZ006TQQh+T+z5zYcdEGHS6Ge4dl4pqQ0u8Px5cfXVBvOBVExzMkH4uGH+G/VyGYJbcAuRymR76WTlwGRkBZBOL5gaHC9PQDE8j1A2sXRVqoviS7EWyo1HcEqRK3sSAPiaLUsGU7k9+v5MMxB7XpxXJJptAsA3JigHgig3JZqL09snw89zYonHOLZH26LKrAS1c5dWntwzKcrSC457nKlISzTQKItUQf57juc8jlycMrud58OwvEKeI0wrUMp8Xf5vtysa4KgLDJkYyU5DEJLwnX2IaJLnMV0GwXCs2c+QrikojPKD3nn/qFydDtF7dlOXSLPi9x/fCCCCga4acEouV7CYUdbSER5MCWsKjaRuUMiLsL52qQdeEMyOAyPu3Vrg3577A1uDWhFsliUNGrZmDV2N88HoB8A3sONAaJISqDdGCJfX4GMp+BiVVUYbZt6mdMugSviVynMEEzqQEddkVJg11dkHLTMYz9ZwOaJ6r+Rh3yyzBLw6Al+iGYyLXxTIN+Pm8PyMhiwjgai+eRkKiWuD6BEEnTjAR+1kztzSEV/NPBDLpVSW/fXxwm16OGbFEF2YAgBL8C8vnXeF+lAwBzArg2EhDk6UQt8miyzJcbjImniAZabpGxDS3u0uWKePNrm2Ye20CgZMMNbPyj/+Wj+eUeS4n6WheOC7m6pXqZSQWQLRnqzXX55rchckMmSXJAAonTyIM7YwiXAY2hCGZMiSrdV3ad26/74URiEhg5ovPzT9JLVE6DuEPLYOiljl/5P0Fo/gIkItOkUFTyWqA8rII9wa3JUqDS80M1ga7HxQOWhqOebFLcUp13AuBvTiqg0jTJdDWZOgNiRr0EGFczLdIYYo6xZUTKAg9Lllskpn/JWg4y2YeKeCVfUrmhtcvGTrL9Xt4u+huDoNQ5rksXOG7zkXnM0hNUlL2CaR4Q5TOktU2PTRe0ssJ1rnKZubPENdMkkMv+foZX2c57koPHEQ0IwHFZJb7nOESbbJOLvSsd2aagAg2JARbCNxB5v3A1BaIn6FnEN9RsSRUabbfmnhQgz00EZ6pQhoBjcYolQn4huHU7LwMsZHY+JKpYOgkRJPW3LSkIb9wF58koDSNyXso5YOJ8Y+mBsqkqs8Uyf0694JQa36SWcFJzYOokjiHf+/TAadu/aoaRegaxAtViw0oRpFofqkalflCj58+cjkFPbiIs2hhLYEB3BtXJLBVo9Vgb3UZnLZT/cDoYXTyM2hRanXWZc1FnHRMnu1GtQvq4e0VoQuo5QUS0FqhRHNjRenEAh9Evm8F+hDG5BEYsVBLWPpnqeoZyqUPfXoVAPWnVsBHNuCsBOiz3UTmc2XShMKDySyD6SyoAQS1VTIcj2Bhbr54jhkXaGqZR89FHC8hqH5bRcgmiJd5eizq2bGRF2BiBZMslOF99tQyKdF4IBqTnjANj2hsac16u6l/KCtmhcDtAiUnzfmKBLN5aJ6r3IJhIPQJpIqMK7qSTBciGkmDmkYgLtMM9ueVfPr5+FeBBGSFCWzGXzSf46IUJTgWeT4RuTb/R0PgM1KDMPTfcXw/jIA4221HkCizEUZAZd6eVleJDV+YhiAigJLyTRBYwFpgq5EK3Ba/fi4tPLyNjuqJaUe1o7VDWv3AbYziTkUwL6gF0BcUYUUILrdpCmilZxedtWAC8NMgF5W8xAXoni2y2hhe6F3oPTzcMH3KlQ1PtDusvV8uJWJvz3DCsgQYLMDwRppSYzoZjFM4xe2KHET4FstRJfvaM/cnm4Jkxu5wAVQfj2eA/ATpYJKFImcvdaLXktFUAHnDJQ1IPk8FsWBtiWny5ZMB5UKwrMgei6dhcJ2l1LhLM8z2y8UnV0PTA09QU2Ypk2m9mHlPBANybf6IBDyEW76VCtjV80G2bJMYw7SKyjPVmJs8Y6Pr+sZfuMJ9vc6tcGblYJYGpdQwTgkqz34UZ6Zm2fOSOIP9KmjDIvIngX8e+Btybfyz7v7fF5H/FvAPAr+VD/3HU1vgOw9V477sWbPN+66Nbxd6HZs+IoLYpJYGIBe9d1SMpsKqsBW4L5X7IrwszrZAa1BK1JfP0kF75M1lKsmQTTABIlU0kd7wYLGdA7JRCk10Oq68gprlrKB1WpYdRQYqlXKFtTXz1dm2mpvIw1SIKLUlCp5rx+f/C+ENJzPQPRYfHfeoTiAzjLXLS0mCWpolRMsUFjLcTQagEhtKs4Q1l+bFVyB908/RlSE2efrg/Az6bB6SLANeEYEkoKpRDUCj801rtOrOvD43xdz46pJ9PuGmpzCLpzEOjykZwaUnthQ4QRD1FOhIDyqS4fPcsGT1JU2aP3sD4lpNz//sHbg8fuIrH3+/PP/l2P2qzERakL9Lnhv3q+t0Xv6lxOfnOu8Tf3BAsT6YhVy9QEfJ6BW6fdtwfzx+mUigA/+ou/9rIvIJ+L+KyL+cf/un3f2f/MO+kOK8yONpDT80tnw0AJOhlZkkKhEBRNtnekAGTZRNPaKBtnBvlj0DEQmoOt2jdHZy0DgQGZTkKYQoRYiO4McVQqoHCKMyl7kz2W9Xi/D0Dz7ovTM48dJwnd1Nmvltp9vBOYQ+nMOEMSLqMCuINtZlu5Dlp/PNRSdCXYLMJBMw8pFo9PgQ+k9P9Vyc0+urRgqT6zDbaSfyH6+dNPxrk1imBjP3nunJs/st0ff891Mnr0QFA4JcBYysKnSf6YMCFZXKyHxZrhOQXt3lanvwLKNdxJ2MWGYPwSw3B7YQZT7XLLO5X/z9ixrN09DOjT7lPIOwkStB/CJYPbP4OEcTCpWknMuMCC5jOdOxD2lXAkCRds3SUJ6/6zzWFHCFiQPNXMWJ9PZitSJMObdZCl1+Fb0D7v6Xgb+c//5GRP4NQmr8r/goOC+yM4Ojyf3CU2XuuiAjN7xleBubX80Qj5y+VmGrldsqrAvcF+fejK06a3WWOijiHOPA/IH0NxoHRcJ/F62UkmUcxoV6z9uY2oJSUK2sutGKMFrjNOf9MN6PwehnerMai6NY0HelUqg4Ts9SsvVAu4cL7hWnYL3z1o8MpzOtoDw9P0lJ9gBQSzYshShHUJmLxiL0EalOScDPLcp8bVkQHzzO81rINnqoCKvQz5OiFVHl7GekDwPGsKs5yEwz9MwFmJqCwW/PqCHLmaKhVRBipkq3+FnKgpaF3oWQb6g89R4IjATnOPvl4aJbNgEwgdgoXHJybinsolCqhG5fjRRNpSPeM3KCq6dBHBhoUMWSAJb4kQUQjeTaS/BVNbGCmQJkP8Y0j7PKkiHmMxULU5UR1YjPfGEG365BQIiRmGcqc6G90XAlCEt5qmFE1NafuIyns/qO468KJiAifzPwHwP+L8DfDvwjIvL3A/8qES387u/7fIyNIz4vfCvMAsvuvvh3MPed4p2ZtysGqRfQRNiqsDXjtjq3NABL6axKhO8Mhj2QsVN8Bz+jpo5EnwEFZ1wORj0VXzzAG/MwApOjXrRFrqmKNwi0F4qFOesSrMQpVzH54p1B8agoqAua6PoUAPEsrpnZxdKL85WeRzJiyas4G69KxpLRG5AdEB5SVTN0tREesdYQokiEjylpHrmsJT7yIR+RGYs8+RCz0YbLb8Z/mtqEIcYR2IATQKIT4BaZo7tnR6URnXqeKVdiFMOykBhPfKr9zGWSh5aIDC6MIQ1UGNNMH1KbAedb3yHWcvrfDNd9gqaJuKfWXZRbZ3pwxX8jI6+pRT1xhTh5ojOVmtFurMWZTEU2ksZUvo066PXMNA2eojYWUWEfc01EZKqSnZaJ61xzJ37B8UsbARF5Bf5XwH/N3b8WkX8G+DP5af8M8E8B/8AveN41d+D+4zub71coFoddP3Uu6G/dgvJakrDhfiIyaFpZywQE4d5gaxZVAe1UwO1ExwMd71R7gKfUlJCeOhabmVBm+2eWopQRtW2viBnHcLx0XAeScuQsSmmN04XTlGFCtylcFlRfJqjpxPdwIhXwxAeKUErNWvkknMxcLxeXhj5dqSRablQJAg2m0ZGYtesAFTNy8JEah8ayNG7bwv6euopkHd0mqBUhZSkFs4gubLI5Z56e5J957czi89ZaEXGGDcQK1VNDz4n8vBR0BCBqZpwn2JDwvu7UIlSt+ZonigbQZQnGyoxCnvm2TsrkjCZRnur/UNQiVPaRwGKWEDOletb7w5BdafxHQ5iPc/m4+e0Z7ucanZlUYAzBtEQm+n/VQrIM+nNRgH/bEAwP48jEDSSuMaKpZ/lt48GVOqQRKfPT/N7jlzICItIIA/A/cff/NYC7/+aHv/9zwL/4i577ce7AT/7Ej72x50kI7/qsNNtlXUnPFmlCpAbVp2p9gIKrGkutEQm0AAO3BmuJoRqKMXxH+jvS36j2zizLFJWMOqLhR208kes0AqFz96w/y7DgieuIvF+DVKRFQ2XWC92EbhoMQw8KaUSqI1XknI+QY1xMp9bgsk/GnKigRdGi6Z1m+TRLhCTAl+GxJcsuVl+ex1kX9+BJyAEv9xV64zyjRDq19IJsE6KXtRROd0r50MUWb0OufmIhh6fUVDue0mQwsfEn9VWlBqvSoB/GeU7Ar4em4VKQFqnFOBNoHVHzV4muPCQNoBF1fZ5hr6euoV40a7L+r5dRn3ve5jr66DAzCrpwgQ85v4uTi4SruDkbtfxZTrzKij6io4+ncb2ITYwPof8zBbh4EXw7KpA0XHKtHI0ULz9t1riBJ+7Qj18BT0ACtv0fAv+Gu//3Ptz/xxIvAPi7gX/9D3wtnJX9Ks3FScgOaHlegKgAPAEuZSrT9wT2hKUqa3XWWRpcjK0Nlhr6AWIDsQO1nTIeFD+j6p/6bEUDSLoaiTMdwErWxkt0Z4khtBTkjLIR6qHjX5602SKClkYtleHC0eEY4f3brHwFWobgjOnIJGTQPYEftKAlSCGlhF8bMydOxD/y2kn84arxx/AMTaXhDB89OOtnH/SubNuKjWip9jQEgl5hcqmVMQZSwuSO4RdILSrIeCYItWS/hQSnXghxUpmfEQ38Q2Khj+707vQTrAs+IsIoHtGem9EPY5yRxog7Wmu8lkdJLEJkrijJgSlmKlnBIY3r5EDJRcfMJSbPNCcKKGm2nDS6c0PC5ACIT2flz/UoT6F0zYhWM61VmYzGpCan8bzIUfN6fysVkKStZwlWnpt9uscOCXA+86SZXjAN5nccv0wk8LcDfx/wfxeR/1ve948Df6+I/Om8Dn8O+If/oBdSjOZH/mZp7QJAmhbzycBy9EK/nwBhqLoWbovwsjova1QD1hL9Ak0tSz4d8YNqB8UPKmekFEqINGpsgHMEaqdkI48PhglmPcOxWbJcmcvO7VlHN7EY/6Ut1I+1hAEpEc6awigfrX+g9QPBsytvCkWEXPZsVHl6tSJC7+nRNZFyTy+OXxz2uXTTLqFawkMNwa2zvz9YX28sbeXL0Wkl+P5V7QKXWlF6pvBeo2lKkTB+kGW2+CaltoioNDAHm2w4UapUzCv7AT6cMSSqBEPoHewUvEcOfPoA2xEXxmH07oxOjoyLzU2SmJx01I3gGswUfqLwaSBiw2XaQhhpuZB7+Og9HclS3mRnP8VDxJ4g4MfQ/umYnkZgev/Z/DzL4FNnYRqti/qbG/ej96dkdeN6p+d8ASfLyUkSijbqSHFGnhuVX0E64O7/Z+Z5+/bxh5o18PEQnCXTgWfIOBEfu/q5n1zsGSCFEahiLFXYFuV1hZctjMFtgaUYi3aaaKK0J06ncdD8BIJh2BRaSpabGD4GMnoIhSQAdHE/LLXpxMNCT5EMJYG9EaH4VMbJHSzi1CTEMLelXDSgqJcTRJmBohnKRwNVgGR2hejxMrUkSz0J/JKkKvcYfmGjc7HNLKbZiUArgpfCaYPeT97flW2p1JKU4MkSTI9XSo62kmBIyAc59IkJzG0QXh+kFNq6xlAOHLIi4dZgP3LzW2ACQ7ARrcAz+BunQe+BBYysoOxccyWFjMBSTFMKMD7g6hM9HBoy7MlwFPXnZ8+fOjkEEwjMxThLek8T4RdwLUxiWeAiTy7BLCp/BAkvnP+qFkhaHhG5RFSeO+KjIQhyWXQbRtdndkKkkbbQbyAFcWY78eRKEFWv7zq+H4xBz3SAZ4njKnUIKZjwxAW4wqxIBaoaS21sC9w2iarA4qx1sCg0Maqk9wvSLs07lQ4SYVrTwAyKDHpsSU4JuafTw3rPTq9rkUihSEQGpkpJxHgyG0+fwzNzG+qCUMMTS7YeSHyjOhcgEZaqJkagimi92HZmEwhLz57UVsZgjH6lBW5O7ymRnYvdLb5HaAiENPU4w+Tu+4NWN+63jZ/97EtkmteC5ukthQRqp5f0K9eeNWmR6PeoVWitcA6PkWYItbYY2jpBviHZOyHTzueijRMzbKLqEjMbnUnPzzRqhtJ5n2cfPjMrkg9/T3efHKj5vaKE+fT6c9s9eSrjWQK8NnNyC7IsGDjAFKudjVrzNciy5FS0js+lE78TcB+MKxV2PjIUIPQcJ7JiEFFfOg+ELB/OyDLUiaY+RPiN73nvgOKs3hkZAZwS95kT4oyptUdujksiOgb5gRhLU+6bcN8k0oDaWatw3wq1EI1Gc2iHHfjoFOusa6FqCjEKiEc/gmrM3xsmVBEO/JpM3LN2bBwB3A2PMLRE2BvWNwdiiuBFcM3qgHWGjagWeGDI0oTWKi2hQpO0/MNCl0CC4SZJa57hniU+YubRkiwCFt2MNnJKjgvdw/iVXFIjZ1hVFbZ14dwNG51+Dra1si6Oe04cEqitBHCmQu+d3kE8NrJ4hOeKB+iuzhg7bV2Cnm1nlqqih+A4B/sZeXEphaGamwaaSsizjzh/WjQY0n3Qz/g+RYPxOfpIymxhWZTeR/AOpqRQ4aJw9zNKsG2TYEwWi3MhT00GFaGpUmtDh8Ut+1XwJymriMd6giceVJxWnaoxwFUzeigXHjA+gL/Th5NRw4wEM8LN/pSRoDTpCMyMbtMQhPUQLai2D1UELik0p4cD8jAV33uhUcFZbacLnALVPWWm4yQWn91aBIA2kRsZqPQY8NCctRlbAoJbi9utRCtykSB3DB10gUUMK1EBeOZvgYR7osDjQ37YEhXHn0kJRLfhlAtzDdR4iNOZQzshhkOWJAtGbmwKx5j5ZCV0CpXZeFtUqUuhd0/AzlMnLvJlrSFG8v7oQeRxEE3uwhgXpTYglVxkyWoMoNMwh6U1sIXTDOs7vTifPr3weH/HfaBFI0pYQgfBzixxuXP2EGMVC06ApwcqJZWFM3qYYX8s8sBExNLQSMhxWZdIBQivHJjsFMpMIROPqp5EkhvvkZtoTjmuJYRbjHjMSEOZgj7xHNcsy6Uxzc/EFF2RHLnuIUWP5TWWZKx6lHflQ7SgeEisSQwYURmZmn1kupIJ04dmpPwGoU+ZjEyCsl6qXKIqggThVCZHJWNjH9c4dpGkXWfYFlOI4rH9nJjb7z2+J0bAUD9RnOIk8g6XZvzMt8gGkbmg1ajFuDfl3oSXJduGF+GlKUtT1qwKaC5WOQ9qP6jDaMMQGxTzbFgSUIkc1i1yckqO556nSp/JSkYnPgd+XLcAgUrO05O8D4KPH8izUOVZNhsiSVHS8CB5QSnOmbGtumWJ0fFOiKKSEUCeL+sd6ycimqlG1OndRzbWxGcMAo/RCmxrQ+mc5wEI9/sNYfDlyxuqcB4dOYW2hIEsZeHoxnmGZJVLMgwNqk5+QLD+zKOsd/aYtFObI1VZNrBRqHWh1hoz+myELPvJxTacqkVzKnAIeeQ5/UDwURVqgVoVKVlX18AR8Hg9S15DlFwDa4rWZ2ckqarlDMKiQqMkTySauXBPPde5sYOCXlKrwa3j0tPg9ujevHo4nms42pMz/fuQGqAlB9KQgiARNwzLUXtM5kJ4/GHB3pwRQ2z+LGEnJjCVjL/3kQA46gcFMs+K0GvKJMcQ0JnOZXqgUDzGPG2Lcst24ZAQE9YKq8JiMe1YzfBjwOPE3w/00WmHIRaYAMUTSEnmXM65Fx0UiTlvZHks5sJZNqWkZn6OsxpX/GAhxKmhIWeacKflgrSn5S4Zb1imEFPCfIwOBPe+iTKGwBicZvSzwxkh79Jahr1nGDCL0P1qC/Y0nhMbcJvUAR6Pgx99Ktxfbry/dVqJDbJtG+ex46NnSS3KcypOq4XzCO86Dd8kMUGlSIlOyMQIAvzz6GRzpxVF1spxAK6U2mJDj8E4nWOEVv4E6wJL1ej3IMtlmQbhjpZY7LOnfvTY3C5PjIAPtyfpJvGD9PKehWFkZBt7GG3PYaoi04hn45pYiNlI8lYmZjA7XpPINmXslXQAH7EW/5gWjCSFSjoOQ8n5mszKQACE7oHt2MRn5IkfBGCp88I8o6vvOL4XRkDwANjyKs1+qJnDFmZjS5ToLPv0WlHWWnipwm1Rbk3ZqrKKsJizdKO4BsXUHNsH4/2kfzkY+4ntYQBcUuIrvbWMmN6LeLRo5swDpVKAKtCv0C2FJOgRqM+FBlnei0VE4hxFjTphzXnhpmw0T5pnRxnDJvQTL5osveIR4p1nD5BSM2JiTpxJ9Z2Q8YnFq5PGK1ceqkVi/Lh1XtYVtg33wXns3G4rL693vvnZzwCnlkCc42cQmWqJFCYwDLm+u41nfXtq4JVUko7qhF9kKx+dUhdKhdokgcHp4SMkdgMl5M5C/y9z7dQMCFJT4klHD5Q9N5Ml2ColiE5aSKWlCaJxPXeOdjfN0uqHJiE0N78nDpCbvE5vTwrISBiFKrFOiuZQmwhtI8qVCUBycS1i0QRuohn1zJHjVZVtabgWhhnncOpwrKY8GxITrmeq6rM+kufKYZxzHf3e43thBACanLPKFiErk7cetOGS6L5JXiDV5AUU7mvlpRXuWrhR2LyweKGMLLO5w3D6PujvJ+O9Y+8dz4Ejc3HC9BzOJCWhcdGtGCYdtxiRpaJBQSUnD82F+7GJxHpkgmlcisKgUESjmceSpCtPyudU1dVUWR3mWHf6bIghpwKn/tpxnPTzjL53rUnUyRFoHlOYJ7JcagmK9QiEuhZFSqP3E/fGsi7sjzdsnAyr3G8b+/uDfX9QSmFZF87jxM1ZmjBuNbogTfAeqc8Y4IfFvIe2hBFzYWkNyfRl8gfaCGJVa9GW7WcHG7FRs4dCJEJZScZk7wHaldmenNfMrTPSQ156JkNIe4lk2UwneUiFksNKIyR/lvai82+S0lKnMTsS9cMcxqJP2rowKELewtg/9YHtyfD8AAwml+kyEM41SpLoWnWQ6Fp9SqE8owtDU1wkG8OYOMFcx09i01Re/kXH98IICPNEEqq0EZQxCUK4s+SCMAYug6qwqXMv8NIq97JwryubLizeqBZKwNf+Ph0OGPtgnAPrOeijEKWmkJuPEznHiBPlqWHhsYbW2NSWswcz77JEta8yGc/SU5K80uvPEVYT64gwb/a5z3TAohIfpT5AylxE0QKNhReMcps/G3Iy3w1SUxqekhNqMWoNQzo8BnqWWiL7GYNhg2WpFFXMBv08aEV4edlALIlUgi6V8zB0CSNVDmM/4ThGvBaDfRxorSxSIowusK4NVDkSZVexqDpYZVmiTXZ/nMjplFXoZ/AEorwWhTctSvV4PTOj9x44QYkFrqpcI9mVZ51cx7MUmAZ4bpzCNACBHU3PHSHJE1BWIVNAuwDCme8XmXn+BP1yfLlPw53iOFkJmVEAaQDm9hQgRql7OoGSpTCjH4+Qrks0QtJJSDZKLa3NnXS92BR5gcmq/MXH98YIVOkEUXUkRj+9QRBfqkfuPCRoss2VFWGTyl0bW2ks0mjSqFSKF7JPByF07xjE2K/u+OmzZSCBGAXNkU3dM9+1SQvH1PDqTy9DKgarMFSYyr9ASoDHhbJSsCTZDALtzgpdovkfz8MVj+CE3p6lKEfVip0nfhycPWTXWl1orSGi9LOHscoGG7MwOtXJKCGm9or3mFmQ4X0/91SiDU9YqjL2k9GNx8O5326YGaPHkMuYapO5aAvPryPAO7uYez1OW22xYXKysGvIsZkNvEuSrmJKdBB5AphUBSmCnRnqZ7VAVSmrgjvDoypi7qhpDEOplTmjKHprElFHY26FGqU4c1x9bFqJGr9Ykq8kB9XO9E1ierUFNdr6ZAfOlGDEjRhUO+cSZjtkREIaa1YmjRu/jNCTdhxGyiy7R0uJYaMSJd3RT7qNGCailQweYrW40bObMMqx5cPPWJf159bax+N7YQQCGDyvXKlMIsxF7+xUCxBNs1Fi1cpLW3lZb9y3O/f1haVuVKlUbZRSuebAAeKKmkKH/ujsbw9sHNzvC6VqMKosa/PDr753j1wkvEYizp5e3ZAcBRYLNyKDmJQiHiU808KQKD7OnHOG/kFkcczC8JlEg1H3ETVhDcUdKTVuGu3IZnM+nlFKjUm05xmbXDSnHIGbMYajTS/VIDzKX6JRIdCirEuFzB9rrTze3ymqjD7o58m6LHyzH4hIlhI7IOzHoJ9O0YVW4Dh7ynQJY0Q0IUWhwL7v1KVxv91BK9+8HxzHwbotOCd9DNZ7RAV9PBjeKUVZawVTjn4y+qDVFsCXeDZpeVCne1ybulRECv08celUGsvWKAs4D8BCWerolAJLqdhxsNSYG9CqspaG7R3rnVJjfJ0MjfKugiSl+hIeFWddG1t11Bzre+qLT5AwhpTiIWvnCk0rVYgpVj1IaVPHQqVQNCIW8zDA4k4rMzJI+vzEizJy8YgfE7MIfsJkIPx+x/fCCAiwYJfY5GweilQ6PRQeCL/FLPpVC2utMbveMme0qDVjwjX7YYCNAIz2953j7eB8P+n7wPrgrB3xmBQ0UViZyIQZfXQwQa7QNkC2CiHHvTQKlSGx2Z1s5kiv7xjaBCUik5GhxByQGazXj/82umV9Wytoltn6wFG0Ltg56GcwH0tO3BFtWQKz66JLCk0M8zBQtdJKxU7heHyJTV+CiGJZS7/fN+73O/vjHU3M4auvNj599Ym3z1+YV2iMfvHT3QdtKbThPA7LkVlwHgdaSni2KLWgtXNa4DEtW43NBrUq63rDunKeg7fPffp0zrOj5MgzTwUoLVf6ExobehnkdWu4Om/HARa5umqKsIhlyN1jnY2TWqJa0mqh6sB6kMncjPPolNJjtkDqNUgxKlPmjsQ9eoT3U2mYpwGY1QCz/qSgj0HPSkFr6bk9rtO2bdS28NhPjseepKDsW6FcAihTwMW1UEtjNi9HFT1raZ4g8e9jCr43RqAmDlATIIkkRhCLQZKaslIOaClsy8JtWVnqQtUcECKBA5Abg8DmGOdg/7Lz/vUb75/feLw9OB579qg7cl8C5VVFvGa5x4ERXWsiePerfKjFI40oSi1CT1R/Qj6T+34Nn8zQL+s5+aUnTfWq7QCOebYbp7yX1jBINjqnRYpAinMcpyHnmSzFklOMJXJFjT6AyHGNWjVR5xH9CHWhnzveB+dptKKYdvb9YF0WSHqy26CfnZf7jXM/GL3jnBz7g2W9oULMXrBAx2txSlHOYSGe6p7VkRORQiktOAYGZW2E3kDH0VD+aZX7sfHlftJ3p+/OOYy1xXazniVBzS5KcUrTywhoVZZtjUGzj0hNFjw/Sw9Np3FkuW7gdFqL7tOlxqwJ7yk5P9WG3GFkF2CN69SSCxKaFoldTCBbZhXAslXcniAgfhkLbIKYAQ6oKtuyIMD7ly+cPbx979HDIhndhWOMc1BLQUuI2mQ3R8QIDnO2VFSdvnv/fT+MgDtLht8TzJ8JT3Forlfzh6uyiLLWxrosLMvCUhtNwyNrIn1ugp0SyPo+eLzvvL89eH97cLw9OPaUGfegVLYS+W4U6CNsxqLzD0uwUAU/ByaFUYJoNGcRBvjwLG2JhDEwM7wPhg6gBrNuRI98DFQI7xUQVYiP4sQY7hGlOCQbpkfnPA33QmnKufdUCEr81IJUo6Wlhr+FYawVrRLeMynYy7JQi3DuD/oRYVOw8ZzbuvLy8sqxPzh258vnL2zryu124/3tLfQGPPLnooWR1Zox0x0BGQpHGE4hrsNJp5STMeAcjmin1BYbrcCwI5SONmG9R3hso1NqgKRjWE6hynM0wiAs25Ldc4O6VEor+C5Bpa6Oe+AZopEaup3UnMVY1VmKsNRCLaEPoSXWV6hNOy001QK8zvmLVSIVEcvZNUpGA6nqPMuGMg1ApIwegorM2r5lP0dbKreloQKPfefYd6RUSl0ZduJjxDopUQWaZCNLrCaKMPotLCCA0RxH9r2XHAeqRa49FXBdooQGQXP1CXwkOWZtjaVWltJY6kLLnn2RGpLVxOvYcM5H53g/2d8PzveD8+j0o0cLrkPVztJSW07S2Hh8MpUa4aw73p2hjo2BERp1RQ6GgBXFtMSA0PmlJDzheZ4xtLOEZPkgRnUJhNeWqR8YVYfAG6NHYD961rwjbw/tPihE3uhjBJ8g0M0YpqpkLnkyHIrLpVgkJfQNS1HWdaGqcMClLVhrCwWhZWG26p5n5+uvv+FHn17ZCQR7bWVG+KwtROAN5xgWi66QhiVk5M1j1PrxOBiUKHt55tdboS0b5xnRl6iz3hpFhXOPiHCckd22VilNov7doayFti70fmLmlFYYbpz9oCyDZSk4B9CDUZhMvlYC1V9KTJNaGqj3JAKlTsDI8qDwga1IVCnEoulLAkisBaSnchNRjSgzAsjrKeacF2VacnKzsN0KL7c7rVbeHu+4Geu6YghnP6kpW28fxErEHR8x4i6C5nQocwZhRqdMNqmN79x/3xsj0JyUneKJfObtaufUGIe9LUtEAbXRSkwRrqVlu2RiAjg+iD70c9CPztgH1j2qBFkFGGr0Mjj37PLS0AKYlNLczRjGEI8owSz6u5kDLPzKT5NuktMRgvLZrTNEMSojlXYtqXbD5KoCzPHLMhFyc473A/MzwnlpFFX6cWQDzkLDOc+OW3jMmHUIdRU0S4KiFkDd0JxyQ9bKIy3YbgKjU4uwtMp5HqgcFy261sb+2LGXV0QKo3dajU2qNfoeHseJ0FlqfnuZMxID2DRXjjMAVy2FWhul6IWqR3nS6cPRYWz3wpcxKGvJRqBOMQ1PXzLfxaLMWYTRjbIoWgtnPzjtpC6wLBFBIINaBPFBq9EL0kRYW83mHw8OgA+wzrAjZ03E9awJyNmI7yk5F0MyrQgy5FPfInL/Ses21GCcZ1YjwHps5nUpfNrubLXx9nhnnD28vAA2EDM0hVKHR/VgnEc6mnAcVUvMu7RnT0usxcJUdSrle88TmCWZBNQgNzJpBMIyqFaWtrAsK0tbcyG1wAM0x4A7XEITWdIZp0XZb/DMw5ML5CPYVP0IOS0t4D6CKlqiPOMpsuEO1KT7TmZeUNBy9luSNC7jEMBMNzhIWmoZF8mjD6dbNBtZNrZY6scNSM5/iQ66YdS2Xrn/OIX7LSobo+/ZgBJhoLuhWV4q6pQC2BGegSgfHum1ilZ0UaLTNLy4E2j+0irrsnDsB2QH5rqsjHWLz2ZZ7lIYfQeLlEqzlVjXBmWj1oXhNZqdBpg0vOjVAzDOncebs2x3mtYAFk1Ad8pGlBk7VKmZ/0vyH2JdDB9077ysd1Dn2B+4dFpVSiMqCRLYCEQUUzDWWrIq8JxbkRpmKB4GQgzOk1IU7wPrMb16VKdqMksZAUJPIyDh+S/pOA/P3V1oGi2IZQyWtfH66YVSSkSpZ6dIiKyc5zsiyrIsYUS5NkP0t6R46ixNTx7JpA+rJEaQqWn9VRkBEflzwDeErkV39/+4iPw68L8A/mZCWei/+AepDT9fL7C3qKakjLWRbaHZbLJs1HZD24bWG9IW0IZ5jZHXLlmzthiVbYqPXFTXJJtC9FiFcehqnEcsEKkXghN5JgETuEp8DteLcUYpUGvmYAXQ1PUzhg1OE84J9OGMHij8KCFsfRqclhRhpg5NiXl8QzgPwbpEJcA1ymAUxtGi1bQXpLaos1vOAvTZa02ClYE9qGaILobRGceBF+G+tsjZPUaul4y29seDpTW2daOfg6IF6wMthfX2wtuXzzweDwwNWTZRtIbWnYuzpthqaQ0tKz1DvGaFbjHVGR+x5xJbqctKbTWQ+qYsS2gOfDlOyipIsTBGOC6FtoWnO84z8I+l0P3g8J3SnGVT2uKhVKwRDShOq4HAtCrR58/AR8rMlUxRMkqo3jkPyb4Gw88A/QxjaGz60JKO6pUkJTlIRKlc1MOIL1ooEhODytJ4fX1lWRrv72/sjwclPFBESwSZq5WQmT/HNNqFWmO9RRNRVKF0gn8ySVOFOrEpogX/u46/GpHAf8rd//0Pv/9jwP/R3f8JEfnH8vf/+h/0IhNVn+hpsDYjKohcr7FsN5bbC2W7o2vcSluQ0sLmWpycSSMlx3nhkjhBGAHxHI1Voummd+PxOOkWKDolEG1Xg/rkYkfGlRx/JKzsnLEnORxtCKfB3o1HP9ndGbJkCTGKHgPoAt0rg8pJZYwcc47HhMVRcCsch3M8kv8dc8QZXSJC0CCl2CiYCfujo7qylpqI8eA8Hhzd2FqNZh7rqDY6nX3fOY+DVpWtFZYIGYJSWwpnH9y3G7dt5e3tnUM7Yw9CzxjC+3sg/rq2AMtaQ/zA3EOlaClILbgY4xiUAuv9xmN3zreD4zhxEZb7C9v9ztqWYIqqUxfh9asb5g94O6lb4/3LGRUdCSWe+/qCmXO8PyitoFV5+/KO+cn9pXF/rQid/YhBtYLRGqgYa1GEE7MD84FxpkKVXorHo4fmoo0RcyrOnuPuSLyjh8KRJtpPdhUWoUgJ0hFcWhL3bWP0zlIbP/rqKxD45utvOI4jjGzqNNZSWWpwAsbonMcALdRak4dh6e01eRgRPRhZMsxIdU5vkmSHftfxq0gH/i7gP5n//h8D/yf+EEaAD5s/Zr2RYU5Ib5da0bZQ2kJta9zqQmsbpUTbZdESaYQ829usW3jg7iH+MUtoKOoJyFnmjT0FN0rUnike/HrRVIBJHv5s0MjozJitnYM+hD6UPoT9gN0Fr46lRBgy5yeVqDd5hVQkPvogmnMzYrF6VSu8R0lSKailyIQTYIooS9kYbvQE0BYKrSlIx7xHn38Sb7oN6rIygMf7F0Z31Bu3pQXFWGBZVvb3dx6PB1WFdV1prfDbv/XblFJZlhWRwrF31mVFHfq+Y8OpTbmvDW2V7kGEua2BVZQWw1i+fAkyjpQK1llqpRUFc9al8fYeSjjCye1eOI4T5ODszv22cbutiBrn+47r4OWrO1I6Woxbq9xulVagj85So8S3VHjdKmJHXLd+0IqzNmWhIsMY5473M2HOdCYeJeMyQTmCu18Vqkr8lFBSSpV/ikiKoXQKym1ZcTdu68brywsqyk9/96c89gfruqSQaw816RpiKMdx0vO+2V9QRJM1qIGhWehMBAAZTXAhMjRVqoRrY33H8csaAQf+DxLtd/+DlBH/o1Nt2N3/soj8B37REz/OHfgjPyJFMp0ntJ5fIBtjSl1oy0LbNtq60daFumQveqkBwqRQhPiMLD7c8vfcRpmXZ0ONRag+bCSy7WiTpJpGGB1NP2FoTENXMJo1IhwbDM4hcevO2cMQnO5PnQF9goAjZxYOKbiEz3CHceYUHouw0k7Fu+I5pWhWKiI9LJH7Zw+/izP8xG1wHtlqmzJTR0/NBECkUmqAgEXJTr7JP5MLF+h98Pb2zlefXnl9XTn2PRZm3/nqq0r02cdrBmB5Jr8isIl1WSgDXAquDZeBFGFbKkUc7AwM6DxQ76n5YNTMYc+zR0SwbPzsZ99QW0q1F6MusbCXLTST1lUZ42DbSkqbwRgHhcGnWwMzbovyelvoD+O2FqQ7VQbbovgRpU/rhiazb8hIJaEsW2lMvIrpTnF/ETKFUsR69FgIeO94DwOwaKNqVHO++vQJ64Pf+u3f4jxPltaiT8WcpS0R+h8Hj33HcEoLvMuJz6ASGMO8VEEMMnSC4tmMEAYgjYGA91+dvNjf7u5/KTf6vywi/68/7BM/zh34D//xLLBP7jlE7Wk2SbRGWRp1WWltpa0rpS5obaiEAdDZVAFXK6JWWEqj16geVG10OWLzoJhHROAYPixRZL9EPxRBygjKbY00QNIYoDUAvGF0d04fnAPOrpxDOfus19ZgAPYAC0eN7q8hwjGMwzpdhCGCecuwPsp76qHH7wlqek4nNQu22NoKVaLkp1aiPEZj+Mk5HpiPyB8LoQI0dlpWAEptrBWW2sIjJruNEaO+Itra2d/f+SxfuK2/fr0/HhWJVhrn8WB/7Ezt/xAI0UC2kwGn2cR09kEfJz6CxkI2y1gvWD+ZM/7cBy+3Nbzoy4rqytvbG2OtlDIoxWktWZwM7rcGHJTi3G4r+/GF3h+M443brXFfGzYM8ZMqUTW5bwvFBD/fowqzn0jvMGLGwegD5GRZlFbSKBOYVRW7BExKAoG16Lf4LdHJXCgiLG3hvm3cbhtvX9745uuvg6vRltiENQBvM+P98c55niDkeUyDfzn0oG27SUiQe0aoE/eT2EjOnMCQEfavKhJw97+UP/89EfkXgL8N+M05e0BE/hjw7/3BrxR4wPMcZsheYrOVZUGXlbptEQm0hVJa5ESiqNTYsP7MgbQEgrrUhV4bR/nAKpSIBwQLQ2OZJjgRiWflwCwEMXwoOjy7ivOz5XCHsxunDw4jgL6MBIZDhBKVYco5AgsIgFFxrZgV9uE8zj00FLQyesFN6LthxxGUZctIKYU2fTIPa6gLjSxTXnm5aCBBOhAdqA7cj1CnMaeYcJwRWt7WG5IzCdU643ggGvLt5RP08+Trr7/h5X7LRTgopTFOo9VGPw7e3w6KRklVamFtCwXh2He0LtRlpbRKO07sjAVcq7A2Ze+G9ZP+eCAvrxRCo+C2LpzrefVOrGuAvNaU221jWSpuztv7zsvrC4/HO6UobRHe33f6/o4K3FtlWxfGfvJ429HXNfDc3DiGRsmtBw/EjoHtHfXB0oJoZGYsxZAiSA+di6UKrZDiMyO6/jTnTPjs+gxG321debm/cOwPPn/zTYCEy0IpJXohROij8/b2FnyETDpKzpoY3UKtusw1kNUIUSgfUCqZTjQViS33EiQB5xcfv8zwkRdAcxjpC/CfBv7bwP8W+C8D/0T+/N/8oV6PnDmUAxhCxaNAqbn5b3Fbt1xUDclBnSofxDwscn8fuYs9PbvL1Uo6owaVklxvncQ90NlyMVHV5GOnYq4MBSv4gI5zjpHjxuLWh4V89Az3XfLfMeUwtAYbUhZaWSk+GGenD4Gu4JXiQvEoR8VMPkUSXZ9NTAB2Gr6E1gKDQK5VabVQtEZp04MoU0o0N6kYwzvv+wORysv9zlLAzgPvUJcN6we9D9b1zldfdc595/G+02qcZ7Mg0iixiM9jz0UY52hdY4H3MVi2wrosIT9eIkRTVXrfKKJ88/bg/Tg5Hu+cjwdSF1oN/sDLbeN97/TRaarsYqxL49PrHUd5+/KFZVVeXzfcD/qxcz46dj4Y/eTHP/7Ey7ayLYqxwFm5LTXafn3EwFNRuoXizzgH/QhB1qUIrUgy/iy6CzMFFI90pZQksXkoADlElOXOcRxUKXx6/cR9u9OPk9/5nd9htlGoCPfthruzH0cwWLtlRJ/p8AiPHroJWSlTmO3qkNGhaOpxZvdq7qM4Iry2/quJBP4o8C/kB67A/9Td/3ci8q8A/0sR+a8CfwH4L/yBr3TlAFx998wNWypl26jbRl1X6rpGZFArMVBBrjHa3iOst7NHw80Y9ONgnKG/79nrKplARE392dcfBjg6B2c2UmuNTScJ/g2DPvA6gvk3lO5+1fyHJ13ElW4hUzBEQCMkjhHlDZMGuqDVKLVydsG6Il2hCzqcIlH21G9FOLGJbHZIdmhrQ4qmp1eKBNjWDVxqAJhSaG1FS0fsZOqLHd1ptUX5rDRqrZxmnMeDosbtduf+8srZO0IJKbAjWq33x05tsThFY2OoSHTmCbRa+fTyQttWjuE5N7FSLSIoRHgcB/ueqYF1tnpDasx5XGtlfxycjz1FWgZilZrzC96/fM2v//irIEkxsHHQh0dU48bLtgShZ4QuwG1dWGswHcfjLTdLGK5zj/cp7rzcV7Y6KL7TirM1pclJybK1DIKrIDExajLbQltRsLOzaOPT/RM/fv2K3gfffPMNUyb8fruzbSsCPPYH++PI81cvSfkgQMSPUkOYJlSSlGvCMyQnJdiIse8Hl7BI7q2rP+E7jl9m+Mi/BfxHf8H9vw38HX+Fr5ZSXbH5A22PRVTvN8q2UbYNXRe8pJpqhj5jJBvu7Ixs/7TzjI3fO+dj53zsHMeOdcvmHrn67qOdV5iildRotdUqwdTSAhWkCVIjzRiS7bxEejC58ElGDLktKQTzvDDy5lT6iNr9FICMzq/sdxgKQyK/J8JAyRJn1UYtJUsRUKUwSoEuSIu827OSUGiYB0ONWoiuyBS4sEC1l6WhfnKcMWthLZVlbdQU2Ty1gB2IFF7ud45jZ5wHfQRnQbWEgSXr0jYoGqG3EINc0FQFInrzb9sahuk0anEYJ+M8ESL9aFrY1hUnCFjnGPGex8H5eKdJPK6qclsaW2vct4UvX76wv3+JkWUX2SfSjNoamij/fV0Y5xmTlcYIOve50/edc3+ADdY18IKmwRhs6iw1UkHBcgxco2qspZJl4gjxK94HYs6PfvxjfvTyFX523r9Enn/b1tBjqMEKfTz2KJ1KyelDqdqcjFdNMBELp9RKlFz10iwDS3C6X+vRUyiXpzERmHONf9HxvWAMxr5MZFNjiKbXgq4r7eVOXTfquiG1JbIe9XEsGIH9OKMn4LEzzpNx5O08A0g5e4hw9hwtJiRfPzb8M8/WYHsVpbZCaZIRQRgESeG4IXOMSeAOw7L+76SASEV0oehKk5VzVLo3jEp3pdscQx5goCCBSHdQUxYJKS7DOR4RJupaKGXBEsCcg0m9w/kY1BFYg6giQ6jSqBr5Y/Sse7D0WnpzApmPaUmgJVp18UGtG+2unLuGd97uvNzvfP78Db/7O7/L6INaIrzs/WRbWxjhbtHSOgbLsmB4iJVmhWdtDT+Cnx/VgRGodYJBRSJXHx5e9bG/Y/1Mjn9B18p2vyM4/Tz46tMLVYXH22eOx1tUHTTajWtxmkZ/gPVOE+G2LfT9neM48OPk8eUzfu7YuTN6jK7fFs0xZ8K6LKylUHyn9+hAnEIkQRMPEht90PuBleAG/MZv/Aa3unAesSaPM3gAry8vwTk4Dvr5lAqfOoBERM9TBzLhf4koobZytUvPihO5dyqkLN6IvWQxx3KmFr9PIPD9MAKIRPlMYmPIUtFlo97vtNs9ooHbii5L9pFHjm5jcO4n575zPHbO952+HxEJHCeW2nuMwehB+giFlyRPSMN7pgclpKlKFcqilKWgjSAM6dOimj8bnTzDfJ9UX4+bEcCflAXVlVYa3RpWVmrZQDeGNo4BZopQwQZjP4IDXytrqdyXG+NLNjtJdCL6CMS9eKGfgeSbG30MylJxhfPRqevCvb3wGDvH8YadHuH+vbGsgO3MoTSioWU/PFKMmp2IywreD1xhbcronW278XbuOe0oo5VpVFVotQReIEIrJfJvCJEXCdHMVkIwo6iztDjvWIBp4zxAaqg2jXEZjNeXe7RAa9RzxJ3X1D3o+yM8/zh52W6c70ER3paCnwfj3Lm9bDQRpFaO80E/zzBQ5wM7dwojJiZVoZZIHW6rs1Vj/7wz+hliJJm2LJk9jrPjo1MlPPyvfXplXRbs6Dze3jmP0M786tMnaim8HTv7vuPmyW9J6CqjUnjuVyEautrSYrCL+1UtCBzbr3SgtBbgeAKTrinTm861/4owgb+qx5DQ06cUpDXqfWN5ubG83Ki3W2ACy/LkA2RYHOo5g2Ghmmup7SbJ3mKM6Pob54d8K4MOjQm/cQcEf0cpLSIBaSEhTg2c4PrPn117pS5UQtEYi4lFXRIYdMWlomWl+ILpAnVDZAss4SQktqyFIGo/GXt4Cq3Coitb3aLe1AXbDfHw5i3LnvLBK4hJPA4YYkEsMcW7RC/CAccRvIfWGloNO43jTO5Bg2UyzRzWtWBFeLydvL/vqTWwMjY4d8vhrdHuCyNz3YXj2IN7v64s64bWRl0bwwv9fKdqtO62VrhtC3XEBCYF+n7QtiitiQ2aVrQ5qFLbwn4Otm3NoaohCjIBPOvGUl+u2QDn/o66syhgAzuPmEI1PFpzR2zgaCoK8dRWYVkK93uLIbYcjH4GM5NYbzEDRLEx2PeTReHl0yd+/NUrrSr7+wM5wxC6GZ8+vdC08v72FuVUi0inlkofqVSdXtssQMO61LhGKZ5yHifuMRU60gFNcZGJaYVTKuVZJbs6COEaHPuLju+FEXCSW6+R39Z1od022suddr9HNWBZoiLggZSLRuOIdp3GjillLRoCorOPIDvun0o4H965qEBOB5ISUYC2lOAqEZp5GwzN+QJ49upnDUHCa0oNdSOsxaASbUmQqVBWlAUh1F+ODo9jcB4NGaFfV72ytY1+duwIRZvaGk3XaF8+DVENTf8zPslyi3bfGBdudBsxlEQU9YK60lJ3sY8gEH35fHCexsunyv12oy6VcbwxxsmYM74YU+SR2qDUncfjneOMKcnrsuDjYPSDWiSMbz9YWvDa3QuOs7TG/XYjKlyFoo1v7Av7/k4rldf7HRvQrVDahphxPB5stxda8g0+vb7k2DXn/vqJPhwX5Th2prRX1TAYwTws3LeCsnA83rktjftt49z3xGWE/f3B2PcgBPWeKkHRRCQSsuoxtjx4DWazd+IIgLKA9RGj0KSwrQsv9ztAVFE8OAXmzo+++oreT/a+Myw4J21dWbcVHyEYoqLURRkjZjpICqYexwmcaIkp0E6Kl6gk6SuraBH9x2fOaAuyyjaP8n3XGAwHhtfC0hbay8by8sJ6v7HcNsoSBKFal0DKoxckRDtqZSwV64VRNKoLqewS3WOpC3eVIK7iSpBianTbodFBGCBbGARRKFUY2UtgGm2l7hocAjH68BADrUvwxa0hdUPrxvDKaQk8amV4pZsyXDhPeHvrSD9oA6rHZi2lcNLxHirH27JSFuX0M5WTSjTpdOd8P6lLo3jGphkdaVWaNpa2MlKXYOxO7yfHo3OenT4OhI0ffdpotdDfv+E4T9bWqEtDvePeEVFu2w3xnFd47BlBCW9vD17WYKoNN45zZ4wb6xI6BaGTVzh7yIkVDRygnwfbrbItlb6taLuhdeObzzv9iLbdrdUA0trCmSKq9y0o449zsFTl2B986Z0xzpRWF7alUH/0ijLY39+4rY1tXemPN0Qqx+OIEWs9VZKGoy0pv8WDU0GP4S4y0HGGbkNRjj1wCx/O+7lTMD69vPB633BzvvnmC1urbDUA3NsWxqf3k1Yr921FbzeE0GA8R78YrxCfoZ+d4ziCvk58p9kOLCWZgD6l60Lp0j0iE0nB2yAPaTI/41GlfM8jARC8VrRGOXC931lfIwpoty3owuvKUlss9J4oyohy2eyQe0YEXDhDxFdpBJKRpCKpv+e0JTTYJuAiTaITLLs/pIYBuPI1fyKyw2LuoLRC1UbTSreGlwVqQyz0/Hp3Ro3RWKFsF4anPwKgshE4Q/OGmtKkRrlvxKAR1SitiUiWfaNfnBENTZJTTIqGrPcUU9VSA0xrGy6w28HQE1mcWo1vPj849nd+/Ud3fvTVr9N0UOzE6BSt18gurY3b7YZYp/edLz3Gk5WkqUUo3zj2d/p54759opRCbTU64aJGGaw9EbZ1i1Lk6Kzryu3lE0jjPA0kSoO1FH781SeOnjMANLQUWo3mKG+Vv/SznzKOnfvSkLFSpFJVWW4r3g+KLXz16ZW1FmxduW0bj7d3+hnlPuuBLSxNeblXmnbWpVAroZicrcUCnH2EnJk75if0Tlsb63pDVXl//xxQcWu4w8v9hffPX3P2zo+++iowEi30fmZo/3RCbp6KwiOrAikG4rmOs0X4uQajHD4kwEl3Z7mtQZ6D3BPTYmQkbMJ3Hd8LI+ACtIqsK+XlRr3faLeNel8pW/QM1FZjkY8oAwUbakpHnZHze+RNJHsqhnlwpQChTAQwLaUHrXbqeRTJ3p1kdJSQiVYNEdNpKJKfFf9p8PeLVoo0ijV6dpJrWaLZx6PFeCSpaCC41WtKsgz9APpoSKZrWIzz7QSLUmWVkNTuvUeovjTUWpJ3IopBld5jrqC7smll2bZoDBo7Jwc0Z1lDz7D3z/zs6y80gR9/uqU2wKBpodbQVrTeUZS2rLzeP3G8nVgZ3G83sFA53pY7/dwZIxSMl7Wl9NuCpkbAfnpoQrYlVJPOENVotTFcud/utCWwhCKFT683Pr+9h2T5soBUWm2Ywfu+8/mnP2VdlPv2id8de6gqMfDz4Hi8s9TC2hrCYN22qAT1E+8nWqYib3TtrUsLkZElIhQZgp9RZjRz+hlF+7OHXNyiUSp0F/bj5P1x8Hpr1NbYbiuPz19QLfzkN37CUitVYp7D29sb/ThT3g3e399xd1qtMetGZ4vwCMXrSUMuqUY8hyDE8mdkZDuz/zL5NZpcmxkA6Pc8EjDAto310yvL6wv19ZX2kuzAFic2BnFYjs6KOv0YgzEObOyQ0lBRD58yT8TkHiPIOmHIr6kvok+N+1IjDUCMoeCSAKMHGl2r4Fm3lRkmaEVLyU0NpTSWutJHpROTb52SIGHBZcE8ZvCNU1l0YxAqtTqSETYMpaJJoKWnuckIIB6rQKH5Cl3Ca0v2FHSllRJU5kentB56Aq2yNqGWBSuRDtS6UW+C2M7b3mn14GUrLG2jpgQ3peClMM53ihnLsvH68kpxoatw7u8IzrK0rKFXtu3G66evaLXFEk0th1qU+1Y5bPA4e1QcPDeTBailrXJ/faUtK0jl9bUFNTujiKXdOfedcz/Y1pV1EWzs3Frkyf3tM/t+8P72hR999YlvPn/DUgUbJ+/vJ6O/0dRYigQw2oPNUbWwVElR2MKybHSLqlJtST03OPoJHbQ6fRj7cSK2c5yd1z/ya5SiPB6RMt22jXVZEY/ejXEcvNzvlNfCeRzsj51t2xCH44zeiWDNhiKypZbjBABDR0BiwIpHFCPZyirmwXY1Q0YOn5VQJhZA2ndv9e+FEUAkooDtQzlwXaDmMM8c6yUSLKoxOmc/OM6dsx+McUbL5+RQzSEcIwyFpcjipAfLlA2T2eASk2cmJROJdRukpXHVhIHgaosiNJBgLXYizx9GKAQFyohqo0hDe70YhH04oysyWhhnJ4zNCK87elKIpFCp9H4yRqge1RKde6MPxtFhKG1Z0EWvnLiUSrstDDEefWd/O3g/DnQrlK0iSwCh6/LCcjPa0lE9qHTMD376s89sxShfvbCUkt7OsB7y4W3ZuN+DEGOt0dcFs5DcKkX46qsfcb+/XnJvSkkptgAqHWPfHZHK/eWFUhekhrw2MmjbC9t2R+uC6kIxj0nGR4iS3paNhxn3bY10Yf8a94i93t6+QRFe7jfUNvbHI/r8X1b2/Z1F4fXlBueDfjxCujwZf5MXIN4vXoZIDns9jdYa728PhjtLVWqr1CXat+04eP30iiOc50kF1iWQ/f04qES16dP913h7+8Lj7S25HpIU6pFqUMJ5nOz7GamThlH9SI13LCcR57osmmpOIWbTzYLPUDMaSPzg4gv8guN7YQRElLpurLeN5XZnXZMTUAumwukj6qG9ByD2ODjedo73d/r+HkSN0Z+SXkTZ0HuOqjKnJBfgCo8SI4j8OmuwHqCiWeoMzlsh6cRx0UQbRSqDwjHgHJ3HgAfKqcKOcEhl1BPTFqAhjeqNRRfGaIwzhCdoOfTkGBzve+ggyhIVCi+MY0Q60JRWakRBbpzHGUIXw6lekVJQryGIMmIIx21TyuicGlJgdoyc5CvRkVlv3O/QmlE5UNvxvkJ/5zhOxE6ahNesbUOLMjQ2c3HF7CRAis6xv2F28umrH7OsN0qp1LaAtDAEEgYMNdpwpArb7ZV13RhSKGVn22B7+USpqWtQGpyRXpDpSJGg/daibGvh/cuJjwMR59x3Pr288OMf/YgvpfD2/iWl1qPjcn984VYaS22M/Y3WCuigNQ2V41rxM6ZK44RwLaEzUUuhtUo/O+sSTMVhR5KZCjYGj33n9da4ryurKhVJgLZRRHi8v/Pl82f66DHcZQz6/gDkSsPC+9ulFhTkyUju+4hx8ql0EKPoWo1UgihfWjrLknJjEFUK/d4bARXWbWO53VhuN+p2uwQkgzOdoMk5GHuyA993+iOIIDbOIAR9vFkPdp3FjDwkWmrVFZieXYL8AeDZyaiOcTJ8YNVCuSWBLVVBaqNoo8hCYQluwBD6gNM6DzqnxsY7fcCqUd70hSIbq92xXnm8n/hwipUsJ8WMxL53lhbaAOdxwoBKoXqleomSUAHdIh81HD+z9bkEl2AfD7wJZamUJTzaaSfDnCoV1Yr3UCKqTVmWSlsqxZX+iJHcWwvCs3q07pYUYVlqpDxVGzY6VaOt9jge9P5g3e6UElLwrW04NUGqJU5jBSsNQ2jLipYl1JpukV6tt5eUIstR0Knpv65LKCH3kdUfCXTfA0xrrfLp0yu3daEUeHm9p9JwDBO53zeOx2f29y/JitSoJGhha0n86T1xmkDmo+mq4meOh28LffFszT7xvsdQkiLs58mPv3phu4USU1Wi85RwMH0Mzn7y2B88Hjvr0oII1BZUJaKB/aCU0BXsOi6PLznMZXi/Nn9bGi3FSFSF93O/Ila3Oe4uoomnytAvPr4nRkBZXl5otztLkoJKq0gtydKLumzvB+f+4NyDT26jY9bxEc1CNgbDQ69uWtSEWJ/ASFYIJKN2eP7bNUFEeSLw8gwdotqgIVQQo6IajY3SA7QrVimsuN5w3TBd0e2G3F44T2EcYSzcBIbEfEEz7BzRAWiCujCOQbfOWtbY3BLafef7GWzCtrBQgq9gEa2QDSfmUVocp8HZWXxB15rjuaLnfxydvfcgKGmMBcc9tfiD91CqUIPojMqA1Pi/bTfcnKZLSHL7iRZh224M62zbEvyGZaW0DVyz2zMGZoor0lacOJdGCMSGtmOUy7SEVkO3wDscaMvKbLJdloV+tlDdUc3WZOU3fvJrmUsPfvTVK19/bexH58vnrznPqDgMdpwg67SlhqSan5wjJjivSxCV3AOk89GZ2pHHGTMbjuPgcb6zteiMPHrnx68ry7oyzDjOk+W2UkU4H3ukYw7vn7+EqlOWBWutwasgNntbWmpa9CSjQeaoYfiSEdiWqNbUdQFyOEmOsdfUOA+AttBUKVPj4TuO74UR0FJYX19Z7i/RLrwsSGvRLKHRFqzmeK/YUrCu2Ihd6xbTYt2SNdhHAIPESYzwPUIjtxGqvCJXGVGLJMkoJcRhQq3AlBtLlS/TbBwyuoRq3ZCoFGhtVF9pulHqC6I3zBeooYFYqXA6+6Pz/tbxExoLfQz6o0O3BPjAejSBLC8tFvnp9KPTx8lSFtpLoy2VPjy6+MjBLQTrskiFJniVBJBgKQuyFUYZnBIjvL98/YWvP/+Uz58rP/mNGz96adxm3VoMsx1DQtatVJoOtIQkSykr9JN+BiirsqRaUQsyS1sodQFyGo62wEk8xnn5RWiJXouChHaAzN6GYIW6hIRWW0oMPxVhWcMIlBKkJBsjZ0EGjdvOk7N33t6+BA28NR6PL/zkxz+mu9Ef78EYJLzmGCNGpN831q3RJKYUmccMirMP3t/fMbPoO7DOoiG9/u7wsiol5zWIFLwIPcNyqYo9jC+Pd0Y/WJaV221DVRlnZ3bLllpZ0eQIjJQZS/VoICWVKDXmRbR1QTKCOH9upsDsGRBIXKH8/0MkUNjud5bbSlk3yrpQagndfCVaZkuh1eicO7Swq3Kw43bC4ReBwlIKG7K0VzOUGClm7uSklqnb9px7OEdmxWy+xAV69gqI0MU5inGo0aWzc/Bu8GDDKlCU2lZku6F65zyVb/aT4/iMLa+IbjlcJUQojv3kPMKKixEpCaESW7Rw7CeLtuAK+Jw83BlHp2mU38awS6iEIozqmAR/oY9B753HcVAOpb4stNdGaQE63tYbXZTzePBbv/U7fP4afu115Sc/emVtC8KI3HtbED+h75hHk9DaWkw0ru3S39cc2xUAZYucHqWPaIRXrYjlMA+JUeylVEwKYs5SK1JanOsRbbO1KKNkuzKSi1pZ1pWX1xe+/vq3QKDWwvtxsBTh6J3P/+5vYtb58f0rGBtnJbvrnNZa4Eb9wBnh0VujtiXoNz5QJMaza+ARw8LYDw9lZVTpY1BxRHMAKo6WNGLZ6uvidIxj3/n06RPFPYg9zsWjmPjU2U+khJHz5lc7sHl4e5Ho/oxyKXF9iZHnpZZIg/F4j4wANCOA3vt37r/vhxEQyc2/UZeGtPUSXIwSXonx0aVgGjXXS2mn73QNpqC5P+uqMkVBwsPPMePiTwoxzO5BLmtrMia0GGG1RA3eVDiKch6Z7xfnFKKTEAGt1OWGtGgO8lLxoby9P/jp+zty95jqwxIXJuXUi0eoZoyYotMNHcoQ47AjB0+UmLC0RAuqdeM8Rs7Y66HFU0uOCh8co+MVdKtsy4bVGAG2v+88+k7ZCuVWWbeFbW14XRj+hTG+8PXnN6yfnPvKV1uj3hb246RpNhYRE5KRiuoINZ8arcRunTmKfIqqpk57pFFz4EnKhouHA/CoZ8UgE1V6j0rLVcYl0qj4PTQm6rLy+tWPKf/eQinB+bfxDaWtNHc+f/01X/3oE1oqZp1WK19/8zXFna9uWwyEMQ+l5fvGukU77/v7ycttibKyKKVVamus28rjcUZqg9P7wVobbYnvglZiYlCsm9salY338+S0TllaMDbNaCNAxpLDYMeIGZC994i4WkkcIRrDpgPLTvBsCY8xczD1BqDnlCdNHKDWAIyHG8f4FRgBEflbifkC8/gPAf9N4MfAPwj8Vt7/j7v7v/T7vpgqumyUtqBtiyggQztXoYplj3iM1Io58SPbhhdGa4w9psWQ602JMWbqSQN2DW+LXzXYkXPgKB+6rT1ksgJtjfl2rrEoz24cXhllQImpME03BhtWG3W70+uNrw/jbd/5Zlfej8HjhMdPv1CXRvVfo+/O/vmgjYaOwAeEyE9lc9iNYsJaG9ZDpWZtG1sLVpyZ4YfRvV9iFCKa4irxNcZpnLbDUGRRug7e+xvv/YE3o94buimyKWUzlruzbRWk8/44EDtZ5AUVeB87r2vl032JeYwpaFXbmrTVkeo8MVG3qAZWQci31Bol0whTy0VkCdKrJuIfrzsGIEKp8bccb0JJbUYBkMIwZ1lisMm2rpz7G3XZWNcQRH15/YqXl1dKgbbdEEaUU4eFNuU4Kbrxo0837mul6ODx9g2Lwrrd6Ps0OKEVMUxzDLwxRuglOKEsdd82lm3j/vLKVy9L6Be6c7y/xXlBKEu2jM8cpwTQCM7YB9oKt3YDnnMzxDOCzeqYA/txMAVIPwJ+Ugvar2HlKWEXwHfv/SqT/6LjlxEV+TeBPw0gMXnjLwL/AvBfAf5pd/8n/7CvJSLUdUWX6Dij1CzHkTP5NCbEJJhUSqHUpKW2krX+FNYo/uyYEp5AIE+v4hLjzYcNHo8H4rFQJ0cgpgjFcAmzKBn2EQpBpkBZ0LZi2qKhReE4B8f7g/r6yrLe+DxiBiEe+dj+GHz+/MaqGzd5oZWN95+9ox2aNRYaS6sxNacqnIP+fjLOgZ2G9oPqQR8uUujDeT8fyFWzjn6BujSqDN77ztvxzv442P3gYTvv/Z1TO97AF0NXpdwLLIa2k2UNXb2XrfLjl5Wxf+HT/cav/+iV/ez4Nycv9xu1rNm6CjZOzjEQCY/pxMSlUNyfUpeaFyNlsjwMwEwJppA3cKk4mz8NgEBoOLimaEtM4nUpLLc7pRjneYAMjtMYJqy3O/vReXndcPKcSkGKcnZj224s9Uap2Y7b43llqRxnDEVRh8d+sh89mpgkZwxnL3lQ0QvaggW53e+0tabISMe1oMvCqiXaro+DrS1st5VaSojeHAdNV8oSA18m+DdMc0DsCMQ6JIwwIgIQt+Cr1Fj/dp5oLTRdg1Bk0YBkFmXyMX71swj/DuD/4+5//vcDIL7rEC202yttXZEElq4NLA6Emo1rEn1U0FIi/5oGoRZ6LeRc7xDnjET/KgcmUzgGhiQfW0u0e/ZuyQWIVMCTSZjSDoBjiRr79LglPocTmgLnMPa3B73E0JD9GHx5cx6jIrIxTPnZN194t8Fqa4ySMgFLA+SCdaAbfjj9CGWhWiqtRFkuKgABZG5tjfk33XiMB/0tUojdDh5959EPDjqHdB724O18Z/cwArICC/gKuhr1NqjLoLROsZPXrfC6NV5X5U/+8T/Gn/gb/gjLy8b7fuL2DrqwlDivQYwKIKvnYgvQjqtFNqTP58zFZyTg09tLjNE2YhrS8+/xnPlvR5DSKOudcjx4/erXEE6O8yQHFLHdolrwzdc/ZRsecvUtwLtbLcgYLGulYJx9j5Jr9mNrDrLR2vDuvL9/oXentZXjcKJzrQeY2YR1razbje12i+lTDlLDIM58/PQHZzIPrQh77yErlrfRO1hgKrXU5ElEy7wTpWfT7L/IknlPcZyaas4qxOyGa1ORqWGUzC/lrF9w/NUyAn8P8D/78Ps/IiJ/P/CvAv/oHzSGTFSpy4bU5WqjfHJ6skbPCXNRELJill9OMzqopUbjjxiSYdTVRizztXg2EhJ99WN0zhGCli49zkrm7TnEDqlRaTBiUImdB91Xellj7Na64NL46fuDr/edr/fCT9+cn747D1+w0mIwyQn9/eAYThuF2jWkriE0/LsgRygCL2WJ1lHXSAv8pJUWWgJtRWvlsJOjx6Tlx7HzdkTI/+g7j3Gw+8lJ55TOQQiTSs3TEP06eFf6XODpbd4eO+f+xu8cO998/TX7+xf+5N/4N/CTH/8IVHkcJyyp3lwkNe9iDuLP118tDcCMCIzJ2pcUZIn7nJjFaNdjnpOefEYVHt1yRRSpG7dPv4b1d8qXd9w8ePnrnfPccVl4P5zb/StuS/Zn9JP+eOMYjp072MltUW6tUG93vFS6RTVKCWyjrrcQPVGD0qGfod9QhLosLNuN9Xbj9vJCKZJDaA7GfjKGR3WoVJaqqUJs0boNASZLC1yjteguPDvneYYHdws1KM9BtumMxKNyFR3fIT4iEmmGeyg+necZYHc6je86fmkjICIL8J8H/ht51z8D/Jncan8G+KeAf+AXPO8aPvLH/8RXCQpF3hhGK0k82RYpHm48AECLaTvZYDHTgVpCDWgONAyvElZWJDsAPWXJLHJ/ACnZp69ZdycMjDl4cyCpmyVGhw8PfKB7p/vJIRW6ccrg/WF8/Xnw03f4fFZOa+zm0Y+/C3Lc4F3xtwM9nGLK6o1NGqtF/b+6IiPotkUrLQVHZdYvTXKqcvS0n9l+ehwPHo933s+nETgZjGJYdTSHqWgOp8yhtphGadGsRH9+zTTIB2jjm89f+Lf+/F/g/ctn/ta/5U+x/fH/4HNTJ6fCPFpspbRotxXwHLMumfsH713TMOiFCUQk9fT0nkYkh4SnGY/nmMe8xWjPbtTlFuW40jBdePSd++tXGMKPfrwGlbgsDJy23hm8Y7LzOPYMNJ23x4Hown1pnCNnI/STrRWoKxXh7ZuveZw915ywlKT0thA4Mal8eTxygMpALYRIov0imsW6xSi2IpWl3KnriohTNYzn589fBxjIiO7UWkILslRGsl9lxNxD02iOU0u8rNZLhHY6znnenunYLz7+akQC/1ngX3P33wSYP3Oj/3PAv/iLnvRx+Mh/5E//cZfkSHvG7NHkM1soYwClMFt65QopJ8VzKvHGvg5xxjJz+JEz4bPbbniQinykldRgh5W6MDzYdSfJRpsZCaEfODeiJ7W498HuB++Pn/JmK29j4ewlx5FZgkrOGErvMN5O5KHICeP9QA44rHB4Y5OFTRYWKqYRbvoIUGjRSpWUP/cIY8+zc1rnsIPjPNnPnWM/OM+Dox8c4+SUKbASnquVGmPAb4ELeHO8AUvFW6G27EOXOCfVB+MYfPP24PzLv8lj3zk6/Km/6U+FEEZKts+W1zbl1mb4+WHjew6HseyyDEMwjcIUXpUPm19yUOtczCV1HTX6RaTiumC6Y7pgcjKoUBpSb9y2hcfRk9ptqMdrUFY8pdGPh/O+7+DOOAdNnbUImtiGj0jLHofxvocwS9NCWxbW+xZ8DZT3/aCUlTYnBElFy1M813FKy4nSo8e48hKb/3HGNXv0HhUuDRk0yLRXlUGP4bpkhUsV1zkNW5IyDHP+jqFZwYn1+isBBj8cfy8fUoE5eCR//buBf/0PegGRYGeJ1vgliRYTGPTRr81/lYhKdBcOnScmCRKaCvATT9CGjJwwdEZ4xYjQe3ZpqQg1p/kWLbFpRNFi0QBXNXIxc3ofdE6GNrp3DjnpVB7nzttpvNngcTZ6XxjDc1Bkdgm7JHsuy2ZEe+mxB8lp0OnSWb3yfsJvP04WqdyXO1+9vHJbb2CwPx7sxxklTBtBgBHjHCfvfWfvB11mjc2zzKi0pbLdNtot+hqGdMY0rOk5xoC6wLIWOHfMjNJWJA3Nv/0X/xKildeXT/yxP/pHqZpTiWvDR496ekq2RQQ6tfD1iuxGqjEz04Fr0z83v/2iSCCbkTyrD1JvSA3KuLYX5HSWu7NbtFw/hkBbefSDIlFSPt87VQpa15iizE5tN1BnP0Kdeak1VayMQedxdPYjWqZ92RA6lMANyrLSlkJdwomYnYz+wHuPPL3ULHVnG/g4Y7qRR1SgCUS7Km3bLsrvMEvau8Xkpm6hZnW1CmdkmuXYhCkDsBQQrdQWg1tCBu34zv33y44mvwN/J/APf7j7vysif5pIB/7cz/3tu14oN8YsAUU1YOKDaU+jJOLxpQMYfJIhRHNskwx0EM+ypP1KDI8WNaTHa5UUxvRsOfZIuPAayritVmqLbsJDOsN7kE2SAdctaq+7d7oabiWopYezH53DKo5S68LBRj/gPI2am6GfPeiyQtJ8HTsDhR5qyA7H53fosOgXvl4+c7/fWWtjTqmpuiBSMDuvgab7aRxumBpanU/3wvap0V5aqCZtFapylBgb7gt0GdEN1xVvwcLc9x0lmIbrqvgojCNy0n//d36Lv/AX/xz3lxtfvf4aWhcGC6hy+KAYqd0YgOCzShDHnOB8gYIX6BcDW37eKBgzgsiSmCpSBbGKFotpx9uJ03h5+Yr39zcOP0OgVRf2o1M1RrqdRwiQqlRs75wmbC2rBIfiJaKP2FiGaQ0ws1bWZaWeD8bZiXkvzhgddOPl9StGP8AHWjZaU25LifHmJRzYue/Ril4K/QgVYvcYbFK05nSnQlsC6Ov95LHv7Dkxe1i6wpy6JVqIGYQhIhLU4hieq1JwNaQbA6GUX1Ek4O5vwE9+7r6/76/0daIsEirCSNT45ULwMud3op14pgNJtsGnHqCGCIgJYobnkG/PbsJx9mwuitcsqiiShFtg5rWJTKMJQDUNUhIjy5MLjcYxUu77dN7t4Is57x2OoZg/W4dPMwYWaBzRjx56ADleauQZsBhEup+dsw+0T55DgIlfjgfnPni53Xh5eeW+3mh1Y4hQ+sDPnc/7zzhPhaIsTbi9KD/+9ZXbpxVZhFMMXwq+RgXmrDHuvPcHx2F4VXo3/OEsS5BopHSOsUeuW0P7/jhP/sJf/PP8+k9+wv3+azRf6T1Ya+gZijeqUR7NzR6V2mRnUtIQ6MUFmJv9YzRwYQb+IT3IGRHOghOpTnjRhrYX3A5+95s3hpccsipQ1+CipGCL0bEOb4+d4oofndGd27pRKnQGxwCxwFukLbz86McwQqW42Mr9tvBy32KTtxWTijPQcmepwrbW+JsSKkWjsw/LNVvwuoQIigRugA/MzpwyPOdhKO41la3iDHimu+6hKQEl989U2QqJLTdP8lykT5Tvu54A8ITtJUPlJ4z/EdKYbb+z7IcE3zxjz2wJ9utn1vSu+2a4dVEypxGQKMfiMRaa4aBQlhA+XYn86xwxKzClHoO7PTpHh2MI3QoujVlYHMPodMyinVaukrhfUUiIT5Zs9zT60Tm7US3epZQamnvrxqfXV15uL9zWF0Qq7/vJdts4Ec7jt3F3SlFe741f/40brz9eKE04vCNaKOuKbzdwYz8fvO877/vJYSe6FboUvHa0Rl+DEJ2HrQhVCuIPqsDPPn/hL//mb/GTn/xNaHnltm0MorcATUUcKTjzXAjIyAlTER34NALybSMw77+igZw2bR504jEi+ZVQo4m/WXRd7scD4wZVMB0c5zsmC+bOentlP0/GceApwS4Woq9DnO3e0FYYxztv+5kTiCt1LbTiiBU+1Re2plQGSym83u8sRfjy9gj2Ya1QlKMPHo83fJwI4e3PHlL5YgmHSkRW3YJwVafgba78MUIfso9QOtZS829RITt7rNFWnjiM9c6Uv7scWqk5TPYXH98rIyDCzBznns5GCM2vDeAXUBdsVI2BHxmmx5hni+ELs4w4si0zqwnhSZJ8YZ7RqlxVrTAYhpuGnFns1Dj5xrXxh6XVTcM02zcHxpCsz2LZiRh14NJqTBiug9unBXkAD6ecmqo2jmvBHoZ25XVb+Wp75eV2Z1tWltZyGtEKVE4X9tFxjKUVGMpta/zGr3/i06eFWgLArKpRu15v9FIZ+86Xzye/++UbhhjLfeF8DGSttFIjxThL5qsWPQINxBqib5yPnb/0m7/NT/7Ib7Hdfx3JLsOak55FwGlMgtDM/yM1m+mAXODg9fs0Aq45iUdC1twEsywxGnh2XIo7PoR+nuwP4f1daPWVz18GrVXe3mNQae8HWhYOU45TkCEsuqBF6XJS1DlN+eZtx/tJ02iGWktjbSFpvtY7lZAoh8Fpxu9+886iym2pvNw+0aogPrBz5xgn1iOqPQd8/bOvUXHWGkNuSlCfcspxOBtLnMfMcIm8vy4LmuG8e/TSdAu+gOQcRXLtzf4ZXFI5a07r/p53EcITRMr/Ac/apsgHrTS+DYyUUrEcTBqbNLoO/QMY6H085xWKZ/NQbHpJayo59dXzfkvndfZON2PXwamFMSq9R//4+wn7gG5gdvk7gr7stFYYVI4Rfg4ZSPEY96Urq0UFQBaBh0F1pEFZhfapcq8ra1m41421/n+p+7tQ69Ztzw/6teej9z7GmHO+a71r7b3P2eec1AdVR1KVi8RALjWQGy+UIKjojUELMRDJjRdJqaAYCiJqvBG8EEUFYygIaBAhJoLoRYqgiGKVJtSpqpw6Z3+v9X7NOcbo/floXrT29DHed691drnPqWJlsOaa8x1zzPHRe3/a09q//dv/PzNnG9zJaaL1wOXSmJaZ5/cXLpdnM83ME198fuKLV4+EVOlU5vmAzAstRc698/bdmZ+9e88myve/+CGFyrlcORwzRQvbdiUQqKGYslLqJA10sfl3GswH+PDyzO//wY/48svfRuLMFLI73xhvfaSso5WI8z/MwSlaAFDjEYzWny3+YC5Uvui1y0cBwUAZcezIJNtj35C2cH15z/HhSN0+EEQoJVCKopqpmtF4oPQLUzpAaFzXhkomp8i5GE8/B9dXmDNpCqTQ6eWKBuG8VtbnM8EzgUjnkM0d6PlSeG6FVlZoxXAtD22ilcvakWB+lilAFOt/bNpJwSDa5l2fPoaAglOO3Wynt46GQHSim8RonAUJNg4/ZOjuQVmRmz/pN9y+M0EAcCBQbH59JJGDPOh5tIhr/UXzdJda0TzRtrJHPB1+A2ppYm+mxHIrNyxCqo+fih9MSUZcEXOvoAn0XtlaY6VaDY2JZrYKpTRK2agSPO11AQcNjmvYcF+WSPWx56AGZGUCpzgzHyemluCq9EsnFJjJTDLZoElITDEzYUq6OdlOXXrkWg0MlSC8PH+g9Y3PX5/4/OmB4zzZGGu0+puQCflAv1x5++7C27cvfPnD3+B3/9w/zJvnN7ysZ/7M7/5p/uCnP+Lf+5t/A2KkbN1MVFW5JsgxmBFMNO2DWq78/Kuv+NHPfko+PhKXGYKpIjdJe9q/l2oyjFFuvf6ukdaj7/YWANT/vSvkdhsrlu6loEure5eYUAOxJbIuzByRrUOZbHZfHih1I0RlvXTWLVCZELUhrF6UqIEUDZda5iPzFJhmE7XpodOiLbKvP7xjfbma2lMtSDsjvTIH4TBHlhTNZn290OsGvRKoNlzVCsfDZK5LUZimxHGKTNnmCVpQ9ArqeEBIjnOBGewMXoxrLaacXHzXVYUlImqGO/2uHFbYHbO+7fYdCQKydwLG/4LcqkPZSwR3D44KOcNkxAxqpW+VFgsaG4Ru9N+g3pIbB+R2YFzWnTHPHWJwMNBtsTz1MI9BMxspBjUa3VeicQu6W50bO8bfp+EQgmUDIS2wGZgTCGaWQWOrF5YUOR0fWB5mZBXCBqlHYgtIU7Ka5VjU4OwwwxhjN9PU3ozlt65XRCrL9MQ8eQ2fEzUESggcjo8cv/gB21dv2NYfUwsEEh/ePfPh+YU/9ed+h9/9c3+Wl+uVGIwy2zUiJEvhz4UQzPDkeDADlPmYuF4Lf/CTn/D5l7/BfDwRgjskO5XapgjxWn9MwUFX3/1bpPdAb2Phm2uSuL/E7Y/sKwiEPesS431siq4msvq0PHFZ3xNqRCtMYSGFma2uvHn3ht4beT6y1gu9BeZ8IkhDsjAfk9X+odGTOFNU6VpZt42v3p45f3hBWiNKJbRq2gSl2pSlz5RGvX2PwQxgY+jUdiUl80Yw/n+ik1kmu5bqcLaiG3lzlJfdOS3diHMhJRuCSsk3Ptv9QwhI8pJJjcNik6ntPwRBQMa+b82gIYiw/+++FAhinAIPBFI7TI2eKzUXKwHasGsWNJlisJEpmmsFANhoMXCXI8j+s2KLfyvVDDxQqja23igGl5HSxCHNqM5on1CdQGZSPDLHEy0dKeFATUdO8cTLOXB5p+Q6cTotxFU5MJGTsQTDJGah1YyRNscJ3Tp9NVUl6UAygRKJRnJqvXG+PtO1cVyyD0LZcWyl0iKkZaK3wLu3L3z19XvO5w3twvOHF37vb/4eLXT+zJ//0/z0J7/gD37/D4yRKE617oHehFKUEDuPD5E0L8QJQjiztitfv3vHz958zePrL4xGLIYF3FN9dWA22ERea2PXdzfmPuYonPx1t/BHMBjELVE/V4rhK6siJZBaRnqlvFRiSRAC5/NKmjP10qhnkDRTqLSeiPFA6RuH04n5GAkJuhZCNqA2hk5pKx9eLrz9+pm3b1bWSyP0Rg6NWUB6ciw72t/6oJtod/quUmnEoPSs1G7g5lZMoWjZItccmafg/g3N4CnvsLbe6bVi05jZrN1jAp9sbeKZQUxGnXcNgdYbsm6mtl37dz8IjLVuhopjz7h1BVTV/eXGY9wyPEKYFGqnz41eKtLVVH19KCjGbJJdzaaxJJrNdFejxjI2nKZAQ7uJhxQ6RTvrutGiGBlHoLTCplBIZk3mzrc5J1QmYlyQ5ZH08AU9n3ipkRIX0uFzSj3w/NDo586iM0fNpBLJPZNroF8cw2jN3pPaUFOIIzW2FTAAHwKmurytiJg1dowOMAKlmUNt68qbr9/w4ze/z4/evOe6FWKKnF+ekSRMp4W//bf+Dr/3txs/+unfdXVnz+Kb0Ij0HilFuG6dspk+YEydeYaXy8pPf/FzfvO3/hTLKdElY0LeWCt3p/rav3tzZahmrd59wbdvCQAj/b/rDKkHAukQWyRrRlB620gtk3riej3Tt06tBV0NaM0xo2oS56VcyVNgOX3O4ZSgr0QKkoEpUtrGh5cX3vziPW9+8Z71rCQmptjZmthQEJEpBZYcaCUg+PihNrQJ9OZ7jdg16YQzM9Q14ZdWI6pGDyYYqDoS1ZgS2UliQYIFABFqa/RWnVRnk6TBSU4xRkLvdAKTt77q9fqt6+87EQTA7NZHPoDs4yW2N6trrA+cwPSqXHAkk/MtCIwpwl4KImUXswgBT5UMJ6CZDFlXc8bpzXrHChRRNq1svbHWjZaELaiJl3ShaaTQ2FphBTbp6JSI82K4QrQ6TwIcjwstHenJ1HfnONOeO+25EksgaWDCdANjDtRU2D6s9LWbKq36XASmkpRCNP9AIqqdqgWku1CHzUjEEJwOHVjmBfLCm8sLH96/8PJ8NXpwCJRt5bQc+PKL13z9s5/x7uUNMgU3X7EZA62mxhRCpDdYr53rpTERSOHA4Zh5Ob/hq1+8483bC09PkajZOyf42O3ov9rPWu8XPncLXR2IwcbB78sB7/QO7wi6dXgCWFu3JEKr5D5zyCfW84Xr+6uVebWbr8O5USvkJdNWpXTl6eFzTocvCbGjciblTpoCW115//49P/vxG95+/YxWZ/2JKTeJzaNjRIVmXZGgZhoTFKiWTVVv+QWhagDMFbuLyeLVDhoSxMkEVmOwWQKwgC/B5jHc67KrqQSZtXlDJBAjpLbvkna4dYxOT6QpEMp/KFqE7Iv+l4BMEaMF4zsUfiEAEFyownT+QzA3oBASEpKnQrJHY1x9aKi2qFqf1gaIoYuacUc3teDSm/VqI7Tk6Zmjr8F7tKXZO045Eg4zLSa2XinXMzpHJM6glVKu1LXTixgVugVoEW22W82YVn+cIlS76Eur6GZt0SQ2JFJrpQmkKbqBpTDPkxFFvJlaW0dyYJpmdJ5p7ZltK7fBo2RFTwqRh8OR6/WZd6UaySdBr44+e3GkpnxOW6GuAabMPAeyKMu88fLhwi9+9p4ffE+Zl8nbeZ+k8D3Y7tj0412+3X/XvST4tByQERRUvUtgoJd2rFvQgukrbkJ9qYg7MHegrRW9mhKTFmsNPzw88bS8Zo5PdN0Mw4ida914+/XXfPXTt7x7t7KtkSQgw1tCGlHNhi1IBOxvppCookQx+ZMQ3badAOJZnn+O0NXEan3K0oxrMy6YZXMzGCBpA1YG0Jpqsd4Ea7ENTWKhdmhdSN3CY2vq92GU/G+5fWeCwK29xh4I9l3fSTUy+hx+IQwLZpGAEBGJiCT/sn61UQZuRKHbgayuuxY8TTMOvgWBTtFKoaNxNP10r2ntZwP+UhSmEOij9xsgzYkpLaxMXLqyrVcbKOrKVhqtCFSlXtVwBN8FtSmpVbQBwRj3Kj5PXqyfbEBQQ5K54c6ztbdStjpRxTwPiRGVxvl6pWyVbd0QLMOqrVPXiiRlvaz84d/9u1y2sy2qOowquu3YlnRZG6oIFIEtkpmYw0QPymE68f7NG17eXVjPjewzEhYAjBwzFvXIAHQs/JtnzF1W4Kv700zBI79LTOzYDQrSAqHbrilXob40Uk3GESmFct0IXahbg8WclZ+WJ47pgVgz7jfHy/nM27fv+dnPv+LDu2e0BUQmai+mOSCB3itRhUkiIs3EcNVqf9HmYqqYd0IYib1df61667N3RCxDKRW2BsnboCG4lIpAUyH0TgimS2nt1mzCJdpc1k0p1dqPKRtybMIindaVUjr9u+5FuKf9jiHbbq+3aAh2okc5gA1SsBsy2uUtYnyBMX9uXQDb8XtvjpLabrCVQi0NVaH0ZrUZ1lGomDhkEzV+vafbIQaiJkyOIlBjgCQsMcM0Ew4L8eg9+TghOlE2OK8ra/FBog5gs98hCa0Yuci445hyrHrA006eEqLBzES7+qx7JwM5B3KO5MnAqdqM07DVyjFMEITLunGpF3pvZrmNlUsSTDW4bo23X72lSSXO1trUZi5OhKEU7IIsIRBaIjQ7DpmM0jnEmdgC5WWjvpgcm0S5Y2zqDe1vd1+fZgFtBAn5RkwAvy7MXcovir1EFEKP9K0RaiS2SKuBdbu63buxH7s2Yp44phNP8xMP+USogaawdeEX78784Y+/5sP5bLtqzCQJmEdko8WMtg3F+ANr2+jaWMJE0c3eGxgfJUQXW7VzGZhsBqU2SrfBNWlKqhC2TgidECzDGNZjIr7hBPVhLZv/VjfOsYxUaN2+uo6ZizDSL2t3D925b7h9J4IA3Hb/8fNdnMcSKouOpuzm4qE+OYj/JoTg/mtOkEBoLq9US6GWsru/brXSvFRongl0UZPpthaFaxDY60SEFIOlbZKRYNzveFiQ+QE5PBGWR8JyoqcDq2aEGc2RFhUKVB8oknCwRds3WmmUVhANtNrNf6BaCxDMm0BceVnUvPokGLEp58RhmcwxOJhc9XldmdbEtCXyNKS6rOMSvesSnIUZJZnsVTMl2751IgENaiOpgtPTTSE3pWT8BTKpRbKNWzKRkCpsLxvtUpGFoU+y4zmjztcuUO3i/ygofJoJfEsQgPFY3Wkft0Bgub+USPCv/uLBf+vmzlQ7h6eF16fPeVqeWGSxWf3eWV8qX//kA1/97EqTRMhCp9GkMcXM568/5/tffs76/I5f/OQPWMuFJJBCY1MI2swDQpVAcC9HDPzUioSM9NWyU2xupQNVA6XB+VqtsyM2gGXmJ8IQxTVRVwv4vZmwawyWBV6um0nclcY0lf1xNkQX+CNYw9+tIPDpvwW7gILeZQTgB2aw823hGybg04VhlAYmvllqY9s2My1priLsw0RKtH+7Io4Mb7cIPbr1uL94QIhB6D7LHXMkzxPpdCAsB3SakXmGaSExE1qCbjbauQobM60e0HyACJoWairoWQnV/OZaaaxlpV0rh3wihWx1YTBuQpqzu+8GVCvznDkcFuZlMg2BrVK7crnajL1E8yeUsqHOWR+LUjv0Yii1RGP1ta2Z8lAKt5Rd7bOnnphl4pAWsvsopCBMREIVtufN9BIe79q6ezz3QFCBeiP8fJQZ3Kf+HwGG/hz9rpFbLEAb89NnMBDoibAF+lmtZFiBovStIxGmlPn89Dmfnz5nCpO1F6MQSZTnyvNXZ+qLopPp+tu49cbxdOTP/YV/jP/In/0tfvKHf8D79898eFuRGOnBQOkcsgOHGJU9mjCIza4HAtGk4xx4JSZCgpAChMTWKq3aF5izUQh3YHkQE84JDoTsgjqVbb0SxNqMU85GJHItAoBe/0OQCcB9IBhdAccFBEeAuNsRZP+b4AdoSC0HcdPQ4NJVqtTSWd2Uwnj+OkYMTFXHmSihC4ngTMIAoROSEHIgTokSE1ESJSRqjAZSNavNBKOCEjDvgA7aq7Wxgglzbr2wrgpbZEmmUouCVCG1RAuNXmC9VM7XKznNLNFcmei2NqaYQJXSVqY5cTwdOB6PNvOeMstyYloyKRswBpB7Y54icwpm4lqhImi0i1ZCJGCtU+0QGp5umhhHDJEpJJaYOabEMQqhFBu77gnZAkUL9Vxg7TsvwERfXOyli2EAzTIF/aYA8OnPI4iMMgEHxLpdE8qddJYYeSiWSKyJ7awGEIogG4QsvPrscz5/+JxZFthsrjHkSCsbH7565vL2SmgW5HvxbpB0Dqfv8cPf/tN8/sX3+Lu//xOKTvQwsenmXgoj7ffNQptpgyYhhYpWP65BUDe1jTmRpmhfOaDN7O/KtlGry6gI+xwNwTOEYG1gOzbFB9EsIBgPQUhNCaH5sTEvgm+7fWeCwE064q4cMN7v3UVgO8hwF3MhYRv2GdvWCBAODAbvFHScXOGDF+PV2sAUJLCDN70R1VKxGIU0J8JpRg4zLR2pYWLViZVMjbPNn7eO1korG8iKZlOGsSaW8Q9at1Hdy7ZRz/BSLhzkwCKLjQxvG1qVmCcePkvIhiHWIXB4OEIXMyBRTD23m+b8w+OJ4+mBt++e6U2IceJwOFH6BQRiEhZmHh9nrpuJXp43dTmwm6Ntax2No0+tUM1HIMXInCKPy8LjMnGIyiLVsooihC2gF8c3Lo12GWpDYTTx7Lw0haZIk48Xfx0BQW94wKeZgd5O7+Ab4B596iA5QehFkS2y9AOX6wfaS0Nih9J5OD3yxdMXHgDs8Tln6tp5/4sPfPWjr1mfN3NvCv42UqTHDOHEtiV+/JMz/99//w95uXY0ZGo3/0K60ck7LqZaVnLsHI8TeYn0dYNSrH2cjOIb40zKC9OcmCchSCHmDqGzrlau1tYd/2DvkAQnCIkvEyvxbOMy1yQbMIpxbIqGF33b7VcGARH5nwP/SeBnqvqP+H2vMc+BP40Jh/znhpioiPxl4C/5KfznVfXf/FWvYctxNPFuIKHswBL7BzY0ePwwrgjXaPfaNwRXIY7mKpPyTJ4KpVUjYXQrCVRsChFPKa3PaoBLazb3Py/mg5CTOQi3HL3rIKiYVbfMD/R0ZEPsNWqhi3UelmkipwO5RUIRCJGmgXPtbNeCVugB5j55+878AFNOls00MTMRvUI1W/IwmYFrjgt04XA88Pj4SEo/53K98nI+c3yc2WpBFKJEcgqcjjOXy8y6VUotVOy4dqwF25sn1cEAqdYKeUo8zAeeDgce55mHnFlCJ/ZOTpnWhO1DQVert/VqmIaqT3s6rVW8+3Fb4MEetwcGvH3o4OCn5cAI/rBnBCMbAAfiwMxZW2TSmUknYjXX59wSx3hkCQuhWs/dtCUDWymc3565vD1beYB4GRUNqyHz7u3K//P/9R8QKfzk52+o3dqrTQNoM4GX3hD3VtxUWZvJndmin8hRKFTrZhYFIinNHI5HDsdESpWlZKbDxPVyZbsW1mth2xrtziRnOGyJRz9Rp913NYHRamrLVhoYhtTaH68c+F8A/2Pgf3V3378I/J9U9V8WkX/R//0viMhfwJSH/yLwQ+DfFpHfVd1j2Tfebrs/ezAI2ne3IMeE9y4Bu57AxymO1exu15wn+tRY5gPaRv0kbJMputTiSrAk7zSMkeGOuqVYmMz3jSh2gLeNrQmbNhfwDKTJAomB+eYm09io7YJMkeVgnQNpCcmBtGRSDiSUEjp6hbAJWhXM2AdVpdVqRJJNKRdbzInM5GYbEiNpTrZYRHl8PPH02SPrV1e++uorJHaOj7PVj7URp8TxcOSzz5rNupcK1eTAUOtUoMFrR9tlsmROaeKz4wOfPx55ejxZJpAqWYRE5uX9la9/+o52qeRDgBKQKh/vXi79/lGa72XBL/38DYv/WwFC/eQrKKEFw1dWIQwqsVrrdpGF3DOxRGhGvkJhO29c3j5Tz5tdc1VJzVSsarMs8cPXF/76u38flQt5uiKhosly9VaVOZoaUZCGYtLrW++UHtAQSfORRZQYNy7thVaLBd+UWY4nHh5nQizUGpmmxHK4cj2vXF6uXM4bm5ex6tnx3vLueEkUQd0+z78P1k1LHny/5fYrg4Cq/l9E5E9/cvc/DfyT/vP/Evg/A/+C3/+vqeoK/G0R+ZvAPwH8O7/qdWw/8u8j5xtMwQ7BgaWPsgB7h3v7MAS37OoZlsXnEIzQM+XENGe29cq6rWzrartqSKbmQrUUOECYxAg7k3gVYmOcrXSaq9wYN76xXi9sa6eGmRoPtHigBKVKJapF+lZh9VFWgphrziFba61E2rlxeXdhu24+/WU7YlBrS6Y50ktn21ZaqxwOs0+GmXhEnBKfffmK3+o/pEvlq6++4uuvv2I+/AYPj09IMpQ7SOP1Z5/tQev9+cLLdWWtja4mexVDIDRhyZnj6cjj48Rnx4XXpyNPp5klC7NksmTK1nn71Qvv35zRTVhOB2KN9MvHQK6fVi8H5OPFP7gC98FA+eaAMMpCf75xnXTfEFQMldcVykuhvDRYIUyJKSVmFqaaiZuZ1NBBa+fy9oXnrz/QLoWYOtICiUjZTOWnZaHXxqorGi/MD4pEl3DDlaqbGi9AIwHr9oQmFA1onE2HMShC5PxSTIDFHZvzvJg7UhBSsqGzaVrIyYa5RK6Eq5377kGg91swQEe/zAI5LpBbhjdhFfdU/Obbr4sJ/GCIiarqj0Xk+37/bwF/7e5xf+D3/crbfYsw7PfdsgQZwMboDN2NSw7w0Mwqkw3iYMYMeUqUKTNNmXnOlHVm3VYzfShll2FqakKQXRQypgQbodKRFAhzYpoTOR8omimauWjipRautdJCRScjDRUwjf8WYOv0vFLjgSoLJXa6iBlMqOnnhx7oW6dvZmvd1Sy3c17IYoak5VJ49+Yd5+czKWeW5Wh1X4ikIKQl8eUPXtOlotJ5/+49L89nPvvsNXPKXMsZBXKA168fibPw9v0H3nx45vm8mtdfTIhEpnni8enI0+PC09PE8Rh5OEaW0EmqxJ5oa+Crn7/n6599oF2ExMIhPZDDDIVRt416w34edX9zgPDTxT+Cwi+1DNlrX4VbIPi0LFRTlO6XSr02xyc6ocM0L8wspJoIm9CDolGpWnh5856Xt8+0cycchWPKpDjxbludMxGsfIlGn97WDZJ1bGKIzDFBNb1C25cDsYsp/sSJkA829UdzqbpA1USyXiAx2cyAukpWkmyloPMTAlbelrp5ttmsi9BcjbpDr5Z6GX8u2IbWMSFaQHL81rX3Jw0MfhMt6RthyXvfgd/5h17t5UC4zwD0rgTw73r3D9n/rY4FmlQ0wXriPUZ6zRTf4XISSrYe+jIlq59W86t3twGqNprYz4owHSaCC0y0JbOlzLVlaAmVmRhnZBM2Mj1lqpiMWAyZEgIN9W5QtCmwkCkERHzuu9lO/vj5I4d54Txd2J43xNVvylpovZHmxOOrR/KUmZYJUqA6WTwG8+6bJfP6y89A4Ec/+gkf3n/gD//wx5wej+RZyLPQemU6JF49zSwLvHq1cN0apbhPQxfynDieFh6OE4+PmcMixFCQZpOM13Ph7dsLP/rDX/D+/ZkgC1lmlnQitoyue/v+dgWM3f3T3b/wcSC4BwV/6cpxjMhqoNu1pFZCIVg5VhuhB5ImYrNW5tRnFhZXcLINs4XOVlZevn7m+vaKdmU5Jh6nBYmZc9+IDRou6CGVQHe5s2THLFhgyCFSHK1nkNfyTJoPpPlAjJUo3QBi3thzhEicTLEYsYzG9DTMFi/GRI4Th+XI8XphW1eKX7Orf22todrNTwM7POJybeKltKhJ33/b7dcNAj8d0uIi8pvAz/z+PwB+5+5xvw386Jue4N534B/7x3+oYHyA24n1APBLM5B7S2D/voOJeyBIINbm0RAQP4nay95STEHoLbIF6y40rSZCge0S3ds702GmJ6EHcQDaSENzzISQLQjMmSIzRRbvHCTO1WSxYwrEZTZrMvRmbybCVhWN3X3irF89HbLtFlGRajVrXzulF4hwfDzy9PDIMh8pK2Z5NSdyElqEU3wg59lVen7M12/e8ubNGw4PmfkQeHiynWnOE/m0cDwt1KbUdncRpsCcI4fDxDyJzc6rKeJs15Wf/vyZn/zkA5dzJU9Hnh6+4LC84nuf/4Ckmb52Qvz0fPHx7n9fEtzff1/zj7//iDwAO2f4o8eABYYNpBLc0eewHGzCUhZCS+j19tAunXLduLzf2J6VNMPjNHEIka00Zg2cazUVaHeh6lcIS/RrK1JltaASIyFAVUUo1hLOMB2OTMuByGYgnQpdMk2MY5DnmWmZicFm/0eXS4KQJDDFzDIr85Qp25VSNtZrtPJC7HpstVFi3X0zu68N070AEePCfNvt1w0C/wbwzwD/sn//393d/6+KyL+CAYN/Hvh3f9WTCQYEOsXJFGToBlgNlHmgwy4TtnsMer9QgvEKxUEtI7yb6q2NHhvjjd4ImohioIopv3SqQuzu9QaQZde4t0usG6kmVGLM5GjUzK1XkIj2ioaChEyKkYnA+VIol7Oh+FOAGBGt0IoJjOSESCbEQLtY9iEpQA70UpnmzJxm4inS1sZ62ehbo/bGWjbWzfAKDYW5RyMOzTMpd35DMqfHz/jxT37Cz3/2E968+Zr61YWHp5kvtic+/+KJ5Xgg5sSUIHt3JEVT6U0xME3m4dBLZ90K55cX3rx5x5u3G0mO/PYPv8erV1/wcHzFnE8s8wOZCd0wuWsZjE52ToBWZxN+QxawTwjKpwv//meLKPtg014kdNveKSgrMVWWWUBNlv2wHEmaCRX0Ytle0cLLhzPndy9o6RyOkVNK5A6dxqRCLB0tHVJEDhbZJNlMh7rKVZEKC9TeQMwkJuSJ5ZRJ8wIxMWUjgxEmkx4JEVI2NmhOLpiTTJnITXEI7r7lDEJytvOSIlPOLHNmK5XezLl6LZX1urJum3lrMoKA8MfyIhSR/w0GAn4pIn8A/Lexxf9XReQvAb8P/GcBVPWvi8hfBf6Gn9p/7ld1BvbX4Q7xV0W0ex/YBmluXYHbIJAFAuOEiwy+unjAsAuk9e4GnkayIEY6zUxGOrYotdOIZivWzeyxBSOSbNtKT2FHgntvVC2UeqUnYZofMfWcTIyZHjM9TuY0OwvvV+VaVlQSMU7EKEzTxCEfWbdM2xJ6tZpScyUgzF3Qwu4vuMSZ4+nIvBzopVnNSCJ2S1VrV7KkPfNJU+SzL058/vr7vP7ie/ziBz/gxz/9u/ziq5/wfH7HH/7hL/jq6/ccj0eODwdODweWw8Q026y6dOi98+HlzPVyYbuu9Np9kvGJH/7GKz777Dd59eoL5ukA3bwMews2zefuTCGEQb+4W+z6UQawtwb36+2bWgYWBEwZygFkHykcVbhVkZ3eN9DVxsubkpu1y5ZlZp5nq923QtXCuq68/cVbnt88E1s3wFNhaiAxsmond0XWBs00EWQ2Gzqd7VqTKaLa0FZZQycmk6rLS2A+TMYoFCEvB9q18O5l5bIZPyNO2X/vOgT7gJC1rUOMJLHjKckcq5NnrmVbWNeFWgtNhcv5wvl8hd4ptRjlfQ+MtsK+7fb30h34L3zLr/6pb3n8XwH+yq963k/+ymv77p4B+Jaw9374xr7Q3YDRzir86FntZs5EviuJs9g8Sk45o9pNXloFtHrfVWkBSEILJjTSo9BTZEomHkI+EU9PtHigpwOaFooc2MhsTJyYWDbl3aXxUpR1NUmrKc5MhwdSWlhDZOvBslj3REwhIV3YXsxA43y90KuSJZNDIs2ZLDPzPDFN2fTxereTLpGUvUzRwKs88/jZEz/8Uz/k/fuv+MVXP+GrN1/x4Z3Zlp/PZ96+ObMcMsuSSNncimII3tcXcjzwcHri88++5NXTa+bjyQRBFUQjpVTaVpnzQiChpbszjh9/bpkAxdqHMnABNU4CdFQ/BQxuQWAng9HsPFutyMCGvFeGyEZMlayNIhtQ3OzTxv97Ba1KXRuX88rLuyvrc4NoU3ypCKF0UlfmDosEJjCBzxp2ByCJlikSFN0Clc4yR7psEBNpVtvhvXXYNFCa8NOfv2NtgSVlJC9MxwdjJ2qgdQMVRaJPhI5OVCNPEzmCqNmYGQ6Q7HjUboxVrTaZKM5c7bjmhBqh6Vtu3wnGoG3yNzqY3p3UGxg4IEGv/T05uOn4y/5k+sljGWql+6NGIPGbWNrlyZ51FqLpCrZ6pfXKtWys0tFlJj1MLHMiLDNMGc0zMlkgKExEzdAircGcE09xZuqJq0auLbKVlfPLM4+fnQhhZkoTJSysshF7ILWELoo+KevTSlttAKZerU1ZWiXO3cCjbMKjAx2PYrJnojY3ETDK8nRaePjsie//8IdsW+V6bpyfz7z/8JaXy3tau9i2LM10EvLEcT7w+PAZr55eczi+IsTFacBK7ZuN50qiVyuxljTTiyHSQY1b4Wfp491/rHXgtsA/BQluKKLeDzHowANGt8hgXcsU7HtMxguRUJFQSGkiZQihQjSTj/PLhffvnnl+c2V9VtICoUIoEKtlHJMopxA5R2N6ttJRom8qtsmKc0sIai3l1omnyMPTwvEhk+ZASuZF8eb9O96fN6ZpIk+R+Xjg+PREmmZrNeaAlgu9XKGbQra1zLtnB4HazESnawO1xd+bdZSURhDIUdy3UG0orffdfPebbt+JIGAVgI31yjjJ2tllUoVRLDJSQLgN9nz8+/GUXjqMOnP/fvcPR1KNoxDuWpKOtApGpcUIQTlGmDJxsgGNkDNxnq0LES1bEG3ObVcitktHoJeNde1ca2BjRqvQZWaaYZ4m4sMBWkDXbuPLdK7XlTxPHJeJLIm2GZDVNit/QjRnpEoghWwDVGKgaLtzXQ5DKyxkoiSWFDgeAq+/EFQbrRdKudDaBjR7qLimXVyIyTwOxM+HajMLMIFyLVxfNg75YBbqvZkGYhsEsI5quGECvp73ml7vkcFfZhDZBN19FjBKwBH0LTAM81ilACBiVuI2nus8+tAJsVHahXcf3vLu7QfOzyutdFKEviq6dWIRaI0UlGOMPC0T5bJyriYLjghqlliWlASj+qKdFCeOx8xyOlhJMGfyFOkoP//qPRpn4hyZlsjp6RXz4Yhk4yiLGPukA9v1hW1bCXSmaNhMq5YJGEYQ0dRgM2YnvRkVWZQUAygErZQAtesnQOrHt+9GEMDBPm69//sv3U+5fRIZWtNDZuiuFTXW+fjcIxjspiPeS1a3KDdZLq8s9yzCXG40KFOemKdIWDLhMMFhph8O9HCkhYmehOpS2mYGKeRoyDEaDaWXwGXrSKv06iwzEvXlPWsR2pLJ8gBJoJk9maKEyUhCpVZEgomV5AnVABV6Ex+WSgiJEDIMFaWA15jdB4Q8vKlP8Hn2I0FIw76K5iPYtkhDzOBqRVL3o4+OINPh/ftnyqXw9PqVzTJI9FxKrY4eBK9mn+12MY70fyCEH7cIVAsfLf79fl/0tyvHMoXhMtWL/U6UGDspKSE2RBoiFUJl3Z559/5rns9Xam1mC1c77dxoLwUmkFSRoMzLzOM8sfZO74UN26F7VYOCkgurC8wSeTxNPJxmY/0tE6fHE72e+epnP+H9y0bKRwid4+MjT198nx4StVekd/pmngX1eqZcz9AKcwpMKXFdN2pZiUHJ0Ubqay3UstFqwQaJ7BgFgTRokh1iavQ/gjL4HQkCXg4ANjB026ltYXtWoKOevy1+2cVFLOW/Jfq+mN2S3KbjPH3qHZpF7tJ92YsHINeYH9LeKc9GDMlmgFqDP3evtL5RWqQGQU1Xmhgzc4wEmaBH0ESUiThHTk+Blxr4cG28W+FSG9fLB2oRpthJ/UiOZi4iEWQSdOu0raObiaOAWKspC23rBElEyUTNVkt6kwUG2DqQYQOdgtEYbCfu3Y9T90Gi6Gmnf8aGMeFuuKxJZTdFeiQoRBLzYWZeDki9K7ecGehr1uYDbmnbtwaA2/3fwCVWS/nFsWY7b55F0vyMV8D0FafJPAxSVA8CjaYr6/rMy/mdGY9guyqt0a6d7aVQJkWWRkiCZFhS4GleaE0IvVHExrW1QVJvJEX4/OHA0+OBh2PiuCSOjwsS4Ge/eMPf+b2fISGxLAfmWfjs9Rc8PH0GUijN5MoIgct15eXdB3orHLPhCbV1tm2jbitBOitK0Iq2YjZnwfgRWje0bYZfdJM4SwEawVyZv+X2nQgCe8XvPX/FePy7nuD4XRATSQguT32HCg4BkP0i3CeOTD1Qe6PTbsHAdw5GVoEaWjVeGHu+5maVdev0q5igZe0wBzRm8ItSe0NCg+5GqGLegtnmnJljIspsohwHJZ4771c410HXBS1mbZZEzV0pmAFGioomhQqBYJ8dIR0y0szsRMJNq79V//ziwzBDIURvxZRg6bIOYG1QS0yBBBvp6rb2+Lhzo6rkmNi2zsPpgSUv+zoVBb1t6DeW4ADzpHOHEnJb/OPnT4HBzsdlQcX7PvY5fIDMLqKGyLCbh3ly2Tlu5UHrG1tbKfXiYiuRIDbA1Fco58aau/k9HCO9WYr9kCfSZxMXray6sUmhJyU9CIenTH4IvP78idPjxOPDzKunBe1X/ubf+Vv87Pd/TlmVp6cDeTnx5fdf8dmXn5PnRJZspeFaQYWYJ5bjCS0rgcrleuW5XHdrtGWO5ChQA6WqU4k7rWxUdy8yLUMrcC3bU9cw/+bbdyIIoG7x7L3MQRQKjurvAIyO2fGRCagj0Hcgkcsxaa9oq7S20VuxNFEtCHScYXWHI4wyQFVRcUygdra2weTz38l7/XMgLoEWIptCFTV3X7eVUq3G6w/BlWcHcGW71ZQzj0+ZAxOXJqxtptaJumVCTbbWBLTaZ8dHQvOUkB5toTWxciMI0i1l3xOokSWxfzzHP2QPtLdj74fBSxlljx8EnGuB11eiFoDU0HJByHk2W+zijrvtrj4bdF8dNlhjWvRTrvBdKaDVd/PxdY8JAGwoZVwq7IxRuvNBhp6eZU3JMzsV8524lsrL9cy1nFnXTooH5snEPlKEGBKtNNpLIwE5BaZgEt55STwdDmyS2NhIx0Q8JdIhMj/NHE8HHp9OTHPm7du3/OLnP+IXv/gFujUejxnJM0+fveKL732PPEczTw1GUEMia7FpQYnmP6C1GhBYC0kaKmZpL90Ia3nOBGnUUkjRTGbQRm+bl4UCrsUV5TsuNKqYsQe974s/OtHE5qadDNRhiAjo7Y+9TsQXf0dbg1btq3uK1A097eJagl5fdrcq38sBUZs6jKBBydFcXeKciXNGDhOagvEIpO0iItYu8oUWAyFkikRWDHZMEtEQUecUIIlrgyzB2lNZ0Hmil4xezXSzR0U0EnMg9AQ9mqOSGilKu8/rC7faO0DMMObtcTot+K7pMdSOoY/5wpj4veX97AnRnikMFeABfKaQbBMuI5jKx51dZc+s7C3cZwGVPRO4Ux21BX7PJLrLCKTZ79kYGM5400F24jkiuAGNYHLztjHU3vf5JQWu12ebiZgXSJFXj4+8fv0EsfDh/IYPby/E7cL8mAhHIafMko4wTxQJpNNEmCOahdPyCAqXt1d+8uOf8eOvf86Hy1sOh5nHVwdiUj774nO+/N6XzIcDpZxNE5JK7CvUlZcPz1w/fA195TgFJq/OcjbXKlOsXk04Zc7MU0bjQo0m6hpCIKhlo2XMxQyRXf1j6An8g7p1HfLM3BbTkFZqo8rnRj7x215K3H0Jnu67tK14eaB6t+AZ6LkDh73RejWHIqrpDbo8lHYItZCYyQkbLFLYRNCUwQ1IrG1TDKAL0EVI3LHLRr0t9q4mAt31/pqY00+TgIrt8GzmRxeaTaS5WL3176Mvuj3Bt+cdzMpxHD+KlvtBhI84FQ6Iyt3D9o33/nu3v5MhCz6Sqfvf948fywgg3DIiMTb+SEH4lBQk0u5+99ETolgbc09ZRpniVVznZl0z2PP786sx7x6fnnh4PPH+3QdiaKRo5deyzBwPJ04PCw9PJ7768BUfru95eX+Bq3CQhkyQmUizoGvhul2psbNuF95eC29eLjxvZ8IB5sfINCceHk/84IsTr189MB8PKEKMmcOSSVK5fii8XK42D7Bt5NBJaSJHZavqNmSVoJUoYnifdrbtakI21WYa5hzp00QvBe2V2qtnfiDt2zl734kgYGh+I8i9w6qbj/ouN+q8/aL0xaTS77wDLZXX0PedXUc6ex85wINCdyci60W3Vl0PoJroSFT6JoQ5ElVpUWgBwxcW6KkgoRoDpTeGqGeXjMZq3gdifd5ARSQhGKkjOFiT3VAySKd50OoaoduYqWyGKYgr09ra6L7Av6E1sh9Tp0+PNoncigBRy1p2ae+78yD3i3YPAHL7+ZPf3xi+sgegUQbcvZu7r1Hf3z/wk2DwS08y3uO4H/Y5Ai8T7Wa6izp2CwXZrdF9VJzO09OJzz574vn9BzsPyUxj123lfLnw+Hjiy9ff5+n1Ix/Wt7z58IZ312fO7zfeX1aYojkURajSqLlRg3JpwCScXic+f33k9PmJ5Sny5feOfO/7TxxzI+UAoZoPQFCu65V3H565fPhgvpo+PJRzJoZOimbYahbkYk7G2mm1mP+Ea2MECdBMjmzKAa2BosFA4BB2IZJvun0nggAMk0+/OF1y2TJJ9V3KtjD9dDEPvTFPY60DcA/+dQsMI0AMyjG2r/TmmoM6Lk57neAuMSKWZqVkCi04rzv443otdFafClsIMVlQ6g2kEoYfglZCry6AWom++8chZiJKDw4uBhuHluKLvPpxUEy9FoVmvXzq3ULpwAD3x9TY2IQ/XVAfZQgjot422NvCu7vta1ehh4/v96eyNam3db2/5v2CZ/9ZPTD8UpDeH3MfMPw+9YErRrUzzue4FvRGsBkHQO08iwin45FXT498dZhpxeTkO41Sr5Rto/VOksS0PLKcZh5fPXDRM1+f3/H+emGjsmmjrRsyB14dH6w0WIT5MfL4xQOn108cng7kx8h8VHJqTHOm9ivb9YKUM1rOPL/7iuc3P0W3F46TkKWRo5hQbLTyOKdozo5dvSNgSsNaC71utG3zwblAMv0xNBv7NAQTHC2lfMPxtdt3IgiM0nEUp+oZQB8BILjrTzdjhtuVbd2Czk2IRN3ZVXUsfLv/xjkYXIHxb8saRGy6UFzE0VxfMJWh5Cwxcb0CIlWhlpVr71a7J0VmAcmINjOnJJPEePSWGeuuRquiJDoiQ95bvLvRbVy1+Hv2ha3p7mj5AVPtxi2ot4VAdzBxZAFgQfWuTaziGYD3/mTM/Idbii8DVfzG9rJ8nOHvgYZbdvFR4BkPvN/14aNsQO/v//Tx37aL3WYHwD/HIJtJcMRDrXy4tZLsv9CprXA6PRAl8fUvvibHyT0mAiEmYoA4mX/hKT9xeHrgS1bCEmASLv1CT8r8eCAcEjIZTpCfFsIcIY/rz4hw1+1CW8+U83tCu0C9cHl5ZiuF2JXLdSPYeAPP7comjSUpc/ReTa20bYW6GUVYG2Z/3owr0pvb6W30stJqRWWzmZK/D1OEf6I3a+FY2juAgTZqGe0uu+w7R/fFutMgx26P8bil377ud5AxouaF72gR3ndOxL3i+ihDMEy/t04rzQZiYqTHTr2sbBFCNBuqHX+w5jrGEbOv4F8inSimTd+9Ng5uW9XNv4YeAiFaamwGSXbhDoKUeKaE9BsSH29rGpGPM2n/+P7RbAF4YPlogXvn4JszgG/OCr7h3r0L8OmO//FCvt23i8Xc/f7jJX+LNvspvxecvI0e4mF2z20GpVRklCECBONbCMxz5unpkSiJN19/bWIuSSx9ZnhZRJvsDI3DdGJKB/Ixkx8yLXVq6LTQWcNGPkyEKSJYe7dHU6yqpaKsSNhIdCNgqYG8MWUTmKEivTLcn3o3NmgXq4N729C6IeobBzsfzLQqoqClsbaVXi70VgleomqzjtS33b4TQcA0/kYAGK0NS+lEu8kr31+xO11Tnbd962ff95XVW4ZIv2ED7mo5LpkYA8YlCObk+lF6ifESoqm8qCq1FFvEyYRM45QhJTRFCkqt5k4zugCq8Q4UFAP8vKxRNXVfs+62ANd9B7YkoFv54FxwCR6ZkgmO3KB4bll9+AQnQBh6/YYjqO/4vrg+ms0a993v5N9SFux/pr+cLfzS5v3LAUH0HtK826U/+n/ws+Q/S7uDQj8NNNw91wARB+/kVlbknIgx8+UXr9nWjVY6U5747d/5LZ7fn32qb1Q9wTCDGIkZOwexm48D0YK7GQuyuHJP8NmCXq3E3HTjuX7gvH1NXiqvHgKZim4boRbABE2DJI4pMYdKlmbaGs0YgWtrBK0kreRoakbaGr0YYCiq9FKo68p6OVO3gvRuHbZgGdGcvilk2+07EQQE3Dvvvp+MLRoJNMEEMz080EeQVwj60c8aHP0PHRUfshhb406gUTR6lrgPF9wIRDvuIKZZqMGpuE3pwS7gGMyIxAUQ0X1Hb9aObAUNxYOBE3ZCsD6/mMotIdKko1Qz+hFQIlWqpbMTUAbAdSsbDJcYdbTcgD64q6vGkXVuhQOE4im+ovt62WnZO9oOHy3+oB9nA/dZxAgW9xu+3P4xiF72ve3ncICDI1sbnSEZG4KXc/tzY+zH/dhpcPDXWl+9mcN08HjRewd1+zQPIoo5RacYeXw68Rv9B7x78wHt8Pr1F8zzEe1CaYXaGxFTU6Z4ouSUaK2B60ulxYpOwGxo/fW6sr5feSkv1Fg5vDpw+OxAyGZH9vz8HhTm0JB6YWZjCkKaJkJrxNjRXqitkrQgrZl6dVuJutGlodLNBE+rpf9lpaxXailoLUYhbr4N7SURyPYdxwR8YmVPv0HMdMF/59YgJgLqPwe9BQKJt4vtG83tx+P2hMMv+mAqvxrUd8uxqzp4GATUJsNaa2gKhJSJYmUBORGyZQGaItEpvE0SLQpVrOtgNVv3E+OdC//quIml2Kw4or4wKhBp2qAnbBGoayZgRqmjeB+tVGuXsC9gDw7aZa/x98xZ/IdBvtrbLxYw7Hh6/bwL+3N77tFd4P4l1bO0u+O4l15GlhpneZR2e3BGfb4hYAojtnj1BhbZ/bj2HiA0awl6UNPeEBnHamSD0Uu+YBhTLVbvR/NriDGyXja0CXmaKMUGuBBL15FgHaTSqUGoW+Hy/sqlX9AJ8jHRYuPSzlzbhZYaNVY0K9d65aWcmU6ZeEpoF14uZzYqh1AJUZHeSE6VX0sh1pXERozKnDMhdvp1dQJdp9cCfSMEdVu5xtZWetkIvZOwQSJtDo769a/8g9MY/LVut+VnlfLHyb9dAGEo/gTXIRR1AMwusDG2KsGCgjT8Z4sLMrQa+ERtJYAQbgM27vLaeqM36x64BzkhCilHcjZ/QKIYMBdNfswOdqd7W1C67eiEYN0BrXZRSnOq8bZzCKzej0SpVjrEgPZCD9CjApFhtiHR03lP/21h76DAzvyzu8UzqrGY/TEe4EaL0JiHd2VDd7Zj9x14X4gflx+6D3Hdgq2VFPeB9S67+qiW+KRM2LOIX7ow/Lt/1j1LCV7m3X/u7smdOUyJ+HShWsgQTUhoxJSYl4kogWU6gBpPozYlhIlpOpCnmZACLXSqFIcfOmCKUKDG7VAbRZmmA/EQSKeETsq1XbhcL2x9ZQ6ZeTmhVGMCakdKobULE4Vj0l39KgM5dVJoJjEXAjlElujVb1MiZv7SHGAO0TO6gm1sVc3rwY9r54/BE/gW85H/PvCfwnxcfg/4L6nqW5cm//8A/57/+V9T1X/2V70GDMxqjPOOi+1+BzImYQdEPC3vOEjiF6CPd/q6c/8+TCW2Y8Qcd8yVbq6vbQ8KYX9dW6DdlFpFSdNEThN5mk0a2tVhi3bq5sqz3TgEFUXFgoIBjD7bHS2FFQ1YLWJdCMsC7gkzo9asvlErKtmORgi39H3Ms2OLeygtShV09AmDlwGeLewHer/pLVNQ7ypgAUa85hqvof48e9fgowAwSi1/Tlf9sUDgL+odCZPFHiWYZzfj3cg49/Z1jxkMoM4C9d372EEN+/nWSpbbAtCOqnE4QhjckIqQzAosR5P2JtJ7QEmIzISY7dDFjoRMIBOZiTozyQFNSkuNTc1klNxpah6XU5x4/XikzZ0aNnTqxGW112JBtzOyfSC2ziSBOTaOGQ5h5phgCQWpF8q5sG0QulmYmj29ie9Ir0gviFbiGIqrijZog3Khymj+fNvt1zUf+beAv6yqVUT+e8BfxnwHAH5PVf/Rv4fn/ehmb1IcVd8vi18uN2FPOYOYCfPAA1Bu+GKE0MXTZuhBLDBEIfQA0cFADXstqoCqpZujJZiSmP+bGMqsvVGrKfNWTRZEbKYUkeaTeGoyUF7ICJ3gg0zQCFocE0heC3eKWLpMr3uKLh7YJGAS2X1Yr1sAsAXsu70vEvX3OZyZx5qS0RnYFWc8uIZxpINnFz6o5cFglAQfQQXhbrfu3I5/x7AYVYu6OLsRZfeO03umx1jo/v79d5alRX/cyCI8MHST+bKMwQPA3hMdz3rLJ61iuulEDuyn9eYWXaaiFMfkJ9l2ecl0jI4boxKzoLFTtRD6SmClSKGxAZUYZ7pUUjTb8FoabTW2as2m2bBe3/P42Hk4ReZlQsNCqJ1ZInNqBAq9mztUDI2sw6ocaN31Bze0XJC2kVBCL8wilN5s3Nu5a8HHuKP7QP5RKn+/lvmIqv4f7/7514D/zK96nj/yNRhw0S0PEO66BPfZALbDjkVPUELv7OWt4I5BYqVAtF1Omrjnu2/EHUIMiCZ/DVtoQQNRA5oSQTtxyjRRU3ntG3oVmKJpyy0LKU0QrS0odMMynOw0pvEQsVF6T5u7twzZg0TzDKGyhzuxC2jnEUSc/xAdF9DboJAMdqUvYDVMZTxgHJfBFTAyk+5QwDjaIwsw0FA+KjFGJrFzcPDnD3chOvgTqjvvKmjsBmTehfFxhtXLEVv4g36ljgOwlwDe/7UrYSd1iV81gxFoH3AfG1cMzfenEv+/lQ8NJJldXXBbOV8oMWZnaEZEx5YkZjASlJAyORyosXDtF6S8EGPitAhVNmQGnRprv3DlSqvW5muhsbYCsgJwTFbr9+szPXWmQyRQaduFrV7YpHCIldQLMZgJTcZ8KrQZPyZq8w4au4Vb71jw7upDZsE/+8Bifvn2J4EJ/JcxX8Jx+zMi8v8A3gP/LVX9v37TH937Dvzwdx7vYvdN4Qf82vs0nRmp4LjoRAeVnqHTaOi/3K7l+xKh+yLtuHW0gtMypbsHXfCh5mCz2lvZWLWiUYgtk5kJOe+AjTCknl0+x/u50cG/RkN69Xag0LqYrpxjCINMhEyWdqst7tHNE8F6xgImp657wLO/9GJGrdzp3YsrYUfVVcbI9TiGdxjAflN7wbv7bOHvf8RuC7+n9Z5Z7EHg459V9cZgBFvUGryMGRFutHx8OOqT062eRSmRMQNigUOBoTQk1NapTWkjFZYRCOwDmWKXEqSjod0yDvV2rOLj1DsFCVXDCghWa2uyEvG0JJJmimzIrKx6pcpGRUkpc5ojmjpb2FhFSOmJzgeU1THVbjMrrdOaspYLul1gfab0CyVUDqExSWGWRoqBJWdiWnzIcqWfK6UpgWjbyehwtX4TdcFb4X8/goCI/Dext/O/9rt+DPxDqvqViPzjwP9WRP6iqr7/9G/vfQf+kf/oD3RopKMmkth0nHy1Ut//ZafFs9Dgkc+Rf7MTB9RAEZIDhIq1A4PvaN4/ta3KVoUN3HmnAEwqi851vdi0VzcBCkmBFBM5TTbkkROagpUdctcK6xXd9/tRGtjOP8xNuop3CexDDdn04LhCIFjby4Hd3iyIqcetAfjuOyh+nHpAaR6URsDzGl+4dROUW8qvt93eIw73NfctY7iPImOp3jr3e/Qe14gvadVRGtzfwsfLXe9/iB7UvCAYnAh1Rd6PCEIWmJRA10br5kCtTkUPro6kvqB7V6pa56aHapkb2QZzumLIjtWVY36lV3v9Hm34SWtEkl2zMQTfYDLiLeM0RTR3Vrmaz2SwYx2sY0wIwrzMhPTEEhtzKGzbB1rd6GUDLaTQHJDcENlISZkyRBoxGJCoYrT0NjYJz2gMLzevCO02jfptt187CIjIP4MBhv+UeoHpHoSr//x/F5HfA34X+L/9Uc81FgkD6XWVoYA6aOaTgP7lp5uGji6e1c5+WewQgdjCcb6Q7fzNUHhvMzjiPtJLZwo6JdfsyYAwtPgj+TCxnA5MhwPpdIBloaVMC8E1bYwmjFZ6syR7AGgiTj5x0ZEYlBC6ZxKjZ+4sLzX58VHtqggx3rHsNY7l5cFLDCyKYQcAVLvthOr1fvP2XXegbXQYfOR2T/vvuwj7SZK7rPuTxSyAZ13anLcgYS9lNNwWsrY+clZ/9uiBxa4EVUGl3wF/tnB12JAzSgO8BehXxAhSIVnW0m7ntasTeMZ4NcF4KSpmStt9chGb97Bb9T3iRh0Tvx5VrGvUt04LDU1mH65aUDG9w1ZM7ahHNb/BnLlUbxmHQumNKJUZs8tLKTOdTvTY6Nn8AydWcu+kHkzCUDulWlcptQ1pDS2dXhpBo1dkShw4bGd3g5ZvyQLg1wwCIvKfwIDA/7iqnu/u/x7wtao2EfmzmPnI3/p7eEaqhj2t/ijGe+0b9iDAvtvsTNggOxBtcMHYNUCiDn0J9p56tBRRuy0e1IHAbhx78TFkaYFpOdgLxUBMiekwMx8X8mFGlkyLPlgUbmGq+74fMGKHelmgg9CEpdedZtbW5hbn4hveW2f028czdpRkz6wdxOimlniMmnwg4L6ANRgtV/uOGVBHtnJjaEq4CwaK6QVo8KyJ/XfigJzKIGhxKzE8EOyPbx5CxmN9uMu2qHZHFx47dvRTNgCsEQDsb81tN4zUgFt20mHHBfSGj4BPplp931XczNPIRq674/iDb0NeugwJdEM6B6Zi94kPo3U1mTrFdtpeO2u/UkJhY6OlRm+dnrr9TCcE8xhABe2N0ivar4RSiZOyBDXpOJkJtRJrNd+EEJiYWGIns8G20taVda2wmTnMJNlQk5E+NdPKiC4WI99E/fbbr2s+8peBGfi33GFmtAL/Y8B/V0SGbMw/q6pf/6rXuF3q4W4avPs+yO2CGYo/w1BBXE0mWr8Y6RbA9wz3lmrjAg1EH7F15Dx42BmSZcN4Q4eeQAwQhZDNODJNk+v6J0SClc/jC0aFiyK487XzAPxCEhsiUhq1bfvy7ig6PBDFB6Y8IHRf/LeAkOyCtndu63kH00xZJwQLkdrDqBdwiMAygQHWiZUPtjjDHmeVW595b026UMF+OckogYS9RdhviYSiSHNEvnc0OivTnmxwhvycghA9E7RswOjengn4zqZ9ZDjdjrbzCsTrm8ELML4HdDERlq4mNBLcoKX7RWKEpEFACrcDdSs69+u0qwnWGCNVDWDwWIoIMSW3mAuscnXj25WWK8wdmbv/3vQqk1SiRFDTBNBoJKmcIlkSQRKBYHJ2vdJ6RfqVfrmg5xW5NmIVKNDF/ReJiEARpe09N8/OvoUr8Ouaj/zPvuWx/zrwr/+q5/zlP4TmF7Elid1rSYvoA/6xBdZu0KF6V90zBQ1KDzfi0E08xBfiqN3GxhGczqvu6d6D9YldzVaxbCAkswyLyfrKIY5UXAje+w4eUOxSkj1LCV669P3ib556WooLwm7VBbdrbnAaxlv13w+gU1G21hC1gZXgugSyYwDcyoXusOG+e+ut/lcwgb0wIpbdLc2OTx+pNtzcbPyNdH/PTvIb7cUbb0B9kMt4F5rcQ8BHusf7HcFgbPLKyDo8u/IWuNXz+O5sg1vWBrXFap82OlGo0PsABqPZz7fmz21tYh1ApFiBObgWI9P49BpVHfjDyNX8Z7fFizkSp0gIJr0e9nFrPyeMgyX7Z7WNu5s2gHRiFiaJoME0A64vSDlT20btG1k34rYSto5uStkafbUnikQSkYgR25p3Snq7G776htt3hjFY/eLzJeXfO7cRkEEAMRz0o61N7ZFWL4/6x1LPQc8FKxus6Sre5nIYThXRQOjNg0C0UxyUqKY6E3IkpGilRLLsoHvqORbmbR/x4Sdu6e9+kcmt6DH2YjTCEIEg5lmvYm5Ivflu5It+ZAKmFFHpPYAmQpjsk4iJkIraTt98Ws4+qdyOwTjqwh0XYOzOweLAfr/Y/ffEo/Fhh8LQoC8rd+IVvpN7X753n6nQ5n/nL+m76R4IhtfknpEEBvuvd/Ga3j0qPDW/fSL110jAhGo1opYHmN4jSKT1YCCyOjYkt47EsLn4KAvwb703syrfORH3K0uopUBQq+lj4ng8kkKixIpOlY1mssQBWu80teur1cpaV/R6pcdKkY3YzrA+E9YLoV7RtkIvRGnMKqQ4Q2hUbZY9N6FXU8+OGggqxCH0Uu9K6W+4fWeCQNt3mbHUzYPQKj5Du/dIfVtqgF3gdc8avO/e70RCvMRV7yMaU++WDtoV4oM2wc0yfNIwxnDr++8EnLv6yv92r5UZLcORYg82oO8ADsqpCBJs9HgEg6A2lda1Eax8RwcZarelcF6Dzy8IA0vx2jh4OTPMR3znl4GUD4r0nu3qbcHjuIFnEyNTwQE1uw+kG9q3CwDBvqg/Ig81D1rDHGScE+d47ApwowRX6E3R2u9rRA8A3uAgcescKPsYub8RM/PMfp42Q8cH8Cveben23ezm7OKwYBNcc3J8qFv2ZGWOa1QwUpZRUn18LevILPG2sT+XXSbiP98WZu+dVlZ6OdP6hUs7k9uVmZWDVKYI2U4sfd1oDVJPBI3kYOpB/dJoxcDK0vBAcLs+797iL92+E0EAxJN8vwDpKNGJNLfa2K4657H6khft+1gK+O5sP9nCGKXeTirzFHDs2/t0naWbI20azxhi3K/HkRLKfd7eMXacjlXlbBodrkYjoPU9OxBcd6DfOel8xGrxALRnP92fZayaCtHILsZidEJVNzBKkRuZTr1bIYzmo2UvnqKKQwHjutdwSwqcrMA+R+DBQNF9N78FAQ8mDXusj3ibBLiv4GRTcH5KR7Jm53ysvSEXt4uTWFAYGYUd08itRgne1nMeQAcbGvKOQC+0VgnBDD61Yz6KPUIYI98RiNw8GhxJFj8G434nqe2n3/ePscmKm932rjQaVTq1N7a2UevGykpaNlQaeeBOXSl1o103FhqtFaRuxG6qyl0K3SG2qJ3QupnVlkq/KqxK6oFybmhpFngrZocmlsBFx3S+7fadCAKqUPsNBRAfgbTlOmYIrc9paOzIFwYi70vELzZp1qeX1ojdUfJhSNo8bR5sNem2y3mPVXQgEHYNGqJ7YxSK4wujhbVHWF806v3nsXjFkQEGqUg9U2FgH80+rzYHsZqzIl16bH+M/UUTx0vEhqW6KirVLn5phj6LCZRKCDd+f797n4ox67qVB6IOJOrtMQNolJHid/uFAXNiYG0H3InoDgSxndwjhIiRplSN8ip72eDZlT/P0MmXhAEAjm732iEDUdGt+TkJ0AO1mDDscJhurXFdN+cGBHqP1GplUwiJENKOAymRrpEwxoM9yqvzD2TgJgEPatymI+9v41oIEJNJyzWEkBJJlKJlzwxKNzkwkUKUDtGMT6Z5ofcL/eWFVipSLViGqCaDrkpQCwJRsUVeOn1T2KC2Rl+7zcOMfaLdCkj1icNvu303ggA3YFBEfEoQhk/gDXniI/KI7v/GmHvNdleqCX9Kb2QNJGwxi1qX3tBu2Xcvier1wugcjA1gUFrtvhC6R6YBfn3yOe4GY25lwK1s2SfgvNYO0gky9mdzlTFps07Ca08dbgUDYHOqsQyCjo3Tdk3scuYx2uNaQwcBRm5ZQSB4dWKZgPcRbgnWyEbGx8CCgjEq7VjrfSbgj7PxVUOqTR7c2ZPSqKHQkwmsjgxgoNbWCTXQT1vfS6DaGxU7JiEFA9DUbNVSsjHrVpr/zkDJejGR2Cimq1dL9XmLSO/uNiR3HQfuKzpHn/wchyC79LyG26m7VaRyN0QFrTda6BCNdapBiT2alfwcLCAmD+p1Nc2DqByWhXl+RZs6egEunViLD7JVTMFayTH6NWhA37CRo0IIjrX4RK29LblhtH9EPfCdCAKWvEfvz4pH01tXAN+lbf/3duCI2uo72pii6uMgmOhH01GN+86/n0l73VtaL/sudUPSZVQdIy3hk5Vy9/NI2O/yE3UBU8bbl7s/ERQbFtrfjeBU2nGx2Y4rovuxUOykNW5IuepQ2Y10raCR3sWos01cy0M8CBoIFjBDlRCt8AjigKxnBtqdNe+dBe3hDj9Qgnqf/qYUDtHOU0jQi6Li4p3lQhAhHQJa621qcZQCmAZeq4aHWK/b5gRaK9TeDYeIFuPphSQTJOjSWVlNdi4GZBH6agrSVSo9KjHaLl56w3Qqo1Vsju+on1MdO0DA1JwcN1TPAkYgQEbSNP5vn7vUgk7ubxmN7z/JhIpSUyGfTuRJiCTCFoj1hUkv5KgcwoF5EVKdCOtE2DKxTMT6zNRWcrsSV9sQW1fb9RnyZ8J2XemlmgdEM6ZsCsYZiWCM2W+5fUeCgPdz0aF1iVFNbZJgb6FptEXhveNBT6cOwxHb/Y0OYCmhZZtCVAfjvLU1Fu5odXE/o+8g5aCM7rWh2ELwa9RLF7mB5Tse4fFiAHSjrtdb51ZVqPVKpdJDtg6dYVeWuqnrypEQzHPwJq0+amJ329HbH4s0kyx32XYLqsEWEd5jJ+44S3csQxnZgB9r/1miBY4Q7fPLTiiy87aDgy7cSgda3wk3tWxc9GwuO3FCVd092clBTand5MA1eivVn7tIocZifHjHCEQiFSX2SgrJ/q4pVasRoQL0NCYZbXfWYFlC7/baRPNkJMrdDj+yTzt5o/Tbg7l3AgZ5Scc/7kooAuZWPQktNnowZaoUMk0a13Wly8oUKkltspQd9zLm4DFOzPlErJ2wQawwa0TPlXK5cL1ulJeObEJukVRBqtA3pRc1Z+U6RjeM60IUUvyulwN7nxa6jhbf4HQZ8BM91R6MPtFOUKN8UuoeBIKaK5BEoYc7vTh8fTd2AZGB9eD1/S0AjGU8QoV67TcETT1JCLKn5XurcKS49sl2nCN4x2BPvbXbtubodFATEwneBZCgEKN9fgINo9I0cd+gIBCTj5DbY5CISqQTqdWqouGMvKuRanBuQbLP6qn5kGJXX5iDJRwIVnPLaKt1vLvqGYbuJQHeL1caKtU+R1FkVq7XK2W7MqXMHBfLaho0bdRu/oIhCl07tVfW68rlcrVzj43DBkyma2tG0xUnPaWQbMfunYpReUewKjKceDohRZMDy7b4uzmqcj+/IALDl3V0OVS4TSaOx+rdd0/ROh3EMrRt26ip2goLdr5qKeh2pbYXYn1h6WeirFxiJYSNFDdSLEYi0k4UZUqBg2RoE2WakUkhbNTaKGuhbQ0pYv4UbUDRELwjoNW8KfN0x/H45PadCAKoXcgG8OE7W+dG4eieAagZNPROUNv1pRfHAkyXfWQO+wYl0KJlqmGUBHf4jozcbt/yHS/wLsTYEfdS3pHvwbq18l69fX4HbmLWWOYObTt/9LpcwWrOPFEl4wJkbpFlNWM3hA3EMowYEl2iyUeHiBIw61Ogd5r34tVDZ46JnBN72oJ4mWACKMOeaoRaGToKKgbIeRaDGkDXug2ra1NzTs6TYRYjzfQAIN0UdqkNpk7QQCZzLc9crldO6ehotVh97xqQOngHATY23l7e8vbrd6DKNJkCUI4zeTpwrZVabBGs68qUJ47LiSTR6NsjI4nQp26ZQqxm53VMhGRkHIuBY4bBr4fArkkxMgRjceqORY1rFqcZ70FQLBD11tgoVKoxWKNtSlkSMUWCFQTEJrTauKwv9H5GpobKSuPComfmfkFko8SNqVaS2BShLMp6hXKplLXRL0JSCNUCY+z3/S81sPC7Xg4o7qGh9t3INgPc8B3TF73V/AYABjVV1dCNox9dDETFwKPxJcI+lWhp+g0LsNaa/zv+EvLD6BmO1ppdGM5O24PArWQZiz8w6MzOIdxVQIaCkewzBQPNtpn1RJdM0WCMQK/g6ZtRZTV639t3eAfr7DXEXZyMUxm8Ttl5Dtji7/2WGQwG3SgEFCE0G6zR7nV7667PZ6m6RqVJ3evlfTfsijTzaCRaOyuIpaZygFoK5/Ji8mvdHH/F0+jeOqVW31Eb53bmub6ndyW3BF1JaWbRB67XynrdKNeN5w9nBOH0cGJOE68eXzHnxTKbpjBZh6GFyrwcyKcJidFGgh3gFGHvHt2wWzvv3bGCri5jP8oCD/47vISSc95BRHEws7k4KKFzXCZCnNCQiGsgdleo89mX7XJG9Iz2M50LsBKDCZj0bUMvlXptaFVySoQcIVaurdKKLZPYRvZp53uMo0v9rpcD+ADRjqzbBThS69sk4H0L0DOCbm2TFIKBOaKot/UafT8cLdqBbvtiHZukTbsxautfIgM5dgC2y3gufB8rFKw154SEQWgKEmxREgkajfTkxJQ4aoodROygldbVRo01ctOKBSQhWOtwiK0ijuDv6aiDhGJIdFBFyHswAB+ZjslnC6z8MhKPOEouu4ahUY49xeyCNm/TNqH1Zscm6V2XwDIBGvt3FaPEhlMg9sjzhxeu15U5LqRgu7L2TqmFrW/UrVC3yiYX5KBM2HWxXVe6VrTCu/OZci2m7Z+ruwhvmKdj47NXnxNDMF/JAEU3pAbmdCIdMyFGylbpte1BIIaxb95dHAMPECf9RMcGAtayHI+LQFBKL7RivNVwDEg2cLFHiBNo6KQYSFNGNBM0ktRowkueOYqSq5JrZeqF1De0Nsp6RdeCrJ22NdqmyGoZXZLIcZYbfVnHRKN6hyP4+f92osB3Igig1uvUpmivPu1lSj1Bu7VJujHOQjeddVtK5tdnDLxu9fJYFb2hEowoEwxhCMFLggC5OVigYU/Pb557d0HAF/leCAcwJdqxC3jbUByY0zGhZmlfxCFmAuxsNzeosIp7Lwc6ZmBasaCiITkeEGhiLLNOc0zBd3MMvLNu51482e5DtZEcVVAbeCIEx/FM4MSGKG0BdBFXcbYg0Rwr6H1w+C1AtubKvc07FN24FqrdRoq7YQu9mgtwihPLBDV1ntuF9++fWSgc4gFtnbrZ4qm1ejeg0MNGmlxurSlpMtPNWt8RQmOaMXm5ALWIYxqdJhvn7QPL4YhE4et377icr3z55fc4vj6RHrJPSTbDosblotbOFZ/ZCB4ETJ+gUp3ZaXwBz4wGG68FJAnrZaUn18i6OhNEOxqV2CrHgw34TESizEzpRKqd3CD3ztI3pphZpgMHCcxkwipAMekwNSISQyOg+ZU1MrKRhSiEBkmFMPQYv/s8AaW2bgor9W7Rq9GAtW52aXfjSZvIbzJ7Mt/1zHIcZEzcq4z9kuK9aAmBAZK2ALEGk6AyaN9+ccee++jmEkeDcmvTe5Z1jJ6yOgklOkiX4gQhU4k0ki/0SCNaul+xoKGC9EZR7yao9dg1TigRCZ0YJlNcFiMAdTFUIGpwysOgVfkRGFnKAE+pO+IVMDBwH9PyQjiJODi5YXoFShMTwjDxCt/2QvSx3u5tyE6tHe2N1nBadqBVCEtA6oQcIlNqHNioNF5eXnj7/g3beaOXRgyBOWVSjMb/zxXRjpYCdGKw9LuVzrQYftG7GvAYYYiKSO5sXE1rrymXfmF6OvDZb7zm8OpIlUrTTkvOTORWnlld72WA4DW/HStR6G50SwB1nLWLiZb2TQlzIOSwZ6EmZ99RrfS6sm0V9EpScyJKUTjEiUUbk3Zy6+TayNV8B5JCyoG4HMg6o72x1ZWtFGOGFlOsap4V023xm3elOOKLA9nfcWCwK2wt0GujVgNWeu87gl5LIQnkYGmbSNjbiDIons53lYEpDIadJ9WGrkOVQJZutPZkkXJkSnusvKvzrBXE3W6vA2SHEIjeE0YsDb9BMpbuj/dp/HlbeJaCB+rWzXZETKg0hohEGyNtBEf9DSdpbaOrULXQVFD/G2t7RmfDRaJEkvjCGFN4DB67+fQZr8JB2L0sYS9juhjb0JoiI51MTrQxJRtCsMdldY5Kp/ZOq+qA1HBs6pTSkKmyxECPC8SF9SfPnC8vXNpKKUovQo6RhyUzpWidmKBoNtSb0b0IfiHgnY0oaFJ6NUJVmxoV5cPlzLo2pmXmix++5rMfPMGsbHVFoxpHIOJgX/TaWYxlqWo8CVUnNYXdBatLdz/JTlPLEFpvdBqTzIYrjORvEI1cIfhyfibIaqYlutL0SpWVHioxwpQSWbKJg1a79iPCnGZSbPTYIGGBJnf7mpoBkdeVfc5EuTE68c+g3/EgoArr5lprpVJbd3slE1LsVVGf0w6IkzzsJI2+u0jbW2lDohQdfgXq3VhLeatEsrRb5u/gyWiL3WcCxhzUWwAYKaG3fUIIVLcpMwjPhCpMvNJQ9aaB2gNVG1XD3tJLMVsdq7ZQW6t0bVQKTYckSUAlIRJJEghB6ZL30kAlOqLdbMAniHcxBBMZsXqxjeAzSnjBQEK1TkDr6qBh3+HxERREBImmniQSyLNp8muIJgMvQFCSdlPG2U1FQGIFbcQIKTVyElLIKDOkRP/6yvZ+49KFcxF6bjzMmRhtkUoLO/dAO5ATopbSt9ooNIqzKnsTmmz01rnUSpoTr77/yNP3HwmL0GO1c+lCrb1aBtrVW9FNaduA+u2UBwd9QxTWVqit0NWlxcU5CEn2ak+SGBYwCT13iA1lo/UroW60sFHrlbVfaPWZ2s80sWBw0SvHsHIKG9kzXukd3Sp1tZ3fjKfCDnIP5mqeJrtw1coi8Y6AEPbO1bfdfl3fgf8O8F8Bfu4P+2+o6v/Bf/eXgb+ENY/+eVX9N3/Va3RVrlu1RVA71YpR7w1DStl2phjNjEOUSidgNNSELd7mFXHbkZ3RZrTq2R5t6GkVM/7MDoC1IIRBI95ttywFkJERDMXdwSzD2nfoDh36zusHfEwp3hJOA8/GYlQnyXgZEVRRoplJhEBIaccLBntCwXEBoekYrFJUg6X9GukhEpxzaQN7hkJ0bt0Ne+820lrV7FCbq+VIjMSYdjqtKkjboFvLMYZGCG0vgQJu9NEbtZv6cwe0N6SZdLaKgbUhbfSl8fAAWwmU1mlq4irbGtCp0bOZtuhO8hBT0m2YAWyP1K2xtsq1dzYXFgXlsm2kBMfXM9/73vf5zR/+Fqf5aPyGqLStGVZRlYKN8xq242Pi0Vh4cQR2LwsQJbRA7Nnp3pGgzcoLzGT2+Xo2JChEGwlHKboieoVyIVGgbrS+EfsF+ob2Qukrob+g/UwKG1PuLLkZhtWhbhVdG6wdLbeZil6aBwY1cdwY0OQgc3XjXjXNi28scf326/oOAPyPVPV/cH+HiPwF4D8P/EXgh8C/LSK/q3+U6DlWt162anJMirfwTC6JgKn6juEd7+2OJY9WR/xlDwDWYhSaBNf7VxqB6MXDeCwIbfDOfRwYP/AEP3hjgYu4IpAvIscRDVwK3rc3PsAAy5t6qkwfb9y53EYeCjETxABBcRXiiNKINFXK+kIlGcCp4sCfk4fU1IpDEAiREDIS3V1HbU7CJJdtz9g9/kIAVROcEE9Xo9L6kPQ2FqHN/xv/oKllCaMD0fuG9isFe33bLcMurDL0GXu3TM46JY0iChQmWZnDymlS9HEititaLrSCufTORo+lOXbRzMyleWbTpFHoXLVxVZ/QSCYVMU/w+PjA9758zRdffMnD48HUoprxaFUqRTfWYqm8Dj13iaQ0MU0Tae+eeBbVqjMPzaNAonVQQvbrICqa3HlqApkEzZ0aVqI6ZtQgNyX0Cm1DnNSWgxL9OEWBVjfWciGnRs6d2Kq1bKuixcBAnAre260zoz6CrW1EbnZtB6Nf/DHKgW/yHfgjbv808K+54OjfFpG/CfwTwL/zR/1R63DeBudeHPQzsM1mP0zko4oSna8ancHXvOI33f/ogcCYW6KdJsF9feA2v6e+uxq1BlGv3zqhG+gG98Fz7Oy+04+MIIzC47ZL36YbB1AonpJZXZkQZ+wF2jDNJBCoNJc8EmOYmIotQ44smKMRcuMmxLyn7BavjMjf1XwMpFtaP4C/wSVAlerZyECONXqgwAd1ajM2YrthNM3nGugVrher+wW62M6Zko3w1jZKLbEaWtXFTpQYKtMCoSWCJqJG+ipc50pbK3PqTAGbfXCiDtE6IDGb2k4pwkWENQh1DsSjcJgyy5T57NUTX7z+nMfjEzkmLnq2uQIxsRZNnZUrL/VCq50YZ3JerMsUlT65u1W8tdciEWUiJOPjtW4sxxZsqpEkJjQD9NAcN+qErJymxDw9MoeZcH1PatEk63tm1gtTD8QqpKr085XQlF4Lpa2spZpR6bUTmhC9a9NDcyUsRYvt+lLB56hvV+wgr0kwP4Vvuf1xMIH/moj8FzEl4f+6qr4BfgszIxm3P/D7ful27zvw+IMntuokmyBISC6WYLtLs7DmbDTIQTwr8OS446i32XqIowPD4qOppc7VU27Tw7ScoO/BQOki9CiW6g5QRe/ftAeH0WP3g7xzG+/adAYc7H/o9eWte7AXGTpyEqMgG5Bpk5TW5xgBZvQ6LLVWFNp1fz3x1/GwZv54avi/OuA1nIpCsJRVXGF4BIL9WWIiLpHWDO2vzcClXTFchKriC7JQHVuonkqDkpJpMXYxhdzeu1G/mxU4rw6BzISuL1yS8nQQgs/9J4lm+KKN6kQklYCGaaf1psVAwdzNzefVq4XT8RVfvP6Sh8OJLMmOQzXkXjH3oPV65cP2zHm7gEZOh0w+ZWKaSWkm55lBGR/bkmUEkOdISIGonaQ2D9C9FNCgrOXM1lfKWijrMymtLAdFNyFOjaN0lixMKRJbJBWjwy9ZmPOB5SAsHJj6I6k+I9cP6PsP1FrZ1kZcA2lLtuDVhsA0+sBW6/6ejTsSghB8YCyEYKK033L7dYPA/wT4l7DL/F8C/oeYCck3oQ/6Dfdx7zvwG//wDzXmAyJiDLpgO4wBZkqSUZ9Zyu5DtdA7aefsN2MdYoIk7K1DS+OrmEJR89cgJFQwY0jHDYLv6xqC7QZYT/b+1oPcfYahgezPsGMFhjKODsVtctG7BKgr24xHi7dDxX/ns34SuMmJBJL4vwQH76J/3jFZaXIsY/DYxoICoDsVuPkuHVMmxui15BAo8Y5SL0SJTD5P3yOu9gshRJqz+1rCAVtP01ulNNP2o6zQLNhlHViGtVV7b1zbxiydV4fIJXWe65nQrkQqWYGurOtGKVgWkDLQSSpstUML5BhYHjJffv81P/jN32RZDtSqEFbIhoinFtFFKNdiAzyTIou4ZyOwgBwCeclM00xOM60pdagb7RexopPYaN44lT7B2lFa7CzHA1TYrle0btR+5fqyUtuVF115SJVFNpZQeEidx6lxyJFjzMwok1ZSDe47qEwpMp+eSDlSl0J7bnBV6nNhvSiKkct6U6JE52tZtyyInduIlYQpTN+6mH+tIKCqPx0/i8j/FPjf+z//APidu4f+NvCjX/V8ltpOwF0LTtTrXkzumzu5Z4EmyphjTSKuR2BnZzAEht+Itces1RYwjr6IgcRNDWDE8wfjXAziSPeF9tHVsN9Gn33vPIAvyLEv3w0Y3KDBfRLNCgF/QtFBncd2ewt6uucAzWp1zzCUiLhGvsrHxhIq4hoE7KTEjiPa6qYkZaMXL8BcaGNnl6VIzJMJqw5vvVap3SbUUowsU3BMwvwYlECtgbUUStmo/Ybb9DuAsdMoWkGcHjXD9jjx9hedc73Sysq1rBZUSyc2HGir9GYWcZOAqrDMM7/xG9/nB7/5JcsxsvUr0yHStEJYydMBeuZ6Xam9IiHSpREfEofpCBqYl4V8MqNZxEVbciRrsi5AdRJTb6iaPoDF9I6GTk+esQXl0i5s/QXChTRVUm9mFSaN2Df6dmXrV1RXJBYkNVooXGXjKCtPixDDRo7CEjNJGrJutK1SroW2dnJPHOcTT18+0U+d9cOF9cPKel5Rn8Po2lxdWQgpGsYxzd+6/n5d34HfVNUf+z//08D/23/+N4B/VUT+FQwY/PPAv/urns8WkMtByY6tI9iubfWw7YdJ9sFcBhOgsYuTe73fPb23NdvkY0Jgc8695QwV1WxplHQG485YtuNZh3GB7t/VhcVvi/+WOo60/BYvPg4CAfUW3H1MsecOjDKgGwCp1Uen1efvB3DnrLFg+bGMbMl56xmfF9Dx7Fbrqst4S7ASq3s/HDUkWbwGDrIRuoFaKETtZBmz+OaS3LUbRViTzc7HwCF0Sgq+aOx91walN7MIq5VA4zAlaopcrp0yKafU+MDKVhQtKwT33ovOwOxGsgpVYIPHw8xv/OCRz19NHFLjcQFC4rxu3iaNlPKW2sSeaxHWq9JSJ+aZdMy0ajtBy41VCkInRUulUSOuFanmqxjhuVxoa4WoDrGI7RFBQSqdC8iVEFZoK0FXohbLbkSJvZC0kLUi9UophRg2YqhssvL+fKaESksNUuOkSiYhKZMPM7UVtg8rzy8v9GsnlkDSxOF4IoUZqRCbmOpQqbTa98Ewwrcv9V/Xd+CfFJF/1K/cvwP8VwFU9a+LyF8F/gbmqPHP/arOwFgktpu5dIZ4vTx2cRmLxybnHPq8AR87hOf2XsTRO/DOgdOMVWxAyXnySTtKJngSbWOyCp6GeyON2wLWT971DQS0R/pO7wGhO23m9uhbruKf2if5fExIx0ybIfi9FHu+DkO1yEoL3TsXoQtI3YeQDBM1DGBHhPeS6TYFNzoecvc+ujMWRYVQDSA0n7xqu2CMpJTJ2Vq2zfUXQghIN9BKsZrZWp92Zpp0klZWH/Sao9C1kiWQcqfO8BufTVzfC++2q2V13TQBOwGbErfrQ0rgcU68/vzI919lPvtsIc6KlvdIiDzNidJh3S5sm+n5135jcxqYW+jWsIO2sm6VIDMxzM7Mw5mbnvI7m9W4GZ1enaVHI06dmCBLQ7WSc+c0RaRn2rrSritsZyMHlQtTaOSkTCLk3pFW0LbSpSChQyvUvnJdC7TOtgXCFuAKUoScMvmYqb2ybRvn85W+djKJ0IxbktPElA63idDWiemPUQ78/+M74I//K8Bf+VXP+0t/x2C/+fCuF8y2mMZtUPtGrWvz49B2Hn/Dpbd8928E7yJYajxUoq2LIm5vPsBE4Tb+43u8p9rySQDwN82e4nNb3Lef74AlPl78otZCHAtbwMsIMVCzG+bBHiJGqYC1nERIMX0Sl3yBi2EPcodnhBEIxNNy7W7LaCm96QD64tVu2n5A7J3aGrVVdFOqCHFZmOeFLDa7EQhI33w6UdmqN/XFLcZ697mQQUqy3CnmhZYCfRHa6xNSP+PHofH2/QulGKJPDNaKVOu9nx4WTg/Cl1/OfPl6JoQLrW3ENHFZK/RMkMiknZDgqp0P1zPny0ZpBmhWEhJmUjoQ88Fo2KFCrMbiq51aLL9MKZGmRA6GM2kQhiEKOEgZKzGozbv0DWohaGGKQjxOhKkRaqMizGOLKhutXoh6RWIjRjOsFenEYJMnNKVujX4phFUIW6AVIdZIjJnTaaanTt861w8rdcxfoExpZoqZmCMpCWn6E8YE/uRvTlXdRznFOOsoIoMVaDu03AFf1nprTtgRcEFOCwv292F44omRdMo+iGO1s+0vnaEL3K3gNkKIg2rfGAD8NhamV+D+aN0zhNvi1/2R+/+1ubLPyG6G3qCBhKP0sXhyq/uNvKgM98NbF8MyJIMchtQ23IKnBYIYvFswsAnXOgjB23C9UYuLgopNNbbQ7LEhEORKqMVq/d7ZXIosxkTME5OyYxIm8W0t2ixCC0YvDiGBXilNOcYCB+Hww9c8LZH/4Pf/kK++/mCzATFxWCbmZSHNC4fTwtOrJ06nB0TMxtvC0MJjzpReiQTW2lifz7xcK9qVqSutYrx6EtMinA4PTIdM881nXgLTdKQ1ZVsL21pQbcTQiTETUiLmQIiJnCAEC7b0grQNGxjLaLlSrxvr+UwrZ3KoHKfAND2Q+xWpZ3SzKyeWDs1IQzFb50RbtUG62pGmVnL5+ii1sp5XQo2knkhkYkicThlmMXf7plCH8na09uXfh+7An+hNRVBJDCBLvB9+HwBG/WwinHbfzXmmj8aolQG+4zXYrcCsqh904lGBWxkQZOj33JL7wbcfpcRYvPcBQfjY2OnTBT+yAcfcP/rtaOzZzvxpgFDPiO6ffCx428pNXbe7YavdggeMPXBgF6mVHHozZUackGWZyJg5j9HIMFlNE0D8CPVugCIiRGfy9doppVDWlXWzsiXNC8uykPJsx7/Zzm8gqM01DK5ELRe2YqSgY8jkRTgkYX59pF1O9Ot7rqUyHzLHx4XPXr/m4emR4+lk14VWSldCK5QuSNlYz0ppndItr1tCJh8C57Vw3aq5R50OSFxYDo8spwOSsvEfQgBp9PrMIWcelgmYrE3qwCBi6kcxRXIU0wEQK81EI1oL5XqhrM/EvvLqkJmOJ6RekHqmvLxFKMyxcZgD03w0s9EakGpYiFIQMaEc6c7rEHyWQQwkTcGOfzWKfWyVHCZSyEzzZASloQUx/n4vS3/59p0IAjjaPZalLY5R6Y89f+xmwTTmxBa0EYDGMh0QnW+eAhWvW31hjYAS/bkT1uO2rMFxfn98uHsHt2Dw8RsfCT7cL+bb70dguH2/BRnEAUhP0ffFq+w1+lio9m+H2NU+e/TyZvdCvEv598DVzfgDBRElusx3M56taTGO99EsW+rNDENTysbXYJCRjMrdWqPUQlIlS2eWRukN2SrSV4jmlVhrYSvVcJiQkJhQhLWYlNrx+EhMM9dthQ6RhMTGZ7Pw/gBlCjw8LTx89sCrz47Mx5llifTeWUtl6ytruVCvhZAzx+XE2ptbdidH7SPLaUIfD3QSko/E6UiajgQPAFUDMWckZGpTJ1utxnnINiDWuo8Fo9A2qMYQjBFyDOSohAlCnmlT5/y8cn3/npdy4ZSU0xxYXr+C7YV2+UBbrzQ2pqQc58y0HNG1EZuSaoPNxEOkm0R+2KdXDTOLyYRipQWoAk1MgJSOhMSUJkQiNHPWjunvgzX5n+xNUE07BvBRnS0+MLRHMlukXQwktOEe65Xjaf/gBSgGH3R1V2BVIkoSIxANcQ7DBTrRX90Cwk0XcBCLRufdanprZe5mqWon6JaWf/SW/Zvu9wUxvzrot78BAyvGDm0I1UAGCa6tqP55gpg305ixCP66Y9zadnifqFR7r9LMSqvV5o91zKF7CVHVREZqh6RInkxj0CGKELFBphKJtbGECQkTW10pW0ViR2Wjtsp6eWG9nOkC8/FIypmmSu5KnGbCVVmrsm0VSaa6k5vyNHV++PrEZV2ZT5EvPj8Spw79DGslqjCplTXpdGAS5bwWUr2Qp8U4BWmmdmXrxpbUmFDJxHmmSbRafgogic0XfoiOQTgIGCMgQg/OztPujkVKLRu9rFA6PSibD4ofEhwCHI4zOn0G7Ug9v+f6/JZK5ZiE0+nEpJm+foDthbJupNg4zgsTEDeBGk092BYBLmRhzO/JujShBaQGpyVbQAj45x3nPwxV6e94OQC42vBovw20fawkPwj7IsfBQbXv4uKc/vsmIwvqFN/pzQZk7PzWeowa9yxhGJ0Zk9wnFGX08l10AyOQ3LcMhUEqGSAftlvzTSaQchcQOmMYQqSNCdC7QqL58+0KARj0b2Tx4S4TvKMhOkoMR/dxUQnF01WcY24qQalHv8Bwj4IxmGIjzzlMpJbRDbZqBhq1NtbrFYmBZVlGymGPZyL06Io/wZSeurJEd1TeoF0LVTqHHOl65Xo5m3VW7WjKhDyzboXyfGHqjZSFKBuyvYc+ITETwkStneu6UVWI08wxRuIMra8motEb1M6UJqYAZbRBY6C3q+FIrdLqRpoOHPNC10apFSVwSEbHrq3S1TYHU2nCfBFaMWQ/NLRt1MuVWi4m4BKVFhTpjUhjDsrxMPHl6Qta2WjXD9TLO9DCw5I5nj6D7Rld30GrhACTJMLs5K3QKediIqIxOotWdozAcDH/XROGkI2QdmUrE8H5Y7QI/0HcRvsG5wmMdpr19tXT0e6ij/tfcaPc2cXf7v5tkXCQJ+zvOhGkj/mKXR8u7ml790VoGYKoeptc/D05iWiwEnbrHV9h433dlQ2yf/dU/u5+gzHUkGYZNqWuowAMdcj9fmzQRO2TkHRcnPY9IOYT0G3hB5cGY9SGFZ829fvGgehiL1WAZu62EgOlFs9ohN46tRbatRGyTbaNwNe6p8lg9UnEevM9E1SMvIK9v4ih2bVvBBqTQNtWru0DLQovl43LuhJyZl4ORhV//hqmhZAmE2hp6jLzcH5pVIneToyU6zOERJgW0nQAieZH04NLuy9IWkASTQOaF+LxkZRmhleq9Gxns1YfwnFtAYW6rZSykmJgyRHtG3U909cXhM5VCySjI0ftXD984No2jll4OC6clkhaHgm6WeuwXFmScFieCOUFXc/QgxF8sikmJZ2NslKw4aUqSPVBpmSDVqGNIGCdlCjWTbFBqCGf/M2370QQAMMEBm1VvATo3uqLYBcismcDujML8QE9CwDBywFxevFgUd3vsjdDM1vSqoYHRI0eaAb7/yZjBrgwg3cl8MaejorfJYn27ZUdpLMA8EltwED5b4ECfMF7FmMagveZgGUIQie6+6yo7tZTQR3wu80ce0kkngWML+sd6x4zraaMLSDNAKXWG61atyWGZFJWLbJwoJwL1+crOWUQq/1rbbfjrJ2YA3lKdLEWIx7Qt7IZcxFvGYjSLxvb9YVCp7QV7Q3mTJROlIaqufG2evW8LHBIE4cUeHc2tlwPgR4niBmJE9pWzudnVAM9TBASlUScGxElxhmVRC8XynNjWk5MKVOaTW92H/mm2SSlYS7BMhSpVn6Vbu3JemVipZeVVlZe2kb5ILw6LTwuliH17czl3YuVWAlyUpY5MoUDoV2gbkwps8RHQmy0i8mwxygwOdYTBaoFAaogzb5oHuCbEPoo8CJDbxhGMPjm23ckCAi4VqCxYm8AF+CTard22QgA3cU+hiCI7hgB+2K2ZpUvKDH9Prvyu2sMDB2gTt8XvQWA27+7v8v+0c8+WMtY/LJDlZ7N+Bz6CAy3zsB4DjylG2XPSOd993Fcwnb7tmcJoSuhKtJdPEIxDX5V1+PHa3zZiVEMHvX+NXAC2C3ZqgWLXirasEWu0ErfiUS9d8paUJSQA7VWaivEGAkhsG2b5VE5QlKaNtay2nkVM9/sPh1YemFrhct2ZWuFHpReq83ZL+YWpK0S8kQUG73OU6Y1pawr07Lw+TEyp5nWleIlWxfTqQza0ZCM4SfGITEXMiVGJSQxFmO7IqsS1SzepTVqazTtpG7XSXQPiCAK0SJqkE5INpF5vVYkdda6UeoZbZ1re0bPcJwzpzkzTRGtV/q6UrZGiBYQjhMclplMQ66bdVCmyQKkZ8bDLUqKWMvLF7349+526dJsI7ANyhe+BvjuA4OAtwht+3Qk1IPAoBKPXR4RXyBeVkswYU3BJcbVswoDudiDAOZEMzCFAdJhtNgw8AE3fhhiIk0HSNg9SxhkYVtRtzEhE/IY6bx4IBDGrOJY8P5bMQ7kCA6jPTkGmbqXIyKYmURVV4wRc9tpzWv8sdvb/UNIQuBm/+1vV03F1JiGO06g3u62DIEezLFpxUReiqH83SXQrT3ZdrPNmKKp6ahaSiqBci6sxim2oSK1SbvaKpXG1gpb3SjdRDmIdnTrZgyD2L2cqxuyWCY0HZVZYW2FsjWUwnI8kZdI7aYf0SSxVeVaGlMIhGylTUgZSQdICQ0GcIYEMmVqt2CgfbUJ1tjZuuEBIRsy39qGIOScSCnSW6WWAlpZJnicFtZL5SCRnhKtFHpdadeNtUBYI5ITp2XicJqJLjAifWO7mFHLMZrRSIrJgEiBKQer96sv/CA+BGP/lmDnOIje8eL9elD7rvjffcvtOxIExDEBMELLjXQzYoLV8DdQ0LICbyW6PdiODwxcALWhEQ8C3YOL8esdX1B7nI4MQK0z0NVKiqCDQnQDAUdGMA6wOQ7d6RveZQRDb8/QA1/q3pmwN2olxkjcLNhZsAgC0vq+48cq+4nuxRYtu8S37N+1hR3F2OEKDxADF6DfXzSGCYw0M7giUt0KtZjdeS+dVsxBubXGum2gnTxlSMKqhVqLib8EWLcrW1lpdFqvNoKbA9e6cllXmpo0127eGQVp3QgwKTHLbNRlnMjVC8HcVcmYqlHXgpSLTcwRmPJCNVsk8yX03T4moQdoWuyYxWaYSoAYBc2JOkaeWyGJMOdRuBke0EK1uYctkMjkZIevbBvbutLqlcdlQqaZXpS6YcYgpZorVt+o1yvXIsQlc5wTcxJEA6ELsYFuneJOVDlMxCmZkrGfz7vlctskjd5ga6R7l2dkgm62MTD0b7t9h4JAGkk0gycwtP3Mhdc4BOHu/hsmcI8XcLfLWxo4TD2bo9nNywEFn9wbRCFvrzFY/93HhJrv8QbUBWkeJCyN3rn/I6UXq8/x8qTr2NlH1jDengeq0f9nnF9/L7rPpnjt5+h+01sdaNb1rigjnhLisu1mVy1uAOoWR0ODZXcRHveJ4wLa1WYIaiAU0+KLPUCJlNJY143WGjln+qaUdjErMe2EKDStXFe/zwHdmCNFNq5lNeJNgJCDXegSnKsRyGkiTpEUkhF1tBJDMG8BrbA28iTkQzJbL+3EaSLFDH1DsAlIE2MFpRKINhHe3Qw1FqQXtG9o34hpIQXr9V+3Qlcl54SImLOTdmrbbCaiNtZLZQvKlBJzUqZsbcJyfcecI/MckWmm5E7dFK0r0pREINHp5UrpQsyBZYpMMTGFZNOYBe/526xMDJlAvC3kvbuko9y3QBBvWJAOwe0hANExZaVvuX0ngoBijMFRBlgz1H8no2nobq++kMUfM7LggQv0ffGzA2tBbPRY99f7/7X3drG2bcl50Fc15lx7n3Nvm8bOX+MYYiMHyX5xHJSXgIUAAfGLIRIhPCBHsoQiBUEkkNIhPERIkQJSLPGEFGQkCwU7kRyI3yBEIEAiCXFw/ENjbCcWNG7ZgCHd9j1nrzlHFQ/fV2OMtc859153u3P2pc88Wmf97rXmz6iqr6q+qip/vzgC8xY2I92OUJCuyVdvcJuNS+i7s0VIVR+oWRjSQlmHXFiB1QVJjUQyFpRBRVCuAFN8IFkkwECelAC0ULxvTFmdILEkjb3Uw5EnU3qcWc8uQya3gQolddNiKUUQxkXURVTphnbw+3EE7DT4le3Ldts5/fd6FiUTbIEdIjiS1KK2B+iR2JKlrWZqutINZkVtBeH7Bhydwn+mIR8SWzPkSxCNHDaGj/p9YG8brAWu50tYu6C1nVe3cYpT5gGLE247LtuOjnPMuMjzAbG9wLbf4W7b4K7BoWcxT9V/4jzx8PBAYQrOSzz6gdaA9997hk9/6jny7g7ncUV/eAEg8d6lYX/2HuLYcH35AbYan5dMQ3OUHtCyofmO+/2evBiRfyw5Lg2p6s1NcnGimmbyfmkzhoBG2gO5TSWgqvPXbk9CCdCXV1/7UgJYAuowwFRhZyZYrxh9Cb6NT47nFVgbiTxFwlJiXoE/WnzB/+H3U0grUl9dBDtoVVtZ/WTdoqMEWso5WZte6nuyDaUkRmpx4rQqXPYMzY+raL8L5iWHUHTBelFLUX6/gkRZsL+s/oD/0Ge1yBRbqJbe1dDTxRmwgHjoG7/rBKwTqrrxd8+TCuA4jbUKzj56mzn7F4JViEiqy6iczMKFb21j0wszbNuO8ACuL5BboHlDj47LRfX9/UC+DDxcO9pFk5zQkUdgaw24O9H6wY47o5bEEO5s537X8PIMnP3UPIVEPw9kPCDOht0c3jo+ePEC53mM7NLd5YLWgKNfcT2vyPNAdHYvftk/AB7+Lr7uU+/h77u/gz17hpcffIDry1/Dtm94//6C/fmnkSIYxXkFomN3x31z7NhYMpzq9uRVPj0XN2s2FNxrtd6F7EzXlg0bkC0YVK2UdCRgTz4wOGv4eMjTB2I8QEG0UgAjeFiPMW/AcBlGVqH8/ooT2MwAVNlQDEHPRegVXJFXbzndlag4ADY4SLBh8rDyAPX50F+X39/GLkPW34b7IX5EDVeVpRzR/A5265GQ5k2aSBD/GppRD6Y0z7LsqB4siiPIf6zvlRuRUgh+Ktpcwb7u8L4homPf7rB5w8PDg+IIUk4IjvPa6BaggcMyzgf0fsK3nWzOOLFhQ2sbHvoBz4bdLoAbGja0vcHC8NBfisVX06YSHWQnPuQVqSae59mRW2K/N3ie8LjCtoRdgF3sucAGs46GK541o0voCbPGBqZx4jyotJsbLvkScbxE7weQLOm9u7vHe/uGZ85swEN/AUTAT8fZgS9dv4R4fo+v+9Sn8On37nBcHMf1JfJ8wNbu8Oy9eyA29OOCPNk/cMuGHY2UaToAMNeUqiqoS+6n5zZkX7pUmekc2WlOf3I9l5EJuQtv2J6IEgDdgSH6XnUPCghWGtDGrdAAVBEXwI0ycKtqPqhmoBpvVcgxhwUnjF8VwFQIHPlVnf86fXTIamcjxx4Q2oihpOkoTGF3+MhYzFSgjiFlGUemQX78BBKEhZFiFipLcCY/V0rgTPTT1JVWKGJBBDiJJsaosBrF1ul2QOnFlEuQCXa0VXCxiEm73UvBBBtZwJDJmQgXb/DNiAgacM0NV9vx8uEDKrQt0dJIcT0dF6MF3GODoyGOxOVuR7Z79OsBOw3btiGDgdh9u6Mw9I3ddR+MHX5aAv3EHgY/T/iFKdC9NU4BaoqYHSf2yz2wNRznFZmOi284s2OzztZnLx7Q+oE7nLjmwUarR0fvO7b7ezy/u+D5+xteNseLFw9AJi7bjogD1199wK+eL2Dvfx2eP3uG957fkcCVHTgTmzue3d/zHBykaZsorhZsC+bOG2r8WyaabWoVtqxzUVNm6yY+TgDoy1qvwPAbti937sCfB/CP6COfBvD/ZuZ3qCvx5wD8jN77q5n5hz/qN7irEhljys+AUeI5yUMuEEDhicokWLV8wlQOAGCzzUdoAQcWyJ81rmSNC0xUYAjRck2kHWIUV4DPlQ0AZo1gEXBGUzKjg2Ao9yaHIkAFCoVoxnemKRJe1tiAUTxEwYfiEZX+KxfBDnBefReUrODhcCNsfC+DgRgBRY4sp6yEHvfkIuyJsZ+eGxyO0+4Q7vDcse1Mq+6bI+LAeTADYO648wur7y4G3x0P/QEvj5d4uD7A94ZL23Ex5uiv54l8SHg67v0e1+OKtMB2vyGOwN4uuFzusfcHXOMBvZM/4RaIF+wrkaGoOAJtM/rIG4AMNieFwWwDrKOfTIl6BBCJzRKBl3h5vEBDx70FDnACs2dHvHzAeTbc3d/j0+9teP/uGbMD/VBRj8HzwPFrX8Q1Dnzde+/h7o6tvfpxwDuV4KXtaPLx4+QcAdZ4qDlotYvXuuZrfqsEQuvLdU1BxW4A4HJqRXfGpNq+sn1Zcwcy81+qx2b2ZwD83eXzP5+Z3/ExvnfZqAQ48nvGzyuvXk4ClDrsVr3uFVRyH+3DvLIGgOD/JO1Uzj7EnqkgHtNxUwlwb0JQPtgnDhN5GYCWdQ1CF0nRfJRvz4vSq0WZVXvz6eqkydzWUZsCd2ANfqrWH9z9W2UQUiwq+sEBRpZPpfuKSLIqgQOKAShO0GmFqjiITEHuYzoLtJhRTLVJlCsE+qd9v0gBTyV65onr9cD1xYHjeMC+G5493/He/XvY7hoCHf16YsdOC2+AnwY/DJedff+P80Qk8PzyDFs0dOu4tAuOfmCPC7b9Ds0vaH3HiSvgiW4d12SdvTVHCxbXOBibIN9CCviDD5Bbw26ARagkG8izIzPwfHPYduI8Hsjlb2zxnQk4OGHajgNuF7x/uQMu97heHxAnU5d729B8Q8tEPlyBzqGsz+/eA3ogK93qLA3eapSdovlk/ak2oMmozYIYoYCckLNcA1a08TUvQ8GnNlbdq9tXNHfAaBr+AIB/8qO+5yN/xyZPAEvlII+NAt9QjRKmB23GKqlu0x+nAtC5sWmtqygHEu6wULFNDITgivCnkfRjWQPO2RGmlFQFAOtXc+Eb0PIXqQhCID6uV/EFylmwIkJIYVXhEQlAFfQZmk1zBLkoegen0BzJWMBJaG8dtPqKD+RBRUFEAOBMDvUIKoAeNn9GI99OS7Vqz3Ekbo6zqNLuiMbHmwNnBM6Hjut54toTY/YBdjS/4PjgAR+8+FWcecV+v2G/u3Aq0WXDtl+QnSWvrTUKghueP3/OYSN5oG0btnYHxw75fNixI1rHKe6nAWjh2DoVzJYcL1ZDUgAGM/PlFb45NkvkefB4InA9HmCb4/3LhiMNDw8vmB0w05yIk9A8NrSTRmXzhrt9A/YdcSaQzPtv5rh0x2aOLThDA8lZjglA02tgzhkTmRq1NuSLK8m3ppiugreK/o+Y8vCbl9duLL/N11+zfaUxgX8cwC9l5s8ur32zmf1PAL4I4N/JzP/uo74kwdJeW5BAdepNg/r1axHCb+CzoSFs4wWWEkmwWWdBoVG8kxJOWeAKR1ZZEoN/wfLbXFwBNikb3YCpbFnG67KE3EpB9KECxmPNPuSEM1FaF3RT1K+h+sZXlvBP3zzDWO57ADiV+utOyxNT6PNasQO6BXkm8mD6Lk7OE+hd1QgGpG+j12MkX08DwhvKGWLAug0ueroD0cdgzp4Ju1ywbZymtCER7vi1lx3HyyvO64nL3Y57U/OLRj/fzPHieCBf4NJwf3eP9MTe7nDFFc1ISurmiE7otXuD70C2xBFX+PmCJcIba+mQSVTkCRyBPDt8I6zvqTQmOAHojM7+hxGI88RmhovvaHaSBGVCqwCsqyRdab7mjhZAaxs7NgVLd7ftgt12uO00NjzJ7AOAZb1nNQ9RhqzlsgZ8hISG7dDaSGUDRqIpgEFOT66T2qro7XXbV6oE/mUAP7Q8/wKAfzAz/28z+90A/nMz+/bM/OLjP1yHjzz/zG9DxCQJVfoImgVXosgJPKxFSzf56ht6bjKU5TjkiIzaqgjGmVJWXxOKhvBXoHDx/w1VmXXSykA9ALkX6uxT477WmI2NjIC8tZHKLQUwKxWE5yrbUecIqOs588CVBjpmPhma7oMaQaWRVOXzD17ASf+zH0DvhuMETlTvBSswwmhIqG6xFHApK0xVV4o0EGqJpe5D2wZLoJ8HzmQHHO/kR+z7M9xtDXetwdWrr6UzL3+C/Q7T0a9JX9wcftlwud9RmCybwT1G8BEt0bxJCIMTek4GcZtxHP15HjjjAHY60xYkMZFsGvBqKW6c34gXHb4Z7nHBCUPvodbs4PlGY34/+buejcFOY/+/zS5oyWCnK9VH5p9P4deAXflaFHzmsocSKN1Pm1ivyddPG5wApCkQtcCDBRnYV6OAyMw2AL8fwO+u1zR+7EGPf8zMfh7A7wSnFN1s6/CRb/j2b8sQl33tjlOW3brq/p3zBCtmEFYntdE6imhvEvYUBbjkqkp/GeTTjKIMhPiAVR9ANED4TwRQRUY268vBVAzHoRa9qC6AiCYjNbgOEZmOQuUjqAjO5e/ra6ZWR2UKihYKGwM7K8U33u9gEAkLI/CE+gUYzs424CfKQ7DhPvHnSmFVeRTLnU29AxQ5nN2J41SJMwRrSTU+jwOWHXsSEVy2Hfu+kZbdOQiF3ClDR7D+ozXgBNuZiRDTNroHaYa9OdA2rtyWSGPBUGuGHRsOPKjWQxLUsXAkGCBOKXoI5psxEFsunSXbp53txL7v2HxjEVRyDdLYOtOZwR5/3pnW85HeE0FLI97p6ulW8SzUepUSqIB2LaVCtxA6jHpc12GixozKBlCpZF37Utzrdz/avhIk8E8D+F8y8/P1gpn9ZgC/kpndzL4FnDvwtz/qizKB89AJ8YkETAQHH1qQcCpbYy7UHJmsPiSPwPVZLlqO5BYczByKRZEGDNdj5PzL8pM/3yXGDWR5EYOciNxmg9LMAROHMhiVg+IEpOICg4xUjsi0wAHHK3SOnEqFH8pBCUUsboNuo1gop7OETPani2RdfQeOTmDAOCIRFmVFbccxoibSLSZ/tEK1Na+A955KjZrDGtCvXeXDht13knxCAr5dkNnx8uVLnMdLtN3w3J1B3Iq2Bs/13tg3L7uhP3Rsz3bu5xlsauqGbIFuwNHZB9EANGuAOxIseoo8gQw0c8RRQb5gxN8ZfLNsep1Go/fO9KgXgWkqiMJ6LRgkdAk/JxXr1tnjwHPw1BmsvXF5b5XBsNol/IsQ+8KipX67NRiRsdqg2/v5Na/dvqy5A5n5A+D04R969PHvAvDvGkfjdAB/ODN/5aN+I5Pw1MyY9x6Rf+58SnsOJRAN6dKy3pC9kVLspupJUxOIOquBKkpy48gRV+ZgNN+UdneJPseez+ZiNWMi4CIftVeUwERfxU+AZgrGyCx02MJhsOVvdC6ccHU9N7cAYQqKlY9owAr/1rgC6wCArvHdvUP+PtOpacy2dCmCLkUQ5jKeHIKSYFONIrDUzUBLDllpcyOrb2vY0NRh6AT6iQ7jbEH18c+k3723C90qM7IRtw3NQuk+cDgtATjblSf9dlNjVID04n49sV3oQx/HA3FXw2iPVn0VWfjF82Pm8CjrHojooyNPZDC4aob77TknNau5iMFg0TgkFI2PNw5Z9dzRNGzVYimMU7DzNh5gI+V9u9ntSwYNmnm8YLjarKpCl9cff9+bti937gAy8w+95rUfAfAjH/Wdr/wdgH5iCL4Z1FiRy8zpC1C7N2ejBRNHnqadrbvTRjCklEDKobJRaqzqxORXNAdqNoF5EEkgYBpK4nmAQ9BUYYhNrlfC0RiMuzmWGXuo+nO6Hm2k0SJN3ZQqJmADHdx8UwUF6nnO9wrGIgXVKaFzkYhmzBw0GYa9yx3x4pbQpcpCAkgcsX5G+zX4GCU4GLGDbC4UAF0jg+8X+bsq5U5dOyMP4OHlS7QIPLvc43K5ALYBOGHZRh3Ds/ef44gTRz+Bf3rzxgAAM0ZJREFUBjTbiAC22fUo8kRkgzemALe2wUL4pZdTA1SA2MMAV/ymoHUX9lPxiaUxk9DkHgRjKZf7CwJENCI+01hYg9sG84atXdiAxcmGJDqoTNdEZzMmMG8j/VebYSgGA4SQ59odGljfiwahFCmF+uxYQl8dd+A3bkv6seWjAa6FRw2dqhSuOj9kA1L0yvAZSCx/DVDghPeMm1A6Euo9gGRFYTrcA6Jsg30pjZWCMBi24Q40VKDPlS/GDNwAQ2jJrGtw64UXuIBgCgOqUZlNQStyUZjQTKUhsCqWuZku9EACJfzJY81gxRvjAIEgIha0F1dIC7TaoFRNEduMl9tSfI1q2G7zfzNsWqjVCeqMpALYNnh2RtYjsKvH3XGeZP9pNNbRE/HyAb4Z/OI4j44jOy7P7nBRU5NItj2PDmx7tUxjiXLggO8Ga5xrcO2HqjV57bu4/25kHloz9N4ZgYlQPIARejcjwjRmF6oC1JPlvJttWCa7yQWVEkDDDlX8+cb2XvquNehqtcwf/RvrdkV2tvjyawGcL+ui3l5hw5CBRcReQQZzeyJKwJBnMaRk5ZfsQCYjxgiZ7q1MUS1AoQjHhFXlN42DpybJR1cj7UR3ve9BhWABd0PbZgFKw4m4QQHFCixuAGRxXLGMXMagu9AEXYNmhQxCQjiHmN4o7Bz/rS882uil5/IcQRQUwS65RXTJmx/I+VOmk4jiO+hdLbzMHApguB2VuTGnIkgqAM+A9T5bwonT0Lypdz7w7Nlz3LkDEXi4PqBZ4r1PPcNlv0N44kV/iS996Uu4PL/Ddr/DGnA9DhYTXU8OQrGAeSK7plD1hG08yDg7jk6mYWsOFzMvO0epwTTPMeXwpYp1jCigGni6mToRGRBGN8V9nMeKW3nbmBWwTSlscleakQWbYpPRbzf2ise0edObu1XqUwGUMZ9CnzavOLMcNpY5/yCX+8cL63Z7IkogSXgxlxUGYPTrzQytsX2SKcgVwQAi0yYuQe0iEvFv68TSh9TPDC2by3omHC+6X5cVdqf/7I1Ek9Ma1NMYHczJBxIbtqEoAjMNGAjOOg4tGV1fN47CqhjFmGhsXJQBR7ihtUR6BTOTAimWWFpqFmGO2n+Wxgq+RnJ2Xo/qVo5atFysLLACkTdqpkEoAJGyvnCWsFatBsmKAVh1vK3INo+xAEzb2O+2IbE/ew7rHegnIhJb29C2huydgTO7wI3Xnq2+ThZ9BYeX4iQi3LYGb04ufzBzkNFxxhXRA74ZNm+o0u2ttVldqgEo3pTuFRlqBAIlm94cm29aU+Weuo4RuDTyGY7OVuDN2QClcvnu6uW3uKbeXIiWv8+1VkarpB1zjQjsTkM1b6Oq1oXElHioKdQAlCGj4eE9/yiWkXSPtyehBDKZvwYocNVgtKbwWE+YB5uHuMFOQ6hKrdKfmTYOmv5rvb6iAcwIK0DBL9/bMd2JUgaWwLlh205YA7LR/tfprCnKRUAmHZ+LhrD/0PNGC4kZCHIJoMsfXynHo82ZsWa+BL+GkiJFOEIhESAxO+IO7e8GsxJmU1RigaCLm1FNKxzA2n5CV0Cvz5AgfVMroMvvgE0B0rGYuSZLa4UHrfqdK7ujT2YGLvf3aLahXz8YglDHbDDNMBQCMB2nAUwHG6ID8GBMSRJVfBFXQM6dyNJFz0jPISic49Aw2nh7Be24aDiR2bHpqK1S1M21K0KsPs+xyfJzTSqaUEJej2X0UIG/RdjHcymOMmTsETORQQ3tzebDvTCwhBoAZ1u+YXsSSgAJVr6pC026jyEPMLaGsnIRqntyObF6udYiF6IerWho3XzeV4nxeM0wAlzZJIQgK2/LhsMNbQR01LAkTVZeJx4UGGYEcrgBlixWslxYApYgU3Apb86EoWOzQupCArqvWEFx+tfmqjmQg+BkM2UsDegaIZZKS9qsgah27plqooHpClRf5pqTCKEr8wScAtOgTIs+N2YhaHcdRfRiIw3yBajM2s5Bn77taGpVli3Em58KMJOcgFSgr21gpyUAmR2nCF2ma2pItjt7BK9N+0kCjUlZuix5m4G7UmolhaH3W7vx1EwTgrxiU0krP2+1tib2N5vPrS3vjZss/aIEKgFQnjHAGAYAhNyBItYBQNYPG2Dtq8cY/A3ZMhP9oc9oqSddg4qcmjO118iSy42+YKICeYXyqQ1YiMT7YT3XbT0fTYGWnKY4yyyHqzlmg238bneD7Zj0IkGvCqJVVHZY6BKo7OjYZuVimqwOIw71Or+1aOVT8FNmegYJpxUfASJbFk0DbOeqMcFTjq2iNaYLMAOSwFQGBhuNa4BUpeps1c5sxEQtWzIuIC7nRDTAGNphYGrUfcNld1z2BvQD1gz7ZSf19zzQNme/fW+wJkYc1D4+AtEqP8ofl1eIQ+W+DU5SE9QhqghBoEYqHgBdZgopBd9ViFaWtNwnwXkhp0zAm4bYlTuB1HcIfjfTmiwltOT4y41dHw+L7/PEleKSwC/9RRDuUv6zE8UMPvogfVUNLRX2U28qkol+Pcm7NlNajb6nGctPUz4WR0M7hdcKU69CPhXACHR9mBKoPmwugavvdVq63DB8jiNYMmtWiiDFzDvhCMLlTHLFAcJgy4EGzAIZ1cUwdVNg0ByR1b+I7bLgV1QP5qFMWk7F5cp7y2qggcqK2ocLMkuZkp/ubJBLH9GmSoHuLYlkThvLnvUAj66XThk8DU2MQKFQTj4C1BiF+0Ok4Nia4X5v2DWgxPwCvziyAQdOHAeQDUQBcsnCiunXEUpmuo7b5B8bGBCc8TIxpwpQKhg3Umyj+67QgT9CBpjU9bIypY7ESFNlXypWkrC2KGdrqyYcfnzFsijgdiP0tmaGfFr84do6U7phU/ArYJu2MFF5IYnHksfMQq7Xb09CCWRASCDh7gqI8QS7G3oQbmX1VGumdssmCC5tT1UoxKWL/qbcyNDMOZ6n53Ax4Dl52YJe1litONZFK9hcNrCgM6+i6UoOoK9otCsz0OFinBEN8PWumnJDt6QyKKZSxTAAmJHxJtYyCt9X6TGi/HNjqspd/fxKEIyNRXS+DhQK5fdvbqwgDAVkoQqHsliC+Lt2iz3ztEumke/lz1NvYYOhefVeTmy7AVtDtqSQtmT//A1ssMhM8KQHl+ps6suYstibgEHyO8zLfcJNEI6luZiZGMH1isjx+G0gBLMl/VwazjGi8SS3UUEEWJHKvnAGWAwkmiKr+bD8NtbfjSLQukovqy++hheZ61UFMGpVrQb6Yrhxo5vG4Mu8fnsSSgCZ0uJcUYM27Mn69k1+lyxhNjYEZR6WhFsa/vKGKi4A+XTT2o2tIFehpBL6cUEkZFICozGmOdN+Ju9fC46eMDtqVoegDELGruW7j4tFAk2uah826MUG4Ej5e97RPOm8l3JqFJQRHlgg/1iwCVkX9a1vBhzMClzAwJkfxqDrAu09U4QqFhc5KtdeZU7TTTNwAXnmsnuJvdE9SIgzkYkNHOW97QzyWisrJ//dOczEdW0p/AC2isuw2CdbIE0ZBGeZLZxxhWguGnDOFJqDMwbUY5BlvDNwDCxpQTe0RkkkgciXmMAaxBNyr8xUshYiLEjvNUwlUEFAM2ArPguG8rEmGK/XUkqAN2aKwpxNXhahr3I3DDeAokzeSZmjYnfmq+t/2Z6IEmBgsOYE0o1ztRRL5EnL5y3YUqolmjMq7740rwSgZcpHZmOy7CtbIQGlh8p63Dq0fB87aCpH8UdDmMpR/URuXDgcimowWf+zk65bC30wACWoRQkuQ14kksximTVgY3qtbQAugNrqj4EjKQWQtlg1KQC1WebzMcGUy2bTR/0E2sl6gpbAgVlMtMFwpIhFubLQxNAzBjKrvwV7IQQubqRyYAY/t8aOwW0DciPaO/JEOAd8ZAOwxURkTeuaWmYo7TQGE9NjBt4az5t350CRRovIKkP59hsj+wZfXEUuAWuueIXL318VwKL0RryHf7O1jTRplSXTDuXoK5dyMa2BiGu1+lqDuVj/7knF6M6xalB/q/SRoq3Gd9WfopSCYZKSBjDMiYTzNSJQ25NQApmJ40ECZAn3BGoMtBk2+bkZtBLWOxGDbC7dUVkBXeSCclmto5eLCSw+Yo8RA6gLwsCODSiJUyqG6JZkoXAckUo5AblhCMgQaoVzTRH2VGfijo6OE5tm8l2gslYDKoyGZPOLOwdsN9TMZsY7xHDcKUxRsYh02J182yutCgOBTpLVWHAOPHCGw0Vlue1MXK8Jj2Dw39k/YTdDVyFXlD1JNlFtVu3RgGbMmriB47R6IOOUFWZ+pHv5tbLUG5UC9qTANxDleFDD7IT6Lh+cHbcatoqJ1L1O2XbZBlRvDY8i9KUAFUEQTXikDorE00hs8m0bAcPxGdTD+jsgjQ7eZd9VfFWahQqhexcMZWWiN5GTmpEnsZEKn038EnfVbZQ/X0rYhvAHTGSnHG5BZV+A2RKO12z2uX7T9kSUACvPKoBVuduqDuy9q3Y6kE7GVzoDXRXM4cwABhVDKAKVn4aCjUOjOwdvGJS7VTDKjVo8clhNGEaZbnGzrSAYGnpjzQFqYdlSnBJAhhZRTl+uFsWMm/N7nZBEiqrBbSfiaIaw4MVKKCUCZkokA3RtjN2IleK00zTBxthJ2FGMa1q6kwisKT/tpkIj1V90Vgzr8LkiQzDDMoZiYiYvB8NuayAcjmnZu9qR58UxoMPOPy6Lb/tM19oG2A4iglZIDbBN62KbMkzF4Qzk6lwMoXeTAqSycvEY5kmbioCt6kg+sSY04D6utw0/QMbB6jXphbQbJQBgpG8rBZgb1yU2Q/dE9wCctSSr9afVtyH8LFJry2tY4gKkv8fyd7xcvGZvHjvC7WkogUicL4+RkonKuYoAlI3Lzc3RnK2/XBeHOVqVE4PMQpe1BGZwrFqUGQzWYl7EVdAF/+mbTVhn/qhwY+w4gGQPvAxDbCrLTYUHg/GtCf8rV97G5XOQ9OHJiHxF9c0cl80R1hF24vQThlPZggmPuQjpYnhjRZwdDtvZzbem2OaBxSWBRlw7U24N1AAn2O+v0EtA/StzVM8BBfsJqc1ZIdxU8EULR3RyxhLLqH1WZ7AbuL8lNclGgYcr2LdB1lmBQ5iINy7UllJoOseFitr08QvVVUOQ5hX1L3xskFSjFEFxAcybfHyT8ZeCBSai1DoCloQDSvi1bnStIpPZLSuyG+M+JPo4FF6dxV2wqRSsehnZgPphPjkfurDzXqgyV3z6+u1pKIFMnA+H2HSC9RUcTC2O8sdaipddPltMhiFcSoTRdUZkJwNsRIkZ2ePfKJAEUPCtEbKigc06IGSSQO4mPzxHFD6hvPkG1QqQ6dczsGVZ0ZnCqayBGevhi2lYfngV9IQZshkCLMH1BHxLsP05bVPRqk0lvNadzTU3Yz17OIX/OmMd6YTeHsYWZAq0ZlEYa4SVGnG4ks7V+BSQYVPcwUDBTZOL5YlomNB4gevkLkgRteUmVwA7qADK+sslWJW1mSM3BX4dU4HRlWdGwoV0FiUAXf/WKmhcEuvDSgM+lIC3BvdtKAEAI4VdBz7L3RdUAKWni8AlhFpFcHBTubio4vLxSeyhpWe6+LEi4EnpKY6AEAHEWGWm+zYYGEsgID4kPfAklAAicb48h6WuqOt4XuXB5oqYk+JiTiouMm6UgEu7GhzbBtJvBwpYgjzOi4ZKSZblb1yIaGAKiN2p6eNvpoi8pDaSEesTwEYW24gTjIXFdtGsOIMuqQHqQsOgYgPbAx+FfxFwnMONkEbfgIaOrRDDZvBDPqaGV+I0IoLOlVesyDRlM9RtuISfDT2CQ0Q0pjzZpBGVBx9caQEinnPVIIgVt1Y/kkjTKcRKbVLgS6hnHMCaAVvenHdsINdesJ/TgnwwRq1+SwHPgv/M8MxzkwMFaE1BSql4+wBWNOC2KIAFCVB+FVNynteqCTClkbK4yCiSE9muGJkeZaoGxC9Dwt/PYdlJQsssRVFIoClGUIZCn0EJvQatpI3sSBmpEc95zfZxmop8E9hu/LfpCP9sZv4HZvb1AP48gN8B4BcA/IHM/H/0N38cwPeBduVfz8z/4sN+g4xBKQEnOdXKkpvh7CeKe51WLaRFLYahovYuwXFfCDJBf3oolWNN02gHauE0LYiyQp4SKi3UDvjOe2xGq3bKkm4UnN5FZ20+lJJlQ3P6zG7iCbpzUi46mpBC13TdDrY0yQS2JC++R1NA0dE8cdk6LmZswtKcDSy6jcnC6LT0bBCSHO3Vcgwj6b0jXUFK61QCO3FKtSPPkXTGUALMz5eSy3Eu4TkVgZHdlyCywqZAqR4zRGITBTgmGtiEznaTcsBEEp4wb9NlGPcmNOCTAl6oT6+XBScjsgSPn6uBNmaOtKaRZRvSmwS7LLfUhsnmy5BUXABpCN+Gy9iFIArSs2Comtprf3I+Dj2nSyAhxxoQnBkBFn5Vf4yFHyCDsehsuiLxlRUQnQD+zcz8m2b2KQA/ZmZ/GcAfAvBXMvNPm9lnAXwWwB8zs28Duw59O4B/AMB/ZWa/MzPfHJ8IIK8hyLZEunRxTlyHkLs5WqMyCFArFxsunXXqWdbXA8e58A7W2xI4GlCzFhWL7fl+hBYvX48wjQMzCkoL5D6uwIBzZo6zcWKhmYqEoE5FhtFlh8pOUDIPmE12Hrv3Bs7oMA3z7BZsk62A2qUbo83J4aFUAKAb4MxGhMVMu+3GisNrl6tBKm72mpLEv48jx2KGik9GSlMEIPiEvQxuyZ0qJWAVE7AhxKjAWAm+7l9FAzlfL+hfSG65VUS/LDQVHp/zvlEhKw5AI7MgAAkR3TVllrwBjcqgaMNC22OrWEBiUTDqF14knRBCGM1iNIOi4P/4XVvmX+UU/FIQBJyVKqT17yBCyvq82YICeLHm+xgB8NdtH6ez0BfALsLIzC+Z2ecAfCOA7wHwT+hjPwjgvwHwx/T6D6vp6N8xs58D8HsA/A9v/hFGqQtShfURHyhfqzqrFnxtI48btA5yHCvfb/LNwpRAGYQQH0rAGiEeGjU7biwMgE2uSAPZdhJ2i+kKhMd8LSuG7OxibI0pMohibEyjscDIcGRiOOIDInKBbGlwuSAtKOQ7mlKC5Me3zWBboKWhMYE+Bo6wIIij1tLlrlRD0pNR6W7szJu9yBI8dwgwmKiy5FFuq8tly4O0gvsYfnnKjYCCdKOKSII+hLqEXVmLeq1QwHDJ6vM2hT7ruinFFo3+Abt6swgorDGoa9sQ1OYzlTbTBAvzDlIUun6xMAZXknUFBkcpOgp6T5Qx518pi2M1e6Ly0YuwM0B1QwjqAyFwvYxJY7gV+MhSZrdoYLqkExm8bvt1xQSMQ0h+F4C/BuC3SkEgM79gZr9FH/tGAH91+bPP67UP2ZL98CG4SfPJxWhgK+nUYiohd8hqmk4LmVWuCzjonikl0pYCEVdN+bH4sY7JV6/HJxCb3IMaDLrJVdiBPBNh7JjrF6UsC39VqgGM2ndji+0zeVlHlZtyd5HMKhzR0dDR4gTOAy07dgvGxzTZZmsspopmHMyhAqgtEt5ofat2ccDxMxkI7EA6eQphHbmpY7CCnDWR2dPZkSjYnCSXUtQiYwFEbukTdsJAwea7guc5gne5uA4jWFkZBANsc9hlftY8xzUyp4/dK0VX+cjWACd8p7BKc1ijlR3xAMMxfECrNa0fLno3194ckCu4L8hfR57j3m4QQpX0ApgIAIpnCDlMUk8JPBVBFaLV+2GFBmRzbMYDpsBLKYwsQD0uFELj9GFpwo+tBMzsfbB/4B/NzC/acrCPP/qa116JStgyd2B7/g2MQucSuTVgjN0SjTDDFNzSvc34QYK14gEoaJPjAhuMwztbKZAJUcvqD2uzIgEvnxvjKoz23mFAC+SWM0Bm0GOO8DJvbE7iJfwmvd4EqU8O28jAloEWHS059oyZs00BTe5f9+B3uboaRHIwSNKqb62jWYeblo1XzIJ8+2gJ6DlaEtloHPmy1EeVIRuV0FWY+UH59zDI5vP81YWtc6d3K0VmxaRT8HXoSV/+Ru5Cqp04DaYN/nx6NUitRrMb4DvMGsw2QfNBLKAgsMgDVQxUZkOLENMlWEk1MygN+HJm5idynq352oIC5memsNNcLS7Bogy4L23k+ic9GONz5ffPz2DwAqLOeBYKMLkw4sq8UVw/phIwsx1UAH8uM/+iXv4lM/uMUMBnAPyyXv88gG9a/vy3A/jFx9+5zh24//pvSVNqatUt42ENACzBr060dWp1wRIUcvqCwQYPEiIoRpByCWIEjhYr9BgJFAKoAFb5qH2iAQZ/C0rPVuIGCn8zx2nMCHA68kIGyUALzTqMLiVwomXHxQJ3G7Mgbjt5QLqlAwcSPTsiWJvQLdXNh5F0gyYptUC2rluo7iDHIFPTiHJbLBrbk6s/YQTdBV2QAYNTgq3XEwX7eQ0HSQbguRlIILEY32Hl0wVdNwVZndAeo3KOEfIzgUhqDpdW4YhRBhjcdmWP2gj0waaQjfW3KIA6iCHiMkQDJcDm++NDua7QRSnw9bh5b2jFoWzWYOD80YoLTJegPls8jRvBL0pwmsI2+nyV1JdSyspgvH77ONkBA/ADAD6Xmd+/vPWjAL4XwJ/W/V9aXv9Pzez7wcDgtwL46x/6I5miNaUWV52wxA3iELRkykssvVpNmK5E6XAoHkBFGGoiaYB1xQaEBKrmfMk52/BZ9doOooAmNLCB/joIP9gfwNUQZLGS0IXYBWWTQz63ZO69ZcB7h8eJFixJ3jLQG8AOvW2kML1QgUp3XYuqZ+JU7//pMYXYboNewgPwDgRFyFNIpyoPdc6zq0mp+hNitGizKTfD34SQQClq8QCqsgmTBViszKruQwWz9FqYUYBbuwmWjaBdOo6Q8xe0/p47TIoAaBxXZhtMweGpBIgKUnGbCghqkdcC02GW0K8CmuOQKr8wFcdECbl+zzgD0wWZ8YJas/oNsV+nAphrp4S+wNiA/zfMwSlLQ1EMBuOsp3nd9nGQwO8F8K8A+Ekz+3G99m+Dwv8XzOz7APxvAP5F7kP+tJn9BQD/M5hZ+CMfmhngkVYHi3E9rF6HLFsK2ucC5wo6DFRQIRCmWoZbUHCsKKlmVBCu3/VktqBjFnkMBaCzpGAZdgo/OuRHOx8H05GuIB6Cn+uaett7x9YCDbT8Ozo2dDXmDHgPBsRNRKGuVlg+v6v0HicnBFpuOFyuBDCzBEm4YFGKSbC48Xy4qvqaCTlAsQxV/EUE+sFahzHZpipkS++uhlBpQUCkGNDSlp8aLLnjH8sNm9FxnsNKo5X2rVz6bdMMx0xaNHhszOdjFxpwdLvAlVO3IhQMYsHCt0ifricWSD6sP4blz1WiBbUXPaB7k2K08XquzzFdgPq99TFAhbwiAMpTfTYx/X0ApQAWdEA3wMfzsa8lJ2/YPk524L9fLvfj7Z96w9/8KQB/6qO+uzYDI+AAbi2/bGqLciQFX4elt3ndylJBCqHOYqWu9Dr69N/HmnucInRUFIbwNcCo9K61XuXNCba33suiqjgkbHTwsW44OyfytK2j4STZBx27d3gICWRgQ2I3Cn56wrpiHNqX6KDFtySSALk35N/Mst2abMwJyxjViZYNhs6APRgpbwa2xipGUE0rMh/FUkC5M5PIVZZl5s517StKLSUQmUPgyy9f4TWtmC9CYUhWCg2hiSW1diY7HZlvaNhguUNjTgBrcGyCHAomD6IBf/eGNLPk6LX4UMNvB6TGkOFxLvi4HszvWp+P/P/iY0Quv4US7nny1krA+qrR+6CeYwp4LAqqEE4FAufncKvIXrM9DcZgAq3KUbJEHwAk5NVcreDwzfs2FUfefufNvS0Afb0WFfQrRVIoQCo2fWpTAy9K+cL8PxSDq2hyZQmM5b4aCtrPQNs7WmMbsc06unMQpgVjA7uzioxWhYG/NDAg2tlR9tptYdwmmvFWfP9yTZrIVA7WuLNhCQeoFpPXgzX+nsRKRQ1MnAg/sXZlctXKcxpQ1W3MHLgJuq0WLnL2Lay4DZbb9HknNF4bsAxLKXeP9NhQ35cGzwscO1o2oQG6B7A2yrmtMgXJrskZHWlz/dBSl5vF8zQQSs41w/0styjHvtVyGsI8luKt3UxlgB7b0zoHprW8Cut6LnGzH/TFqphroATc7tuNOHyFZKGv+mbm2EyVJYZROFRFKuP1oTF1n/O+oBuAoQkBQV1jznvWwwNj1HPBwJHf5t/DKYdEAlIICqAlIGFThU1g9JQnbDdF3XOQitADrR/wdsL9xO4nTmMQkDweGz4e16jyyDVFKIC9c1lvqLkHJTZEEpXkMiEAN07Zbc7+AUVZLhFsOnfsUqb5gtHVpnymy4rcV1N0hzjnzIWvWyRGd9sBs0cFZhtNLyOkKMZBG4pGXUqigq3aGdbcJ8QRaWRjBucAMkJThWdt1I1kzlQbbBOdQ4hkQHkDkszL2kqwhwWurEvOtaLSCpTvPTwEs1uXCaz0m1Zfv7HAKMvH53JxGRJ0z25+rxBALvB/IpbUvIlbdfDq9jSUAAzNL5AxGWysEdmv1+tk1YJ5ZO2n1p4nyCndFF5lGTIF8R2jI08pmyyDqCq6bDyR9dtpOVKXo1yj0OYxtToUfa9CHATjAt462hbILdAsVCAqa+gGDv2s0mRH9I7eDad17E6ltlmxD6mILEUzsklLrqzz1jj6e2uGEQNFxQZq2QLIPoZwFgRlow2bnXTV9qwIgHX1eK7nK71zZl9N3ykrVyeqWp93xKiJpyxUiq+SqTbcgvotdlgua+djHqDlzn6PJ10Ocx63V3AVGL+Ti0vCzUdtydnr4FZm4bq+1sBboiYZr4gTWAR6UQSTIozS9HMN64/XX1w941nFWTGBFY3mIvh5cxuvvaqrx/ZElABwse1W6CHOgOoCJiCwiRQktFgPVqqZWn/oZQlyXTTM1wqilaX3+g5bHmP2Huz6dgOJMkhUdmFWji1baeZCDJsuKCCyj2MToEsF35Dsd9AzmZm0QDPgCll3jLoZBuykhwaF3jRkwxvbesGwoeYi1k7FgPCm307RolOK2HWOXf84Q6Do27fX8DY/znag03lbXQEFLqG8dyl7syWQx/M/3YGpCKqLcEFljpClG+BwRCQvlcv1qfmIIzNUCMDG7xb1t6xo1vE8lhzxUkoIq3ffUALTL3gkzjqeoSgMZTvm23ajELicJquBLoowSdaulcUCan70QC21KwPcvhkNPA0lYIa97VMJCKZXwM99WoLhEOizmdPaJkC23FAKc9EUAhhDPFDrwBYNO1OUQlnTJSF3cxoQVdoVEhjEmPUKVPltXTv57JGGCMO2a7qSOffSg41IdMF7Bg4oA25FtZcrYLO3/wpGSE1mff+mxb+lGnya9jeTC78UAKARYQ0ZfbTaMiheEFIDTgXc9N5jlDmhawkKBunGJFQJJzGsLKEz9Ynq4oNaADOHbks6L6C0JXQdUOPBN7IcM3EWrRuMZVhLzbNVT0JFk9mURoohmT7sMZHQK8dW62JVBLXQxrqdxzZ2Ues5b9bwIyWQ9WelLh/jkMUxWfYDRjQYtT+Pb2M/n7oSgCkwyGdl5QFeH6/aAH12vG8AglFotOUCLX7R2vLpRgnUGhZfnl6Bhp8sCoHuRI7+91iUzkAA6iOoXx/HNX53kr65wNIQm6xKsl8i2Ym01lTzod9PcQy7dJCjaa6Rl/Uof9bY+88NaMFF39zQQpB+mCurzOqykPVuNmULSgmoPLsCnqaYxytLFOO10XegkJsUgFUQzoUvZP2t+v7PNI/89rEiphKwlGKvcywFlQwGmhm6m+jO+q6ecE2c3mlVMAxJuBSQshlRv/XYFeB3Dlub63uPzsL6wg3PRcejtWPjyAxmMZDHjBzMs0rAZAPR1jrn+2uQ9dHtzbI/tiehBACSV0bwSBqR/xs22xYEcHsPsxHkW6unRppkWGg9Vx0s/yYfCf7s1JpGdt3NAJCsTxlYMVZRdRvpRAQXHdf9ohCs9ob7PZmL5bpAzUhyCEzCyCaEqT05g3/q7Mc0nah2I9FmNpSBSfi3okhXFgALuhr1wnXum+INmsSTUgRSDuWavc5a3myVyansTUF+lKsylYsSmY/849qtx8LIa1OSF0MJKGZhDWkqy9JwkMgczWo3cNhsyqXxUYtCLDWuz7QS+l02FOXE40lXx1iruZzGKdx1HC7rPTNZ5eCU4PtYT6OFGyZ+8AV5WRkjQQKux7rNVY9CwYtRfN32JJSAwdDsMRIAKnWzK7AzAoKlCBIQzpvKeYVBVlH7HMGRoRCUQI/oQ9DZO16ltZSa6WuZFEPWd9jwxceJLg3vsv41bn0EB8E4Qk/AXP3kK9TAhp/dGFA7syv6HhJeCaTuuWSJUrgQUpkQBfQod/CoTk30MZVOHkqgYih1fsdIrdGTwcagzeFX69q88Xouadub8m1AcYUNTdivyEzU23M/phF4/N2lCLLgAnkEKid3pQTJRFT2YUxpTlw17o7EMfZ5MF/azVnRel/9dRZVFuehVm5C5HGdl/q7lBKNsVb5XEbDclE5xus8FELJxbxVaMrqAurx+PW0+fNZgm/1EL2/ma/3JJQAQCSwEoXWCsC2KIF1cfF95YIxT8DgVFsiunRrKQCApbUwFSFRksNkEQVZa42zn52Ef7Q318VLjChwIgeRqLIQJhktxu7UxVpw4YhTF94CvTt6ywGLo7OZp8uFMAx6/giOMi3JhVGuQHXAoaUjfC/oOQRN3ZpuAoEl+OnwmArAUkxIZ9/+gvmv2ww5O/As16yEzOHYRe5pSulxR6iwyW3QOXr0/xAsWxQ9MNCFwXCGUJY1nn+tgxNiQvaOBMvPPYtfYRUmIIJ7dGwjKJmOGtNWvzv7CaQENCfsFz96jQaUdTdM4pINJVECb6h5lVSelORZoTosHg1IBbKWFbayDAHgfOpTic0Mm1Wxz2I5aDr4Hj+p9zEg5rxyUxhHqUQm0tqIA0SWry8XIJl3Tk94NhWp6D0DsgXOPABvwzXwRiiJllIO8tRvCpswr6hhtMVeog2olmOQ5Wd4vqOfyXvjS8xkFuooYo9wQDJawH4KMdwZG4EqKggfp2lhkA+IWMM1SUiq69HUaZeugGiVxr/xCuat1wI6XMvBKgSMwf4shEKlesbGRGGAlng0ffGh5Go/VkgOJDYpoRA0T6UiDW2iG52r+nsWfSYp2Ka6fHE6oIyQWb7SQ3Boch0dm7zMZce+FDrPBmSYkF/5+PoKuWGZoStX50loTdiDGZfiepQSKPbrSIouSlhFRDT1KCWQSCACESoCQ+A4rm+UvyehBFAWdSwW6VrzG2s7IGXl/q1OqS/rZBKCCAsVC0ieeE5o0YedcBmWqm5jvjg14ouobVOfOwl9czU3AdL7GBLJPn20FKEZeCX4PMQcsYdhwVNQoQNpHK1tpqGkrbok7TPhll0kFJvIA9OyOJ/w6DLHOnYJUqkPCjNG5RkRwnI5rA1f3aWstD4VrFyVwILMgPG4bi1XIQeaOSJE6jFDS2DOoFyu/WI11+8vElNEooejmq2O6v/hejiKFkzPmC1WehjWymiiE8o6EVVpoZJ07YlVW+8cqIzs0BUV2XBRBmzXOXalr9zILvFM9LSRtjWTO4cisMqYpa6vkEEKKfF61Dj68kWT7kdO1NN7R0THcT1eK3rAE1ECdnOb/hNAd781+VxLcIlvz7ZRpQVG6kRbBBtjmJO7TS1syj0H2rYhXdXYljc3bIkGVvGNIKGnSnIB9g2wUSI7OvcuQ0NfeT7Gna0WJzEqqMqI5waYqzMSfUv6eAEzlhAjYiziV4SmFnEuQlXupNZ66PUbTnwt75ACUHqwmlQAxvqNR3AfGLVBI/vilgvhiLGGBscZ5ArQXXGlHcsA+LCQ3F/xG3QcEQzKRTh6x1QCyVtrjQqqrHNycEekIcNwdIzJPFw2ZWHHElqUwHwIYPT9u1FSHYX+F0U4gT/03dVqzEdAGYoXTHLw5oAhBjqIcTUq7hMj3lMCzyKvuHkeEYjzxHkeUgQnrteXeNP2JJQAygL4oskX18CXltED5i1oYY1U01+cX+3L1TVXKalIHxhlplPwQ4Je6KD65A3hN8wuvU7PFg03rbtvHtfzLYkunI+zlZtAU1295ipBZAhkzbYa3h2XU6TzYsslCPOxWAZTbVhUHr8N5WIDGZXGGZV6I+ekHo1r5N2Uf1ihdp1XY0ZiSIO+pym928zJ3kswy9HLNTBOLnYwk2Fs1+7FaZDANZtux6i0k3Ifeq2sexSPs4wCrWJkoEfirAlLhYx8nnF3G2I3gGWdPxgSLK9OWzNZNj4lXpKeUzUzmyP+YTLLUyxP/gAt98geoJDNPAqiCM2psKkYMllVNpBAJjJO9H7iOA4cx4F+XBFx4vrw8EbxexJKwIDpZ9ojRSAlQIFfFQSf06gtJm5Zi9Bnms3iChREr89I7gYCyBztrsYkXCcqSHMhgphTb1rjCDKbwp4q6o8WUgKgImlTgaAxgTMRgrO7bbHccIpcNNECx5o6DB3VripAS1l6rxC+wkkLJqr3JzMOq7DoSvB9LnpPsERacxwACVreKgD+nguVCC0Y++JvaQyopaOl+uZ1+brGa85OzOUjJ5pjKHwKlg1/v6mfYYSNSUnTHQCbt4ZSMWB2oHd1XS7FMbxFToNO6mGshU4hd6K4DWlVwSgf/PaMc9/GapbgjvUdej+kjEN1KDHge/FDKhZAYQ+pfQDZp1KwkD/XkVHrpOv4Ovp5xXG94nq9UhF8IpAAGIh6nQKgv/RICWAuPqASNMNBRikD6mNd4fpwzufsjus3vnpK6CnUFZxchNzY3y8dHOKhjrm5caw2lcOKBkAFUu6EFAE81RQTY7wav/uQCXRkn9Tess5cMwFYg6sQZwrf684sRoNKnhMJkdmSVrKbvw5lBtR/GOiakiM9O1xnBc1uXAOPERishpg9TFkOCjlU0VbQtgxABQ/XLAfdCLDk2hw9mUqOTsuOcge80p6356FnZz+HiKXtdqGlqjFgH0hPoNWkI0ghJF1HxdrU+2aYFK0pndPEsEC3SqDe13HLqmfOIGC5KKz6nOhBxdRyB0oRlBI4VfDVcZ4nkB3RGQQ8jyuu1wdcrweiHziuTz0wWFDPbHYDXgT/ZhvpEP6haRHlzUdWMHfj6EG+Bx9WgwuRP2p0FAzqgBPwtgmuzzhAWXNrYLZAAt8aNFZ7Wv8qb6f1n4qBigZEAsb+f4muDEVHwrBtnX+s5xJpwCutl+PIfEU34IJiQxAK4iSRiLOvU5Mxz12ELX8PZLCXn7uPNGIm0Lshg0SbNf1nMKAzk2IGoCeiM8jZDWyCihIxdV92jPhApf9o7TRbouVgP5olXBqtd1q9md6MV5RAuQI9AmenpRwBRlNRlPP7WwC+UXENA2NK70kh9hR6K2X66N6XRVhKYF2ZISHvdXzlKpjRrRsj4KkI+K0KY2cHnQlp4EIBQgDHcUX0ExmB8zhwHA84rg+4HieiHziPJx4YBCAqaaU/Ss4rAFiAf1r/io6T3OI335XLf8wnz+AY7xQ0Kg0vaJp6LdQHL1WTHwxhL9Zc/IIyxGYDTbgagtRknuFuyC2o7rvVdbdm0ZsFh15YIZMGyws4IDCB3NADaI2kj2IsPhb+of6Cigs6T6PZhwqHikhSiqD+dlUE5gzEFby/JZ2RYlvXZyqCm6uAbKeQBQWYSlvnDHRl3VjrMKLgSZTknmjogNNDbkaHKIJIIOIUIjF4s5nFKGWXuI2SZ8y1wNwlFTdMxVo2EBdb02mNAIAVlxQjroIs94hrDFaCr4ZVEti6jzou1OcxhD0E2QoJVJFZoYGK/ncwuFgBwVIC53llnKSf6IoL9KAC4LE/cbJQCf3jG/S6u43HvLdbJfEICc+/f10ZRo4LWJa0AvVkEcr/tKzW8CMQOQKGNF/y5xUfaHp/w/D518xAPR+9+cttsES0gs5UQHOQRBGTEpki7nhNU+oYXdtGmmgqQHcpwAySSaKeE9ZWzj7h0JR29M5zwu/wUWBTwcboNr4DmBRVV4CzArtVjWmggqlZEBDkZZWf4LYLmZyCx3IDmqw6dUwAPdAldSnhTo06M4Ct3wC01vQbao02AwC6yEqrgS5VCXI4UcPRu2YRbiJHEWfxNMcA+VnnfblnXVSW18Ryagmu6XcLAZhhKITJD2AaM4eDVpMoyCHRmWKqOALoB2JxCa7XlziuD0AGondcry/QrwcS9qFIwD6MU/z3ajOz/xPArwH4v972vnwF22/CJ3v/gU/+MXzS9x/46h7DP5SZv/nxi09CCQCAmf2NzPxH3/Z+fLnbJ33/gU/+MXzS9x94O8fgH/2Rd9u77d32/+ftnRJ4t73bvsa3p6QE/uzb3oGvcPuk7z/wyT+GT/r+A2/hGJ5MTODd9m57t72d7SkhgXfbu+3d9ha2t64EzOyfM7OfMbOfM7PPvu39+bibmf2Cmf2kmf24mf0Nvfb1ZvaXzexndf/3v+39rM3M/mMz+2Uz+6nltTfur5n9cV2TnzGzf/bt7PXt9oZj+JNm9n/oOvy4mX338t6TOgYz+yYz+6/N7HNm9tNm9m/o9bd7HV7pTvr38AZSZ34ewLcAuAD4WwC+7W3u069j338BwG969Nq/D+CzevxZAP/e297PZd++C8B3Avipj9pfAN+ma3EH4Jt1jdoTPYY/CeDfes1nn9wxAPgMgO/U408B+F+1n2/1OrxtJPB7APxcZv7tzLwC+GEA3/OW9+kr2b4HwA/q8Q8C+Off3q7cbpn53wL4lUcvv2l/vwfAD2fmQ2b+HQA/B16rt7q94RjetD25Y8jML2Tm39TjLwH4HIBvxFu+Dm9bCXwjgP99ef55vfZJ2BLAf2lmP2Zm/6pe+62Z+QWAFxzAb3lre/fxtjft7yftuvxrZvYTchcKSj/pYzCz3wHgdwH4a3jL1+FtK4HHxH7glUqAJ7v93sz8TgC/D8AfMbPvets79Bu4fZKuy38I4B8G8B0AvgDgz+j1J3sMZvY+gB8B8Ecz84sf9tHXvPYbfgxvWwl8HsA3Lc9/O4BffEv78uvaMvMXdf/LAP4zEKb9kpl9BgB0/8tvbw8/1vam/f3EXJfM/KXM7Mmyyv8IEy4/yWMwsx1UAH8uM/+iXn6r1+FtK4H/EcC3mtk3m9kFwB8E8KNveZ8+cjOz98zsU/UYwD8D4KfAff9efex7Afylt7OHH3t70/7+KIA/aGZ3ZvbNAL4VwF9/C/v3kVsJj7Z/AbwOwBM8BmNJ4g8A+Fxmfv/y1tu9Dk8g4vvdYJT05wH8ibe9Px9zn78FjNr+LQA/XfsN4BsA/BUAP6v7r3/b+7rs8w+BcPkALcz3fdj+AvgTuiY/A+D3ve39/5Bj+E8A/CSAn5DQfOapHgOAfwyE8z8B4Md1++63fR3eMQbfbe+2r/HtbbsD77Z327vtLW/vlMC77d32Nb69UwLvtnfb1/j2Tgm8295tX+PbOyXwbnu3fY1v75TAu+3d9jW+vVMC77Z329f49k4JvNvebV/j2/8HdeiCrK7ZdhwAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "#hide\n",
- "image = ds[3][0].numpy().astype('uint8')\n",
- "image = Image.fromarray(image)\n",
- "print(IMAGENET_LABELS[208])\n",
- "model_interpret(image)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Data Visualization\n",
- "\n",
- "### Image annotation\n",
- "\n",
- "Thanks to [**fizyr**](https://github.com/fizyr/keras-retinanet) keras-retinanet."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eax2WXbeh/3W3vuc973TNw9V1TVPPXexySbZzW6yWxxkSnKsKMhgGZCD2JAFxFMQy5MCK4kFBEbgAUqC2LGSADYg2wksK3IUyYktWbIl2xwkUSSb7GY3e+6u+Zvuve9wzt575Y+19jnnflVFUm62VAbrfHi/O73DOfvsvfZaz3rWs0RVee9473jv+J17hL/XJ/De8d7x3vH39njPCLx3vHf8Dj/eMwLvHe8dv8OP94zAe8d7x+/w4z0j8N7x3vE7/HjPCLx3vHf8Dj++Z0ZARH5aRL4oIl8WkX/he/U57x3vHe8d390h3wuegIhE4NeAnwK+Bfwc8AdV9Vd+2z/sveO9473juzq+V57ADwFfVtWvqOoA/AfA7/8efdZ7x3vHe8d3caTv0fu+D/jm4udvAT/8Tk/uVlG7w0itldkzkfkJCgr2NwVBuOjA2HNFFo8giEwv99cqiD07xICIEEIgBEEk+PPnN1ZV/xxF/M3az/YughDtbyIIFfVHO2l7t0CQSJCISACUUjKlZlQrCIQgBPGTU0XR6fztcx4aE78ybZ8g+GcEVIVaoZRKrVCroip+DWKvE/V3s8+R9l4+sHrhU/xnbePCfJ908Vy1M2rvO7/m4fu1uHMPX9I0xotrXH7e4pptLvi4SBslHyuZ54T/2sYoCDJtfX5e2p4EsrjGWitaq43fYkSkfV5o77+cq0pV9dfauYv42EtF2jm0UVIBDX4eanOOOo/bNI90Hptpnsv83oiPt04D2+5D+z9vyhuqevPh8f5eGYG3ubUX5hUi8o8B/xhAfxj5wE/eYrvdMY5mCIQACCIR1Cb0OGRqUUIN5FEpWUHnBSwBuk5YrSP9OpI6G61SK2NuC06JUTg6OqBfJdbrFQcHa9brntRFVMt0T0spjONIrZUY4zQRzTgIwpoYTui6FTEKhBFlQ67nVB3sfpSOLl3i8OAaxwdXWa8OKXXg/oM3uHvvVba7ByAj64PIap0IAWrNKCMhNuOTzNiQgIAERbWijKhmoNJL5Kg7ok+H1NpzflY4fTCwOa9st5UxR1LsiaGjUshhj4RClEoMhS4oWkdKGez6AiCCipARSoGqUIpScnUjU6ilLRi1xVIrEgpQ0Aq1CLUGahW0XjTWAMEXpGqbMnrB+Jai1Frss2ql1MGvWRBtiykQJRJCRIjz9yEQeyBWQlJWK+HgMNGvIghoDdQcqSVSa0QyhGKGIOfMfr9nt9uz3Q6UUtq89QUNq8NA6CGlzq/DxmCz2bLb7thuB2pVUkp0XSR22c5h3RFTtLHZJ8ahs3PIhZz3aB18PANFq127FqpWSjGjHftA33d0fUfqepRILXZPbI5HYozUmn1MK6/8jXtff7vF+r0yAt8Cnlj8/DjwneUTVPXfBv5tgOPrK40x0HUJKD4BhCDJdk43AiJCHSt1VEJQCkpVEAqoxTZVl9Y9ztbVH5N34J5B+32bxEujvrS0tdb5dcwGV6dJK8i0K7bJKYTUcXh4xOWTa1w+uc16dUApAzEFchmoOlJqeyczUiHaeyCVh70AaTuebegXzG0phSyZWgKlFEotVG1Gq6JaqBpsQlFACxIqgUpVBSrNYVps9D4YAVEQqo/JYmeePsP2K60Lj0LFx/qtXszbeQHN7xDxsW6fIzrtfrMXNo/z8s102uHn+0JVN0qKFvWdUmyzUShjpg4VKepGoDCOmZwLqsU2EMQ3KBv/MVdSEPPwfNNCoZZC1eZh+UMgpURKQoyREAJUqAilFLS0ueWbGvWtw9Lu/2IcpHl2k+Fc3jR73m+G+32vjMDPAS+IyDPAt4F/EPiH3vHZIqSUqLUiEqbBCKFz93Y2AkUquWZqqUhQqD5x3YVSjWYIqDYBkSnMUL2wZqbJW93lsx3/rafXDIC9pi3zYBNUm7Osi7/Z54oEurTi6PAS167e5NqVx+m7NaXsSV1it9uy35+xGzMiGa0FDZUQ8UUw747SHrIITfyzbIHZ+dvubONjO/N8fYWIaqb6PwmVqmYAbPzs+baQ7W01tCuS2cBJs0ALY7HwktA63UMb44Vr3sIPUSTM1/eWuIJm8NTdaA9hzNefzklYLgZoC7VSkSqEaq6GitpCy5UahRCjm4BAqZDHzLgb0FwQn285F3LOkxdyAUIT0LGNTbEzcMOl1QxJEEEixGihXtcluk5IKVpIUs17LTVDFfdqZTK41Lcu3jnUXYQBD98DZqNsr5nDnbc7vidGQFWziPwTwP8XiMD/XVU//07PF8A8gY4Q6uQJyGRhIQTzOwVBc6UUIQSltuf7YrSlUsz9RChq4cA8KMvJ0oxAW0BqFprZgraBXLqD9o2C+SK+y86LXwmAnXuXVhwdnXD1yg2uXLpBDCtqHVAt3D14ky4dkusOpKKaUS3z+y+sP21XbItHLcZ1mOTCMrho8MwLqFWAPC0QxYyoKEjV5jT5bi7UtuirUKUZ04te1eJ+Lz5Xp1iYFsu7rZw2a1la47cu/ul7sfhdFuMwT+hgGIq2GWS/m+Jnv9Ulq20WClmUMdpm0nXRDUG0uD9Xhv1I3g9uxJjmxQUD164Tpe6r3edQCCEsjGMghEBKtry6riOlSN83I2AXpWWeW1Lj5C0th2bhirmRcA/1oUV90RC81fOd5u3bHN8rTwBV/QvAX/itPj8EIXWRmAJaZboJ4jdaVQhRiAVqEmIRQjEToYtJJsEWitJ2QJlu5nIXaQNlz6keSwkxzpOtTYBaKznnC+FBiwHNAJjXgTSXzCakhERMPav1IQeHJ6z6YwIriu7p0zFdd0BKB/R1TZWCSrYdz1eNLXaZbqB5AYo4wFSnSRPcMwnzvAniO63F1FowwyjqBqAiPplbaGGAoi1+FVARVIIbgYthk1b3Fh4yAOCLp7Sd0yzVfA2+d0udFufFyX7REAQeeooIKhHDBNrkDtNOqnYyi0VhMXKNxUMDRVSIQAUbg6LUUclDYb8b3PVfxP+L81kawVIrGmyDErGFb96aebYxqs/rRErBjYEQk2DYUzGDU4sPZpjn6EOLf/rJwWwJDZBug6PTw7y6tlGI34J3Dgm+Z0bg7/SQICSHbbUaAKVaCGGxCdo8J0ZInVCqePhg4YCIEKPtHkozAFAXk5Vpcsw75tIIlGIGCcxCLx9zNqGFLOqewLzzmYchKBGIhNCRYk+KPUF6Ar3tFbKiC2tW/SESdrY3a/VdevCN0ALAFn/PRsDHrP0vvu3pvFjnc8F2utJi2YBKJZbm7ptnUHxQ1IHpGswoqNhiqcwGsZTqBmAeR3t5MxQ4gNVCmMV99lAAv5a3uqltspqxqLjHI80QzK6teQJuBAjTWpgWg4rjE9WMbAGpEVGIJLQYljQOlTJWCwnGwXdQmcC1dr9nr0CncbawoSJSCUGxKF+QEAkBYop0XSDG6IYhEIKHaupg9XTPfPemecNvWSUEadms2UDN+MfCQ/PfSUuF/L3wBP5ODh/SCdE1N6lSazGX1SdzCFAj5hFUoeuEEFoQb7ZdQkOcW3osPBQKXBy8WuaJjQg5ewpHHGjLBg6VUj1UsMk7ubfz6qdhEOYVWPowYC7nlAaSgKhN2pjWHB5cIpWCSiBXYSzCMFRURz9Xuzpxz0OCeQg2WWjgAeK7oFYoVScvoRm5CddQMwIEc/uTKCU297y6t4B5Y2LXUlGKezylFEpeAFHKYnwX3lWZDVbLAISwNADt1Kt/dtv9msGTyejhHp6WhSssINrexHJ18+6PhySKlgq5ghRqVqRWpCpRIyWC1kgelbzL1NEWtGolxkCMiegg0cOGTtrvilCLUkSpYq9NvRBFSDHQddE83On92rzx0EwVCR7G+L0yBPNhAyk+9wLBc5PNS3Zna15PF+6J/f3h8GF5vDuMgELRSgy++7kPGLrm5ppjGAjEWtGohApRAyHilhpzrXzfUlpcN3sCMb51IJYhgZRACe7aY+BQKepfHalvcXgbaC7mrSGg6m6hf1+KToYkdvgsCKz6A06OrzBkpYZEqR3bvVBLZsxvOVMuGIVp4RgGoSq2+P2zcnHXvu3u1YFT1LMDleDhQQ1QRc3rQtAgs4cZbDetxT2B0h51dpXbgFTzQNTHfJn+e1tvYNr1L4YA7gb54p8xAUQfAijD7PFMoZ4u3lYpQ0bdCFhkUKEAZUDEsKOSIWdLfTZPSD31HGMHHlLZW17ECETFwgmtIJVaMzF0kGzZRYEUQBwzmHAbvw9KJYhHMzoDueb5eji1yBSYcQyz4WzIzwVPYHF+E4j834FwYHIrJ4xHiBIdoMMXvqBJCNmMf0we94SWxsOJGm4Zq07zczlgbVfWxW45GwPxXV4m4/AW4GvacczgNKMzkZjcI2ifZzyFkaojSAEpiChd13NweEwcC4REqYbe7/eDG53mDVyMTZshmjwb9z7a4sxFyFkoWdx11zl+V8sIWCxqu7IGCwtCEEJKsw8ezIipP7cZGcs81AkMazifSBvzeZwmxLzFtYvbYNeintyYjWmDd32Umb2D5Rs0vGQOEZqHNt3TCjUrmquZ6ur8k1rRYiCsVqEWw1dKqdPOKtJc73AhBLOUp8zpZD+9CT9SdYD5IRBVq2O9MnkR5q1UMxCeJq7qGxJCmOKbaQh8CJfErwV+8JBHNq2t38AAwLvMCJRqYcB0iE8FdyFDdNevi7ZRFLszMQRzkWukVHPpKb48x4pW8Vgs+iNMTMHJ+pZqsXqNkysKLdzwCTKfmE/wdr7LODbYpPTrGceR3XbL5vyUdXpAECglM+Y9IcCqX5NShdAx5sgwZlLYM8jeLgImAzAj0Mtxa7OTCQMxz6MyDjCO2bMjCxfZJ0ipSqVQBWqohCiECqnrkBQhxGmnBdBi4Fkpxd4nKrExL6dVUokhUKTFveZa28Rkul8heo5Mq5GQqoVeihIkEN3tNXskSAi2wAiT0VsABYsBaW61LzI3XObFWBZgDJWUqntqDVOwLFKpFYnMQF8D4qYVHydv0+ZBpdbZUAjBw4NKDkqMNq5RhJwLEYHohDiPZmotfu9aTt/mVyktfduWsS96sfOb5r2PuzpZi2lLEkrOSBBiuDhvlse7xghUNYJGDSyAj8Xui8XCMQaki5Yr9YUZghA9JJBsg1JbvIoBfiEEj8viHFcxZyGUSlDoUppcLQOHAiEo42gstQnxfqcYy8EqyyiM7HY7zs5Oub+6SxfX5Lyn1Mqw31NqIcRIiGtHe6GLW4IcINpT2U2730WKaBsXH7vKhbCgViWXyjhWMwLFkOfJ2C1i8FLcECQIBhUQYiJJQCRQ1Nxr0UDNheK5c1WlI0GYwdIqQlYcTFOnLTfAjGmChxhJyXfVGpBQyZopOVNrpeu6eTgdDCM20o9Bb0vjtDzUx6MWnSm/tWEVhdEHreuSYVBiZB8ITq6qxGD06xZuGFAc27ujhMnzaRRhkXbd0byxhk+NgRCzYUwZkrZ8R/M2zAiUhREQEfe8yuIylzRgcSMVPQKar7F5F42wZYYoEMM7L/V3jRGwSR0uTO6GbDaCjGAxqoRAqObGCgYU2s5iNjCXmdAyxVAEpKWWxAY8TOBUizvnBfbw8bBLfgEMW25F7sKpKiUX9nXL+fkpq/4OKSb2w7ntfLkSQ6LrI4gSCaAJtEdzpJaA+jVMm/1D59WAzRaDa8Gpo1AzlAkPmd1j3COgioXwRdEpPhfHBXR2z/XibvowT2C5U5qh1cnYIkYVvuDB+O5dZyvtu/H8UJX5nKdwzkMK9RHXBs4w/Z7lNU5YSMsAzWGiYvyBKmX2+iTYDr+8x+2fNhwDJAhBzQikZHToVnswfabPi1Ls/hRPL6sscBqzrL6x2TjVhyCNFppM4egUBs7330KIBtIuBmyOGW1Wv82cbse7xghUj4ma6TNUucV5SzAEy3FHcWttYUJK0d1EJWQDaVQqIRjf3qy0UzIFd+Oaq72Aa3SmrC533eVOvHTZprFV5gmktgsZFlAJmwek2CFUzvs1RnTpWK+OkLC2BROtNkBrIBdhHM0tDShYeO6LRX28nFdffHJnNUp1EXJWxmxIt9FkZVoQtehEJa5q6LmIodFCMDvUFpHarmK73cWH3wnEcZtl2jTGQNdDKAGtS9farqW6q9Y87HnuzmHDNB94q0Fo5yfLe6CzKW55fvtbw3WcFerGImszAPicMDfbVsRMJNPajF0zeOYNahD6miie4i8FtFhoo7VgHo+Dy9nPrHlM1bI8QWzzSl1CS6C40ZHldU53XC8Yh+U9qkvcoFG2G9ls8uTeee29K4yAxT9utYNdXDDS3RxtT+kQB6O86q6FCDFZJiEUJQRDg/H40rwAi9fbwi6lGsUmPLSoF4ZoYZMXOxmTdV7mZHXxijmfPlJrZrc/J6UOyHSpRySR0gGCUUlbiAIG7o1DYRwKsZ9vvRkm9wx8MtsEs3ErWSijFeyMo1ooMFRyVivyaV/bpK1z0Y94aksCpDp7Ac0AqAOk9rh47xpIFXynAyUl8wJi9B1fzbWecuGNmiyYe18XwCEzTmPw4EWg0e5Rq0dYeAoqFxbFw9/XBhIvPKM5hWkegARpjr7d1spkQGwjMsMTo4WeXa+EbIVs1YHTUnwsRdAS0IIZY1UkdQTP0gQBjcYe7LuIZhglX7wun0vqG0HbcdQXTaturFrRYhWPUwrTQ1yLr38DC8C7ygiYW9pCgqpKNOyFlheewP0JDTb31dzPANp2HH9YQHdh8TcLanlzoUjzOi6M80MmYGEEmP8wW+P5Z9RvihaYiEQDOW/Z7ApREkE6+r6w6tas12tW6x60OmA4MAwDwzDSB52Mi4QZoa7VMg4lmxEoBSe7KDUL46CMQ2UYK2U0t5QiNsZFp7Ahl+b52OqYgNLmAYBPMq8WXGKgbRzU74Z48s5xFNxoWdpbLhgPrVb8JfiG5e/bAL9W6MMFA+BGV8LkoqNmPKZxX2AA0/fNEDQPY3F//cZOYzz5/FNIMqP1INM9mLxSieZFqRnbyYPRZrCdbu0AXxSP1TEPwEILoa4CefA05mI8miFgEQYsN/2W6SnV2J9LhuvDhUNvF+K2411hBMBBJBGCKtEnSC51Rl1l9gZaLARzrL5ctOIo/fI3NgEmP9PyviKemvFhaLElbWIsMYK5eGT6/OXANtqw76CNmx/BSoJDpZYBpRCCImNit9+xHnb0Y0etsN2ds92fMwwbxnEgdJWIWrbOc/qExl+ongVQcoY8Qh7EjUBlGArjYLtUCwdqqZbTrl4aXFo+Xx2ltgXTjNiFlOi0dWMe1wKn0Kq22/h9CgFLL1YnXTG7o21XnnZDZUphtoIgrcZinO7ytOPZZzQSky2W5iEsAMBpx3+rF9Uw0WURji1uDw0W97xqY506jRjfLMJi3olQJwyqHYtMlAXkvku7xyhCjMn5AYFahCFlZ0A+FN9P0Efz6X0NVMOKLCVZCHXe3B42BBe81rc53hVGoHkCYeG2SIUSyiTcEILz9VveXhVLMRlqOw2Au5pIoxTPwJ3xPdqkMRfwYTCyLfCHLWmQcGEwVZU4zeyHLshjX6O7Npaf8bkbbpFzYbfbcn7eOeBU2O4ecH7+gGE8p9RMyTbxapSZfOMAV62NsqrGeBuVcTQjMIwtM1CoWRB3S80AqC9+A6PUAUIRHFGe599MjJkNbhBLgTZq9cytCNPuKn7tzXWZQED76xzvOxGoGQW0ZWvcDPv4Tog3oO4dzYZpNiRLYlgLA5qbL4jrD9TpWmZMwBfxhA/J/Lm1krNR1U1ioelctDFrgi6WygwIEiMxJroYSdHTfZp9TbfsSCAGQUOgZiElW+At/Gl1ENMcXOxyLRyYx98qJqcQyA3AXD373wEjgBuB+UoNtMm5TDRgW6wyuT2ol5cuBqMUj+F8V7E8c5msZivOEbfO7fUXB2g2CBcJOvMOMRsCFqGB30T/20RgcmOlWgiSJoyiuBEAMSEJRvbDGefn98llh2qm1mDVksXYjtq8FNUpDVZynbyBZgRytjLYkitagsWHLYtQGmoe3PORySVuOyoLD2AuprHwyngTRixSjDMQo024SbFnsZ5E25gqU53H5ERZCGG7tgFuLWhvhqBpA8yvYXYhmEOB+Xxnj6CBvATHg6ZzUHdqpkDA5sMcJEzGr2oFD5tiA6w1+mUqQXQ2AMG4HCl29CnRdx0pGR+jzUHEeBJNW4ASKSNETyNO82s5txzku7iMW/jhuI7OnkBbD79R5eDyeHcYAaApKqkaFUPESyxbUOQ3aBn7hKCT5VRtIJhOO5q46+TKI0ygn6fEVMSryqbNG988fkuH74+2w6vQoIswxS8gxWPqWtz6JxP2qIV93pJzZrcLqA6M5Zz9cEotI4hOrDyb3C1WbTvfTIk2AyieHhRqdqqzg1DS0nK6KHaisRphyc9D54lon1iZgFWPYc0tFnJpdQKBGj177mPXzHn7BDMm4eI1+Lk1lqbF4bZIRc3tn3dE81iCVzSJNsKQojUsQLH5/JWFYWonZokj/zsTLmEmyL/xFdjer1ZjHEqxrICh145L6UwPDp73TzGQYiSlSExADQbcoubZRiGmYCXFIRmhKLAwAvP4qccDS27H7AE5GNiA1uXm1DwKLm5cb3e8a4yATC6gu6XRqgTNBYsYI8oGpE6TSA3mFkBlSplZHtwXAG3ReJxewUpxbXqXINQQITau/1sruJYpsOUjqFBHK64JLmJRMUJO0QzBXMDgG5zpdniqKhvYlseBHQU0UxkodQAnn4iX/aoKpQQkt8KVNrPbNGk7XUQdLzAGpHkhImKzFBsM3+Nw/NhKjoNNcJ3cYhrrxndaUE8tKHYvpvWlSi1WqkuLsTE2XSlKzT5ZsfHQ0mJ8/OEMzIbjTPfX3eP2XNqCbYCgTulGbaIc1TiF6tkKiQrRVHwoaig6uPts9yIohDSnCaOj9jF5RmBiA9o9rNkhkBANZM3Zrt9RQZUCISJRkQSRwKrv2ZcRQsEIbE5Kk0pIEDtIHaQIY6lUDZORbh6TD/XkBQWcst3mZMMuZGZwGpawuKdvc/y3NgIi8gTw7wKP2NDwb6vqnxSR/w3wh4HX/al/TE1b4J3fS31Qpwtstx5nc9mvm1pOcKqkUb0VrcWmT5mZYg1sCl5iarFT8VhdJ8Ali+e1U2eLtFgx78NH0xi8kK5CKFSvTCuEaOFHzpmxDBCK8RMa4lzUmHEtZ1+NxZbLQJCKxGq7NsEmplfdqaqLmrg73khPWDpUQiCGSJEEdZyIPUHmMKgJr1axRUipXk1oGxtRbLG0mNfdahxMVHc/tGYrwlFxxRzzVGo2vF+DkbckGHPRMhgzYt9SdGDcu1b1KJPHMqvq2BgrVZTiu1ttHPylB1EVpaV38J05oEknJzJosDqCwYrVBHGcpBgBDWOdhgRdH1mtTDewavaNyMFmr9HIBboYzOCPyjg6nRooOtg4hoi4QQl9QncZSYUqGZXOtBo0E2IgJiUlM0BZHCfxhTtxGHwhaG3iN4sMS2ng5UKwlqXj8D0wAkAG/hlV/ZsicgL8DRH5T/1v/4aq/qt/J28W/Ca3/+1+qseXgnghy3RInDy32tz8aaJV5m1GnKLuk1omT26aYJZDL5Riu9gEzrSPkosag3PcFo1vII5mq1Nwiz3QahhAc9+DLuLzZqzseQ1MUwSVSBVhWbhin912TOaLaCAVwV1kaGk/EZxw5KFRC4kmI+cnFnSBbjGFNWC7zPRc58yLeHysOsX0xXfqKkYSCrEZ3sYDaIu/zc6GsXjWRo22LNV36Zbqa/eovazYcydqsKch3cWbFr2FL6HZS0zpSd0AyxQytkcLcVIKpD7S9WmiPmur6mvGv1qIF6oYR8CN3DROUp2DXSxFnSB2QlIxj7MJyPoKrmT3Hmxsl4c9byauwXwO021Z3NL2tDmtLnzPPAFVfRl42b8/FZFfxaTGv6tDsF0ET4c12m8goIK53Y5M2/9tcbo89MSiqx436xQ3L70I1Hb8UmZWV0jV5M0W47XMElw0APZzLSZYUSmubVgW8bix8WJQqhsXFu9xQcGmlVHTCnIiIhcVbuVtYmo7GmV6sfhtIwKseCWIZQIIAVpVnQuMTsYiWGjQ0mDmScp0rWZcGiZgn1lrpVAp6mQZjMEZypx1MefOC388eGmG3qwAU+ZC2uIsNj5V1QRO/HxKMT2AWhsGohRtxLFAcDUf8TRlSMHLkaOnDgVKIRdT4V0eQYx52qVESslTu0oZRseqmuE22yleZj56CXJjFLZMVmgGSCwN2/URghJTnCTvLUNV3zK33uloRt4yLrPH21bPbL6Zw0SXO3un47cFExCRp4GPAz8DfBr4J0TkHwZ+HvMW7v6m72FvNFlIEUGDuny0ATDBS4ClzXIqaPbFP0+kOYVmIcREr/VVc0GtSKzirpSCjEoMuKDlTBFe5luBi0bAhTageuViJtdM0QpOTS2hEqRSUzW31A3AhC1M6SpbGjIL2rsxb3loB8qWE4YWGPhOLSZUGqvt7CKBFKIZUYUcrVZBfUc3UQtLgcVkVNcQbSLXOk+o2eC0cw00MZasJrWVq4dSRRaTzg3b8mYvvAJV84xqNtZbUIvRdRG+LT2IqgW8n4IRpZRcZaLgGoLvBUBB6FJwmTYP56qgWShuYO103GEWM24h+iOYt1dDnvL8tZo4ibH1irM1CxV1A2pjKB4ShejpxSis+h6kmvx4DASEol7E1RZz83hVuDhoi+FbhIeNELUc4WX4EB4yDG93fNdGQESOgT8D/C9U9YGI/JvAn8Ds2Z8A/jXgH3mb1019B9J6lvgV18aTVuMenQVofGJDiN1tbWWbtbl5bWcoOjPpPCZtg+WfArgh8BuQs8XHRAMoZCHjZM9dpm6aS6qIexRocQArk7WYEQjmPgcpZgTM113gAW3yLYgqjcfOcgEaEt7Q40kvwf/WlHqQ6gxKLuwAKRguoQphVANaxRa/enyRkrgctrytfNV8/WaoDKNxARO1irdczSNo93DKKohhM83ITUaUmcRUxmLxuVrWpoVLBlEsXFuFipcfq1VLFhUqgWA7hLNHbWePwTYRNFCjwR4x1imUnMbYTcFDk5QGyM/1E2LVhsU+nzqTmIIEHz/3hqK4AfBK11VCqaTUzklmb3JK3cIFV7SFussfS/PkFpkwadBh2zx+A3fioeO7MgIi0mEG4E+r6n8EoKqvLv7+p4A//3av1UXfgYNLvarftDb52kIP0UAvqQ6xL9wu8UqLkovt/tkXfzbgpmad0obF2YdMBJF2HnOute1sUmdugoUmNJDiorumfuPEtQGrZQraoxmBLEYZrZ6LLGVpBCoi8S3xsopjGTLNfdrGPFfELb0FW/zVS3RJYDXn0WrzgxXz2KS0cQhxNiIxmlxbTDMxq3lBMIOhVAPpJBhtOY+Fgl13bc8ritTZq2uhh93bpg5t9N+aFR2rZUtytkUQWpbAF2ZkMo6TC71AN+aMjlJrZJIHVzeFrWyceY7hr21vYl/8/jkBp6VptV3bYhzaWDQ6tEjwcEQIsZoxiNh4ujfQ94lKMR0Amd9nEmup6iGlHWGxrKe54enA2sqF2xHDnMGY//OslDpR7u2P7yY7IMD/DfhVVf3XF79/1PECgD8A/PLf4fvazu8uldWqxwUwghcNGWmlSqXVyk9egLuXpXkGubGofEEJyELowoAid7NywxxaDwRYzBKP6Zl+tgUqDsq1QpJKrtbYQ90TKFIpHiM2w7PM62pVqoNAvsFAUT8XS7+FUAGZ+PHTeTiNNyY7lzbpjbYap5CKquRoCxgR4mjpOZFAchc4NmxgsVjaMZUUV8uflFwoY3WhX9sNzWSYcZrxADtv8wSC74C2UKtXOtp7FUJVQprvtxk4hzZDmDIYqoYN0O6pzmnDdh9CA2FFoV5M8V7YKKf11SjTreqwTp1/2gssZJh3cftsWXiwPndbliSagY3JumMVD12UFqpWz3o5i3Oiri8NwEWHfi7mmr1Ie47MXx1gbAK5Ehag+kPHd+MJfBr4Q8Avicgv+O/+GPAHReT7/Cq+BvyR3+yNFuEmD1cIBgluvcMcS/rPtqit0qB6qqnWtvO3cMD581ycLMELUV755dOGLSICL37uyltAVZHGTGspKTtZ8ZsfHIJpF2Py3tMKcOUeR7tl6Xm0cMANVFiAmK3+YKI1zzsoGDp+IUMQjUgTMRJVECMmyTR+5lk099py6EJ1um9MTWgFXGODFpoCZuSqFSoZicsmYs4KQdBok98m+GwA5oKayuxOLYg+LXc/VuponIQqJtI5zwc8vnbwr/o910YFrzPV2Hdo6yXAlPK1NJq53pqX1PM2CSeLavZ9KSmGeQmOiNp4SZirdsXLgj2MbQI2wQ1qiM0bsBSy05/mIrClZ/dwKPAOR/MmRdQ8izYPmhfgHl4tlSJlAtPf7vhusgN/jbdHHH7LvQbeejie6QagGQQJlv5qgJSEJlQxOcPT4tTJojLFz7XNRN+FG4X15V+8x6/84hc4Pj6eziCtAo899hgf/Klr7pW2ijKftFPVGjRqcgPdWJxLLTZDBEWjc5eq5dEnsQs3PrUh+o1E43HmnE3Av9r7NcxA3QvALX9I5ppojUZNnfAFX5zN88DSbvh5WSzbdmg8BGpu98IdVSaJLlxcUx1KkWgTMYTgC1Rd5tyyBg2Us7kTpvfDAV0DBw3s0mhc8TYHghusEIRAoAadDECJbWNoefI2tmphWnGhLc/v12zsTW3jawPir50LjHS5E0wgbKuZEFvVC6beXFTklPHQjBeWFgxqHoIzHpdeoxYWRoBpAb/d+miGVZ3HFQJewr2o3Wg7Hrjqc6V+jzyB78ExT/BpZwVfucLs+iy+X8T2bWDnxX8RSTe1YZleX7Ny+/ZtPvShD7HdbqePe/lbr/LI+27xsZ9+xNSLqse27gHMrppMk0YWN3AyGtVukFEBFoDYBde1XTceCujsltLcDgNFgzbZ87aJLcbKVXJsgkKUWVduqrKsgIcMSbAd3K8pRpv51TGX9jozttU+qhrBJo+2e5uFUCREU36WpnnnC6elsdSzN4vwZ/LqKob2lzJ5HrrYlVlgRJPxbzSQrJMqj9F5p0jYvS7bCQPBsjhZvU1b5UJIIPYax2V9jk1vNh++6UjrXBTd01Nb5C0onzNc5iVYCFr99XNM34xobXOihXhvtzKavfLnXdBHaNmuFo9Ny8IUqKXONQVvd7xrjIBqcxNn8KUWAwKrVKIkjNZrFxQ9bhRkIggZyl+smUS2hZdzo3OCLX531RZ50zt37vD4D5wg0breXrt2jTI46FfcA/fBHTaVX/vrr/Lhn3iMFu5O963ON+PO1wdqzdx8tuNrv/waNx67wcHzh76TW3rT0pgmPVXVY1gdKXWg6IjEgkTvlRMaR6DV/8dpcc9AWXFRT6ilMOZCiqalhxdcSTQDQYiEKC4agl1EMM5723EEoetXaLWO0MpoefFhpAzedSdFc4e72WiAQLViYPMciheIAYQpntWiaFZ0LNShoMWbsXr4s3RxQ4CQ3CNQMWzA5dxLti68LRSomHtOCJ4dMpe7ZJ1+rntXovXd2t7bfii1Mo6jdciuJgsuwTIc1mUoWT8JVUpw5SIvJEKMB6AeorR7M+bRwUYP90YDsVVhHAvj6PiAVnS6cgcyfY6X2grDlGrNqKlOla2pWkpYxYy7GyB8jo77t2jYT8c7Mwj+bh6+sB9+tAVfS/UmIJlS8gTcAAuL6zuiyiIFt8ilzR/Gw0w8YM6PR+Hk5ITT01N+8T95Zfr7uC/83J/9Bnc+H3j9O/f4P/+v/kN+9a++fMFoqcIbX7/P3/oLX+Mf+n1/mK/+rdf5yQ/8Qf6l/+X/jk88+xle+8bdxe7P9JrJ6NVm/JitvM4pwTnkkek9LhCMQiAlL1yJzZ32nc152RPO0SZ/aO4/03jaudk0nCTZEMcnmFqa1SJoceGQhejI7PHMXAhT1G3NS1ywtBRKMYFRkwN3WzfF3+38WtrRdv7UBboUp7Z1y3h3wk+qhyylTp9nnaTq23oCE89i5q/P+FQMxBTtEaPxKZL9LiXLCBjnwoDE9vqWhm3zs7oXUhsWUHSqebjodvjnPzxzJzIcE47V7tUUYjaPwueSFWjpQ2rZD839d/zL38VD1bv9XGj7NRuBUgp5zAzDwDiOi3jOZl1YasThQ9hcphnWd2/tncGWdmw2Gw4ODpyWCnmsfPW/Ome72fGX/9Jf5sqVK/zhf/QP8xf/4/+MX/ovvjFNqDe+dY8f+/hPstvuuHH9BpcvX+F9jz3OP/4//8cJIT7kxl1k/k0LaLqROMA2u9C6DDW4+H2QQEodMXbEmLzlVfTdzUdljoYmN3tCVRY50/mc2mcsQlQV1BF+M7iu2191wgu0Ba3uSmk1b8wWY/auyVZ0Y9kBz4Y04xSF4AstJLF0ZzQMoy2+OLX2iu69eNbCx642t7kh8M0jaB2GF9Ng+ra50sK08FOXvIdgR+o6LwGO0zmE2DQrrS4k58Eo5C1bIg5mSpg2suyeUaM9T9ByM9gPr37meXLxl/PJz/esGQFmDsYFT+ytx7siHFAsVtNcyVHMnZJKionW0kp90EIwPUFTvvENw631TMO03cDwwGaVmW4M72gI2ixcnNticM82D/iH/tmf4mO/51Gee+qmt1PXlgGbqKN/5i/+af70X/4/8uxnLnH9qcOpldVFTT/fAXxDmgAffBFi72vZKEfcYaLzNgCvkYhEkqX5plZpAaRM8LwgripMcw1ohtF+68UxU3y6BFjnc/QGhjScpooiruUg2cA4a7jpLs308HvoXs0kV9ZCEcGyC64XmZJTfjtBejcEydz2QLToJRXfmRUYDPCr5kIbmcFTxapTZqBlj9rtbmH00jNsct4pOcFJbfyM4xfdbBrhCjVOCqVQa8YqJQuqaR4vn+PDONp8yaAlYC3yHPiWi4Zg4khNfIJ5c7jQ6qJtDs2u+bSSYM8txTksv8H6e1cYAdRpkNXiRdOjalpy5kpaLFcIIdIfdHbDHZENXr9tisLFMKyF291uw/RoBmFxiMtjze2u7Si58pX/8gFf+9rXeOTR23z0dz8GwC/90i/xT/6T/yR/7j/88/wP/ie/n0efucX3v/iD/PAP/zD/1D/9T3Pr+SNQ4Y/+0X+W/ZsLnn2xWFprU36x66+iBGnej06aClUuToZam+eDG4CLnkBwK1GJCJnKSFO/XRZFzUM/u08XkOc6T7yLyLW7+u4lCNaHT6IaV39aUYqX/yxCtul2T7a5GYAgxlrsumjiq30idQKdQBJCL1P+HdxrD+oS9HYBrRDJ6g2WvIA6SauVtojaxFiAgXOIZPX+ljZtvpKzHpsRdFmkWoWYYSgWfmitE7BbVci1Go1aK2PJjhtFdFT7vkJTO27h26SwdcEjmMPOpQdgE8u9Hm3X4R6GqPWIEGZF4rc53h1G4G0OxRZ4S+O00MCsYaFW13zHSoGt/XM24MZLQ03Np4UCCrROMW/FBNRjsDCJkiof+/seIwThpZ9+33RSk46dx1iXrh/xwR98mhB63v/9zwNM2MRFqnIjLjVBz4WX0fxtmVOECp6ZYHG+Bj7p2wZxARO+9Fy/WLOU6rsEE/qstFZZdcJPoImBzm3H9YJW34x7uDHwlu+4Z0M2kCr4im+Mw0ahbQShRrARFgYOE+JY9Yl+lUidVfHFDuiBTpAkVu7syqQ6zRKdFotMI+GlVv7n0EIYWjt2nIXYvI8ZdJQpCzGnoWNwM6DBdQiMs2J4gSJJCcUKtcxS+XSpJghLAarJvYmKl0o7iIcVi4UQJnWiJunePIIG3mqZL3nyBnwuTG3RRJ2/otPvl/DHO8ycd8EhjRk4A1wTf30pCCni1rfleosXv3j1V5cWEt6yePuFIWgzYzEsIQS+9Ffv8Gv/+R2++J/fYRgGa8UlthgePHjAiy++wPZ8z5/5P/wX/OJffJnV/Uf4k3/yT/K7Pve5KRb99/79f4+f+Zmf4eVfv8Mf+ql/il//a3f5Y//Uv8wf+SPGl2oAzVQwsnTzmgdQWyhz8fdTiK0tvfiwIRHU3cvl76uqcfoXjVWXZKq8rLdY0JlLXYK1y5iA6TOm68lKGQt5yIxDi3kLJr0d6FKg663RStdH2+37QNcL3SqwXicODlccHK5YH6xYrTu6PpJWkdQ7ANi5yEeY72e7hwJvmSeNwNXambVHDE2h2lh8MUGKcxvyODVKafOneY5zvK5WvYCxSq0/RDNcfW+YTFhkc0wLsvjD7sXUUr0pYy94BaEBosJ0Hhfoym/zmO5VadW0s0S8XpzubzneFZ6AgN+EMCGwwSnDKN4s09NAoh5zBdTjMmvgEOn6jpSKs7WEUMRTcu2DZgvbdtdxHLl79+6Fk+n7jo/9fY/SCCISAo9+fE3qEk8+8SS73Y5f/vwv85nPfZIP/OD7LE+syvVHr/FXfu4/o+sSf/SP/rPsdjv+uX/+n+Pf+rf+LYBJHnpJSVa/gcgs8lUrluZyj0CkEZ5kWgBzQZGdtqfb/Wig2JwSwznw6HKRLwxPtTGF2TuYQwKmUOCCgalK1TLlwW0jMtJSM+bmUkeEQM5p0TDFjEwg0MXEqutZrTq6LiBBCQmkA01qWrJJJ7kxVFz+YN44WhkxmCcgvqnEiSTVgAchoEgUCL6AU3AgNVl8HpYLr04hjmqdPCBV30G9aKvrk7sVwqo3bUHr/DUb0pKrszft/aZ6g9BqGsIUlpgHY6c8bQZLD2C+1bOH6t6ikZfkbQHGtzveHUZAxG5CMoWf0OIxZwoSsbhQAkpxt9I8AXDPISW0U/ZptuglzKm0+bPm75/91BVuP3pzBoqAD//kbT7yux97i+WMKfDR3/0Yw3bPybVDXvjUTZ7/xE0mHr8IBOXG41e5dHvFv/tn/hT/1//g/0SUxP/2n/9XeOT9tzh57WRi0S1FTpfFOXYTXZ66+vlW92Amd1ymySEmujAteI0BwYt7inUhKrkierE5RZ7KV5cpyJaWekizwI2LjeU8ptpeV9XafvvYxqzEZOWtKQZS6i19mRfehn+NElh1PX3fs+o7p0MUiBVJSo2KJqVGN95VaFTxmIu1PUvWBFVd1kzUS4JDcrVfGz8RRUoxMDNirMQIqbNwclaBsrFoBtsIlMHBzbnuw4ywV24GS1eGLtGvO0KohA6I2XCBNqbozPCT6KKlZbExSYNULh4P7/4P/97rKCaIp+qEcf9GoQC8S4wAIoQuekqo5WSNBmkYjMk0VfGcNB4cKY6oGtEjpGrvEReUzUX11FsMowjPf+bKRFO2nXahBNEO9f9U6PrEC5+87aCOLNxjc9nvvHzKy19uhZSRf/GP/0v8rb/1N/mL/9Vf4PrjVwzYC9ObXrDkUzloaVbc3cbZt7eJFxb14+0uV1x1xx3VzJRT1jKz0ponYDXx7fdzqDEpISk0AY0KFofLnHK1S3e2nE9A8SxJe1883Rc7A25DVIK3Sm/t02II9F2i7xNdZ41MtVZjADr+ZrqHZhElWVxeVebNIoUpngeHV1yFTVr7esHk1nyXNU/AYvro8mwt1Txhw35firhUmxs9o/pWVy2yXTcmoVslUpfoVx0SK0TbnSt5EZs7PtJCF+dhsPjsiXHI7OnpYq68dVXPIHh7mr22cVp1fo+3Od4VRkCCEFYRSQFNJtZpun22MFIQ6CJaA6Yu1Tlza1kzoCCWXuxWHWkcKZqxDraBxtSzteWsQ8FytOLccjsbf4T5J7HdxW6+7wIelxesZlyCcueVe3z6pc/wr/+lf2O6rj/+v/7j/Ef/2X/Itfddm5B38xzcA/BFIbTf2WKuFAN31NODnt6sKLhQqkQXRvVrMr6wwzwFdMSZabZ4jV9RPHXE1HykOtApBGoAIfpOqHOBD76bBvNTdSH5tQSrxF3bkAJd39GvOvqVh3qlUpx6bHUEwZuyJvou0qdoiUvF0lqiVicgUMW0AHEptxqE6t5C6AKxN+9AqomSxGjgWOjcsDYl6mIfMAGAKRC76BWUbesUM0T+fS1Mst9VfTGJqQdHMU5D6iPdKhqRqWcyTCbn6PdEIkokV0ArQQsqJlFnIbHxO1SzGVefgWYTFnHAFN4uFtEi4gH3CB7yDt7peFcYAQLIgaGq1WeBekvdFI2wEafUl1iwiHkBRhM19VtFSX2iP+zpa6aYDOjcwtwXuyjUXAg49tAWviPHTcbLMsOWMUAErd4+O7exts7BVu+iXL55wl/5+b/MrUdugSrHjxxydPOAg2urKS6s1cs7gVqLB/L+ucFmmWbsWqVlEsKMaKsVwVgbK8cQSgWpWGtyu6VaKrUZAS9MmnbxCnWSKDew0IQqC+ICJA2HKKNZCkWtHNX6uxo2E5o3xiQWGzGk3wzAitVBT9ebF2BouRkfUSGEREwdXTISTh+jUYLV0qfVTJbLRAaKQJGRKnnSM9RYiX2kWydCcuVgnRdN6P0EsxKze0tVESohNtJPCwUaCYOpOMcUlHw5NudLgonPSHX58GheQO8GoFNSZ0Yl18gweDem0Dm70ow8oRDIjC7SGlMipc6bm5r8WZOaC8FASI/I5qPtWQ0PeshTWFLe3+l4dxgBJhr31GnJ3PwwpWqizLJLc9oQJlMngsRkO0My9yx1kTyo52bdV8Ves5TsElq13MIPdDdqguvq7Fpr8c91FMdulKWgrt2+wsn1I7a7c/Z5ZBZHbYG1vVZh8j6a50+TzdaA0gg58z1tX5cpncae1KrkMftiDqa4M9Zpx52vabFVtHCqGRmg9Xu3MLrFx/45LbviVONJds3v2/Tuy51KMJc7utGoLV3rGv1dcPafu8YtFeZnNJ+56UZn94RwVqF0LprSR5AyGSPEmZCdeQ9NKCWW4H0H/BoiUyg4pXN1Wak5G4AL+JK6MfBwgLCM6X3WOCBpHqilAKvM86BhDi1tq35bBA9l1TethdzdW6oLfyvg328CCrxrjMC0EBZIxpQulKb7b38r08Jq42zqPJPBcAufUkKjMwcdZGtpl6kd9TR11fO30zv7w13ugqvfFDME2GIIrXBFmZpPiDQ/wt9uCrx1cpvNrW1uuiHatj/VSV2mLcQWekxlzDC5ze3ttFRqGYkhWphSTTJt5ikscY75mu3Hh2dJM7LzVwu7nOIa5p2JhSFAWjhgZq7V0lvI62nfKpSgvigisTNPL8VkqP4FNmXbEXRa1O30QxBI1mtBYiSPmRpk6ktgZkPp+mTYRamEJORsHpgJrJoBIWAGahoSx2d0ORYPj4+BmrTYniXrbx5rXQyM+PlVrKDJDECZ08FtAQQzzCb7LlNZs4mq1OkcL6yXxe18m1v5Gx7vHiOwuN/2CydseBrFLGEET5/Nk1unmyUyU4gbr7ym+TUNdJm5CHbjaFZbMXfcb/LkIyiuA+clr+4JGCkDZPHeE9dBBN/4mOpFJzyAabf1sG3yCKrjDHXhoTSRDktFtp9nEsi0U7fUnhOVLvYAnMfVdrF5LJbPmZR3Hvq5VXnaDt7y7ZWy2CJFZjmttvgnBePYFKOCYQoYNTemZJz8GO3aMhAsFTcBdIvdbvLdPJ7XkIg1WvoxtDRlpZGmUtco25VaoqsNJe8R0IAzJoxjMo8Pp5XecrzVuM55/UV2xdmW7d9UKVsALZNxVb+RjbEoWDbCoC73kqL1o2jPVerF2/t2huB7bQRE5GvAKYbBZ1X9hIhcA/4fwNOYstD/WH8LasPT0awa7eJ9xw7eSy6ERUJcneLqrDUf/OUij9HiN3PRmPLAoRdYAdEmQJ3SXApaFgvQjiKVQqFI8TSfuZJhVdF1RVe10buQ5GYkAq4SVPtKXRVKihAN6FP/m4g4BdrJPcVvfjI0W7sKMRCil+8GIJpEetvliPOib9oFzcD4rIYWSKnOoKBft5ZmTGfJ9VorJVbL1VeLzafS2z4QOyHvnZEYQFYQDoV4LIRjkEPgAHQFmmw8mgoUKgbuJaidY0GetSijf6adjWMCjv1gIYk4OAsQ1bIPMjovRBufAi+ttp01VCX4AgwlO8/BDbPrN4hbSClCKJ6injaaixNVNc67MvM+Yt8rpbWDd0OgriRsc9aly/FmK2pz1IhMwetF3Pj63A5BIEbfWOycWnnysgbjwlr6LRy/HZ7A71LVNxY//wvAX1LVf0VE/gX/+Z//Td9l2k0m2+y/d+u5uKK2ey9Lji23PhcPSfABTcGZNDrFevWasnkpU687aUSqK+WAYHXXMz7gqcqqUxnsFDKESNcVtt2e1CUslWwaAfthT86ZJlQ5xMquL8TYmcqPgLqwxLLc1CjJhcJICMXLVIXgFYHueBKiIdrNC2iw9bJUedravOqkLSu0EYHs+Q93Bmpsy+rnMjEWi7iQq1f+5YqM/rdgi7msAsMKyqpS+oFdV73cFxvr6VQtJIthb6GAOAZSZ3JTmwWWmjQTVhipUnwURpCIaCQP2TMckyPORBWnpTn9/So0daFGWppy/y2U2Ar91xLdNyKyf3vPoHVkrk65njgT1TeWUhidq7EoqnQ1pXZ9FcFAcYnWIgWxLtJVbH60UGCaC8p0ziL2me+44v8ehQO/H/icf//vAH+F38wI+DWE6QeZbpaJhYQJmZ3y6Yub0th0TfppZqu5+ksEXKuvXlXO/ocD9//gHj34bbvm3/GHAntgvyRmMP49OpvfnqP/+cTlf2fN6hciDG/9e6kFKdEzLMVayYtY41K1TaMZgYmW3VrlqW80jRzkRUuNMlxHJVf3TMVDKs9GmXcgxtL0askL6dp2vBNO8NDx3RoBBf5/Yib3/6ImI35bXW1YVV8WkVtv90JZ9B3oDhKtu+uFN3cDYFz6MF1Qa5M973wL9BRxPCAZCJMs/dXaVQ0vZB78geE9A/De8Zsewycyuy8OpF9fEd54KwxvHlvjXFRy8Q0oLVSuxqZs5B5UK43X2QDMUnkGCsaAybgXPNVRHQwN3r9QEYr14mjt15hxmWnd/wYOwvL4bo3Ap1X1O77Q/1MR+cJv9YW67DtwddVozzMeABe47SzAwOSNLZpfbtVqLAqQjOctCjkaatyQ63g/NE1KAA5/rSOeyqTEguK4/nxYXC0L2m37fXPTohct2e9LbeIVhdYOXCQQYlpkJRYuZpsAPgbaQJ+mBIRjGTKfS3AUufm4FwBC32XmIirlwozQ5m0tDOn0vU8kj4Wrhxq6fPnyPBcqT6YDYO24pRHfpcXKCw9vGtnG0PB/0sIwncdpmtQtIKyL7y/eCxrieWGiMZ3H4m5O41+mQhujRmqnlCeVesMX1bm8rRcA5oGaYpBMYUWpgeDaBXm0wqHGjszZQ4V60WOdytentCAe0orv+O20PRNRbT5M9eZTNuKhFf9Wu/W2x3dlBFT1O/71NRH5s8APAa+K9x4QkUeB136z95G3+Q6fOOYFzBe5VNptMZ39raH9Numio82pi+4JmLRTk9Vux+0/d8LhryTKUEzsYQBjzF0s6gBz/6zRiWP3Eum6NavDNav1ihRNW243jGy25+z2O8ZxoKhhAavVEbFbeyGUqynV6r3pnCxVrJtP0QEJxXTrgxW4JL++IIHU+uw5nTWrNQXRYvBH9Do6tJFeKrWOtPx1xcevzM02Wqs2i89N2yGXTB1NE29SQZ7iX+uoXMpICLA+6jk+WrE+CaS+sW0CuViXIou47XfFF2eSSKyWqmsPUUu/pa7zdukQUyLXQi4bCJbiKw03ULx8XJ2XP+2LtGq9ZWq4GcCSK8MwMuz3DK6bqJeUsz80sv+sYUOtm3LLVsBi13YMqjpeFEswbKRwsSKzmO7AEhsIHgK0Y+qfCFCVWAIxKDYpdTLq6h6znYJloSrOHr2QEl4sqd/EG/humo8cAUGtGekR8LuBfxn4j4H/KfCv+Nc/91t4N4I68aKhsX7ybRChTjs9yOL3MLcMmzeCEARJkdWqd5UWa3ChnRUdtZFZ3es4fLUn70d0gLoHLcEXj4UWEgJjHuhDb3HeOFqaLPV0XSt/XVs6SiDsd+TTgbob0TFYZ7NorLJ+1ROj9abPtRBypl+tSKlzMUozfENpLdjMoCWvsmw+UAymEBwdBxmrkj33rmrx4ziOoErfJ1IS8rhHmvovZgRysfLWprozL5RArYU4Rsq+UIbCWKxVmMHTNoRRhUggdcLBYWJ1FFlvhLQCgpU2h6JINsowIRBTR/bS5hQCKzoiEamVGCJdsOs9PjlGYmQ/DnT9in0e2OwykgwwG8bBsz0+KCITZmueTfMzArNwhxkBM+aBMAphD7KDsg/UXSVuZ1FOMzZNscg3mqYE5MPQ2tjFZJ2Hcm4KRguDUJQ8FsujqUIUqgQTk4l2r2NngHcZrRI2NdHVYuBhEJkyA7RNKth5hE6sB2aeweRaq2W/nCfzTsd34wncBv6su5wJ+PdU9T8RkZ8D/p8i8o8C3wD+R7+VN2sDqsacYS6rtfSfdRNWj+2XbvlFAYh2tO7DIQViSaRiTR9KvCgo0iouA8FELnR2hduCCDI3Qm052wmsiY192DYH/5ub67nG3SZmiOKIsNClBAgr17Abhz1B7TP3uTEHFpbNzyEG07vtXPCqMc5ytWuO0XUFvBWYOlW363qjPtdCUOO+myOeF7tFWzSOk4uVcRvTzXdFV9+dllgMxplf2ddJAUhs97cOUeZpiIop7EicWpCHEAhqsmEdieODI65evsKjjz1K6jq+/fJ3uH96asWFGsljsdMtwjAOrjfQ5L6Ya67wQqsFnXFBa/B5Mjcg1VDfSrNtCf8WUvg9tY5O81PmLIM1c2ibVNNtsJ4HNOIIjYw0nYsDgvZRrR4E1wdQJ6GZF9CayQSJqNh5SxXqWEzYZaHNoaoUI8q84/HdNB/5CvDS2/z+TeAn/g7fjEkWXPzntuVh87MRZSpmGZuO+pJaPGcNWnDvjSGTEIqJUU7STYujuc1miJpPptNf7f8pj8cUnPvu46UGU5wKOEvOJ4tEQohIgFIyKXV0nTP78M6pEjhardGq7PcDUQN1LMQqJBJdTHQhcniw4tbNG9y4dpXjo0OG/Y579+5y/3zHvc2W7WaHFlv4fVoRBErNVEyPwVJOdj3SJjfAVJnZyi9bMrKJXLREtNUppGTXY5z3QLdKrA46unUidcUEQgloae6rFQfV0dhyIVqz0E4SZFj1K556/HGeefIpHnvsUW5eu8mNGzeJMfLtV77Dl77263z+C7/Ky69tiZgnVVFyzeQhT5mheaOUOWR++G5PhlomLCnEiIZqhVsXn74w5BcfUx6fFjY0vomXdrsceh5d3KNAk1Oa9hnahtHmrJ2DdbvG1kWb0x4WRBFICTMmdn1lKJSUUVWX2ZvDXlW1ZjPvcLxrGINNros2IA0kCg24Yq6sqrMacetVGB7SlJtKgTz1ojVRsY60bzm0sfN0ylJoW9m+fTQRU69Jnb5vJaksvYDQAENrmYVgiyYGqmZCsLr5kjNJoOaRqtClnqPjI9Y31sZwTMLh6oCTk2NOTo44Plxz6eiIxx59lJs3rnN0tGbYbXnjzTd5894pL7/xJm+8eYf7D865d/8+m+2O3W43NQcdh+JlFnFa4G3pWKWk+rUGN65KDIJGQWOZUrghmOx3cKJV7AL9KtGvI/0qEjrTHFQNprunglQrAaZ46/FSkGRCMLev3eRDL36I7//YS7z4/PM8cvs2J4fHpNShCh/6wIf40Ksf4eb1W/zM3/hv+M4r3+J8e07UaO3q7bRsIcJsCAQ0zCDixdTy7L2FEFyPoDFIFyiVe35vZZperGHRSarNkI+lWpOBg1CzzNilg4Ettm+GQLWgFFN9Gr26U3VKAASP/4NvfjEasLjTvXFYHA+bQ2fnFMgydXvxeFcYgUaQmV0uG50o0Zl1OiGxTUa5NRgFpl0AqiPydsEtZjIFW5vsSwtpHz6dxJy7RXwfcZ8Xj72CZyTcCIjTYCWIl7l6LCri8Xw0jQOP60OKVrcezSMQlHXfUUvl8OCQKyeXeeH553nyyScJsePw5JijwyMuXz7hyuXLXDo+4CB1rPrOCm7EhEJKKWz2I6/cuce9e/d58+59vv7Nb/KlX/8KX//619nuTRgjqxrpSEyKrM1Fc2YaY65VrZmir8SCSkBqZhgisVhxVr+KhGTXGzuhX0dSL8QON4yB1kZZW/FVhqDRm8oEuq7jsZuP8qmPf5LPfupHefqJJ1l1PevVamqCgkDqj3jmsac5+uwRl48v89d/5q/x+S98ns3+lFqV/qA3sLPmyQNo7L12H0OwWo3mCS4CPpq6cAhl8hLa0RZpW/xLCTzbn807atRuddr5FA54s5CcK1KMwiwCTckZHjYChtlYn0J1Vlfzy5rBSoYxeTYmhOAduW3eNyMQo3VoLqWQ3+1GADX2mc1I9V1VJwtcW/WZD7s1j2BRTme31FJzHvMGwHvTSyNi6KxduPjoecYAM0Q7x+IqQBOtUPcARNwAuHGYJo96YZELpEh05mIiRKHrOmKI1Fws1YNycnTI0089xWc++Rm+76MvcfXqFZRA1x9YVsBFOVJUktprajZUXkMldMLJUcflyzfIpTJmeOPuXf72L/8i/+Vf/+t8+StfZqx7Vv0KcTnwkhtDsu2IleDVail2hGD05hoqWgJSB7ouUrHF3q/NmFWppBToV5HUySzmEmTST7B4uNGTK6LCerXmsZuP8hM/+uP8+I98jicffZJV6qwUOASG/WDn0kUHECPvu/kYn/vU57h69Tr7/cjf+oWfQ2Kgjz1D3RsT0Q1xpVVqKipWTRmCRzsSnB0o0wJbpikfPpoAaJgESO1Rg1GRgQm5nzx3v27zBGxBS26kNrxBrcwYWJs7zJksM5aGa0QPY5I4SJySNWDpEzFEhs56GkCT6otTj4Wcs4dub3+8K4yAYnXtkzVsOFh0g1CrMaXEbtxMi23/2S5eSmHMmVotRkzJrbhXcNUY5jW+/HA/mhKtuXotdgstn2P1CzjPoIlSxFkocsIFWkgQA4E4lTWbwVBSlxhyZhwGTi4f8UM/8Ak+92Of48XnXuDqpascrg/IFVSMV6DVSpJlNPnoEAQdC2UY0FqRGImrxFF/QMW0F69cusrR4RExJnLJfPUbX6FbJTSYfoApEZl3FTy1NmUiUkcMnV1PtAWMdvR9j6RK6qBfJdPQc2p21wX7WebaA1WmtuN5rNRBoAiHB0c8+diT/N7f/dP8+Gc+x6PXHiHRufCHVQkkSaDKuBmpIvTrhJTIpaPLfPylH+Cb3/gGX/nyl3mwuWtVlt7rUGWm0VvRmM+PYG6x7eS+IyOTG0+7b3KRtCbMwPPDRsA4/o3407gNYQ4PtNGJLTvAQsZu9iKaF2CP5gloLR4KCCl4bYREuhhJ0fQQuxhIwdLLXddNRiClNHkrpZTpZ30HM/CuMAK0cEAEaTFci98m9dwZhFnWsTfuOyglZ/I4Ump2d5lZONJ36ocRASsfbuYbpruxhJNpcb7vFv6eTShSYgOKmM4dD0NU1MUrknkDYhqAtWSuXrnCD37/D/C5z/4YH3n/Bzk5OjEAsap5CSk6YGlhkFR7LaXCWL1/XyFLphQh0aMBcq2kruf2jVt8/KWP88adNznbnnG+O2UoAzQ1JZ/wInH6OUbvthO7GV2WDDWiq56k1ndw1QuhE2JnxsCAQAe0HIQynkEhj9YfklGIdNy8dpPP/cjn+OyPfJbbNx5BcnARGRiHgSiBfrWaOhqFlJAsXigVODm8xA9/4lO88trL/NW/9pd4sH1A8a67LpNA9XqDrNXG22P/OknO+/0j0Lr2+A4w3XNgNgyLR6s+NSMAqtnFcJvkuyDSej2YQUDNK2jhxbL56KwToF4qY4ZAaksHB7pgQqYpJvMEHMcIEoiIeYrJlnMLW1oIPeMD72YjADT9uwZYNzmnpt2noVVUiVtb8zWrV2ThxJecC6Vm8C65IVpZ6cTLmLyHxY/IooR5/t3ymIDB5SPM6cKpPBhzOYlipXGipovXWmaFiObKzRvX+f6PfZzPfvpH+eAL72fVJQJK33VTxZs0l3Zybd0rqpnghJpcR4ZxRDP00iGxgxgpoRC6jts3b/Oxj36Ml19/mV/90q8ybEcfV/NuWnUlQJBIimYAUuqnsEnqjhotA5BQQldJndKtA6k3D0CideIx5R4vPqqzAGrNFcmB1XrFB154P5/55Ke5feMWmitSo3UazgUdK1WUoexprJqaM7ucIUbS4QE6Vp594hl+z0/+NGdnd/m5X/g57m/vT2Ov4B5Bk00zTKQGr9QTnRaGUCctRZk0+R463LNrHoBtLkbIMqxTmt2f7EeL84NPioYXAJOeo/kCDeGX6cOso7VM9ySG5ASzuGiy0/QL7GhU+WV2oBTHxhYg4dsd7woj0NzGaeMVv5mOzdlxYRX763Qe3KrW1y7PzLepoN9FKeYqiyUm0MQ8ZpUfWbj102snFC2gMUxZgrY7tL6SBaUI1CimpxcCJH++KhFhvT7gh37gE/yen/xpHn/kfZwcHtNJRLPX98aAVKXsPQzQjOjILFKoxBDpU4fmkUErNWeG3R5l4PD4EiiMw0i/7nn2mef4wIsf4hvf/jab3WA7V52NbhPxEM+02KQz7XwtUKOBgAn3cJIp/HYr6NemClSwkK1M4idNrcj1F4qgWbl8dMIPffwHeerxJ7CYxFKVRqYxdtwwDJ5KNfHZnEf248j6YG2hURTWhys+/PwL1L//v8+w2/Kzf/vn2eStedyOI7V+hKY/WWlNTRWdZOyNVNOGdekF+kxZgnYutKriMuTe7apliiUydSeThUFoLqLqYmNTqJTFbBbQiNREqJ2jAIqEiISOEDrz2Cay0rxYqp3ovOuH+fvmDfx3wAgow270sNtcTAmBUpXo4hMpRgfm1MpAXZsPv0nG1S4uqWUurhWrQ7tT5sLFi5+NTdxCMrGLALFNjhYRAKGLaDAduF4sxkrBUPSKUYozlRwqJShjVUoKpJjMEEhAh0LQysc/9lF+6rO/i2fe9yQJoVOvh0gRWrPOGtESGPMOypbAQBSvmKiChuQ7X/D22BnygBIoZaSXztkncPnkMs8+/QK3bvwKr79x39px5ZFhPzAMo4coHu6omPhn7BCEIpUYA91BtAUWcE+g0q+FbmVhXOu9QFZUAoeHl8hRkWHHecnokGGAZ594lk+89HG6ENCcKRn2pUJW8jhQxoFx2DMOO6zLsrBa9RytEykVJJ8zbkeGbWR1csiHX/gAv+ezP8l3vvFNvvTtrzPWAe0To1RyzfSh0afNCKmj5Bpd1FlaXb5OYdxywUhLA4tSyWjNRm0OkVJ2E705dcEMgJitFnfdVDM1j8YW1MZvMC5AQW3OaIKaSKGjo0fiGo2FnDISI4GISgIRilr4YuFumMLOvN8bZpbs3JtQ61hGcs3U34At9C4xApBNgtViSxHfOGcfvTlq5jWUaSdDsV3c40fjvIjlxhtKFJrQhBjqvfzsEKghmPuO52QRlnhgIx1Vz5k3iXLRaDwGN1wEE5DMNZu3gPWlG3OhS8LJ4REf/8CH+fEf/SzPPf4UB6kjSrQa8uKMM4qHQL1ViZWMlh2VvVGExdQ5htGMJimQ1itTFC72eTmPpFoQiZRckJh4/LEn+eiHXuKVV97gK1/9CiWP1FoZ94M13RAhpZ4YPO4MybYzzVSxMMbq3jOph9hDWlVCgiqClLZjmuU8P9/RywGH62PyMTzYnHLl+mU++yM/yuXDE/J+ICax3T9bwUPJI+O4p+Q9w7ij1pFaM1cunRDDIbvhjA4zHoMqu/MHXLp9k4++8H5+6rM/zp3/9/+LB699G4mJ1Bsxqma1SnIaEAeWLLT72uCyKdn0UIpwCvlC45/4QkdAMhJcrLR3sRgEye4VhAY0qie9GgYDhGqxP0L2exUJiHZE7YlSCDHbHGh5MYGqlVDFpdNth4uqFM20orOpIEzsWiVCTMI7JQnfFUYAmKivWhSkkBqO4UnfCRtw0YbqzR/V9Zaswu9h6KOBiU21xazmBeDH03lG8mCKkVvcZ26AWFzvLEDLFxktN2PKsmmVgEqslVCVWA3A01roUsfta9f56NPP8+Of+gwf/sAHOFqtiao02nvJI2POFLXUXRQDhLyFLSZFpeYtCAzDQOgT3UHHqg+M+8y4t0k/5pE4jkSJFAlULVw+ucJLH3mJV155nTdff5M333zNjMAwop15TkGEvuvoUk9Kne+gipIoMRJISCyklZL6QOyq7aSIy8P70KpYt50kJElcu3yVfuz58HMf5Ie+/wcgmw50Ha28Vr0jdSmZUkZqLeSSKXnPg/v3qHlPrZcZthvWMREx6vjZfk/RwuWbN/jRT36aX/q1L/Lq3TtscoE+2Q5a89xzoS34KdyT6fzxW/2w3qLQJoONhc0pE4INYg1zQjTMx8hgAYlN0jwRQyHEjhgLoUmP+z0P/r5VldK6U1VQAq2XAU2NaHp4s5gSPO5Qk5OjOKDYDJ19DckMQOojwzuYgXeJEdDpX3VkvLSUj8f7LYVo3W4s/i81Iwg1mj03SqxbwKDe6bcZAeP5pxQvpoBCIHROoQ1MgNysGOq7f+cL33PglgdXhlJI3coMRs6EUki5wFiQcSTFxGPXbvDJl76fH//Up3nhyWfpU/IgVBiHLSH25HFkvx/ItSIh2GfGiBZrdY0WgzdqoWokl0pHIHVrYqyIZEod0Tww5kIYBrrQodEQ8q7vePqJJ/mxT3+Ge3fv8Nf/67/GvXvWd1FEWPWJFM0A9F1H13U0/j0kJCagIyQzAKu1ojJQ1Qg62kqHsVtwcnzCSlfsNzsuH17hkadu8qOf+hEeu/0Iu82GUpVh3CES0RpdKDVT64h6Gbai3L13l/OzBwjKbnPOYdfRixXS3Ds7YzvuWTmL8sc+86N84au/zpe/803KLk+4UqkLeq+qswhbKClTSGm7fjUsqR2h7QZM2ShqpBajcocgxNARpAPcRRfFugpFkEQI1UKIaYSU4P9EhFJNtHWUgmq217uMuWY7/1LMEymYspWK12PkaqxOLczSte1sMXq2p6jf6XhXGAFLTUWjkrb0ku/+1r+vGCnDPYPWpryhn6W24gsbAtNik8mVlwAhMvUoXFqB5P0PDdKW6f5rcwNxI5A8ZAhi3WN8cgQ1hZdSB5LA4WpFVtgPmayBD7/4AX7f7/29vPjsc1w+OKYMI7vdwPHhId1qRYodebNjt92x2+9RhNh1RMkUHaCOBuS5JzCWgGpAYkdIK7swMTLUapUYszKWyn7MFNmbJp1EctmQup5nnnqaH/rED/KrX/g8L7/8bYZhoOs6Vus16/WaruuNoJTSVNGoNULoQAohFlKyNmOKFcuYxMWcU9GqjLuBSKBPHUkCH//ox/jhT/wAkgsdwrAfSRIZcrbQRkFrRmsx3oIq6/WaYRi488Z9jo8OEa2kWtiPe2qxKsx6Ltx98w1uHq359Cc/xV/5b/4rvvHqK4T1mu2wZ6yZZfu1OTmkk7seot1nS/c+5ChO2aiGy6p5OgiazKtUie4diONDkwM78QVaGzORpmptoarpDNpCl2DaYyEEQif0q0SJGH9C7CvFjGPF9Q+brF7w4gRR5sIE83FCgtS/y4FBCUK/6gk5Tw0up1qA2ggk+ERR6jDX9TfgTvyb0JqRJrFYKFrJrVGHw9TebPrsBKmzG9nkqkXcCIgteA2zEZAQZiMQIpFIKEqsEIaRcr6lnG+5sjrgY9/3/Xz2s5/j/S88z6pfETyfG6oybLeU7UhQIe8Hxv2ePI5INCaY1IrWPTBMnkCplWL0ReJ6TVVhu8uQLHSQLpFWK8p+tIaj44gUR7Wlst+NdF3PU+97gts3bvIratTsKJHD1Zp1b15An3pSTBNTU70sUD0PbgTWWc1pktL3+1Vy5fz8lBwyJ/GI9brj+aef5urJJchWMLU9O6Nf95O2YCmFWrKtCnfC+t4ISqVkNpsNB6sOLbA9O2M/jBycnHCw7gko427PtVs3eOlDH+W//vm/xfl+TycdY90bfjztwR7uta8ORkuwuRIcT22H0b8tFdgWV63R+QVWrVmbtqUR/Bizc/8rlJYJUEU8ra1FvYIStxZGhCs+9wLeVYlIzApDoHq6oTaMIahvctaZKUijHi2xNLwPpeEi73S8K4xAkGB1/0HIJjs7pTeCtnjd5ZlHqIPTKtU6wIQqhswGpo4wsWvGYO5tGKMY/rc4YhRiH7xMwDPySyPg9FCJJrOtDxUQJQKSKykrESWqcnLpMh987kV+7Ec+w4deeJEuJdPF95yvlkIdMoFCLsq4Hyle+x/EbljwtJ/IiGKeQC6VXDzmJLAfMsN+JHSRdW86BaFLxApltNpyEetlYHRixwBK5eqVqxysD3zsVxwcHLBarVj1Pb17A5PaTjWiSgmWqxaKbXNTmKwuBVco1Ypl9ps9KQbOVHn05BbXr16FkilFOT895c3XX+fo5ITL166RopgEuIuyBidiARwdHnJ+dGxFOF1krJnt9pzNZsf6+JBVl0hB2G82XKrKRz74EZ5/5nl++UtfNK+ajuo5X+ucbPT06PTmEGVa6F0X3AjMkyQE03Ew7MiZfzRDGCbYStwIFJ3bz5fqgi2u4SBUPwdnFyJTWDA3GgFJgYQBtCUXNFhaWnKEbOtgLmyyqRiT9+VALxiBilpnuriwbA8d7wojICJ0fWfxTHYnxrMDhhHUSeJKs3kCTiacFVhFvCsNpN7qy6NjAPYIc1voxWE4QWjQsNMJ1CvKLCMQW0HMAidAxG+i8fm7olw6WHP9yjU+9PRzfPaTn+Z9jz7G/uyMHCOxX0EQym7PuB/oY8d61TOUgX02oY4GBhqdtaJ5gJBBrChqdCGOEIy6fL4fONueI51wcLjioF+zXh+a15JN9RgyJSv7/cg4Zr72ta9TKKxXK65cucJ2u2W9WpsBWK2m72N0bX4FSgdYOFAlMvXqs5U1yXOVUpyvbm23iHD/7l3yjT2rLjLstoQCr7/yKt/69re4cfMWl69eM8pryRSvsrPbL+RcODw84sb169RiRm0zbNntNgz7PWUc0DxS88i4OacMmeeefpbPffrHuHv3Aa/ceZOSsm8stlyrlAn0bUzHlCy277uA9FwoMksx0HXJKiOdA9LmLF7j1JZcKy2u1bI0VshWp3SdJANSrVlq68VgKUAQgkYjbIVElxJRI5KxBjopIVkJJdnm5+fQOAxxWsk6GQOAgmUY3qaCfr7G/3bLFkTk/Vh/gXY8C/xx4Arwh4HX/fd/TFX/wm/8XmbJQhFCxRRoaBmBijqqqlVRJwQBnpc1PKF1Io4puMiE7fypS24Q/D0eRn+jTQZpdd6ePFAHAUOwnHIjDi3IgkQiySvsbl0+4WNPPc9HnnyOZ269j8sHx2zv3GOz27I6OKQ7rNCtkNTThYhoZdhtrBZedco6GBeioGNBxwFJFY0eChQlV7XeHGNlPxTONlt2eU93P3Dp5BK3bvX03YoQM3UwpB0N1FI5Oz3lZ3/mZzjdnHFy/RLXr15nu96yWq04Ojji5PiEg9URfd8TghXuBAKhrEHXRmBiNMTaY9lW4anF781YqFXY7HaEIlAL55tTrOIxc36+5Rvf+Dpv3LnL9Zu3KUUJzqfIIVC850NTxkld4vj4iHEYGLYbducPKHkEqZS8Z7fdoPfvcXLjFmUYOVwf8vt+6qfZD5U/++f/P7xxv2kNqANnBaRag5QkbgSiayJENF2sNA1RWK0T9QByMuVg1ADlFL3Ziqe1K7ibbpoLEurUiEU7Nf5JsHRz6q2Kso89wWsZAomOjl5WdLGzDSEo1pW7eRcYW3aBwbzVCMyYQNXom+r3ABhU1S8C3wcgVpHxbeDPAv8z4N9Q1X/1t/xmC0bT3I5pgd/p0iBUTyO6JZXozTm9ystVYuIkzRVIQaY47y1GIPj4OHQrXrSE53mbUVj2jnemMJ0WuqqcHBzw0vMv8qkPfozr3SGXu56YR/a7HQcpseo7ixPrnv1uz0G/BgK73R7B2mKLxOmNTYXHFk11tpup1UCuiuSCdT8LDFm5e++UWkdKgStXrtP3rTQ2Toh/Lcrpg1O+861v0x303Fzd4ujoiBgjx8fH9P2Kk6MTUurpOqsizLmgWqllRakrKBmpieJJcK2B1uJtqd9fKxweHbG5f85KYbXuUSqnZw+489od7ty7ByEQu46hVA69E1EI7kG4J9BS9qrK4eGhGc2cSTHYRqHTh7PbbHj15Ze59eSzHK2PeO7p57lx5Tp3779BCCbA4cXEIGWaLynYXEnJinRqZApFAA8TEqyUGCGONhct5exzsHECsDkqydLEIVZiLESXQ5POvZBoFZddMlKWsSaFKIleO3o1MFWiEsWzFQFCFWINru6mi4eQOuyeTFkQMwSpei3DIsR5+PjtCgd+Avh1Vf36b0RPfKdDPb5sC7jk7LJiHrv580qxLrm12M4ZNNKqBC1Xu+BvT64Sc/qQtzm3wIQnKFaWa3E/rc8pRhYyEcyai+EAQKfKgQpP3rjOh599lkevXiWc7dH9jlwqUWG9PkQDDLsdQwUhcBB7U4wpptDTtAcqMKo3wqiKJdLN8OVqHW2yx4Orbk2SyHp1yOuv/xoSlBg7bm62dP0KJND3axMpjR2H68rhwQGXTk44uXqJ46MjTo6OOTg45OT4hJQ6jo9PLDvgxUP7vVUpajyAeshuGFHpEQaKjl6VF8lqGnyoMGbDH/rVIVs9t3butZLLwF6Vs80Zb9x9A+KK7TCy2e3p12uzuzFS8sPFYTpRYFvWIlkN9ETEyePA9t49VlW4st1Bf8j1S1d59MYjvPLqd9jlDbWWiTQjUv2eq4WPnbv8MbCXylJtOsXAwbpH94VhqHQt1daUsAKEzjafKlYuXNXZg1QjUYWI9kZZlmDiMX1Ys+p7VmlNqJGTg0scHZyQJDGOmUH21JRtbyreck2dLdrqJKVtluqclgmhnUMUydNYvdPx22UE/kHg31/8/E+IyD8M/Dzwz/xW2pBVlJCiKfGUTC3FqrIcPKlapwIhrWqAYVNedTqwpXfMMjZ+dinFKsmkiYZy0RZ4WqjRi0MXcOPpxBd7vxCgj8bUS2KpxL7AtdUBH3jfk7zv6jWG+6fEXUaI1FxZHx2SUuT+bsPZ+TlK4GB9RNBKHjN935FCmsRJSh6tCtJJRFqsLLpoJQOjRvOSusj68BjySEG5c+euKw8Lt+7dJ3W9LfD1CrAN8/DwiCefeJKPv/R9xFXHTgcuX7pMSh0Hh4f0/Zqu61zQo6eqsolbaqlEMklHSt2heaDKSCl78lBZHSSoghbzyspYyDkSROm6FQw7SjU2m0ilSuU7r77C6fnArfc9icaeEAMnx4eklBj2eOn4XEMQQvRUZqJfrdCh0AXr5FRzYbs/ZVOUR06usDk95fjaISdHl3jh2ee5c/8NXn3j22w2G9IqcXi4JiZL62YdqToSo2WniIHCcMEIdDFxuF5RdiMBr06NQh4Hk3GTQFhZU9UKxBFStHmZorAXrJAMKHGPohz2R3SsiTVx2J9w0h/zwtMf4NGbj1H2hW99+5t8+9432XaFIibMNknAV/POpvlJ+1p4mOgEoMFFU/Wtf2vHd20ERKQH/gHgX/Rf/ZvAn8D8lD8B/GvAP/I2r7vYfMR569PJq8uLLxZsqzCcXHdZ1Eg3pNDRaiNUyMQLj1EmwObhQ323N9lWDwecTIKAaDU1Yt1z6eCAvB1YxY4+F1760PN85Jlnke0e3Rf60MNoFlyB7W7L+eaMnAvr9RFd6tjtdiSJ1JwZqfSrtaXJcrH2ZbWQJJCoxq9HyeLdZ0KgTz37YWB1eMjp5pRLl67wS7/0C+wefYxHbr+PK5evIUdOYRXbzRC4eeMmn/zUJ3n9zpu8cuc1bt3cIhI4PDqi71eWn5ZAl3pEAn3X08XIZgyc7Uf6dEBlT66dsfE0cn62o+t7hmGDSAcSiKHj/MGGus8chGN+6Ac+wVNPPM53vv5tzs5PeePOPb76jVfZ81d58cX384mPv8QLzz1NiqZwnESotRgOMAykaM1majF+iOYMIgzjiOzO2Q6VEjrOHzwgre5xcHyN5595juPjy1y/eZUvfPnzfOtb36Jq5vLVyxwdr9nuzrl/eo/TsweM454kidSt0NXKtBT8iCafxCol1t0RiqWx192a/X5EQoQYJsBxvY70XWQcM7pK9DHSSQ+ijKFnu9+x7joOu2PYC9eOrvK5H/ldfPoTn+b6yXX22z1f+OIX+Es/+5/ylbtfMkygzX10ckCWu7t9WViFxdEXD4W+l0YA+D3A31TVV+1k7audnPwp4M+/3YuWzUcOr65VApZkXcQuUSa2NQssxIk6OhuEC/isEzDEIsDa0nwoRHH22PJMbNeZRU3bh5ibhZ9S3yVThtkPpFyIWfnQ08/z0Wee45GTSwz3N3bOqk2yk6KV7eac8+0GQjQLroVSMn1/QMkjIoFxFCiJMQ/kPLjnEom4UIoWcuioMRLTitX6AEIipZ71+pD1asUbr7/J2YMNN67f5Ob1W1w6OiGtLbYPYtV4fZd48umnODg54mzYcnJ8RoyJw8NDBCE5FiBqvQL61MHBIdIpWQaGcUOVAfLAmDvKaKBVHgp5VA4Pe/LeOBxdsBz9+597ks9+5jMErfQpkPNArSP3Htzli1/6MtthIEilT8KtG9cpZWQoxTGOPfthQHqrbbCUsLUibxLiwzCw249orLz66iuM9BxeusXRyU0euXmLH/nhT/HiC89w995dSs0u7gL7vGOzPeN8c8Y4DpaeVvh2eJNvX73Dt3jF7mdIHHSHpK6ijITYIVLIeWTdryAGNAiZwuiqVjFYEVafOgsHvC1Z6gKpjxykY7rSc+3SDX7wYz/Mp37gkzx281GL+Qs8cuM6t29c45tnhjlM1YfThA+LOepf3wH4q/XvjhH4gyxCAfHGI/7jHwB++bf0LlPeUyagMDTRBycJtc15UvdtpZ1+kVPBUPuiVkNuvUjtD3UypXa019s5cMGlat+GCoFKr4KMmaPY88StR/j+Fz/IE9du0GclxIQmMfUYr0zLJbPd7cg5E7tgzT1L8bxwZRwGxJtzEDvGOhOgEBOeKEUZS6GmiKRAjB1dvyb0K8D08/fbHa+/+hq5KE88/gQvPvci4/WbrFfQRFhTSqgIh0dH3IqBB2enoMqYM13XuwJN52MefTJbOFaTMurAmLdU9lTdEcTKXatWxjETQ8fmfE+fVlA7xt3IravX+KnPfoYXn3mae6++io4DXRCuXb3KtWtXqbFHEc7Pzrl79x6rzrQTax7QkkFMfalrHA3FZLaDK+Wostvt2e4GVDIPtvfpD65Qcma33bA+POHRm7e4ef2y8RfUahLGbE1NS82UPExzYijw1fwyP3PjF4HPA3D75m2eeOwp9q+dst0+QIJJ1w1hh4Ro4iVSrVdCDQx5ML5TSkTp0Ax5n6e078HxJXoOuHpwg49/4Af45Euf5KnHniDvMrvtjnG3hzpyeNiRkqUTL9bEyIXF70tn/oHl98pKkxPtvkdGQEQOgZ8C/sji1/97Efk+7Ly/9tDffrP3cxBoqerKRPmcjlZ1s3TdWzhQfTdv7EKBEqf4YVIhakfVBhoaSUnV2XDtnMAUb/YDHYmuCo/duMGPfv8P8eLNxzggsD89Y5VWECP7PBh1FNCcGceBGKxSsNW2py4wDAPDfk+IkTqCpDKVLreW6rVksqp171Gr5xd3W1O3Yswj9+7c5fT+A159+RWKBl59+VXOTk9dasoNqT/GbP0Fjo6OePrpZ1gfHnD/3n1KrQYCqrH9Wjiwj3uLz7OSOWHIW0rdkss5u9jTpzVn28FKvsOKN15/jUsn14g1shn2/OCnvo/f8xM/QaiVzd377M7OOepXPP/cs8jqmCwrbt2+zaM3rpFSYrPZ0HXBSFIU33G9qpLm+gZKDYgYnfzB6Rmb/Z6ikXtnOx5/utClyLDbU9VScTHBQdcb7lKsyjNEJrUoU+yNVDpWeo1rcn2aH88/+35+YPMSb3zlZb7z8jc439xHKUQ6ihSGsqeipOCp6BQoY0GIdKFHg7IvQtf17M9HLh1c4lJ/hY+9+HF+/NM/wSOXHyVWM8rjfsuw23J69ia5bIlR0WjzdZLSlylKfcgYTG4xSyMgdL4evkelxKq6Aa4/9Ls/9Hf8Pp6+qd5kJMVo5JnYiCk6C8e19B3MyD9MDSemvnnO067e270SCF6ptbSJuaoV7WBoceurt4gwiFWhVMbdhutHV/jEhz7KB598lnznAbtxRx0qQ1cJ0jF6yy0kkvOIAEf9mqKtcgzyOLLdbOlSR3EmYJRADSbO0Rhr8+Q3woKGSEgd64MDNtvMZnPO66+9xvHRAeMwUIpw+uCU7fmWMhYfO5AYyKVVWQr7IbPqVzz5vieRx2EcR77znVe5/+AB+/3eqdrFBEH7A6SLlFAZ9geM45p9srg5xp4yGrFqGEaODk84e7AhnwZ+8MMv8Y/8g3+IVQ28+tVvosOA5JE+BN7/3PPcfOQZxrDm2rVrHB0kQrVqSRG1LkfKVDvSjLxidRGb7QBkch64c+cuu3GPho7V+oRLly6ZilA1BmLZZyiClDK1c1/H3ohbWqzFWoHY+kDUSk06raNrl27yqU98jt2Tp/zS53+BL3zx89y99yZ9V6lxT9IdY95RsKxCt1qhXWG3sUYyMXWkVWK1WrNOhxz0J44B/CjrcECowoM799E6MOQN5/v73D1/lftnrxNiIYqL6poq7axstFjv0r6ZYloPlxGitM3te58d+O6O6WZ79xzvzGN5Y3WpKvXyafGirsaJb+EAk8szSZVJNQ0AMfkw6xNXl44AuVh7LRGj/JbSIL1FdFChl0REefGpp3nxyWfY3z9lvH+KFiVKsnOQym4cqVjeuZRiennBhEVrLuRsbl8eRi7dusQwWNVf1UKprbbcUqBRbecLMaIxuYadWP+8oXL//gPOz865f+8+QQK7cWC72bLZbNlud+x3e+PmB6PlTgozZcmPF/p+xe3btzg+Pub09IzNZsN2uzMDEkyePOWRLq3pugNSWhGlo5bAenXI+e6cPFZu3rjN1+5/k49/+CX+e7/r93IUOvb3TymbDWHMlO0OcuXm1atcunrIeQ3ElKDsUVX6ZOFAEaGMmNteCrUanbp4q7RxtIrJYb/lwekpRQshFR59/GmuXL3MmEc0DFQNpKAkOkKKk2ZB9dZyE9s+iHH8A1iueIlGBw77E67fvsnR6gpPPvY8X/zSF/jqV36N+9tX6VMlrSL7sqeo0ayTdFD3SJQJxNUs3Lp8mx/8+A/z8Q9/guN0QtkWTk9POX1wn+3uAW/cfZl7p6/zyp1v8WD7JrEJ7TKDg9F5CTKFsA03i05qYZ7fgoUhfxcwge/6UGWKQUMMro5qzSqUi4sWWBi8Fs8vwgE3BsY9UGqxmnFcEKLWi29WSibnQgiWGSh5HkcBojpeWSKPXr/BSx/8CJf7Ax689gZlsyUgJhjTJeuGU6uVGWPGK4rRPRkrmkwHYLPdsEpWrrvf78lldIoyjMUIMCFZPE5wfkJMSIjkCg8enIH03Llzh1dffYVf/Nt/m91mCzVQcnVhz5H9fj/lr0spprisauXUTvctpbgmXaTvVxwfY0y2vmdzvmO73TIohJCs92LqSbEnBBNNjSFRi5JiBwSeeeZZPvPJT/HY1Zts7z7ggEzZ7Ci7DQwjoQjrruPg8BIyKNv93s5NrYVW1/WkVc9AYT/MVGTDUKxJy+g6CNvdnvPNOSlFDg+OuH7jOoeHB2g18LWqtSgTBc1qnZiq9f4z1eZogiregFajeU0X5keGGhOrdIlHbpxw7fJtjg9vcLS6wi9+8a9zNrxu95lk1aSlGHBJIoaeJB01CVeOr/HS+7+PH/jQD3Lr8iNs7m8ZNnvO7p+y2W64d/oGb9x5hdcffJs37r/CvmyInSXImxcESkpNPmzmSti8T/PCWBzWko7vbYrwt+cwphWuoRZTIIhSvefc3ALbLzx4t6Apl28DYUbDURT1UMH1CQAIb7WIxRtyxmhiHklwdSHA43gKpBD5yAsf4P1PP8dw9xR2I5oLhUDqHI5QExXFwUxjgQXG3WDNPfsVtYxoyawODxl2O87OTtkNA7Er1BjJCjF01tKcZAVRMSCpg2CA3f78jPXqiJe/8y2++IUv8Dd+9mfZnJ9xfHKdvl/RO8pfVa3brlaX324S6nZttVYDLkfLZ4zjiGAdjw9WazRX8jAg2YCtIMkWf0wmqBF7huE+UgN913H3zn3+/p/+B3js1mN87Ytf4dGrx3CQkN2OYbOxcSQhtdLHyCrCppz7WCvDaFyAlAIok2Z+yZkq6iFPYcyF3X7Pdrthu92wPlhz+coVji9dotRKBGtWGoV1b1O8jNkwES8NzsVYl1Hs7xVvbdcYZm1mVkEJFGfj9fESzzzxQa5eusG+3OPXv/mLvPbmq0jo6JOw3W8JIbFKB6y7NaKBS8fHfOjFj/Aj3/+j3Dq5TdlUdqd7tucbdpsN2/0ZD87ucrq7y/3tm5yNd5Eu04VA9YpNMwJ1ajbSUocyMeKSeQIPHSklXxPvdiOguIvqVVVOthiKUshGFKrFo38ILggZJVoFobNHDdNrg+KulLp8d5BJBffCRztFF8PsqW3Yq5I0krKQivLYI7f4xIe/D9mPDGcbxs2WUApEsXZZruG/6jrGwQQyvF2oTYyUOFp17PY7+gBJlDde/Q5v3rlHFWF9fExaH6DtpmHip7Zb2U491kIMlRAqD+6/zq994Zf51V/5JfI4sOpXXL5ymZu3bnLl2lWOTo7o+s5qDkadBSjB6MoeN9+/d4/tZuPg596YcMUl4Kux+DparXr1xIzdJ6mB7dlI6g4YdpU6JJ57+oP87F/+Wbi7Iz9+mweryCPXTohdx5j3pFVHrZkolYO+427N5LInSGsXogz7Hfv9ljKYwRyHPREl7/aMY2a/HdhuztmcP2C/29AfrLh5+1Ekrbl3vmelmc2wp+9HumjU4NVqRerE2tdVa4VWc2Gft3PdRreihgypTrhTlODKvxbelTETYuTq5Zt87jM/xeVfPuQXfulvcnp+n0plLJV1f0RKhYRRoZ9+33N85od+F49cfYy6h/PzLeOYyXVkM55z//xN7m3f5M7mdR7s71LiQOjcC5yWiIAGus68ZWg9FdrR5v3yV0IXwxwuv8PxrjACIkJSS6+JqFFDe3OD8middnIZLCYSa4UlRKRaIUvJxQQWe5kQX5o7rjQNF6MWPAySKkbNVd/JD1dG0BlGegLdGDiRnpee+iDX+xPCbiSMJuppnYeU/X5rOXYidcjszreUKhwenaAhkKWw7jtSVPJ+w+78PvuzB9y7Z48Hmy3ve+pprty8hUhgc7YlnfTE1CESrCpPK+OwQftA0R2vv/wqv/yLP8/p3TehFg6ODnjimSf50Ec/zM1Hb7E+PERinHo8ajUW4n5w9l5QxmHPfhw4ffCAe2++yfm9+6xS4srRse2mm52l1NY9HK8QL2kuY4EaqCVwuL6MVmG733H98nUevDnw2mv32b16h6ODFen2Ve5stxyvekYvyc11ZBzPiemQo3Xg/taEQiKw3VrVaMl79psz6n7P+TA44j8w7K18erfZsNuccniQeOSxR1gdnXB/rxwddmx2hfPdOY8eH5MFdnlEvSRYxcA/Uwgy0DHUYJhBLWgZLyDp6iXdRpMuqNo8Cn3g+uVbfOKjn+b65Uf4/K/8El/7+lc4RDmQI4pU+m7NE+97kpc++nFuXnkcrZ1hQKUw1pEH+/vc2b7O3d1rnI5vstUH1G4gBNPaVC93NHq08eHNE/AqUwqmNWGFSVrnRr2hdd+SeiF5+HbHu8IIuKfjaLhNUImu8Q4Wz7cuxDUQCjTLp4I1u1DbIVuPdwvsPcxQrEowYMVHS7PY+Aee389loOxHuhrQfabngKcee5wPPfU8YVcJORNyJXjKpqoyjiZcETSz3w8Mu4GYTOxCKcQ+sD5c0SUhUhi255yfbdjvRvabM15/9TWu3bjB1Rs3LJ7N7fqsXiJrAYkWHsmOMStf/fUv8Otf+lXONzskCDdu3uCZ557hiaefYHWwtoYoXkihMPEvarF4uNGRu64nhMDdN9/k9W99myvHR6xv3qLu9zy4c5fN5pztquPq+5+xsKdmgojx39MBhytlu80kEaSs+cW/+UVee+0ew7373Ds/56Ze5bwoCQhdR4liDVA2p6zWyroP7Er07I1hNJoH8n7PfruljiPDODAI7LZ7NvvMdrc1NWItrNcrTk4ukYlWMlwD99+8S98HshplfKyFUMvcN7IpJrV5JVZsJrVgTROX22Z7rusdAKpCLdCnA25fe4LD1SViXSNj4lvf/jpa4erJMTdvPsoHP/BhXnzmgxx0R2xP9+yz8RS2ecvp/j4Phjs8GO6w0VNy3CMrNYZnMMZnS/EGiTM9PuB9F33zqqZ1oMX0ClC8NkKQpjL8d6F24Ls+alMbVsguAjEtUFzBBlsaNXuRh6upGE5g8X+o6vwBcy+tnVOTdQp2Mxef66bEpZqgjpm8HzlKh0hRrly+xMfe/xFuXrlO2e5Yx0B2TnvJSkjG7qMCGXa7HarC6rAnxUhG6fueg6MDmkLZuN+xOTvl8OCELkbb1bbbSUsxxs4mApa/H0ompRWo5ce1ZD7/+b/N66+/RtXArUce4YUX38+zzz7HycmJ1fRrNRlzEStJbYVWIVIoplmHdfrpUsd2u+XNN98k1sK9mLjz6muc3bvLdrvhfoAPPnaDq7euIBJY9SvKwRGXjgY0B/Kw43DVsTkf+Gv/xX9N2O046QLDWNkNhdUqMqhy0CcUYcgj4/kpuSjp4IC+t85JZRypw0AeR8ZhTx4zUgvjOLLZ79icn/NgOzDkPWvJrLqOVdeDRs7HQjrpuD+M/Pq3vsUHnnuKYbejpI4SovVFwLT9mmEstVBzMbWeIEgq3q79ofkhrqUkRjyzTA7UEqEGjtZX+MDzH6YLPYHE2dk5Tz7xBM8+8yJPPPE0l46vst8OJgIzZnbjngfb+zzY3mMznLIZHjDqHklqxWme0VJXyDYj4MYg2rwPjRKPqQqZQFPLioFpCwtIukAservjXWEEVJU8eKGDL3wtrV226bhEL+8U9b6F9sq5HXiBWoQa1VNrmOSSV+VJUSQYN/2hTzd3CtPN7zTQpRVSlMtHx7z/uRd4/rkXqKXSdwm0cHZ+xrDbMOZC6leGCaQeqbAfBi9dhVbJ2PVWG77f79lst5ydm9DmyaVLPDg9Zxwz9+7dZz8MIIGUet91KtvNKbv9wPrgmNgfIKLkUvjyl7/Men3IpatX+cCHPswnfuiHePypp+i6bkoFzq5hazVukwmgkhiHgXE/stlsuXf/AXfu3SMCZ/cf8NUvfYlxu7Xy2kvHxJiIRNb9Aaoj1IyeVNBI0C1jr5ye7fnZL/08l7uOq88+Qd/37Hc7Thnoo9CnCBgHoKqyH0/pS0VXJmo6DiPDZkvNgzVsdRC4lJGz81M25xvOhoFSB/rOqNxd6FEiIwHtOt48u8/Lr7/GSx94gZALFO9UXQo1lkmERtUMbh5Ha+cVIpJ0ouhOx5KcY1vQVMTTxcSQR7oucnx8hRee/yCqwn7Y89gjj3LjxiOsVofkrJxvLPQa8sBm2PLg/D6nm3tsh1O2wzk1jkbtDr2lthtHZEH2aj01mcDwYJJlwdOEvpFZZ2TzAWJoRLl3ubKQquV+weSbasV3RBO2MIxvIvdbh1cW9FqBUDC2n7rldmpx0WXvOSWgD3+6QXCCtfYqkVXqGc63PPrUI7z4/IscrNfUXFmtVtx/4xXuP3hgJA5gzNnQZjIUGMdMiEL2HgASrB35fj+wO7OJvNvt0Qrr9YE5EKXw5ptvst3tjY+uyjjsqFo5P7vHdrtHFVYI3eqA7X6LAh/7+EvcfvR9PP3887zw4ot06wOAadxMtHJmYTa+fZSIkhjKjrMHZ7z2+pu8/tobvHn3HtRK2e34lS/9GvvzDdeuXOF9lz/A5UtXCcDx0TGKAXZBAimsOej2jKNw43rg5w7+BnW/5dKly6wODhhLQTc7VknoolVyxrRCxCoDN0MhHK7peqchVzUJtDEbPySPbHZbTs9OrY4gWbfnFCCFjqAdYwZCYlcK33zjdUbNHB2sOfDCI0szZkoxZD0gzj0pk6xZiJFQipPJHgKPJ8aqugEzTCGHijWNyoj0rNfHPPvMi5j+wREhdIxD8TbkwpgzQx3ZDhvONg843z0wFqYOEKoRloJ4G73qBnvufRjckKuTf1rnKHVAcKnJUS29gnV4/41RgXeFEUDxDi1KNVq96fDFzqrGGiUQJiWbySg4YahWAW+5FEXMAgZrRy6uNCwSpjLPdsRgjyTmcaQqHKSOg3Xkuaef5ZHbjzAOA8f9ASl1nJ3Zzq0R0y70Ap1SlDKau9eLceqLVpIYuLfb7jjfbNmPI2N2RpxnAHbDyHDnHuM4slabtMN+RygD5w/usNmNxNhBTIRuzfn5KY8/+QTPv//DXLt5m8vXbnB0ckzOs/hnztkXf5rSSPN1iwOqlfPNhjfeeJNXX32dN968QxnMJb/7wEgsIXU82fVcvnSFMW9ZrRKlDGgu9F3PuldODgqlRg4PLvH8s8/zyje+yuXLV0mpp+pIrpXz8y0pRVarNX2NJtQhgb0j/qv1yqo1s/eOTNZxKudiO+g4QFDWxyuQygHCikTRxPk2s67CnbNTvv7qy9w+Oma9WnHohI9aizWrFW9q43LdbXEXr+DMORu/YFlfoup4gHuQ3jG4VEu/ipgOxH5XiEk4OLjEqreWYfvdwDgoiAmw5FoYysB23LIZztjnDSN7SAVJEFKwRFd1PCB4o5vJiLtGhoE8tvC1XeMsbaZu4FSg6zxR9u4PByzOr6reeciLZ4KX/+bGCGSqJlyQoqY3EYyWm6JJP2GsY5cbNw7C0NULA9LFxLpLeGsNVgQOQ8/7nnwfH3r+A/SSGLbn9IeXUVX2w0ityi4PHMZD16eLLoHu7ncylaBWDKSq7Pd7ewyj91Aw2aeUetP/22VPX1WG/R6pQtk+4Pz0HruhslofUmOkxo7dfsuHPvJhnnj6BbrVAaFbsdlugchBardUnRhV39p6rZouQy6V3W7kwYMz7t4/5fR8SwyROg6QEkWEs/2es83WgMA+oozkcW8ZFVFvCCOI9Fw6ucpHPvJR8vaco+MTQLAhMary+WZPrYFxUPpVYH1wRL+O5P3I9nxHGY0OfLg2xeVxvzVvSoS06khdZH3JQqJjjaxy4nRbuH++Z7vZ8vW7D/jO66/x/o8/YfRzsd6QWgs5z3MlxUhrDjqFBrUgruegD2UHSs5UMhPO7oDzLg+sugNSMIr4mJW+71j3yQG71lzUvL2shV3esR3OzQDoQAkDoVdCp1aRqDJxA8QJgE0oxx66yPvPD3VehfomMpXSNOrDuz1FCA2UddllKkUh67AgCjWzDhdRjhatmdWMYj3buyQm8+R88dSZoPy44oJZPOh7jtYH9joVDopw7fAyH3v/h3jikcd445uvciiJFBPDfkMpVvNvrrbpkk0WGCX1HakzjT7EPJdhGNlud+x2O/b7PRKCC4J2HJ1cRkJkd74xd3E/sB8L4SCyfXCX7dkDsgbGYUsWoYaOkBLPPvssoV97H79M3RdWqzXAVDVYXZfQWlZbf4BmHCweroyDkaUqpn1///SM7eacrEJ/cMi+Kq+8+hp5yNy4eY3t7pRyYKGApakE0YhI4ujwhOefe4HXvv1Nur5nLBXNI0lMFXq7GygFggx0Q4XY0a+PWEsyZmIxafU8YqnEVuyTIuuDA/pVZH2wBimstCeNiTwMnA6Z4Y07fOP+A/b7HdeuXzNhUgFiMte/WKejWoqJeEajYMcUJ52JsWRyyRdYpapGWMpYy7GG8wjG/jRyiukFIOZd7fdWsqzamp1asdOoI5vhnPP9Kfu6I8ueIiOSFJJT4EuL35t6EDS2oPhin7IV7StGdKvVvJmcvR8HysobIy6FUh4+3h1GQKFVAEIDNqyHn1x4mjduQBbOrX3XpJuj983rYzC0tTcef0wmXDL2Fx3jg9Wa48NDokQ6FU5K4olbj/Hs409z1B/yjQdn3Lj9GIL1zQtilOD1akXqrFVX20lKraSu98SG4QG1Kue7DQ8enDLsdyjC4dExq/URlcily1e5fPkqb957wPmZNQjZ7ndEejZn99hvz9DYk8e9Ifqx5/jqI6SDy2xHdW59W+DOuXBvwOoFWmfaYBmTdunVugBXVbrOdAmKwr27d9ntNnQxkg5MkvzB2TnjMHJ8eEzNmXAIfbJ+AJa1iYyj0qcVjz3yKI8//jgwstsPlGFPFysk0yzchZEYOtJQGAus1nsUY/AZxBPY7QbQkd12yzCOhBjp1ytSZ5oIqlBLYIiJfVT2Gnj9zbu8cecOl65e5trlS9SaGdU0KdSxpoItFGqP9CsDBFOCUhhzRksm5zylowE3mJmsmZRAorUdFrEswTjsUS2TqjVYhuhADgw3yIPREQTGmt0InDHUHUVGCiMhVJ/+1fpfhGhhBxmjsdkbNPZvnQxAdWapGfZciz2aSjRYazPCQ8Sii8e7wwgAjfoLRk4rqlaS6eCfdYExIxBajNv+xpxGicEkm62Pu9J3idQlQmdc/L6rE4ACsO7XHB8cESWyqoHb3QkvPPksj1y7ySp0dKHj8qUrZl0Fjk5OOD4+oe+MBZBScp35ylgyEjs0Z3oHm0qtnJ2d8+DBKYHKenXA4WFHVWE/jBwdn3Dj5m2+/NWvc3p6Stf3bPdb+jCw256Txz0xBGodGXKF3Y7rBz0aTWHoIFW2Q4ZqOner1Yqu66zIplS6zjyCIFgqrFVVVps4MUQOjo45PjmhX63pVivLp2ONTasqu2GgFpML6/s1sQhdMuKLGZzI+fmOlHquXr3O+x5/gtdf+Sbb86114DCF1OmzV50Si/LgbMt+eJn9PhND5OrVS1y+dGQU7uKTWaBb9SQSMUKfTLVnqEpW2IWO2nXcu3+fzekZzz/1JJcPDhBgdKVlxfkHqk6aMpZn9H4DgHlTDiA+HA7UkqmU/z91/xpja5be92G/Z13ey967qs69T3dP93AuJIc3kRZJWYhtWY4UOQbiOAkSx/4SwRGCCHDgL/lgKzGQIIAAB4mdLwECOEjgBIgvAgw4RhDAsQMEcgALjmjaFjkUZQ4pcnp6ps+tTlXtvd/LuuXDs963dp0+3T2aIY3mOzjTders2lW197ue9az/87+Qi8FWaq7ee5qfWEIiZwt4HVWnTNe3GKOvYQhRTVnKxDEcGMKBWCYygcS8HhmLGhNirKZMLZMKtUc9EctRVbdlEc9Vi/NKFsrVlFZ//uW48MeiCIC21joZIKFBDwJLa1SqSotS1BHXqsjI2NsuoPUtfdvRdg7fGpwXxCqibI2la8qdIrDtt5z15zjj2Ijjnc0DPnjnfbZNjy2GD9//gLbpiMcDpYBzHucd03Sk5Iaz/oxSRG9YzNp0t11P41uu9nvGcVwBHoyh6zfMITOHxHmjlNfd2RlXV9fszs4wAsfDnjCPim84i4gKYDRIxTHlgvWWvukRFymJasph63gwsbz5KSV1T5Kyvs66qBt807Lb7Xj4+DGP33mHpvPsb7StPo6DOuI2Dd43iKguPlf3nKZRAREYNr3FuYbdzvCNb36TTe+4fPGM/etXHG5eE2PAe4OzhilESkxcXV3z7JPnfPLsEkH41k9/na9+9X3OzjYYk5WFaTcICsw1rcdKYk6ZZCw3oTD4hpCU0lvGma+/+x4dgrPCHKPGkdfxYwFwkLKe4aHgvF9WtBbzeLcI5HpEESm34+W6nkQUJ1BhqlDmSMpKFQ5hAoR+0xCuBsZpzzjvOQxXTHEAq98rZn3vxErFiagtf/0e9T3UicSbAN/twl58MhZT1lvfDDn58/brC4uAiPyfgf8G8KyU8vP1cw/QzIGfQI1D/snFTFRE/grwl1BfjX+ulPLvfdH3WI8DFfjTOewCbC2VrBaCWgQ0TruGh1hH4xvapmPb7dj2HV3naDoHrqgc32qiy9RypwjsNufc293HW8/ONTzdPeKsP4MIqUTOzy50QgEqWjkOJz8bqxJPXXENsfogNG1LESHMgRBCVZoZRKwi9kZdaUsxtH1Pv9kxDAMpBtrOE4YJKLRdo7HnRZ9fU4NkAYdx1tJ1jpKgse42vq3eSMuUYLkRFspVjBnvVC3Y9T0PHz7g6dOnHIc9TdsyTiPWOrquo99s8N5RSlmj3UU03EWqmqBt1enISMPTp+9ytuu4fucdrl8+5+rVC149/4SXL55BCUzjxPV+z7MXr7i6fM3Ll9cYhHce3+fJkwd0nVfbdOsQCzkWTYByDZSJnIShFA4Ir6aZ61A4Hg48OTvjw4ePcCliGksSZQGWlAnV28EaJYylFHWJVG0GIrcalZNds5QlZEV311Lq+VqUM8CyIyept3zCuYY5aJR80zqMLYzTgcN4zTDvyQQVswkroGeMq3TgZQSZ30jLqu5Zy2ayEBje2OCtVem3emou97pdu+y3XT9MJ/CvAf974P968rl/Afh/l1L+JRH5F+rf/3kR+VnUefjngPeA/0BEfqqU8lnR6HqJ3p65iJpJLmOOVNbKtyKiwjo/FTE442majm2/5eLsjPOzM3ab204AR6UgW5y1zN0pngDb/px7Zw9pbMO5b3nnwRNa2xDGWXX0pqHkiJRCjIl5nmmahrYq3UIIzEHPYDFrPFrTbyjoAtRabIhzRLzKdcU6SggglpgV9rHO1WKSsdaQjAaTGucp4qoEWHdlUGFLElmLj3UW77QTyEskWOVYaPuvZ0NXfQlS1p9MjKjLcNezO9spflCdnZrGs9lsODs708DYUtabSkNS8h1sBpTc0/Y9Xe84PztnfviQ4eaa//w/+Zv89m//HSiZm5sbPvr4B7x4daVgXUzsNj05R01nHkdEGozV6YapsmvrhDJr6z2kwmgs12Hk+eU1x5sbfvUXfoFHmw02RigNOKsBLFW5WZAKniWMSSBLIvCtX/9dynBdRKWmCZWyulkJykXJRmPVc1EBnFrLJVJSdHPJH5jnA/vja+Y0UEyuBUg0zVgiYCr0d3KvszZu6LleF78eAmT994J+b+ssJMGW28mHmMUf4ccIHyml/HUR+Yk3Pv1PAH+2fvx/Af4/wD9fP/9vllIm4PdE5HeAPwX8R5//XWply1RH2ZrdVtNgb9esqSMTPctZ42ibjt3mjHsXFzy4d497F2dsty1NNXXECVQ5rjOWqT85BwJn/Tn3tg9pfcNF0/Lw3iMMhmmckeLAK0jjUP9+33gav4MU1MEnZiU4lcIwTiRgc54rxTTTNA2bvteknAJ+TfcJYISQMiIOX5mHRoSuaTGxw5QExhJq4IT3Hu+1WGCFkmo8e81b9I3HGEOMOusOIa0di4KEFmm07Vy8AUOdnZXaazaN57BPNI1nngbatuHpO+9gfEXZgTWS7VOTGuocy2JMwbcFZ84gZy6vbvjBJ8/ZbnpeXV7x4uVr9scJK8JZZ3l4f4t3hnEYKCURUkfbeZwzbLqebtNRUiQRCdmRjGfCUpznxauXbIzhZ77+E5w3DpeSuhOZKhYKet4XEW3BTcBaR8GopqCGzOr9nu8UAhGUF1CidnEsgbUG69S4NpdITtRxMdWhSgv6Ilme48DN/hVzOoLJtYg4nGlq4pZUAtBSBhTxl8pfQRa6820RuJ0ZCOIsJlMnC1qscw3OEDFojNbbrx8VE3hnMRMtpXxfRJ7Uz78P/I2Tx31UP/fFV6kq1lTWbAHvTQX+QCshlf2nKLL3nu12y/2L+zx6+IjHD+9zcbGj7xucEzX3tAWMYKzFG8ux151zuVq/Ydud0/uOs66l9S1pnIkhaZxXba9Tqii1b4khMIdAjpHtZgsSuD4cmMOMbbv1nLlQhtu2w1lPqCaUOVfzkKyQT9tt6LsN2+2WrtWi0dlImOuEpKinf9N0iBjCHJE2qzUZqok3Xi3CFwfeRYuf82kLX+nEJTPNE4fDgWE4Uooajjhr2W23TMPAfj8ru89Y3nv/PQUYlx3GKgibdUtcnKx0d6tb1xwSklWTMdfItHv3H+Kd5Xvff8YUI13v2LQN7z26x1fefcqDB/dxzjLPEzKoU1NvehBbE5hnjjcDxTbsh8Ro4Pc/+ph5nPnZn/oGX333CTYFbHHEaVKHqhAV9Ms6KUkxIjZgk9dgnyrTXgdx5dMgmh75ohrPFKubalEbe2OoC54VS1jumbo+6rgwsh8uCQxYx1oEjF3yM8pyNnijGzEs1OHb562WYSfnfSXDVU6BUQp9yXr8lCVd5zOuP2xg8G0Hj7fCkqe5A9YZNH07U6LGjKVUVGO+sqbqMcxotbTW0HUdF+cXPHqkNtsPH9zj/GxL22pFNlYIksGgUwNn6dvpznGgcR2dP6Nve7ZNo7n3MWGttt7GOlIFl0QE4yzxGJmrdZcxlhiO7Pd7UoFt39O0bZ0pW0qO1bgkcjwOXN/s6Xqp7aPBNy1tv8E6z9nZGU3T4JzFNzuOh5lh2lPEIMbhXaP3Ry63MepF0W5bW/iFs6ATi7SCmYuLjqm2WsYI1ju8t4TZ0Laes7MtT995wjwOHA/XeGt5/OiBhqQsgbFSiwBLxt3SoNbbsbCmQ+lZW9vvEBJn5/c5Hm50HFcyznnOzjY8uH/B+fmO7abHN55hCnWv0zs6xMR8GFR5OScOIbCPlmf7S1784DmP7p3zC9/6Kba9I4cBI211doY0T5gca6AJOiaNiWhDvUeiGm+U007gZDpQC0CKgWKKWk1VnoB4ewdfWha+Zgsur0jBeSU/xTSQjGYcaBhOg7g6qSlqs55LqcesW1BPWPQDmpJT1vbYrI8xVSS2UOxLtYXTAJ/KnPuM60ctAp8s1uIi8i7wrH7+I+CDk8d9Bfj4bU9wmjvQtK7kqOYeOWt7XTLEkDVk1AjGFE17KQrmOOfZbndcXNzn4YPHPLz/iHvn55zttmrBJEqScJIpopx1ZyyN39/pBBq7ofM7Ns2WvnOkeU8p0LYdvmlIMev5OatYyTu/ljXnPDGqrfg8z3S7MzYbXdBinTrYllDZhInhOHB5+Zqz4sC2eN/Str0i7iXXnRzIWVt72xBiRhYrcDHkVLCtJiyrJbjXQM2TAqDMsbwWLmutnqmNW4lC+YSIoh1Kou9anjx8xPMffKKTBoGLszONMms8acFkzLLD1OtEs642fYKjwQFFIsM48d3vfcx4PHA87km50HU9betpm6aGxapxSYw6YnPWayCK9cSMavATzOJ4PY28vBl59vwKkwrf/PBDvvr+U6QEPV+XiC2eGBI5xHrmVgyjFD1CxRhrDqXFxQZjbcWf7moHtKMKxBjrPVhwqtlBWPIPqvtPWTAaC5KrlZmqONu+w9iMEFHpsjoz6Wg7UUqgVGGSWuoteJisXYAxhpS4LVJVRKTt/2kRUL/BYqziZ8XcueffvH7UIvDvAn8R+Jfqf//vJ5//10XkX0GBwZ8E/uMverJSQbccy5ovUDKEWDTR1WgYpCrAwDlL13XstmdcnF9wcXGP8/N77HZnbPoea4RcIiq5LLUIGJxxNHZztxPwHX2zo293dK0jDzeIWNquxzjPPI+aC5ATFj3T+8aTQ4u3jmkI5KQ5f/cePKDfbFSzYBSEs1bz87z3ahH++jViW87ud7R9h6/JPyEo8yumRAyR4FX4GlLBO1nZZykVmmo4ao3F22qiKaxYwNLSqnW7PbFvr8k+MTAMA/vDnsP+WhV6wxEDdH1L1ymL0rkNcZ44P9c4tSylKtnqznQ7x1reyfXvxtoqYHEcjiO/8e3fIkwjfdsAwv0H92m7Bm8LKSt4N02qrbDe07YNbdeBc2AMTiyuEYbjgcl4vvv9j9nvZ57ef8Ivfutn6b0lhpHWSw0G2UCo2IDL1HBAna+nTDIRsuZFpBzVW7AuotPWNcaoc/4UsdWDUOng6lAk1N1WCqUYjVdHKFlfawVUhc2mp+08c9CTvBEt3IjBiG4Cet8rGKoA462UWKdKts7/T6cD1XJ0OTYvRSmrzZ16FP6YxwER+TdQEPCRiHwE/C/Qxf/XROQvAX8A/PfqYv5NEflrwLeBCPyzXzgZQI9AKaruX00/9Ne0osQgZ3TGb4zFOh1H7TZbznY7ttutAkdtR9d0NL5TzCrVmb0VMOoH74zD+57TYasVjzUdje1onGcfE94qYl6MXbPg52oHJWHWqC7vcGKxvSdT2N2/4OzhQ4px5Cr5NM7qCK7r6PoNbdcxDConPntgcL5hVgkcKSqQl0JSS/IhEGNaAZ4QoiYf1dTfEgJGGsTrC5hjIuTblhSW/AJbQULdIUOIzCkyTAPDcCCmRNu2nJ+fU2Lk93/3GffOzrl88Yxd33P9+oqf/OZP4hunNGCoRpdVxlpvwLv3TIGsQZx913Fxfo/t9oxXx4GmaSk4+k3L+cWOxmbOmsJ22ytJZk607Vaj2URHW9Y4kMIYjnz84pLf/eQ5Ly+v2fodf/qXfpnH5+ekMKlVuHFM84ArPXlMqzN1nV2s6HtKqutIKZFKwa5L/2RIDxpQkuLq1pyTIRsDkqpoR9QT0gDFkhSCWMez1hlMzPTdht2uZ9xLnXopzkMxmmFA0CNJqT+DHtoAU4+Dph4xcwUDdVEXWboBTvAztFUpFU8o8uMVgVLKP/0Z//TnPuPxfxX4q1/0vG98keIBiwtQkRpoqWdY65S7b53FONEF3/X0XU/TtKp1t7b+1yGlVIcVNegQZ+txwGni7p1vLepBmEsdA0accRXl1srf2JbGwnE/MYwj3lq2uzMkZWIomHkCq8xBSta5PlKPN6nq2SNdp/kDc0o1Ig32w5FiBQwaS0aLNYVpGMlmIZCYuhvpOX+eRxIJj8VYr92hLepjUKgsvttzYkpqzJErszHmRJhG3SVzIoWAAbVFT4l5nmh8w+9/97v8mT/zD/H+Bx9inWOOs+JUUkeEuS6tN4pAzhnJKmeNMbC7OOMXf+kX+c9+/dfZbTdsNi2ZiG8d9856eqN02YzQb87YnZ0jImrVbQxehOMw8Pt/8Pv87ne/x++/uOTh5gHf+sZP8OGTR+xajzeKwqcUSaEg84E0Fprtyc9YR8sKq2QoKikulXm3JEedXnqUi7fHrKVTLVqctVUvWJtruEwiRdW8xDCTkyeUjHcd267n9dER4q3YraBsTiVyVT6M3BYtqBmdRXf105FsOb2T15976RIWZuMyTv/xeAL/pVyCyn29cwjqEeCtxVQikG8avPMYL7Tblu1GY7W7vq/nZ6WHxqwc9CxQ0Oop1R57idg6xS9jKjgLrUuEowqEYrK6SFNUAE0EYzxuqsVGGrwpFAIpqifdNI0U6/DdBuO0AEzzyHQcGI57Uphpm4aEMCWDOAfWMxfl1Y9hYpwGYrBMY1Eb8qbFtx0hi7rg1Bl+ykn5BWEC67UQJLUgUxuq5UVVYCqEeZ0YWOt0XJYTviodwxyI40AYR8iZEGZyKTRdx5/+B/4Bzu/d07azHtOouNeiTrtLS1f8REFLiHFmu+355V/5ZY6HPfv9Nd5bMonttufd955yUUeoN/trjAHX9GAsh+OBUHfqFy9f8nt/9/e4ubrhXtPwUx++x89940POe0tDojEKVZYQISZCOig6TgtViosYMK6y/Ko1XIyElHBF3++Sghrb1CunTApJ3YiNju1SVj5/DGXtiqwppKJfG2rsGCWTQ9Td2hta2+GKpUhCSsSIJeYIJiImUmRJsVRwz2BwWPXVlGoTHzWUFVkabAUIFaOp7X8FAku1JdPY7S95ERCBtnF1Dt6saHaKiaZpabuOvutp2xbrLNJYzs8u2O3O2G53tF2HWEPIkTRnFYZYjfsuog4rS4DJQs5ZrpQzfWvYdcKL7z+jkHT0FuPKtstFDSh949mdn5HGIyEMK9ccKcyTLkjre5VBh8h0HDhcXzPcXFNSwFhD0/cYcbi2w/W9jqxy4upwzc2+4bzL2LTHtx3Wt7SbDWE/1PNqXkdBUjuHeR7wbVWQJTQOXApO51DkosDWPE/EGNntzpCSsRVlNkn99+ZhIIVAmGdVPsbEP/hn/2F+4e/7+xScSwWKkGJWmzZRE5i11T6RtmoTS2XAFdq+5ef+xM9xHPb8rb/1n3N5+Yrd2Y4Pv/oh3/z6N3n/3fd59eIlv/u7f4dhuME2Ht+1DJeXHIY9r65e873vfZ/r/Z4H2w3f/MZP8nM//S0e3NvR2UAJGdt4mKq9fIGSQ52EWKz4iotYxHlyseqbQGEOER8DLjryPJHyfJc2XDulbCLFeUoRHWNn9fNTyrpgpQCBlGfmY6yckp4cA2C10OQGkwxeoMSAcQlhBmYKIxCqNZhuVg5LIw5nvC7urBZsIcyKdzld3yIGb1oW9qbqJfSPMTr5KF/2ImCs5fzsHO99FcC0VQOvs++26+m6jrZtMU69+HfnOzabnXLa69grlVPKp25Ty4iR1ZTh7ovhnMEXi+SIJTAv7Xte/A3qGbFyE0SMRoLVdiukmZTVwWcBdszSwlGxm6JKNFWuOTIenKNYQbKl1KSlEGdCminRQVt5/0ETkkqpQRwxYH3L7QK8XYir6QTKNU9Bj1fGKI6yIN3zPPL61UsuX75CSiHNQefq1TDjB5884ye/9VP8uf/aX+A4zbSmAau2Z0sikLX6uuY3kLTF5GJhui2g1dn5Gb/0K3+SB48f8OzZM7a7LV/72td4+s57dM2GR+98hSfvvcc0XBOmA4fjFfvhgG/9WhQEuNjuePrwEeedx5VJiTTZkWZVCTpTzTisjk3VhSdRsodqvmqwWKvz/bKoDKtbUIX1Tu6Q+svkpV2/PTKoIAkQnWxIiVBmyLH2+os5qbItne7riuGUQqnJyyGMpBzqc1SbebHYort/iTrNSUWPJKfO+ss9pj6IFUOoY8XCYrorb3Rrd68vRxEQw2azpW1bunrO9+62K2jbjq7r9PzvPb5r6PqO3W5L23S6660z08q5KMrwNMYqIUSogRkn7TJgracxDbkcK2EjI/XFVhcZUDS3sjAqQCPWIc7jfIudE2IyUwik4UC72SLVUmyeg4KLRgU2Yj0FxS6ssSRTg6JKYZ4C0zSTvBaFlDNjnGpHom9VjKECcouKUrEMsYI3ijgLaJhpVPMQW6cJKUSOs6Lwc5i1w8mJlAMxBS4vL5nDxD/y5/4Rfu4Xf573P3iXbrPj5jAqOu9s9WnMyt341P4idz5eJCygFOiLe/f4uvtJvvLBh3R9x/n5OV27WRmTu20HeWK/v+STH3zEbrejoFp8qdkBj+/dZ9e2LFZ7jfdYoxqNCojgvcF6Wz0PFhAw10m5wRjBe4cUq9FhVWRFzbYob9QAanhLroGyRbK6E5VqZFvbe+UTxNX6OydVTmbJZCl42+BQTEo3LNGMh6BFXpIC4Rarjli1+Cwy9ZgXu3iDmIodiNrmLQYkrNRu1g5YdSSfXQW+HEXAGHa7swr2bei6ri7+Huc0zLFtW5qmwbcN3Xazdg1tp2w8W2eit3/0hl00A1bAycIOu7281zFbOaYT+kVB5JawoaMXucUXrCNnT7G6k+QiOmoKhRzUfMJYyzRXTX0uiHVY3yDGU4qKmZxxJBsryFQYp5lpmEldozduiJoTUAq+caopyBmb9PuapQOncsfXYliTlYIWgmyyKstKXrn5Mc4YW+fvcWZ/2DOMR77xk9/gz/+Ff5SvfPgVsqj8OBUoWYEAY2R9TVZ3W25xgWXRLztoKUIRi5GC83B+v8FZna5InWHnQp2l9zS+w9rM/uYV2822IvMRsToW3rSdFrSS61lf9f2pdktWDPj6U9SMQXJ1nq5TNWssYi2maOEu1TOgpKQBtqcLZlXwVXFR1kWNKCdDN9sEWQtAjFEnfJIxNkHOZNHi0viO1nWkbJgpFInY4pAs2GIQ9LghRfd0yaVyG/R7xRwqrCGUqlNQ1yEBU7vCOl1YqUpxkR1/9vr7UhQBay1nuwu6vme72dF1XTW66LDW0zZaBHzT4FvPZrfDOqshJdUl5tRRV3XiFrGyFghnNBdQ01tudyznPc44YgpAnayKqIJrAZNq212MUj2L9ZpwHALjFNRs1KjeHeuxzlNQs9FQx0hSfyaMw5XqTWitJh5XvEItyBrmOeFCoshMnCO2aerv7wGdYIjVOf1ygzhR8lIpUsktSlBaJMw5Lbu3TgumaSTEwDyNHI8HXr16wcNHD/nH/rF/lJ//xV/EOs8xqAvx48eP2N9MGlJa1K6sVLGT3K7326ty3KUWCIxBs/lu4+PS0kaj4FtEN4PWeqxzWOfou74KoSLWzSoAC9oJOVu5ETVMNpdclSW38ESBNSTU1jn8IrW1xmEqLyNlJSmRM8XcxYwWGW+uGQWaU1CLf4qUYigk1TUsOFIRRBImJYpZvLIyXdPT+w0xV86CBJJNzCaojXlZDnko0Jui6gzUTxyyeg0oPaBQjKkEpCWNKK+v/fIiLKYjX3pMwDnPg0eP6buOzUkRaNsOa53m6zU1DLMeB6wzKxFH31RTd35Tx4Xq82d9gzWCE8GJEnhOXw7rHJJrYGepxqNSC3zlKpel9c4FrB4XTClkO5NKIZR6CrMWarucUtZYatcwxUiOGZ8LdR5UC009V9dorHmKTFNgnmfsPOnNU6Bzjr7vME1LKBDnCeMN2ISkpN1E1p89hEgKs87NY8bZRr3751A1GTqSmqeJm5srwjRxuL5hf3PNn/sLf56vff1rlJyYpkjTeB49fETKgimOklKNLl/MOD89UtNL1n/T184i3uJMq2SlWbMZtYD7NcJdrLrqxBAZjxMlJbqmIW3PaGNUr8B50vepUf7D/rDHGVGnp4oXgTL3SlVxUtfQMgosFIzViK9lhJpKwqZEXjCgeq0szHpETDnWBSdkGxUkJdXE6aBZCTrrQlaGoFAk0bUb+rYnRt0EMgGoRLCSiZU0pz/PBCUqhiAKci87PkbTtis9U9mxK9OxohpVcZgrTpbeklO4rr8fcd3+oV4KDF7Qtp2O/WoRaLxyANTRptEF7x1N0+ib6BzeOd1Ra+zSggJbW8/vVtNlnICrzkOnoIAzhhRq8i2ZkiMLFbMsxI1FiWV0ZFlKxpSMeI9tW2TUtFykjimjphOLMWBV/JILxJQRNMR05dkAOSp7LZZIqAEVMo6KEi/jUe80oGOKzCXjxYMLSLIQ7XoencaB43FknoNuHk79DeZ5qhmEepbfdi3zYDlejRxvrgnTxMVuR9u2hHni9fUVDx8/wjWdTls2LTntoGiIqdxuNm+ZPtVxYv23BbBUVZzF+5aY62uW644m6OuFajfUjzHQeEvjlGs/jSosUx2ICppSCDR9j/e+plmX6jx1Ojq/hftygmQKpmR9v0ohRc28kJJWme9yKRaQK7df/xipv2OuZi1FR4sxRLWgq2QiYsaQKnKXlW9ieuW7iJDFA4IVr7yCfKvsjEV5E9ZZsGow5ktkJlIk1m5AsQ5V2y6hOifdEAp+fkqT9Mb1pSgC1lg2m7MKDHYK9lVA0FRArWn8G0XA1gLh1kW/tHqnRQCj7acV9ZszbzjvGhFi5c4rpTSSorZ6OUPRGYyet40GmIi1UDzGNVjXUsyRlNSCXIxaiqWkMuCCkOtNGGKBnMhVA1CHDtW9plQZtYptyjjjnU5GvPcAxBCZ55m5WDAefIOkSMESXWA2E/v9DYf9sUpYfUW0m7pLzQqUUnBGkJQ4XF1x+eI5YY5cv3zJ4eo119c3vHr9ivv3zhHfKL/CGnbbvtplBWKKn3ljLTOLXLkCS6YepdTwDEEWsw6jEm8jpU5dWBPmF4o4qG17lJkAFZ+5Jf74RjtETVpadP2yFiCMIuZ5sauvGhWNJNPXXCRzu5+eYgLLeDlVTCDpeRx0wxADJSmpKOoC1vFs1vdG9PEiBYvFokpPMUIxGSkWb5XLoPJu9ayYxZKChvNiDJFMyFat9yi1iFA3/qw0+XJbkdcjUbUi/7wq8KUoAsYYttsdTdPUyUCL946u2yjTz/naOjqMczRtc6ftvw1flPXzxiirLYuCfNaoE/GSwLNcIkII8yreCGHW83yMhFT0jRJD23Z6MxuDFHW8Mbai/WJJJeJrYcpFjwPGKgC1yGtyrAaQVnnlUtWAOUYF+SqiHELUdOSNptw4a8gpMY0T4ziTTINxjeYi2kQuURmBuXBzfcPNzQ0gtE13cuTQub6IxnQPN3uuXrzkxQ++z7Pvfcx2t+O3f+Nv8fTRA15evsa1Dd/61k/rjVwnIq03nG03xBDYH/Zqt/VWOqrhtvEGg9UuqjLhUtI4L2udmrUuBiWiZ1exKhNvmpa20SJkbCJMMyOmAnVS3aUE1zQVtNXfdUkZEmNIyNoJZKoNV07YOuFQFH/RmUg9Mty9bu29lvxCPedrGKiOB3NVi6aovgNSC47KxRNCVvJStphSY+/UMBMvrXIqxJBcIbiZyXribLX1p6gTM5pdUKQAUQsnCgOGvKgfpXayiVufQuFTv9TJ9aUoAgswuJCFdDRo2Wx2VdOuvn7OWrAW405itYy5RayXtp1FNSWIKdhlair62NPudWnfDUUrekqI0UWVioZ0aBZ8pfBKVlGSsVjv2ZztaPY3jJPujjFlUtbRo28bmtBR9nvmKVTdfcHg1hEkRaWq+sMs8Vh6Nu1KWXe3GCPDMDDNERqDWyy0YwI7E4MjhMjxeOB4PKzFzhjDPM3MQY8HKUWmww0ff/cP+M5v/21ePHvO1ctX3N+d8ev/v7/J//ev/3V2Z2f84/+t/yYx1PNsDODU/qrvPGm3ZTgemasL0m3cu5wcDU4G2ZUwkFJe0ewlJm0Os76XolqhGDWBaMlwWCb33jrapuFoLaUoj99YlaCnlClueY+06zBW3+uShSTVNKSe70tSsw8nlSuwuAbZt+VT1V20jgr1sfV4kbXVL0ktzNKigj0RcVHURk6kkBOQlSeAyEqqAlaxWbEQTMQjzJLJokfLXGa1rsPq0aTYKuCqM6yFJFVA5caWwlIU4Me1F/sjv4yxbM/OcNVGyjtFiJ1ramvv9RxlK6LulNtvarVXLlAFTurnV3VVueV6pKI77Z03OudqS60VfwnqKKUoc9E1tN1GW/yooJC3VmnJ2WKdxzctYgdWN5moO2TTdoQQQIzmDBaDEQexMA0DcZ5IOTMc9njvsGbJILwlGk3TyP5mD0bTmKgR4413a3GgFKyNHI8j0zisO9p4PJKCGosMw8jNzQ3jMBDHkY+/8zt8/Hd/nxgC55seYqRtGrqzM8QY7m93uJLrmApyDNVuW+Oxz892agASkxqsZNZivJxNl3GsTuny8nKDsP5brr+ojuBqynTSReRdw6bvKF1Xg15VF2F9q+NWEd0QKg9hIWZpQhWAVd1EzqQE0WhytTFJLeG7FilFx4pGd/u4WrLppbqBpPbiYa7TER1vxqSuTJKVVBbmCaraM6YEKVFsrl0OlOwQGmJSo9ySEqYqBZ1p8bZRAhkzJQaKHcklIJIpzmKM14KbIBGrK7f+DA5bPQuFlKTqcJR3WIqh5C99EVAHXpXcNrUqWhZTTlsX/u0RQH/sZUdZjgGnjECRBaGu72i9QT59NCrrzVNKoWlaVglmvaGNc4RxoqDzbGstHkuSQpz8KgfOOeNcQwiJcRpAjKYN1clFCpmQZjIK4OUYEFF5rBHVTih4lTFW38h5nigHg7iGLGqJ5awCY9qS5hXInKdRRSsZ9jc3XF1dU4r64B8OgxqfpIRJkecffczrV5e8/+5TvvrBV3HW8ODBA4y1XO/3OBHm/YHN+YWq3pq6yADvLLvdFussN/uDFjiozE2pI7LTTuANp9xMfX1zNUdZrLXQgpOLjgvbtr4f6uXoaqdoa5BMoazTIaiU/6Sc+lI7QPWlVeJVqrHqxghiLSm5ev/pvXK6i693x0mMuUq5tagZI8Qw69wewRk9VjrbrPfgOu5bdyKL0FByQnDa0ZSkTtmlxUqrnJNiMKXFlEZfGzJenB6JrKYNJ5nJYomix9di6vRiucezkJNUnwlD/rIXgYUN5py651i3nPMr6GeWs/+iZb9d6G/+WT4P2h1ojBVr6/XmS7F0AHrWK3VBO8S6KtKJ+BBY7MysEYwkvHV4Z5iGfR1fOkIMbLc94zgxjgHIWHdrg3Y8DIzTQEoaOFpSwnnHcLyh5EApakYaU8Blqw65QcFGKUI2hSIKgAHaDlbAU1ABTI6J4zDwe7/7e3z3u3/AMM4caniI857z83OaUhQ3KPDhe1/hl/7En2AaJ+5dXDBMI13bcfnqkuuXl5w/fkxJ4HtTu32D8bLuhuMckONwu/suvpCfqrbljY/zbZtdHaSXLzEiNL6BttWcx5ww1tK1nZq5UoHX2glaq0ehUr3bRADnkJzBKGms5GV0iI70Uu0Ky5Lssyz0u0VA8cVb2q22+Mr2i2HWM731DKMCps4qXmWsqzN9DatRXxqh4BDxCB4qVqA3oYekPI+SCmSPFPVeEDJSEoKhtYqTJTTCLOMpRBW9GT06mJKJRZ+dVI1Gv/zHAaHr+xX8Wxa8hmku479TYwxtLZcOYLlOdQG3BcHUA5N8ugIAlDoaXF1nUDGKNUhU0wnrPE3j8caQYiAME0VCzYUXuq5lu+057BN9o23ePM5YI3RtT9P2hE2gpML+5lhR4JkUJ3KauHn9egWQjHEqZ26MeuOLMu6kKMiJX4gjqmorJRFUyEgIAZHC82c/4Le+/Rv8wR98V52QM+y2G84vLnDWYEvhvN9owKn1NL7l5uqGw2Gg32744MN7fPzR99kfjuRxwm3PqlsvIBnj7Eq97buesZ85DKOKZJw6Di1n05MXev3vcs7W41rt1nIlvFQ/RecaShNUBJYzYh1N19EW5SqENFdSkUesegfmnBB0hKjvty7GYm5bZcXyanJTSlpIS90IcvlUEdCfWOcG1GQsnXoIc5h08tTAMAzVxVgj4Iyzmm5USV2poIai0iqWaiwVJNBRZ1KXopyFlCw5e6BBk7YzlIiUSOscjW3JTNoNEIDAFAwpRYLVTs+mQmSRPCz4wduvL0UREDE0TXPiCVCdc6wHbiOZdcGfOq68/Y8+6VJDc5UQV0KPmDu1QEDf3KznQaTQyELQqGSjGjq6aMSneSKngEHJK84Zdlt14ck5VkQepnEgZlS+mnXxNK1TeypTyCVwc3XN9fVrBE1bUqBtMbCIRDFggkpCrVCS0/FczhhbSLkwTYGxDEzDkTDNPH/2nI+/9wNuro9KjBHDYNRm7MH9+2x3Z5w/9cyHI9c3e168fMWLF684DCPm0nB+7z7HcWSYJjCOeRj0fFsKGItrGpxrEYG+7yhojuHN/gDoyK9Un7wFv65cQZYOYOnAQM/UysnXBbm+j8viBGrSbDUGrUeyyh1ZFnCpc8XFUclaC94hUpV0GRJqX7fElSvoWxH/kmqqz+2lRy59vDFqpLKcr8M8Y6yQrGMcB0T0mGYrjiXWK08kZ0iZmAXEV2WvBQkgaggTk9XaniBEIUUtBIpHKuuxIHhnsTaTxVOYyBIoBExWfMDnxCyR2SRcUSbm4kj8WdePGj7yvwH+cWAGvgP8M6WU19Wa/LeA365f/jdKKX/5i78HOO/qedutO/56zkddXZcEnduY5gUNPv07KEqs/61p9AhUS4a7L8bCJMtF8w6ME53vLx4E1SwkhiMlBvI8kUNVf8WgHHwpNI2jaRwxTBhj6dqGwzhxGCcF9bKCeM7rDdJ4DQl99fIFh8M1QrnFBWLU8WbWCQAxYk1AqCOjpOdCax2JzDQfSTExjSPTODEcjhyPo5q1Gt3JpnEmpxtuLm5UgBMjr2/2vLy84vE770CBB9st4zTx6vqa4zzya//Zf8rP/8qvroBYLgVjreoWRG2/msYhZsMwzRzqsSBXJJ06DVnRWbktAstpWe2vdJHol0kFNrOqJ8WQKGvMlsjiHC1VWu508pGz7naGOwtZi4ZDWKy5IqUs5q8J5yseUH+/T11VM5AqT6De/0AhxgmHJaWGOE+03fauqavTLkRzSbQIFKPHKDHV8Wfh9SejrkUJYhSWWLNSR8dkgxBx4nFGXYd0cVsKaqybbCCWhHUJRyRJIZRI+kOYDvxrfDp85N8H/kopJYrI/xr4K2juAMB3Sim/9EM873qJCM7V3X4BbqQufKiAlLaQcvLvty3/7Z/l78t/1c7ZVL/4tzislEXWuRBIDNlYChbr9XgSYuDm6jUlTDgptNYiJVc9/6TgjhS8NQzHo+oeWsc4zwyHG+YkxFyViAV8dfktOXN5+YJhOCi5RJRUsgTcaDBr0h3DWJxZzrw6C/fekeoNHUIgzBMxzDTe4p1R0ZStFNqskeeXr14hKRHHiVcvX+Kd5+MXz7k4uyAZSxC4urnmxeUrvvfyOf/UX/xnQKg8eV26ZmHOGVPDSwybzYa+P3IcJlJK1a6rfsHy8QLWnhwJKipb6YQL0q6A6jzPZHQnjSkRUyQVde9Vp2YNYplDgGomY5I+n6lYQFu0AzJidfpQSo0bC1WTsMSIv51Wl0vR0W9UbYlUvKNIIcUZIw1hnkgp4iqTUScjSlEv1hKjkszUksHVTkA7HdH/020qG13vxVLwGFoKFpGEkYQUqy4DZWFg5HrM0U43G48zCWczkUgyhYl5UUF/5vUjhY+UUv5fJ3/9G8B/94ue5/MuLQKuzvAXe+W7CPNyryyP/zxA8M7nkAqgLWOjU9Saeia9BYRS1gVrCzQVrDwejxyPRwgzrRNc4zCkuqNE5nHAmVJBnsRhf40YFSZZEcI8MUwBYckVVOPJYThwfX1FmEZSTjgjmm8glbkWlcSSC2SxYCLWK+/99kwNFXVC0MJw794FZ2cbxmFcZ+8LdjIMRz4eBigqUbWm4QcvX/L9Fy/47ic/IKaIazzff/6Mx0/f4TiNdF2j1uaL6EmknpOrMSzQ9y0X9y5I+TVhGO/s9gtIoAEnyx1ZBT3VS2EpArqA9fcLMZLQghNy0oReKzTWr/dLmOcq2snr2VsBOC3uptuAyxppJosDT1TRUBIa3FpwFWgUTveJnHI1Gw23QGbR4qxKTCGO6fa4cLIDGWMR73AUYirMqVCMq+7K+j2NNbhl8aNFUD0PlI9iqwuxxqPpUdNqbwTlNmHK1G7WSlHz1joGdeJXC7XPuv4wMIH/IZpLuFxfE5FfB66Bf7GU8h++7YtOcwfeefoO3tdxjaiZyC3x524VE1lGOtzpFD5dCOq/UQuB6EHgrV5rlVaZC7gaJ648AcUpYoy6y1hDIRPijGERlCRiCuSYaYxiAVevLxmnxObsHksk9BJ5HaNhGI54b0lxZn9zRYwzMcw4sczzTNt4dS0qChYql8GBmZGmg1KYppGIqeQa9bTzjSclNfB4+s4jjoc9MQQiNYEIIYlyzJ33BODqeMS+fMGm33AMs7rWWMvzy9f86p/5BxniTCMeW6roxirwl1KiENWLv+YSbjcb5jmyj5E8TSsisBYsYCFIsfxrfe1P8xOXI55qAyJzDGQpK4+k9YrAxxDWqYBZ3vRSHaRSQmLU38c5jLj1KLh0AwtdW5uSvGJPp1VgdZmq6sWla4RMSAFrDeMYq99iqfkG+vtIfb1c0RTmElWvoMeTrJbgVnGinIrarVOgSqKdsVCCFoCkRrHGZITALTG7sg+zdhVWRKMH0W7F4PTjP6oiICL/c9RV+P9WP/V94MNSyksR+WXg3xGRnyulXL/5tae5A9/62Z8p2kYt8+O7M//l3L5UvdN1/HlHAf1iaiW4WxzWrz8ZV5VSaNp21RcImjw0jYMqEZ1Dcg2iEE0P0nOmUUIJlaE3z9xcH8hYXLeh8TpODFMkhcD+5oa+9Qz7a477a3KcyTGQJBEM+Ip2x5xJRRCbQdTHoKRACjNjPlAmZTWGMCtpyXtiCHRNwwfvvcur58958fL1yTSuOiWJKOUdIeXIzXGv7W3VPIizdJuOn/6Zn8Z6R0yJUy5dLpkUCyT1SVDJtqVtHGe7DfF44DjVbmB9vReIsJz8jfVzeqOy5iEsYqKwHLmsukwtIarq/RcI06RFspKnlAymCFBGJybYWZ16DLeKwJJr2y3LDXkLQJ7eI3kZvcZVX1KS7rIpzyRrmYYjznYUqoGJuXW4EqncFqNsw2VDWnEsY/HOKp9EMkkKJitT1FeNSq6EJSmxjpKXblZQP8GEFK/wX90Qi6CKwxokm+9Mau5eP3IREJG/iAKGf67U37hmEE71418Tke8APwX8zc99LmrrtL76t0Xg9ti4rOZbYLD+HG8dDa7/tpyvqcq2NxuBkpAc8d4zh8AZanDqrDCNSq45Hq/xwuq5n42lFKNIczHK5MpZ29eYqtbBarCmqzeuMxD0pgzHPfPhmmwdYdhjS8JLIYWZKIXceKZpIotSlRFRr7oYkRiIw55sAlEssVgF05oesY5cjjTO8c6jhzx9/Iib6z3jkNY6KLkyJq1TKy5nyTkxDEdCUvKSNy0ffOVdPvzgfXbbnhxjdUdWFSR5Gf4VTKoLNmm2w7ZryOc7wjQwTRPeVRfmOqJVf0JOMguUf2CtQUzdCetCVEBzZDge6TY90hZyzASZOR4H9q8vlaVHQrqWfqMKvZAVwES0IIMGuBZXjwq1dS6VZ0A2dXrwtlTiRJ4DcaRObSDnyBxmVUiIYdjfcO+ig0pIosA8z8ovsU5tx0thHQoYfX5rFbfRztbUz2ntNBj1XygqWDNZj5opOShOpxQlkLOGrSK3gGsuS9XPGDzI3SL+5vUjFQER+a+jQOA/XEo5nnz+MfCqlJJE5Oto+Mjv/hDPiJoj3i7ssh54l4V/ywdYPn7zCPDmVcqiWrs9On9KHpJmSImmbZlnBdfatqGEzNXxStv/6YDxTfWmM2C9tpwxUkyzhoPOcSaMQVOSt5n9MDFPI9aj7r6SETKuJOJxT7GW4eYaWxLWGaYp6Pw/JmLKmLbFO1Xc5TCDd6RpZLy5wnZnJONI0tB2O5quJxWDcx5S4Kxv+MrTxxwPIyKXhDgjOeGkhqAWRc5zZVA5W3X/BrrW8/Wf+JCnjx7SGEuwSR166yhtVQJWcZaUBFkQcXhjOD/fcjjeMMcZ43RGn/MtrnNSpgFd/NZoEk8q6s8Xs7by4zAwHA403pFDYAiRUQrXr19zc/1akfIUSKGl71R2HWMC6yjGaIdVCsE4KILUsJbFdUqsRbLeeylF5jivUwBAF3aYmMegQKARimSOhz27fsN0PDLu99j7j/XnHQeM64gy4qYRxLBxW8gFZ/TUILWEiq3WchXUtKdiAtRhSGuiIZusi18sQqtAYMkQZ3IJamiTCznr9COXSCEiNfW4/DidgLw9fOSvAC3w79cFuIwC/wzwvxKRiIa1/+VSyqsv+h58xpll6QLe+Hk+93xz91nvdhAs7eZpIciqBCt1emBQF99hHpimUV19UyAa3bHK6l1fSTy2qW1koGBrZ6CaAhE9Y8caPupEOxFn4HBzzTSO3Fy+rtMCR+s9rlqC5yqxhYUcpQUKsWQRettiW4dvW7rtFrfZMMfCZISYAo2zPHn0gIJld3bO1bUaiJiSGceJKWkxQDSYpWkcGIgp8vjxY37h53+OJ48eMgwHUlFX3WzASMGUigMYNPNuUdYZWTuOtm/xg1cLeNFCfEdodPuGshwIctGW2Bg1+pjDrNz9lEjzTJznqkCMzNOkE5/6nKWe8Y0xuEZ3z5Tr/ZKL0q/F0NkqUmtbJSItYJ8IS/DonfurqNQ7hsQ8DZSSwSgOQ7fh5uqaMGs47XE4kMWxOatciXxrXmpE6m4s6/0n673/tgVauRQsXo0GpCBG6duIYHJGskWMr8BqZolhg3o/5lBVh2/fKOFHDx/5P33GY/9t4N/+ouf89NdRz0RyZ5EvH7/5udPHnf7bp5heokcN5FZMlN+wHC/LeLDkEzJSYa6oc6pmEtEk9Q6srVupz2scyuQLTs0npRaI+rOqW/CMILTGrG/4PM8M47guPFMDVsWY6kVQSU31/2QBzChr3Fjrndqxb3poWwqRXDScpDVwfrYF4ynGsdlumMeRPA/sDweOU2Gco57nncV5U/MbLN/66Z/mF37+5zk72+mRxtqTBaqx45ChpuuWmveoJhv6fvR9z7FT0ZJzTv3+YvqUlLu+qXpmLQlbahHIiXkOK6lnHEYar9mMc5qhFJyzagXvFhPWSC5F1Xii+nxb9PXN1fW3aXuaxtPl7tYjoPagpcqK7yzKouzCeYpM80zOGklmjGEYBi4vLynGMgyD6kmKwza9diInqPxSCN/KU/nMlbGQfPL62IU2v9CRlXgoFJNu5clS1p0/pVgLyGd+ky8HY3C57nK2P73jv7ngTwvB259v+T90Fz/9e73WUI8691YRUUOMHcYahnFUY8dq4VzEIuL0bFsNPJGCuAmxSqBJOVdlnaLI0zQqmcW3TPNMyhnnPdvdjnshcH19reOcah6SUsItikmrBp9CNc9oWx0zOVs198qay7VATOPAzc01udEzcds2PHxwn36zZRqOzMc9Tdvgh4gbJiXeeIexcHZ+xuMnT/iVX/kVPvjgAwq6sBqn6LWYfIvgA1kSiz2rqcUvmwTC6hC93+/vjHbfvNb3tJTqg1iNW2oHpBOVyIS6Ls9zZE6zBqYaX7MLHakkxmnGjhOmldWzocTFQNRgrPIMjNGCO01jtXaruoGkrr5vmnLGGMnzzBwiOUdCDDRNw8uXl7y6vGR7dsH19Q0XrsX6VI+AzZpctB5L3xxP61361nv39nFv7uKnz1P/rWJmOrgs69E3A2mRPf84ncCX4fq8hf6FX8vdl/PNK9U3npRWGbEq1woxNSqfNZoFaF2L8Q1KQ7X1LKxeBMY1GKdpQKnAOE7M80yhhoSME8lMhGkm1fy/ruuIMTKO4+3NIkpuaZtGDTWsIefaUjqH8w2u3dB0GmbqnJqPlhTJMTCPqiRMxpEL+M5zfn5Gvy0cbhxXccLPjr6o7VnTtdy7f8H5+RnvvPMO73/wFX7mZ36Gvu8JIWAd9Yx8i9Poz1nJVZKhUp5r0wpWHZ4Xh+gYb12IVkUd1OesRb2OZQvaOqt0vKoDT4qqVGDBiAJniFTTz8JxGEjiaHLB+gbEIFnpy9ZZnFc2nxGVHsdqJpNrdHyqvgCnG0VGsxrImXkOxDTjnGeaA/v9gf1hoOl2HIaBszpGjTFWhyolGeUFR/mse/RzjrdLN7E8Zn0N6sepaiBSSrd8gpxuzVGXzMIvu4Doi67PKwBfVBzerKFvXilVOmhSf/4QEyKGpm2xRbnfGMMwTljbYF0D4sjZUHLU45fJiGswvtVgEOsI1SfPGKMGmTEwTkc9u+a8uiJ57+m6TgtGfaO99/imeUMvof2AsU4tx9qWpjoQawuuGXiUzKZv2XSeECLGWfrdjqbbcNO3xPHAHCaaTcP9Ry2PHj/mKx98wL17Fzx4+JD7D+7z6NEjFqGWqTukWqrdTmqKFHJJKCdW3YJA17et+MkSxqrdwFoFTq7l5q4MOFnaZlHZsKu25FQz0KSTlzmplt9ZTa1SrwhNgQrFsBFLA6oItWop3/Rb+o2mVVmrxxNNuVKH4DAHUoiU5o0iUNmYNkOIkWmaaXtd6G3Xk8s1MdZ2fXWOTtW2LDBP2sGYz7lPP6sIvO3eTlXDsbw/S1JWipHFz+K0CBidt/7x6ATeRPxPP/7U2O8tDMHTann72PoYs7jsoIywk8ekWNOGkir4jseBlAtN30KMeKCI0GIUWbaNzpdTgagtMcYhthaBtsO3HWKV+KNHQZ3fTvOkM/t8K4VtmobNZqs7Wn1zndNsxRADDlfPgk5tzZ3Htx3ONfhGi0DCar5AjjgrtLsNm8YyTQHbdjx8eJ8Hj98hTE/Y9Z7nz1/gui3vffAhP/XT3+L9999nv99X9aLXM3VFZc3JrlMRKUzVNQiAWbqA2/fDOCXseO8VGzgOt4DbnbeogoKlTivq9xMEv9jJVbFQrIvRuUoVnie1jPMNIUxocnOiEGirytRaS1O7qu3ZBZvNrnZyKnCyRkjUrMZpIqbFkfn2hwwhqEYkqFgrxMy0P7Ld7nj3ybtcXu7JBdqmIyeNQjceFLsJpDIQYsBXX4S3XfktoQBvKwALdpYr2LoUgbBwGKrMWkedlWlai+uXvggsYqHl49PPv/nx30sR0ETmkyJQxy2nl2ICBSqyPIyDct9tr5z0Gk/u2w5EQTZSTRxWjWJNJPJY31FypOm2dJst5vXrau6p4JsRQ0hRfQSjIv0P7t+n7zfkoi5CmsKsI8g56HFi8eFvup6273FNh2taddj1jhzrPDvOGMk4g2rdS2G323Bxcc7F+Rnb/jGP7p1zOB5ot+c8fvoeT955ym53xkcffY+r62tSUqGOxd55X1LUNrScGDNYWRUCgFRXJNUZSPWGVOdoX92PyxvAmL5nmmhEVd9xp2VTybInhcAwDIiYaraindOmb/XIZ6uPoXM0Xbt6PLS+qSnWHU3bVlWfDoWURqxnfsUHArGdV6k6wDTNapoyJlIq1U+y8PjJe3z169/gk0+es98f8b6tWo+Cs8rlj3EmV8px03YLUv33eMlJY6LFNedS+Qq3f1+A6CV3sNRZxOKZ+aUvAnAX9T/93Jsf/2hFQHcwKQo6nc4dS5WxUgEjESFldX2d5hnfter9bhxFHBTLgr2mCr4YDNRYMpNbXNvRbc7oNhsON8r/l3rOnaZQ35zI1dVVzV70Kz5gK9U0FSW8GKeuSs57nG+wjd7MxjcYqy68OWuQ6DwdMabQNg6TNZz0/sU5baNsss2mp28du3FDuz3n4t45ro7JlsVo0R0npoS36mlQgjoa6+uT1XzViJqtmsVevM4/i2IIJheM16ShpvEcDm/HdtYiYE9IYEvqTlGT18Z7JhGOxyMxJrq+oxRUz0GhbRt93Xym7Xp22y1N21VZr1rSK1hWkKwOQbqb6q2Qoo5fc67HgnTLE1i6BBMNw6RuPk/efZ8Pvvp1Hj56hwcP32Gcvqf3oVFtiLNa6lIMxAwpzeuU54evAhXQW4Hw5XNwWxhu/6tmrWa5IfXKhmke7gwk33b9sSsCp4998/OfftLl32/HM28+evGQE3Qn8k2j5JKUmEPEeLUP00hrQ87q5Lp8b+e8Cn6iin/EelzT0W239LszPafOYw39UAuyxTo8pcTV1ZXaelUziiVeba6A42Kc4ZtWi0D9I9VnUdHsRMmRFGecAW8rkNl2tK1XOXE105STEVJIMz4GWtGxGhX5L6WQYqpahFSdk9s7r7eanCRyXmjcSovNRdYwlxQT1jq6rse5QzU9uV0IS/ERWTq0UjGUiqrn2wSdJQNxGI6I0YKqrXqDcZlN29MbS9OovVfXtWhkuLI8l8ImpZCrAUuKM2GaNJZt1kDWON/tBHQiEWBWpP2dd9/lp7/1c7zz7lfo+57ziwd8/wc/IEZt0W+xeG3PwVTGZB32lU9jAItgbvEtAIWiTl+j5bVfwOvl3xa6fal6DFMW7USGmNeO4POuL0URWM7un7eg3+QJLB/fPsdbvvaNT71tJhuCAisepXEa52vstLZbx+PAznkabyh5wRaqVNRZrGuwBuYJYhzBOVzX0W13bM/OGY4HxmkgxLROdQ6HA/M8Y4zheDyy2+0ABQR3ux193zOEiTlOqiwzVlvczQbrvHIIar4BNT7dOYM3Bec0R+HF80/oNwfOHz6m311A0dRjTc7VBTvPI23b69dXjUCe5prko6/5ah56cjMu/03pdjfNuVK0s8EUpVDnMtF1Ghx7OBy5ubm5df1BQ0ZAC5B1QilBzUsHtf4CdR6exgkjeiwYhoHDfs+9+/dA1H/icBjYnd/jbLclzDNX1zdc3LunRcCq5oKq81jwmHEYCdPA4eaam5sbpkldgqZpWsNIlpsm5cQ0BN557yv8yp/60zx9/6tqwW4M/WaneERNd4pBpwE5RcRp0Co1BchY9Sg8nQQZU23rqlAthFBfd7MexXLO69+Xxy7vxwIuq6GtVKJVxoRAkIRv++UX+cy19aUoAvD5BeCzri9iDiqgdvJd3nYkW25uqSQiUYApBE0Cijlqm+ebOlPWtstKBWpiIlvVg4t1kB3iWlzb02y2tJsNfjgSQ4I5r9Zpi6llCIHj8Ujf9xqw2uqOm2KsQaZgvcPVTsC4Gkpvqo328nsJehZ1ljIPzNMRQWXMpSQFRdeYdZ0opxQJUQ1DjFQEvtKhTdHsBevUl0/I682p33NpVW/fA03MLVhTR6iyWHXJmhm5gG53SDTosWyN96rkLb3R87ozK4lropTC7uxs5UfkAsdhqt4Aws31NS9fvmK73dA2PRgNpEX0/ZrnWdWVYVbr9HEghpkYA4eiAOntTVOYwsz7H3zIL//qf4UPPvwJYnF03RaTE/12h/NtdSlWgLnERPF1Z15NTHXM+sPct2/riJc/zrk7r8fy8eK4tACG1nqsjevG9UctJf5Dud5WBE71AqfX3wttWIoaXyhw8pbvU3f8hCrDEMccM01Up6FpmjQMpBQ22zO877SlLIlC0h2+bvLGqpBIbMY1Pe1mS789YxoHSszEOeG8ovplGBW0mSaaYdDI9RpwMkfFI5JkWt8oyNWozbZxy9hShUV1bI6h4J3BiWMKhTiPUNCjSEnUVPWKRKs3YUqhuhMvHAlZDUpsMSrDxZISmGLXGX3JSxquHjMW4Y3LFmOzGmdU2y/lCOSV1DRN80qnXc+z9Vhj63OmrOPAU4eg5YZfWuZhGHCNpjeLdavhqUhZu7sYI41XLb8JiZRZJcSlFKZx4vr6muPxQKlqxSBzlQov3xe6ruPpu+/y9N136Tc7hrn6BWLZnl/QbbaEUfGKOKss3DauToW0AMQYoNhaM+ubJhVDSVmZl7lUKX2pRwTNKzBLp8xtmOoiD17ASO+b6oWgNmreRUJIWOPXY95nXV+aIvC2Bf+jEoTuPgkrHvAp8lV9QMm50oMzYtUXPhcV1ORcGMcD0zTy5DH4C4tBW14pqabXoO6yS5W2Edu0tP1uLQIpJKYxEJqEqzFqccykPOOHEec1RcfWxTNNE8ZbnNdodt82tRPwNW3nNmeBosKkxgmN88QDpDiTSyGECUrBmhPDjJJJOUBxK2OyaTX0JQxjHbUVXIpqW5UAcmUFqnFrrmNPcqnYgKVki3OFYgLWpLXTkToK9d4zjtPaBZ2ehXVkV0HJGO+O6uS2CHjr1iJwb7PBGKu/Z8yUYcLW9KGm8WsuBcA8B8SkFZMQhGEYuL66YjwONJpwrrHlp8AxBd8q36GARskZzzQnvBG2u3M22y2v9lcaH+YNIXh89LAE1ybNKFyX21oI9EPdzaWi/rc/3/I/xLCgDab+fGsRqN4Fmm9oa2GuZq02a1F5yzH49PpSFIG37tD8+EVgiaT7/G+Onq2zAmDiXHWwUV5+TDPTNHJzfY23DgP03RaLsKjRF1tzneVHpRa7yuzb7GirAWjXzYQp1Li1huPxqMrFENjv9ytY2DSNUlOdWmi1Xbfm7eF87QJupxzrIrJC6zyDAUoiR0WokXIbzYW27TkFjFdmZC6ZruvZbjcMw6SAntMd2WQhZzVLKeakC1uZbEtrqjFiYqx6JLq07twL4Nl4ZTcuTDdjqC47lWBTjwKaoBxUJVdvkOVecM4ioRBiYLPd4puey+ubaryhKoCucWz6vlqM2Qp26vxcbb8MYmA47rULCDNYT9s2bDb9CrZBZeXFxDgHDscR241gDCEUsND2GzbbHT8IsUqnIYRWeRE1tCTlRIgBY7rPvA0XQPBUF3PKDrx9n2uhKFoqboVvdROtzMBlU3XO6Xv1OUvgS1EEPuv6sTuB2nWt5+D8NmLGLcc8pIS0euO0XUfbaHxFCjMmZy5fPud4fcWTx084P7+Hsw5nFTU2sog6hCwGsQ7jG8UGug3dJhBHBbkWEs3hcGAcwypWOh6POvvebMhENmdbHSE2TTXvqNmGdxZ/WVliRgregDOCM4ZYb5N1SloBQRXKaEtvaihnv+04P7/g8vJK0exyV6ehluzmtq1cmH5rIdBCY5cot5Sx9pa0Y62p3oCWUu4q9ZaJhIiKp+Z5qtRbJSRZMWSrN3YqGszablrefe9d2m7L8Tu/VwNTtEiXbFb6caljYVMxFPV90MnFHAJNo+6/RhRkc9Z9ikui4S1HighN2zPO6qQjudA6z257RkGYppnGVRZq1D8L0zGlyGcxh08t9E/H3W9iAytNeD1OnfxJ5eSG5/b5Fln0lx0TKOX2hfhhrs/CCt76vHcywKnxTLePkaUTSAmXkmYPWUvTdkixCIkwj3gL83Tg5uoSiRFipDu/pyCdLHLaeuIwFqFU8orHtT3dJlKmmXF/YGxb+r6n73v2+wPTNOsiqceJEAJi9SzadV0N7TQ1Ak9tt9Qvv6wCm5QitubkGSP0fUMqhsbbSl6Bkpazdr59QeqZVYyw3W7rQgzkbCuSnaokN7HwAURQzoUsqT0Vc7CQs1NH5HxLb9Xjr6wEnrGMJ+/RKd1Iwcg5hNubnUqWypnUeMI0kUumbRoe3H/E2cU9ro8j+9/9XaZpZs7Kb1hSrDhB2BVjWEJRI41vePzoMaSZw9XlndHt7f2hr/dwHJimgHctcy6UUA08xbA9O6dpGlIKpMrcS7mak4YZW4VEn3c/L3TgBTQ+nR6cdgZ3C/OJpgDd5Ep9b7XAm1sQ8Y/CWegP+3rbi/RZAOAPCwzq/pRX1F/WYnO3WuacKVWeK4V6Nm/UCMKrPbil4Wy3JR4H9jevscAuJ+z2HFyj89g1VVfTcsVouIdvOkyfkDlw6K9phoEuJrqux/uGcZrqyNGvUVvFZPpNT9d1lTyEWvPVs6MGqiwLW9VtEiPZCM4Km74j4fCN5jgq+KbFgro7roErtTh471cwLyaLpJrhF4pOPch1PApSI99zxUXELNEATtWGNchDMyT0tdYU4iX668SUswJhiNqJhTDXRaE4hDiLFHVAmurRot9sOdudcX7vPu++N/Pq9RWvXr0kTBGRKotWsIZUKi8g55pYpEeE3dmOXXefOB756LjneBiYhuHOiFDEkGJifzzoaDcGUrZa/IvGfp2dn7PZbAjDleYaFjX3iGGmxBkfF23f+qwsAJXUkNycb49WOS85B7L+DAuOkvPbi4CUpdNV3MNWLsWCCv64piJvyx34XwL/I+B5fdj/rJTy/6z/9leAv4Qyav65Usq/90Xf43TU8cb3fuvjf9iuQddMeaMIpE+dj5bvr/Thgqv2ZotLa6kt9b3zcyREnj97xquXzzmGmXvvWVynlOSCXemyZCFYpbH6rsNKoUwzbb+lbRV8801L220Yxlm5AG3HZrOj63sg0m96VTQapbpKAVuqOUdWEk2uu05JEXIkRG0h+82WIk7j3awB1DBDZ/va7Sw89JT0PJuzEmrmMOOjgWCwVkemOVpsdR4SYT1K5BLr+EtpKdF5rMvrTX87615m2m5tc61dPBpvcSEd3cVKglIE3VaDlVwyvmno+w0XF/doOmVbvvPOU272B5yzXL9+Rdt2uJpXWdCJwBQCKUZVEorSuB88eMD9sx3DzSWffP97hBBWqfdyGWuY54lD2nN1fcP1fg9mg3EtUvRYcbY7Y7fbcT3t8U6PJEoND5Sg3cESGbci1fpbs3gQqmGq1K64GqFmAQzGlPVzp+vidFRoAJIKnkQE45f04y/eMH/U3AGA/10p5X97+gkR+VngnwJ+DngP+A9E5KdKKYkvuH7osV8pd9q1L3h0vVsrQaAI8c36Uc++pZ6rS72hoTDHRIpZ5/Wikdjbsx1hnvn4ex9x9cmR/t69ikAXiniN+bLqO7DYVzmv7kOxHfBth20asKbShWu6rqHucD3b3Y4iOmY0viGJ0VzEooEVC+VVjyDqMVeymmFmERAtKBjtKkwFx1Is5FSw3mCNJyZNUI4pMo4DBU03CjFWxlmNCg+RxKQWYHXCYIxgrQJTMaqPnzGCj2oMInViYWr4iOYU1PbWLOdfWFxQraEuHgVo111OapqQc7ikkWNdv+X+w0d0/Y5YhKbb8sFPfIOze/d49oOPOby+ZBxnvHPkMlFiwVJdgNNMpLDbbNl2LbttT5pnrGt5y+hIF1fJ7PfXXL58Ro4TF/cfMoaMZOUodP2Wrt+wdw7jvLotoWYkKSZkNWpVTq8s3Wm9Ts/+y9E454iIXe/1WzD19niwrIdSC0yh3MoThOrLUMAUfiwpcXlL7sDnXP8E8G8WNRz9PRH5HeBPAf/RF3wPYgif/QBZ/lMr4FsLRrnz4KWJMKZUnoDOdcXYO18lIozHAZlnnBuRbuJe1+q4LMwEAq7Z6k3kAjN7jHP02w3pcOT597/L0w++qudjAiJwDHP9/joLD0n94vENdrOh3e3o5om9v66Bpcpl2J5t6c+22KZhe77FthvmYhDTVKagJ5fqUZ8jMQx0rUMkrZZipWRCLthWkXPnOshg1X6WhEVwxCQUY2BRIJbMdtfz1a99yO/8znc4jCMbu8FloYghlkhOaGKu0dBMs5Ags4aAxhAZjyNZjiC6S5ds6gjV4G3DdtPhvTrxJGOxRvDOaFiKhXlS0o4xFu8aNUS1QgyRYVYUfxwDu4uHzNnQt1umOeP7HRdiadue4cEVpsTq21+AWZ2Ba5HUjhC67hzf9vS7xObsAbZ9BryuG8FyfxTOth3jYebFJx/z+uUnnJ3fQ4oWUpxHgPtP3uHjj/8uc05MYcZ4BykxHw50TYfcf0xJQQNEFubSqrVYsCTFc5w3iPErQKljT0MIWengNZVaRIixqivbDeKAbDGAdaZ6GErtFv9ogMH/iYj8D1An4f9pKeUSeB8NI1muj+rnPnXJndyBp7w5yTztDFa/+GUc8haY9c26sOw0y5hQ59sWtWi+/XprHClmbM7EOWDjTNc2lRLswThc00NOWlnjTNP3bM/PiTlyff2a/eWOM8A0PWRHCHpWtFJWw4ecM1EEmoam75UG3Da0jaVpLE3jtQhsN2At3e6MbCxzFhwWsS1FHLkYXbRppuQZ2xhinik54LylJNFphevwzQZj3Dpvl1LnfGIpyVCoHUJSK23fOt597ymH45GPPv4+w6gqSiNCSQqEWdEiYqpIhlx97wvkWAgEMCOuGcmpI2clvJRiAI1q22xaYo1lp6TKMhSdAsRQtfEoqFq7pBATMRcSgriO7cV9EhZsQyx6nPKtoWla+rbn+uVzyAFLIpMwOSIlQDEa8Z4F5zcY29F0ie3FQ9pui4Q37r1S2G57ih/ZX1/y+tUz3n3vKxjbgai8GwoXD+6DtUwpYmdouozJiZgSaY6YnClZ4+UWRuWSDJVl8WE0dZxr9A/mZHTIih0sH4vICt5ilHdhF5/HE+v0wmdtnHr9cDD7p6//A/AN4JfQrIF/eXnN3vLYt373Usq/Wkr5lVLKr9y/f3/lRv8wf5xzP+QfW11sqUQZZWGdXt43OKuOMwsu0DQNRUSDSK1DXKPncgTXduwuLtidn9WZMrx68Yz9zWtKjhW9y8R5ZBqOihajUVlx4fk3ahqy6Te0bUfTOLq+o99sNJ25bSnGMqdMyBArKg86opvnmXkacQiSInEa6ygo1yOnVYWh1UisehdUPr4SSRYSSYoVUygqRNpsen7iG1/nydOnzCGwPwyEGAkhErLm9+WcNQjENbWzkipaKXq8iJrNkKrZxeLcowsfdmdb7t+/4OxsR9P4uhVWazHR2K+UFOBz3tdFoc5AISQu7j9ge36BbVpCosq9VUarXI3lZwJK1uAUuf1D7QoxnoxDfMv2/B7bSkU+haIKha5t2PQdMU7cXL0mhhGNgte23jjLZrNlsz0jlsIc1YIs12OA+iRQP64FrxbRJWPR2AUgVODantjqL5vIohO4Te2+zexcpixiQKzUidUtHvZ5hJkfqRMopXyyfCwi/0fg/1H/+hHwwclDvwJ8/MXPeDdivH6P238VWf8rdXG+5Wd6y+MVRdcXwkAxGHv3xXCNxzgDyTLHSFcKXddTMhjjaiKxYJxBiiUFQyBy7959Wm8JMfD8xSteX75GbMemWEo9i+WScVYwzpPniYV113hP0zZstj1t2+BcQ99v6XqNMS+VOBOV54pJGXG5JuKq6y0p4PpWjwXzhCmJgq1naG3hra2y54rUx6RjvsXuTokwmpWwGH5473n4cMtPhMQ4BV48f8FwnHCuYBGmGKrGPuC9UlLTifzWWMtGHG1MxBDW3MAFgHS+Ybc7o2s3xBgZDpY0H7Ei9QwdSUE5AguQmBK1BbaElHjy5AkX5+cU4+rRwVW+vy42W3fUlDS5qJRKwTW36VaLzDyjaUwX9+5x78EDmrlbWYbLfeWso+8t+/HA1fU18zRjfSLXoiUibLY7zu+d8/LZNUn0vcurrLfU111b008D09phZW4nBMuGZYxZtQxLAvOiJlzIRKcA+hrie7Jmvuj6UXMH3i2lfL/+9b8N/Eb9+N8F/nUR+VdQYPAngf/4C5+Pt8/+3xSZyOdUtAUsuftYfXYRhWOKfFpM7FyDcUIcYZoDTbE43xFinfcblex6a3HGk2aQEvBWaJxw2D/gOMwcjkfc9RVYpxz/hQmX1EV3Ee9Y0Z3DGaMjnNqZuMZjnZKCSskKBEolx6RMCQGRihrHgDeqjU9pquETqQKGapSxeBGo664y1mLKWOPqxlCgJFKYSM6tXUzKBWMKDx8+4pvfBGs9P/j+R+wPR9rKMCwpM8+JxqttVoqaA2hs9WNIC3dB/e+yXey39X3WcBdPzonGCqSOFAOXly+Z5wlYHJbc7Y5WtJhZY3jy5AnONUwxk2rhKqVm9IohGyXNpJRI5oR6ayyCUdt4MaopMCrX3uzOuH//AWfH8zuMQYoeRZxVu7dpnFc7MR0Dq6tx0zSc7c55/dJhlvEt6PermNf23BGKaHdUyVdGhLiSrkrlVGiHYLhVE54u+FOS2MIdWJSGp2th4R2cjhLfdv2ouQN/VkR+qf6efxf4HwOUUn5TRP4a8G2UVPXP/jCTAeTTReBTC/r2B/pC/sCpwu1OzXjL1xmnMtYxwxQS58ZiTcMUA04qkJihkFa+u28akqi553a74+LiHsdnzxmOB1zb0XS5zqIzkhJSdFckZxarMZaBRVbbLucblbwadTXONZq4YFRQM8+Uopl4FBULpTBTwqgdArrTW8PaDVir8t5cMjHOKnbyetNSW+UUC7maYS52VaYYmrbnnXee1oUCz599n6vX10qyqcm78xxxRo1QFYzS3AVXjwBLG3tLcim3Bb+m6zgpmOKYp6Mao8y3WodSzJoWvWQCbDYbHjy4X3/WRDKWatKsr6lIxSDq9638A6nttslCrgBxSAnr1C3I+4Z79+5zb3+hHc5yywDjNLEV9SuMSdWdznpypW+nGLFi2G63NE2HyUGzD0XWGf8cAve8IwYlg6Vkqo2cHocWXEZ1ASpJNmLX1n8lBeXFSvz29f0Ue/Bk0b/597ddf6i5A/XxfxX4q1/0vD/yVcpnghyf7gS00utprFJf32jGjGgEecyFkArO9WAcKQdM0VSdQmYOkTQPOIk0piBFufVN23Jxfs71zYHjNDMdj7dknJyRrGfdaRrUbaeOH9edKiWMsTRNq8ccY2rARN0FEQ3cSLoDpRDoG4cXmIYDJQw4kymSiBGKBRFNDjZ1pFfIzDEQY8Y4bcsFo8lGSYkti3oQG5BswEZ82/H+V77C/fsXfPQH5/zmb/4mL1++VI0F1alJUVcE3ZFTBt/6tRNQY5FMSreUV1cVkLnu7lLUm28ajsRp1q5CtG1eMIgQAjEl7t1/yO7snGmaiLFAq9MeQz3mkFeMQXGO2hobp6EpgBElcaWko7Os0Dxn5xfcv/+Apkaeg5qAzNNMVxYxjs7ynW9IYiloclQxka7v6doe6gLXnApdwHOYcdZSplTxIW35rWtqtzFTKDp2zWo8YyTf6QQWVuFSCJbiuP6s+VbuvXQNp0Xis64vDWPwbT/km5+TemN83mNvqaqV1opUwpCypt782oUPnoqhiGd7dqELEG0ZbW3P5ykS5pk07/Giij3jdA7f9R0XFxeMz1+yv75e28OcMlZAnNQdtuCFWiRknYPbyiqknlmtMxRjlvBebt2IAqSM7xvmaWS4uUbSTN8rMyyVjMfU+T1gDMZpAZznSVvnrMaclrpTKc2MEqNKnnH4zilrzkS8b7i4uM/5z2x4+s67/Nqv/Rq/9VvfRhCsscR5whpH26gK0VrNHpwmtVz33tebUv94H/WoIlJf15E0HZjHI8PxuFrAn+5gOaunoLWWd955h8a33BxHCsvz1OMPqknIKVNq1Fp130PTgGtxEVeVnG51LCq50G+2nF/co/EnRSBnPd8LUEz9HS3WenLlCcSk1vPWNjRNT45LG29XZ+M1CLXiMDFCdBFb9QWxxtBTOz91KC5rJ7D8LEshOF0TysqUO07ECzh+q1347Ib8S1EEFoLEpz9/297L5xwDPv+5M7fmi0pGOR1YGGNp+y3FeoyDs/MLjHFVsqsvZJGCjS2mFMY0Mg57wpzwRoMsRawaajaem/0NYsCZCz3bl6zdRM5VM69xVM5arHHKLhSlkcakIqZUDFjFAtS7rJpSpIQXcJJ5/fqS8XCNlYilQZxFs+qSjgABRAG1IjCnCEWPAiEGVIOu3oMUdc+Zp4mMI4sH6yBq/LgVtVF7+Ogxv/zLv8LDhw/53e/8Ht///vcZ54AzldQz15GZQDOOzDWQFJUxIcYSg6L+1pa1U5nizPGwZxiO6zThNhhU37txDmy3O54+fbouDLG+agP09WRx3K0pQmZly8nqKaH1wNI0nepDrKMQKWgns9lsKt1Wr5ySJiBLRqx2C02jfpBTqiC1ULEUJTXlqEe6leTk1YJunmbSai6i9GzKSCxLMlYi57haqpVS1uJ3es5frmWxn2oL1OH61oBkKTB3jFLeuL4URQA+e3c/Xfx/L4jnAgyWJVN+4Rq8mftmDL7bgGmwjWV3dlGTZFXz75wCa12/xXYN3sN1Cty8fkGOgU3T1xvA0VVXoHEY6PsedfZRx9kUNfNQneBldRB2zqsePmWmeUamiWLUbz+kjMkV2MoZQw0OLZmry5eUMOJtZpKM7RpAEJsRx5ruK8bWtjoqc5BSEXVQzoRuQCUlQpjJOIoZwVpSsdh63k9WQ1mevPOUzWbDdnvOgwcPubp6TZzUkCMltceCTNs1t0Wgsv6aplH0P2WaGr7SNA3BWcKsXn+L5+M6KrMGScIcAo83Gx4+fISx9TzdtKqUFOXJ5yBQiwA5VWxAeSaCqN6h6HvuvEq0KbeuP9YpzfrUxy8mBUs18stzcXGfpu2Z5sCUCn0NN60cdcUAqPDTuiNbjDMaY5aWY5p2LFOcKMZClWkvHYE1OsINNXTlFKw8FRct+RVz9UZcFvuCa5xiB591fWmKwA9zrR3BD/E4qDRKln3/7QBJEYvrerANzgj99hxE272FtOFcq1l9Emm9jrQuX73g5nrP3FQCSs4adOk9h8OB4XikaZoaqmlJKahxKA3G6qze+4am1dZzHEaaYSTbBtu0SDHqc5+T+hgUTbVtvYOcON7cYMoMjWG21VrMWHxRTb/SnFUhmep4sKkGHKXu/ErPXYDDQJaZkA2haAFybcL7FmsN3qrzjbXa9XzrWz/NT3z1Q66vr9lf3/D68pKrq9fs93vG8VhtvFU2LdZi7UzOvWIFVR3YNg2N95ROpwPTOFS8QskwC1d+wRPu3b/P2dk52Tg2db4fMySMsgpTLfr1tS4VKDR1VEr9XaVojmHXtcSQiKEyCSt1+5RLsnQjKWX63ZYHDx7hm5YQlzO4eiLkaLB+yUrw672qGhTtFLTI6uL0vtrKT5Fc0ABTqHwA9a+UciocyusZf7kWz8E3N8VFlbhI1L+og/5SFYHTF265ll/6lCo5V4rxaWfwmeCHMZhCFWPwKT1FwWCbHtO0bPoN3WZDLNRcQYhZJwiVBUwWwbqOi4uHlFR4/skzcso1bivRNS37mz2Hmz3m/BxTiSvzrNFUVgxSVDLcNC1dt8E3Dfv9Hr/pCUXodmjcvHEMx5Ft19EYBfv6xhOmQ3WrGfG2IcxCqmO3gqFttM1NWZHtedYbzTi3FlBN6p1BDEVm5DhgGhCbyWNA3IBrBhU5NQ2tt0x2qCpHhzMO7yxPHj/kyaNH5PxV4jxyfXXD9z7+Lq8uL5VDUAM55nlmGkdlL4rBGk3nsZ3DWsM4HBkOe0JcMINbcHEcBwDee+89NtttdX+ChNUw0ClASWQRUkmEecJZo7uuVZPWKUzE6nVgRCcyIgZjCzYrFmMqvfmUkSrG1BYfHj18wsOHT7DicZuOFCY9chmrLM+2p217TNUoiFEY+DgcSQib88eIU1fqzXaD9y0310fmZbRbj2jeKylIiqmZDTMhhE9JjkG5A8vrZK12W23bMk0TNzc3d7qFz7q+NEXgzVb/bceAz7refNxtMagJOlK9+LJ8KhOuIBjXsD2/rw61zkMdz60Vw1R3V/R8b11L023ptzPdRi2qjlfXOGdpu5620TdhGMYaUW4q2o/esF5VhylnrFO24H7xHLQOMzV6aDAFJ6hJZo4gFsmJeRxIcYnt1sxBUwyCAywhZjKJppP6uyg1uet6jHPEORCzimqWvL4QI85EKIZIIoeAnQLGN0zeVV8CVUh67zQCzDratlFuvDE4Z7i42NFtvsm7hwOXr18TwlzJNwqOirG1VVUgK4bCfDxyc33FMBwpAl40UKTkrJZtKeO95+zsjM1mwxQKTpR+e5wCMUWkpkrPafHzS5SSlJ1nlCRms8GaipOkxOFwUIWiExrfkvPA4XAkX9zFjLSzMpydn9N1vW4sxmFEnYGtNSSUc9K0LTlOmk5sncafx6jMUaPJSt7r8xrRTrN1jlySpjAt/JFCfW67dgDGGNq2RTUDevSapulOu78UAv3ZdTKxgISfdX1pisDnXUsrdDoBOL0+q0hIBYQQYYEC7BucpCIKMF08eMSTd56uN2yRReWm9SDVEZHYBt/0tN1WyUX9gWaOXF/vifsDXavuOYg6zfgiWOuU1iqWcZ6QDJ2zhFSLQNtxOI6rkjHMExaNPW+cwxkoQTn2cZ4Y9nvCpLyBpbXGKFUYLHOIqJpeQ1PEitqU9T25FKZpRlb/vqIjtRQpIUAslaosiIyI84xWVB1pzJoR6KzFiqFpG7Zdr958RvBWtf6bXr0Q5jATo2Y4lKUoo217SokUEsf9nuvXrxmHgwKyYqq2Jq+Go48fPeHe/Qd0my2MkVTU0SnsB+0oBJrKnYjzjKREjgEaRYMWnpm16j/orCFMI3iPrQsvBfUuTCcCIlWtZjCWs/MLVYRmpSQbMeSS8HWhOq/Tgel4wNqiprL+NqL8dKEqd2BW6a/TJGuRop4SzlZAstw5/y/3+rKgNRNhXtfHMk5c6MVwyyD8PCOePxZFAFhfxLct+OWF+uwJQl3Q8mYMlnLyi1jO7j/k8dN3EatotL5mhvXhdSe2tsE3G7o+M80Jca9pNzvazZ7jiwPjMCgTLxWG4UibCl2/IRV9A+cEUneolDPWOpqmVRmuVRAppZkUtBg573FoESJl5jFzuLnWVByr+XgFqexGTyqCxIJv7Oq3rwxCD2Iq8l5Iy+tkig7DUyKkUdvsVOrPa7UzkgJkrJgV6LK1CDjnuKlmKE3T0DhPP0+03Ya2bdlutxQK0xSqCKj6NtSJUMkw1k5gHAZ8m1cyEehxJqXMhx9+lfv3HwAoFbkIFst2mximiTCN9L7VNKEw4/KSCBxrx6SdAQUaVynIQWXMKiFXIU4IoWos6v2RM/M082Cj9mvGuFoUMou83Fi1cnZOfSmPNRmqaXvaVrvIvCzCOrFJKwEqU9C8Q+eWBVvjxGJe9Sbe+3X3X47Gp2Ss5agM3NEVOOfWjz/r+tIXgdMqqjRN80N3AsvXK3GknrPf+NpMIRboNjs2u7NKCRWKWVppKrJoK/UUvO+hV354u7lkmmfO790nzhMvn33CPI2UUtgfDoxzBOsxTn0DinHMKdDUdBgdITm8tTTe0XUNwxwoqPkpJSFYvBFKDAzjxHF/o76HRtvqItqeIpYYFfRqmh5nm0o00li1/eFYKb2Z4lSMJAVIenxIKTCOswJsUEdcnlQiIQWsmJoXqLHh3jlsLbB919NvNjjjOAwj/eaMrlNRVNt19H1PhxAr029Rw4nkNQYsxahBrJOBGr82z+pO/OTJE7x3XF1fYWyL8x1t3/Kw7RinmcvxCEX5FDHMSC0CYZ4oxhCy+gikor6L5ISg53+1Os/M88Q4TTr3X+4f0ff5/v37XFxcIMayarW8QCrV+bkWgSUfQjJdpwlQ9SBZxT96lBqnqIPT6ptoREVY8zyTqzX5qffgaabAeu+emIqcdgOnj1nu9z/2x4GlECi55bPZT2+CimoWspCEBDJ3XGNAI61jUqS6iKFIWp5seVYWGbKgLaA4BZW2Ynj4eNSdIRdc0yNW3Yr15zAchwnxR7bnmosnVoGcOeZKS871nOixIrTeq+sPRhVyOVKS4EUIKTIe1f58oTBX2RgYDd7IWUdZTdMDhnGaCDExh0S83lNQr78Gi0Vjq1JOSNLx1Dhq+7544RtrCTkyxgkrKvc1Vv0PGt/gqtR47nqm6Yi3Hj9OTJNSqpedqmk7nYY4p0SqTFXZKVNOX9u684ZZwdOi+vmu69hst6ScGccR5wXEIXPQEa93qz+jpv8kQlRNRZhnMhBKIAlk0SAS1fQbnBEabyl54Ob6mv1hrxZs67uvR6mnT9/l/OwCYz0WVTVmozLqUs8a1mrRdM5jjYLFbddQJK+CrpxTlRLr5GoZd2a8UruDdi9GBIq5wxE43dmX2f+y6y9TAJ063OoMTsVHn3V9qYvAm0Dfig288ZhTuvCbX585CbpQuuGdxxRQaqltmIJWZ20ZQNuAhei/ZLxXDrqoa9DDR08A+CRn2tev6TdbpmkkBVXMjXHk9fUN4jvaTjkCOUMoyiYsGRrnab2n5IAV8F1DMY79cVZdQAy6A8XANB6J1cvfWMsSWY7YqlozWOtxrmGOmcNBI9BKgeM4YKyebTMWl3W8tUw+YtRAznnWgNNSpbIhB6Y0K5BVuzEj4J2na1rd2Y57lXlbj+/OubiXsEs2oBm1I2kLTatZis5WtWXVU6iFmCFTtCOQWsBC5Ol773N+cY4xhq7tOI4Th+NEt4n4tsU69WNIYWSxFg9hxmT1/C8B7XSkgAXvtOtKVczUOMthP3N9fcVwPN7pBHLOnO3OePrOu3T9Vn0bjUecJ0rEFPUalOXWqpwIY2vKsnO0KDvRGKvpzM5Um7dbnGU5ct0WoFswcPmztP/L7P9tk7SFa2CMqZwNVjbhZ11f6iJweq2t0eecb97sAk4/Xxm6Jzv8+o+Y6hswjBNdZyoyu7zASxFYQhwysFA5Df32nIei6oTWCl3riHHm1ctXKgYqcBxGfKdjIisGSQUnmWgyEgLWWdrWk2LQaHPXgLUEpzdJjoFolASTghqFLruOca52HwJFgTkRS0yZaZy5uT6ojVhO7A8HNR2t4areqdQZoNRknhg0pltDOtV8NZJILLmDlZeOSnanpqHxDTkpJ96KoT9/TKFhs9moB0BKeK+eBPPc4NuWpmnxzus8PyecMytglnJCcuZ4OIIxPH36juY1itBvNljXchhmXl+95nAcePzkseY4DPvl3SfGQGukGmbo0cMaQawi7N46rKijkRGY55FpHCpYd9pyFx49esy9+/cB3XDskvuAKkJz1QwvEeE6Gi2rm4/z6h9h24ZhPCIpr+d8NVspd3b6pTDPSSXaS25DCOHOwl6i3WKMK19gKRYpJaZpWjuHP/ZkodNOwJxUvx9mhLiiqgDlFp1e/11qyKNzhBBoV/FIochyaK5SZKCUBbleUNtE0254/OQp55ueexfneO/4zu98h+fPX1JkpIhwHEaN5wJ6J0SrVN48Tpok3LSk6aiMxpwpqHW2d5ZpHpV0VOm+yC3j0NhaBIogKLe9YBjGmePxyM3hSM6FmBPHYcRZS9McwDh8k5VkVDSFOEdVKc7zxDyOxBB1YmGBxUmoFgARDeGcjgc1Q6XUpN/MnCyb/oLr3QakVOOUFtfo4m/7ntAmGu+xqMbg9n1VGrN6HQaafsN2u9VZeUo0babvzzj3HYdBWYrkhHO2jiAVo0gxIZ3HegfWYkymGDCuoe9a+rYB8QjCPO/ZX18zjoOO3E6mA75pePrue3jfMowjSQTfduQYwanaMcdcO7y8FrFSFpCxwXqp8XMNOe1JkhBxeOfJRZhCJKZALurDKCJrVNtyfy/38enIcOkEFqfo06PBsj7+UFSE/+Vct5Uwl3KnZVeAyqwoaclZ7RpPRBXLi/TmCLEUpYmWUm5Nd95sBNCxoZFqtT2ZurjMqhhbHlnKAizJykUsRTDG4doNFlGeQL+j397j29/+2xzn32OMME0RjC54WxwOPQuEEGmtUeAwzgrizeoPoL+EKMIdA6XmA4i1WKm5hNXxSCq4ZG1DzIV4OCpzscZ+xYpEg6jF+TAQc8Iao3TmmEghEoKGdaaoHYexmthjXHVlEiCXyjSMTPNEjAnvFAWfQ4CbK/ZXLzlsW0xJzG1P03a4pqXbbKrHAUzTiGNmmqblxKUKRlJVCSb6SqHe7w+kAs7PtN2M9Q1t2/D+u+/SNI6S1HBVQG3hxJDEKPvSWlINjHSN4hJ957G2ZZ4nLl9dc3n5kuubaw6Hwx2e/fnFPR5t3gPrmWOiGDVSjTljXVG+R92tl7O8sYZ5uhXteOtqvJkhF8ghAoWuX24uLRrjMJBzot/0qxT7TfOQxTth0QgseoFTu3i4LRxLJ/ClPw6UUo/gC6X1hPywtjwprfLcUkciywtw2vKcdgnL31MVpFhjKe3dtijnqP55sSGFwBAzu+2ZVums7SDoFEHqYotiqjglrU7EYi22NVjf8dD1bHb3sc2Oq/3AfviIeTgAI3bT6iLMDnHCVHn7BsUlhjFQiuCdUo3jNOguXYoOK1qHmT2NaTFNQxalFy95CVRG5XEYGIdBZatJqcPG6tgwxsw4DsRYb6R6jtbEnFiLjVnZZ411Okuvfnqp2o3Z2hLPk34NUpSCO99weP2Cm96T5oHt9oy8u8DWmbbzFRgshcYE5jDVGb7BFkGiHknGaaINKoFGhBQT03zk+qDJxMYatl2POdtxtu2RmjTR9j3TZksuWYuAU7XjglnEGChFcwim8cBhf8V+f83N9Q37cVThVr0ePXmXi/EJxvaINEr7NbLiGCmrhdrF+QWHmyucVxPaMGvAirOevtlQisWIw7WdZlKGmd16D2ox3u9vuLm55oMPPlgnBadx5Mt9PY4jNzc36/uzxJmLCPv9nq7r1k2ybdsfvxOQt+cO/FvAT9eH3ANel1J+SdSV+LeA367/9jdKKX/5i7+H/rfAqnpKKbHZbHQxV5rksvAX6uTbyEPjOK5zU++9VsBaZZbnPb2WDD1rClmEMEZyWzRpuIDkivxWEhHVuUf7gFQ7geXfagSZt5w1G772DXj56ppPnl3y4sUl8zRipNA3njlGSq559WS8VR1DjhEjCSmZFKf6ulRgUgTTNPg+U4zB+U5DSUT990SEKcyM08T+cGAOgYyeTwvVgdZYQozM+xHnbqnYS1qxEcE2KpHu+46+6/HGqZLQuPoeBeYpEpP6+A9mqPLfGj0WAvOw53h9SQ5KTPJeR6TTaDju9xg/K4/B16ANq0ccJwWJETGOUmC/P/Ddjz6i6Xv6fsv+MDDMdZctia7x3Nxs+ebXf4KzXc/hWvGS7fl5NfGUSgbyNdylIYbA8XjDfn/g9eUll68vOez3XF9fM6SJU3vuB48e07zcEidZW8my8iZ83bxUe2GsrOf/tm0Jsxq0xBARa7Co6nTBnAuFEDUVOsZY9QwdzjmVjQN931dKemQYhpUNuHgOLuui67raPUXGcaTrNPdw4RN83vUj5Q6UUv77y8ci8i8DVyeP/04p5Zd+iOddr1JuCT+nZxgRWaucOvXcLval7VmOAcsverrQT/nSt0SiuwlEVMGGqStbz8RzHakoKKgvttNRUNEzcRHQQ2aNIUMXcypgUD+A3fk9vvlT3+Lbf/vv8Pt/8AccD1ekFPGPHlAyxJLo25YwHrR9QyhZCLGizUnb/1LTZjHqQNv2Wy0IrtUF1rS4piGXwnFU6utxGCpQJTV5x2FdgZhJKZDSiKvjOg0FrWo879QjoUagNW2HE807sMZp0lCyWKNOusaqWElTiyIl6dg1hJlhGJQmPA2040DG4BCmaaTMM5vtFtu4mkzU4BtPiQWZZtRiOzDHzHe/+xFtv+Hxk3eY5sRhVBwhx0DXOF49f0bnhfvnZ2y3G+I0Ahlr1Eqs6zsdnVZQeZxGnj37hE8+ecbl5SumaeLy9Suub26Y7MSp0rRpu/oa1vN/ycQUEFBPgDqam6aRrmsI04D3nu1uy/FwU9mi0DctISVNRz6Z54cQECPMYdZJysoFuKX7TtO0HlPePB4sE4RxVG7KZrNZMy2X48Fp8Xjb9WPlDoj23v8k8F/9ouf5gu+ynn8W2uPSxi+7/jL/PHVVOX0hlgjsU3wghKDoev26dcc+uVJK2EaLxTzPzEElrVYtirHVfVbZ4ToizPojU9BphRaBUh1va4FACTwPHj7ia1//Br/2a3+T65sDKSV2263mBeRE4x0hZqzYOoY0hFTnmUVlvFLdgtQo0+IaPTpkhL4uoJTV0XiaZ43LCgEwijGkVH0LDNapASdVbRdjXufsCi5ZnGvwvsXZBqmjUR3NalEUK1hxYJNmF9QiMIeZUgxzKYR5ZgoRGwJunnHDwJgSWxF81+midxpU6puGpulwbiSWuL4v1zc3dP2W43Dk5cuXgKHpeuYpcNhfq0qubxn2B4wkfuanfpK2aeruF7TLsY6+36zYToxBA0b3Bz7+/se8enXJPE+8fv2ay8srht185ziwyFCtU4JUSpkYJh3vWeU62BORznKfLW7VrmkQKWy2G65m/b1O+f/Aet8v9/YwDKspSQiBYRjWhbw4QJ1ufMtmCapOXIrHMk0Yx/GPlDH4DwGflFL+i5PPfU1Efh24Bv7FUsp/+EVPsvxCCx1y2fVDCCsHelFTLY8/7RZOPz59M0IIUI8QK/CY8p1GIISAtFKlrwMhzEzzAKK7p1ZnBax0SZ5SlxfCjrrkINUbsORVwtx0LV/7+tdp2o5hmkHg9fUNjx/eh1x48eqSxqqwRHkNojReUaKKweIWf3vjqhWWxfqWEiNNvcGvr/bMc2KaZw3VLFTkOzCFgPeN5gY4PddbI4QcyXnCOU/fdzjr1eik/hdELckwypM3RbGLSo5RXb7FGK/+hiEoPbkU9vPMOAdwM7iRYve4uaHrNxgyu03HdtNiii5W6xt9/WpxjTFydX1D029xzjGOI68uX7E7vyDGxHA8MBwHnDljnka+/72P2XUND+5dULhtlRdr5eX1Bbi5OfDJs2e8ePGSVy9fcXV9zatXrzjsD8Sn+VMjQuMcXhxLXmDKasu26VuKUxJY6xumceBwHCgp8uzZC+5f7HSTKAljHU3brK37Eny6jPYWWrCIKOiH0Lbd2mm82fGe7uzOOc7Ozri5uWEYBjabDbvdjmma1g31j7II/NPAv3Hy9+8DH5ZSXorILwP/joj8XCnl+s0vlNPwkXfeWX/Q01ZJNfr+U4t+IUq8KcoA7iz4RWa5vAChjr9OjxXTrC8UmVo5Z8aqazfVWkwMGH+rJlv4+AVdtDo3V5trqbmBGY3L8qnh0eMn3H/wiDkkQjjU3LnCw/v3CBnEaGCIFNTmjAxL+y2OjAPxWNGfJxdBipBEmYU3+z2ffPJcz/4rmUez+6ZqS6a4gMG4uvuIkJIKkLwvOrJqCm0S5lhgjoyzAqpGbDUX1XZ6UeXpEUJj11RyKzQIKWTYHxlCZD7qGX6MiadPn/K1r32Vi3v3KaXQtKoQRJSaG6LmGqj30qldlqnHg8jV5aWCnUH9B+LUAIXDfs93/ovfYfMLP8v98wuMEfaHA8W4VVvhvWcOgR988ozf+I1v8/LlS66urri+1qlAztDf33DaLSr2oP8dp1mdjLIwTRP7vaLuTePJKfHsBx9rl1AKv/ntb/P3/+ovM4fIzfUVxvecP/7Kev8uUfTb7XZdqItS8ng8sr/Zr6Sful7Wuf8p3rV8HKOasA7DsI4Lnzx5sno6/JEIiESN+P47wC8vnysaPzbVj39NRL4D/BSaUnTnKqX8q8C/CvCtn/nZcmqTdCqMWNxSTmmRpx3Am97ry9csXUWo3QNU1ZUPdxiH8zSv/vzGKto7z5Mi54tjsAHfNooIV6TcGFMdgZLKeEVNKQwFxFTLb08R4ezsgj/xi7/Er/+n/wm//3d/n7Gb2G13Cro5T8qJKUKS24AQxRlVGlzEYIooCIghZgizynKvbw48f/6C1zc3WFNFPLZSj4MuqnEKQKiqxVpUsyYMu+q2rMeJzBQSuUxMU2BJx1UJccNi0mrr7wcq5unaTmfz1R8wFihOXXRjKhyGayKFr339a/V8rkX8sL/m5vo1ry8vudkfGaeZYVSa8xSCmnXWxb+QlIZh4Pr6WotRHRnvr695+fwTDtsNf/JP/qISa6qhxu78HNc0tI1GvA/jxM31npcvX3Gz3+vC7zeIsaSY8F2vI8Z6vXjxgt/7g9/jPF0Qc14JYDFlrq5aKIXtdkucJ54/+4RHD+7TesezZ8+Vyi2G11fXiG24//Srd87v46gThK7r1vt4AQF906yb4YKJnYaOKHh4az0WQliPAH3fr8eD5XtM0/SZa/nH6QT+PPC3SykfLZ8QkcfAq1JKEpGvo7kDv/tFT6TdpS7i5cxzOiNdCsOpUuoUHzgtBqfn/9Mislw5pjs8hFORhquLPqaJPNeRnBTNC5y83hxNxtTdj3ozONGdEGvUatqqM06sZhpN3/Orf+rv57f+9rf55NkLDvsbLl9f03Ytjx7cI6fENEcmMiVFfW6jRwEpgkmqmVDjAG3RU5mx1nOzP/Dy8lrb9lYxiyVkI6bAOGsmQqg0ZleLaEqJxjdst1uMzYwSQCYWNuTafeWMcR5rp1XWa2QRtEDjGzbbzXrGLbkwT6PKlUWgFK73N/raWMN+r6w+7yxX11c8f/aMYdizv9lzHCdu9kemOXD1+lrdesUQ5qh6hqI39csXL3BGuDg7Y5panj9/Rg6B8/Nzzs7OSTHo7zwHHRNaT9NqxHvTdmx3Z0ruundfd1LnGIaB43GE9y0/2N02rlfX13z00fd4aCfdJP7/7X1brGXJWd5XVeu69z6X7tM9PeMZC8ZgJzbCYAvxEC4vkZKAEplEIeIlMRFSFIkoQUokTHhBkZBIpCDlKRIRKChCECSI4C0hKFEUrgFksImFMZ6xZ8YzfT2XfVvXqjz89dX69+7umQEbzpnMKanV5+yz9lq1qv76L99/i7RWFBUQRHvouh73776Ormsxn9Uo8oV4ZXzAOAY0XY97Dx7ihaaBc9KHsaqqJM15YAEkk7coxCQjfe57x/gzzwTPynYrBVhoUvOaTgnD/fFn6jsQQvhJSPfhn927/NsB/CtjzABpTf6PQwiP3uoZIUyHmmWRxnHE0dHRvhfjLgAAN5RJREFUzgvrevBU8/nyKZhIRRdSg+AiW2ulC8/u+8mzBx9rCXiMo+ARPnLgLM+AtUGWFSjHCqgBmBJjzIqzQWxlCScVZFfy9ltsNxvUdYW//KEP4e/83e/Gq6++hl/7tV/HvQePkJdSzcgZqWMXvHQXLrMcxuWwPmoEPvoeYpaNaEpAMCPOzs/RtB3qagbncoxBmmV4P2C93mC52uDs/ALbphXQryhhICW7qqJCPwS0vYCD1bbDettJPBCJz1jRiKyJEYESdOOsVDgu8gLzhXi8+66TpJ/YI8GYgMxarFdLwUSaFnfv30WVF/De48GDezg7O0M/dGjbHk3b4/xiieVqhdfv3p3SnwOwWW8BCywvLnD3S6+lwiCAx7037uLDH/46fP3Xfz0OFgs8vH8/xjL0ePjwFLeyEvV8gabrkBclvurFF1HWtTDookBZFFit11guN+hueXz2OMm1FKg2BnFbCtY0SG3EfkDTCEj38stfwPHxEe4/eIBxGLA4OMTFxRLnqxV8MLj3xj288ca9ZA7keY7Dw8N0aMlE27ZNdJ25LNUG4KFmDQEb4zgYCFTXNdq2je/8EAcHB5jP5zDGYLFYfHmFRsOT+w4ghPC9T/jsFwD8wlvd8/HvTVVSyb0YFUU0VddN488MpBiGIZkA/C61AR1I0fc9BtfvaALOSfvnvusxDn2azzhKe+6u61B0LbphQJ6XMSQ0oKxCTNqZMAj55zB6yV+3VspHr5Yr+NkM73//B/APPv4P0TQdfus3fwOnp2fInMXJjWPkzsAPA2JJS7gxg/MxRgABIYyxyIaX0uJZgdV2g/W2R57XyIoSQzeg71rAbNH1I1arFS6WS5ydL7Fet4AxyIssEqK4oC5Wa3EFRi3BOZbg9rHQqtQI7McRfdehj2aZXCf+/4ODRSwD1gJBQniz3KJttijzDJmzOL55E6dnZ9huN3j2mdsY+g6PHj3EtukwxBoH/eBxvlzh3v0HuHf/IY6PbwpGaoDz8zPAGLz+2mt46aWXsJjP0bUNzs8WWK1XeN+LX4MXnn8e52cXkk5dlPij3/8UsnKGenGEsmzw6OFDlHWFo6ObePjwFE3bwXvA2ByLxSHKcoFHs6XUbkj0kaEoS4ydR7fZIi9kjbbbDc7O1rg4X2GxWODll1/CBz/4QXzh5S/gXn0PRVHi81/4AkYII/zCK6+gmH8Kz73wXpyfn0sQVnQJkg6NMcm/32ybnTNgrU0MQh/oEIWNcw5nZ2fw3mM2m+Hk5GQn3ubL0gT+ogaBPM0E6C7U5oEulsD0SAKA2u6hd8FHEDGLlWTLqtpBSjMnyLMJJjXCJIhircEw9FitV5JhaByqusZicYC6niErKxiXw1mDWV1J1WFjYI2NYboDlssVyjwXt5B1+MZv/Ag+/r3fi67r8OlP/QFefe0uxt7jxvEBwjhKpZqswMWqwbYVVxTr3A2DaDFt28G5BufLlYBF1mHTNPBD1BBCiOG8HnlZ4eZJhRu3ZN3yIpY7iyWxi+hSS9Iny1BHVTUEAU7HAPTe42C+iAckoN02GP0Il+Uocymoum0akc4mYBw6+BIppHWzafHFV1/D8eECwyDVf1artTAVIxGhZ6dnWK5Ee1kuV5JuXRTYbLvkL//Sq69gs15jvVrBGOCN17+EMi9QlBW6YcC9N+7h6PhIXIn9iIvNGVxeYAzAxWoDs9ngPc89j7yo4LFC03a4WK5QlCUyV6JxHUblHbDGSh+CDlM8ibMY+h51VcGPcgjHANy9dw9dK3URbp3cxBuffxmvv/EGvvHD34DRB9y7exfVfAHnHFarFeq6xna7xcHBQcICdOYggUACpGQGQps2eQiqqkragKZ13u/09PSdwAR2e6xNPmubpPnk558Ci2i7klkkH62SzFSnpjBkt5NAMHiJsCqyIj3fRiS57SWuvWlbdEMP7w22MRgnz3OUswMcHd9EGTn6OA5ArGknpb1HrFcrjFUp+fDjiMXBEf7Kt3wbPvXpP8RnP/tZPHr4MIafemRWWmhlWY6+bxHCgCwTsC8vCvRDD+cyrNcbdNHWD0ZScMdxhDNSZNQ6qYBU1SWqukZZSey+ddK6WzCNIq5PFs0s0Y6qqsJicRBNMEGxPYBt1+PWyS2p1msMNuuNBD7FLMJhlKCUcZC+Dm23EU/LZo26KpE7K0yraXB6eoo+qq79MMI46Tb88OFDbJqtaBTGomlarFZrFEUNl2fYbrZAAI6Pj9E2LfK8wHa7xeLgAC7L8Mbd+3j06BTzgwPYQcp7XZw9xOilk9EweqyWK9y6dQd5WUqVIC+o/xgA5wI2tt1hArACgkr2oFQQctbBFtIG3NoMISzxwgvvRVVKU5jNZoOj4+P4DlsYl+GZZ59FlovLb7FYpJB3ADsaMD0CrLBclmUylan+07ylmVyWJZqmSaYLsYaiKBIAeeVzBwDsLMpsNkNd11itVkny84W02bCfIkmfq4Rgij+27zqUZYnz83OxmerdxdhuGjShgSljXYLIaPIiF4JsWwQPmFj6qet6LJdreO9RzQ9QlBVuHB+hH6SjrkeAK4uYuORTQs7x0TGMsQkU+vCHvwEnt27h4YMHOD27QNt1mJUl8iJD148IoUfft7EhxhxFWYgdX1dYbza4uLgAjEVelPBG8gZyl2NxcIS8KGCsRT2bY75YYL5YSJsz51AWJYzJYuafuPkODhZx3XrM5weoqhJ9L/X/54s5XF7gfLmSct9+TOmror7WmM9nCMGjaQQ8rKoSw9his91Ihp8BTk8f4fOf+2OcPbovhVL7XgJ32gHeSHHU9WqJYfQo8gLP3HkO3nvcuvUMTm7dQtd1qMoK73n2GfhBIgqddfBhwDPPPANrM3zh5VeiBO2x2WyRlzW22w4XF0uwAMtqKRiJczmszWCLDIvDIwBA2/Yxr0CloVupDxA7OSQtcjabY7NuURQlbtzIcOfOHdR1hWazQT/0ODhYYDFfSBXpPMftO88CVtys8/k84VXz+RyAaEzUZAWQjc1MFMA3m80S7VPVJ0MoigLL5TLhAlmW4fbt22iaBk3TJOzhSeNKMAFjkCQ/o5ycc1INVvlQCYocHBykRWS1VR0kRLdInueoqwqbzWbKuQb2vAMj1ps1hm7AdrtGbgyGELnx4GFgU93BsqqjqSKSJYtSOHNOilf4AU2zhR8kvz5zDkUurrK6rhCCwfm5uLeef/555Jmo3P044mK5wXq1ReYMfDCoKqAqcynwMTzCzZtzWCe55s5lKKoZjo+PURQFZvUMs3qGPJOf215sd5flKMoSRVHFphpZjE3PUdeLWCPf4WAhKmrTtijLEotUxWcrBTJshqqSwqF00xoDHB4eYbFYYL1ex4QWqSlYVDm6oUO13cZuzga3b9/Bndt3sF6dY7tZS+k0BGwbCQ1uug7bzQZ932MxXyDLi1gUtI4YjZfY+iLDenWBo6NjXFxcoK4r3Lx5E/cfPsIXXnkV73//+7HatFheXODw+ASLw4fo+kGiNb3H6dkZ3Cuv4ujoCEOUtIvYNMa6FmXRxI7S0yjLErYmrUrAWe4yWNvj5ORGwpW2mw3yssJzz7+APoKOM0gZtrIs0XYTeE1JrUOFtYeLBV42m81ODEzbSpzL4eEhjo6OcHp6KhGiXYfT09OEjTGEmM/QoPr+uBJMQJsAAFISBA827RwCgjQPtFlAtZ+LzGuIJ2RZhtVqhdPh0Y72AAgIM9gBm80a85iV1fcdzqMEKcsKeVXFA+Ewn4stVpQl5gtpW9V34glYLZc4PFigLApYBMkmC4AJEmNAX3dZlqjrGkfHx1I0ZOzhrENZ5BhHj8WixuHRXADLMeDmyZHMI4aFVlWV0N+iKHB4cIRZJYEn20ZSc1l5qK5n0kMvl8MMSMccYgLGCu4wn8/FnILYnPP5QuL5YWAyh8Vikcws7YXhfMggnM1QldK8M7NSiaGoZwAC6rpC17VgEHLfe/Q+dhgeRmnyWkiTzryQfP+LiwvRvKpKir0Z4PbtO+KtqUqUZYUv3nsFbT/g9GKJl774Ck4fPcLzL7wXdT3H3bv3cffuXQzDgPv372G7bQFIQ5EQpKincw7zeY512ezknOSZrI98xsaqHuPgkbk8mZ+06ZumEZoLUlREmGeNZrtNdKiD3CjRdRORLMuwmC9ihGJINHN+fi5maMwMpPmr3Y3soMRcg+12m87X08YVYQITMfFA6/LJdB3yoOucaTIOMgMuClVWblAfE4PGfNdFCADr9RrwwNnZGc4jILNerbBtG2RZgdlsjuOTE/R97EJ8dIyqrGEzi7oqYRCwWa8lGaVpsJiVCN5h2za4OD+Ds8IkjBWToetaWAPceeYO+q6P7QYlF70qq6j6VShKSa4pK8mdd9bh+Pg42vJWFUixqCrRBkIIKKoZZvMZrHPo+qgl2Qwuz1EyIWaQ1OqqrmIOfoZZPVOmlkGeSzbcECRIhl4aEi5RaeccyrJMcQQSkyDhx3mWwY/SAq0sZ8izEnnfxjbtQD8OGEZ2J5a38X5E1wugmMdD00YtxRgDP/SYLxaSHh1r9MM43Di5DZcV2DYdujHAw+Lo+BhjbPEGAFU9Q4DEcDiXxWjFEcY6YSiRdjjKskCW5RILASauSYCQaTpkWY5hHKRSUl7AZSukCkOx56HLc7hhQBUlNA8sE4KovnOQzoVJhUTLGhzn+utKQ4LnLFJcwPn5+Q4u9rRxJZiAMRNHZDxAnucpsoo4gD7cT6q0woQjoqPWCorLNMssy3B0eLwTQmmtxbbZolk3OH30CN22wTgMeHR6Kiq1y1DVMzzTdnBZjsOjQxwcHqGqa0g6qUHwI1arCzy4dxdlkcPAo91ucHr6CI8ePkBRFFitxHXVdj2aVjL43vfiizg+OkJVR3BtGKQtFwKsgwSfLOa4efMGttst2m2D9zz/HhgYNM0GXdtKgJMP6AcJGe77EXleYLE4RJbn2Gwb8SrEVGQPYZZlnUcfuajCeZ5jPp8nEJWh2S7PYFQwFoy0ZIcB+qFH13coTTnFtTOpBeJdybMcfZBiLEU5l/pMG5sOkwkGwQ8xM88gzx3atpHGLV2PG8fHODw6wtnZGYwxqGvp8OPyHLPFAh4efTfi5q1byIsCucsxPzhA23Y4WBxKpKc1WBwdIs9ybJst+q5PtAQjmaMuBNjMxXTrCTjOyxJ5UeKoOhazz3sURY48K3D/0SnKssYwjsji+i0ODrFer9H2vQQoZRm6YZBy5QZYLpdJa9psNjsagA6b77oOm40kDdWxhwNBQmoBXdelM0KG4JxDXdeSgHVxgdu3bydG/bRxRZjAlByhPQCz2Uzlu/skCVIykJ+SeYgP0CVFtYs4Q9u2OD4+xnhriLUBZLx+9CUcZAtRb3uD0pcYBgd3z2F5vsbFxX30w4g/GT8PC4dFd4jXu9dxo78Ja4DnzbOoTIX79h7eyF7HyfFNnBYPcH5+jvP+Am8cfgnWGiy7JZpO7PSxkJbfmw9v0J43GLMefdGL+mZETXWZweHREXwGPLJnyIoM/XbEy+GL0oE3VkIqM4md77oRHtL00sDgfv1Iqt7eiu5Fz6jIPNVHyDJpm53HhhdCQDNhjNsN1psNLAyquoY7ypJUCiEk91bXdejaDk3fAAaoZzWyPEdZSICLgY35CZlUJW5brLBGgDRzQZAYCAFgPao8R7Po0HbCKB/WD0QdrtbwwaOuagzDCGtfha+kwlEIAdlzGZyR1mvei1fmtf51HB4ewmYWfhiFuTKpKAAhRZxKlmBeFDjLz7Cu1zv06b0HHMvLhZjdN6AsKhweHqIfBlxcXCThVc/nyPoewzhiG0umL6LpRk12GIZ0uHXIPDUCGw8zswgp/Opa+jmu12tsNhtYa3F0dJQiMZumQVEUKSeBWMOfV9jwV2zwIDP4x3ufXhCYcrbJ9Xi4gUkT0OAgPQrOkchC4r7rzUqq9MTx0x/5j1+Zl7gF4IPq9+ffxnc++pV59PX48xujFzu7KiqpWwipNO3hY4clETA0RZu2hQcwmy9EMsf4htV6DRsCinzqsUhMZz/kXRiCT3Sc53liCG3b7iQSUXuYzWaPaQo6HubKawLAVB+Ah5ooKDDFBfS9SMsqBvzoMmRkAnVdJ0aQZZm47aJ7ZRxHPCgewIRYGujp2ZXX43rAeotVsQTmgPMZ+m5AZnNYlyO30hWqi3UsEoIPAAEocqn6LFiJx3bTwfgRZVHshAJTwDFQi6n0Biaao1N6Pc1dptiT5okt0I1Oya/zDL6soiJ/EYMTZ4ijlvJA7ITj2GABsXmF5p5TrXW6RGwEslgpiJz625pvw+rlJX7qxZ/Ayu2qfbHWbayqq35hDUSZbfovtbv2Pv3MTDsyMI2mhyDXGCPFKCUF2SRmpFuk8T5TUdPdkb63/6fE/cP+1U+4y/Tejy2CGjtrou4YHnvO7rOmW4W0hmZncfcfgOk6dVmIn8QA6p0L0rMkV2nn92nfAp64BiGk9TI7z5d6kt9y91vxt17/LtzxzwmNjSNyF70F1mKIEpkNaBGAqiwRYklxayQpOoyjpGIHoWcKsaGXakzW2NSKjl6Rvh/g2y5hF0yDp7ZLbYLegCF6GLIsk/JxMdx4HEfU0VX4tHFlmMB8vsBrr70G56YCoicni3TwGZhS17OUFJRlWQqVLMsS6/Ua6/UGwzBisViAiXes/rNtGiAYfMfZ38Q3/f4349XwCiykHJagtgXGYYhuISSzwwdg6Hp0MYAGUVNpmy2a9gIvff4lXFxcSG5D26LrO6xWK3g/4tbJCRaLA1wsl3jw4BGGfsTJyS38pQ98ADdObqDMC8zmi6j2SUnyLM+xXq9gnUUdQU1dVMJlDk7lxyMEOJfDQBBuZy36UZp9IqL8mXMYYxNQKZU3xay7zMGPU8Rg3/eAiXXsGL5qHep5Lcj36FHNaknS6XqMQcDAzOUo8hw2s8ntNow92rbD0A8YhxFZIfgDoi0/+hGIniFASn+N44AyL6UMfNeibTuJEShLrDcbrNZL1LHXIaz0VyzKAptNI+q2HzCv5+iHHm3ToB8GlHmBqq6xbbdSIGX0qRafMZgO29BhuVniyBzjzvAssiaDrZ0kirkc3kDCo4MkT0kgkbj1iryAR6xADekmvVmvJJQ6BGTWwY8eXdtLRemYaOacwxA7LbVdiy7S9mwuwQnWRY9N7Px0WBykgCF6ZdquR5ZnWG82AIBBeVistTHU6cnjSjABQAp6lDFoA8BO4USqOoBEVtEkIIrKyEEi3LSVxIZqdvISxnGEg8Ntewc3hptomiY9Y/Qei/kCRShxfn6GYRgn11cM2xyGAavVCk2zRT+0eOONV7H99c/g7qv30HedhNN6qb9nAPiDgOVsg9Vyje22ERD0PUDt57j9wjOoqhont07EhDEGRVliMV+gHRoYb7AoD9CGBhgQbUuJOS/LCn4zRlUxw9hJ1WPbxdoKUUMZ4wFjDLp2taYcjDGbXFaNSwAVQdY8iyWzG5PUzHqs0xozLLUoipQAI2BgEaMm+0i0I0yP5PodhhF9LxIrRJ83Q2Eh8V5JQwQC6r5G1/dYtyvMswVKV+Ls7Cz5zk9PTzGbzQAA81Hs7bbrsImluSpfSX3DWEDGWKA04iLNRnH1saDM4cEhsiJDGzpYm8GYPnoTxAy1xkhsw9glMK/v+6TF9rHCU9d1CEGiYJmdSQbMKE7G+OskuL7rMDqb8mJ0eDy1Xpq9ZVmiH5apMQ/jUI6OjtJ5+nMpKvKVHFTr67pOfmh6AjQ2wMPNDCyqRFyguq5R18I9m6ZJBEvC0slJEmBRgM0xi6KMBRqRtAJjJlckN4jBOcYYVKFAf3KCD37wQ7h16xZWyxXWqzWCQYw4HGNDCYcbxz2yrEA9m+HGjRt47rn34ObJCax1mM3m0cYTf7N1Lub9i8aaxbwG04/I8xJ1PUdVVdhs1qjrmcx9LQxGF6HIVM4EzZJkc5qpySWZHN+VgVu8D4NTuBcakNI4TnLVxog3ento1+qMOHl+zP/wHgzm1j5tRoPy9wAkGtFp5BoMpsbUtq00RK1rBEzMxLkMwYpULctyx/vU9+KmnM8WqOtZXJOpDiBD0hnum7lMuiRhMl3pNRljV9c8FnHJohrP9yfD42f0ukx7Mh100h8wdRzWICJNBEbbrtfrFIxGBnLlg4V0fgCA5BJh8BALL7L8Mmu07RMuv0+JJ6HCstDCkaeyY4AcDGoOi8VC5Yg3OD4+Th4Jay3Oz89TJZeDg4NoJgw4Oj7A137tB9D3EqMuc5eCpozZFiYmcQ51NYN1Nvp9RTIdHBygLCtst5sY2zBgHENkgt2O6j6bzVOCzzCMyLICUq03g4HdkRrUfoAJd+GB4XXUjhhURSIjo+z7Hl1sRsJSVUUEt5iUQg0uFcGMz9MSSzMeEjbn4hWB6mxGYPIM7TOl5XKZaIaawGKxSGYhXWUSfuzS4dXSU8+Ha1PXNWazWaIZfkczRoagz+dzBD8V7rDW4vDwEMDkqtPBbfsHXUe98m+ck4R7TxG0XBvGb0jq9lRanBWLSHPMutxsNimi8Gnj7RQVeS+k3PizEPDzJ0II/84YcxPAfwbw1QBeBvD3Qgin8Ts/BOD7IIVF/mkI4b++2TNIqHSb9H0vveU2GxwfH+OZZ54Bq6YwL4BJQsaYWB9OuKLOzNqXWLSP8jxPpsbx8XEiCjKBBw8e7NyfjIbSRaKyJKil79sUSlrXM5yc3EZZFhGbkFrykrWXoet7KSemosVEOvrY7DM2x+g9yrLC4eGByiobd3rTM4wWQDKF+m5IB0yDkTp8mgeGUlC7XjmvoijQdR0Wi0VS5VnoldJwuVwiz/NkS/P7fVw3ItUc+5V1SczpYKlquYydJ9O/uLhItfPW63UicACJIbHYprVSvYiHrVNqudZYQghJuGhJSYZATYaHmxooS3oDgB99KulFgdR1HW7cuIF79+7tzJGRfaRTarl936dwbUp3a63knAApKWg2m2E2myVtjCHBrLI9Xxw85i1r2xYPHjzAwcHBl51FOAD45yGE3zPGHAD4XWPMrwD4XgC/GkL4MWPMJwB8AsAPGmM+BKk69HUA3gPgvxtjPhBCeNMOCCSMKUFlkthcOAZWMHCI0oiSaBvjs0kY5I6a4+twZB38MkUb5kmN4rVd1+Hw8HCyoZNZUsFYg77rUpNK2cwAaxycDbA2i8juAOscypI28yh177IC4zjAeylHlcdchSyb6iboZpSUAhpDMcZI6fJu2PFK6P+BidkSY9HhqzzsZIjAZH7NIvg6DlM5cDZ50RImyzJUe9JeP5sHfvKFy+HXoOf+PcloqPk1TZOq6VLz40HUYeOCm0g25Gw228m5IAPie/JgCePySWvkehVFkWobku6cc5LfYl1axxAClsvlTmg1cRWaAbT/uSbcV2Zlcm5ZLqXuaTKQCeu586AbYxIuQ4bHfZ7NZjtJdU8ab6ey0OuQKsIIISyNMZ+BhMJ8DFJ2DAB+GsD/BPCD8fOfC1J09CVjzOcAfDOA33iz51AqcTM1Z+XBJuHQhtJhwvxcc275H+leGnwhUQCT1GyaBlk23YN/s9YmFTGpvPHAWOMQggGMU0QeYlMOSUMNmcTqS6x/tM0j6FOWFVgjP8/ySGAGNnon0nOiek8mSFWS9zN2txklgJ110LgKf98HnHg9CT/9LcuiB2JSmxnoksKLlT+b89lP1CLIpQ8Bu0tR+6DEpo1L5i+FSTZJ2yvLckejAya7nIEzqSZi1P5oyvA7VNV5SE3cHz0//l2r6nxHRHe1Vte32y0ePXqUaFavwb4JwPtqk4H7a41UdCaWwv3j+msQ3TlpL0cvEoUgTVdtNj/x7L3ZwdwfRpqQfATAbwG4ExkEQgivG2OeiZc9D+A31ddexVvEz/EFGeKr7RxKDgAJieaLa2mjASW90DzomuizLEvSgb+TwGlPkQglP37K0iKh8mCKKijhq9ZksRQ3ELKQDmuW5UA59TWcpMIY3zOLGyuZisZAgCHj4EdKijHGS2SwVurcDcMg/QGCqKZawyHBcg21KURVFJgkjV5PekI4fwHMJoZIe5ip3bwntYoszyN6PqQ94Dy06QcgAWacH6+hQKDdTwac5zlWq9XO+3H/KQho2tFtq5mj9pJw/6uqwnq9Tl4IaiMEE5kodXR0lL7vnBSB1eYAmfRyuUyaiE5i22eK1MaoBXN+cmgnM5QdsagR6aAg4jiz+WIHFCYDD0FCvL8iwKAxZgGpH/gDIYQLrWbuX/qEzx5zUpqdvgPPPlZaiYvNyCpKKT5Xq3abzSZtgn55/TOlPTkw70Oi5kEBphBlbUfStNBgl9zPoqpqjOOwY2JwY6nGGsNyUDFjzrjEPIZhFCYSU5VF9Wuk4hAG9N04qXg2Q5blsKaHH710SoKN399Vw/U7anxDA1M8ZFwrSleNLYyqSMu+SqoBPIa1FvFgpc2PDFjjFMlLYFW3KCfpyvTsaJWdjJf2bSL+6BJ0ziUbmzkkbdcJOh/nRynK6/l+U7TdFGmnsQ7tASEDqaoKYQwpiUcfQNIpDzY1Fx5mDVRba9MzyTCMMej7DgFhx/zQuFDXdQlA18AntR2aGGT2b3Je3x4TMMbkEAbwMyGEX4wf3zXGPBe1gOcA3IufvwrgverrLwD40v49w17fAWACuLh4lMpaldFEzhcnYRG4Infl30no3Bwyj32klYRZVVXyChCEoirLeWr7WerzS7GRvh8wDh4uNvtkcBPvRb+xlnhsL8X3FKYkPnQ299AakSY4MhxgapEd92xHGyKRaUZBicZ76jp0JKKiKAClBtOGJaMgs+O9td1PZsvvaC8Cn0kVlglN+p30XLkPq9UqrRW9FQCS1KWqzwPhsikGQmslpB/vPdbrddzPqYgnNURd0VevOSC4zjhMLmptdnLtq6rC+fl5Orw0Q7uuS6Yvr+NaZFmGACnvpk0t7gc1Du51URRJkyEGwDWjJvNmNQafbijEYYSF/CSAz4QQflz96ZcBfDz+/HEAv6Q+/x5jTGmMeRHSe+C33+o58Vlpg6iGTsEiUwSftst0njVVerp2SIjaluXgRtHEaNs2FTIhI+B3tQTT9nOeF+KisxnyrJBOPbmU7fJjiFF4UvevLKSyj84Y47tRKjvnEgClD+i+ak+i0X5urhEZGqUk30Ffp5kS70mmSRWc6xPClPRCTYiDklczDK4XnwdgR3vg82lqeO+TqUENAZhQf5pfJGy6XHk4NHMkk2cWnTCVyfNDHEHTDw8tTS7eU6+RZkw8fH3fSxt2ZQZw/Yn2k4loTIF1Lbg+fD+9PiFMvR2IP+1jOmQe2lQi7bOUGE0QnoenjbejCXwLgL8P4FPGmE/Gz/4lgB8D8PPGmO8D8EUA3x0P6h8aY34ewP+FeBa+/608A7TDuJF8aS4e1S1umg4Sol2q7Xr+TYhQFo8HQwOPJCCCKSGEJK20RkJmowfvHQIgbbyztJHb7TbO0QMYkVdSyLPvu3TY9abyENJWF/fhDCz/raWPZhiagPftWBLKvtYQ9wgAdhiu1gj0ILhGLUtHvOn7UtJZa6WJqiJozkG7sPh8RtFpBq/NQe6XDuqh1kdff99LGS6Gkh8cHMAYViQKsHaqXMUDg73nipTOUFVl0qg4B80QtdY59mN6DzJaznW73e5kF+rAIGp/ZIYhhIRzcD/zPIexSGYR94z7xBgAMhxqGX3fp0rG3L/pLDx5vB3vwP/G0/Pt/upTvvOjAH70re49XY+dQ62lHaU0mYJONdZESW6n+wzIog/JZqL6SZWKi031bL9brObulJD8Gz0XeS6qbFFK33uqkcwxAELsVTCibRsAkiMg5oNXQT8uStNcua66HdVaCMolv76YEVP9PY2XjOOY/Mj7YKE+iCRq/RkJX0vqYRhSchclP9eBrjqCtjautz7A2g1G88Q5J7iHCu7SUlozBn0QKN1I+MaY5Lun65D398Fju50aeuh76GhT0RKUd0NpawSI+V1AzKUwTvcCkJLXVqtV0pK0Bqndy1oAAVMnYs4xBGlJR/om49IANSW+MOMJzKaGy/XkNU8bVyJikL5ZYJJO+n8tpUj82+02oaPcdG6WZg77ajQXlBgBGQDtfqpnVOXI4bU/nfEKXSe1CEPwyHIH9p43NkjXooSHTtLQGGncAQBdNyAED+dMDF8epaxYCmGWAhY+Vp4dR5/wg8krMUXR6ViCfc1FS2VKOq0S85Bo7UH2ZlLR9RpSAutAI0rifexC76E244wxyJj5FtVkjfPoA6lNJ52Gy8+0p4BCwznpUkQ60XPTbj09Py2EeJgSM1Raqp4f70MhxmdwXYEpFFur57yHjo2g6eKcRdu1icnpM6C9Jpxjbiacg1G1rNat3/tJ44owgcfVUGBSU5l6qVVL7dbippEZaNyAYBEj4ChRgamXO6MDCfLtc2oeDhI8S5eJB6FNQKOo+xKfzg2SuQmjk38AEJDnUVtAkGy5oYf3I8pyDmunWnRZliUJ2/d9KjtNac0DTeagkWwNGvJ9+DdtZpBJalNFexCckv68L++ja+BzXZhjr8FU7Z3gfnnvMaogGa26ailNWqCZQ7Wb3yGzBkQbYUEaafQ5qdH63tQktJsuhN3mt3y2XkvO3zmHzE4xKZoRUnBoJqaZHzEAvU/z+XynaE4Ik+cKmIQihRQxIYK04ygdo/peGpIeHh6mZ+1rf/vjSjABEozmwOR4+hrtKtQBFjxwlFj6pXnY8lx6v2l1log5tQlRn3bnom08hjNrKTQMHYwRd5io9NLDHuDhp/QdwJr9PnhkLkOey+HPnEXm2HZc+iJSulOS8BBoDYeSRa+P9rdrLUYzRwApbFmDscRbOBKjtbveCX6uMYiiKFLhFjIBHlTtRdDvEEJA1/eSQKT85ClhSDGjfZuYDIvoPV1uJHwKD37GPQ8h7CSWaawEmLwH2vev1wNQXpWwG55ObZGAJmmEezVpcFOugX4ParLbrbQ7Y+4A91foeYo+1KZc0zSoo7lGobBYLHB6eprW62njyjAB7evUSSMkXk2sIUj9QR3frVU2YLJrRb2akmR4He+TQJgI6BVFmWxyMgIeJG3/0iyZbDbpJmxtEdNjezD6TBiamA0uY6zACGMNnJXKwcZKYU7vB/T9pOJqxsh1oNSd5jmp7xpM5dpqYIvz1b5nriuAZEfuq8nAFMiiGSSlG00BaiMalyFT1er7jlfDWuTKJNHqq9ZMuE9aHece8H68PjEwP5lAdCuGEJJJR1rZZzRaqOybAgmcbKfwXC2gNA1qt7OmZ8ZR0I9PRsp1YoGZfTB3nzZZUqwfxhR1CSCZDKQHvsuTxpVgAgB2iIRcXaOtwIQ4j+PUd02rxU/yMIzjpI7q+GlKHNqiZAgC3OXp8FBjoLmhpdtsJp13pOjDiHE0MDHazwcbJahUPhpHaSgq5y0krcAWUuxzHHuEMMKYAiEM8GEqoCqhwTY1EAkByLJJZQQkXyGBYZHxUBXUdql2UT3J/tfMhsFavJ++t2YORMtpLlgrxUWBXQ8E15ISWN1gR0vRTIbCAdiNEdEMiAKDe8P3McakFnFkIk3TpCQqfahFK0KK4uTB1gCnfg9gEjTUPEhTmiFrJsx7asFG2uaeJFPHT7ENfBbfWzNBvnNRTnEo3vukuTJI6c3GlWECWmXd5/RVVe2ockRGGdVHNZQBLLRF6TXQajHVRK2m6bx1rfaO45gCSVj5mH8TJiTSm9Jcq4DSCszABGl3bq3B6AOGoU/qrjHENDzGkU1XZ7DWoO89AAEMjZHU5KKoYAzV6oAQeoRAKTUxKwCPaUcsXd33Pc7OzpBlGW7cuJEOpHZXkTlQtbVmcl2RyMgQtfmQDlhVwauDq++tXWmyBlP+AYdmJmTwNNt4YKkWU7JrDEMfnLwo02Hk4admorUirWVovEBjFdScOF+aG/v30dGOZLw8sBqT4ftrDIR0Pgy9VF3CLjirIx+1UCqrKY2eWE0IAUdHR48x7f1xRZjApO5pNZeAHaW0RqMZcUVOTSZCbqvBI0oKqrokLvpxAaikIJeeS6agw2gJDMpmiEovh8UmKZflWcoukzJdIdbJ8wmo4n2FeLQbbYS1GTIX8QNPEG2EcyXGkSZQHs0Hi3EcokuqS0gzCY7zJrFdXFzgi1/8YkKhb968GQuUbB5jFjpgpu87qafftju2qpg+PmEvIUxqPg+NBsu0m5fuR+1n14eOg7ET+1JRH7rNZpPuz8MxmWluhw74OyWxXiNiQ2ToxA80yMdryXx00NW+ZsV5FkWRYlWoDaQqTbE4LoVaCuN2Zue+vKfWdBPtYsKyGFdzdHSUnqsTjvbHlWAC8lI+AWiyCT2aZovDwyPhitEXLpveKDdJrFkHAAjIMokNkJLNDt7vLqRGlBkBx4OjkVwpixWba0bkvqpE+lPdCiESfwD6QUqKZfF9Bj8CiJ2CrENVVgCCtOIOHuMwoh/GJMmFsI00PzUW1iLiClKmS1TfHs7Z5DUYVSt15yzGcZKc2u7fNw1o8xKdb5pGWriDFZEmQEsOn4CeLrfw2wGjN+iHDtaIO9QZh4AAl1nkxdQuXktmbbNrV6S3NkUM6oNFbGjfRUwE3BiDvCjgooQexhGj93AhII+HclCMzI+j9FY0FjZzCMbAOgkQMkb6C47ex87NRQrvJg5EGpI9zRLT997DhRh/wIKxNlY9GqUArfRiyNC0DZyRhichhKTyZ0MGHzyGcYiNZ6xomM7trCOA1MCUtEstoaxi3clM+ju4LEOeZYAPyLMcKK94nABXTzrbNkm6C1f1Cs2doSjydHD0QgFIyH7bdon4KPmpDlJVYmaVxh8mr4DYhowd4GAYqkQE9pFokerNBQ+M8DsEHZT7UySCVA7yY0DwElU4emEKZUUJJrUIJlU+T9qPtSXynLb5GD0fGawtE/FqqQlMKnfbtqjrGrdv3xZtwjn0w4BxLVWX+bxkFhiDEEHNLLfI8wywMa6j7yKxiWdjGDrJoDQTrjB5aPIdE2Df/WYwqbyUdBqo09GgbL3mKREhLdQ0iWubPXgvfQ8NMA4DbGL2kHrJ0WXrvURGOkiTVud2czD0+pBWuthYZAgDTJjcgHnUlFrfwkBqAwSEWCMg0oWJTMNEzcawAUqOoiyEwSqAletFib7P7PPY59JZhyw2nk0uZOdgrn614SlYghmBdV0n84DqGaP9pJLwdEg0Uk08IITdts66LBmjufZ90xqP0CrhVMxjgDFTv0TDw6+8CNrdVlV1QqS7ro2MJwcCJaTgBSxRVeSl/B1TzINGruWfh/fiyRDGNlXEYcYZk6GeBPQRC/BEo73U96PJtW9OAUCIjTiZ0GKsFQwDBi6TUtlcu65rkeei0WgwjHPkuur0Y2OkXri2kyfJ+3i0m93TZngN58wu1NKybJeZ7Kebc8h9DLzZZeI8ZLyGuJW8S6/2ZVpr0hlxGWoj++Xv0rpkU16CPvBexTOQ3vgc3ZLPOSf1LOOz6PnQ2Y1aKOyPK8EEOIgL0O7WdeC4ABoRpZTXLh2NDANIPlsuMAftzH2XoQaB+FwiyZSw3GwN5NA+5fz3CcO5yV8vmzU+Ftopmoi00dLuOIJfJHoWk6SE7fsuaTG8hvPiWjrndgpwzOZz5NlUyZZroLEEvp+1VqRZAObzRXqWHGABLUMw8B4IfoTBED+f9oFrvZ97771P4da8fp8hczjnpIOAAgH36Yc2MW1rq2I+GBjEg6yRfmqWfpwa1mqthIO/6zlq9xs1Tn14+Xddo0HjEdr3r+87xLUibThlCrFvJLGcdb/eCXLa99jsM1I9rgwT4EJR3aE00qASg4d07LqWKDzA/JkLwMOnMwV10AoXiQvuvU/Rb5wLJS+/pw858Lh7jRKP9xfim7SGXTNmInhuHIOSHgfopqxHrsVkOk1hrsBebwHnFPi5W2qNc9AAnUbCAwKcn4qTkLGSuWkJiSTBp7p9ZAAanNNSTXuGeAio/u8HOmlTgu+o901rZXpPU9yAm1KTNY1wPbp+ykrVz9Lz554zsnNfq9gPHebzSef6YHMdOA+N2TwpBkZLdQ1c0rWtvQjMh9G08KRxJZgA7WZNmNrlo5FZvoxOztAMQG+KlnIEm9q2xXw+39kkTZAkXO0uZDTX/kISONISSW8S5zQR9S5gp6P7eD2lE3PlSag66EN7Q7TJsE/w+2otNS1tj9MNxmv0ukyHYDqoGk3nPunQYGnW2ad5aGbJeer4BO4d107HNeyvd5LA6p5UiSdwFcl1xwxFrWprd57eN81ktKagP+P1ky1uEcJuRCMxJz24XjrtWmubrI2pmSaUsNg3e6gJ07QNQWpaUsvZ11C1ifGkcSWYABNtNCckcWmuvK+GaQAImAhXMwstRbmResO0xOCB3ycIXqtt3Emtn4iCGoBmWBpfMGY3hl37jLUfl+9OgqXbSxOYtt21n10HnHBt6NsPQaIcMzfVuhcgtd0BBTUjKIpC/NVKpeZ6aNfaTu0Fz+pJ02HmHgBTKLUmVn3t034GxBSwymzjvlKdJjYCyKEbh6nMOJ+p3b1awmozQGt7eg5aO6AWxO/wGq4tPRw6JFhroPyezr8AJHDIYNfDojUQY0xyi6a9NxOOxJoL1Li0h+VJ44owgQkg4sQ1IKfVPK2eaeLT6pjGEbSvOh0CFQasQ1qBiaGQeXDxNbijsxZ1ggrt7n2XI/8Jmj8BRZqpaSal1UEWOGXmJDEKY0xqtkLmsB8boDUHrotmWNr21xiL1oxI9PRZU3PQhV814xmGAS5zwDAlN2kMhwkwKWjHe3izC+5qyaoZO9/pSZgBn0UzinsAJQ25Dnr/uG7WWuTYDfklnenDtGvOOXg/ZRJyjbkmXHs+W78X56iFHvcteVOMlNPXoe28hzYbsyxDs52a9FCDqev6MRPmSeOKMIEJeeWCcvF1qCuHJipKSTINDi0ZyR0p+a21O1Fc3Fh92BlyuS+h6bEQAppCVrV2oMEiHnCZx5i0G/5NSxl9Dx7OqY7ALjhKkAvAjkeAawdMOIU2AbR9rW1urZ5qjSBpCHJHjKNH1w0ALJyVeAoEaddtYDAOHgYWzu2aJ2TsnFcCdJVmptdDS+Edza7vUUQGoqvw7mMZfE+aURpb0e+sn+e936no8yRmxL0iU3iSmq0FF4CdA6vfkfulMRIKNmsltkGD3dqs0FiG1ih1fgaZ0TvGHND2pd6YyeW3m1GmQT3NOPTG8jARFNSeBe2i0c8jcWoC47VE/yfATjaD5bd1vfd9ri++/l2gDMCOikwV0nufSoNpW1dLZ6rlnCexA41r6DXTzCaPhLEfKqylqyZ+8LuwEgsRy3AVRZnUXAlvNskM2NcouA/7RKvV631NQM+L+9n3Peq4Nk3TJGbO0mF6fcuyRFYU6KJLmGu+nySVDmZsH2cGk4TMDiNU9CX/dteW60t64xruYwDcmxRirrxKnNM4jqkhi86dMcbsvLdm9JrZcb10wdenjSvBBLyfcud5WMuyTC2UAPrdqx0vgSZ+Lug+E9D2sD4o+6GpXEwd7w3scmsSsGySR9f1idg4B85daxVyf4kEBKbKvNxc3a2HYA/zxb33KSZfS+e6rhFCSMVYeUCeJM01M8iyDEWsyT+ohCp+Tx8WSldjDHyYSrNrjYiqqQbTtIq7nzREU4Z7E4L06ds/TNyTfdV/UGajfmcdR68B4bIo0IZdN94+M0pgtDGAedwc2gcep3k+2f+uYyEoMLiWpAfSqzZR9L61qvCtXlfNvAkci1AoRRPbA1r3Iw6fNMyb2Qp/UcMYcx/AGsCDy57LlzFu4Z09f+Cd/w7v9PkDf77v8FUhhNv7H14JJgAAxpjfCSF802XP48863unzB9757/BOnz9wOe/wliXHr8f1uB7/f49rJnA9rse7fFwlJvATlz2BL3O80+cPvPPf4Z0+f+AS3uHKYALX43pcj8sZV0kTuB7X43pcwrh0JmCM+RvGmD8yxnzOGPOJy57P2x3GmJeNMZ8yxnzSGPM78bObxphfMcb8cfz/xmXPk8MY81PGmHvGmE+rz546X2PMD8U9+SNjzF+/nFnvjqe8w48YY16L+/BJY8x3qr9dqXcwxrzXGPM/jDGfMcb8oTHmn8XPL3cfdFDEX/Q/AA7AnwB4H4ACwO8D+NBlzulPMfeXAdza++zfAPhE/PkTAP71Zc9Tze3bAXwUwKffar4APhT3ogTwYtwjd0Xf4UcA/IsnXHvl3gHAcwA+Gn8+APDZOM9L3YfL1gS+GcDnQgifDyF0AH4OwMcueU5fzvgYgJ+OP/80gO+6vKnsjhDC/wLwaO/jp833YwB+LoTQhhBeAvA5yF5d6njKOzxtXLl3CCG8HkL4vfjzEsBnADyPS96Hy2YCzwN4Rf3+avzsnTACgP9mjPldY8w/ip/dCSG8DsiGA3jm0mb39sbT5vtO25d/Yoz5g2guUJW+0u9gjPlqAB8B8Fu45H24bCbwpHIn7xR3xbeEED4K4DsAfL8x5tsve0JfwfFO2pd/D+BrAHwjgNcB/Nv4+ZV9B2PMAsAvAPiBEMLFm136hM++4u9w2UzgVQDvVb+/AOBLlzSXP9UIIXwp/n8PwH+BqGl3jTHPAUD8/97lzfBtjafN9x2zLyGEuyGEMUgDyP+ASV2+ku9gjMkhDOBnQgi/GD++1H24bCbwfwC83xjzojGmAPA9AH75kuf0lsMYMzfGHPBnAH8NwKchc/94vOzjAH7pcmb4tsfT5vvLAL7HGFMaY14E8H4Av30J83vLwcMTx9+G7ANwBd/BSMrhTwL4TAjhx9WfLncfrgDi+50QlPRPAPzwZc/nbc75fRDU9vcB/CHnDeAEwK8C+OP4/83Lnqua889C1OUeImG+783mC+CH4578EYDvuOz5v8k7/CcAnwLwB/HQPHdV3wHAt0LU+T8A8Mn47zsvex+uIwavx/V4l4/LNgeux/W4Hpc8rpnA9bge7/JxzQSux/V4l49rJnA9rse7fFwzgetxPd7l45oJXI/r8S4f10zgelyPd/m4ZgLX43q8y8f/AxSCq31FDLDkAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "from chitra.visualization import draw_annotations\n",
- "\n",
- "labels = np.array([label])\n",
- "bbox = np.array([[30, 50, 170, 190]])\n",
- "label_to_name = lambda x: 'Cat' if x==0 else 'Dog'\n",
- "\n",
- "draw_annotations(image, ({'bboxes': bbox, 'labels':labels,}), label_to_name=label_to_name)\n",
- "plt.imshow(image)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Utils\n",
- "\n",
- "Limit GPU memory or enable dynamic GPU memory growth for Tensorflow"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No GPU:0 found in your system!\n"
- ]
- }
- ],
- "source": [
- "from chitra.utils import limit_gpu, gpu_dynamic_mem_growth\n",
- "\n",
- "# limit the amount of GPU required for your training\n",
- "limit_gpu(gpu_id=0, memory_limit=1024*2)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "No GPU found on the machine!\n"
- ]
- }
- ],
- "source": [
- "gpu_dynamic_mem_growth()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Contributing\n",
- "\n",
- "Contributions of any kind are welcome. Please check the [**Contributing Guidelines**](https://github.com/aniketmaurya/chitra/blob/master/CONTRIBUTING.md) before contributing."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Converted index.ipynb.\n"
- ]
- }
- ],
- "source": [
- "#hide\n",
- "from nbdev.export import notebook2script;notebook2script('index.ipynb')"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/pyproject.toml b/pyproject.toml
new file mode 100644
index 00000000..f8a94350
--- /dev/null
+++ b/pyproject.toml
@@ -0,0 +1,65 @@
+[build-system]
+requires = ["flit_core >=2,<4"]
+build-backend = "flit_core.buildapi"
+
+[tool.flit.metadata]
+module = "chitra"
+author = "Aniket Maurya"
+author-email = "hello@aniketmaurya.com"
+home-page = "https://github.com/aniketmaurya/chitra"
+classifiers = [
+ "Topic :: Software Development :: Libraries :: Python Modules",
+ "Topic :: Software Development :: Libraries",
+ "Topic :: Software Development",
+ "License :: OSI Approved :: Apache Software License",
+ "Intended Audience :: Information Technology",
+ "Operating System :: OS Independent",
+ "Typing :: Typed",
+ "Development Status :: 4 - Beta",
+ "Intended Audience :: Developers",
+ "Programming Language :: Python",
+ "Programming Language :: Python :: 3",
+ "Programming Language :: Python :: 3 :: Only",
+ "Programming Language :: Python :: 3.7",
+ "Programming Language :: Python :: 3.8",
+ "Programming Language :: Python :: 3.9",
+]
+requires = [
+ "matplotlib",
+ "pillow",
+ "imgaug >=0.4.0",
+ "typeguard",
+ "typer",
+]
+description-file = "README.md"
+requires-python = ">=3.7"
+
+[tool.flit.metadata.urls]
+Documentation = "https://chitra.readthedocs.io/en/latest"
+
+[tool.flit.metadata.requires-extra]
+nn = [
+ "scikit-learn",
+ "tensorflow >= 2.3",
+ "tensorflow-addons >=0.13.0",
+ "tf-keras-vis >=0.5.3",
+ "pytorch-lightning",
+ "timm",
+]
+serve = [
+ "fastapi", "uvicorn", "pydantic", "python-multipart",
+ "gradio >=2.2.2",
+ "tensorflow-serving-api",
+ "chalice", "smart_open[all]",
+]
+test = [
+ "pytest",
+ "pytest-asyncio",
+ "coverage",
+]
+
+[tool.isort]
+profile = "black"
+
+[tool.flit.scripts]
+chitra = "chitra.cli.main:app"
diff --git a/settings.ini b/settings.ini
deleted file mode 100644
index ded0a27c..00000000
--- a/settings.ini
+++ /dev/null
@@ -1,28 +0,0 @@
-[DEFAULT]
-lib_name = chitra
-user = aniketmaurya
-description = "A Deep Learning Computer Vision Utility library"
-keywords = Tensorflow, Computer vision, Deep Learning, visualization, GradCAM, Keras, Data loading
-author = Aniket Maurya
-author_email = hello@aniketmaurya.com
-copyright = Aniket Maurya
-branch = master
-version = 0.0.22
-min_python = 3.7
-audience = Developers
-language = English
-custom_sidebar = True
-license = apache2
-status = 4
-requirements = tensorflow~=2.3 tensorflow-addons tf-keras-vis>=0.5.3 matplotlib pillow imgaug
-nbs_path = nbs
-doc_path = docs
-doc_host = https://chitra.aniketmaurya.com
-doc_baseurl = /
-git_url = https://github.com/aniketmaurya/chitra/tree/master/
-lib_path = chitra
-title = chitra
-host = github
-cell_spacing = 1
-monospace_docstrings = False
-
diff --git a/setup.py b/setup.py
deleted file mode 100644
index 8467d7c9..00000000
--- a/setup.py
+++ /dev/null
@@ -1,46 +0,0 @@
-from pkg_resources import parse_version
-from configparser import ConfigParser
-import setuptools
-assert parse_version(setuptools.__version__)>=parse_version('36.2')
-
-# note: all settings are in settings.ini; edit there, not here
-config = ConfigParser(delimiters=['='])
-config.read('settings.ini')
-cfg = config['DEFAULT']
-
-cfg_keys = 'version description keywords author author_email'.split()
-expected = cfg_keys + "lib_name user branch license status min_python audience language".split()
-for o in expected: assert o in cfg, "missing expected setting: {}".format(o)
-setup_cfg = {o:cfg[o] for o in cfg_keys}
-
-licenses = {
- 'apache2': ('Apache Software License 2.0','OSI Approved :: Apache Software License'),
-}
-statuses = [ '1 - Planning', '2 - Pre-Alpha', '3 - Alpha',
- '4 - Beta', '5 - Production/Stable', '6 - Mature', '7 - Inactive' ]
-py_versions = '2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8'.split()
-
-requirements = cfg.get('requirements','').split()
-lic = licenses[cfg['license']]
-min_python = cfg['min_python']
-
-setuptools.setup(
- name = cfg['lib_name'],
- license = lic[0],
- classifiers = [
- 'Development Status :: ' + statuses[int(cfg['status'])],
- 'Intended Audience :: ' + cfg['audience'].title(),
- 'License :: ' + lic[1],
- 'Natural Language :: ' + cfg['language'].title(),
- ] + ['Programming Language :: Python :: '+o for o in py_versions[py_versions.index(min_python):]],
- url = 'https://github.com/{}/{}'.format(cfg['user'],cfg['lib_name']),
- packages = setuptools.find_packages(),
- include_package_data = True,
- install_requires = requirements,
- python_requires = '>=' + cfg['min_python'],
- long_description = open('README.md').read(),
- long_description_content_type = 'text/markdown',
- zip_safe = False,
- entry_points = { 'console_scripts': cfg.get('console_scripts','').split() },
- **setup_cfg)
-
diff --git a/sonar-project.properties b/sonar-project.properties
new file mode 100644
index 00000000..5a32a098
--- /dev/null
+++ b/sonar-project.properties
@@ -0,0 +1,19 @@
+sonar.projectKey=aniketmaurya_chitra
+sonar.organization=gradsflow
+
+# This is the name and version displayed in the SonarCloud UI.
+#sonar.projectName=chitra
+#sonar.projectVersion=1.0
+
+# Path is relative to the sonar-project.properties file. Replace "\" by "/" on Windows.
+sonar.sources=chitra
+
+# Encoding of the source code. Default is default system encoding
+sonar.sourceEncoding=UTF-8
+
+#---- Language properties ----
+sonar.language=py
+sonar.python.version=3
+sonar.python.coverage.reportPaths=coverage.xml
+sonar.tests=tests
+sonar.exclusions=tests/**
diff --git a/tests/__init__.py b/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/tests/cli/test_builder.py b/tests/cli/test_builder.py
new file mode 100644
index 00000000..ed2f2754
--- /dev/null
+++ b/tests/cli/test_builder.py
@@ -0,0 +1,32 @@
+from unittest.mock import MagicMock, patch
+
+import pytest
+import typer
+from typer.testing import CliRunner
+
+from chitra.cli import builder
+from chitra.cli.builder import file_check
+
+runner = CliRunner()
+
+
+@patch("chitra.cli.builder.subprocess")
+@patch("chitra.cli.builder.file_check")
+def test_app(mock_file_check, mock_subprocess):
+ mock_file_check.return_value = True
+ mock_subprocess.run = MagicMock()
+ mock_subprocess.run.return_value = MagicMock()
+ mock_subprocess.run.return_value.returncode = True
+
+ app = typer.Typer()
+ app.command()(builder.create)
+ result = runner.invoke(app, input="Y\n")
+ assert result.exit_code == 0
+
+
+def test_file_check():
+ with pytest.raises(UserWarning):
+ file_check(["requirements.txt"])
+
+ with pytest.raises(UserWarning):
+ file_check([])
diff --git a/tests/cli/test_main.py b/tests/cli/test_main.py
new file mode 100644
index 00000000..540d77d1
--- /dev/null
+++ b/tests/cli/test_main.py
@@ -0,0 +1,14 @@
+import typer
+from typer.testing import CliRunner
+
+from chitra.cli.main import version
+
+runner = CliRunner()
+
+
+def test_app():
+ app = typer.Typer()
+ app.command()(version)
+ result = runner.invoke(app)
+ assert result.exit_code == 0
+ assert "You're running chitra version" in result.stdout
diff --git a/tests/data_processing/default/test_vision.py b/tests/data_processing/default/test_vision.py
new file mode 100644
index 00000000..25b2b958
--- /dev/null
+++ b/tests/data_processing/default/test_vision.py
@@ -0,0 +1,13 @@
+import numpy as np
+
+from chitra.data_processing.default.vision import default_preprocess
+
+
+def test_default_preprocess():
+ image_arr = np.random.randn(16, 16, 3).astype("uint8")
+
+ result = default_preprocess(
+ data=image_arr, image_shape=(32, 32), rescale=True, expand_dims=True
+ )
+ assert isinstance(result, np.ndarray)
+ assert result.shape == (1, 32, 32, 3)
diff --git a/tests/data_processing/test_processor.py b/tests/data_processing/test_processor.py
new file mode 100644
index 00000000..048b9e70
--- /dev/null
+++ b/tests/data_processing/test_processor.py
@@ -0,0 +1,39 @@
+import pytest
+
+from chitra.data_processing import DataProcessor
+
+
+def dummy_preprocess(x: int):
+ return x + 1
+
+
+def dummy_postprocess(x: int):
+ return x - 1
+
+
+def test_data_processor():
+ x = 5
+ data_processor_empty = DataProcessor()
+ assert not data_processor_empty._preprocess_fn
+ assert not data_processor_empty._postprocess_fn
+
+ with pytest.raises(UserWarning):
+ data_processor_empty.preprocess(x)
+
+ with pytest.raises(UserWarning):
+ data_processor_empty.postprocess(x)
+
+ data_processor = DataProcessor(
+ preprocess_fn=dummy_preprocess, postprocess_fn=dummy_postprocess
+ )
+
+ x = data_processor.preprocess(x)
+ x = data_processor.postprocess(x)
+ assert x == 5
+
+ data_processor_empty.set_preprocess_fn(dummy_preprocess)
+ data_processor_empty.set_postprocess_fn(dummy_postprocess)
+
+ x = data_processor_empty.preprocess(x)
+ x = data_processor_empty.postprocess(x)
+ assert x == 5
diff --git a/tests/image/test_image.py b/tests/image/test_image.py
new file mode 100644
index 00000000..1c88b59e
--- /dev/null
+++ b/tests/image/test_image.py
@@ -0,0 +1,68 @@
+from unittest.mock import MagicMock
+
+import numpy as np
+from PIL import Image
+
+from chitra.image.image import Chitra, _cache_image
+
+url = (
+ "https://raw.githubusercontent.com/aniketmaurya/chitra/master/docs/assets/logo.png"
+)
+image = Chitra(url, cache=True)
+
+
+def test__load_image():
+ url = "https://raw.githubusercontent.com/aniketmaurya/chitra/master/docs/assets/logo.png"
+ image = Chitra(url, cache=True)
+ assert isinstance(image.image, Image.Image)
+
+
+def test_numpy():
+ assert isinstance(image.numpy(), np.ndarray)
+
+
+def test_to_tensor():
+ assert True
+
+
+def test_shape():
+ assert len(image.shape) == 3
+
+
+def test_size():
+ assert len(image.size) == 2
+
+
+def test_imshow():
+ assert True
+
+
+def test_draw_boxes():
+ assert True
+
+
+def test_resize_image_with_bbox():
+ box = [10, 20, 30, 40]
+ label = ["chitra"]
+ dummy = np.random.randn(100, 100, 3).astype("uint8")
+ image = Chitra(dummy, bboxes=box, labels=label)
+ image.resize_image_with_bbox((10, 10))
+ rescaled_bounding_box = image.bboxes[0]
+
+ assert np.isclose(rescaled_bounding_box.x1, 1)
+ assert np.isclose(rescaled_bounding_box.y1, 2)
+ assert np.isclose(rescaled_bounding_box.x2, 3)
+ assert np.isclose(rescaled_bounding_box.y2, 4)
+
+
+def test__cache_image():
+ image = MagicMock()
+ image.save = MagicMock()
+ _cache_image(image, "test_image.jpg")
+ image.save.assert_called_once()
+
+
+def test_image_resize():
+ image = Chitra(url, cache=True)
+ image.resize((224, 224))
+ assert image.shape[:2] == (224, 224)
diff --git a/tests/image/test_tf_image.py b/tests/image/test_tf_image.py
new file mode 100644
index 00000000..4c2408c8
--- /dev/null
+++ b/tests/image/test_tf_image.py
@@ -0,0 +1,25 @@
+import os
+
+import tensorflow as tf
+
+from chitra.image import Chitra
+from chitra.image.tf_image import read_image, resize_image
+
+chitra_banner = (
+ "https://raw.githubusercontent.com/aniketmaurya/"
+ "chitra/master/docs/assets/chitra_banner.png"
+)
+image = Chitra(chitra_banner).image
+
+
+def test_read_image():
+ image_file = "./test_read_image.png"
+ image.save(image_file)
+ tf_image = read_image(image_file)
+ assert 3 <= tf_image.shape[-1] <= 4
+ assert isinstance(tf_image, tf.Tensor)
+ os.remove(image_file)
+
+
+def test_resize_image():
+ assert resize_image(tf.random.normal((32, 32, 3)), (24, 24)).shape == (24, 24, 3)
diff --git a/tests/serve/__init__.py b/tests/serve/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/tests/serve/cloud/__init__.py b/tests/serve/cloud/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/tests/serve/cloud/test_chalice_server.py b/tests/serve/cloud/test_chalice_server.py
new file mode 100644
index 00000000..d27953be
--- /dev/null
+++ b/tests/serve/cloud/test_chalice_server.py
@@ -0,0 +1,69 @@
+import io
+import os
+
+import numpy as np
+import torch
+from chalice import Chalice
+from timm import create_model
+
+from chitra.core import load_imagenet_labels
+from chitra.image import Chitra
+from chitra.serve.cloud import ChaliceServer
+
+LABELS = load_imagenet_labels()
+
+
+MODEL_PATH = "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth"
+
+url = (
+ "https://raw.githubusercontent.com/aniketmaurya/chitra/master/docs/assets/logo.png"
+)
+
+
+def preprocess(content_raw_body) -> torch.Tensor:
+ image = Chitra(content_raw_body)
+ image.resize((256, 256))
+ x = image.numpy().astype(np.float32)
+ x = x / 255.0
+ x = torch.from_numpy(x)
+ x = x.permute(2, 0, 1).unsqueeze(0)
+ return x
+
+
+def postprocess(data: torch.Tensor) -> str:
+ return LABELS[data.argmax(1)]
+
+
+def model_loader(buffer: io.BytesIO) -> torch.nn.Module:
+ model: torch.nn.Module = create_model("efficientnet_b0", pretrained=False).eval()
+ model.load_state_dict(torch.load(buffer))
+ return model
+
+
+def test_cloudserver():
+ server = ChaliceServer(
+ "image-classification",
+ model_path=MODEL_PATH,
+ model_loader=model_loader,
+ )
+ assert isinstance(server.app, Chalice)
+ assert isinstance(server.model, torch.nn.Module)
+
+
+def test_index():
+ assert ChaliceServer.index() == {"hello": "world"}
+
+
+def test_predict():
+ class Dummy:
+ raw_body = url
+
+ server = ChaliceServer(
+ "image-classification",
+ model_path=MODEL_PATH,
+ model_loader=model_loader,
+ preprocess_fn=preprocess,
+ postprocess_fn=postprocess,
+ )
+ server.app.current_request = Dummy
+ assert isinstance(server.predict(), str)
diff --git a/tests/serve/test_api.py b/tests/serve/test_api.py
new file mode 100644
index 00000000..6d7bb4da
--- /dev/null
+++ b/tests/serve/test_api.py
@@ -0,0 +1,47 @@
+import asyncio
+from unittest.mock import MagicMock
+
+import numpy as np
+import pytest
+from fastapi import FastAPI
+
+from chitra.serve import API
+from chitra.serve import constants as const
+from chitra.serve import create_api
+
+
+def dummy_model(x):
+ return np.asarray([1, 2])
+
+
+def test_create_app():
+ api_types = API.get_available_api_types()
+
+ for api_type in api_types:
+ api = create_api(dummy_model, api_type)
+ assert isinstance(api.app, FastAPI)
+
+
+def test_api():
+ api_types = API.get_available_api_types()
+ for api_type in api_types:
+ api = API(api_type, dummy_model)
+ assert isinstance(api.app, FastAPI)
+
+
+@pytest.mark.asyncio
+async def test_predict_image():
+ def async_return(result):
+ f = asyncio.Future()
+ f.set_result(result)
+ return f
+
+ app = API(api_type=const.IMAGE_CLF, model=dummy_model)
+ app.data_processor = MagicMock()
+ app.data_processor.preprocess_fn = MagicMock()
+ app.data_processor.postprocess_fn = lambda x: x
+ file = MagicMock()
+ file.read = MagicMock(return_value=async_return("Sample string"))
+ output = await app.predict_image(file)
+ assert isinstance(output, np.ndarray)
+ assert len(output) == 2
diff --git a/tests/serve/test_app.py b/tests/serve/test_app.py
new file mode 100644
index 00000000..75d6f5aa
--- /dev/null
+++ b/tests/serve/test_app.py
@@ -0,0 +1,87 @@
+import unittest.mock
+from unittest.mock import MagicMock
+
+import numpy as np
+import pytest
+
+from chitra.serve import GradioApp
+from chitra.serve import constants as const
+
+
+def dummy_model(x):
+ return np.random.randn(1)
+
+
+def preprocess_fn(x, rescale: bool, expand_dims: bool):
+ if rescale:
+ x = x / 127.5 - 1.0
+ if expand_dims:
+ x = np.expand_dims(x, 0)
+ return x
+
+
+def postprocess_fn(x, thresh: float):
+ return (x > thresh)[0]
+
+
+def test_gradio_app():
+ api_types = GradioApp.get_available_api_types()
+ for api_type in api_types:
+ app = GradioApp(api_type, model=dummy_model)
+ assert app
+
+ for api_type in api_types:
+ app = GradioApp(
+ api_type,
+ model=dummy_model,
+ preprocess_fn=lambda dummy: dummy,
+ postprocess_fn=lambda dummy: dummy,
+ )
+ assert app
+
+
+def test_image_classification():
+ dummy_image = np.random.randn(224, 224, 3)
+ preprocess_conf = {"rescale": True, "expand_dims": True}
+ postprocess_conf = {"thresh": 0.5}
+
+ app = GradioApp(
+ const.IMAGE_CLF,
+ model=dummy_model,
+ preprocess_fn=preprocess_fn,
+ preprocess_conf=preprocess_conf,
+ postprocess_fn=postprocess_fn,
+ postprocess_conf=postprocess_conf,
+ )
+
+ assert app.single_x_classification(dummy_image) in (0, 1)
+
+
+@pytest.mark.parametrize(
+ "test_input, expected",
+ [(None, {}), ({"article": "chitra testing"}, {"article": "chitra testing"})],
+)
+@unittest.mock.patch("chitra.serve.app.gr")
+def test_run(mock_gr, test_input, expected):
+ mock_gr.Interface = MagicMock()
+ app = GradioApp(const.IMAGE_CLF, model=dummy_model)
+ app.run(gr_interface_conf=test_input)
+
+ mock_gr.Interface.assert_called_with(
+ fn=app.api_type_func[app.api_type],
+ inputs=app.input_types,
+ outputs=app.output_types,
+ title=app.title,
+ description=app.desc,
+ **expected,
+ )
+
+
+def test_setup():
+ with pytest.raises(NotImplementedError):
+ GradioApp("RANDOM", model=dummy_model)
+
+ with pytest.raises(NotImplementedError):
+ app = GradioApp(const.IMAGE_CLF, model=dummy_model)
+ app.api_type = "RANDOM"
+ app.setup()
diff --git a/tests/serve/test_model_server.py b/tests/serve/test_model_server.py
new file mode 100644
index 00000000..c3a23d1d
--- /dev/null
+++ b/tests/serve/test_model_server.py
@@ -0,0 +1,10 @@
+from chitra.serve import ModelServer
+
+
+def dummy_model(x: str):
+ return "hello" + x
+
+
+def test_get_available_api_types():
+ model_server = ModelServer.get_available_api_types()
+ assert isinstance(model_server, list)
diff --git a/tests/serve/test_tf_serving_client.py b/tests/serve/test_tf_serving_client.py
new file mode 100644
index 00000000..7e5b6aae
--- /dev/null
+++ b/tests/serve/test_tf_serving_client.py
@@ -0,0 +1,38 @@
+from unittest.mock import MagicMock, patch
+
+import numpy as np
+from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub
+
+from chitra.serve.tf_serving.client import GrpcClient, create_grpc_stub, grpc_request
+
+
+def test_create_grpc_stub():
+ assert isinstance(create_grpc_stub(), PredictionServiceStub)
+
+
+def test_request():
+ client = GrpcClient()
+ assert isinstance(client.stub, PredictionServiceStub)
+
+
+@patch("chitra.serve.tf_serving.client.predict_pb2")
+def test_grpc_request(mock_predict_pb2):
+ mock_predict_pb2.PredictRequest = MagicMock()
+ stub = MagicMock()
+ stub.Predict = MagicMock()
+ stub.Predict.return_value = True
+
+ data = np.random.randn(224, 224, 3)
+
+ result = grpc_request(
+ stub,
+ data,
+ input_name="input",
+ model_name="test_model",
+ signature_name="test",
+ )
+
+ assert result
+ stub.Predict.assert_called()
+ mock_predict_pb2.PredictRequest.assert_called()
+ stub.Predict.assert_called_with(mock_predict_pb2.PredictRequest(), 20)
diff --git a/tests/test_coordinates.py b/tests/test_coordinates.py
new file mode 100644
index 00000000..1b844978
--- /dev/null
+++ b/tests/test_coordinates.py
@@ -0,0 +1,31 @@
+import numpy as np
+from imgaug.augmentables import bbs
+
+from chitra.coordinates import BoundingBoxes
+
+
+def test_bounding_boxes():
+ box = [1, 2, 3, 4]
+ label = ["Dog"]
+ bounding_box = BoundingBoxes(box, label)
+ assert len(bounding_box.bboxes) == 1
+ assert isinstance(bounding_box.bboxes, list)
+ assert isinstance(bounding_box.bboxes[0], bbs.BoundingBox)
+
+
+def test_corner_to_center():
+ xmin, ymin, xmax, ymax = 0, 0, 10, 10
+ cx, cy, h, w = BoundingBoxes.corner_to_center(xmin, ymin, xmax, ymax)
+ assert (cx, cy, h, w) == (5, 5, 10, 10)
+
+
+def test_resize_with_image():
+ box = [1, 2, 3, 4]
+ label = ["chitra"]
+ bounding_box = BoundingBoxes(box, label)
+ bbs = bounding_box.resize_with_image((10, 10, 3), np.random.randn(100, 100, 3))
+ rescaled_bounding_box = bbs.bounding_boxes[0]
+ assert np.isclose(rescaled_bounding_box.x1, 10)
+ assert np.isclose(rescaled_bounding_box.y1, 20)
+ assert np.isclose(rescaled_bounding_box.x2, 30)
+ assert np.isclose(rescaled_bounding_box.y2, 40)
diff --git a/tests/test_core.py b/tests/test_core.py
new file mode 100644
index 00000000..9292cbfc
--- /dev/null
+++ b/tests/test_core.py
@@ -0,0 +1,26 @@
+import os
+
+import tensorflow as tf
+
+from chitra.core import get_basename, load_imagenet_labels, remove_dsstore
+
+
+def test_remove_dsstore():
+ os.makedirs("chitra_temp", exist_ok=True)
+ ds_store = "chitra_temp/.DS_Store"
+ open(ds_store, "w").close()
+ assert os.path.exists(ds_store)
+ remove_dsstore("chitra_temp")
+ assert not os.path.exists(ds_store)
+ os.removedirs("chitra_temp")
+
+
+def test_get_basename():
+ assert get_basename(tf.constant("hello/world")) == "world"
+
+
+def test_load_imagenet_labels():
+ labels = load_imagenet_labels()
+
+ assert "\n" not in labels
+ assert len(labels) == 1000 + 1
diff --git a/tests/test_datagenerator.py b/tests/test_datagenerator.py
new file mode 100644
index 00000000..5a56e5b9
--- /dev/null
+++ b/tests/test_datagenerator.py
@@ -0,0 +1,35 @@
+from chitra.trainer import Dataset
+
+dataset = Dataset("./")
+
+
+def test__process():
+ assert True
+
+
+def test__reload():
+ assert True
+
+
+def test__capture_return_types():
+ assert True
+
+
+def test_update_component():
+ assert True
+
+
+def test_get_labels():
+ assert True
+
+
+def test_label_encoder():
+ assert True
+
+
+def test_generator():
+ assert True
+
+
+def test_get_tf_dataset():
+ assert True
diff --git a/tests/test_dataloader.py b/tests/test_dataloader.py
new file mode 100644
index 00000000..efd4b7ea
--- /dev/null
+++ b/tests/test_dataloader.py
@@ -0,0 +1,26 @@
+import numpy as np
+import tensorflow as tf
+
+from chitra.dataloader import Clf
+
+shape = (32, 32)
+class_names = ("a", "b")
+clf = Clf()
+clf.shape = shape
+clf.CLASS_NAMES = class_names
+
+
+def test__encode_classes():
+ clf._encode_classes()
+ assert clf.class_to_idx == {"a": 0, "b": 1}
+
+
+def test__ensure_shape():
+ img, label = tf.random.normal((32, 32, 3)), 0
+ img1, label1 = clf._ensure_shape(img, label)
+ assert np.all(img1 == img)
+ assert np.all(label1 == label)
+
+
+def test__get_image_list():
+ assert len(clf._get_image_list(".")) != 0
diff --git a/tests/test_import_utils.py b/tests/test_import_utils.py
new file mode 100644
index 00000000..52b98860
--- /dev/null
+++ b/tests/test_import_utils.py
@@ -0,0 +1,5 @@
+from chitra.import_utils import is_installed
+
+
+def test_is_installed():
+ assert is_installed("numpy")
diff --git a/tests/test_trainer.py b/tests/test_trainer.py
new file mode 100644
index 00000000..72f4dbb4
--- /dev/null
+++ b/tests/test_trainer.py
@@ -0,0 +1,66 @@
+from unittest.mock import MagicMock
+
+import numpy as np
+import pytest
+import tensorflow as tf
+from tensorflow import keras
+
+from chitra.trainer import Dataset, InterpretModel, Trainer, create_cnn
+
+dataset = Dataset("./")
+cnn = create_cnn("mobilenetv2", num_classes=1000, keras_applications=False)
+trainer = Trainer(dataset, cnn)
+model_interpret = InterpretModel(True, trainer)
+image_tensor = tf.random.normal((24, 24, 1))
+
+
+def test_create_cnn():
+ assert cnn.trainable is True
+ assert isinstance(cnn, keras.models.Model)
+
+
+def test_trainer():
+ assert isinstance(trainer.model, keras.models.Model)
+
+
+def test_interpret_model():
+ assert isinstance(model_interpret.learner, Trainer)
+
+
+def test_build():
+ with pytest.raises(NotImplementedError):
+ trainer.build()
+
+
+def test_warmup():
+ with pytest.raises(NotImplementedError):
+ trainer.warmup()
+
+
+def test_prewhiten():
+ rescaled_img = trainer.prewhiten(image_tensor).numpy()
+ restored_img = (rescaled_img + 1) * 127.5
+
+ assert np.allclose(restored_img, image_tensor.numpy(), 1e-3, 1e-3)
+
+
+def test_rescale():
+ assert trainer.rescale(image_tensor, 0)[1] == 0
+
+
+def test_summary():
+ trainer.model.summary = MagicMock()
+ trainer.summary()
+ trainer.model.summary.assert_called_once()
+
+
+def test_fit():
+ trainer.model.fit = MagicMock()
+ train_ds = MagicMock()
+ trainer.fit(train_ds)
+ trainer.model.fit.assert_called_once()
+
+
+def test__get_optimizer():
+ optim = trainer._get_optimizer(tf.optimizers.Adam)()
+ assert isinstance(optim, tf.optimizers.Adam)
diff --git a/tests/test_visualization_metrics.py b/tests/test_visualization_metrics.py
new file mode 100644
index 00000000..c56de05f
--- /dev/null
+++ b/tests/test_visualization_metrics.py
@@ -0,0 +1,34 @@
+from unittest.mock import MagicMock, Mock, patch
+
+import numpy as np
+import pytest
+
+from chitra.visualization.metrics import (
+ cm_accuracy,
+ detect_multilabel,
+ plot_confusion_matrix,
+)
+
+
+def test_detect_multilabel():
+ with pytest.raises(UserWarning):
+ detect_multilabel({"label1": "this will raise UserWarning"})
+
+ assert detect_multilabel([1, 2, 3, 4])
+ assert not detect_multilabel([0, 1, 1, 0])
+
+
+def test_cm_accuracy():
+ x = np.asarray([[1, 2], [1, 2]])
+ assert cm_accuracy(x) == 0.5
+
+
+@patch("chitra.visualization.metrics.plt")
+def test_plot_confusion_matrix(mock_plt: Mock):
+ mock_plt.show = MagicMock()
+
+ y_pred = [1, 1, 0, 1]
+ y_true = [0, 1, 0, 1]
+
+ assert plot_confusion_matrix(y_pred, y_true) is None
+ mock_plt.show.assert_called_once()
diff --git a/tests/utility/test_tf_utils.py b/tests/utility/test_tf_utils.py
new file mode 100644
index 00000000..8ed655de
--- /dev/null
+++ b/tests/utility/test_tf_utils.py
@@ -0,0 +1,25 @@
+import tensorflow as tf
+
+from chitra.utility.tf_utils import (
+ disable_gpu,
+ get_basename,
+ gpu_dynamic_mem_growth,
+ limit_gpu,
+)
+
+
+def test_disable_gpu():
+ assert disable_gpu() is None
+
+
+def test_limit_gpu():
+ assert limit_gpu(1, 1024) is None
+
+
+def test_gpu_dynamic_mem_growth():
+ assert gpu_dynamic_mem_growth() is None
+
+
+def test_get_basename():
+ string = tf.constant("aniket/maurya")
+ assert get_basename(string).numpy().decode() == "maurya"