forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_world.py
357 lines (310 loc) · 9.26 KB
/
grid_world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# https://deeplearningcourses.com/c/artificial-intelligence-reinforcement-learning-in-python
# https://www.udemy.com/artificial-intelligence-reinforcement-learning-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
ACTION_SPACE = ('U', 'D', 'L', 'R')
class Grid: # Environment
def __init__(self, rows, cols, start):
self.rows = rows
self.cols = cols
self.i = start[0]
self.j = start[1]
def set(self, rewards, actions):
# rewards should be a dict of: (i, j): r (row, col): reward
# actions should be a dict of: (i, j): A (row, col): list of possible actions
self.rewards = rewards
self.actions = actions
def set_state(self, s):
self.i = s[0]
self.j = s[1]
def current_state(self):
return (self.i, self.j)
def is_terminal(self, s):
return s not in self.actions
def get_next_state(self, s, a):
# this answers: where would I end up if I perform action 'a' in state 's'?
i, j = s[0], s[1]
# if this action moves you somewhere else, then it will be in this dictionary
if a in self.actions[(i, j)]:
if a == 'U':
i -= 1
elif a == 'D':
i += 1
elif a == 'R':
j += 1
elif a == 'L':
j -= 1
return i, j
def move(self, action):
# check if legal move first
if action in self.actions[(self.i, self.j)]:
if action == 'U':
self.i -= 1
elif action == 'D':
self.i += 1
elif action == 'R':
self.j += 1
elif action == 'L':
self.j -= 1
# return a reward (if any)
return self.rewards.get((self.i, self.j), 0)
def undo_move(self, action):
# these are the opposite of what U/D/L/R should normally do
if action == 'U':
self.i += 1
elif action == 'D':
self.i -= 1
elif action == 'R':
self.j -= 1
elif action == 'L':
self.j += 1
# raise an exception if we arrive somewhere we shouldn't be
# should never happen
assert(self.current_state() in self.all_states())
def game_over(self):
# returns true if game is over, else false
# true if we are in a state where no actions are possible
return (self.i, self.j) not in self.actions
def all_states(self):
# possibly buggy but simple way to get all states
# either a position that has possible next actions
# or a position that yields a reward
return set(self.actions.keys()) | set(self.rewards.keys())
def standard_grid():
# define a grid that describes the reward for arriving at each state
# and possible actions at each state
# the grid looks like this
# x means you can't go there
# s means start position
# number means reward at that state
# . . . 1
# . x . -1
# s . . .
g = Grid(3, 4, (2, 0))
rewards = {(0, 3): 1, (1, 3): -1}
actions = {
(0, 0): ('D', 'R'),
(0, 1): ('L', 'R'),
(0, 2): ('L', 'D', 'R'),
(1, 0): ('U', 'D'),
(1, 2): ('U', 'D', 'R'),
(2, 0): ('U', 'R'),
(2, 1): ('L', 'R'),
(2, 2): ('L', 'R', 'U'),
(2, 3): ('L', 'U'),
}
g.set(rewards, actions)
return g
def negative_grid(step_cost=-0.1):
# in this game we want to try to minimize the number of moves
# so we will penalize every move
g = standard_grid()
g.rewards.update({
(0, 0): step_cost,
(0, 1): step_cost,
(0, 2): step_cost,
(1, 0): step_cost,
(1, 2): step_cost,
(2, 0): step_cost,
(2, 1): step_cost,
(2, 2): step_cost,
(2, 3): step_cost,
})
return g
class WindyGrid:
def __init__(self, rows, cols, start):
self.rows = rows
self.cols = cols
self.i = start[0]
self.j = start[1]
def set(self, rewards, actions, probs):
# rewards should be a dict of: (i, j): r (row, col): reward
# actions should be a dict of: (i, j): A (row, col): list of possible actions
self.rewards = rewards
self.actions = actions
self.probs = probs
def set_state(self, s):
self.i = s[0]
self.j = s[1]
def current_state(self):
return (self.i, self.j)
def is_terminal(self, s):
return s not in self.actions
def move(self, action):
s = (self.i, self.j)
a = action
next_state_probs = self.probs[(s, a)]
next_states = list(next_state_probs.keys())
next_probs = list(next_state_probs.values())
s2 = np.random.choice(next_states, p=next_probs)
# update the current state
self.i, self.j = s2
# return a reward (if any)
return self.rewards.get(s2, 0)
def game_over(self):
# returns true if game is over, else false
# true if we are in a state where no actions are possible
return (self.i, self.j) not in self.actions
def all_states(self):
# possibly buggy but simple way to get all states
# either a position that has possible next actions
# or a position that yields a reward
return set(self.actions.keys()) | set(self.rewards.keys())
def windy_grid():
g = WindyGrid(3, 4, (2, 0))
rewards = {(0, 3): 1, (1, 3): -1}
actions = {
(0, 0): ('D', 'R'),
(0, 1): ('L', 'R'),
(0, 2): ('L', 'D', 'R'),
(1, 0): ('U', 'D'),
(1, 2): ('U', 'D', 'R'),
(2, 0): ('U', 'R'),
(2, 1): ('L', 'R'),
(2, 2): ('L', 'R', 'U'),
(2, 3): ('L', 'U'),
}
# p(s' | s, a) represented as:
# KEY: (s, a) --> VALUE: {s': p(s' | s, a)}
probs = {
((2, 0), 'U'): {(1, 0): 1.0},
((2, 0), 'D'): {(2, 0): 1.0},
((2, 0), 'L'): {(2, 0): 1.0},
((2, 0), 'R'): {(2, 1): 1.0},
((1, 0), 'U'): {(0, 0): 1.0},
((1, 0), 'D'): {(2, 0): 1.0},
((1, 0), 'L'): {(1, 0): 1.0},
((1, 0), 'R'): {(1, 0): 1.0},
((0, 0), 'U'): {(0, 0): 1.0},
((0, 0), 'D'): {(1, 0): 1.0},
((0, 0), 'L'): {(0, 0): 1.0},
((0, 0), 'R'): {(0, 1): 1.0},
((0, 1), 'U'): {(0, 1): 1.0},
((0, 1), 'D'): {(0, 1): 1.0},
((0, 1), 'L'): {(0, 0): 1.0},
((0, 1), 'R'): {(0, 2): 1.0},
((0, 2), 'U'): {(0, 2): 1.0},
((0, 2), 'D'): {(1, 2): 1.0},
((0, 2), 'L'): {(0, 1): 1.0},
((0, 2), 'R'): {(0, 3): 1.0},
((2, 1), 'U'): {(2, 1): 1.0},
((2, 1), 'D'): {(2, 1): 1.0},
((2, 1), 'L'): {(2, 0): 1.0},
((2, 1), 'R'): {(2, 2): 1.0},
((2, 2), 'U'): {(1, 2): 1.0},
((2, 2), 'D'): {(2, 2): 1.0},
((2, 2), 'L'): {(2, 1): 1.0},
((2, 2), 'R'): {(2, 3): 1.0},
((2, 3), 'U'): {(1, 3): 1.0},
((2, 3), 'D'): {(2, 3): 1.0},
((2, 3), 'L'): {(2, 2): 1.0},
((2, 3), 'R'): {(2, 3): 1.0},
((1, 2), 'U'): {(0, 2): 0.5, (1, 3): 0.5},
((1, 2), 'D'): {(2, 2): 1.0},
((1, 2), 'L'): {(1, 2): 1.0},
((1, 2), 'R'): {(1, 3): 1.0},
}
g.set(rewards, actions, probs)
return g
def windy_grid_penalized(step_cost=-0.1):
g = WindyGrid(3, 4, (2, 0))
rewards = {
(0, 0): step_cost,
(0, 1): step_cost,
(0, 2): step_cost,
(1, 0): step_cost,
(1, 2): step_cost,
(2, 0): step_cost,
(2, 1): step_cost,
(2, 2): step_cost,
(2, 3): step_cost,
(0, 3): 1,
(1, 3): -1
}
actions = {
(0, 0): ('D', 'R'),
(0, 1): ('L', 'R'),
(0, 2): ('L', 'D', 'R'),
(1, 0): ('U', 'D'),
(1, 2): ('U', 'D', 'R'),
(2, 0): ('U', 'R'),
(2, 1): ('L', 'R'),
(2, 2): ('L', 'R', 'U'),
(2, 3): ('L', 'U'),
}
# p(s' | s, a) represented as:
# KEY: (s, a) --> VALUE: {s': p(s' | s, a)}
probs = {
((2, 0), 'U'): {(1, 0): 1.0},
((2, 0), 'D'): {(2, 0): 1.0},
((2, 0), 'L'): {(2, 0): 1.0},
((2, 0), 'R'): {(2, 1): 1.0},
((1, 0), 'U'): {(0, 0): 1.0},
((1, 0), 'D'): {(2, 0): 1.0},
((1, 0), 'L'): {(1, 0): 1.0},
((1, 0), 'R'): {(1, 0): 1.0},
((0, 0), 'U'): {(0, 0): 1.0},
((0, 0), 'D'): {(1, 0): 1.0},
((0, 0), 'L'): {(0, 0): 1.0},
((0, 0), 'R'): {(0, 1): 1.0},
((0, 1), 'U'): {(0, 1): 1.0},
((0, 1), 'D'): {(0, 1): 1.0},
((0, 1), 'L'): {(0, 0): 1.0},
((0, 1), 'R'): {(0, 2): 1.0},
((0, 2), 'U'): {(0, 2): 1.0},
((0, 2), 'D'): {(1, 2): 1.0},
((0, 2), 'L'): {(0, 1): 1.0},
((0, 2), 'R'): {(0, 3): 1.0},
((2, 1), 'U'): {(2, 1): 1.0},
((2, 1), 'D'): {(2, 1): 1.0},
((2, 1), 'L'): {(2, 0): 1.0},
((2, 1), 'R'): {(2, 2): 1.0},
((2, 2), 'U'): {(1, 2): 1.0},
((2, 2), 'D'): {(2, 2): 1.0},
((2, 2), 'L'): {(2, 1): 1.0},
((2, 2), 'R'): {(2, 3): 1.0},
((2, 3), 'U'): {(1, 3): 1.0},
((2, 3), 'D'): {(2, 3): 1.0},
((2, 3), 'L'): {(2, 2): 1.0},
((2, 3), 'R'): {(2, 3): 1.0},
((1, 2), 'U'): {(0, 2): 0.5, (1, 3): 0.5},
((1, 2), 'D'): {(2, 2): 1.0},
((1, 2), 'L'): {(1, 2): 1.0},
((1, 2), 'R'): {(1, 3): 1.0},
}
g.set(rewards, actions, probs)
return g
def grid_5x5(step_cost=-0.1):
g = Grid(5, 5, (4, 0))
rewards = {(0, 4): 1, (1, 4): -1}
actions = {
(0, 0): ('D', 'R'),
(0, 1): ('L', 'R'),
(0, 2): ('L', 'R'),
(0, 3): ('L', 'D', 'R'),
(1, 0): ('U', 'D', 'R'),
(1, 1): ('U', 'D', 'L'),
(1, 3): ('U', 'D', 'R'),
(2, 0): ('U', 'D', 'R'),
(2, 1): ('U', 'L', 'R'),
(2, 2): ('L', 'R', 'D'),
(2, 3): ('L', 'R', 'U'),
(2, 4): ('L', 'U', 'D'),
(3, 0): ('U', 'D'),
(3, 2): ('U', 'D'),
(3, 4): ('U', 'D'),
(4, 0): ('U', 'R'),
(4, 1): ('L', 'R'),
(4, 2): ('L', 'R', 'U'),
(4, 3): ('L', 'R'),
(4, 4): ('L', 'U'),
}
g.set(rewards, actions)
# non-terminal states
visitable_states = actions.keys()
for s in visitable_states:
g.rewards[s] = step_cost
return g