Skip to content

Commit

Permalink
Add solution 0785
Browse files Browse the repository at this point in the history
  • Loading branch information
halfrost committed Oct 6, 2020
1 parent 5f4219c commit 7ccb69a
Show file tree
Hide file tree
Showing 6 changed files with 284 additions and 44 deletions.
35 changes: 35 additions & 0 deletions leetcode/0785.Is-Graph-Bipartite/785. Is Graph Bipartite.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
package leetcode

// DFS 染色,1 是红色,0 是绿色,-1 是未染色
func isBipartite(graph [][]int) bool {
colors := make([]int, len(graph))
for i := range colors {
colors[i] = -1
}
for i := range graph {
if !dfs(i, graph, colors, -1) {
return false
}
}
return true
}

func dfs(n int, graph [][]int, colors []int, parentCol int) bool {
if colors[n] == -1 {
if parentCol == 1 {
colors[n] = 0
} else {
colors[n] = 1
}
} else if colors[n] == parentCol {
return false
} else if colors[n] != parentCol {
return true
}
for _, c := range graph[n] {
if !dfs(c, graph, colors, colors[n]) {
return false
}
}
return true
}
52 changes: 52 additions & 0 deletions leetcode/0785.Is-Graph-Bipartite/785. Is Graph Bipartite_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
package leetcode

import (
"fmt"
"testing"
)

type question785 struct {
para785
ans785
}

// para 是参数
// one 代表第一个参数
type para785 struct {
graph [][]int
}

// ans 是答案
// one 代表第一个答案
type ans785 struct {
one bool
}

func Test_Problem785(t *testing.T) {

qs := []question785{

{
para785{[][]int{{1, 3}, {0, 2}, {1, 3}, {0, 2}}},
ans785{true},
},

{
para785{[][]int{{1, 2, 3}, {0, 2}, {0, 1, 3}, {0, 2}}},
ans785{false},
},

{
para785{[][]int{{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}}},
ans785{false},
},
}

fmt.Printf("------------------------Leetcode Problem 785------------------------\n")

for _, q := range qs {
_, p := q.ans785, q.para785
fmt.Printf("【input】:%v 【output】:%v\n", p, isBipartite(p.graph))
}
fmt.Printf("\n\n\n")
}
98 changes: 98 additions & 0 deletions leetcode/0785.Is-Graph-Bipartite/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# [785. Is Graph Bipartite?](https://leetcode.com/problems/is-graph-bipartite/)


## 题目

Given an undirected `graph`, return `true` if and only if it is bipartite.

Recall that a graph is *bipartite* if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

The graph is given in the following form: `graph[i]` is a list of indexes `j` for which the edge between nodes `i` and `j` exists. Each node is an integer between `0` and `graph.length - 1`. There are no self edges or parallel edges: `graph[i]` does not contain `i`, and it doesn't contain any element twice.


Example 1:Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.


Example 2:Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.


**Note:**

- `graph` will have length in range `[1, 100]`.
- `graph[i]` will contain integers in range `[0, graph.length - 1]`.
- `graph[i]` will not contain `i` or duplicate values.
- The graph is undirected: if any element `j` is in `graph[i]`, then `i` will be in `graph[j]`.

## 题目大意

给定一个无向图 graph,当这个图为二分图时返回 true。

graph 将会以邻接表方式给出,graph[i] 表示图中与节点i相连的所有节点。每个节点都是一个在 0 到 graph.length-1 之间的整数。这图中没有自环和平行边: graph[i] 中不存在 i,并且 graph[i] 中没有重复的值。

注意:

- graph 的长度范围为 [1, 100]
- graph[i] 中的元素的范围为 [0, graph.length - 1]
- graph[i] 不会包含 i 或者有重复的值。
- 图是无向的: 如果 j 在 graph[i] 里边, 那么 i 也会在 graph[j] 里边。

## 解题思路

- 判断一个无向图是否是二分图。二分图的定义:如果我们能将一个图的节点集合分割成两个独立的子集 A 和 B,并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,我们就将这个图称为二分图。
- 这一题可以用 BFS、DFS、并查集来解答。这里是 DFS 实现。任选一个节点开始,把它染成红色,然后对整个图 DFS 遍历,把与它相连的节点并且未被染色的,都染成绿色。颜色不同的节点代表不同的集合。这时候还可能遇到第 2 种情况,与它相连的节点已经有颜色了,并且这个颜色和前一个节点的颜色相同,这就说明了该无向图不是二分图。可以直接 return false。如此遍历到所有节点都染色了,如果能染色成功,说明该无向图是二分图,返回 true。

## 代码

```go
package leetcode

// DFS 染色,1 是红色,0 是绿色,-1 是未染色
func isBipartite(graph [][]int) bool {
colors := make([]int, len(graph))
for i := range colors {
colors[i] = -1
}
for i := range graph {
if !dfs(i, graph, colors, -1) {
return false
}
}
return true
}

func dfs(n int, graph [][]int, colors []int, parentCol int) bool {
if colors[n] == -1 {
if parentCol == 1 {
colors[n] = 0
} else {
colors[n] = 1
}
} else if colors[n] == parentCol {
return false
} else if colors[n] != parentCol {
return true
}
for _, c := range graph[n] {
if !dfs(c, graph, colors, colors[n]) {
return false
}
}
return true
}
```
44 changes: 0 additions & 44 deletions leetcode/785.Is Graph Bipartite?

This file was deleted.

98 changes: 98 additions & 0 deletions website/content/ChapterFour/0785.Is-Graph-Bipartite.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# [785. Is Graph Bipartite?](https://leetcode.com/problems/is-graph-bipartite/)


## 题目

Given an undirected `graph`, return `true` if and only if it is bipartite.

Recall that a graph is *bipartite* if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

The graph is given in the following form: `graph[i]` is a list of indexes `j` for which the edge between nodes `i` and `j` exists. Each node is an integer between `0` and `graph.length - 1`. There are no self edges or parallel edges: `graph[i]` does not contain `i`, and it doesn't contain any element twice.


Example 1:Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.


Example 2:Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.


**Note:**

- `graph` will have length in range `[1, 100]`.
- `graph[i]` will contain integers in range `[0, graph.length - 1]`.
- `graph[i]` will not contain `i` or duplicate values.
- The graph is undirected: if any element `j` is in `graph[i]`, then `i` will be in `graph[j]`.

## 题目大意

给定一个无向图 graph,当这个图为二分图时返回 true。

graph 将会以邻接表方式给出,graph[i] 表示图中与节点i相连的所有节点。每个节点都是一个在 0 到 graph.length-1 之间的整数。这图中没有自环和平行边: graph[i] 中不存在 i,并且 graph[i] 中没有重复的值。

注意:

- graph 的长度范围为 [1, 100]
- graph[i] 中的元素的范围为 [0, graph.length - 1]
- graph[i] 不会包含 i 或者有重复的值。
- 图是无向的: 如果 j 在 graph[i] 里边, 那么 i 也会在 graph[j] 里边。

## 解题思路

- 判断一个无向图是否是二分图。二分图的定义:如果我们能将一个图的节点集合分割成两个独立的子集 A 和 B,并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,我们就将这个图称为二分图。
- 这一题可以用 BFS、DFS、并查集来解答。这里是 DFS 实现。任选一个节点开始,把它染成红色,然后对整个图 DFS 遍历,把与它相连的节点并且未被染色的,都染成绿色。颜色不同的节点代表不同的集合。这时候还可能遇到第 2 种情况,与它相连的节点已经有颜色了,并且这个颜色和前一个节点的颜色相同,这就说明了该无向图不是二分图。可以直接 return false。如此遍历到所有节点都染色了,如果能染色成功,说明该无向图是二分图,返回 true。

## 代码

```go
package leetcode

// DFS 染色,1 是红色,0 是绿色,-1 是未染色
func isBipartite(graph [][]int) bool {
colors := make([]int, len(graph))
for i := range colors {
colors[i] = -1
}
for i := range graph {
if !dfs(i, graph, colors, -1) {
return false
}
}
return true
}

func dfs(n int, graph [][]int, colors []int, parentCol int) bool {
if colors[n] == -1 {
if parentCol == 1 {
colors[n] = 0
} else {
colors[n] = 1
}
} else if colors[n] == parentCol {
return false
} else if colors[n] != parentCol {
return true
}
for _, c := range graph[n] {
if !dfs(c, graph, colors, colors[n]) {
return false
}
}
return true
}
```
1 change: 1 addition & 0 deletions website/content/menu/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -379,6 +379,7 @@ headless: true
- [0778.Swim-in-Rising-Water]({{< relref "/ChapterFour/0778.Swim-in-Rising-Water.md" >}})
- [0781.Rabbits-in-Forest]({{< relref "/ChapterFour/0781.Rabbits-in-Forest.md" >}})
- [0784.Letter-Case-Permutation]({{< relref "/ChapterFour/0784.Letter-Case-Permutation.md" >}})
- [0785.Is-Graph-Bipartite]({{< relref "/ChapterFour/0785.Is-Graph-Bipartite.md" >}})
- [0786.K-th-Smallest-Prime-Fraction]({{< relref "/ChapterFour/0786.K-th-Smallest-Prime-Fraction.md" >}})
- [0793.Preimage-Size-of-Factorial-Zeroes-Function]({{< relref "/ChapterFour/0793.Preimage-Size-of-Factorial-Zeroes-Function.md" >}})
- [0802.Find-Eventual-Safe-States]({{< relref "/ChapterFour/0802.Find-Eventual-Safe-States.md" >}})
Expand Down

0 comments on commit 7ccb69a

Please sign in to comment.