forked from ocaml-flambda/flambda-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompact.c
507 lines (443 loc) · 15.6 KB
/
compact.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Damien Doligez, projet Para, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
#include <string.h>
#include "caml/address_class.h"
#include "caml/config.h"
#include "caml/finalise.h"
#include "caml/freelist.h"
#include "caml/gc.h"
#include "caml/gc_ctrl.h"
#include "caml/major_gc.h"
#include "caml/memory.h"
#include "caml/mlvalues.h"
#include "caml/roots.h"
#include "caml/weak.h"
#include "caml/compact.h"
#include "caml/memprof.h"
#include "caml/eventlog.h"
extern uintnat caml_percent_free; /* major_gc.c */
extern void caml_shrink_heap (char *); /* memory.c */
/* Colors
We use the GC's color bits in the following way:
- White words are headers of live blocks except for 0, which is a
fragment.
- Blue words are headers of free blocks.
- Black words are headers of out-of-heap "blocks".
- Gray words are the encoding of pointers in inverted lists.
Encoded pointers:
Pointers always have their two low-order bits clear. We make use of
this to encode pointers by shifting bits 2-9 to 0-7:
...XXXyyyyyyyy00 becomes ...XXX01yyyyyyyy
Note that 01 corresponds to the "gray" color of the GC, so we can now
mix pointers and headers because there are no gray headers anywhere in
the heap (or outside) when we start a compaction (which must be done at
the end of a sweep phase).
*/
typedef uintnat word;
#define eptr(p) \
(((word) (p) & ~0x3FF) | ((((word) p) & 0x3FF) >> 2) | Caml_gray)
#define dptr(p) ((word *) (((word) (p) & ~0x3FF) | ((((word) p) & 0xFF) << 2)))
static void invert_pointer_at (word *p)
{
word q = *p;
header_t h;
CAMLassert (((uintnat) p & 3) == 0);
if (Is_block (q) && Is_in_value_area (q)){
h = Hd_val (q);
switch (Color_hd (h)){
case Caml_white:
if (Tag_hd (h) == Infix_tag){
value realvalue = (value) q - Infix_offset_val (q);
if (Is_black_val (realvalue)) break;
}
/* FALL THROUGH */
case Caml_gray:
CAMLassert (Is_in_heap (q));
/* [q] points to some inverted list, insert it. */
*p = h;
Hd_val (q) = eptr (p);
break;
case Caml_black:
/* [q] points to an out-of-heap value. Leave it alone. */
break;
default: /* Caml_blue */
/* We found a pointer to a free block. This cannot happen. */
CAMLassert (0);
break;
}
}
}
void caml_invert_root (value v, value *p)
{
#ifdef NO_NAKED_POINTERS
/* Note: this assertion will become tautological and should be removed when
we finally get rid of the page table in NNP mode.
*/
CAMLassert (Is_long (*p) || Is_in_heap (*p) || Is_black_val (*p)
|| Tag_val (*p) == Infix_tag);
#endif
invert_pointer_at ((word *) p);
}
static char *compact_fl;
static void init_compact_allocate (void)
{
char *ch = caml_heap_start;
while (ch != NULL){
Chunk_alloc (ch) = 0;
ch = Chunk_next (ch);
}
compact_fl = caml_heap_start;
}
/* [size] is a number of bytes and includes the header size */
static char *compact_allocate (mlsize_t size)
{
char *chunk, *adr;
while (Chunk_size(compact_fl) - Chunk_alloc(compact_fl) < Bhsize_wosize(1)){
compact_fl = Chunk_next (compact_fl);
CAMLassert (compact_fl != NULL);
}
chunk = compact_fl;
while (Chunk_size (chunk) - Chunk_alloc (chunk) < size){
chunk = Chunk_next (chunk);
CAMLassert (chunk != NULL);
}
adr = chunk + Chunk_alloc (chunk);
Chunk_alloc (chunk) += size;
return adr;
}
static void do_compaction (intnat new_allocation_policy)
{
char *ch, *chend;
CAMLassert (caml_gc_phase == Phase_idle);
caml_gc_message (0x10, "Compacting heap...\n");
#ifdef DEBUG
caml_heap_check ();
#endif
/* Make sure the heap is in the right state for compaction:
- all free blocks are blue
- all other blocks are white and contain valid pointers
*/
caml_fl_reset_and_switch_policy (new_allocation_policy);
/* First pass: removed in 4.12 thanks to the new closure representation. */
/* Second pass: invert pointers.
Don't forget roots and weak pointers.
This is a mark-like pass. */
{
caml_do_roots (caml_invert_root, 1);
/* The values to be finalised are not roots but should still be inverted */
caml_final_invert_finalisable_values ();
/* Idem for memprof tracked blocks */
caml_memprof_invert_tracked ();
ch = caml_heap_start;
while (ch != NULL){
word *p = (word *) ch;
chend = ch + Chunk_size (ch);
while ((char *) p < chend){
word q = *p;
mlsize_t wosz, i, first_field;
tag_t t;
while (Is_gray_hd (q)) q = * dptr (q);
wosz = Wosize_hd (q);
mlsize_t scannable_wosz = Scannable_wosize_hd (q);
if (Is_white_hd (q)){
t = Tag_hd (q);
CAMLassert (t != Infix_tag);
if (t < No_scan_tag){
value v = Val_hp (p);
if (t == Closure_tag){
first_field = Start_env_closinfo (Closinfo_val (v));
}else{
first_field = 0;
}
for (i = first_field; i < scannable_wosz; i++){
invert_pointer_at ((word *) &Field (v,i));
}
}
}
p += Whsize_wosize (wosz);
}
ch = Chunk_next (ch);
}
/* Invert weak pointers. */
{
value *pp = &caml_ephe_list_head;
value p;
word q;
size_t sz, i;
while (1){
p = *pp;
if (p == (value) NULL) break;
q = Hd_val (p);
while (Is_gray_hd (q)) q = * dptr (q);
CAMLassert (Is_white_hd (q));
sz = Wosize_hd (q);
for (i = 1; i < sz; i++){
if (Field (p,i) != caml_ephe_none){
invert_pointer_at ((word *) &(Field (p,i)));
}
}
invert_pointer_at ((word *) pp);
pp = &Field (p, 0);
}
}
}
/* Third pass: reallocate virtually; revert pointers.
This is a sweep-like pass. */
{
init_compact_allocate ();
ch = caml_heap_start;
while (ch != NULL){
word *p = (word *) ch;
chend = ch + Chunk_size (ch);
while ((char *) p < chend){
header_t h = Hd_hp (p);
size_t sz;
while (Is_gray_hd (h)) h = * dptr (h);
sz = Whsize_hd (h);
CAMLassert (!Is_black_hd (h));
CAMLassert (!Is_gray_hd (h));
if (h != 0 && Is_white_hd (h)){
word q;
tag_t t;
char *newadr;
t = Tag_hd (h);
CAMLassert (t != Infix_tag);
newadr = compact_allocate (Bsize_wsize (sz));
q = *p;
while (Is_gray_hd (q)){
word *pp = dptr (q);
q = *pp;
*pp = (word) Val_hp (newadr);
}
CAMLassert (q == h);
*p = q;
if (t == Closure_tag){
/* Revert the infix pointers to this block. */
mlsize_t i;
value v;
v = Val_hp (p);
i = 0;
while (1){
int arity;
uintnat closinfo = Field (v, i+1);
if (Is_last_closinfo (closinfo)) break;
arity = Arity_closinfo (closinfo);
i += 2 + (arity != 0 && arity != 1);
/* If space exists between infix headers, skip it. This space is
padded with Val_long(0), which can't be confused with either an
infix header, or an inverted pointer. */
while (Field(v, i) == Val_long(0)){
++i;
}
CAMLassert (i < Start_env_closinfo (Closinfo_val (v)));
/* Revert the inverted list for infix header at offset [i]. */
q = Field (v, i);
while (Is_gray_hd (q)){
word *pp = dptr (q);
q = *pp;
*pp = (word) Val_hp ((header_t *) &Field (Val_hp (newadr), i));
}
CAMLassert (Tag_hd (q) == Infix_tag);
Field (v, i) = q;
++i;
}
}
}
p += sz;
}
ch = Chunk_next (ch);
}
}
/* Fourth pass: reallocate and move objects.
Use the exact same allocation algorithm as pass 3. */
{
init_compact_allocate ();
ch = caml_heap_start;
while (ch != NULL){
word *p = (word *) ch;
chend = ch + Chunk_size (ch);
while ((char *) p < chend){
word q = *p;
if (q != 0 && Is_white_hd (q)){
size_t sz = Bhsize_hd (q);
char *newadr = compact_allocate (sz);
memmove (newadr, p, sz);
p += Wsize_bsize (sz);
}else{
CAMLassert (q == 0 || Is_blue_hd (q));
p += Whsize_hd (q);
}
}
ch = Chunk_next (ch);
}
}
/* Shrink the heap if needed. */
{
/* Find the amount of live data and the unshrinkable free space. */
asize_t live = 0;
asize_t free = 0;
asize_t wanted;
ch = caml_heap_start;
while (ch != NULL){
if (Chunk_alloc (ch) != 0){
live += Wsize_bsize (Chunk_alloc (ch));
free += Wsize_bsize (Chunk_size (ch) - Chunk_alloc (ch));
}
ch = Chunk_next (ch);
}
/* Add up the empty chunks until there are enough, then remove the
other empty chunks. */
wanted = caml_percent_free * (live / 100 + 1);
ch = caml_heap_start;
while (ch != NULL){
char *next_chunk = Chunk_next (ch); /* Chunk_next (ch) will be erased */
if (Chunk_alloc (ch) == 0){
if (free < wanted){
free += Wsize_bsize (Chunk_size (ch));
}else{
caml_shrink_heap (ch);
}
}
ch = next_chunk;
}
}
/* Rebuild the free list. This is the right time for a change of
allocation policy, since we are rebuilding the allocator's data
structures from scratch. */
{
ch = caml_heap_start;
caml_fl_init_merge ();
while (ch != NULL){
if (Chunk_size (ch) > Chunk_alloc (ch)){
caml_make_free_blocks ((value *) (ch + Chunk_alloc (ch)),
Wsize_bsize (Chunk_size(ch)-Chunk_alloc(ch)), 1,
Caml_white);
}
ch = Chunk_next (ch);
}
}
++ Caml_state->stat_compactions;
caml_shrink_mark_stack();
caml_gc_message (0x10, "done.\n");
}
uintnat caml_percent_max; /* used in gc_ctrl.c and memory.c */
void caml_compact_heap (intnat new_allocation_policy)
{
uintnat target_wsz, live;
CAMLassert (Caml_state->young_ptr == Caml_state->young_alloc_end);
CAMLassert (Caml_state->ref_table->ptr ==
Caml_state->ref_table->base);
CAMLassert (Caml_state->ephe_ref_table->ptr ==
Caml_state->ephe_ref_table->base);
CAMLassert (Caml_state->custom_table->ptr ==
Caml_state->custom_table->base);
CAML_EV_BEGIN(EV_COMPACT_MAIN);
do_compaction (new_allocation_policy);
CAML_EV_END(EV_COMPACT_MAIN);
/* Compaction may fail to shrink the heap to a reasonable size
because it deals in complete chunks: if a very large chunk
is at the beginning of the heap, everything gets moved to
it and it is not freed.
In that case, we allocate a new chunk of the desired heap
size, chain it at the beginning of the heap (thus pretending
its address is smaller), and launch a second compaction.
This will move all data to this new chunk and free the
very large chunk.
See PR#5389
*/
/* We compute:
freewords = caml_fl_cur_wsz (exact)
heapwords = Wsize_bsize (caml_heap_size) (exact)
live = heapwords - freewords
wanted = caml_percent_free * (live / 100 + 1) (same as in do_compaction)
target_wsz = live + wanted
We add one page to make sure a small difference in counting sizes
won't make [do_compaction] keep the second block (and break all sorts
of invariants).
We recompact if target_wsz < heap_size / 2
*/
live = Caml_state->stat_heap_wsz - caml_fl_cur_wsz;
target_wsz = live + caml_percent_free * (live / 100 + 1)
+ Wsize_bsize (Page_size);
target_wsz = caml_clip_heap_chunk_wsz (target_wsz);
#ifdef HAS_HUGE_PAGES
if (caml_use_huge_pages
&& Bsize_wsize (Caml_state->stat_heap_wsz) <= HUGE_PAGE_SIZE)
return;
#endif
if (target_wsz < Caml_state->stat_heap_wsz / 2){
/* Recompact. */
char *chunk;
caml_gc_message (0x10, "Recompacting heap (target=%"
ARCH_INTNAT_PRINTF_FORMAT "uk words)\n",
target_wsz / 1024);
chunk = caml_alloc_for_heap (Bsize_wsize (target_wsz));
if (chunk == NULL) return;
/* PR#5757: we need to make the new blocks blue, or they won't be
recognized as free by the recompaction. */
caml_make_free_blocks ((value *) chunk,
Wsize_bsize (Chunk_size (chunk)), 0, Caml_blue);
if (caml_page_table_add (In_heap, chunk, chunk + Chunk_size (chunk)) != 0){
caml_free_for_heap (chunk);
return;
}
Chunk_next (chunk) = caml_heap_start;
caml_heap_start = chunk;
++ Caml_state->stat_heap_chunks;
Caml_state->stat_heap_wsz += Wsize_bsize (Chunk_size (chunk));
if (Caml_state->stat_heap_wsz > Caml_state->stat_top_heap_wsz){
Caml_state->stat_top_heap_wsz = Caml_state->stat_heap_wsz;
}
CAML_EV_BEGIN(EV_COMPACT_RECOMPACT);
do_compaction (-1);
CAMLassert (Caml_state->stat_heap_chunks == 1);
CAMLassert (Chunk_next (caml_heap_start) == NULL);
CAMLassert (Caml_state->stat_heap_wsz == Wsize_bsize (Chunk_size (chunk)));
CAML_EV_END(EV_COMPACT_RECOMPACT);
}
}
void caml_compact_heap_maybe (double previous_overhead)
{
CAMLassert (caml_gc_phase == Phase_idle);
if (caml_percent_max >= 1000000) return;
if (Caml_state->stat_major_collections < 3) return;
if (Caml_state->stat_heap_wsz <= 2 * caml_clip_heap_chunk_wsz (0)) return;
#ifdef HAS_HUGE_PAGES
if (caml_use_huge_pages
&& Bsize_wsize (Caml_state->stat_heap_wsz) <= HUGE_PAGE_SIZE)
return;
#endif
if (previous_overhead >= caml_percent_max){
double current_overhead;
caml_gc_message (0x200, "Automatic compaction triggered.\n");
caml_empty_minor_heap (); /* minor heap must be empty for compaction */
caml_gc_message
(0x1, "Finishing major GC cycle (triggered by compaction)\n");
caml_finish_major_cycle ();
++ Caml_state->stat_forced_major_collections;
/* Note: There is no floating garbage because we just did a complete
major cycle*/
current_overhead =
100.0 * caml_fl_cur_wsz / (Caml_state->stat_heap_wsz - caml_fl_cur_wsz);
caml_gc_message (0x200, "Current overhead: %"
ARCH_INTNAT_PRINTF_FORMAT "u%%\n",
(uintnat) current_overhead);
if (current_overhead >= caml_percent_max)
caml_compact_heap (-1);
else
caml_gc_message (0x200, "Automatic compaction aborted.\n");
}
}