-
Notifications
You must be signed in to change notification settings - Fork 34
/
minirocket.py
234 lines (155 loc) · 8.12 KB
/
minirocket.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Angus Dempster, Daniel F Schmidt, Geoffrey I Webb
# MiniRocket: A Very Fast (Almost) Deterministic Transform for Time Series
# Classification
# https://arxiv.org/abs/2012.08791
from numba import njit, prange, vectorize
import numpy as np
@njit("float32[:](float32[:,:],int32[:],int32[:],float32[:])", fastmath = True, parallel = False, cache = True)
def _fit_biases(X, dilations, num_features_per_dilation, quantiles):
num_examples, input_length = X.shape
# equivalent to:
# >>> from itertools import combinations
# >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)], dtype = np.int32)
indices = np.array((
0,1,2,0,1,3,0,1,4,0,1,5,0,1,6,0,1,7,0,1,8,
0,2,3,0,2,4,0,2,5,0,2,6,0,2,7,0,2,8,0,3,4,
0,3,5,0,3,6,0,3,7,0,3,8,0,4,5,0,4,6,0,4,7,
0,4,8,0,5,6,0,5,7,0,5,8,0,6,7,0,6,8,0,7,8,
1,2,3,1,2,4,1,2,5,1,2,6,1,2,7,1,2,8,1,3,4,
1,3,5,1,3,6,1,3,7,1,3,8,1,4,5,1,4,6,1,4,7,
1,4,8,1,5,6,1,5,7,1,5,8,1,6,7,1,6,8,1,7,8,
2,3,4,2,3,5,2,3,6,2,3,7,2,3,8,2,4,5,2,4,6,
2,4,7,2,4,8,2,5,6,2,5,7,2,5,8,2,6,7,2,6,8,
2,7,8,3,4,5,3,4,6,3,4,7,3,4,8,3,5,6,3,5,7,
3,5,8,3,6,7,3,6,8,3,7,8,4,5,6,4,5,7,4,5,8,
4,6,7,4,6,8,4,7,8,5,6,7,5,6,8,5,7,8,6,7,8
), dtype = np.int32).reshape(84, 3)
num_kernels = len(indices)
num_dilations = len(dilations)
num_features = num_kernels * np.sum(num_features_per_dilation)
biases = np.zeros(num_features, dtype = np.float32)
feature_index_start = 0
for dilation_index in range(num_dilations):
dilation = dilations[dilation_index]
padding = ((9 - 1) * dilation) // 2
num_features_this_dilation = num_features_per_dilation[dilation_index]
for kernel_index in range(num_kernels):
feature_index_end = feature_index_start + num_features_this_dilation
_X = X[np.random.randint(num_examples)]
A = -_X # A = alpha * X = -X
G = _X + _X + _X # G = gamma * X = 3X
C_alpha = np.zeros(input_length, dtype = np.float32)
C_alpha[:] = A
C_gamma = np.zeros((9, input_length), dtype = np.float32)
C_gamma[9 // 2] = G
start = dilation
end = input_length - padding
for gamma_index in range(9 // 2):
C_alpha[-end:] = C_alpha[-end:] + A[:end]
C_gamma[gamma_index, -end:] = G[:end]
end += dilation
for gamma_index in range(9 // 2 + 1, 9):
C_alpha[:-start] = C_alpha[:-start] + A[start:]
C_gamma[gamma_index, :-start] = G[start:]
start += dilation
index_0, index_1, index_2 = indices[kernel_index]
C = C_alpha + C_gamma[index_0] + C_gamma[index_1] + C_gamma[index_2]
biases[feature_index_start:feature_index_end] = np.quantile(C, quantiles[feature_index_start:feature_index_end])
feature_index_start = feature_index_end
return biases
def _fit_dilations(input_length, num_features, max_dilations_per_kernel):
num_kernels = 84
num_features_per_kernel = num_features // num_kernels
true_max_dilations_per_kernel = min(num_features_per_kernel, max_dilations_per_kernel)
multiplier = num_features_per_kernel / true_max_dilations_per_kernel
max_exponent = np.log2((input_length - 1) / (9 - 1))
dilations, num_features_per_dilation = \
np.unique(np.logspace(0, max_exponent, true_max_dilations_per_kernel, base = 2).astype(np.int32), return_counts = True)
num_features_per_dilation = (num_features_per_dilation * multiplier).astype(np.int32) # this is a vector
remainder = num_features_per_kernel - np.sum(num_features_per_dilation)
i = 0
while remainder > 0:
num_features_per_dilation[i] += 1
remainder -= 1
i = (i + 1) % len(num_features_per_dilation)
return dilations, num_features_per_dilation
# low-discrepancy sequence to assign quantiles to kernel/dilation combinations
def _quantiles(n):
return np.array([(_ * ((np.sqrt(5) + 1) / 2)) % 1 for _ in range(1, n + 1)], dtype = np.float32)
def fit(X, num_features = 10_000, max_dilations_per_kernel = 32):
_, input_length = X.shape
num_kernels = 84
dilations, num_features_per_dilation = _fit_dilations(input_length, num_features, max_dilations_per_kernel)
num_features_per_kernel = np.sum(num_features_per_dilation)
quantiles = _quantiles(num_kernels * num_features_per_kernel)
biases = _fit_biases(X, dilations, num_features_per_dilation, quantiles)
return dilations, num_features_per_dilation, biases
# _PPV(C, b).mean() returns PPV for vector C (convolution output) and scalar b (bias)
@vectorize("float32(float32,float32)", nopython = True, cache = True)
def _PPV(a, b):
if a > b:
return 1
else:
return 0
@njit("float32[:,:](float32[:,:],Tuple((int32[:],int32[:],float32[:])))", fastmath = True, parallel = True, cache = True)
def transform(X, parameters):
num_examples, input_length = X.shape
dilations, num_features_per_dilation, biases = parameters
# equivalent to:
# >>> from itertools import combinations
# >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)], dtype = np.int32)
indices = np.array((
0,1,2,0,1,3,0,1,4,0,1,5,0,1,6,0,1,7,0,1,8,
0,2,3,0,2,4,0,2,5,0,2,6,0,2,7,0,2,8,0,3,4,
0,3,5,0,3,6,0,3,7,0,3,8,0,4,5,0,4,6,0,4,7,
0,4,8,0,5,6,0,5,7,0,5,8,0,6,7,0,6,8,0,7,8,
1,2,3,1,2,4,1,2,5,1,2,6,1,2,7,1,2,8,1,3,4,
1,3,5,1,3,6,1,3,7,1,3,8,1,4,5,1,4,6,1,4,7,
1,4,8,1,5,6,1,5,7,1,5,8,1,6,7,1,6,8,1,7,8,
2,3,4,2,3,5,2,3,6,2,3,7,2,3,8,2,4,5,2,4,6,
2,4,7,2,4,8,2,5,6,2,5,7,2,5,8,2,6,7,2,6,8,
2,7,8,3,4,5,3,4,6,3,4,7,3,4,8,3,5,6,3,5,7,
3,5,8,3,6,7,3,6,8,3,7,8,4,5,6,4,5,7,4,5,8,
4,6,7,4,6,8,4,7,8,5,6,7,5,6,8,5,7,8,6,7,8
), dtype = np.int32).reshape(84, 3)
num_kernels = len(indices)
num_dilations = len(dilations)
num_features = num_kernels * np.sum(num_features_per_dilation)
features = np.zeros((num_examples, num_features), dtype = np.float32)
for example_index in prange(num_examples):
_X = X[example_index]
A = -_X # A = alpha * X = -X
G = _X + _X + _X # G = gamma * X = 3X
feature_index_start = 0
for dilation_index in range(num_dilations):
_padding0 = dilation_index % 2
dilation = dilations[dilation_index]
padding = ((9 - 1) * dilation) // 2
num_features_this_dilation = num_features_per_dilation[dilation_index]
C_alpha = np.zeros(input_length, dtype = np.float32)
C_alpha[:] = A
C_gamma = np.zeros((9, input_length), dtype = np.float32)
C_gamma[9 // 2] = G
start = dilation
end = input_length - padding
for gamma_index in range(9 // 2):
C_alpha[-end:] = C_alpha[-end:] + A[:end]
C_gamma[gamma_index, -end:] = G[:end]
end += dilation
for gamma_index in range(9 // 2 + 1, 9):
C_alpha[:-start] = C_alpha[:-start] + A[start:]
C_gamma[gamma_index, :-start] = G[start:]
start += dilation
for kernel_index in range(num_kernels):
feature_index_end = feature_index_start + num_features_this_dilation
_padding1 = (_padding0 + kernel_index) % 2
index_0, index_1, index_2 = indices[kernel_index]
C = C_alpha + C_gamma[index_0] + C_gamma[index_1] + C_gamma[index_2]
if _padding1 == 0:
for feature_count in range(num_features_this_dilation):
features[example_index, feature_index_start + feature_count] = _PPV(C, biases[feature_index_start + feature_count]).mean()
else:
for feature_count in range(num_features_this_dilation):
features[example_index, feature_index_start + feature_count] = _PPV(C[padding:-padding], biases[feature_index_start + feature_count]).mean()
feature_index_start = feature_index_end
return features